1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * journal.c 6 * 7 * Defines functions of journalling api 8 * 9 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/types.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kthread.h> 17 #include <linux/time.h> 18 #include <linux/random.h> 19 #include <linux/delay.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "blockcheck.h" 27 #include "dir.h" 28 #include "dlmglue.h" 29 #include "extent_map.h" 30 #include "heartbeat.h" 31 #include "inode.h" 32 #include "journal.h" 33 #include "localalloc.h" 34 #include "slot_map.h" 35 #include "super.h" 36 #include "sysfile.h" 37 #include "uptodate.h" 38 #include "quota.h" 39 #include "file.h" 40 #include "namei.h" 41 42 #include "buffer_head_io.h" 43 #include "ocfs2_trace.h" 44 45 DEFINE_SPINLOCK(trans_inc_lock); 46 47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 48 49 static int ocfs2_force_read_journal(struct inode *inode); 50 static int ocfs2_recover_node(struct ocfs2_super *osb, 51 int node_num, int slot_num); 52 static int __ocfs2_recovery_thread(void *arg); 53 static int ocfs2_commit_cache(struct ocfs2_super *osb); 54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 56 int dirty, int replayed); 57 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 58 int slot_num); 59 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 60 int slot, 61 enum ocfs2_orphan_reco_type orphan_reco_type); 62 static int ocfs2_commit_thread(void *arg); 63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 64 int slot_num, 65 struct ocfs2_dinode *la_dinode, 66 struct ocfs2_dinode *tl_dinode, 67 struct ocfs2_quota_recovery *qrec, 68 enum ocfs2_orphan_reco_type orphan_reco_type); 69 70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 71 { 72 return __ocfs2_wait_on_mount(osb, 0); 73 } 74 75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 76 { 77 return __ocfs2_wait_on_mount(osb, 1); 78 } 79 80 /* 81 * This replay_map is to track online/offline slots, so we could recover 82 * offline slots during recovery and mount 83 */ 84 85 enum ocfs2_replay_state { 86 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 87 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 88 REPLAY_DONE /* Replay was already queued */ 89 }; 90 91 struct ocfs2_replay_map { 92 unsigned int rm_slots; 93 enum ocfs2_replay_state rm_state; 94 unsigned char rm_replay_slots[0]; 95 }; 96 97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 98 { 99 if (!osb->replay_map) 100 return; 101 102 /* If we've already queued the replay, we don't have any more to do */ 103 if (osb->replay_map->rm_state == REPLAY_DONE) 104 return; 105 106 osb->replay_map->rm_state = state; 107 } 108 109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 110 { 111 struct ocfs2_replay_map *replay_map; 112 int i, node_num; 113 114 /* If replay map is already set, we don't do it again */ 115 if (osb->replay_map) 116 return 0; 117 118 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 119 (osb->max_slots * sizeof(char)), GFP_KERNEL); 120 121 if (!replay_map) { 122 mlog_errno(-ENOMEM); 123 return -ENOMEM; 124 } 125 126 spin_lock(&osb->osb_lock); 127 128 replay_map->rm_slots = osb->max_slots; 129 replay_map->rm_state = REPLAY_UNNEEDED; 130 131 /* set rm_replay_slots for offline slot(s) */ 132 for (i = 0; i < replay_map->rm_slots; i++) { 133 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 134 replay_map->rm_replay_slots[i] = 1; 135 } 136 137 osb->replay_map = replay_map; 138 spin_unlock(&osb->osb_lock); 139 return 0; 140 } 141 142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 143 enum ocfs2_orphan_reco_type orphan_reco_type) 144 { 145 struct ocfs2_replay_map *replay_map = osb->replay_map; 146 int i; 147 148 if (!replay_map) 149 return; 150 151 if (replay_map->rm_state != REPLAY_NEEDED) 152 return; 153 154 for (i = 0; i < replay_map->rm_slots; i++) 155 if (replay_map->rm_replay_slots[i]) 156 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 157 NULL, NULL, 158 orphan_reco_type); 159 replay_map->rm_state = REPLAY_DONE; 160 } 161 162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 163 { 164 struct ocfs2_replay_map *replay_map = osb->replay_map; 165 166 if (!osb->replay_map) 167 return; 168 169 kfree(replay_map); 170 osb->replay_map = NULL; 171 } 172 173 int ocfs2_recovery_init(struct ocfs2_super *osb) 174 { 175 struct ocfs2_recovery_map *rm; 176 177 mutex_init(&osb->recovery_lock); 178 osb->disable_recovery = 0; 179 osb->recovery_thread_task = NULL; 180 init_waitqueue_head(&osb->recovery_event); 181 182 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 183 osb->max_slots * sizeof(unsigned int), 184 GFP_KERNEL); 185 if (!rm) { 186 mlog_errno(-ENOMEM); 187 return -ENOMEM; 188 } 189 190 rm->rm_entries = (unsigned int *)((char *)rm + 191 sizeof(struct ocfs2_recovery_map)); 192 osb->recovery_map = rm; 193 194 return 0; 195 } 196 197 /* we can't grab the goofy sem lock from inside wait_event, so we use 198 * memory barriers to make sure that we'll see the null task before 199 * being woken up */ 200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 201 { 202 mb(); 203 return osb->recovery_thread_task != NULL; 204 } 205 206 void ocfs2_recovery_exit(struct ocfs2_super *osb) 207 { 208 struct ocfs2_recovery_map *rm; 209 210 /* disable any new recovery threads and wait for any currently 211 * running ones to exit. Do this before setting the vol_state. */ 212 mutex_lock(&osb->recovery_lock); 213 osb->disable_recovery = 1; 214 mutex_unlock(&osb->recovery_lock); 215 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 216 217 /* At this point, we know that no more recovery threads can be 218 * launched, so wait for any recovery completion work to 219 * complete. */ 220 flush_workqueue(osb->ocfs2_wq); 221 222 /* 223 * Now that recovery is shut down, and the osb is about to be 224 * freed, the osb_lock is not taken here. 225 */ 226 rm = osb->recovery_map; 227 /* XXX: Should we bug if there are dirty entries? */ 228 229 kfree(rm); 230 } 231 232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 233 unsigned int node_num) 234 { 235 int i; 236 struct ocfs2_recovery_map *rm = osb->recovery_map; 237 238 assert_spin_locked(&osb->osb_lock); 239 240 for (i = 0; i < rm->rm_used; i++) { 241 if (rm->rm_entries[i] == node_num) 242 return 1; 243 } 244 245 return 0; 246 } 247 248 /* Behaves like test-and-set. Returns the previous value */ 249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 250 unsigned int node_num) 251 { 252 struct ocfs2_recovery_map *rm = osb->recovery_map; 253 254 spin_lock(&osb->osb_lock); 255 if (__ocfs2_recovery_map_test(osb, node_num)) { 256 spin_unlock(&osb->osb_lock); 257 return 1; 258 } 259 260 /* XXX: Can this be exploited? Not from o2dlm... */ 261 BUG_ON(rm->rm_used >= osb->max_slots); 262 263 rm->rm_entries[rm->rm_used] = node_num; 264 rm->rm_used++; 265 spin_unlock(&osb->osb_lock); 266 267 return 0; 268 } 269 270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 271 unsigned int node_num) 272 { 273 int i; 274 struct ocfs2_recovery_map *rm = osb->recovery_map; 275 276 spin_lock(&osb->osb_lock); 277 278 for (i = 0; i < rm->rm_used; i++) { 279 if (rm->rm_entries[i] == node_num) 280 break; 281 } 282 283 if (i < rm->rm_used) { 284 /* XXX: be careful with the pointer math */ 285 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 286 (rm->rm_used - i - 1) * sizeof(unsigned int)); 287 rm->rm_used--; 288 } 289 290 spin_unlock(&osb->osb_lock); 291 } 292 293 static int ocfs2_commit_cache(struct ocfs2_super *osb) 294 { 295 int status = 0; 296 unsigned int flushed; 297 struct ocfs2_journal *journal = NULL; 298 299 journal = osb->journal; 300 301 /* Flush all pending commits and checkpoint the journal. */ 302 down_write(&journal->j_trans_barrier); 303 304 flushed = atomic_read(&journal->j_num_trans); 305 trace_ocfs2_commit_cache_begin(flushed); 306 if (flushed == 0) { 307 up_write(&journal->j_trans_barrier); 308 goto finally; 309 } 310 311 jbd2_journal_lock_updates(journal->j_journal); 312 status = jbd2_journal_flush(journal->j_journal); 313 jbd2_journal_unlock_updates(journal->j_journal); 314 if (status < 0) { 315 up_write(&journal->j_trans_barrier); 316 mlog_errno(status); 317 goto finally; 318 } 319 320 ocfs2_inc_trans_id(journal); 321 322 flushed = atomic_read(&journal->j_num_trans); 323 atomic_set(&journal->j_num_trans, 0); 324 up_write(&journal->j_trans_barrier); 325 326 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 327 328 ocfs2_wake_downconvert_thread(osb); 329 wake_up(&journal->j_checkpointed); 330 finally: 331 return status; 332 } 333 334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 335 { 336 journal_t *journal = osb->journal->j_journal; 337 handle_t *handle; 338 339 BUG_ON(!osb || !osb->journal->j_journal); 340 341 if (ocfs2_is_hard_readonly(osb)) 342 return ERR_PTR(-EROFS); 343 344 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 345 BUG_ON(max_buffs <= 0); 346 347 /* Nested transaction? Just return the handle... */ 348 if (journal_current_handle()) 349 return jbd2_journal_start(journal, max_buffs); 350 351 sb_start_intwrite(osb->sb); 352 353 down_read(&osb->journal->j_trans_barrier); 354 355 handle = jbd2_journal_start(journal, max_buffs); 356 if (IS_ERR(handle)) { 357 up_read(&osb->journal->j_trans_barrier); 358 sb_end_intwrite(osb->sb); 359 360 mlog_errno(PTR_ERR(handle)); 361 362 if (is_journal_aborted(journal)) { 363 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 364 handle = ERR_PTR(-EROFS); 365 } 366 } else { 367 if (!ocfs2_mount_local(osb)) 368 atomic_inc(&(osb->journal->j_num_trans)); 369 } 370 371 return handle; 372 } 373 374 int ocfs2_commit_trans(struct ocfs2_super *osb, 375 handle_t *handle) 376 { 377 int ret, nested; 378 struct ocfs2_journal *journal = osb->journal; 379 380 BUG_ON(!handle); 381 382 nested = handle->h_ref > 1; 383 ret = jbd2_journal_stop(handle); 384 if (ret < 0) 385 mlog_errno(ret); 386 387 if (!nested) { 388 up_read(&journal->j_trans_barrier); 389 sb_end_intwrite(osb->sb); 390 } 391 392 return ret; 393 } 394 395 /* 396 * 'nblocks' is what you want to add to the current transaction. 397 * 398 * This might call jbd2_journal_restart() which will commit dirty buffers 399 * and then restart the transaction. Before calling 400 * ocfs2_extend_trans(), any changed blocks should have been 401 * dirtied. After calling it, all blocks which need to be changed must 402 * go through another set of journal_access/journal_dirty calls. 403 * 404 * WARNING: This will not release any semaphores or disk locks taken 405 * during the transaction, so make sure they were taken *before* 406 * start_trans or we'll have ordering deadlocks. 407 * 408 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 409 * good because transaction ids haven't yet been recorded on the 410 * cluster locks associated with this handle. 411 */ 412 int ocfs2_extend_trans(handle_t *handle, int nblocks) 413 { 414 int status, old_nblocks; 415 416 BUG_ON(!handle); 417 BUG_ON(nblocks < 0); 418 419 if (!nblocks) 420 return 0; 421 422 old_nblocks = handle->h_buffer_credits; 423 424 trace_ocfs2_extend_trans(old_nblocks, nblocks); 425 426 #ifdef CONFIG_OCFS2_DEBUG_FS 427 status = 1; 428 #else 429 status = jbd2_journal_extend(handle, nblocks); 430 if (status < 0) { 431 mlog_errno(status); 432 goto bail; 433 } 434 #endif 435 436 if (status > 0) { 437 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 438 status = jbd2_journal_restart(handle, 439 old_nblocks + nblocks); 440 if (status < 0) { 441 mlog_errno(status); 442 goto bail; 443 } 444 } 445 446 status = 0; 447 bail: 448 return status; 449 } 450 451 /* 452 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 453 * If that fails, restart the transaction & regain write access for the 454 * buffer head which is used for metadata modifications. 455 * Taken from Ext4: extend_or_restart_transaction() 456 */ 457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 458 { 459 int status, old_nblks; 460 461 BUG_ON(!handle); 462 463 old_nblks = handle->h_buffer_credits; 464 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 465 466 if (old_nblks < thresh) 467 return 0; 468 469 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 470 if (status < 0) { 471 mlog_errno(status); 472 goto bail; 473 } 474 475 if (status > 0) { 476 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 477 if (status < 0) 478 mlog_errno(status); 479 } 480 481 bail: 482 return status; 483 } 484 485 486 struct ocfs2_triggers { 487 struct jbd2_buffer_trigger_type ot_triggers; 488 int ot_offset; 489 }; 490 491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 492 { 493 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 494 } 495 496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 497 struct buffer_head *bh, 498 void *data, size_t size) 499 { 500 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 501 502 /* 503 * We aren't guaranteed to have the superblock here, so we 504 * must unconditionally compute the ecc data. 505 * __ocfs2_journal_access() will only set the triggers if 506 * metaecc is enabled. 507 */ 508 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 509 } 510 511 /* 512 * Quota blocks have their own trigger because the struct ocfs2_block_check 513 * offset depends on the blocksize. 514 */ 515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 516 struct buffer_head *bh, 517 void *data, size_t size) 518 { 519 struct ocfs2_disk_dqtrailer *dqt = 520 ocfs2_block_dqtrailer(size, data); 521 522 /* 523 * We aren't guaranteed to have the superblock here, so we 524 * must unconditionally compute the ecc data. 525 * __ocfs2_journal_access() will only set the triggers if 526 * metaecc is enabled. 527 */ 528 ocfs2_block_check_compute(data, size, &dqt->dq_check); 529 } 530 531 /* 532 * Directory blocks also have their own trigger because the 533 * struct ocfs2_block_check offset depends on the blocksize. 534 */ 535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 536 struct buffer_head *bh, 537 void *data, size_t size) 538 { 539 struct ocfs2_dir_block_trailer *trailer = 540 ocfs2_dir_trailer_from_size(size, data); 541 542 /* 543 * We aren't guaranteed to have the superblock here, so we 544 * must unconditionally compute the ecc data. 545 * __ocfs2_journal_access() will only set the triggers if 546 * metaecc is enabled. 547 */ 548 ocfs2_block_check_compute(data, size, &trailer->db_check); 549 } 550 551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 552 struct buffer_head *bh) 553 { 554 mlog(ML_ERROR, 555 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 556 "bh->b_blocknr = %llu\n", 557 (unsigned long)bh, 558 (unsigned long long)bh->b_blocknr); 559 560 ocfs2_error(bh->b_bdev->bd_super, 561 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 562 } 563 564 static struct ocfs2_triggers di_triggers = { 565 .ot_triggers = { 566 .t_frozen = ocfs2_frozen_trigger, 567 .t_abort = ocfs2_abort_trigger, 568 }, 569 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 570 }; 571 572 static struct ocfs2_triggers eb_triggers = { 573 .ot_triggers = { 574 .t_frozen = ocfs2_frozen_trigger, 575 .t_abort = ocfs2_abort_trigger, 576 }, 577 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 578 }; 579 580 static struct ocfs2_triggers rb_triggers = { 581 .ot_triggers = { 582 .t_frozen = ocfs2_frozen_trigger, 583 .t_abort = ocfs2_abort_trigger, 584 }, 585 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 586 }; 587 588 static struct ocfs2_triggers gd_triggers = { 589 .ot_triggers = { 590 .t_frozen = ocfs2_frozen_trigger, 591 .t_abort = ocfs2_abort_trigger, 592 }, 593 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 594 }; 595 596 static struct ocfs2_triggers db_triggers = { 597 .ot_triggers = { 598 .t_frozen = ocfs2_db_frozen_trigger, 599 .t_abort = ocfs2_abort_trigger, 600 }, 601 }; 602 603 static struct ocfs2_triggers xb_triggers = { 604 .ot_triggers = { 605 .t_frozen = ocfs2_frozen_trigger, 606 .t_abort = ocfs2_abort_trigger, 607 }, 608 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 609 }; 610 611 static struct ocfs2_triggers dq_triggers = { 612 .ot_triggers = { 613 .t_frozen = ocfs2_dq_frozen_trigger, 614 .t_abort = ocfs2_abort_trigger, 615 }, 616 }; 617 618 static struct ocfs2_triggers dr_triggers = { 619 .ot_triggers = { 620 .t_frozen = ocfs2_frozen_trigger, 621 .t_abort = ocfs2_abort_trigger, 622 }, 623 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 624 }; 625 626 static struct ocfs2_triggers dl_triggers = { 627 .ot_triggers = { 628 .t_frozen = ocfs2_frozen_trigger, 629 .t_abort = ocfs2_abort_trigger, 630 }, 631 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 632 }; 633 634 static int __ocfs2_journal_access(handle_t *handle, 635 struct ocfs2_caching_info *ci, 636 struct buffer_head *bh, 637 struct ocfs2_triggers *triggers, 638 int type) 639 { 640 int status; 641 struct ocfs2_super *osb = 642 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 643 644 BUG_ON(!ci || !ci->ci_ops); 645 BUG_ON(!handle); 646 BUG_ON(!bh); 647 648 trace_ocfs2_journal_access( 649 (unsigned long long)ocfs2_metadata_cache_owner(ci), 650 (unsigned long long)bh->b_blocknr, type, bh->b_size); 651 652 /* we can safely remove this assertion after testing. */ 653 if (!buffer_uptodate(bh)) { 654 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 655 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 656 (unsigned long long)bh->b_blocknr, bh->b_state); 657 658 lock_buffer(bh); 659 /* 660 * A previous transaction with a couple of buffer heads fail 661 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 662 * For current transaction, the bh is just among those error 663 * bhs which previous transaction handle. We can't just clear 664 * its BH_Write_EIO and reuse directly, since other bhs are 665 * not written to disk yet and that will cause metadata 666 * inconsistency. So we should set fs read-only to avoid 667 * further damage. 668 */ 669 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 670 unlock_buffer(bh); 671 return ocfs2_error(osb->sb, "A previous attempt to " 672 "write this buffer head failed\n"); 673 } 674 unlock_buffer(bh); 675 } 676 677 /* Set the current transaction information on the ci so 678 * that the locking code knows whether it can drop it's locks 679 * on this ci or not. We're protected from the commit 680 * thread updating the current transaction id until 681 * ocfs2_commit_trans() because ocfs2_start_trans() took 682 * j_trans_barrier for us. */ 683 ocfs2_set_ci_lock_trans(osb->journal, ci); 684 685 ocfs2_metadata_cache_io_lock(ci); 686 switch (type) { 687 case OCFS2_JOURNAL_ACCESS_CREATE: 688 case OCFS2_JOURNAL_ACCESS_WRITE: 689 status = jbd2_journal_get_write_access(handle, bh); 690 break; 691 692 case OCFS2_JOURNAL_ACCESS_UNDO: 693 status = jbd2_journal_get_undo_access(handle, bh); 694 break; 695 696 default: 697 status = -EINVAL; 698 mlog(ML_ERROR, "Unknown access type!\n"); 699 } 700 if (!status && ocfs2_meta_ecc(osb) && triggers) 701 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 702 ocfs2_metadata_cache_io_unlock(ci); 703 704 if (status < 0) 705 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 706 status, type); 707 708 return status; 709 } 710 711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 712 struct buffer_head *bh, int type) 713 { 714 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 715 } 716 717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 718 struct buffer_head *bh, int type) 719 { 720 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 721 } 722 723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 724 struct buffer_head *bh, int type) 725 { 726 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 727 type); 728 } 729 730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 731 struct buffer_head *bh, int type) 732 { 733 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 734 } 735 736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 737 struct buffer_head *bh, int type) 738 { 739 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 740 } 741 742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 743 struct buffer_head *bh, int type) 744 { 745 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 746 } 747 748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 749 struct buffer_head *bh, int type) 750 { 751 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 752 } 753 754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 755 struct buffer_head *bh, int type) 756 { 757 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 758 } 759 760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 761 struct buffer_head *bh, int type) 762 { 763 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 764 } 765 766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 767 struct buffer_head *bh, int type) 768 { 769 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 770 } 771 772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 773 { 774 int status; 775 776 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 777 778 status = jbd2_journal_dirty_metadata(handle, bh); 779 if (status) { 780 mlog_errno(status); 781 if (!is_handle_aborted(handle)) { 782 journal_t *journal = handle->h_transaction->t_journal; 783 struct super_block *sb = bh->b_bdev->bd_super; 784 785 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 786 "Aborting transaction and journal.\n"); 787 handle->h_err = status; 788 jbd2_journal_abort_handle(handle); 789 jbd2_journal_abort(journal, status); 790 ocfs2_abort(sb, "Journal already aborted.\n"); 791 } 792 } 793 } 794 795 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 796 797 void ocfs2_set_journal_params(struct ocfs2_super *osb) 798 { 799 journal_t *journal = osb->journal->j_journal; 800 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 801 802 if (osb->osb_commit_interval) 803 commit_interval = osb->osb_commit_interval; 804 805 write_lock(&journal->j_state_lock); 806 journal->j_commit_interval = commit_interval; 807 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 808 journal->j_flags |= JBD2_BARRIER; 809 else 810 journal->j_flags &= ~JBD2_BARRIER; 811 write_unlock(&journal->j_state_lock); 812 } 813 814 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 815 { 816 int status = -1; 817 struct inode *inode = NULL; /* the journal inode */ 818 journal_t *j_journal = NULL; 819 struct ocfs2_dinode *di = NULL; 820 struct buffer_head *bh = NULL; 821 struct ocfs2_super *osb; 822 int inode_lock = 0; 823 824 BUG_ON(!journal); 825 826 osb = journal->j_osb; 827 828 /* already have the inode for our journal */ 829 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 830 osb->slot_num); 831 if (inode == NULL) { 832 status = -EACCES; 833 mlog_errno(status); 834 goto done; 835 } 836 if (is_bad_inode(inode)) { 837 mlog(ML_ERROR, "access error (bad inode)\n"); 838 iput(inode); 839 inode = NULL; 840 status = -EACCES; 841 goto done; 842 } 843 844 SET_INODE_JOURNAL(inode); 845 OCFS2_I(inode)->ip_open_count++; 846 847 /* Skip recovery waits here - journal inode metadata never 848 * changes in a live cluster so it can be considered an 849 * exception to the rule. */ 850 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 851 if (status < 0) { 852 if (status != -ERESTARTSYS) 853 mlog(ML_ERROR, "Could not get lock on journal!\n"); 854 goto done; 855 } 856 857 inode_lock = 1; 858 di = (struct ocfs2_dinode *)bh->b_data; 859 860 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 861 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 862 i_size_read(inode)); 863 status = -EINVAL; 864 goto done; 865 } 866 867 trace_ocfs2_journal_init(i_size_read(inode), 868 (unsigned long long)inode->i_blocks, 869 OCFS2_I(inode)->ip_clusters); 870 871 /* call the kernels journal init function now */ 872 j_journal = jbd2_journal_init_inode(inode); 873 if (j_journal == NULL) { 874 mlog(ML_ERROR, "Linux journal layer error\n"); 875 status = -EINVAL; 876 goto done; 877 } 878 879 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 880 881 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 882 OCFS2_JOURNAL_DIRTY_FL); 883 884 journal->j_journal = j_journal; 885 journal->j_inode = inode; 886 journal->j_bh = bh; 887 888 ocfs2_set_journal_params(osb); 889 890 journal->j_state = OCFS2_JOURNAL_LOADED; 891 892 status = 0; 893 done: 894 if (status < 0) { 895 if (inode_lock) 896 ocfs2_inode_unlock(inode, 1); 897 brelse(bh); 898 if (inode) { 899 OCFS2_I(inode)->ip_open_count--; 900 iput(inode); 901 } 902 } 903 904 return status; 905 } 906 907 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 908 { 909 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 910 } 911 912 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 913 { 914 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 915 } 916 917 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 918 int dirty, int replayed) 919 { 920 int status; 921 unsigned int flags; 922 struct ocfs2_journal *journal = osb->journal; 923 struct buffer_head *bh = journal->j_bh; 924 struct ocfs2_dinode *fe; 925 926 fe = (struct ocfs2_dinode *)bh->b_data; 927 928 /* The journal bh on the osb always comes from ocfs2_journal_init() 929 * and was validated there inside ocfs2_inode_lock_full(). It's a 930 * code bug if we mess it up. */ 931 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 932 933 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 934 if (dirty) 935 flags |= OCFS2_JOURNAL_DIRTY_FL; 936 else 937 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 938 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 939 940 if (replayed) 941 ocfs2_bump_recovery_generation(fe); 942 943 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 944 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 945 if (status < 0) 946 mlog_errno(status); 947 948 return status; 949 } 950 951 /* 952 * If the journal has been kmalloc'd it needs to be freed after this 953 * call. 954 */ 955 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 956 { 957 struct ocfs2_journal *journal = NULL; 958 int status = 0; 959 struct inode *inode = NULL; 960 int num_running_trans = 0; 961 962 BUG_ON(!osb); 963 964 journal = osb->journal; 965 if (!journal) 966 goto done; 967 968 inode = journal->j_inode; 969 970 if (journal->j_state != OCFS2_JOURNAL_LOADED) 971 goto done; 972 973 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 974 if (!igrab(inode)) 975 BUG(); 976 977 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 978 trace_ocfs2_journal_shutdown(num_running_trans); 979 980 /* Do a commit_cache here. It will flush our journal, *and* 981 * release any locks that are still held. 982 * set the SHUTDOWN flag and release the trans lock. 983 * the commit thread will take the trans lock for us below. */ 984 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 985 986 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 987 * drop the trans_lock (which we want to hold until we 988 * completely destroy the journal. */ 989 if (osb->commit_task) { 990 /* Wait for the commit thread */ 991 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 992 kthread_stop(osb->commit_task); 993 osb->commit_task = NULL; 994 } 995 996 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 997 998 if (ocfs2_mount_local(osb)) { 999 jbd2_journal_lock_updates(journal->j_journal); 1000 status = jbd2_journal_flush(journal->j_journal); 1001 jbd2_journal_unlock_updates(journal->j_journal); 1002 if (status < 0) 1003 mlog_errno(status); 1004 } 1005 1006 /* Shutdown the kernel journal system */ 1007 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1008 /* 1009 * Do not toggle if flush was unsuccessful otherwise 1010 * will leave dirty metadata in a "clean" journal 1011 */ 1012 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1013 if (status < 0) 1014 mlog_errno(status); 1015 } 1016 journal->j_journal = NULL; 1017 1018 OCFS2_I(inode)->ip_open_count--; 1019 1020 /* unlock our journal */ 1021 ocfs2_inode_unlock(inode, 1); 1022 1023 brelse(journal->j_bh); 1024 journal->j_bh = NULL; 1025 1026 journal->j_state = OCFS2_JOURNAL_FREE; 1027 1028 // up_write(&journal->j_trans_barrier); 1029 done: 1030 iput(inode); 1031 } 1032 1033 static void ocfs2_clear_journal_error(struct super_block *sb, 1034 journal_t *journal, 1035 int slot) 1036 { 1037 int olderr; 1038 1039 olderr = jbd2_journal_errno(journal); 1040 if (olderr) { 1041 mlog(ML_ERROR, "File system error %d recorded in " 1042 "journal %u.\n", olderr, slot); 1043 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1044 sb->s_id); 1045 1046 jbd2_journal_ack_err(journal); 1047 jbd2_journal_clear_err(journal); 1048 } 1049 } 1050 1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1052 { 1053 int status = 0; 1054 struct ocfs2_super *osb; 1055 1056 BUG_ON(!journal); 1057 1058 osb = journal->j_osb; 1059 1060 status = jbd2_journal_load(journal->j_journal); 1061 if (status < 0) { 1062 mlog(ML_ERROR, "Failed to load journal!\n"); 1063 goto done; 1064 } 1065 1066 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1067 1068 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1069 if (status < 0) { 1070 mlog_errno(status); 1071 goto done; 1072 } 1073 1074 /* Launch the commit thread */ 1075 if (!local) { 1076 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1077 "ocfs2cmt-%s", osb->uuid_str); 1078 if (IS_ERR(osb->commit_task)) { 1079 status = PTR_ERR(osb->commit_task); 1080 osb->commit_task = NULL; 1081 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1082 "error=%d", status); 1083 goto done; 1084 } 1085 } else 1086 osb->commit_task = NULL; 1087 1088 done: 1089 return status; 1090 } 1091 1092 1093 /* 'full' flag tells us whether we clear out all blocks or if we just 1094 * mark the journal clean */ 1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1096 { 1097 int status; 1098 1099 BUG_ON(!journal); 1100 1101 status = jbd2_journal_wipe(journal->j_journal, full); 1102 if (status < 0) { 1103 mlog_errno(status); 1104 goto bail; 1105 } 1106 1107 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1108 if (status < 0) 1109 mlog_errno(status); 1110 1111 bail: 1112 return status; 1113 } 1114 1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1116 { 1117 int empty; 1118 struct ocfs2_recovery_map *rm = osb->recovery_map; 1119 1120 spin_lock(&osb->osb_lock); 1121 empty = (rm->rm_used == 0); 1122 spin_unlock(&osb->osb_lock); 1123 1124 return empty; 1125 } 1126 1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1128 { 1129 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1130 } 1131 1132 /* 1133 * JBD Might read a cached version of another nodes journal file. We 1134 * don't want this as this file changes often and we get no 1135 * notification on those changes. The only way to be sure that we've 1136 * got the most up to date version of those blocks then is to force 1137 * read them off disk. Just searching through the buffer cache won't 1138 * work as there may be pages backing this file which are still marked 1139 * up to date. We know things can't change on this file underneath us 1140 * as we have the lock by now :) 1141 */ 1142 static int ocfs2_force_read_journal(struct inode *inode) 1143 { 1144 int status = 0; 1145 int i; 1146 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1147 struct buffer_head *bh = NULL; 1148 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1149 1150 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1151 v_blkno = 0; 1152 while (v_blkno < num_blocks) { 1153 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1154 &p_blkno, &p_blocks, NULL); 1155 if (status < 0) { 1156 mlog_errno(status); 1157 goto bail; 1158 } 1159 1160 for (i = 0; i < p_blocks; i++, p_blkno++) { 1161 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1162 osb->sb->s_blocksize); 1163 /* block not cached. */ 1164 if (!bh) 1165 continue; 1166 1167 brelse(bh); 1168 bh = NULL; 1169 /* We are reading journal data which should not 1170 * be put in the uptodate cache. 1171 */ 1172 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1173 if (status < 0) { 1174 mlog_errno(status); 1175 goto bail; 1176 } 1177 1178 brelse(bh); 1179 bh = NULL; 1180 } 1181 1182 v_blkno += p_blocks; 1183 } 1184 1185 bail: 1186 return status; 1187 } 1188 1189 struct ocfs2_la_recovery_item { 1190 struct list_head lri_list; 1191 int lri_slot; 1192 struct ocfs2_dinode *lri_la_dinode; 1193 struct ocfs2_dinode *lri_tl_dinode; 1194 struct ocfs2_quota_recovery *lri_qrec; 1195 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1196 }; 1197 1198 /* Does the second half of the recovery process. By this point, the 1199 * node is marked clean and can actually be considered recovered, 1200 * hence it's no longer in the recovery map, but there's still some 1201 * cleanup we can do which shouldn't happen within the recovery thread 1202 * as locking in that context becomes very difficult if we are to take 1203 * recovering nodes into account. 1204 * 1205 * NOTE: This function can and will sleep on recovery of other nodes 1206 * during cluster locking, just like any other ocfs2 process. 1207 */ 1208 void ocfs2_complete_recovery(struct work_struct *work) 1209 { 1210 int ret = 0; 1211 struct ocfs2_journal *journal = 1212 container_of(work, struct ocfs2_journal, j_recovery_work); 1213 struct ocfs2_super *osb = journal->j_osb; 1214 struct ocfs2_dinode *la_dinode, *tl_dinode; 1215 struct ocfs2_la_recovery_item *item, *n; 1216 struct ocfs2_quota_recovery *qrec; 1217 enum ocfs2_orphan_reco_type orphan_reco_type; 1218 LIST_HEAD(tmp_la_list); 1219 1220 trace_ocfs2_complete_recovery( 1221 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1222 1223 spin_lock(&journal->j_lock); 1224 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1225 spin_unlock(&journal->j_lock); 1226 1227 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1228 list_del_init(&item->lri_list); 1229 1230 ocfs2_wait_on_quotas(osb); 1231 1232 la_dinode = item->lri_la_dinode; 1233 tl_dinode = item->lri_tl_dinode; 1234 qrec = item->lri_qrec; 1235 orphan_reco_type = item->lri_orphan_reco_type; 1236 1237 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1238 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1239 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1240 qrec); 1241 1242 if (la_dinode) { 1243 ret = ocfs2_complete_local_alloc_recovery(osb, 1244 la_dinode); 1245 if (ret < 0) 1246 mlog_errno(ret); 1247 1248 kfree(la_dinode); 1249 } 1250 1251 if (tl_dinode) { 1252 ret = ocfs2_complete_truncate_log_recovery(osb, 1253 tl_dinode); 1254 if (ret < 0) 1255 mlog_errno(ret); 1256 1257 kfree(tl_dinode); 1258 } 1259 1260 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1261 orphan_reco_type); 1262 if (ret < 0) 1263 mlog_errno(ret); 1264 1265 if (qrec) { 1266 ret = ocfs2_finish_quota_recovery(osb, qrec, 1267 item->lri_slot); 1268 if (ret < 0) 1269 mlog_errno(ret); 1270 /* Recovery info is already freed now */ 1271 } 1272 1273 kfree(item); 1274 } 1275 1276 trace_ocfs2_complete_recovery_end(ret); 1277 } 1278 1279 /* NOTE: This function always eats your references to la_dinode and 1280 * tl_dinode, either manually on error, or by passing them to 1281 * ocfs2_complete_recovery */ 1282 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1283 int slot_num, 1284 struct ocfs2_dinode *la_dinode, 1285 struct ocfs2_dinode *tl_dinode, 1286 struct ocfs2_quota_recovery *qrec, 1287 enum ocfs2_orphan_reco_type orphan_reco_type) 1288 { 1289 struct ocfs2_la_recovery_item *item; 1290 1291 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1292 if (!item) { 1293 /* Though we wish to avoid it, we are in fact safe in 1294 * skipping local alloc cleanup as fsck.ocfs2 is more 1295 * than capable of reclaiming unused space. */ 1296 kfree(la_dinode); 1297 kfree(tl_dinode); 1298 1299 if (qrec) 1300 ocfs2_free_quota_recovery(qrec); 1301 1302 mlog_errno(-ENOMEM); 1303 return; 1304 } 1305 1306 INIT_LIST_HEAD(&item->lri_list); 1307 item->lri_la_dinode = la_dinode; 1308 item->lri_slot = slot_num; 1309 item->lri_tl_dinode = tl_dinode; 1310 item->lri_qrec = qrec; 1311 item->lri_orphan_reco_type = orphan_reco_type; 1312 1313 spin_lock(&journal->j_lock); 1314 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1315 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1316 spin_unlock(&journal->j_lock); 1317 } 1318 1319 /* Called by the mount code to queue recovery the last part of 1320 * recovery for it's own and offline slot(s). */ 1321 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1322 { 1323 struct ocfs2_journal *journal = osb->journal; 1324 1325 if (ocfs2_is_hard_readonly(osb)) 1326 return; 1327 1328 /* No need to queue up our truncate_log as regular cleanup will catch 1329 * that */ 1330 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1331 osb->local_alloc_copy, NULL, NULL, 1332 ORPHAN_NEED_TRUNCATE); 1333 ocfs2_schedule_truncate_log_flush(osb, 0); 1334 1335 osb->local_alloc_copy = NULL; 1336 1337 /* queue to recover orphan slots for all offline slots */ 1338 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1339 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1340 ocfs2_free_replay_slots(osb); 1341 } 1342 1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1344 { 1345 if (osb->quota_rec) { 1346 ocfs2_queue_recovery_completion(osb->journal, 1347 osb->slot_num, 1348 NULL, 1349 NULL, 1350 osb->quota_rec, 1351 ORPHAN_NEED_TRUNCATE); 1352 osb->quota_rec = NULL; 1353 } 1354 } 1355 1356 static int __ocfs2_recovery_thread(void *arg) 1357 { 1358 int status, node_num, slot_num; 1359 struct ocfs2_super *osb = arg; 1360 struct ocfs2_recovery_map *rm = osb->recovery_map; 1361 int *rm_quota = NULL; 1362 int rm_quota_used = 0, i; 1363 struct ocfs2_quota_recovery *qrec; 1364 1365 /* Whether the quota supported. */ 1366 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1367 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1368 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1369 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1370 1371 status = ocfs2_wait_on_mount(osb); 1372 if (status < 0) { 1373 goto bail; 1374 } 1375 1376 if (quota_enabled) { 1377 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1378 if (!rm_quota) { 1379 status = -ENOMEM; 1380 goto bail; 1381 } 1382 } 1383 restart: 1384 status = ocfs2_super_lock(osb, 1); 1385 if (status < 0) { 1386 mlog_errno(status); 1387 goto bail; 1388 } 1389 1390 status = ocfs2_compute_replay_slots(osb); 1391 if (status < 0) 1392 mlog_errno(status); 1393 1394 /* queue recovery for our own slot */ 1395 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1396 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1397 1398 spin_lock(&osb->osb_lock); 1399 while (rm->rm_used) { 1400 /* It's always safe to remove entry zero, as we won't 1401 * clear it until ocfs2_recover_node() has succeeded. */ 1402 node_num = rm->rm_entries[0]; 1403 spin_unlock(&osb->osb_lock); 1404 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1405 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1406 if (slot_num == -ENOENT) { 1407 status = 0; 1408 goto skip_recovery; 1409 } 1410 1411 /* It is a bit subtle with quota recovery. We cannot do it 1412 * immediately because we have to obtain cluster locks from 1413 * quota files and we also don't want to just skip it because 1414 * then quota usage would be out of sync until some node takes 1415 * the slot. So we remember which nodes need quota recovery 1416 * and when everything else is done, we recover quotas. */ 1417 if (quota_enabled) { 1418 for (i = 0; i < rm_quota_used 1419 && rm_quota[i] != slot_num; i++) 1420 ; 1421 1422 if (i == rm_quota_used) 1423 rm_quota[rm_quota_used++] = slot_num; 1424 } 1425 1426 status = ocfs2_recover_node(osb, node_num, slot_num); 1427 skip_recovery: 1428 if (!status) { 1429 ocfs2_recovery_map_clear(osb, node_num); 1430 } else { 1431 mlog(ML_ERROR, 1432 "Error %d recovering node %d on device (%u,%u)!\n", 1433 status, node_num, 1434 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1435 mlog(ML_ERROR, "Volume requires unmount.\n"); 1436 } 1437 1438 spin_lock(&osb->osb_lock); 1439 } 1440 spin_unlock(&osb->osb_lock); 1441 trace_ocfs2_recovery_thread_end(status); 1442 1443 /* Refresh all journal recovery generations from disk */ 1444 status = ocfs2_check_journals_nolocks(osb); 1445 status = (status == -EROFS) ? 0 : status; 1446 if (status < 0) 1447 mlog_errno(status); 1448 1449 /* Now it is right time to recover quotas... We have to do this under 1450 * superblock lock so that no one can start using the slot (and crash) 1451 * before we recover it */ 1452 if (quota_enabled) { 1453 for (i = 0; i < rm_quota_used; i++) { 1454 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1455 if (IS_ERR(qrec)) { 1456 status = PTR_ERR(qrec); 1457 mlog_errno(status); 1458 continue; 1459 } 1460 ocfs2_queue_recovery_completion(osb->journal, 1461 rm_quota[i], 1462 NULL, NULL, qrec, 1463 ORPHAN_NEED_TRUNCATE); 1464 } 1465 } 1466 1467 ocfs2_super_unlock(osb, 1); 1468 1469 /* queue recovery for offline slots */ 1470 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1471 1472 bail: 1473 mutex_lock(&osb->recovery_lock); 1474 if (!status && !ocfs2_recovery_completed(osb)) { 1475 mutex_unlock(&osb->recovery_lock); 1476 goto restart; 1477 } 1478 1479 ocfs2_free_replay_slots(osb); 1480 osb->recovery_thread_task = NULL; 1481 mb(); /* sync with ocfs2_recovery_thread_running */ 1482 wake_up(&osb->recovery_event); 1483 1484 mutex_unlock(&osb->recovery_lock); 1485 1486 if (quota_enabled) 1487 kfree(rm_quota); 1488 1489 /* no one is callint kthread_stop() for us so the kthread() api 1490 * requires that we call do_exit(). And it isn't exported, but 1491 * complete_and_exit() seems to be a minimal wrapper around it. */ 1492 complete_and_exit(NULL, status); 1493 } 1494 1495 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1496 { 1497 mutex_lock(&osb->recovery_lock); 1498 1499 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1500 osb->disable_recovery, osb->recovery_thread_task, 1501 osb->disable_recovery ? 1502 -1 : ocfs2_recovery_map_set(osb, node_num)); 1503 1504 if (osb->disable_recovery) 1505 goto out; 1506 1507 if (osb->recovery_thread_task) 1508 goto out; 1509 1510 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1511 "ocfs2rec-%s", osb->uuid_str); 1512 if (IS_ERR(osb->recovery_thread_task)) { 1513 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1514 osb->recovery_thread_task = NULL; 1515 } 1516 1517 out: 1518 mutex_unlock(&osb->recovery_lock); 1519 wake_up(&osb->recovery_event); 1520 } 1521 1522 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1523 int slot_num, 1524 struct buffer_head **bh, 1525 struct inode **ret_inode) 1526 { 1527 int status = -EACCES; 1528 struct inode *inode = NULL; 1529 1530 BUG_ON(slot_num >= osb->max_slots); 1531 1532 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1533 slot_num); 1534 if (!inode || is_bad_inode(inode)) { 1535 mlog_errno(status); 1536 goto bail; 1537 } 1538 SET_INODE_JOURNAL(inode); 1539 1540 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1541 if (status < 0) { 1542 mlog_errno(status); 1543 goto bail; 1544 } 1545 1546 status = 0; 1547 1548 bail: 1549 if (inode) { 1550 if (status || !ret_inode) 1551 iput(inode); 1552 else 1553 *ret_inode = inode; 1554 } 1555 return status; 1556 } 1557 1558 /* Does the actual journal replay and marks the journal inode as 1559 * clean. Will only replay if the journal inode is marked dirty. */ 1560 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1561 int node_num, 1562 int slot_num) 1563 { 1564 int status; 1565 int got_lock = 0; 1566 unsigned int flags; 1567 struct inode *inode = NULL; 1568 struct ocfs2_dinode *fe; 1569 journal_t *journal = NULL; 1570 struct buffer_head *bh = NULL; 1571 u32 slot_reco_gen; 1572 1573 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1574 if (status) { 1575 mlog_errno(status); 1576 goto done; 1577 } 1578 1579 fe = (struct ocfs2_dinode *)bh->b_data; 1580 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1581 brelse(bh); 1582 bh = NULL; 1583 1584 /* 1585 * As the fs recovery is asynchronous, there is a small chance that 1586 * another node mounted (and recovered) the slot before the recovery 1587 * thread could get the lock. To handle that, we dirty read the journal 1588 * inode for that slot to get the recovery generation. If it is 1589 * different than what we expected, the slot has been recovered. 1590 * If not, it needs recovery. 1591 */ 1592 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1593 trace_ocfs2_replay_journal_recovered(slot_num, 1594 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1595 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1596 status = -EBUSY; 1597 goto done; 1598 } 1599 1600 /* Continue with recovery as the journal has not yet been recovered */ 1601 1602 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1603 if (status < 0) { 1604 trace_ocfs2_replay_journal_lock_err(status); 1605 if (status != -ERESTARTSYS) 1606 mlog(ML_ERROR, "Could not lock journal!\n"); 1607 goto done; 1608 } 1609 got_lock = 1; 1610 1611 fe = (struct ocfs2_dinode *) bh->b_data; 1612 1613 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1614 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1615 1616 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1617 trace_ocfs2_replay_journal_skip(node_num); 1618 /* Refresh recovery generation for the slot */ 1619 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1620 goto done; 1621 } 1622 1623 /* we need to run complete recovery for offline orphan slots */ 1624 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1625 1626 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1627 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1628 MINOR(osb->sb->s_dev)); 1629 1630 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1631 1632 status = ocfs2_force_read_journal(inode); 1633 if (status < 0) { 1634 mlog_errno(status); 1635 goto done; 1636 } 1637 1638 journal = jbd2_journal_init_inode(inode); 1639 if (journal == NULL) { 1640 mlog(ML_ERROR, "Linux journal layer error\n"); 1641 status = -EIO; 1642 goto done; 1643 } 1644 1645 status = jbd2_journal_load(journal); 1646 if (status < 0) { 1647 mlog_errno(status); 1648 if (!igrab(inode)) 1649 BUG(); 1650 jbd2_journal_destroy(journal); 1651 goto done; 1652 } 1653 1654 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1655 1656 /* wipe the journal */ 1657 jbd2_journal_lock_updates(journal); 1658 status = jbd2_journal_flush(journal); 1659 jbd2_journal_unlock_updates(journal); 1660 if (status < 0) 1661 mlog_errno(status); 1662 1663 /* This will mark the node clean */ 1664 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1665 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1666 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1667 1668 /* Increment recovery generation to indicate successful recovery */ 1669 ocfs2_bump_recovery_generation(fe); 1670 osb->slot_recovery_generations[slot_num] = 1671 ocfs2_get_recovery_generation(fe); 1672 1673 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1674 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1675 if (status < 0) 1676 mlog_errno(status); 1677 1678 if (!igrab(inode)) 1679 BUG(); 1680 1681 jbd2_journal_destroy(journal); 1682 1683 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1684 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1685 MINOR(osb->sb->s_dev)); 1686 done: 1687 /* drop the lock on this nodes journal */ 1688 if (got_lock) 1689 ocfs2_inode_unlock(inode, 1); 1690 1691 iput(inode); 1692 brelse(bh); 1693 1694 return status; 1695 } 1696 1697 /* 1698 * Do the most important parts of node recovery: 1699 * - Replay it's journal 1700 * - Stamp a clean local allocator file 1701 * - Stamp a clean truncate log 1702 * - Mark the node clean 1703 * 1704 * If this function completes without error, a node in OCFS2 can be 1705 * said to have been safely recovered. As a result, failure during the 1706 * second part of a nodes recovery process (local alloc recovery) is 1707 * far less concerning. 1708 */ 1709 static int ocfs2_recover_node(struct ocfs2_super *osb, 1710 int node_num, int slot_num) 1711 { 1712 int status = 0; 1713 struct ocfs2_dinode *la_copy = NULL; 1714 struct ocfs2_dinode *tl_copy = NULL; 1715 1716 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1717 1718 /* Should not ever be called to recover ourselves -- in that 1719 * case we should've called ocfs2_journal_load instead. */ 1720 BUG_ON(osb->node_num == node_num); 1721 1722 status = ocfs2_replay_journal(osb, node_num, slot_num); 1723 if (status < 0) { 1724 if (status == -EBUSY) { 1725 trace_ocfs2_recover_node_skip(slot_num, node_num); 1726 status = 0; 1727 goto done; 1728 } 1729 mlog_errno(status); 1730 goto done; 1731 } 1732 1733 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1734 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1735 if (status < 0) { 1736 mlog_errno(status); 1737 goto done; 1738 } 1739 1740 /* An error from begin_truncate_log_recovery is not 1741 * serious enough to warrant halting the rest of 1742 * recovery. */ 1743 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1744 if (status < 0) 1745 mlog_errno(status); 1746 1747 /* Likewise, this would be a strange but ultimately not so 1748 * harmful place to get an error... */ 1749 status = ocfs2_clear_slot(osb, slot_num); 1750 if (status < 0) 1751 mlog_errno(status); 1752 1753 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1754 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1755 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1756 1757 status = 0; 1758 done: 1759 1760 return status; 1761 } 1762 1763 /* Test node liveness by trylocking his journal. If we get the lock, 1764 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1765 * still alive (we couldn't get the lock) and < 0 on error. */ 1766 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1767 int slot_num) 1768 { 1769 int status, flags; 1770 struct inode *inode = NULL; 1771 1772 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1773 slot_num); 1774 if (inode == NULL) { 1775 mlog(ML_ERROR, "access error\n"); 1776 status = -EACCES; 1777 goto bail; 1778 } 1779 if (is_bad_inode(inode)) { 1780 mlog(ML_ERROR, "access error (bad inode)\n"); 1781 iput(inode); 1782 inode = NULL; 1783 status = -EACCES; 1784 goto bail; 1785 } 1786 SET_INODE_JOURNAL(inode); 1787 1788 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1789 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1790 if (status < 0) { 1791 if (status != -EAGAIN) 1792 mlog_errno(status); 1793 goto bail; 1794 } 1795 1796 ocfs2_inode_unlock(inode, 1); 1797 bail: 1798 iput(inode); 1799 1800 return status; 1801 } 1802 1803 /* Call this underneath ocfs2_super_lock. It also assumes that the 1804 * slot info struct has been updated from disk. */ 1805 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1806 { 1807 unsigned int node_num; 1808 int status, i; 1809 u32 gen; 1810 struct buffer_head *bh = NULL; 1811 struct ocfs2_dinode *di; 1812 1813 /* This is called with the super block cluster lock, so we 1814 * know that the slot map can't change underneath us. */ 1815 1816 for (i = 0; i < osb->max_slots; i++) { 1817 /* Read journal inode to get the recovery generation */ 1818 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1819 if (status) { 1820 mlog_errno(status); 1821 goto bail; 1822 } 1823 di = (struct ocfs2_dinode *)bh->b_data; 1824 gen = ocfs2_get_recovery_generation(di); 1825 brelse(bh); 1826 bh = NULL; 1827 1828 spin_lock(&osb->osb_lock); 1829 osb->slot_recovery_generations[i] = gen; 1830 1831 trace_ocfs2_mark_dead_nodes(i, 1832 osb->slot_recovery_generations[i]); 1833 1834 if (i == osb->slot_num) { 1835 spin_unlock(&osb->osb_lock); 1836 continue; 1837 } 1838 1839 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1840 if (status == -ENOENT) { 1841 spin_unlock(&osb->osb_lock); 1842 continue; 1843 } 1844 1845 if (__ocfs2_recovery_map_test(osb, node_num)) { 1846 spin_unlock(&osb->osb_lock); 1847 continue; 1848 } 1849 spin_unlock(&osb->osb_lock); 1850 1851 /* Ok, we have a slot occupied by another node which 1852 * is not in the recovery map. We trylock his journal 1853 * file here to test if he's alive. */ 1854 status = ocfs2_trylock_journal(osb, i); 1855 if (!status) { 1856 /* Since we're called from mount, we know that 1857 * the recovery thread can't race us on 1858 * setting / checking the recovery bits. */ 1859 ocfs2_recovery_thread(osb, node_num); 1860 } else if ((status < 0) && (status != -EAGAIN)) { 1861 mlog_errno(status); 1862 goto bail; 1863 } 1864 } 1865 1866 status = 0; 1867 bail: 1868 return status; 1869 } 1870 1871 /* 1872 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1873 * randomness to the timeout to minimize multple nodes firing the timer at the 1874 * same time. 1875 */ 1876 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1877 { 1878 unsigned long time; 1879 1880 get_random_bytes(&time, sizeof(time)); 1881 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1882 return msecs_to_jiffies(time); 1883 } 1884 1885 /* 1886 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1887 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1888 * is done to catch any orphans that are left over in orphan directories. 1889 * 1890 * It scans all slots, even ones that are in use. It does so to handle the 1891 * case described below: 1892 * 1893 * Node 1 has an inode it was using. The dentry went away due to memory 1894 * pressure. Node 1 closes the inode, but it's on the free list. The node 1895 * has the open lock. 1896 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1897 * but node 1 has no dentry and doesn't get the message. It trylocks the 1898 * open lock, sees that another node has a PR, and does nothing. 1899 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1900 * open lock, sees the PR still, and does nothing. 1901 * Basically, we have to trigger an orphan iput on node 1. The only way 1902 * for this to happen is if node 1 runs node 2's orphan dir. 1903 * 1904 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1905 * seconds. It gets an EX lock on os_lockres and checks sequence number 1906 * stored in LVB. If the sequence number has changed, it means some other 1907 * node has done the scan. This node skips the scan and tracks the 1908 * sequence number. If the sequence number didn't change, it means a scan 1909 * hasn't happened. The node queues a scan and increments the 1910 * sequence number in the LVB. 1911 */ 1912 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1913 { 1914 struct ocfs2_orphan_scan *os; 1915 int status, i; 1916 u32 seqno = 0; 1917 1918 os = &osb->osb_orphan_scan; 1919 1920 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1921 goto out; 1922 1923 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1924 atomic_read(&os->os_state)); 1925 1926 status = ocfs2_orphan_scan_lock(osb, &seqno); 1927 if (status < 0) { 1928 if (status != -EAGAIN) 1929 mlog_errno(status); 1930 goto out; 1931 } 1932 1933 /* Do no queue the tasks if the volume is being umounted */ 1934 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1935 goto unlock; 1936 1937 if (os->os_seqno != seqno) { 1938 os->os_seqno = seqno; 1939 goto unlock; 1940 } 1941 1942 for (i = 0; i < osb->max_slots; i++) 1943 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1944 NULL, ORPHAN_NO_NEED_TRUNCATE); 1945 /* 1946 * We queued a recovery on orphan slots, increment the sequence 1947 * number and update LVB so other node will skip the scan for a while 1948 */ 1949 seqno++; 1950 os->os_count++; 1951 os->os_scantime = ktime_get_seconds(); 1952 unlock: 1953 ocfs2_orphan_scan_unlock(osb, seqno); 1954 out: 1955 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1956 atomic_read(&os->os_state)); 1957 return; 1958 } 1959 1960 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1961 static void ocfs2_orphan_scan_work(struct work_struct *work) 1962 { 1963 struct ocfs2_orphan_scan *os; 1964 struct ocfs2_super *osb; 1965 1966 os = container_of(work, struct ocfs2_orphan_scan, 1967 os_orphan_scan_work.work); 1968 osb = os->os_osb; 1969 1970 mutex_lock(&os->os_lock); 1971 ocfs2_queue_orphan_scan(osb); 1972 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1973 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1974 ocfs2_orphan_scan_timeout()); 1975 mutex_unlock(&os->os_lock); 1976 } 1977 1978 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1979 { 1980 struct ocfs2_orphan_scan *os; 1981 1982 os = &osb->osb_orphan_scan; 1983 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1984 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1985 mutex_lock(&os->os_lock); 1986 cancel_delayed_work(&os->os_orphan_scan_work); 1987 mutex_unlock(&os->os_lock); 1988 } 1989 } 1990 1991 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1992 { 1993 struct ocfs2_orphan_scan *os; 1994 1995 os = &osb->osb_orphan_scan; 1996 os->os_osb = osb; 1997 os->os_count = 0; 1998 os->os_seqno = 0; 1999 mutex_init(&os->os_lock); 2000 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2001 } 2002 2003 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2004 { 2005 struct ocfs2_orphan_scan *os; 2006 2007 os = &osb->osb_orphan_scan; 2008 os->os_scantime = ktime_get_seconds(); 2009 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2010 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2011 else { 2012 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2013 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2014 ocfs2_orphan_scan_timeout()); 2015 } 2016 } 2017 2018 struct ocfs2_orphan_filldir_priv { 2019 struct dir_context ctx; 2020 struct inode *head; 2021 struct ocfs2_super *osb; 2022 enum ocfs2_orphan_reco_type orphan_reco_type; 2023 }; 2024 2025 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2026 int name_len, loff_t pos, u64 ino, 2027 unsigned type) 2028 { 2029 struct ocfs2_orphan_filldir_priv *p = 2030 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2031 struct inode *iter; 2032 2033 if (name_len == 1 && !strncmp(".", name, 1)) 2034 return 0; 2035 if (name_len == 2 && !strncmp("..", name, 2)) 2036 return 0; 2037 2038 /* do not include dio entry in case of orphan scan */ 2039 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2040 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2041 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2042 return 0; 2043 2044 /* Skip bad inodes so that recovery can continue */ 2045 iter = ocfs2_iget(p->osb, ino, 2046 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2047 if (IS_ERR(iter)) 2048 return 0; 2049 2050 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2051 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2052 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2053 2054 /* Skip inodes which are already added to recover list, since dio may 2055 * happen concurrently with unlink/rename */ 2056 if (OCFS2_I(iter)->ip_next_orphan) { 2057 iput(iter); 2058 return 0; 2059 } 2060 2061 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2062 /* No locking is required for the next_orphan queue as there 2063 * is only ever a single process doing orphan recovery. */ 2064 OCFS2_I(iter)->ip_next_orphan = p->head; 2065 p->head = iter; 2066 2067 return 0; 2068 } 2069 2070 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2071 int slot, 2072 struct inode **head, 2073 enum ocfs2_orphan_reco_type orphan_reco_type) 2074 { 2075 int status; 2076 struct inode *orphan_dir_inode = NULL; 2077 struct ocfs2_orphan_filldir_priv priv = { 2078 .ctx.actor = ocfs2_orphan_filldir, 2079 .osb = osb, 2080 .head = *head, 2081 .orphan_reco_type = orphan_reco_type 2082 }; 2083 2084 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2085 ORPHAN_DIR_SYSTEM_INODE, 2086 slot); 2087 if (!orphan_dir_inode) { 2088 status = -ENOENT; 2089 mlog_errno(status); 2090 return status; 2091 } 2092 2093 inode_lock(orphan_dir_inode); 2094 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2095 if (status < 0) { 2096 mlog_errno(status); 2097 goto out; 2098 } 2099 2100 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2101 if (status) { 2102 mlog_errno(status); 2103 goto out_cluster; 2104 } 2105 2106 *head = priv.head; 2107 2108 out_cluster: 2109 ocfs2_inode_unlock(orphan_dir_inode, 0); 2110 out: 2111 inode_unlock(orphan_dir_inode); 2112 iput(orphan_dir_inode); 2113 return status; 2114 } 2115 2116 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2117 int slot) 2118 { 2119 int ret; 2120 2121 spin_lock(&osb->osb_lock); 2122 ret = !osb->osb_orphan_wipes[slot]; 2123 spin_unlock(&osb->osb_lock); 2124 return ret; 2125 } 2126 2127 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2128 int slot) 2129 { 2130 spin_lock(&osb->osb_lock); 2131 /* Mark ourselves such that new processes in delete_inode() 2132 * know to quit early. */ 2133 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2134 while (osb->osb_orphan_wipes[slot]) { 2135 /* If any processes are already in the middle of an 2136 * orphan wipe on this dir, then we need to wait for 2137 * them. */ 2138 spin_unlock(&osb->osb_lock); 2139 wait_event_interruptible(osb->osb_wipe_event, 2140 ocfs2_orphan_recovery_can_continue(osb, slot)); 2141 spin_lock(&osb->osb_lock); 2142 } 2143 spin_unlock(&osb->osb_lock); 2144 } 2145 2146 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2147 int slot) 2148 { 2149 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2150 } 2151 2152 /* 2153 * Orphan recovery. Each mounted node has it's own orphan dir which we 2154 * must run during recovery. Our strategy here is to build a list of 2155 * the inodes in the orphan dir and iget/iput them. The VFS does 2156 * (most) of the rest of the work. 2157 * 2158 * Orphan recovery can happen at any time, not just mount so we have a 2159 * couple of extra considerations. 2160 * 2161 * - We grab as many inodes as we can under the orphan dir lock - 2162 * doing iget() outside the orphan dir risks getting a reference on 2163 * an invalid inode. 2164 * - We must be sure not to deadlock with other processes on the 2165 * system wanting to run delete_inode(). This can happen when they go 2166 * to lock the orphan dir and the orphan recovery process attempts to 2167 * iget() inside the orphan dir lock. This can be avoided by 2168 * advertising our state to ocfs2_delete_inode(). 2169 */ 2170 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2171 int slot, 2172 enum ocfs2_orphan_reco_type orphan_reco_type) 2173 { 2174 int ret = 0; 2175 struct inode *inode = NULL; 2176 struct inode *iter; 2177 struct ocfs2_inode_info *oi; 2178 struct buffer_head *di_bh = NULL; 2179 struct ocfs2_dinode *di = NULL; 2180 2181 trace_ocfs2_recover_orphans(slot); 2182 2183 ocfs2_mark_recovering_orphan_dir(osb, slot); 2184 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2185 ocfs2_clear_recovering_orphan_dir(osb, slot); 2186 2187 /* Error here should be noted, but we want to continue with as 2188 * many queued inodes as we've got. */ 2189 if (ret) 2190 mlog_errno(ret); 2191 2192 while (inode) { 2193 oi = OCFS2_I(inode); 2194 trace_ocfs2_recover_orphans_iput( 2195 (unsigned long long)oi->ip_blkno); 2196 2197 iter = oi->ip_next_orphan; 2198 oi->ip_next_orphan = NULL; 2199 2200 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2201 inode_lock(inode); 2202 ret = ocfs2_rw_lock(inode, 1); 2203 if (ret < 0) { 2204 mlog_errno(ret); 2205 goto unlock_mutex; 2206 } 2207 /* 2208 * We need to take and drop the inode lock to 2209 * force read inode from disk. 2210 */ 2211 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2212 if (ret) { 2213 mlog_errno(ret); 2214 goto unlock_rw; 2215 } 2216 2217 di = (struct ocfs2_dinode *)di_bh->b_data; 2218 2219 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2220 ret = ocfs2_truncate_file(inode, di_bh, 2221 i_size_read(inode)); 2222 if (ret < 0) { 2223 if (ret != -ENOSPC) 2224 mlog_errno(ret); 2225 goto unlock_inode; 2226 } 2227 2228 ret = ocfs2_del_inode_from_orphan(osb, inode, 2229 di_bh, 0, 0); 2230 if (ret) 2231 mlog_errno(ret); 2232 } 2233 unlock_inode: 2234 ocfs2_inode_unlock(inode, 1); 2235 brelse(di_bh); 2236 di_bh = NULL; 2237 unlock_rw: 2238 ocfs2_rw_unlock(inode, 1); 2239 unlock_mutex: 2240 inode_unlock(inode); 2241 2242 /* clear dio flag in ocfs2_inode_info */ 2243 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2244 } else { 2245 spin_lock(&oi->ip_lock); 2246 /* Set the proper information to get us going into 2247 * ocfs2_delete_inode. */ 2248 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2249 spin_unlock(&oi->ip_lock); 2250 } 2251 2252 iput(inode); 2253 inode = iter; 2254 } 2255 2256 return ret; 2257 } 2258 2259 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2260 { 2261 /* This check is good because ocfs2 will wait on our recovery 2262 * thread before changing it to something other than MOUNTED 2263 * or DISABLED. */ 2264 wait_event(osb->osb_mount_event, 2265 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2266 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2267 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2268 2269 /* If there's an error on mount, then we may never get to the 2270 * MOUNTED flag, but this is set right before 2271 * dismount_volume() so we can trust it. */ 2272 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2273 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2274 mlog(0, "mount error, exiting!\n"); 2275 return -EBUSY; 2276 } 2277 2278 return 0; 2279 } 2280 2281 static int ocfs2_commit_thread(void *arg) 2282 { 2283 int status; 2284 struct ocfs2_super *osb = arg; 2285 struct ocfs2_journal *journal = osb->journal; 2286 2287 /* we can trust j_num_trans here because _should_stop() is only set in 2288 * shutdown and nobody other than ourselves should be able to start 2289 * transactions. committing on shutdown might take a few iterations 2290 * as final transactions put deleted inodes on the list */ 2291 while (!(kthread_should_stop() && 2292 atomic_read(&journal->j_num_trans) == 0)) { 2293 2294 wait_event_interruptible(osb->checkpoint_event, 2295 atomic_read(&journal->j_num_trans) 2296 || kthread_should_stop()); 2297 2298 status = ocfs2_commit_cache(osb); 2299 if (status < 0) { 2300 static unsigned long abort_warn_time; 2301 2302 /* Warn about this once per minute */ 2303 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2304 mlog(ML_ERROR, "status = %d, journal is " 2305 "already aborted.\n", status); 2306 /* 2307 * After ocfs2_commit_cache() fails, j_num_trans has a 2308 * non-zero value. Sleep here to avoid a busy-wait 2309 * loop. 2310 */ 2311 msleep_interruptible(1000); 2312 } 2313 2314 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2315 mlog(ML_KTHREAD, 2316 "commit_thread: %u transactions pending on " 2317 "shutdown\n", 2318 atomic_read(&journal->j_num_trans)); 2319 } 2320 } 2321 2322 return 0; 2323 } 2324 2325 /* Reads all the journal inodes without taking any cluster locks. Used 2326 * for hard readonly access to determine whether any journal requires 2327 * recovery. Also used to refresh the recovery generation numbers after 2328 * a journal has been recovered by another node. 2329 */ 2330 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2331 { 2332 int ret = 0; 2333 unsigned int slot; 2334 struct buffer_head *di_bh = NULL; 2335 struct ocfs2_dinode *di; 2336 int journal_dirty = 0; 2337 2338 for(slot = 0; slot < osb->max_slots; slot++) { 2339 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2340 if (ret) { 2341 mlog_errno(ret); 2342 goto out; 2343 } 2344 2345 di = (struct ocfs2_dinode *) di_bh->b_data; 2346 2347 osb->slot_recovery_generations[slot] = 2348 ocfs2_get_recovery_generation(di); 2349 2350 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2351 OCFS2_JOURNAL_DIRTY_FL) 2352 journal_dirty = 1; 2353 2354 brelse(di_bh); 2355 di_bh = NULL; 2356 } 2357 2358 out: 2359 if (journal_dirty) 2360 ret = -EROFS; 2361 return ret; 2362 } 2363