1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 #include <linux/time.h> 32 #include <linux/random.h> 33 #include <linux/delay.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "blockcheck.h" 41 #include "dir.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "heartbeat.h" 45 #include "inode.h" 46 #include "journal.h" 47 #include "localalloc.h" 48 #include "slot_map.h" 49 #include "super.h" 50 #include "sysfile.h" 51 #include "uptodate.h" 52 #include "quota.h" 53 #include "file.h" 54 #include "namei.h" 55 56 #include "buffer_head_io.h" 57 #include "ocfs2_trace.h" 58 59 DEFINE_SPINLOCK(trans_inc_lock); 60 61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 62 63 static int ocfs2_force_read_journal(struct inode *inode); 64 static int ocfs2_recover_node(struct ocfs2_super *osb, 65 int node_num, int slot_num); 66 static int __ocfs2_recovery_thread(void *arg); 67 static int ocfs2_commit_cache(struct ocfs2_super *osb); 68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 70 int dirty, int replayed); 71 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 72 int slot_num); 73 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 74 int slot, 75 enum ocfs2_orphan_reco_type orphan_reco_type); 76 static int ocfs2_commit_thread(void *arg); 77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 78 int slot_num, 79 struct ocfs2_dinode *la_dinode, 80 struct ocfs2_dinode *tl_dinode, 81 struct ocfs2_quota_recovery *qrec, 82 enum ocfs2_orphan_reco_type orphan_reco_type); 83 84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 85 { 86 return __ocfs2_wait_on_mount(osb, 0); 87 } 88 89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 90 { 91 return __ocfs2_wait_on_mount(osb, 1); 92 } 93 94 /* 95 * This replay_map is to track online/offline slots, so we could recover 96 * offline slots during recovery and mount 97 */ 98 99 enum ocfs2_replay_state { 100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 102 REPLAY_DONE /* Replay was already queued */ 103 }; 104 105 struct ocfs2_replay_map { 106 unsigned int rm_slots; 107 enum ocfs2_replay_state rm_state; 108 unsigned char rm_replay_slots[0]; 109 }; 110 111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 112 { 113 if (!osb->replay_map) 114 return; 115 116 /* If we've already queued the replay, we don't have any more to do */ 117 if (osb->replay_map->rm_state == REPLAY_DONE) 118 return; 119 120 osb->replay_map->rm_state = state; 121 } 122 123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 124 { 125 struct ocfs2_replay_map *replay_map; 126 int i, node_num; 127 128 /* If replay map is already set, we don't do it again */ 129 if (osb->replay_map) 130 return 0; 131 132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 133 (osb->max_slots * sizeof(char)), GFP_KERNEL); 134 135 if (!replay_map) { 136 mlog_errno(-ENOMEM); 137 return -ENOMEM; 138 } 139 140 spin_lock(&osb->osb_lock); 141 142 replay_map->rm_slots = osb->max_slots; 143 replay_map->rm_state = REPLAY_UNNEEDED; 144 145 /* set rm_replay_slots for offline slot(s) */ 146 for (i = 0; i < replay_map->rm_slots; i++) { 147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 148 replay_map->rm_replay_slots[i] = 1; 149 } 150 151 osb->replay_map = replay_map; 152 spin_unlock(&osb->osb_lock); 153 return 0; 154 } 155 156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 157 enum ocfs2_orphan_reco_type orphan_reco_type) 158 { 159 struct ocfs2_replay_map *replay_map = osb->replay_map; 160 int i; 161 162 if (!replay_map) 163 return; 164 165 if (replay_map->rm_state != REPLAY_NEEDED) 166 return; 167 168 for (i = 0; i < replay_map->rm_slots; i++) 169 if (replay_map->rm_replay_slots[i]) 170 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 171 NULL, NULL, 172 orphan_reco_type); 173 replay_map->rm_state = REPLAY_DONE; 174 } 175 176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 177 { 178 struct ocfs2_replay_map *replay_map = osb->replay_map; 179 180 if (!osb->replay_map) 181 return; 182 183 kfree(replay_map); 184 osb->replay_map = NULL; 185 } 186 187 int ocfs2_recovery_init(struct ocfs2_super *osb) 188 { 189 struct ocfs2_recovery_map *rm; 190 191 mutex_init(&osb->recovery_lock); 192 osb->disable_recovery = 0; 193 osb->recovery_thread_task = NULL; 194 init_waitqueue_head(&osb->recovery_event); 195 196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 197 osb->max_slots * sizeof(unsigned int), 198 GFP_KERNEL); 199 if (!rm) { 200 mlog_errno(-ENOMEM); 201 return -ENOMEM; 202 } 203 204 rm->rm_entries = (unsigned int *)((char *)rm + 205 sizeof(struct ocfs2_recovery_map)); 206 osb->recovery_map = rm; 207 208 return 0; 209 } 210 211 /* we can't grab the goofy sem lock from inside wait_event, so we use 212 * memory barriers to make sure that we'll see the null task before 213 * being woken up */ 214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 215 { 216 mb(); 217 return osb->recovery_thread_task != NULL; 218 } 219 220 void ocfs2_recovery_exit(struct ocfs2_super *osb) 221 { 222 struct ocfs2_recovery_map *rm; 223 224 /* disable any new recovery threads and wait for any currently 225 * running ones to exit. Do this before setting the vol_state. */ 226 mutex_lock(&osb->recovery_lock); 227 osb->disable_recovery = 1; 228 mutex_unlock(&osb->recovery_lock); 229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 230 231 /* At this point, we know that no more recovery threads can be 232 * launched, so wait for any recovery completion work to 233 * complete. */ 234 flush_workqueue(ocfs2_wq); 235 236 /* 237 * Now that recovery is shut down, and the osb is about to be 238 * freed, the osb_lock is not taken here. 239 */ 240 rm = osb->recovery_map; 241 /* XXX: Should we bug if there are dirty entries? */ 242 243 kfree(rm); 244 } 245 246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 int i; 250 struct ocfs2_recovery_map *rm = osb->recovery_map; 251 252 assert_spin_locked(&osb->osb_lock); 253 254 for (i = 0; i < rm->rm_used; i++) { 255 if (rm->rm_entries[i] == node_num) 256 return 1; 257 } 258 259 return 0; 260 } 261 262 /* Behaves like test-and-set. Returns the previous value */ 263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 264 unsigned int node_num) 265 { 266 struct ocfs2_recovery_map *rm = osb->recovery_map; 267 268 spin_lock(&osb->osb_lock); 269 if (__ocfs2_recovery_map_test(osb, node_num)) { 270 spin_unlock(&osb->osb_lock); 271 return 1; 272 } 273 274 /* XXX: Can this be exploited? Not from o2dlm... */ 275 BUG_ON(rm->rm_used >= osb->max_slots); 276 277 rm->rm_entries[rm->rm_used] = node_num; 278 rm->rm_used++; 279 spin_unlock(&osb->osb_lock); 280 281 return 0; 282 } 283 284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 285 unsigned int node_num) 286 { 287 int i; 288 struct ocfs2_recovery_map *rm = osb->recovery_map; 289 290 spin_lock(&osb->osb_lock); 291 292 for (i = 0; i < rm->rm_used; i++) { 293 if (rm->rm_entries[i] == node_num) 294 break; 295 } 296 297 if (i < rm->rm_used) { 298 /* XXX: be careful with the pointer math */ 299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 300 (rm->rm_used - i - 1) * sizeof(unsigned int)); 301 rm->rm_used--; 302 } 303 304 spin_unlock(&osb->osb_lock); 305 } 306 307 static int ocfs2_commit_cache(struct ocfs2_super *osb) 308 { 309 int status = 0; 310 unsigned int flushed; 311 struct ocfs2_journal *journal = NULL; 312 313 journal = osb->journal; 314 315 /* Flush all pending commits and checkpoint the journal. */ 316 down_write(&journal->j_trans_barrier); 317 318 flushed = atomic_read(&journal->j_num_trans); 319 trace_ocfs2_commit_cache_begin(flushed); 320 if (flushed == 0) { 321 up_write(&journal->j_trans_barrier); 322 goto finally; 323 } 324 325 jbd2_journal_lock_updates(journal->j_journal); 326 status = jbd2_journal_flush(journal->j_journal); 327 jbd2_journal_unlock_updates(journal->j_journal); 328 if (status < 0) { 329 up_write(&journal->j_trans_barrier); 330 mlog_errno(status); 331 goto finally; 332 } 333 334 ocfs2_inc_trans_id(journal); 335 336 flushed = atomic_read(&journal->j_num_trans); 337 atomic_set(&journal->j_num_trans, 0); 338 up_write(&journal->j_trans_barrier); 339 340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 341 342 ocfs2_wake_downconvert_thread(osb); 343 wake_up(&journal->j_checkpointed); 344 finally: 345 return status; 346 } 347 348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 349 { 350 journal_t *journal = osb->journal->j_journal; 351 handle_t *handle; 352 353 BUG_ON(!osb || !osb->journal->j_journal); 354 355 if (ocfs2_is_hard_readonly(osb)) 356 return ERR_PTR(-EROFS); 357 358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 359 BUG_ON(max_buffs <= 0); 360 361 /* Nested transaction? Just return the handle... */ 362 if (journal_current_handle()) 363 return jbd2_journal_start(journal, max_buffs); 364 365 sb_start_intwrite(osb->sb); 366 367 down_read(&osb->journal->j_trans_barrier); 368 369 handle = jbd2_journal_start(journal, max_buffs); 370 if (IS_ERR(handle)) { 371 up_read(&osb->journal->j_trans_barrier); 372 sb_end_intwrite(osb->sb); 373 374 mlog_errno(PTR_ERR(handle)); 375 376 if (is_journal_aborted(journal)) { 377 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 378 handle = ERR_PTR(-EROFS); 379 } 380 } else { 381 if (!ocfs2_mount_local(osb)) 382 atomic_inc(&(osb->journal->j_num_trans)); 383 } 384 385 return handle; 386 } 387 388 int ocfs2_commit_trans(struct ocfs2_super *osb, 389 handle_t *handle) 390 { 391 int ret, nested; 392 struct ocfs2_journal *journal = osb->journal; 393 394 BUG_ON(!handle); 395 396 nested = handle->h_ref > 1; 397 ret = jbd2_journal_stop(handle); 398 if (ret < 0) 399 mlog_errno(ret); 400 401 if (!nested) { 402 up_read(&journal->j_trans_barrier); 403 sb_end_intwrite(osb->sb); 404 } 405 406 return ret; 407 } 408 409 /* 410 * 'nblocks' is what you want to add to the current transaction. 411 * 412 * This might call jbd2_journal_restart() which will commit dirty buffers 413 * and then restart the transaction. Before calling 414 * ocfs2_extend_trans(), any changed blocks should have been 415 * dirtied. After calling it, all blocks which need to be changed must 416 * go through another set of journal_access/journal_dirty calls. 417 * 418 * WARNING: This will not release any semaphores or disk locks taken 419 * during the transaction, so make sure they were taken *before* 420 * start_trans or we'll have ordering deadlocks. 421 * 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 423 * good because transaction ids haven't yet been recorded on the 424 * cluster locks associated with this handle. 425 */ 426 int ocfs2_extend_trans(handle_t *handle, int nblocks) 427 { 428 int status, old_nblocks; 429 430 BUG_ON(!handle); 431 BUG_ON(nblocks < 0); 432 433 if (!nblocks) 434 return 0; 435 436 old_nblocks = handle->h_buffer_credits; 437 438 trace_ocfs2_extend_trans(old_nblocks, nblocks); 439 440 #ifdef CONFIG_OCFS2_DEBUG_FS 441 status = 1; 442 #else 443 status = jbd2_journal_extend(handle, nblocks); 444 if (status < 0) { 445 mlog_errno(status); 446 goto bail; 447 } 448 #endif 449 450 if (status > 0) { 451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 452 status = jbd2_journal_restart(handle, 453 old_nblocks + nblocks); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 } 459 460 status = 0; 461 bail: 462 return status; 463 } 464 465 /* 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 467 * If that fails, restart the transaction & regain write access for the 468 * buffer head which is used for metadata modifications. 469 * Taken from Ext4: extend_or_restart_transaction() 470 */ 471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 472 { 473 int status, old_nblks; 474 475 BUG_ON(!handle); 476 477 old_nblks = handle->h_buffer_credits; 478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 479 480 if (old_nblks < thresh) 481 return 0; 482 483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA); 484 if (status < 0) { 485 mlog_errno(status); 486 goto bail; 487 } 488 489 if (status > 0) { 490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 491 if (status < 0) 492 mlog_errno(status); 493 } 494 495 bail: 496 return status; 497 } 498 499 500 struct ocfs2_triggers { 501 struct jbd2_buffer_trigger_type ot_triggers; 502 int ot_offset; 503 }; 504 505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 506 { 507 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 508 } 509 510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 511 struct buffer_head *bh, 512 void *data, size_t size) 513 { 514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 515 516 /* 517 * We aren't guaranteed to have the superblock here, so we 518 * must unconditionally compute the ecc data. 519 * __ocfs2_journal_access() will only set the triggers if 520 * metaecc is enabled. 521 */ 522 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 523 } 524 525 /* 526 * Quota blocks have their own trigger because the struct ocfs2_block_check 527 * offset depends on the blocksize. 528 */ 529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 530 struct buffer_head *bh, 531 void *data, size_t size) 532 { 533 struct ocfs2_disk_dqtrailer *dqt = 534 ocfs2_block_dqtrailer(size, data); 535 536 /* 537 * We aren't guaranteed to have the superblock here, so we 538 * must unconditionally compute the ecc data. 539 * __ocfs2_journal_access() will only set the triggers if 540 * metaecc is enabled. 541 */ 542 ocfs2_block_check_compute(data, size, &dqt->dq_check); 543 } 544 545 /* 546 * Directory blocks also have their own trigger because the 547 * struct ocfs2_block_check offset depends on the blocksize. 548 */ 549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 550 struct buffer_head *bh, 551 void *data, size_t size) 552 { 553 struct ocfs2_dir_block_trailer *trailer = 554 ocfs2_dir_trailer_from_size(size, data); 555 556 /* 557 * We aren't guaranteed to have the superblock here, so we 558 * must unconditionally compute the ecc data. 559 * __ocfs2_journal_access() will only set the triggers if 560 * metaecc is enabled. 561 */ 562 ocfs2_block_check_compute(data, size, &trailer->db_check); 563 } 564 565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh) 567 { 568 mlog(ML_ERROR, 569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 570 "bh->b_blocknr = %llu\n", 571 (unsigned long)bh, 572 (unsigned long long)bh->b_blocknr); 573 574 ocfs2_error(bh->b_bdev->bd_super, 575 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 576 } 577 578 static struct ocfs2_triggers di_triggers = { 579 .ot_triggers = { 580 .t_frozen = ocfs2_frozen_trigger, 581 .t_abort = ocfs2_abort_trigger, 582 }, 583 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 584 }; 585 586 static struct ocfs2_triggers eb_triggers = { 587 .ot_triggers = { 588 .t_frozen = ocfs2_frozen_trigger, 589 .t_abort = ocfs2_abort_trigger, 590 }, 591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 592 }; 593 594 static struct ocfs2_triggers rb_triggers = { 595 .ot_triggers = { 596 .t_frozen = ocfs2_frozen_trigger, 597 .t_abort = ocfs2_abort_trigger, 598 }, 599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 600 }; 601 602 static struct ocfs2_triggers gd_triggers = { 603 .ot_triggers = { 604 .t_frozen = ocfs2_frozen_trigger, 605 .t_abort = ocfs2_abort_trigger, 606 }, 607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 608 }; 609 610 static struct ocfs2_triggers db_triggers = { 611 .ot_triggers = { 612 .t_frozen = ocfs2_db_frozen_trigger, 613 .t_abort = ocfs2_abort_trigger, 614 }, 615 }; 616 617 static struct ocfs2_triggers xb_triggers = { 618 .ot_triggers = { 619 .t_frozen = ocfs2_frozen_trigger, 620 .t_abort = ocfs2_abort_trigger, 621 }, 622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 623 }; 624 625 static struct ocfs2_triggers dq_triggers = { 626 .ot_triggers = { 627 .t_frozen = ocfs2_dq_frozen_trigger, 628 .t_abort = ocfs2_abort_trigger, 629 }, 630 }; 631 632 static struct ocfs2_triggers dr_triggers = { 633 .ot_triggers = { 634 .t_frozen = ocfs2_frozen_trigger, 635 .t_abort = ocfs2_abort_trigger, 636 }, 637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 638 }; 639 640 static struct ocfs2_triggers dl_triggers = { 641 .ot_triggers = { 642 .t_frozen = ocfs2_frozen_trigger, 643 .t_abort = ocfs2_abort_trigger, 644 }, 645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 646 }; 647 648 static int __ocfs2_journal_access(handle_t *handle, 649 struct ocfs2_caching_info *ci, 650 struct buffer_head *bh, 651 struct ocfs2_triggers *triggers, 652 int type) 653 { 654 int status; 655 struct ocfs2_super *osb = 656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 657 658 BUG_ON(!ci || !ci->ci_ops); 659 BUG_ON(!handle); 660 BUG_ON(!bh); 661 662 trace_ocfs2_journal_access( 663 (unsigned long long)ocfs2_metadata_cache_owner(ci), 664 (unsigned long long)bh->b_blocknr, type, bh->b_size); 665 666 /* we can safely remove this assertion after testing. */ 667 if (!buffer_uptodate(bh)) { 668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 669 mlog(ML_ERROR, "b_blocknr=%llu\n", 670 (unsigned long long)bh->b_blocknr); 671 672 lock_buffer(bh); 673 /* 674 * A previous attempt to write this buffer head failed. 675 * Nothing we can do but to retry the write and hope for 676 * the best. 677 */ 678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 679 clear_buffer_write_io_error(bh); 680 set_buffer_uptodate(bh); 681 } 682 683 if (!buffer_uptodate(bh)) { 684 unlock_buffer(bh); 685 return -EIO; 686 } 687 unlock_buffer(bh); 688 } 689 690 /* Set the current transaction information on the ci so 691 * that the locking code knows whether it can drop it's locks 692 * on this ci or not. We're protected from the commit 693 * thread updating the current transaction id until 694 * ocfs2_commit_trans() because ocfs2_start_trans() took 695 * j_trans_barrier for us. */ 696 ocfs2_set_ci_lock_trans(osb->journal, ci); 697 698 ocfs2_metadata_cache_io_lock(ci); 699 switch (type) { 700 case OCFS2_JOURNAL_ACCESS_CREATE: 701 case OCFS2_JOURNAL_ACCESS_WRITE: 702 status = jbd2_journal_get_write_access(handle, bh); 703 break; 704 705 case OCFS2_JOURNAL_ACCESS_UNDO: 706 status = jbd2_journal_get_undo_access(handle, bh); 707 break; 708 709 default: 710 status = -EINVAL; 711 mlog(ML_ERROR, "Unknown access type!\n"); 712 } 713 if (!status && ocfs2_meta_ecc(osb) && triggers) 714 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 715 ocfs2_metadata_cache_io_unlock(ci); 716 717 if (status < 0) 718 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 719 status, type); 720 721 return status; 722 } 723 724 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 725 struct buffer_head *bh, int type) 726 { 727 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 728 } 729 730 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 731 struct buffer_head *bh, int type) 732 { 733 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 734 } 735 736 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 737 struct buffer_head *bh, int type) 738 { 739 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 740 type); 741 } 742 743 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 744 struct buffer_head *bh, int type) 745 { 746 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 747 } 748 749 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 750 struct buffer_head *bh, int type) 751 { 752 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 753 } 754 755 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 756 struct buffer_head *bh, int type) 757 { 758 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 759 } 760 761 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 762 struct buffer_head *bh, int type) 763 { 764 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 765 } 766 767 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 768 struct buffer_head *bh, int type) 769 { 770 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 771 } 772 773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 774 struct buffer_head *bh, int type) 775 { 776 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 777 } 778 779 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 780 struct buffer_head *bh, int type) 781 { 782 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 783 } 784 785 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 786 { 787 int status; 788 789 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 790 791 status = jbd2_journal_dirty_metadata(handle, bh); 792 if (status) { 793 mlog_errno(status); 794 if (!is_handle_aborted(handle)) { 795 journal_t *journal = handle->h_transaction->t_journal; 796 struct super_block *sb = bh->b_bdev->bd_super; 797 798 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 799 "Aborting transaction and journal.\n"); 800 handle->h_err = status; 801 jbd2_journal_abort_handle(handle); 802 jbd2_journal_abort(journal, status); 803 ocfs2_abort(sb, "Journal already aborted.\n"); 804 } 805 } 806 } 807 808 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 809 810 void ocfs2_set_journal_params(struct ocfs2_super *osb) 811 { 812 journal_t *journal = osb->journal->j_journal; 813 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 814 815 if (osb->osb_commit_interval) 816 commit_interval = osb->osb_commit_interval; 817 818 write_lock(&journal->j_state_lock); 819 journal->j_commit_interval = commit_interval; 820 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 821 journal->j_flags |= JBD2_BARRIER; 822 else 823 journal->j_flags &= ~JBD2_BARRIER; 824 write_unlock(&journal->j_state_lock); 825 } 826 827 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 828 { 829 int status = -1; 830 struct inode *inode = NULL; /* the journal inode */ 831 journal_t *j_journal = NULL; 832 struct ocfs2_dinode *di = NULL; 833 struct buffer_head *bh = NULL; 834 struct ocfs2_super *osb; 835 int inode_lock = 0; 836 837 BUG_ON(!journal); 838 839 osb = journal->j_osb; 840 841 /* already have the inode for our journal */ 842 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 843 osb->slot_num); 844 if (inode == NULL) { 845 status = -EACCES; 846 mlog_errno(status); 847 goto done; 848 } 849 if (is_bad_inode(inode)) { 850 mlog(ML_ERROR, "access error (bad inode)\n"); 851 iput(inode); 852 inode = NULL; 853 status = -EACCES; 854 goto done; 855 } 856 857 SET_INODE_JOURNAL(inode); 858 OCFS2_I(inode)->ip_open_count++; 859 860 /* Skip recovery waits here - journal inode metadata never 861 * changes in a live cluster so it can be considered an 862 * exception to the rule. */ 863 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 864 if (status < 0) { 865 if (status != -ERESTARTSYS) 866 mlog(ML_ERROR, "Could not get lock on journal!\n"); 867 goto done; 868 } 869 870 inode_lock = 1; 871 di = (struct ocfs2_dinode *)bh->b_data; 872 873 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 874 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 875 i_size_read(inode)); 876 status = -EINVAL; 877 goto done; 878 } 879 880 trace_ocfs2_journal_init(i_size_read(inode), 881 (unsigned long long)inode->i_blocks, 882 OCFS2_I(inode)->ip_clusters); 883 884 /* call the kernels journal init function now */ 885 j_journal = jbd2_journal_init_inode(inode); 886 if (j_journal == NULL) { 887 mlog(ML_ERROR, "Linux journal layer error\n"); 888 status = -EINVAL; 889 goto done; 890 } 891 892 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 893 894 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 895 OCFS2_JOURNAL_DIRTY_FL); 896 897 journal->j_journal = j_journal; 898 journal->j_inode = inode; 899 journal->j_bh = bh; 900 901 ocfs2_set_journal_params(osb); 902 903 journal->j_state = OCFS2_JOURNAL_LOADED; 904 905 status = 0; 906 done: 907 if (status < 0) { 908 if (inode_lock) 909 ocfs2_inode_unlock(inode, 1); 910 brelse(bh); 911 if (inode) { 912 OCFS2_I(inode)->ip_open_count--; 913 iput(inode); 914 } 915 } 916 917 return status; 918 } 919 920 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 921 { 922 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 923 } 924 925 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 926 { 927 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 928 } 929 930 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 931 int dirty, int replayed) 932 { 933 int status; 934 unsigned int flags; 935 struct ocfs2_journal *journal = osb->journal; 936 struct buffer_head *bh = journal->j_bh; 937 struct ocfs2_dinode *fe; 938 939 fe = (struct ocfs2_dinode *)bh->b_data; 940 941 /* The journal bh on the osb always comes from ocfs2_journal_init() 942 * and was validated there inside ocfs2_inode_lock_full(). It's a 943 * code bug if we mess it up. */ 944 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 945 946 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 947 if (dirty) 948 flags |= OCFS2_JOURNAL_DIRTY_FL; 949 else 950 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 951 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 952 953 if (replayed) 954 ocfs2_bump_recovery_generation(fe); 955 956 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 957 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 958 if (status < 0) 959 mlog_errno(status); 960 961 return status; 962 } 963 964 /* 965 * If the journal has been kmalloc'd it needs to be freed after this 966 * call. 967 */ 968 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 969 { 970 struct ocfs2_journal *journal = NULL; 971 int status = 0; 972 struct inode *inode = NULL; 973 int num_running_trans = 0; 974 975 BUG_ON(!osb); 976 977 journal = osb->journal; 978 if (!journal) 979 goto done; 980 981 inode = journal->j_inode; 982 983 if (journal->j_state != OCFS2_JOURNAL_LOADED) 984 goto done; 985 986 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 987 if (!igrab(inode)) 988 BUG(); 989 990 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 991 trace_ocfs2_journal_shutdown(num_running_trans); 992 993 /* Do a commit_cache here. It will flush our journal, *and* 994 * release any locks that are still held. 995 * set the SHUTDOWN flag and release the trans lock. 996 * the commit thread will take the trans lock for us below. */ 997 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 998 999 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1000 * drop the trans_lock (which we want to hold until we 1001 * completely destroy the journal. */ 1002 if (osb->commit_task) { 1003 /* Wait for the commit thread */ 1004 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1005 kthread_stop(osb->commit_task); 1006 osb->commit_task = NULL; 1007 } 1008 1009 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1010 1011 if (ocfs2_mount_local(osb)) { 1012 jbd2_journal_lock_updates(journal->j_journal); 1013 status = jbd2_journal_flush(journal->j_journal); 1014 jbd2_journal_unlock_updates(journal->j_journal); 1015 if (status < 0) 1016 mlog_errno(status); 1017 } 1018 1019 if (status == 0) { 1020 /* 1021 * Do not toggle if flush was unsuccessful otherwise 1022 * will leave dirty metadata in a "clean" journal 1023 */ 1024 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1025 if (status < 0) 1026 mlog_errno(status); 1027 } 1028 1029 /* Shutdown the kernel journal system */ 1030 jbd2_journal_destroy(journal->j_journal); 1031 journal->j_journal = NULL; 1032 1033 OCFS2_I(inode)->ip_open_count--; 1034 1035 /* unlock our journal */ 1036 ocfs2_inode_unlock(inode, 1); 1037 1038 brelse(journal->j_bh); 1039 journal->j_bh = NULL; 1040 1041 journal->j_state = OCFS2_JOURNAL_FREE; 1042 1043 // up_write(&journal->j_trans_barrier); 1044 done: 1045 iput(inode); 1046 } 1047 1048 static void ocfs2_clear_journal_error(struct super_block *sb, 1049 journal_t *journal, 1050 int slot) 1051 { 1052 int olderr; 1053 1054 olderr = jbd2_journal_errno(journal); 1055 if (olderr) { 1056 mlog(ML_ERROR, "File system error %d recorded in " 1057 "journal %u.\n", olderr, slot); 1058 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1059 sb->s_id); 1060 1061 jbd2_journal_ack_err(journal); 1062 jbd2_journal_clear_err(journal); 1063 } 1064 } 1065 1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1067 { 1068 int status = 0; 1069 struct ocfs2_super *osb; 1070 1071 BUG_ON(!journal); 1072 1073 osb = journal->j_osb; 1074 1075 status = jbd2_journal_load(journal->j_journal); 1076 if (status < 0) { 1077 mlog(ML_ERROR, "Failed to load journal!\n"); 1078 goto done; 1079 } 1080 1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1082 1083 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1084 if (status < 0) { 1085 mlog_errno(status); 1086 goto done; 1087 } 1088 1089 /* Launch the commit thread */ 1090 if (!local) { 1091 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1092 "ocfs2cmt-%s", osb->uuid_str); 1093 if (IS_ERR(osb->commit_task)) { 1094 status = PTR_ERR(osb->commit_task); 1095 osb->commit_task = NULL; 1096 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1097 "error=%d", status); 1098 goto done; 1099 } 1100 } else 1101 osb->commit_task = NULL; 1102 1103 done: 1104 return status; 1105 } 1106 1107 1108 /* 'full' flag tells us whether we clear out all blocks or if we just 1109 * mark the journal clean */ 1110 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1111 { 1112 int status; 1113 1114 BUG_ON(!journal); 1115 1116 status = jbd2_journal_wipe(journal->j_journal, full); 1117 if (status < 0) { 1118 mlog_errno(status); 1119 goto bail; 1120 } 1121 1122 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1123 if (status < 0) 1124 mlog_errno(status); 1125 1126 bail: 1127 return status; 1128 } 1129 1130 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1131 { 1132 int empty; 1133 struct ocfs2_recovery_map *rm = osb->recovery_map; 1134 1135 spin_lock(&osb->osb_lock); 1136 empty = (rm->rm_used == 0); 1137 spin_unlock(&osb->osb_lock); 1138 1139 return empty; 1140 } 1141 1142 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1143 { 1144 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1145 } 1146 1147 /* 1148 * JBD Might read a cached version of another nodes journal file. We 1149 * don't want this as this file changes often and we get no 1150 * notification on those changes. The only way to be sure that we've 1151 * got the most up to date version of those blocks then is to force 1152 * read them off disk. Just searching through the buffer cache won't 1153 * work as there may be pages backing this file which are still marked 1154 * up to date. We know things can't change on this file underneath us 1155 * as we have the lock by now :) 1156 */ 1157 static int ocfs2_force_read_journal(struct inode *inode) 1158 { 1159 int status = 0; 1160 int i; 1161 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1162 #define CONCURRENT_JOURNAL_FILL 32ULL 1163 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 1164 1165 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 1166 1167 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1168 v_blkno = 0; 1169 while (v_blkno < num_blocks) { 1170 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1171 &p_blkno, &p_blocks, NULL); 1172 if (status < 0) { 1173 mlog_errno(status); 1174 goto bail; 1175 } 1176 1177 if (p_blocks > CONCURRENT_JOURNAL_FILL) 1178 p_blocks = CONCURRENT_JOURNAL_FILL; 1179 1180 /* We are reading journal data which should not 1181 * be put in the uptodate cache */ 1182 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 1183 p_blkno, p_blocks, bhs); 1184 if (status < 0) { 1185 mlog_errno(status); 1186 goto bail; 1187 } 1188 1189 for(i = 0; i < p_blocks; i++) { 1190 brelse(bhs[i]); 1191 bhs[i] = NULL; 1192 } 1193 1194 v_blkno += p_blocks; 1195 } 1196 1197 bail: 1198 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 1199 brelse(bhs[i]); 1200 return status; 1201 } 1202 1203 struct ocfs2_la_recovery_item { 1204 struct list_head lri_list; 1205 int lri_slot; 1206 struct ocfs2_dinode *lri_la_dinode; 1207 struct ocfs2_dinode *lri_tl_dinode; 1208 struct ocfs2_quota_recovery *lri_qrec; 1209 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1210 }; 1211 1212 /* Does the second half of the recovery process. By this point, the 1213 * node is marked clean and can actually be considered recovered, 1214 * hence it's no longer in the recovery map, but there's still some 1215 * cleanup we can do which shouldn't happen within the recovery thread 1216 * as locking in that context becomes very difficult if we are to take 1217 * recovering nodes into account. 1218 * 1219 * NOTE: This function can and will sleep on recovery of other nodes 1220 * during cluster locking, just like any other ocfs2 process. 1221 */ 1222 void ocfs2_complete_recovery(struct work_struct *work) 1223 { 1224 int ret = 0; 1225 struct ocfs2_journal *journal = 1226 container_of(work, struct ocfs2_journal, j_recovery_work); 1227 struct ocfs2_super *osb = journal->j_osb; 1228 struct ocfs2_dinode *la_dinode, *tl_dinode; 1229 struct ocfs2_la_recovery_item *item, *n; 1230 struct ocfs2_quota_recovery *qrec; 1231 enum ocfs2_orphan_reco_type orphan_reco_type; 1232 LIST_HEAD(tmp_la_list); 1233 1234 trace_ocfs2_complete_recovery( 1235 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1236 1237 spin_lock(&journal->j_lock); 1238 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1239 spin_unlock(&journal->j_lock); 1240 1241 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1242 list_del_init(&item->lri_list); 1243 1244 ocfs2_wait_on_quotas(osb); 1245 1246 la_dinode = item->lri_la_dinode; 1247 tl_dinode = item->lri_tl_dinode; 1248 qrec = item->lri_qrec; 1249 orphan_reco_type = item->lri_orphan_reco_type; 1250 1251 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1252 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1253 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1254 qrec); 1255 1256 if (la_dinode) { 1257 ret = ocfs2_complete_local_alloc_recovery(osb, 1258 la_dinode); 1259 if (ret < 0) 1260 mlog_errno(ret); 1261 1262 kfree(la_dinode); 1263 } 1264 1265 if (tl_dinode) { 1266 ret = ocfs2_complete_truncate_log_recovery(osb, 1267 tl_dinode); 1268 if (ret < 0) 1269 mlog_errno(ret); 1270 1271 kfree(tl_dinode); 1272 } 1273 1274 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1275 orphan_reco_type); 1276 if (ret < 0) 1277 mlog_errno(ret); 1278 1279 if (qrec) { 1280 ret = ocfs2_finish_quota_recovery(osb, qrec, 1281 item->lri_slot); 1282 if (ret < 0) 1283 mlog_errno(ret); 1284 /* Recovery info is already freed now */ 1285 } 1286 1287 kfree(item); 1288 } 1289 1290 trace_ocfs2_complete_recovery_end(ret); 1291 } 1292 1293 /* NOTE: This function always eats your references to la_dinode and 1294 * tl_dinode, either manually on error, or by passing them to 1295 * ocfs2_complete_recovery */ 1296 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1297 int slot_num, 1298 struct ocfs2_dinode *la_dinode, 1299 struct ocfs2_dinode *tl_dinode, 1300 struct ocfs2_quota_recovery *qrec, 1301 enum ocfs2_orphan_reco_type orphan_reco_type) 1302 { 1303 struct ocfs2_la_recovery_item *item; 1304 1305 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1306 if (!item) { 1307 /* Though we wish to avoid it, we are in fact safe in 1308 * skipping local alloc cleanup as fsck.ocfs2 is more 1309 * than capable of reclaiming unused space. */ 1310 kfree(la_dinode); 1311 kfree(tl_dinode); 1312 1313 if (qrec) 1314 ocfs2_free_quota_recovery(qrec); 1315 1316 mlog_errno(-ENOMEM); 1317 return; 1318 } 1319 1320 INIT_LIST_HEAD(&item->lri_list); 1321 item->lri_la_dinode = la_dinode; 1322 item->lri_slot = slot_num; 1323 item->lri_tl_dinode = tl_dinode; 1324 item->lri_qrec = qrec; 1325 item->lri_orphan_reco_type = orphan_reco_type; 1326 1327 spin_lock(&journal->j_lock); 1328 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1329 queue_work(ocfs2_wq, &journal->j_recovery_work); 1330 spin_unlock(&journal->j_lock); 1331 } 1332 1333 /* Called by the mount code to queue recovery the last part of 1334 * recovery for it's own and offline slot(s). */ 1335 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1336 { 1337 struct ocfs2_journal *journal = osb->journal; 1338 1339 if (ocfs2_is_hard_readonly(osb)) 1340 return; 1341 1342 /* No need to queue up our truncate_log as regular cleanup will catch 1343 * that */ 1344 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1345 osb->local_alloc_copy, NULL, NULL, 1346 ORPHAN_NEED_TRUNCATE); 1347 ocfs2_schedule_truncate_log_flush(osb, 0); 1348 1349 osb->local_alloc_copy = NULL; 1350 osb->dirty = 0; 1351 1352 /* queue to recover orphan slots for all offline slots */ 1353 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1354 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1355 ocfs2_free_replay_slots(osb); 1356 } 1357 1358 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1359 { 1360 if (osb->quota_rec) { 1361 ocfs2_queue_recovery_completion(osb->journal, 1362 osb->slot_num, 1363 NULL, 1364 NULL, 1365 osb->quota_rec, 1366 ORPHAN_NEED_TRUNCATE); 1367 osb->quota_rec = NULL; 1368 } 1369 } 1370 1371 static int __ocfs2_recovery_thread(void *arg) 1372 { 1373 int status, node_num, slot_num; 1374 struct ocfs2_super *osb = arg; 1375 struct ocfs2_recovery_map *rm = osb->recovery_map; 1376 int *rm_quota = NULL; 1377 int rm_quota_used = 0, i; 1378 struct ocfs2_quota_recovery *qrec; 1379 1380 status = ocfs2_wait_on_mount(osb); 1381 if (status < 0) { 1382 goto bail; 1383 } 1384 1385 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS); 1386 if (!rm_quota) { 1387 status = -ENOMEM; 1388 goto bail; 1389 } 1390 restart: 1391 status = ocfs2_super_lock(osb, 1); 1392 if (status < 0) { 1393 mlog_errno(status); 1394 goto bail; 1395 } 1396 1397 status = ocfs2_compute_replay_slots(osb); 1398 if (status < 0) 1399 mlog_errno(status); 1400 1401 /* queue recovery for our own slot */ 1402 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1403 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1404 1405 spin_lock(&osb->osb_lock); 1406 while (rm->rm_used) { 1407 /* It's always safe to remove entry zero, as we won't 1408 * clear it until ocfs2_recover_node() has succeeded. */ 1409 node_num = rm->rm_entries[0]; 1410 spin_unlock(&osb->osb_lock); 1411 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1412 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1413 if (slot_num == -ENOENT) { 1414 status = 0; 1415 goto skip_recovery; 1416 } 1417 1418 /* It is a bit subtle with quota recovery. We cannot do it 1419 * immediately because we have to obtain cluster locks from 1420 * quota files and we also don't want to just skip it because 1421 * then quota usage would be out of sync until some node takes 1422 * the slot. So we remember which nodes need quota recovery 1423 * and when everything else is done, we recover quotas. */ 1424 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++); 1425 if (i == rm_quota_used) 1426 rm_quota[rm_quota_used++] = slot_num; 1427 1428 status = ocfs2_recover_node(osb, node_num, slot_num); 1429 skip_recovery: 1430 if (!status) { 1431 ocfs2_recovery_map_clear(osb, node_num); 1432 } else { 1433 mlog(ML_ERROR, 1434 "Error %d recovering node %d on device (%u,%u)!\n", 1435 status, node_num, 1436 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1437 mlog(ML_ERROR, "Volume requires unmount.\n"); 1438 } 1439 1440 spin_lock(&osb->osb_lock); 1441 } 1442 spin_unlock(&osb->osb_lock); 1443 trace_ocfs2_recovery_thread_end(status); 1444 1445 /* Refresh all journal recovery generations from disk */ 1446 status = ocfs2_check_journals_nolocks(osb); 1447 status = (status == -EROFS) ? 0 : status; 1448 if (status < 0) 1449 mlog_errno(status); 1450 1451 /* Now it is right time to recover quotas... We have to do this under 1452 * superblock lock so that no one can start using the slot (and crash) 1453 * before we recover it */ 1454 for (i = 0; i < rm_quota_used; i++) { 1455 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1456 if (IS_ERR(qrec)) { 1457 status = PTR_ERR(qrec); 1458 mlog_errno(status); 1459 continue; 1460 } 1461 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i], 1462 NULL, NULL, qrec, 1463 ORPHAN_NEED_TRUNCATE); 1464 } 1465 1466 ocfs2_super_unlock(osb, 1); 1467 1468 /* queue recovery for offline slots */ 1469 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1470 1471 bail: 1472 mutex_lock(&osb->recovery_lock); 1473 if (!status && !ocfs2_recovery_completed(osb)) { 1474 mutex_unlock(&osb->recovery_lock); 1475 goto restart; 1476 } 1477 1478 ocfs2_free_replay_slots(osb); 1479 osb->recovery_thread_task = NULL; 1480 mb(); /* sync with ocfs2_recovery_thread_running */ 1481 wake_up(&osb->recovery_event); 1482 1483 mutex_unlock(&osb->recovery_lock); 1484 1485 kfree(rm_quota); 1486 1487 /* no one is callint kthread_stop() for us so the kthread() api 1488 * requires that we call do_exit(). And it isn't exported, but 1489 * complete_and_exit() seems to be a minimal wrapper around it. */ 1490 complete_and_exit(NULL, status); 1491 } 1492 1493 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1494 { 1495 mutex_lock(&osb->recovery_lock); 1496 1497 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1498 osb->disable_recovery, osb->recovery_thread_task, 1499 osb->disable_recovery ? 1500 -1 : ocfs2_recovery_map_set(osb, node_num)); 1501 1502 if (osb->disable_recovery) 1503 goto out; 1504 1505 if (osb->recovery_thread_task) 1506 goto out; 1507 1508 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1509 "ocfs2rec-%s", osb->uuid_str); 1510 if (IS_ERR(osb->recovery_thread_task)) { 1511 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1512 osb->recovery_thread_task = NULL; 1513 } 1514 1515 out: 1516 mutex_unlock(&osb->recovery_lock); 1517 wake_up(&osb->recovery_event); 1518 } 1519 1520 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1521 int slot_num, 1522 struct buffer_head **bh, 1523 struct inode **ret_inode) 1524 { 1525 int status = -EACCES; 1526 struct inode *inode = NULL; 1527 1528 BUG_ON(slot_num >= osb->max_slots); 1529 1530 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1531 slot_num); 1532 if (!inode || is_bad_inode(inode)) { 1533 mlog_errno(status); 1534 goto bail; 1535 } 1536 SET_INODE_JOURNAL(inode); 1537 1538 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1539 if (status < 0) { 1540 mlog_errno(status); 1541 goto bail; 1542 } 1543 1544 status = 0; 1545 1546 bail: 1547 if (inode) { 1548 if (status || !ret_inode) 1549 iput(inode); 1550 else 1551 *ret_inode = inode; 1552 } 1553 return status; 1554 } 1555 1556 /* Does the actual journal replay and marks the journal inode as 1557 * clean. Will only replay if the journal inode is marked dirty. */ 1558 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1559 int node_num, 1560 int slot_num) 1561 { 1562 int status; 1563 int got_lock = 0; 1564 unsigned int flags; 1565 struct inode *inode = NULL; 1566 struct ocfs2_dinode *fe; 1567 journal_t *journal = NULL; 1568 struct buffer_head *bh = NULL; 1569 u32 slot_reco_gen; 1570 1571 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1572 if (status) { 1573 mlog_errno(status); 1574 goto done; 1575 } 1576 1577 fe = (struct ocfs2_dinode *)bh->b_data; 1578 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1579 brelse(bh); 1580 bh = NULL; 1581 1582 /* 1583 * As the fs recovery is asynchronous, there is a small chance that 1584 * another node mounted (and recovered) the slot before the recovery 1585 * thread could get the lock. To handle that, we dirty read the journal 1586 * inode for that slot to get the recovery generation. If it is 1587 * different than what we expected, the slot has been recovered. 1588 * If not, it needs recovery. 1589 */ 1590 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1591 trace_ocfs2_replay_journal_recovered(slot_num, 1592 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1593 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1594 status = -EBUSY; 1595 goto done; 1596 } 1597 1598 /* Continue with recovery as the journal has not yet been recovered */ 1599 1600 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1601 if (status < 0) { 1602 trace_ocfs2_replay_journal_lock_err(status); 1603 if (status != -ERESTARTSYS) 1604 mlog(ML_ERROR, "Could not lock journal!\n"); 1605 goto done; 1606 } 1607 got_lock = 1; 1608 1609 fe = (struct ocfs2_dinode *) bh->b_data; 1610 1611 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1612 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1613 1614 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1615 trace_ocfs2_replay_journal_skip(node_num); 1616 /* Refresh recovery generation for the slot */ 1617 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1618 goto done; 1619 } 1620 1621 /* we need to run complete recovery for offline orphan slots */ 1622 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1623 1624 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1625 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1626 MINOR(osb->sb->s_dev)); 1627 1628 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1629 1630 status = ocfs2_force_read_journal(inode); 1631 if (status < 0) { 1632 mlog_errno(status); 1633 goto done; 1634 } 1635 1636 journal = jbd2_journal_init_inode(inode); 1637 if (journal == NULL) { 1638 mlog(ML_ERROR, "Linux journal layer error\n"); 1639 status = -EIO; 1640 goto done; 1641 } 1642 1643 status = jbd2_journal_load(journal); 1644 if (status < 0) { 1645 mlog_errno(status); 1646 if (!igrab(inode)) 1647 BUG(); 1648 jbd2_journal_destroy(journal); 1649 goto done; 1650 } 1651 1652 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1653 1654 /* wipe the journal */ 1655 jbd2_journal_lock_updates(journal); 1656 status = jbd2_journal_flush(journal); 1657 jbd2_journal_unlock_updates(journal); 1658 if (status < 0) 1659 mlog_errno(status); 1660 1661 /* This will mark the node clean */ 1662 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1663 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1664 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1665 1666 /* Increment recovery generation to indicate successful recovery */ 1667 ocfs2_bump_recovery_generation(fe); 1668 osb->slot_recovery_generations[slot_num] = 1669 ocfs2_get_recovery_generation(fe); 1670 1671 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1672 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1673 if (status < 0) 1674 mlog_errno(status); 1675 1676 if (!igrab(inode)) 1677 BUG(); 1678 1679 jbd2_journal_destroy(journal); 1680 1681 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1682 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1683 MINOR(osb->sb->s_dev)); 1684 done: 1685 /* drop the lock on this nodes journal */ 1686 if (got_lock) 1687 ocfs2_inode_unlock(inode, 1); 1688 1689 iput(inode); 1690 brelse(bh); 1691 1692 return status; 1693 } 1694 1695 /* 1696 * Do the most important parts of node recovery: 1697 * - Replay it's journal 1698 * - Stamp a clean local allocator file 1699 * - Stamp a clean truncate log 1700 * - Mark the node clean 1701 * 1702 * If this function completes without error, a node in OCFS2 can be 1703 * said to have been safely recovered. As a result, failure during the 1704 * second part of a nodes recovery process (local alloc recovery) is 1705 * far less concerning. 1706 */ 1707 static int ocfs2_recover_node(struct ocfs2_super *osb, 1708 int node_num, int slot_num) 1709 { 1710 int status = 0; 1711 struct ocfs2_dinode *la_copy = NULL; 1712 struct ocfs2_dinode *tl_copy = NULL; 1713 1714 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1715 1716 /* Should not ever be called to recover ourselves -- in that 1717 * case we should've called ocfs2_journal_load instead. */ 1718 BUG_ON(osb->node_num == node_num); 1719 1720 status = ocfs2_replay_journal(osb, node_num, slot_num); 1721 if (status < 0) { 1722 if (status == -EBUSY) { 1723 trace_ocfs2_recover_node_skip(slot_num, node_num); 1724 status = 0; 1725 goto done; 1726 } 1727 mlog_errno(status); 1728 goto done; 1729 } 1730 1731 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1732 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1733 if (status < 0) { 1734 mlog_errno(status); 1735 goto done; 1736 } 1737 1738 /* An error from begin_truncate_log_recovery is not 1739 * serious enough to warrant halting the rest of 1740 * recovery. */ 1741 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1742 if (status < 0) 1743 mlog_errno(status); 1744 1745 /* Likewise, this would be a strange but ultimately not so 1746 * harmful place to get an error... */ 1747 status = ocfs2_clear_slot(osb, slot_num); 1748 if (status < 0) 1749 mlog_errno(status); 1750 1751 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1752 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1753 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1754 1755 status = 0; 1756 done: 1757 1758 return status; 1759 } 1760 1761 /* Test node liveness by trylocking his journal. If we get the lock, 1762 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1763 * still alive (we couldn't get the lock) and < 0 on error. */ 1764 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1765 int slot_num) 1766 { 1767 int status, flags; 1768 struct inode *inode = NULL; 1769 1770 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1771 slot_num); 1772 if (inode == NULL) { 1773 mlog(ML_ERROR, "access error\n"); 1774 status = -EACCES; 1775 goto bail; 1776 } 1777 if (is_bad_inode(inode)) { 1778 mlog(ML_ERROR, "access error (bad inode)\n"); 1779 iput(inode); 1780 inode = NULL; 1781 status = -EACCES; 1782 goto bail; 1783 } 1784 SET_INODE_JOURNAL(inode); 1785 1786 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1787 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1788 if (status < 0) { 1789 if (status != -EAGAIN) 1790 mlog_errno(status); 1791 goto bail; 1792 } 1793 1794 ocfs2_inode_unlock(inode, 1); 1795 bail: 1796 iput(inode); 1797 1798 return status; 1799 } 1800 1801 /* Call this underneath ocfs2_super_lock. It also assumes that the 1802 * slot info struct has been updated from disk. */ 1803 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1804 { 1805 unsigned int node_num; 1806 int status, i; 1807 u32 gen; 1808 struct buffer_head *bh = NULL; 1809 struct ocfs2_dinode *di; 1810 1811 /* This is called with the super block cluster lock, so we 1812 * know that the slot map can't change underneath us. */ 1813 1814 for (i = 0; i < osb->max_slots; i++) { 1815 /* Read journal inode to get the recovery generation */ 1816 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1817 if (status) { 1818 mlog_errno(status); 1819 goto bail; 1820 } 1821 di = (struct ocfs2_dinode *)bh->b_data; 1822 gen = ocfs2_get_recovery_generation(di); 1823 brelse(bh); 1824 bh = NULL; 1825 1826 spin_lock(&osb->osb_lock); 1827 osb->slot_recovery_generations[i] = gen; 1828 1829 trace_ocfs2_mark_dead_nodes(i, 1830 osb->slot_recovery_generations[i]); 1831 1832 if (i == osb->slot_num) { 1833 spin_unlock(&osb->osb_lock); 1834 continue; 1835 } 1836 1837 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1838 if (status == -ENOENT) { 1839 spin_unlock(&osb->osb_lock); 1840 continue; 1841 } 1842 1843 if (__ocfs2_recovery_map_test(osb, node_num)) { 1844 spin_unlock(&osb->osb_lock); 1845 continue; 1846 } 1847 spin_unlock(&osb->osb_lock); 1848 1849 /* Ok, we have a slot occupied by another node which 1850 * is not in the recovery map. We trylock his journal 1851 * file here to test if he's alive. */ 1852 status = ocfs2_trylock_journal(osb, i); 1853 if (!status) { 1854 /* Since we're called from mount, we know that 1855 * the recovery thread can't race us on 1856 * setting / checking the recovery bits. */ 1857 ocfs2_recovery_thread(osb, node_num); 1858 } else if ((status < 0) && (status != -EAGAIN)) { 1859 mlog_errno(status); 1860 goto bail; 1861 } 1862 } 1863 1864 status = 0; 1865 bail: 1866 return status; 1867 } 1868 1869 /* 1870 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1871 * randomness to the timeout to minimize multple nodes firing the timer at the 1872 * same time. 1873 */ 1874 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1875 { 1876 unsigned long time; 1877 1878 get_random_bytes(&time, sizeof(time)); 1879 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1880 return msecs_to_jiffies(time); 1881 } 1882 1883 /* 1884 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1885 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1886 * is done to catch any orphans that are left over in orphan directories. 1887 * 1888 * It scans all slots, even ones that are in use. It does so to handle the 1889 * case described below: 1890 * 1891 * Node 1 has an inode it was using. The dentry went away due to memory 1892 * pressure. Node 1 closes the inode, but it's on the free list. The node 1893 * has the open lock. 1894 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1895 * but node 1 has no dentry and doesn't get the message. It trylocks the 1896 * open lock, sees that another node has a PR, and does nothing. 1897 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1898 * open lock, sees the PR still, and does nothing. 1899 * Basically, we have to trigger an orphan iput on node 1. The only way 1900 * for this to happen is if node 1 runs node 2's orphan dir. 1901 * 1902 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1903 * seconds. It gets an EX lock on os_lockres and checks sequence number 1904 * stored in LVB. If the sequence number has changed, it means some other 1905 * node has done the scan. This node skips the scan and tracks the 1906 * sequence number. If the sequence number didn't change, it means a scan 1907 * hasn't happened. The node queues a scan and increments the 1908 * sequence number in the LVB. 1909 */ 1910 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1911 { 1912 struct ocfs2_orphan_scan *os; 1913 int status, i; 1914 u32 seqno = 0; 1915 1916 os = &osb->osb_orphan_scan; 1917 1918 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1919 goto out; 1920 1921 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1922 atomic_read(&os->os_state)); 1923 1924 status = ocfs2_orphan_scan_lock(osb, &seqno); 1925 if (status < 0) { 1926 if (status != -EAGAIN) 1927 mlog_errno(status); 1928 goto out; 1929 } 1930 1931 /* Do no queue the tasks if the volume is being umounted */ 1932 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1933 goto unlock; 1934 1935 if (os->os_seqno != seqno) { 1936 os->os_seqno = seqno; 1937 goto unlock; 1938 } 1939 1940 for (i = 0; i < osb->max_slots; i++) 1941 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1942 NULL, ORPHAN_NO_NEED_TRUNCATE); 1943 /* 1944 * We queued a recovery on orphan slots, increment the sequence 1945 * number and update LVB so other node will skip the scan for a while 1946 */ 1947 seqno++; 1948 os->os_count++; 1949 os->os_scantime = CURRENT_TIME; 1950 unlock: 1951 ocfs2_orphan_scan_unlock(osb, seqno); 1952 out: 1953 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1954 atomic_read(&os->os_state)); 1955 return; 1956 } 1957 1958 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1959 static void ocfs2_orphan_scan_work(struct work_struct *work) 1960 { 1961 struct ocfs2_orphan_scan *os; 1962 struct ocfs2_super *osb; 1963 1964 os = container_of(work, struct ocfs2_orphan_scan, 1965 os_orphan_scan_work.work); 1966 osb = os->os_osb; 1967 1968 mutex_lock(&os->os_lock); 1969 ocfs2_queue_orphan_scan(osb); 1970 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1971 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 1972 ocfs2_orphan_scan_timeout()); 1973 mutex_unlock(&os->os_lock); 1974 } 1975 1976 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1977 { 1978 struct ocfs2_orphan_scan *os; 1979 1980 os = &osb->osb_orphan_scan; 1981 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1982 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1983 mutex_lock(&os->os_lock); 1984 cancel_delayed_work(&os->os_orphan_scan_work); 1985 mutex_unlock(&os->os_lock); 1986 } 1987 } 1988 1989 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1990 { 1991 struct ocfs2_orphan_scan *os; 1992 1993 os = &osb->osb_orphan_scan; 1994 os->os_osb = osb; 1995 os->os_count = 0; 1996 os->os_seqno = 0; 1997 mutex_init(&os->os_lock); 1998 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 1999 } 2000 2001 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2002 { 2003 struct ocfs2_orphan_scan *os; 2004 2005 os = &osb->osb_orphan_scan; 2006 os->os_scantime = CURRENT_TIME; 2007 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2008 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2009 else { 2010 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2011 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work, 2012 ocfs2_orphan_scan_timeout()); 2013 } 2014 } 2015 2016 struct ocfs2_orphan_filldir_priv { 2017 struct dir_context ctx; 2018 struct inode *head; 2019 struct ocfs2_super *osb; 2020 enum ocfs2_orphan_reco_type orphan_reco_type; 2021 }; 2022 2023 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2024 int name_len, loff_t pos, u64 ino, 2025 unsigned type) 2026 { 2027 struct ocfs2_orphan_filldir_priv *p = 2028 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2029 struct inode *iter; 2030 2031 if (name_len == 1 && !strncmp(".", name, 1)) 2032 return 0; 2033 if (name_len == 2 && !strncmp("..", name, 2)) 2034 return 0; 2035 2036 /* do not include dio entry in case of orphan scan */ 2037 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2038 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2039 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2040 return 0; 2041 2042 /* Skip bad inodes so that recovery can continue */ 2043 iter = ocfs2_iget(p->osb, ino, 2044 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2045 if (IS_ERR(iter)) 2046 return 0; 2047 2048 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2049 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2050 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2051 2052 /* Skip inodes which are already added to recover list, since dio may 2053 * happen concurrently with unlink/rename */ 2054 if (OCFS2_I(iter)->ip_next_orphan) { 2055 iput(iter); 2056 return 0; 2057 } 2058 2059 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2060 /* No locking is required for the next_orphan queue as there 2061 * is only ever a single process doing orphan recovery. */ 2062 OCFS2_I(iter)->ip_next_orphan = p->head; 2063 p->head = iter; 2064 2065 return 0; 2066 } 2067 2068 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2069 int slot, 2070 struct inode **head, 2071 enum ocfs2_orphan_reco_type orphan_reco_type) 2072 { 2073 int status; 2074 struct inode *orphan_dir_inode = NULL; 2075 struct ocfs2_orphan_filldir_priv priv = { 2076 .ctx.actor = ocfs2_orphan_filldir, 2077 .osb = osb, 2078 .head = *head, 2079 .orphan_reco_type = orphan_reco_type 2080 }; 2081 2082 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2083 ORPHAN_DIR_SYSTEM_INODE, 2084 slot); 2085 if (!orphan_dir_inode) { 2086 status = -ENOENT; 2087 mlog_errno(status); 2088 return status; 2089 } 2090 2091 inode_lock(orphan_dir_inode); 2092 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2093 if (status < 0) { 2094 mlog_errno(status); 2095 goto out; 2096 } 2097 2098 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2099 if (status) { 2100 mlog_errno(status); 2101 goto out_cluster; 2102 } 2103 2104 *head = priv.head; 2105 2106 out_cluster: 2107 ocfs2_inode_unlock(orphan_dir_inode, 0); 2108 out: 2109 inode_unlock(orphan_dir_inode); 2110 iput(orphan_dir_inode); 2111 return status; 2112 } 2113 2114 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2115 int slot) 2116 { 2117 int ret; 2118 2119 spin_lock(&osb->osb_lock); 2120 ret = !osb->osb_orphan_wipes[slot]; 2121 spin_unlock(&osb->osb_lock); 2122 return ret; 2123 } 2124 2125 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2126 int slot) 2127 { 2128 spin_lock(&osb->osb_lock); 2129 /* Mark ourselves such that new processes in delete_inode() 2130 * know to quit early. */ 2131 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2132 while (osb->osb_orphan_wipes[slot]) { 2133 /* If any processes are already in the middle of an 2134 * orphan wipe on this dir, then we need to wait for 2135 * them. */ 2136 spin_unlock(&osb->osb_lock); 2137 wait_event_interruptible(osb->osb_wipe_event, 2138 ocfs2_orphan_recovery_can_continue(osb, slot)); 2139 spin_lock(&osb->osb_lock); 2140 } 2141 spin_unlock(&osb->osb_lock); 2142 } 2143 2144 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2145 int slot) 2146 { 2147 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2148 } 2149 2150 /* 2151 * Orphan recovery. Each mounted node has it's own orphan dir which we 2152 * must run during recovery. Our strategy here is to build a list of 2153 * the inodes in the orphan dir and iget/iput them. The VFS does 2154 * (most) of the rest of the work. 2155 * 2156 * Orphan recovery can happen at any time, not just mount so we have a 2157 * couple of extra considerations. 2158 * 2159 * - We grab as many inodes as we can under the orphan dir lock - 2160 * doing iget() outside the orphan dir risks getting a reference on 2161 * an invalid inode. 2162 * - We must be sure not to deadlock with other processes on the 2163 * system wanting to run delete_inode(). This can happen when they go 2164 * to lock the orphan dir and the orphan recovery process attempts to 2165 * iget() inside the orphan dir lock. This can be avoided by 2166 * advertising our state to ocfs2_delete_inode(). 2167 */ 2168 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2169 int slot, 2170 enum ocfs2_orphan_reco_type orphan_reco_type) 2171 { 2172 int ret = 0; 2173 struct inode *inode = NULL; 2174 struct inode *iter; 2175 struct ocfs2_inode_info *oi; 2176 struct buffer_head *di_bh = NULL; 2177 struct ocfs2_dinode *di = NULL; 2178 2179 trace_ocfs2_recover_orphans(slot); 2180 2181 ocfs2_mark_recovering_orphan_dir(osb, slot); 2182 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2183 ocfs2_clear_recovering_orphan_dir(osb, slot); 2184 2185 /* Error here should be noted, but we want to continue with as 2186 * many queued inodes as we've got. */ 2187 if (ret) 2188 mlog_errno(ret); 2189 2190 while (inode) { 2191 oi = OCFS2_I(inode); 2192 trace_ocfs2_recover_orphans_iput( 2193 (unsigned long long)oi->ip_blkno); 2194 2195 iter = oi->ip_next_orphan; 2196 oi->ip_next_orphan = NULL; 2197 2198 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2199 inode_lock(inode); 2200 ret = ocfs2_rw_lock(inode, 1); 2201 if (ret < 0) { 2202 mlog_errno(ret); 2203 goto unlock_mutex; 2204 } 2205 /* 2206 * We need to take and drop the inode lock to 2207 * force read inode from disk. 2208 */ 2209 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2210 if (ret) { 2211 mlog_errno(ret); 2212 goto unlock_rw; 2213 } 2214 2215 di = (struct ocfs2_dinode *)di_bh->b_data; 2216 2217 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2218 ret = ocfs2_truncate_file(inode, di_bh, 2219 i_size_read(inode)); 2220 if (ret < 0) { 2221 if (ret != -ENOSPC) 2222 mlog_errno(ret); 2223 goto unlock_inode; 2224 } 2225 2226 ret = ocfs2_del_inode_from_orphan(osb, inode, 2227 di_bh, 0, 0); 2228 if (ret) 2229 mlog_errno(ret); 2230 } 2231 unlock_inode: 2232 ocfs2_inode_unlock(inode, 1); 2233 brelse(di_bh); 2234 di_bh = NULL; 2235 unlock_rw: 2236 ocfs2_rw_unlock(inode, 1); 2237 unlock_mutex: 2238 inode_unlock(inode); 2239 2240 /* clear dio flag in ocfs2_inode_info */ 2241 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2242 } else { 2243 spin_lock(&oi->ip_lock); 2244 /* Set the proper information to get us going into 2245 * ocfs2_delete_inode. */ 2246 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2247 spin_unlock(&oi->ip_lock); 2248 } 2249 2250 iput(inode); 2251 inode = iter; 2252 } 2253 2254 return ret; 2255 } 2256 2257 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2258 { 2259 /* This check is good because ocfs2 will wait on our recovery 2260 * thread before changing it to something other than MOUNTED 2261 * or DISABLED. */ 2262 wait_event(osb->osb_mount_event, 2263 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2264 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2265 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2266 2267 /* If there's an error on mount, then we may never get to the 2268 * MOUNTED flag, but this is set right before 2269 * dismount_volume() so we can trust it. */ 2270 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2271 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2272 mlog(0, "mount error, exiting!\n"); 2273 return -EBUSY; 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int ocfs2_commit_thread(void *arg) 2280 { 2281 int status; 2282 struct ocfs2_super *osb = arg; 2283 struct ocfs2_journal *journal = osb->journal; 2284 2285 /* we can trust j_num_trans here because _should_stop() is only set in 2286 * shutdown and nobody other than ourselves should be able to start 2287 * transactions. committing on shutdown might take a few iterations 2288 * as final transactions put deleted inodes on the list */ 2289 while (!(kthread_should_stop() && 2290 atomic_read(&journal->j_num_trans) == 0)) { 2291 2292 wait_event_interruptible(osb->checkpoint_event, 2293 atomic_read(&journal->j_num_trans) 2294 || kthread_should_stop()); 2295 2296 status = ocfs2_commit_cache(osb); 2297 if (status < 0) { 2298 static unsigned long abort_warn_time; 2299 2300 /* Warn about this once per minute */ 2301 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2302 mlog(ML_ERROR, "status = %d, journal is " 2303 "already aborted.\n", status); 2304 /* 2305 * After ocfs2_commit_cache() fails, j_num_trans has a 2306 * non-zero value. Sleep here to avoid a busy-wait 2307 * loop. 2308 */ 2309 msleep_interruptible(1000); 2310 } 2311 2312 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2313 mlog(ML_KTHREAD, 2314 "commit_thread: %u transactions pending on " 2315 "shutdown\n", 2316 atomic_read(&journal->j_num_trans)); 2317 } 2318 } 2319 2320 return 0; 2321 } 2322 2323 /* Reads all the journal inodes without taking any cluster locks. Used 2324 * for hard readonly access to determine whether any journal requires 2325 * recovery. Also used to refresh the recovery generation numbers after 2326 * a journal has been recovered by another node. 2327 */ 2328 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2329 { 2330 int ret = 0; 2331 unsigned int slot; 2332 struct buffer_head *di_bh = NULL; 2333 struct ocfs2_dinode *di; 2334 int journal_dirty = 0; 2335 2336 for(slot = 0; slot < osb->max_slots; slot++) { 2337 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2338 if (ret) { 2339 mlog_errno(ret); 2340 goto out; 2341 } 2342 2343 di = (struct ocfs2_dinode *) di_bh->b_data; 2344 2345 osb->slot_recovery_generations[slot] = 2346 ocfs2_get_recovery_generation(di); 2347 2348 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2349 OCFS2_JOURNAL_DIRTY_FL) 2350 journal_dirty = 1; 2351 2352 brelse(di_bh); 2353 di_bh = NULL; 2354 } 2355 2356 out: 2357 if (journal_dirty) 2358 ret = -EROFS; 2359 return ret; 2360 } 2361