1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * journal.c 6 * 7 * Defines functions of journalling api 8 * 9 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/types.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kthread.h> 17 #include <linux/time.h> 18 #include <linux/random.h> 19 #include <linux/delay.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "blockcheck.h" 27 #include "dir.h" 28 #include "dlmglue.h" 29 #include "extent_map.h" 30 #include "heartbeat.h" 31 #include "inode.h" 32 #include "journal.h" 33 #include "localalloc.h" 34 #include "slot_map.h" 35 #include "super.h" 36 #include "sysfile.h" 37 #include "uptodate.h" 38 #include "quota.h" 39 #include "file.h" 40 #include "namei.h" 41 42 #include "buffer_head_io.h" 43 #include "ocfs2_trace.h" 44 45 DEFINE_SPINLOCK(trans_inc_lock); 46 47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 48 49 static int ocfs2_force_read_journal(struct inode *inode); 50 static int ocfs2_recover_node(struct ocfs2_super *osb, 51 int node_num, int slot_num); 52 static int __ocfs2_recovery_thread(void *arg); 53 static int ocfs2_commit_cache(struct ocfs2_super *osb); 54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 56 int dirty, int replayed); 57 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 58 int slot_num); 59 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 60 int slot, 61 enum ocfs2_orphan_reco_type orphan_reco_type); 62 static int ocfs2_commit_thread(void *arg); 63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 64 int slot_num, 65 struct ocfs2_dinode *la_dinode, 66 struct ocfs2_dinode *tl_dinode, 67 struct ocfs2_quota_recovery *qrec, 68 enum ocfs2_orphan_reco_type orphan_reco_type); 69 70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 71 { 72 return __ocfs2_wait_on_mount(osb, 0); 73 } 74 75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 76 { 77 return __ocfs2_wait_on_mount(osb, 1); 78 } 79 80 /* 81 * This replay_map is to track online/offline slots, so we could recover 82 * offline slots during recovery and mount 83 */ 84 85 enum ocfs2_replay_state { 86 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 87 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 88 REPLAY_DONE /* Replay was already queued */ 89 }; 90 91 struct ocfs2_replay_map { 92 unsigned int rm_slots; 93 enum ocfs2_replay_state rm_state; 94 unsigned char rm_replay_slots[0]; 95 }; 96 97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 98 { 99 if (!osb->replay_map) 100 return; 101 102 /* If we've already queued the replay, we don't have any more to do */ 103 if (osb->replay_map->rm_state == REPLAY_DONE) 104 return; 105 106 osb->replay_map->rm_state = state; 107 } 108 109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 110 { 111 struct ocfs2_replay_map *replay_map; 112 int i, node_num; 113 114 /* If replay map is already set, we don't do it again */ 115 if (osb->replay_map) 116 return 0; 117 118 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 119 (osb->max_slots * sizeof(char)), GFP_KERNEL); 120 121 if (!replay_map) { 122 mlog_errno(-ENOMEM); 123 return -ENOMEM; 124 } 125 126 spin_lock(&osb->osb_lock); 127 128 replay_map->rm_slots = osb->max_slots; 129 replay_map->rm_state = REPLAY_UNNEEDED; 130 131 /* set rm_replay_slots for offline slot(s) */ 132 for (i = 0; i < replay_map->rm_slots; i++) { 133 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 134 replay_map->rm_replay_slots[i] = 1; 135 } 136 137 osb->replay_map = replay_map; 138 spin_unlock(&osb->osb_lock); 139 return 0; 140 } 141 142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 143 enum ocfs2_orphan_reco_type orphan_reco_type) 144 { 145 struct ocfs2_replay_map *replay_map = osb->replay_map; 146 int i; 147 148 if (!replay_map) 149 return; 150 151 if (replay_map->rm_state != REPLAY_NEEDED) 152 return; 153 154 for (i = 0; i < replay_map->rm_slots; i++) 155 if (replay_map->rm_replay_slots[i]) 156 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 157 NULL, NULL, 158 orphan_reco_type); 159 replay_map->rm_state = REPLAY_DONE; 160 } 161 162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 163 { 164 struct ocfs2_replay_map *replay_map = osb->replay_map; 165 166 if (!osb->replay_map) 167 return; 168 169 kfree(replay_map); 170 osb->replay_map = NULL; 171 } 172 173 int ocfs2_recovery_init(struct ocfs2_super *osb) 174 { 175 struct ocfs2_recovery_map *rm; 176 177 mutex_init(&osb->recovery_lock); 178 osb->disable_recovery = 0; 179 osb->recovery_thread_task = NULL; 180 init_waitqueue_head(&osb->recovery_event); 181 182 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 183 osb->max_slots * sizeof(unsigned int), 184 GFP_KERNEL); 185 if (!rm) { 186 mlog_errno(-ENOMEM); 187 return -ENOMEM; 188 } 189 190 rm->rm_entries = (unsigned int *)((char *)rm + 191 sizeof(struct ocfs2_recovery_map)); 192 osb->recovery_map = rm; 193 194 return 0; 195 } 196 197 /* we can't grab the goofy sem lock from inside wait_event, so we use 198 * memory barriers to make sure that we'll see the null task before 199 * being woken up */ 200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 201 { 202 mb(); 203 return osb->recovery_thread_task != NULL; 204 } 205 206 void ocfs2_recovery_exit(struct ocfs2_super *osb) 207 { 208 struct ocfs2_recovery_map *rm; 209 210 /* disable any new recovery threads and wait for any currently 211 * running ones to exit. Do this before setting the vol_state. */ 212 mutex_lock(&osb->recovery_lock); 213 osb->disable_recovery = 1; 214 mutex_unlock(&osb->recovery_lock); 215 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 216 217 /* At this point, we know that no more recovery threads can be 218 * launched, so wait for any recovery completion work to 219 * complete. */ 220 if (osb->ocfs2_wq) 221 flush_workqueue(osb->ocfs2_wq); 222 223 /* 224 * Now that recovery is shut down, and the osb is about to be 225 * freed, the osb_lock is not taken here. 226 */ 227 rm = osb->recovery_map; 228 /* XXX: Should we bug if there are dirty entries? */ 229 230 kfree(rm); 231 } 232 233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 234 unsigned int node_num) 235 { 236 int i; 237 struct ocfs2_recovery_map *rm = osb->recovery_map; 238 239 assert_spin_locked(&osb->osb_lock); 240 241 for (i = 0; i < rm->rm_used; i++) { 242 if (rm->rm_entries[i] == node_num) 243 return 1; 244 } 245 246 return 0; 247 } 248 249 /* Behaves like test-and-set. Returns the previous value */ 250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 251 unsigned int node_num) 252 { 253 struct ocfs2_recovery_map *rm = osb->recovery_map; 254 255 spin_lock(&osb->osb_lock); 256 if (__ocfs2_recovery_map_test(osb, node_num)) { 257 spin_unlock(&osb->osb_lock); 258 return 1; 259 } 260 261 /* XXX: Can this be exploited? Not from o2dlm... */ 262 BUG_ON(rm->rm_used >= osb->max_slots); 263 264 rm->rm_entries[rm->rm_used] = node_num; 265 rm->rm_used++; 266 spin_unlock(&osb->osb_lock); 267 268 return 0; 269 } 270 271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 272 unsigned int node_num) 273 { 274 int i; 275 struct ocfs2_recovery_map *rm = osb->recovery_map; 276 277 spin_lock(&osb->osb_lock); 278 279 for (i = 0; i < rm->rm_used; i++) { 280 if (rm->rm_entries[i] == node_num) 281 break; 282 } 283 284 if (i < rm->rm_used) { 285 /* XXX: be careful with the pointer math */ 286 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 287 (rm->rm_used - i - 1) * sizeof(unsigned int)); 288 rm->rm_used--; 289 } 290 291 spin_unlock(&osb->osb_lock); 292 } 293 294 static int ocfs2_commit_cache(struct ocfs2_super *osb) 295 { 296 int status = 0; 297 unsigned int flushed; 298 struct ocfs2_journal *journal = NULL; 299 300 journal = osb->journal; 301 302 /* Flush all pending commits and checkpoint the journal. */ 303 down_write(&journal->j_trans_barrier); 304 305 flushed = atomic_read(&journal->j_num_trans); 306 trace_ocfs2_commit_cache_begin(flushed); 307 if (flushed == 0) { 308 up_write(&journal->j_trans_barrier); 309 goto finally; 310 } 311 312 jbd2_journal_lock_updates(journal->j_journal); 313 status = jbd2_journal_flush(journal->j_journal); 314 jbd2_journal_unlock_updates(journal->j_journal); 315 if (status < 0) { 316 up_write(&journal->j_trans_barrier); 317 mlog_errno(status); 318 goto finally; 319 } 320 321 ocfs2_inc_trans_id(journal); 322 323 flushed = atomic_read(&journal->j_num_trans); 324 atomic_set(&journal->j_num_trans, 0); 325 up_write(&journal->j_trans_barrier); 326 327 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 328 329 ocfs2_wake_downconvert_thread(osb); 330 wake_up(&journal->j_checkpointed); 331 finally: 332 return status; 333 } 334 335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 336 { 337 journal_t *journal = osb->journal->j_journal; 338 handle_t *handle; 339 340 BUG_ON(!osb || !osb->journal->j_journal); 341 342 if (ocfs2_is_hard_readonly(osb)) 343 return ERR_PTR(-EROFS); 344 345 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 346 BUG_ON(max_buffs <= 0); 347 348 /* Nested transaction? Just return the handle... */ 349 if (journal_current_handle()) 350 return jbd2_journal_start(journal, max_buffs); 351 352 sb_start_intwrite(osb->sb); 353 354 down_read(&osb->journal->j_trans_barrier); 355 356 handle = jbd2_journal_start(journal, max_buffs); 357 if (IS_ERR(handle)) { 358 up_read(&osb->journal->j_trans_barrier); 359 sb_end_intwrite(osb->sb); 360 361 mlog_errno(PTR_ERR(handle)); 362 363 if (is_journal_aborted(journal)) { 364 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 365 handle = ERR_PTR(-EROFS); 366 } 367 } else { 368 if (!ocfs2_mount_local(osb)) 369 atomic_inc(&(osb->journal->j_num_trans)); 370 } 371 372 return handle; 373 } 374 375 int ocfs2_commit_trans(struct ocfs2_super *osb, 376 handle_t *handle) 377 { 378 int ret, nested; 379 struct ocfs2_journal *journal = osb->journal; 380 381 BUG_ON(!handle); 382 383 nested = handle->h_ref > 1; 384 ret = jbd2_journal_stop(handle); 385 if (ret < 0) 386 mlog_errno(ret); 387 388 if (!nested) { 389 up_read(&journal->j_trans_barrier); 390 sb_end_intwrite(osb->sb); 391 } 392 393 return ret; 394 } 395 396 /* 397 * 'nblocks' is what you want to add to the current transaction. 398 * 399 * This might call jbd2_journal_restart() which will commit dirty buffers 400 * and then restart the transaction. Before calling 401 * ocfs2_extend_trans(), any changed blocks should have been 402 * dirtied. After calling it, all blocks which need to be changed must 403 * go through another set of journal_access/journal_dirty calls. 404 * 405 * WARNING: This will not release any semaphores or disk locks taken 406 * during the transaction, so make sure they were taken *before* 407 * start_trans or we'll have ordering deadlocks. 408 * 409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 410 * good because transaction ids haven't yet been recorded on the 411 * cluster locks associated with this handle. 412 */ 413 int ocfs2_extend_trans(handle_t *handle, int nblocks) 414 { 415 int status, old_nblocks; 416 417 BUG_ON(!handle); 418 BUG_ON(nblocks < 0); 419 420 if (!nblocks) 421 return 0; 422 423 old_nblocks = jbd2_handle_buffer_credits(handle); 424 425 trace_ocfs2_extend_trans(old_nblocks, nblocks); 426 427 #ifdef CONFIG_OCFS2_DEBUG_FS 428 status = 1; 429 #else 430 status = jbd2_journal_extend(handle, nblocks, 0); 431 if (status < 0) { 432 mlog_errno(status); 433 goto bail; 434 } 435 #endif 436 437 if (status > 0) { 438 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 439 status = jbd2_journal_restart(handle, 440 old_nblocks + nblocks); 441 if (status < 0) { 442 mlog_errno(status); 443 goto bail; 444 } 445 } 446 447 status = 0; 448 bail: 449 return status; 450 } 451 452 /* 453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 454 * If that fails, restart the transaction & regain write access for the 455 * buffer head which is used for metadata modifications. 456 * Taken from Ext4: extend_or_restart_transaction() 457 */ 458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 459 { 460 int status, old_nblks; 461 462 BUG_ON(!handle); 463 464 old_nblks = jbd2_handle_buffer_credits(handle); 465 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 466 467 if (old_nblks < thresh) 468 return 0; 469 470 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 471 if (status < 0) { 472 mlog_errno(status); 473 goto bail; 474 } 475 476 if (status > 0) { 477 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 478 if (status < 0) 479 mlog_errno(status); 480 } 481 482 bail: 483 return status; 484 } 485 486 487 struct ocfs2_triggers { 488 struct jbd2_buffer_trigger_type ot_triggers; 489 int ot_offset; 490 }; 491 492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 493 { 494 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 495 } 496 497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 498 struct buffer_head *bh, 499 void *data, size_t size) 500 { 501 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 502 503 /* 504 * We aren't guaranteed to have the superblock here, so we 505 * must unconditionally compute the ecc data. 506 * __ocfs2_journal_access() will only set the triggers if 507 * metaecc is enabled. 508 */ 509 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 510 } 511 512 /* 513 * Quota blocks have their own trigger because the struct ocfs2_block_check 514 * offset depends on the blocksize. 515 */ 516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 517 struct buffer_head *bh, 518 void *data, size_t size) 519 { 520 struct ocfs2_disk_dqtrailer *dqt = 521 ocfs2_block_dqtrailer(size, data); 522 523 /* 524 * We aren't guaranteed to have the superblock here, so we 525 * must unconditionally compute the ecc data. 526 * __ocfs2_journal_access() will only set the triggers if 527 * metaecc is enabled. 528 */ 529 ocfs2_block_check_compute(data, size, &dqt->dq_check); 530 } 531 532 /* 533 * Directory blocks also have their own trigger because the 534 * struct ocfs2_block_check offset depends on the blocksize. 535 */ 536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 537 struct buffer_head *bh, 538 void *data, size_t size) 539 { 540 struct ocfs2_dir_block_trailer *trailer = 541 ocfs2_dir_trailer_from_size(size, data); 542 543 /* 544 * We aren't guaranteed to have the superblock here, so we 545 * must unconditionally compute the ecc data. 546 * __ocfs2_journal_access() will only set the triggers if 547 * metaecc is enabled. 548 */ 549 ocfs2_block_check_compute(data, size, &trailer->db_check); 550 } 551 552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 553 struct buffer_head *bh) 554 { 555 mlog(ML_ERROR, 556 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 557 "bh->b_blocknr = %llu\n", 558 (unsigned long)bh, 559 (unsigned long long)bh->b_blocknr); 560 561 ocfs2_error(bh->b_bdev->bd_super, 562 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 563 } 564 565 static struct ocfs2_triggers di_triggers = { 566 .ot_triggers = { 567 .t_frozen = ocfs2_frozen_trigger, 568 .t_abort = ocfs2_abort_trigger, 569 }, 570 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 571 }; 572 573 static struct ocfs2_triggers eb_triggers = { 574 .ot_triggers = { 575 .t_frozen = ocfs2_frozen_trigger, 576 .t_abort = ocfs2_abort_trigger, 577 }, 578 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 579 }; 580 581 static struct ocfs2_triggers rb_triggers = { 582 .ot_triggers = { 583 .t_frozen = ocfs2_frozen_trigger, 584 .t_abort = ocfs2_abort_trigger, 585 }, 586 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 587 }; 588 589 static struct ocfs2_triggers gd_triggers = { 590 .ot_triggers = { 591 .t_frozen = ocfs2_frozen_trigger, 592 .t_abort = ocfs2_abort_trigger, 593 }, 594 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 595 }; 596 597 static struct ocfs2_triggers db_triggers = { 598 .ot_triggers = { 599 .t_frozen = ocfs2_db_frozen_trigger, 600 .t_abort = ocfs2_abort_trigger, 601 }, 602 }; 603 604 static struct ocfs2_triggers xb_triggers = { 605 .ot_triggers = { 606 .t_frozen = ocfs2_frozen_trigger, 607 .t_abort = ocfs2_abort_trigger, 608 }, 609 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 610 }; 611 612 static struct ocfs2_triggers dq_triggers = { 613 .ot_triggers = { 614 .t_frozen = ocfs2_dq_frozen_trigger, 615 .t_abort = ocfs2_abort_trigger, 616 }, 617 }; 618 619 static struct ocfs2_triggers dr_triggers = { 620 .ot_triggers = { 621 .t_frozen = ocfs2_frozen_trigger, 622 .t_abort = ocfs2_abort_trigger, 623 }, 624 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 625 }; 626 627 static struct ocfs2_triggers dl_triggers = { 628 .ot_triggers = { 629 .t_frozen = ocfs2_frozen_trigger, 630 .t_abort = ocfs2_abort_trigger, 631 }, 632 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 633 }; 634 635 static int __ocfs2_journal_access(handle_t *handle, 636 struct ocfs2_caching_info *ci, 637 struct buffer_head *bh, 638 struct ocfs2_triggers *triggers, 639 int type) 640 { 641 int status; 642 struct ocfs2_super *osb = 643 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 644 645 BUG_ON(!ci || !ci->ci_ops); 646 BUG_ON(!handle); 647 BUG_ON(!bh); 648 649 trace_ocfs2_journal_access( 650 (unsigned long long)ocfs2_metadata_cache_owner(ci), 651 (unsigned long long)bh->b_blocknr, type, bh->b_size); 652 653 /* we can safely remove this assertion after testing. */ 654 if (!buffer_uptodate(bh)) { 655 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 656 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 657 (unsigned long long)bh->b_blocknr, bh->b_state); 658 659 lock_buffer(bh); 660 /* 661 * A previous transaction with a couple of buffer heads fail 662 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 663 * For current transaction, the bh is just among those error 664 * bhs which previous transaction handle. We can't just clear 665 * its BH_Write_EIO and reuse directly, since other bhs are 666 * not written to disk yet and that will cause metadata 667 * inconsistency. So we should set fs read-only to avoid 668 * further damage. 669 */ 670 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 671 unlock_buffer(bh); 672 return ocfs2_error(osb->sb, "A previous attempt to " 673 "write this buffer head failed\n"); 674 } 675 unlock_buffer(bh); 676 } 677 678 /* Set the current transaction information on the ci so 679 * that the locking code knows whether it can drop it's locks 680 * on this ci or not. We're protected from the commit 681 * thread updating the current transaction id until 682 * ocfs2_commit_trans() because ocfs2_start_trans() took 683 * j_trans_barrier for us. */ 684 ocfs2_set_ci_lock_trans(osb->journal, ci); 685 686 ocfs2_metadata_cache_io_lock(ci); 687 switch (type) { 688 case OCFS2_JOURNAL_ACCESS_CREATE: 689 case OCFS2_JOURNAL_ACCESS_WRITE: 690 status = jbd2_journal_get_write_access(handle, bh); 691 break; 692 693 case OCFS2_JOURNAL_ACCESS_UNDO: 694 status = jbd2_journal_get_undo_access(handle, bh); 695 break; 696 697 default: 698 status = -EINVAL; 699 mlog(ML_ERROR, "Unknown access type!\n"); 700 } 701 if (!status && ocfs2_meta_ecc(osb) && triggers) 702 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 703 ocfs2_metadata_cache_io_unlock(ci); 704 705 if (status < 0) 706 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 707 status, type); 708 709 return status; 710 } 711 712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 713 struct buffer_head *bh, int type) 714 { 715 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 716 } 717 718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 719 struct buffer_head *bh, int type) 720 { 721 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 722 } 723 724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 725 struct buffer_head *bh, int type) 726 { 727 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 728 type); 729 } 730 731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 732 struct buffer_head *bh, int type) 733 { 734 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 735 } 736 737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 738 struct buffer_head *bh, int type) 739 { 740 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 741 } 742 743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 744 struct buffer_head *bh, int type) 745 { 746 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 747 } 748 749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 750 struct buffer_head *bh, int type) 751 { 752 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 753 } 754 755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 756 struct buffer_head *bh, int type) 757 { 758 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 759 } 760 761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 762 struct buffer_head *bh, int type) 763 { 764 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 765 } 766 767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 768 struct buffer_head *bh, int type) 769 { 770 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 771 } 772 773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 774 { 775 int status; 776 777 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 778 779 status = jbd2_journal_dirty_metadata(handle, bh); 780 if (status) { 781 mlog_errno(status); 782 if (!is_handle_aborted(handle)) { 783 journal_t *journal = handle->h_transaction->t_journal; 784 struct super_block *sb = bh->b_bdev->bd_super; 785 786 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 787 "Aborting transaction and journal.\n"); 788 handle->h_err = status; 789 jbd2_journal_abort_handle(handle); 790 jbd2_journal_abort(journal, status); 791 ocfs2_abort(sb, "Journal already aborted.\n"); 792 } 793 } 794 } 795 796 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 797 798 void ocfs2_set_journal_params(struct ocfs2_super *osb) 799 { 800 journal_t *journal = osb->journal->j_journal; 801 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 802 803 if (osb->osb_commit_interval) 804 commit_interval = osb->osb_commit_interval; 805 806 write_lock(&journal->j_state_lock); 807 journal->j_commit_interval = commit_interval; 808 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 809 journal->j_flags |= JBD2_BARRIER; 810 else 811 journal->j_flags &= ~JBD2_BARRIER; 812 write_unlock(&journal->j_state_lock); 813 } 814 815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 816 { 817 int status = -1; 818 struct inode *inode = NULL; /* the journal inode */ 819 journal_t *j_journal = NULL; 820 struct ocfs2_dinode *di = NULL; 821 struct buffer_head *bh = NULL; 822 struct ocfs2_super *osb; 823 int inode_lock = 0; 824 825 BUG_ON(!journal); 826 827 osb = journal->j_osb; 828 829 /* already have the inode for our journal */ 830 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 831 osb->slot_num); 832 if (inode == NULL) { 833 status = -EACCES; 834 mlog_errno(status); 835 goto done; 836 } 837 if (is_bad_inode(inode)) { 838 mlog(ML_ERROR, "access error (bad inode)\n"); 839 iput(inode); 840 inode = NULL; 841 status = -EACCES; 842 goto done; 843 } 844 845 SET_INODE_JOURNAL(inode); 846 OCFS2_I(inode)->ip_open_count++; 847 848 /* Skip recovery waits here - journal inode metadata never 849 * changes in a live cluster so it can be considered an 850 * exception to the rule. */ 851 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 852 if (status < 0) { 853 if (status != -ERESTARTSYS) 854 mlog(ML_ERROR, "Could not get lock on journal!\n"); 855 goto done; 856 } 857 858 inode_lock = 1; 859 di = (struct ocfs2_dinode *)bh->b_data; 860 861 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 862 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 863 i_size_read(inode)); 864 status = -EINVAL; 865 goto done; 866 } 867 868 trace_ocfs2_journal_init(i_size_read(inode), 869 (unsigned long long)inode->i_blocks, 870 OCFS2_I(inode)->ip_clusters); 871 872 /* call the kernels journal init function now */ 873 j_journal = jbd2_journal_init_inode(inode); 874 if (j_journal == NULL) { 875 mlog(ML_ERROR, "Linux journal layer error\n"); 876 status = -EINVAL; 877 goto done; 878 } 879 880 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 881 882 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 883 OCFS2_JOURNAL_DIRTY_FL); 884 885 journal->j_journal = j_journal; 886 journal->j_inode = inode; 887 journal->j_bh = bh; 888 889 ocfs2_set_journal_params(osb); 890 891 journal->j_state = OCFS2_JOURNAL_LOADED; 892 893 status = 0; 894 done: 895 if (status < 0) { 896 if (inode_lock) 897 ocfs2_inode_unlock(inode, 1); 898 brelse(bh); 899 if (inode) { 900 OCFS2_I(inode)->ip_open_count--; 901 iput(inode); 902 } 903 } 904 905 return status; 906 } 907 908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 909 { 910 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 911 } 912 913 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 914 { 915 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 916 } 917 918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 919 int dirty, int replayed) 920 { 921 int status; 922 unsigned int flags; 923 struct ocfs2_journal *journal = osb->journal; 924 struct buffer_head *bh = journal->j_bh; 925 struct ocfs2_dinode *fe; 926 927 fe = (struct ocfs2_dinode *)bh->b_data; 928 929 /* The journal bh on the osb always comes from ocfs2_journal_init() 930 * and was validated there inside ocfs2_inode_lock_full(). It's a 931 * code bug if we mess it up. */ 932 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 933 934 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 935 if (dirty) 936 flags |= OCFS2_JOURNAL_DIRTY_FL; 937 else 938 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 939 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 940 941 if (replayed) 942 ocfs2_bump_recovery_generation(fe); 943 944 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 945 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 946 if (status < 0) 947 mlog_errno(status); 948 949 return status; 950 } 951 952 /* 953 * If the journal has been kmalloc'd it needs to be freed after this 954 * call. 955 */ 956 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 957 { 958 struct ocfs2_journal *journal = NULL; 959 int status = 0; 960 struct inode *inode = NULL; 961 int num_running_trans = 0; 962 963 BUG_ON(!osb); 964 965 journal = osb->journal; 966 if (!journal) 967 goto done; 968 969 inode = journal->j_inode; 970 971 if (journal->j_state != OCFS2_JOURNAL_LOADED) 972 goto done; 973 974 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 975 if (!igrab(inode)) 976 BUG(); 977 978 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 979 trace_ocfs2_journal_shutdown(num_running_trans); 980 981 /* Do a commit_cache here. It will flush our journal, *and* 982 * release any locks that are still held. 983 * set the SHUTDOWN flag and release the trans lock. 984 * the commit thread will take the trans lock for us below. */ 985 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 986 987 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 988 * drop the trans_lock (which we want to hold until we 989 * completely destroy the journal. */ 990 if (osb->commit_task) { 991 /* Wait for the commit thread */ 992 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 993 kthread_stop(osb->commit_task); 994 osb->commit_task = NULL; 995 } 996 997 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 998 999 if (ocfs2_mount_local(osb)) { 1000 jbd2_journal_lock_updates(journal->j_journal); 1001 status = jbd2_journal_flush(journal->j_journal); 1002 jbd2_journal_unlock_updates(journal->j_journal); 1003 if (status < 0) 1004 mlog_errno(status); 1005 } 1006 1007 /* Shutdown the kernel journal system */ 1008 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1009 /* 1010 * Do not toggle if flush was unsuccessful otherwise 1011 * will leave dirty metadata in a "clean" journal 1012 */ 1013 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1014 if (status < 0) 1015 mlog_errno(status); 1016 } 1017 journal->j_journal = NULL; 1018 1019 OCFS2_I(inode)->ip_open_count--; 1020 1021 /* unlock our journal */ 1022 ocfs2_inode_unlock(inode, 1); 1023 1024 brelse(journal->j_bh); 1025 journal->j_bh = NULL; 1026 1027 journal->j_state = OCFS2_JOURNAL_FREE; 1028 1029 // up_write(&journal->j_trans_barrier); 1030 done: 1031 iput(inode); 1032 } 1033 1034 static void ocfs2_clear_journal_error(struct super_block *sb, 1035 journal_t *journal, 1036 int slot) 1037 { 1038 int olderr; 1039 1040 olderr = jbd2_journal_errno(journal); 1041 if (olderr) { 1042 mlog(ML_ERROR, "File system error %d recorded in " 1043 "journal %u.\n", olderr, slot); 1044 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1045 sb->s_id); 1046 1047 jbd2_journal_ack_err(journal); 1048 jbd2_journal_clear_err(journal); 1049 } 1050 } 1051 1052 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1053 { 1054 int status = 0; 1055 struct ocfs2_super *osb; 1056 1057 BUG_ON(!journal); 1058 1059 osb = journal->j_osb; 1060 1061 status = jbd2_journal_load(journal->j_journal); 1062 if (status < 0) { 1063 mlog(ML_ERROR, "Failed to load journal!\n"); 1064 goto done; 1065 } 1066 1067 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1068 1069 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1070 if (status < 0) { 1071 mlog_errno(status); 1072 goto done; 1073 } 1074 1075 /* Launch the commit thread */ 1076 if (!local) { 1077 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1078 "ocfs2cmt-%s", osb->uuid_str); 1079 if (IS_ERR(osb->commit_task)) { 1080 status = PTR_ERR(osb->commit_task); 1081 osb->commit_task = NULL; 1082 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1083 "error=%d", status); 1084 goto done; 1085 } 1086 } else 1087 osb->commit_task = NULL; 1088 1089 done: 1090 return status; 1091 } 1092 1093 1094 /* 'full' flag tells us whether we clear out all blocks or if we just 1095 * mark the journal clean */ 1096 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1097 { 1098 int status; 1099 1100 BUG_ON(!journal); 1101 1102 status = jbd2_journal_wipe(journal->j_journal, full); 1103 if (status < 0) { 1104 mlog_errno(status); 1105 goto bail; 1106 } 1107 1108 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1109 if (status < 0) 1110 mlog_errno(status); 1111 1112 bail: 1113 return status; 1114 } 1115 1116 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1117 { 1118 int empty; 1119 struct ocfs2_recovery_map *rm = osb->recovery_map; 1120 1121 spin_lock(&osb->osb_lock); 1122 empty = (rm->rm_used == 0); 1123 spin_unlock(&osb->osb_lock); 1124 1125 return empty; 1126 } 1127 1128 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1129 { 1130 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1131 } 1132 1133 /* 1134 * JBD Might read a cached version of another nodes journal file. We 1135 * don't want this as this file changes often and we get no 1136 * notification on those changes. The only way to be sure that we've 1137 * got the most up to date version of those blocks then is to force 1138 * read them off disk. Just searching through the buffer cache won't 1139 * work as there may be pages backing this file which are still marked 1140 * up to date. We know things can't change on this file underneath us 1141 * as we have the lock by now :) 1142 */ 1143 static int ocfs2_force_read_journal(struct inode *inode) 1144 { 1145 int status = 0; 1146 int i; 1147 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1148 struct buffer_head *bh = NULL; 1149 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1150 1151 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1152 v_blkno = 0; 1153 while (v_blkno < num_blocks) { 1154 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1155 &p_blkno, &p_blocks, NULL); 1156 if (status < 0) { 1157 mlog_errno(status); 1158 goto bail; 1159 } 1160 1161 for (i = 0; i < p_blocks; i++, p_blkno++) { 1162 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1163 osb->sb->s_blocksize); 1164 /* block not cached. */ 1165 if (!bh) 1166 continue; 1167 1168 brelse(bh); 1169 bh = NULL; 1170 /* We are reading journal data which should not 1171 * be put in the uptodate cache. 1172 */ 1173 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1174 if (status < 0) { 1175 mlog_errno(status); 1176 goto bail; 1177 } 1178 1179 brelse(bh); 1180 bh = NULL; 1181 } 1182 1183 v_blkno += p_blocks; 1184 } 1185 1186 bail: 1187 return status; 1188 } 1189 1190 struct ocfs2_la_recovery_item { 1191 struct list_head lri_list; 1192 int lri_slot; 1193 struct ocfs2_dinode *lri_la_dinode; 1194 struct ocfs2_dinode *lri_tl_dinode; 1195 struct ocfs2_quota_recovery *lri_qrec; 1196 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1197 }; 1198 1199 /* Does the second half of the recovery process. By this point, the 1200 * node is marked clean and can actually be considered recovered, 1201 * hence it's no longer in the recovery map, but there's still some 1202 * cleanup we can do which shouldn't happen within the recovery thread 1203 * as locking in that context becomes very difficult if we are to take 1204 * recovering nodes into account. 1205 * 1206 * NOTE: This function can and will sleep on recovery of other nodes 1207 * during cluster locking, just like any other ocfs2 process. 1208 */ 1209 void ocfs2_complete_recovery(struct work_struct *work) 1210 { 1211 int ret = 0; 1212 struct ocfs2_journal *journal = 1213 container_of(work, struct ocfs2_journal, j_recovery_work); 1214 struct ocfs2_super *osb = journal->j_osb; 1215 struct ocfs2_dinode *la_dinode, *tl_dinode; 1216 struct ocfs2_la_recovery_item *item, *n; 1217 struct ocfs2_quota_recovery *qrec; 1218 enum ocfs2_orphan_reco_type orphan_reco_type; 1219 LIST_HEAD(tmp_la_list); 1220 1221 trace_ocfs2_complete_recovery( 1222 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1223 1224 spin_lock(&journal->j_lock); 1225 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1226 spin_unlock(&journal->j_lock); 1227 1228 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1229 list_del_init(&item->lri_list); 1230 1231 ocfs2_wait_on_quotas(osb); 1232 1233 la_dinode = item->lri_la_dinode; 1234 tl_dinode = item->lri_tl_dinode; 1235 qrec = item->lri_qrec; 1236 orphan_reco_type = item->lri_orphan_reco_type; 1237 1238 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1239 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1240 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1241 qrec); 1242 1243 if (la_dinode) { 1244 ret = ocfs2_complete_local_alloc_recovery(osb, 1245 la_dinode); 1246 if (ret < 0) 1247 mlog_errno(ret); 1248 1249 kfree(la_dinode); 1250 } 1251 1252 if (tl_dinode) { 1253 ret = ocfs2_complete_truncate_log_recovery(osb, 1254 tl_dinode); 1255 if (ret < 0) 1256 mlog_errno(ret); 1257 1258 kfree(tl_dinode); 1259 } 1260 1261 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1262 orphan_reco_type); 1263 if (ret < 0) 1264 mlog_errno(ret); 1265 1266 if (qrec) { 1267 ret = ocfs2_finish_quota_recovery(osb, qrec, 1268 item->lri_slot); 1269 if (ret < 0) 1270 mlog_errno(ret); 1271 /* Recovery info is already freed now */ 1272 } 1273 1274 kfree(item); 1275 } 1276 1277 trace_ocfs2_complete_recovery_end(ret); 1278 } 1279 1280 /* NOTE: This function always eats your references to la_dinode and 1281 * tl_dinode, either manually on error, or by passing them to 1282 * ocfs2_complete_recovery */ 1283 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1284 int slot_num, 1285 struct ocfs2_dinode *la_dinode, 1286 struct ocfs2_dinode *tl_dinode, 1287 struct ocfs2_quota_recovery *qrec, 1288 enum ocfs2_orphan_reco_type orphan_reco_type) 1289 { 1290 struct ocfs2_la_recovery_item *item; 1291 1292 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1293 if (!item) { 1294 /* Though we wish to avoid it, we are in fact safe in 1295 * skipping local alloc cleanup as fsck.ocfs2 is more 1296 * than capable of reclaiming unused space. */ 1297 kfree(la_dinode); 1298 kfree(tl_dinode); 1299 1300 if (qrec) 1301 ocfs2_free_quota_recovery(qrec); 1302 1303 mlog_errno(-ENOMEM); 1304 return; 1305 } 1306 1307 INIT_LIST_HEAD(&item->lri_list); 1308 item->lri_la_dinode = la_dinode; 1309 item->lri_slot = slot_num; 1310 item->lri_tl_dinode = tl_dinode; 1311 item->lri_qrec = qrec; 1312 item->lri_orphan_reco_type = orphan_reco_type; 1313 1314 spin_lock(&journal->j_lock); 1315 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1316 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1317 spin_unlock(&journal->j_lock); 1318 } 1319 1320 /* Called by the mount code to queue recovery the last part of 1321 * recovery for it's own and offline slot(s). */ 1322 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1323 { 1324 struct ocfs2_journal *journal = osb->journal; 1325 1326 if (ocfs2_is_hard_readonly(osb)) 1327 return; 1328 1329 /* No need to queue up our truncate_log as regular cleanup will catch 1330 * that */ 1331 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1332 osb->local_alloc_copy, NULL, NULL, 1333 ORPHAN_NEED_TRUNCATE); 1334 ocfs2_schedule_truncate_log_flush(osb, 0); 1335 1336 osb->local_alloc_copy = NULL; 1337 1338 /* queue to recover orphan slots for all offline slots */ 1339 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1340 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1341 ocfs2_free_replay_slots(osb); 1342 } 1343 1344 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1345 { 1346 if (osb->quota_rec) { 1347 ocfs2_queue_recovery_completion(osb->journal, 1348 osb->slot_num, 1349 NULL, 1350 NULL, 1351 osb->quota_rec, 1352 ORPHAN_NEED_TRUNCATE); 1353 osb->quota_rec = NULL; 1354 } 1355 } 1356 1357 static int __ocfs2_recovery_thread(void *arg) 1358 { 1359 int status, node_num, slot_num; 1360 struct ocfs2_super *osb = arg; 1361 struct ocfs2_recovery_map *rm = osb->recovery_map; 1362 int *rm_quota = NULL; 1363 int rm_quota_used = 0, i; 1364 struct ocfs2_quota_recovery *qrec; 1365 1366 /* Whether the quota supported. */ 1367 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1368 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1369 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1370 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1371 1372 status = ocfs2_wait_on_mount(osb); 1373 if (status < 0) { 1374 goto bail; 1375 } 1376 1377 if (quota_enabled) { 1378 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1379 if (!rm_quota) { 1380 status = -ENOMEM; 1381 goto bail; 1382 } 1383 } 1384 restart: 1385 status = ocfs2_super_lock(osb, 1); 1386 if (status < 0) { 1387 mlog_errno(status); 1388 goto bail; 1389 } 1390 1391 status = ocfs2_compute_replay_slots(osb); 1392 if (status < 0) 1393 mlog_errno(status); 1394 1395 /* queue recovery for our own slot */ 1396 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1397 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1398 1399 spin_lock(&osb->osb_lock); 1400 while (rm->rm_used) { 1401 /* It's always safe to remove entry zero, as we won't 1402 * clear it until ocfs2_recover_node() has succeeded. */ 1403 node_num = rm->rm_entries[0]; 1404 spin_unlock(&osb->osb_lock); 1405 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1406 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1407 if (slot_num == -ENOENT) { 1408 status = 0; 1409 goto skip_recovery; 1410 } 1411 1412 /* It is a bit subtle with quota recovery. We cannot do it 1413 * immediately because we have to obtain cluster locks from 1414 * quota files and we also don't want to just skip it because 1415 * then quota usage would be out of sync until some node takes 1416 * the slot. So we remember which nodes need quota recovery 1417 * and when everything else is done, we recover quotas. */ 1418 if (quota_enabled) { 1419 for (i = 0; i < rm_quota_used 1420 && rm_quota[i] != slot_num; i++) 1421 ; 1422 1423 if (i == rm_quota_used) 1424 rm_quota[rm_quota_used++] = slot_num; 1425 } 1426 1427 status = ocfs2_recover_node(osb, node_num, slot_num); 1428 skip_recovery: 1429 if (!status) { 1430 ocfs2_recovery_map_clear(osb, node_num); 1431 } else { 1432 mlog(ML_ERROR, 1433 "Error %d recovering node %d on device (%u,%u)!\n", 1434 status, node_num, 1435 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1436 mlog(ML_ERROR, "Volume requires unmount.\n"); 1437 } 1438 1439 spin_lock(&osb->osb_lock); 1440 } 1441 spin_unlock(&osb->osb_lock); 1442 trace_ocfs2_recovery_thread_end(status); 1443 1444 /* Refresh all journal recovery generations from disk */ 1445 status = ocfs2_check_journals_nolocks(osb); 1446 status = (status == -EROFS) ? 0 : status; 1447 if (status < 0) 1448 mlog_errno(status); 1449 1450 /* Now it is right time to recover quotas... We have to do this under 1451 * superblock lock so that no one can start using the slot (and crash) 1452 * before we recover it */ 1453 if (quota_enabled) { 1454 for (i = 0; i < rm_quota_used; i++) { 1455 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1456 if (IS_ERR(qrec)) { 1457 status = PTR_ERR(qrec); 1458 mlog_errno(status); 1459 continue; 1460 } 1461 ocfs2_queue_recovery_completion(osb->journal, 1462 rm_quota[i], 1463 NULL, NULL, qrec, 1464 ORPHAN_NEED_TRUNCATE); 1465 } 1466 } 1467 1468 ocfs2_super_unlock(osb, 1); 1469 1470 /* queue recovery for offline slots */ 1471 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1472 1473 bail: 1474 mutex_lock(&osb->recovery_lock); 1475 if (!status && !ocfs2_recovery_completed(osb)) { 1476 mutex_unlock(&osb->recovery_lock); 1477 goto restart; 1478 } 1479 1480 ocfs2_free_replay_slots(osb); 1481 osb->recovery_thread_task = NULL; 1482 mb(); /* sync with ocfs2_recovery_thread_running */ 1483 wake_up(&osb->recovery_event); 1484 1485 mutex_unlock(&osb->recovery_lock); 1486 1487 if (quota_enabled) 1488 kfree(rm_quota); 1489 1490 /* no one is callint kthread_stop() for us so the kthread() api 1491 * requires that we call do_exit(). And it isn't exported, but 1492 * complete_and_exit() seems to be a minimal wrapper around it. */ 1493 complete_and_exit(NULL, status); 1494 } 1495 1496 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1497 { 1498 mutex_lock(&osb->recovery_lock); 1499 1500 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1501 osb->disable_recovery, osb->recovery_thread_task, 1502 osb->disable_recovery ? 1503 -1 : ocfs2_recovery_map_set(osb, node_num)); 1504 1505 if (osb->disable_recovery) 1506 goto out; 1507 1508 if (osb->recovery_thread_task) 1509 goto out; 1510 1511 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1512 "ocfs2rec-%s", osb->uuid_str); 1513 if (IS_ERR(osb->recovery_thread_task)) { 1514 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1515 osb->recovery_thread_task = NULL; 1516 } 1517 1518 out: 1519 mutex_unlock(&osb->recovery_lock); 1520 wake_up(&osb->recovery_event); 1521 } 1522 1523 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1524 int slot_num, 1525 struct buffer_head **bh, 1526 struct inode **ret_inode) 1527 { 1528 int status = -EACCES; 1529 struct inode *inode = NULL; 1530 1531 BUG_ON(slot_num >= osb->max_slots); 1532 1533 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1534 slot_num); 1535 if (!inode || is_bad_inode(inode)) { 1536 mlog_errno(status); 1537 goto bail; 1538 } 1539 SET_INODE_JOURNAL(inode); 1540 1541 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1542 if (status < 0) { 1543 mlog_errno(status); 1544 goto bail; 1545 } 1546 1547 status = 0; 1548 1549 bail: 1550 if (inode) { 1551 if (status || !ret_inode) 1552 iput(inode); 1553 else 1554 *ret_inode = inode; 1555 } 1556 return status; 1557 } 1558 1559 /* Does the actual journal replay and marks the journal inode as 1560 * clean. Will only replay if the journal inode is marked dirty. */ 1561 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1562 int node_num, 1563 int slot_num) 1564 { 1565 int status; 1566 int got_lock = 0; 1567 unsigned int flags; 1568 struct inode *inode = NULL; 1569 struct ocfs2_dinode *fe; 1570 journal_t *journal = NULL; 1571 struct buffer_head *bh = NULL; 1572 u32 slot_reco_gen; 1573 1574 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1575 if (status) { 1576 mlog_errno(status); 1577 goto done; 1578 } 1579 1580 fe = (struct ocfs2_dinode *)bh->b_data; 1581 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1582 brelse(bh); 1583 bh = NULL; 1584 1585 /* 1586 * As the fs recovery is asynchronous, there is a small chance that 1587 * another node mounted (and recovered) the slot before the recovery 1588 * thread could get the lock. To handle that, we dirty read the journal 1589 * inode for that slot to get the recovery generation. If it is 1590 * different than what we expected, the slot has been recovered. 1591 * If not, it needs recovery. 1592 */ 1593 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1594 trace_ocfs2_replay_journal_recovered(slot_num, 1595 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1596 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1597 status = -EBUSY; 1598 goto done; 1599 } 1600 1601 /* Continue with recovery as the journal has not yet been recovered */ 1602 1603 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1604 if (status < 0) { 1605 trace_ocfs2_replay_journal_lock_err(status); 1606 if (status != -ERESTARTSYS) 1607 mlog(ML_ERROR, "Could not lock journal!\n"); 1608 goto done; 1609 } 1610 got_lock = 1; 1611 1612 fe = (struct ocfs2_dinode *) bh->b_data; 1613 1614 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1615 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1616 1617 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1618 trace_ocfs2_replay_journal_skip(node_num); 1619 /* Refresh recovery generation for the slot */ 1620 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1621 goto done; 1622 } 1623 1624 /* we need to run complete recovery for offline orphan slots */ 1625 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1626 1627 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1628 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1629 MINOR(osb->sb->s_dev)); 1630 1631 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1632 1633 status = ocfs2_force_read_journal(inode); 1634 if (status < 0) { 1635 mlog_errno(status); 1636 goto done; 1637 } 1638 1639 journal = jbd2_journal_init_inode(inode); 1640 if (journal == NULL) { 1641 mlog(ML_ERROR, "Linux journal layer error\n"); 1642 status = -EIO; 1643 goto done; 1644 } 1645 1646 status = jbd2_journal_load(journal); 1647 if (status < 0) { 1648 mlog_errno(status); 1649 if (!igrab(inode)) 1650 BUG(); 1651 jbd2_journal_destroy(journal); 1652 goto done; 1653 } 1654 1655 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1656 1657 /* wipe the journal */ 1658 jbd2_journal_lock_updates(journal); 1659 status = jbd2_journal_flush(journal); 1660 jbd2_journal_unlock_updates(journal); 1661 if (status < 0) 1662 mlog_errno(status); 1663 1664 /* This will mark the node clean */ 1665 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1666 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1667 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1668 1669 /* Increment recovery generation to indicate successful recovery */ 1670 ocfs2_bump_recovery_generation(fe); 1671 osb->slot_recovery_generations[slot_num] = 1672 ocfs2_get_recovery_generation(fe); 1673 1674 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1675 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1676 if (status < 0) 1677 mlog_errno(status); 1678 1679 if (!igrab(inode)) 1680 BUG(); 1681 1682 jbd2_journal_destroy(journal); 1683 1684 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1685 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1686 MINOR(osb->sb->s_dev)); 1687 done: 1688 /* drop the lock on this nodes journal */ 1689 if (got_lock) 1690 ocfs2_inode_unlock(inode, 1); 1691 1692 iput(inode); 1693 brelse(bh); 1694 1695 return status; 1696 } 1697 1698 /* 1699 * Do the most important parts of node recovery: 1700 * - Replay it's journal 1701 * - Stamp a clean local allocator file 1702 * - Stamp a clean truncate log 1703 * - Mark the node clean 1704 * 1705 * If this function completes without error, a node in OCFS2 can be 1706 * said to have been safely recovered. As a result, failure during the 1707 * second part of a nodes recovery process (local alloc recovery) is 1708 * far less concerning. 1709 */ 1710 static int ocfs2_recover_node(struct ocfs2_super *osb, 1711 int node_num, int slot_num) 1712 { 1713 int status = 0; 1714 struct ocfs2_dinode *la_copy = NULL; 1715 struct ocfs2_dinode *tl_copy = NULL; 1716 1717 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1718 1719 /* Should not ever be called to recover ourselves -- in that 1720 * case we should've called ocfs2_journal_load instead. */ 1721 BUG_ON(osb->node_num == node_num); 1722 1723 status = ocfs2_replay_journal(osb, node_num, slot_num); 1724 if (status < 0) { 1725 if (status == -EBUSY) { 1726 trace_ocfs2_recover_node_skip(slot_num, node_num); 1727 status = 0; 1728 goto done; 1729 } 1730 mlog_errno(status); 1731 goto done; 1732 } 1733 1734 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1735 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1736 if (status < 0) { 1737 mlog_errno(status); 1738 goto done; 1739 } 1740 1741 /* An error from begin_truncate_log_recovery is not 1742 * serious enough to warrant halting the rest of 1743 * recovery. */ 1744 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1745 if (status < 0) 1746 mlog_errno(status); 1747 1748 /* Likewise, this would be a strange but ultimately not so 1749 * harmful place to get an error... */ 1750 status = ocfs2_clear_slot(osb, slot_num); 1751 if (status < 0) 1752 mlog_errno(status); 1753 1754 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1755 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1756 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1757 1758 status = 0; 1759 done: 1760 1761 return status; 1762 } 1763 1764 /* Test node liveness by trylocking his journal. If we get the lock, 1765 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1766 * still alive (we couldn't get the lock) and < 0 on error. */ 1767 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1768 int slot_num) 1769 { 1770 int status, flags; 1771 struct inode *inode = NULL; 1772 1773 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1774 slot_num); 1775 if (inode == NULL) { 1776 mlog(ML_ERROR, "access error\n"); 1777 status = -EACCES; 1778 goto bail; 1779 } 1780 if (is_bad_inode(inode)) { 1781 mlog(ML_ERROR, "access error (bad inode)\n"); 1782 iput(inode); 1783 inode = NULL; 1784 status = -EACCES; 1785 goto bail; 1786 } 1787 SET_INODE_JOURNAL(inode); 1788 1789 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1790 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1791 if (status < 0) { 1792 if (status != -EAGAIN) 1793 mlog_errno(status); 1794 goto bail; 1795 } 1796 1797 ocfs2_inode_unlock(inode, 1); 1798 bail: 1799 iput(inode); 1800 1801 return status; 1802 } 1803 1804 /* Call this underneath ocfs2_super_lock. It also assumes that the 1805 * slot info struct has been updated from disk. */ 1806 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1807 { 1808 unsigned int node_num; 1809 int status, i; 1810 u32 gen; 1811 struct buffer_head *bh = NULL; 1812 struct ocfs2_dinode *di; 1813 1814 /* This is called with the super block cluster lock, so we 1815 * know that the slot map can't change underneath us. */ 1816 1817 for (i = 0; i < osb->max_slots; i++) { 1818 /* Read journal inode to get the recovery generation */ 1819 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1820 if (status) { 1821 mlog_errno(status); 1822 goto bail; 1823 } 1824 di = (struct ocfs2_dinode *)bh->b_data; 1825 gen = ocfs2_get_recovery_generation(di); 1826 brelse(bh); 1827 bh = NULL; 1828 1829 spin_lock(&osb->osb_lock); 1830 osb->slot_recovery_generations[i] = gen; 1831 1832 trace_ocfs2_mark_dead_nodes(i, 1833 osb->slot_recovery_generations[i]); 1834 1835 if (i == osb->slot_num) { 1836 spin_unlock(&osb->osb_lock); 1837 continue; 1838 } 1839 1840 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1841 if (status == -ENOENT) { 1842 spin_unlock(&osb->osb_lock); 1843 continue; 1844 } 1845 1846 if (__ocfs2_recovery_map_test(osb, node_num)) { 1847 spin_unlock(&osb->osb_lock); 1848 continue; 1849 } 1850 spin_unlock(&osb->osb_lock); 1851 1852 /* Ok, we have a slot occupied by another node which 1853 * is not in the recovery map. We trylock his journal 1854 * file here to test if he's alive. */ 1855 status = ocfs2_trylock_journal(osb, i); 1856 if (!status) { 1857 /* Since we're called from mount, we know that 1858 * the recovery thread can't race us on 1859 * setting / checking the recovery bits. */ 1860 ocfs2_recovery_thread(osb, node_num); 1861 } else if ((status < 0) && (status != -EAGAIN)) { 1862 mlog_errno(status); 1863 goto bail; 1864 } 1865 } 1866 1867 status = 0; 1868 bail: 1869 return status; 1870 } 1871 1872 /* 1873 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1874 * randomness to the timeout to minimize multple nodes firing the timer at the 1875 * same time. 1876 */ 1877 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1878 { 1879 unsigned long time; 1880 1881 get_random_bytes(&time, sizeof(time)); 1882 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1883 return msecs_to_jiffies(time); 1884 } 1885 1886 /* 1887 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1888 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1889 * is done to catch any orphans that are left over in orphan directories. 1890 * 1891 * It scans all slots, even ones that are in use. It does so to handle the 1892 * case described below: 1893 * 1894 * Node 1 has an inode it was using. The dentry went away due to memory 1895 * pressure. Node 1 closes the inode, but it's on the free list. The node 1896 * has the open lock. 1897 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1898 * but node 1 has no dentry and doesn't get the message. It trylocks the 1899 * open lock, sees that another node has a PR, and does nothing. 1900 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1901 * open lock, sees the PR still, and does nothing. 1902 * Basically, we have to trigger an orphan iput on node 1. The only way 1903 * for this to happen is if node 1 runs node 2's orphan dir. 1904 * 1905 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1906 * seconds. It gets an EX lock on os_lockres and checks sequence number 1907 * stored in LVB. If the sequence number has changed, it means some other 1908 * node has done the scan. This node skips the scan and tracks the 1909 * sequence number. If the sequence number didn't change, it means a scan 1910 * hasn't happened. The node queues a scan and increments the 1911 * sequence number in the LVB. 1912 */ 1913 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1914 { 1915 struct ocfs2_orphan_scan *os; 1916 int status, i; 1917 u32 seqno = 0; 1918 1919 os = &osb->osb_orphan_scan; 1920 1921 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1922 goto out; 1923 1924 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1925 atomic_read(&os->os_state)); 1926 1927 status = ocfs2_orphan_scan_lock(osb, &seqno); 1928 if (status < 0) { 1929 if (status != -EAGAIN) 1930 mlog_errno(status); 1931 goto out; 1932 } 1933 1934 /* Do no queue the tasks if the volume is being umounted */ 1935 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1936 goto unlock; 1937 1938 if (os->os_seqno != seqno) { 1939 os->os_seqno = seqno; 1940 goto unlock; 1941 } 1942 1943 for (i = 0; i < osb->max_slots; i++) 1944 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1945 NULL, ORPHAN_NO_NEED_TRUNCATE); 1946 /* 1947 * We queued a recovery on orphan slots, increment the sequence 1948 * number and update LVB so other node will skip the scan for a while 1949 */ 1950 seqno++; 1951 os->os_count++; 1952 os->os_scantime = ktime_get_seconds(); 1953 unlock: 1954 ocfs2_orphan_scan_unlock(osb, seqno); 1955 out: 1956 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1957 atomic_read(&os->os_state)); 1958 return; 1959 } 1960 1961 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1962 static void ocfs2_orphan_scan_work(struct work_struct *work) 1963 { 1964 struct ocfs2_orphan_scan *os; 1965 struct ocfs2_super *osb; 1966 1967 os = container_of(work, struct ocfs2_orphan_scan, 1968 os_orphan_scan_work.work); 1969 osb = os->os_osb; 1970 1971 mutex_lock(&os->os_lock); 1972 ocfs2_queue_orphan_scan(osb); 1973 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1974 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1975 ocfs2_orphan_scan_timeout()); 1976 mutex_unlock(&os->os_lock); 1977 } 1978 1979 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1980 { 1981 struct ocfs2_orphan_scan *os; 1982 1983 os = &osb->osb_orphan_scan; 1984 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1985 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1986 mutex_lock(&os->os_lock); 1987 cancel_delayed_work(&os->os_orphan_scan_work); 1988 mutex_unlock(&os->os_lock); 1989 } 1990 } 1991 1992 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 1993 { 1994 struct ocfs2_orphan_scan *os; 1995 1996 os = &osb->osb_orphan_scan; 1997 os->os_osb = osb; 1998 os->os_count = 0; 1999 os->os_seqno = 0; 2000 mutex_init(&os->os_lock); 2001 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2002 } 2003 2004 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2005 { 2006 struct ocfs2_orphan_scan *os; 2007 2008 os = &osb->osb_orphan_scan; 2009 os->os_scantime = ktime_get_seconds(); 2010 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2011 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2012 else { 2013 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2014 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2015 ocfs2_orphan_scan_timeout()); 2016 } 2017 } 2018 2019 struct ocfs2_orphan_filldir_priv { 2020 struct dir_context ctx; 2021 struct inode *head; 2022 struct ocfs2_super *osb; 2023 enum ocfs2_orphan_reco_type orphan_reco_type; 2024 }; 2025 2026 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2027 int name_len, loff_t pos, u64 ino, 2028 unsigned type) 2029 { 2030 struct ocfs2_orphan_filldir_priv *p = 2031 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2032 struct inode *iter; 2033 2034 if (name_len == 1 && !strncmp(".", name, 1)) 2035 return 0; 2036 if (name_len == 2 && !strncmp("..", name, 2)) 2037 return 0; 2038 2039 /* do not include dio entry in case of orphan scan */ 2040 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2041 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2042 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2043 return 0; 2044 2045 /* Skip bad inodes so that recovery can continue */ 2046 iter = ocfs2_iget(p->osb, ino, 2047 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2048 if (IS_ERR(iter)) 2049 return 0; 2050 2051 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2052 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2053 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2054 2055 /* Skip inodes which are already added to recover list, since dio may 2056 * happen concurrently with unlink/rename */ 2057 if (OCFS2_I(iter)->ip_next_orphan) { 2058 iput(iter); 2059 return 0; 2060 } 2061 2062 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2063 /* No locking is required for the next_orphan queue as there 2064 * is only ever a single process doing orphan recovery. */ 2065 OCFS2_I(iter)->ip_next_orphan = p->head; 2066 p->head = iter; 2067 2068 return 0; 2069 } 2070 2071 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2072 int slot, 2073 struct inode **head, 2074 enum ocfs2_orphan_reco_type orphan_reco_type) 2075 { 2076 int status; 2077 struct inode *orphan_dir_inode = NULL; 2078 struct ocfs2_orphan_filldir_priv priv = { 2079 .ctx.actor = ocfs2_orphan_filldir, 2080 .osb = osb, 2081 .head = *head, 2082 .orphan_reco_type = orphan_reco_type 2083 }; 2084 2085 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2086 ORPHAN_DIR_SYSTEM_INODE, 2087 slot); 2088 if (!orphan_dir_inode) { 2089 status = -ENOENT; 2090 mlog_errno(status); 2091 return status; 2092 } 2093 2094 inode_lock(orphan_dir_inode); 2095 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2096 if (status < 0) { 2097 mlog_errno(status); 2098 goto out; 2099 } 2100 2101 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2102 if (status) { 2103 mlog_errno(status); 2104 goto out_cluster; 2105 } 2106 2107 *head = priv.head; 2108 2109 out_cluster: 2110 ocfs2_inode_unlock(orphan_dir_inode, 0); 2111 out: 2112 inode_unlock(orphan_dir_inode); 2113 iput(orphan_dir_inode); 2114 return status; 2115 } 2116 2117 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2118 int slot) 2119 { 2120 int ret; 2121 2122 spin_lock(&osb->osb_lock); 2123 ret = !osb->osb_orphan_wipes[slot]; 2124 spin_unlock(&osb->osb_lock); 2125 return ret; 2126 } 2127 2128 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2129 int slot) 2130 { 2131 spin_lock(&osb->osb_lock); 2132 /* Mark ourselves such that new processes in delete_inode() 2133 * know to quit early. */ 2134 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2135 while (osb->osb_orphan_wipes[slot]) { 2136 /* If any processes are already in the middle of an 2137 * orphan wipe on this dir, then we need to wait for 2138 * them. */ 2139 spin_unlock(&osb->osb_lock); 2140 wait_event_interruptible(osb->osb_wipe_event, 2141 ocfs2_orphan_recovery_can_continue(osb, slot)); 2142 spin_lock(&osb->osb_lock); 2143 } 2144 spin_unlock(&osb->osb_lock); 2145 } 2146 2147 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2148 int slot) 2149 { 2150 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2151 } 2152 2153 /* 2154 * Orphan recovery. Each mounted node has it's own orphan dir which we 2155 * must run during recovery. Our strategy here is to build a list of 2156 * the inodes in the orphan dir and iget/iput them. The VFS does 2157 * (most) of the rest of the work. 2158 * 2159 * Orphan recovery can happen at any time, not just mount so we have a 2160 * couple of extra considerations. 2161 * 2162 * - We grab as many inodes as we can under the orphan dir lock - 2163 * doing iget() outside the orphan dir risks getting a reference on 2164 * an invalid inode. 2165 * - We must be sure not to deadlock with other processes on the 2166 * system wanting to run delete_inode(). This can happen when they go 2167 * to lock the orphan dir and the orphan recovery process attempts to 2168 * iget() inside the orphan dir lock. This can be avoided by 2169 * advertising our state to ocfs2_delete_inode(). 2170 */ 2171 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2172 int slot, 2173 enum ocfs2_orphan_reco_type orphan_reco_type) 2174 { 2175 int ret = 0; 2176 struct inode *inode = NULL; 2177 struct inode *iter; 2178 struct ocfs2_inode_info *oi; 2179 struct buffer_head *di_bh = NULL; 2180 struct ocfs2_dinode *di = NULL; 2181 2182 trace_ocfs2_recover_orphans(slot); 2183 2184 ocfs2_mark_recovering_orphan_dir(osb, slot); 2185 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2186 ocfs2_clear_recovering_orphan_dir(osb, slot); 2187 2188 /* Error here should be noted, but we want to continue with as 2189 * many queued inodes as we've got. */ 2190 if (ret) 2191 mlog_errno(ret); 2192 2193 while (inode) { 2194 oi = OCFS2_I(inode); 2195 trace_ocfs2_recover_orphans_iput( 2196 (unsigned long long)oi->ip_blkno); 2197 2198 iter = oi->ip_next_orphan; 2199 oi->ip_next_orphan = NULL; 2200 2201 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2202 inode_lock(inode); 2203 ret = ocfs2_rw_lock(inode, 1); 2204 if (ret < 0) { 2205 mlog_errno(ret); 2206 goto unlock_mutex; 2207 } 2208 /* 2209 * We need to take and drop the inode lock to 2210 * force read inode from disk. 2211 */ 2212 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2213 if (ret) { 2214 mlog_errno(ret); 2215 goto unlock_rw; 2216 } 2217 2218 di = (struct ocfs2_dinode *)di_bh->b_data; 2219 2220 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2221 ret = ocfs2_truncate_file(inode, di_bh, 2222 i_size_read(inode)); 2223 if (ret < 0) { 2224 if (ret != -ENOSPC) 2225 mlog_errno(ret); 2226 goto unlock_inode; 2227 } 2228 2229 ret = ocfs2_del_inode_from_orphan(osb, inode, 2230 di_bh, 0, 0); 2231 if (ret) 2232 mlog_errno(ret); 2233 } 2234 unlock_inode: 2235 ocfs2_inode_unlock(inode, 1); 2236 brelse(di_bh); 2237 di_bh = NULL; 2238 unlock_rw: 2239 ocfs2_rw_unlock(inode, 1); 2240 unlock_mutex: 2241 inode_unlock(inode); 2242 2243 /* clear dio flag in ocfs2_inode_info */ 2244 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2245 } else { 2246 spin_lock(&oi->ip_lock); 2247 /* Set the proper information to get us going into 2248 * ocfs2_delete_inode. */ 2249 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2250 spin_unlock(&oi->ip_lock); 2251 } 2252 2253 iput(inode); 2254 inode = iter; 2255 } 2256 2257 return ret; 2258 } 2259 2260 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2261 { 2262 /* This check is good because ocfs2 will wait on our recovery 2263 * thread before changing it to something other than MOUNTED 2264 * or DISABLED. */ 2265 wait_event(osb->osb_mount_event, 2266 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2267 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2268 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2269 2270 /* If there's an error on mount, then we may never get to the 2271 * MOUNTED flag, but this is set right before 2272 * dismount_volume() so we can trust it. */ 2273 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2274 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2275 mlog(0, "mount error, exiting!\n"); 2276 return -EBUSY; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static int ocfs2_commit_thread(void *arg) 2283 { 2284 int status; 2285 struct ocfs2_super *osb = arg; 2286 struct ocfs2_journal *journal = osb->journal; 2287 2288 /* we can trust j_num_trans here because _should_stop() is only set in 2289 * shutdown and nobody other than ourselves should be able to start 2290 * transactions. committing on shutdown might take a few iterations 2291 * as final transactions put deleted inodes on the list */ 2292 while (!(kthread_should_stop() && 2293 atomic_read(&journal->j_num_trans) == 0)) { 2294 2295 wait_event_interruptible(osb->checkpoint_event, 2296 atomic_read(&journal->j_num_trans) 2297 || kthread_should_stop()); 2298 2299 status = ocfs2_commit_cache(osb); 2300 if (status < 0) { 2301 static unsigned long abort_warn_time; 2302 2303 /* Warn about this once per minute */ 2304 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2305 mlog(ML_ERROR, "status = %d, journal is " 2306 "already aborted.\n", status); 2307 /* 2308 * After ocfs2_commit_cache() fails, j_num_trans has a 2309 * non-zero value. Sleep here to avoid a busy-wait 2310 * loop. 2311 */ 2312 msleep_interruptible(1000); 2313 } 2314 2315 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2316 mlog(ML_KTHREAD, 2317 "commit_thread: %u transactions pending on " 2318 "shutdown\n", 2319 atomic_read(&journal->j_num_trans)); 2320 } 2321 } 2322 2323 return 0; 2324 } 2325 2326 /* Reads all the journal inodes without taking any cluster locks. Used 2327 * for hard readonly access to determine whether any journal requires 2328 * recovery. Also used to refresh the recovery generation numbers after 2329 * a journal has been recovered by another node. 2330 */ 2331 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2332 { 2333 int ret = 0; 2334 unsigned int slot; 2335 struct buffer_head *di_bh = NULL; 2336 struct ocfs2_dinode *di; 2337 int journal_dirty = 0; 2338 2339 for(slot = 0; slot < osb->max_slots; slot++) { 2340 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2341 if (ret) { 2342 mlog_errno(ret); 2343 goto out; 2344 } 2345 2346 di = (struct ocfs2_dinode *) di_bh->b_data; 2347 2348 osb->slot_recovery_generations[slot] = 2349 ocfs2_get_recovery_generation(di); 2350 2351 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2352 OCFS2_JOURNAL_DIRTY_FL) 2353 journal_dirty = 1; 2354 2355 brelse(di_bh); 2356 di_bh = NULL; 2357 } 2358 2359 out: 2360 if (journal_dirty) 2361 ret = -EROFS; 2362 return ret; 2363 } 2364