xref: /linux/fs/ocfs2/journal.c (revision 8a79db5e83a5d52c74e6f3c40d6f312cf899213e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * journal.c
6  *
7  * Defines functions of journalling api
8  *
9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20 
21 #include <cluster/masklog.h>
22 
23 #include "ocfs2.h"
24 
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41 
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44 
45 DEFINE_SPINLOCK(trans_inc_lock);
46 
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48 
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51 			      int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56 				      int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58 				 int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60 				 int slot,
61 				 enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64 					    int slot_num,
65 					    struct ocfs2_dinode *la_dinode,
66 					    struct ocfs2_dinode *tl_dinode,
67 					    struct ocfs2_quota_recovery *qrec,
68 					    enum ocfs2_orphan_reco_type orphan_reco_type);
69 
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72 	return __ocfs2_wait_on_mount(osb, 0);
73 }
74 
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77 	return __ocfs2_wait_on_mount(osb, 1);
78 }
79 
80 /*
81  * This replay_map is to track online/offline slots, so we could recover
82  * offline slots during recovery and mount
83  */
84 
85 enum ocfs2_replay_state {
86 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
87 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
88 	REPLAY_DONE 		/* Replay was already queued */
89 };
90 
91 struct ocfs2_replay_map {
92 	unsigned int rm_slots;
93 	enum ocfs2_replay_state rm_state;
94 	unsigned char rm_replay_slots[0];
95 };
96 
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99 	if (!osb->replay_map)
100 		return;
101 
102 	/* If we've already queued the replay, we don't have any more to do */
103 	if (osb->replay_map->rm_state == REPLAY_DONE)
104 		return;
105 
106 	osb->replay_map->rm_state = state;
107 }
108 
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111 	struct ocfs2_replay_map *replay_map;
112 	int i, node_num;
113 
114 	/* If replay map is already set, we don't do it again */
115 	if (osb->replay_map)
116 		return 0;
117 
118 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
120 
121 	if (!replay_map) {
122 		mlog_errno(-ENOMEM);
123 		return -ENOMEM;
124 	}
125 
126 	spin_lock(&osb->osb_lock);
127 
128 	replay_map->rm_slots = osb->max_slots;
129 	replay_map->rm_state = REPLAY_UNNEEDED;
130 
131 	/* set rm_replay_slots for offline slot(s) */
132 	for (i = 0; i < replay_map->rm_slots; i++) {
133 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134 			replay_map->rm_replay_slots[i] = 1;
135 	}
136 
137 	osb->replay_map = replay_map;
138 	spin_unlock(&osb->osb_lock);
139 	return 0;
140 }
141 
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143 		enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145 	struct ocfs2_replay_map *replay_map = osb->replay_map;
146 	int i;
147 
148 	if (!replay_map)
149 		return;
150 
151 	if (replay_map->rm_state != REPLAY_NEEDED)
152 		return;
153 
154 	for (i = 0; i < replay_map->rm_slots; i++)
155 		if (replay_map->rm_replay_slots[i])
156 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157 							NULL, NULL,
158 							orphan_reco_type);
159 	replay_map->rm_state = REPLAY_DONE;
160 }
161 
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164 	struct ocfs2_replay_map *replay_map = osb->replay_map;
165 
166 	if (!osb->replay_map)
167 		return;
168 
169 	kfree(replay_map);
170 	osb->replay_map = NULL;
171 }
172 
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175 	struct ocfs2_recovery_map *rm;
176 
177 	mutex_init(&osb->recovery_lock);
178 	osb->disable_recovery = 0;
179 	osb->recovery_thread_task = NULL;
180 	init_waitqueue_head(&osb->recovery_event);
181 
182 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183 		     osb->max_slots * sizeof(unsigned int),
184 		     GFP_KERNEL);
185 	if (!rm) {
186 		mlog_errno(-ENOMEM);
187 		return -ENOMEM;
188 	}
189 
190 	rm->rm_entries = (unsigned int *)((char *)rm +
191 					  sizeof(struct ocfs2_recovery_map));
192 	osb->recovery_map = rm;
193 
194 	return 0;
195 }
196 
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198  * memory barriers to make sure that we'll see the null task before
199  * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202 	mb();
203 	return osb->recovery_thread_task != NULL;
204 }
205 
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208 	struct ocfs2_recovery_map *rm;
209 
210 	/* disable any new recovery threads and wait for any currently
211 	 * running ones to exit. Do this before setting the vol_state. */
212 	mutex_lock(&osb->recovery_lock);
213 	osb->disable_recovery = 1;
214 	mutex_unlock(&osb->recovery_lock);
215 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216 
217 	/* At this point, we know that no more recovery threads can be
218 	 * launched, so wait for any recovery completion work to
219 	 * complete. */
220 	if (osb->ocfs2_wq)
221 		flush_workqueue(osb->ocfs2_wq);
222 
223 	/*
224 	 * Now that recovery is shut down, and the osb is about to be
225 	 * freed,  the osb_lock is not taken here.
226 	 */
227 	rm = osb->recovery_map;
228 	/* XXX: Should we bug if there are dirty entries? */
229 
230 	kfree(rm);
231 }
232 
233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
234 				     unsigned int node_num)
235 {
236 	int i;
237 	struct ocfs2_recovery_map *rm = osb->recovery_map;
238 
239 	assert_spin_locked(&osb->osb_lock);
240 
241 	for (i = 0; i < rm->rm_used; i++) {
242 		if (rm->rm_entries[i] == node_num)
243 			return 1;
244 	}
245 
246 	return 0;
247 }
248 
249 /* Behaves like test-and-set.  Returns the previous value */
250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
251 				  unsigned int node_num)
252 {
253 	struct ocfs2_recovery_map *rm = osb->recovery_map;
254 
255 	spin_lock(&osb->osb_lock);
256 	if (__ocfs2_recovery_map_test(osb, node_num)) {
257 		spin_unlock(&osb->osb_lock);
258 		return 1;
259 	}
260 
261 	/* XXX: Can this be exploited? Not from o2dlm... */
262 	BUG_ON(rm->rm_used >= osb->max_slots);
263 
264 	rm->rm_entries[rm->rm_used] = node_num;
265 	rm->rm_used++;
266 	spin_unlock(&osb->osb_lock);
267 
268 	return 0;
269 }
270 
271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
272 				     unsigned int node_num)
273 {
274 	int i;
275 	struct ocfs2_recovery_map *rm = osb->recovery_map;
276 
277 	spin_lock(&osb->osb_lock);
278 
279 	for (i = 0; i < rm->rm_used; i++) {
280 		if (rm->rm_entries[i] == node_num)
281 			break;
282 	}
283 
284 	if (i < rm->rm_used) {
285 		/* XXX: be careful with the pointer math */
286 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
287 			(rm->rm_used - i - 1) * sizeof(unsigned int));
288 		rm->rm_used--;
289 	}
290 
291 	spin_unlock(&osb->osb_lock);
292 }
293 
294 static int ocfs2_commit_cache(struct ocfs2_super *osb)
295 {
296 	int status = 0;
297 	unsigned int flushed;
298 	struct ocfs2_journal *journal = NULL;
299 
300 	journal = osb->journal;
301 
302 	/* Flush all pending commits and checkpoint the journal. */
303 	down_write(&journal->j_trans_barrier);
304 
305 	flushed = atomic_read(&journal->j_num_trans);
306 	trace_ocfs2_commit_cache_begin(flushed);
307 	if (flushed == 0) {
308 		up_write(&journal->j_trans_barrier);
309 		goto finally;
310 	}
311 
312 	jbd2_journal_lock_updates(journal->j_journal);
313 	status = jbd2_journal_flush(journal->j_journal);
314 	jbd2_journal_unlock_updates(journal->j_journal);
315 	if (status < 0) {
316 		up_write(&journal->j_trans_barrier);
317 		mlog_errno(status);
318 		goto finally;
319 	}
320 
321 	ocfs2_inc_trans_id(journal);
322 
323 	flushed = atomic_read(&journal->j_num_trans);
324 	atomic_set(&journal->j_num_trans, 0);
325 	up_write(&journal->j_trans_barrier);
326 
327 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328 
329 	ocfs2_wake_downconvert_thread(osb);
330 	wake_up(&journal->j_checkpointed);
331 finally:
332 	return status;
333 }
334 
335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336 {
337 	journal_t *journal = osb->journal->j_journal;
338 	handle_t *handle;
339 
340 	BUG_ON(!osb || !osb->journal->j_journal);
341 
342 	if (ocfs2_is_hard_readonly(osb))
343 		return ERR_PTR(-EROFS);
344 
345 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
346 	BUG_ON(max_buffs <= 0);
347 
348 	/* Nested transaction? Just return the handle... */
349 	if (journal_current_handle())
350 		return jbd2_journal_start(journal, max_buffs);
351 
352 	sb_start_intwrite(osb->sb);
353 
354 	down_read(&osb->journal->j_trans_barrier);
355 
356 	handle = jbd2_journal_start(journal, max_buffs);
357 	if (IS_ERR(handle)) {
358 		up_read(&osb->journal->j_trans_barrier);
359 		sb_end_intwrite(osb->sb);
360 
361 		mlog_errno(PTR_ERR(handle));
362 
363 		if (is_journal_aborted(journal)) {
364 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
365 			handle = ERR_PTR(-EROFS);
366 		}
367 	} else {
368 		if (!ocfs2_mount_local(osb))
369 			atomic_inc(&(osb->journal->j_num_trans));
370 	}
371 
372 	return handle;
373 }
374 
375 int ocfs2_commit_trans(struct ocfs2_super *osb,
376 		       handle_t *handle)
377 {
378 	int ret, nested;
379 	struct ocfs2_journal *journal = osb->journal;
380 
381 	BUG_ON(!handle);
382 
383 	nested = handle->h_ref > 1;
384 	ret = jbd2_journal_stop(handle);
385 	if (ret < 0)
386 		mlog_errno(ret);
387 
388 	if (!nested) {
389 		up_read(&journal->j_trans_barrier);
390 		sb_end_intwrite(osb->sb);
391 	}
392 
393 	return ret;
394 }
395 
396 /*
397  * 'nblocks' is what you want to add to the current transaction.
398  *
399  * This might call jbd2_journal_restart() which will commit dirty buffers
400  * and then restart the transaction. Before calling
401  * ocfs2_extend_trans(), any changed blocks should have been
402  * dirtied. After calling it, all blocks which need to be changed must
403  * go through another set of journal_access/journal_dirty calls.
404  *
405  * WARNING: This will not release any semaphores or disk locks taken
406  * during the transaction, so make sure they were taken *before*
407  * start_trans or we'll have ordering deadlocks.
408  *
409  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410  * good because transaction ids haven't yet been recorded on the
411  * cluster locks associated with this handle.
412  */
413 int ocfs2_extend_trans(handle_t *handle, int nblocks)
414 {
415 	int status, old_nblocks;
416 
417 	BUG_ON(!handle);
418 	BUG_ON(nblocks < 0);
419 
420 	if (!nblocks)
421 		return 0;
422 
423 	old_nblocks = jbd2_handle_buffer_credits(handle);
424 
425 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
426 
427 #ifdef CONFIG_OCFS2_DEBUG_FS
428 	status = 1;
429 #else
430 	status = jbd2_journal_extend(handle, nblocks, 0);
431 	if (status < 0) {
432 		mlog_errno(status);
433 		goto bail;
434 	}
435 #endif
436 
437 	if (status > 0) {
438 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
439 		status = jbd2_journal_restart(handle,
440 					      old_nblocks + nblocks);
441 		if (status < 0) {
442 			mlog_errno(status);
443 			goto bail;
444 		}
445 	}
446 
447 	status = 0;
448 bail:
449 	return status;
450 }
451 
452 /*
453  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454  * If that fails, restart the transaction & regain write access for the
455  * buffer head which is used for metadata modifications.
456  * Taken from Ext4: extend_or_restart_transaction()
457  */
458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459 {
460 	int status, old_nblks;
461 
462 	BUG_ON(!handle);
463 
464 	old_nblks = jbd2_handle_buffer_credits(handle);
465 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466 
467 	if (old_nblks < thresh)
468 		return 0;
469 
470 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
471 	if (status < 0) {
472 		mlog_errno(status);
473 		goto bail;
474 	}
475 
476 	if (status > 0) {
477 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
478 		if (status < 0)
479 			mlog_errno(status);
480 	}
481 
482 bail:
483 	return status;
484 }
485 
486 
487 struct ocfs2_triggers {
488 	struct jbd2_buffer_trigger_type	ot_triggers;
489 	int				ot_offset;
490 };
491 
492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493 {
494 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
495 }
496 
497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
498 				 struct buffer_head *bh,
499 				 void *data, size_t size)
500 {
501 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
502 
503 	/*
504 	 * We aren't guaranteed to have the superblock here, so we
505 	 * must unconditionally compute the ecc data.
506 	 * __ocfs2_journal_access() will only set the triggers if
507 	 * metaecc is enabled.
508 	 */
509 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
510 }
511 
512 /*
513  * Quota blocks have their own trigger because the struct ocfs2_block_check
514  * offset depends on the blocksize.
515  */
516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
517 				 struct buffer_head *bh,
518 				 void *data, size_t size)
519 {
520 	struct ocfs2_disk_dqtrailer *dqt =
521 		ocfs2_block_dqtrailer(size, data);
522 
523 	/*
524 	 * We aren't guaranteed to have the superblock here, so we
525 	 * must unconditionally compute the ecc data.
526 	 * __ocfs2_journal_access() will only set the triggers if
527 	 * metaecc is enabled.
528 	 */
529 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
530 }
531 
532 /*
533  * Directory blocks also have their own trigger because the
534  * struct ocfs2_block_check offset depends on the blocksize.
535  */
536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
537 				 struct buffer_head *bh,
538 				 void *data, size_t size)
539 {
540 	struct ocfs2_dir_block_trailer *trailer =
541 		ocfs2_dir_trailer_from_size(size, data);
542 
543 	/*
544 	 * We aren't guaranteed to have the superblock here, so we
545 	 * must unconditionally compute the ecc data.
546 	 * __ocfs2_journal_access() will only set the triggers if
547 	 * metaecc is enabled.
548 	 */
549 	ocfs2_block_check_compute(data, size, &trailer->db_check);
550 }
551 
552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
553 				struct buffer_head *bh)
554 {
555 	mlog(ML_ERROR,
556 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
557 	     "bh->b_blocknr = %llu\n",
558 	     (unsigned long)bh,
559 	     (unsigned long long)bh->b_blocknr);
560 
561 	ocfs2_error(bh->b_bdev->bd_super,
562 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
563 }
564 
565 static struct ocfs2_triggers di_triggers = {
566 	.ot_triggers = {
567 		.t_frozen = ocfs2_frozen_trigger,
568 		.t_abort = ocfs2_abort_trigger,
569 	},
570 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
571 };
572 
573 static struct ocfs2_triggers eb_triggers = {
574 	.ot_triggers = {
575 		.t_frozen = ocfs2_frozen_trigger,
576 		.t_abort = ocfs2_abort_trigger,
577 	},
578 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
579 };
580 
581 static struct ocfs2_triggers rb_triggers = {
582 	.ot_triggers = {
583 		.t_frozen = ocfs2_frozen_trigger,
584 		.t_abort = ocfs2_abort_trigger,
585 	},
586 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
587 };
588 
589 static struct ocfs2_triggers gd_triggers = {
590 	.ot_triggers = {
591 		.t_frozen = ocfs2_frozen_trigger,
592 		.t_abort = ocfs2_abort_trigger,
593 	},
594 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
595 };
596 
597 static struct ocfs2_triggers db_triggers = {
598 	.ot_triggers = {
599 		.t_frozen = ocfs2_db_frozen_trigger,
600 		.t_abort = ocfs2_abort_trigger,
601 	},
602 };
603 
604 static struct ocfs2_triggers xb_triggers = {
605 	.ot_triggers = {
606 		.t_frozen = ocfs2_frozen_trigger,
607 		.t_abort = ocfs2_abort_trigger,
608 	},
609 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
610 };
611 
612 static struct ocfs2_triggers dq_triggers = {
613 	.ot_triggers = {
614 		.t_frozen = ocfs2_dq_frozen_trigger,
615 		.t_abort = ocfs2_abort_trigger,
616 	},
617 };
618 
619 static struct ocfs2_triggers dr_triggers = {
620 	.ot_triggers = {
621 		.t_frozen = ocfs2_frozen_trigger,
622 		.t_abort = ocfs2_abort_trigger,
623 	},
624 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
625 };
626 
627 static struct ocfs2_triggers dl_triggers = {
628 	.ot_triggers = {
629 		.t_frozen = ocfs2_frozen_trigger,
630 		.t_abort = ocfs2_abort_trigger,
631 	},
632 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
633 };
634 
635 static int __ocfs2_journal_access(handle_t *handle,
636 				  struct ocfs2_caching_info *ci,
637 				  struct buffer_head *bh,
638 				  struct ocfs2_triggers *triggers,
639 				  int type)
640 {
641 	int status;
642 	struct ocfs2_super *osb =
643 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644 
645 	BUG_ON(!ci || !ci->ci_ops);
646 	BUG_ON(!handle);
647 	BUG_ON(!bh);
648 
649 	trace_ocfs2_journal_access(
650 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
651 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
652 
653 	/* we can safely remove this assertion after testing. */
654 	if (!buffer_uptodate(bh)) {
655 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
656 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
657 		     (unsigned long long)bh->b_blocknr, bh->b_state);
658 
659 		lock_buffer(bh);
660 		/*
661 		 * A previous transaction with a couple of buffer heads fail
662 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663 		 * For current transaction, the bh is just among those error
664 		 * bhs which previous transaction handle. We can't just clear
665 		 * its BH_Write_EIO and reuse directly, since other bhs are
666 		 * not written to disk yet and that will cause metadata
667 		 * inconsistency. So we should set fs read-only to avoid
668 		 * further damage.
669 		 */
670 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
671 			unlock_buffer(bh);
672 			return ocfs2_error(osb->sb, "A previous attempt to "
673 					"write this buffer head failed\n");
674 		}
675 		unlock_buffer(bh);
676 	}
677 
678 	/* Set the current transaction information on the ci so
679 	 * that the locking code knows whether it can drop it's locks
680 	 * on this ci or not. We're protected from the commit
681 	 * thread updating the current transaction id until
682 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
683 	 * j_trans_barrier for us. */
684 	ocfs2_set_ci_lock_trans(osb->journal, ci);
685 
686 	ocfs2_metadata_cache_io_lock(ci);
687 	switch (type) {
688 	case OCFS2_JOURNAL_ACCESS_CREATE:
689 	case OCFS2_JOURNAL_ACCESS_WRITE:
690 		status = jbd2_journal_get_write_access(handle, bh);
691 		break;
692 
693 	case OCFS2_JOURNAL_ACCESS_UNDO:
694 		status = jbd2_journal_get_undo_access(handle, bh);
695 		break;
696 
697 	default:
698 		status = -EINVAL;
699 		mlog(ML_ERROR, "Unknown access type!\n");
700 	}
701 	if (!status && ocfs2_meta_ecc(osb) && triggers)
702 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
703 	ocfs2_metadata_cache_io_unlock(ci);
704 
705 	if (status < 0)
706 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
707 		     status, type);
708 
709 	return status;
710 }
711 
712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
713 			    struct buffer_head *bh, int type)
714 {
715 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
716 }
717 
718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
719 			    struct buffer_head *bh, int type)
720 {
721 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
722 }
723 
724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
725 			    struct buffer_head *bh, int type)
726 {
727 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
728 				      type);
729 }
730 
731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
732 			    struct buffer_head *bh, int type)
733 {
734 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
735 }
736 
737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
738 			    struct buffer_head *bh, int type)
739 {
740 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
741 }
742 
743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744 			    struct buffer_head *bh, int type)
745 {
746 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
747 }
748 
749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
750 			    struct buffer_head *bh, int type)
751 {
752 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
753 }
754 
755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
756 			    struct buffer_head *bh, int type)
757 {
758 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
759 }
760 
761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
762 			    struct buffer_head *bh, int type)
763 {
764 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
765 }
766 
767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
768 			 struct buffer_head *bh, int type)
769 {
770 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
771 }
772 
773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774 {
775 	int status;
776 
777 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778 
779 	status = jbd2_journal_dirty_metadata(handle, bh);
780 	if (status) {
781 		mlog_errno(status);
782 		if (!is_handle_aborted(handle)) {
783 			journal_t *journal = handle->h_transaction->t_journal;
784 			struct super_block *sb = bh->b_bdev->bd_super;
785 
786 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
787 					"Aborting transaction and journal.\n");
788 			handle->h_err = status;
789 			jbd2_journal_abort_handle(handle);
790 			jbd2_journal_abort(journal, status);
791 			ocfs2_abort(sb, "Journal already aborted.\n");
792 		}
793 	}
794 }
795 
796 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797 
798 void ocfs2_set_journal_params(struct ocfs2_super *osb)
799 {
800 	journal_t *journal = osb->journal->j_journal;
801 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802 
803 	if (osb->osb_commit_interval)
804 		commit_interval = osb->osb_commit_interval;
805 
806 	write_lock(&journal->j_state_lock);
807 	journal->j_commit_interval = commit_interval;
808 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
809 		journal->j_flags |= JBD2_BARRIER;
810 	else
811 		journal->j_flags &= ~JBD2_BARRIER;
812 	write_unlock(&journal->j_state_lock);
813 }
814 
815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816 {
817 	int status = -1;
818 	struct inode *inode = NULL; /* the journal inode */
819 	journal_t *j_journal = NULL;
820 	struct ocfs2_dinode *di = NULL;
821 	struct buffer_head *bh = NULL;
822 	struct ocfs2_super *osb;
823 	int inode_lock = 0;
824 
825 	BUG_ON(!journal);
826 
827 	osb = journal->j_osb;
828 
829 	/* already have the inode for our journal */
830 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
831 					    osb->slot_num);
832 	if (inode == NULL) {
833 		status = -EACCES;
834 		mlog_errno(status);
835 		goto done;
836 	}
837 	if (is_bad_inode(inode)) {
838 		mlog(ML_ERROR, "access error (bad inode)\n");
839 		iput(inode);
840 		inode = NULL;
841 		status = -EACCES;
842 		goto done;
843 	}
844 
845 	SET_INODE_JOURNAL(inode);
846 	OCFS2_I(inode)->ip_open_count++;
847 
848 	/* Skip recovery waits here - journal inode metadata never
849 	 * changes in a live cluster so it can be considered an
850 	 * exception to the rule. */
851 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
852 	if (status < 0) {
853 		if (status != -ERESTARTSYS)
854 			mlog(ML_ERROR, "Could not get lock on journal!\n");
855 		goto done;
856 	}
857 
858 	inode_lock = 1;
859 	di = (struct ocfs2_dinode *)bh->b_data;
860 
861 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
862 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
863 		     i_size_read(inode));
864 		status = -EINVAL;
865 		goto done;
866 	}
867 
868 	trace_ocfs2_journal_init(i_size_read(inode),
869 				 (unsigned long long)inode->i_blocks,
870 				 OCFS2_I(inode)->ip_clusters);
871 
872 	/* call the kernels journal init function now */
873 	j_journal = jbd2_journal_init_inode(inode);
874 	if (j_journal == NULL) {
875 		mlog(ML_ERROR, "Linux journal layer error\n");
876 		status = -EINVAL;
877 		goto done;
878 	}
879 
880 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
881 
882 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
883 		  OCFS2_JOURNAL_DIRTY_FL);
884 
885 	journal->j_journal = j_journal;
886 	journal->j_inode = inode;
887 	journal->j_bh = bh;
888 
889 	ocfs2_set_journal_params(osb);
890 
891 	journal->j_state = OCFS2_JOURNAL_LOADED;
892 
893 	status = 0;
894 done:
895 	if (status < 0) {
896 		if (inode_lock)
897 			ocfs2_inode_unlock(inode, 1);
898 		brelse(bh);
899 		if (inode) {
900 			OCFS2_I(inode)->ip_open_count--;
901 			iput(inode);
902 		}
903 	}
904 
905 	return status;
906 }
907 
908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
909 {
910 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
911 }
912 
913 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
914 {
915 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
916 }
917 
918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
919 				      int dirty, int replayed)
920 {
921 	int status;
922 	unsigned int flags;
923 	struct ocfs2_journal *journal = osb->journal;
924 	struct buffer_head *bh = journal->j_bh;
925 	struct ocfs2_dinode *fe;
926 
927 	fe = (struct ocfs2_dinode *)bh->b_data;
928 
929 	/* The journal bh on the osb always comes from ocfs2_journal_init()
930 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
931 	 * code bug if we mess it up. */
932 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
933 
934 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
935 	if (dirty)
936 		flags |= OCFS2_JOURNAL_DIRTY_FL;
937 	else
938 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
939 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
940 
941 	if (replayed)
942 		ocfs2_bump_recovery_generation(fe);
943 
944 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
945 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
946 	if (status < 0)
947 		mlog_errno(status);
948 
949 	return status;
950 }
951 
952 /*
953  * If the journal has been kmalloc'd it needs to be freed after this
954  * call.
955  */
956 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
957 {
958 	struct ocfs2_journal *journal = NULL;
959 	int status = 0;
960 	struct inode *inode = NULL;
961 	int num_running_trans = 0;
962 
963 	BUG_ON(!osb);
964 
965 	journal = osb->journal;
966 	if (!journal)
967 		goto done;
968 
969 	inode = journal->j_inode;
970 
971 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
972 		goto done;
973 
974 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
975 	if (!igrab(inode))
976 		BUG();
977 
978 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
979 	trace_ocfs2_journal_shutdown(num_running_trans);
980 
981 	/* Do a commit_cache here. It will flush our journal, *and*
982 	 * release any locks that are still held.
983 	 * set the SHUTDOWN flag and release the trans lock.
984 	 * the commit thread will take the trans lock for us below. */
985 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
986 
987 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
988 	 * drop the trans_lock (which we want to hold until we
989 	 * completely destroy the journal. */
990 	if (osb->commit_task) {
991 		/* Wait for the commit thread */
992 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
993 		kthread_stop(osb->commit_task);
994 		osb->commit_task = NULL;
995 	}
996 
997 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
998 
999 	if (ocfs2_mount_local(osb)) {
1000 		jbd2_journal_lock_updates(journal->j_journal);
1001 		status = jbd2_journal_flush(journal->j_journal);
1002 		jbd2_journal_unlock_updates(journal->j_journal);
1003 		if (status < 0)
1004 			mlog_errno(status);
1005 	}
1006 
1007 	/* Shutdown the kernel journal system */
1008 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1009 		/*
1010 		 * Do not toggle if flush was unsuccessful otherwise
1011 		 * will leave dirty metadata in a "clean" journal
1012 		 */
1013 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1014 		if (status < 0)
1015 			mlog_errno(status);
1016 	}
1017 	journal->j_journal = NULL;
1018 
1019 	OCFS2_I(inode)->ip_open_count--;
1020 
1021 	/* unlock our journal */
1022 	ocfs2_inode_unlock(inode, 1);
1023 
1024 	brelse(journal->j_bh);
1025 	journal->j_bh = NULL;
1026 
1027 	journal->j_state = OCFS2_JOURNAL_FREE;
1028 
1029 //	up_write(&journal->j_trans_barrier);
1030 done:
1031 	iput(inode);
1032 }
1033 
1034 static void ocfs2_clear_journal_error(struct super_block *sb,
1035 				      journal_t *journal,
1036 				      int slot)
1037 {
1038 	int olderr;
1039 
1040 	olderr = jbd2_journal_errno(journal);
1041 	if (olderr) {
1042 		mlog(ML_ERROR, "File system error %d recorded in "
1043 		     "journal %u.\n", olderr, slot);
1044 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1045 		     sb->s_id);
1046 
1047 		jbd2_journal_ack_err(journal);
1048 		jbd2_journal_clear_err(journal);
1049 	}
1050 }
1051 
1052 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1053 {
1054 	int status = 0;
1055 	struct ocfs2_super *osb;
1056 
1057 	BUG_ON(!journal);
1058 
1059 	osb = journal->j_osb;
1060 
1061 	status = jbd2_journal_load(journal->j_journal);
1062 	if (status < 0) {
1063 		mlog(ML_ERROR, "Failed to load journal!\n");
1064 		goto done;
1065 	}
1066 
1067 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1068 
1069 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1070 	if (status < 0) {
1071 		mlog_errno(status);
1072 		goto done;
1073 	}
1074 
1075 	/* Launch the commit thread */
1076 	if (!local) {
1077 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1078 				"ocfs2cmt-%s", osb->uuid_str);
1079 		if (IS_ERR(osb->commit_task)) {
1080 			status = PTR_ERR(osb->commit_task);
1081 			osb->commit_task = NULL;
1082 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1083 			     "error=%d", status);
1084 			goto done;
1085 		}
1086 	} else
1087 		osb->commit_task = NULL;
1088 
1089 done:
1090 	return status;
1091 }
1092 
1093 
1094 /* 'full' flag tells us whether we clear out all blocks or if we just
1095  * mark the journal clean */
1096 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1097 {
1098 	int status;
1099 
1100 	BUG_ON(!journal);
1101 
1102 	status = jbd2_journal_wipe(journal->j_journal, full);
1103 	if (status < 0) {
1104 		mlog_errno(status);
1105 		goto bail;
1106 	}
1107 
1108 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1109 	if (status < 0)
1110 		mlog_errno(status);
1111 
1112 bail:
1113 	return status;
1114 }
1115 
1116 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1117 {
1118 	int empty;
1119 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1120 
1121 	spin_lock(&osb->osb_lock);
1122 	empty = (rm->rm_used == 0);
1123 	spin_unlock(&osb->osb_lock);
1124 
1125 	return empty;
1126 }
1127 
1128 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1129 {
1130 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1131 }
1132 
1133 /*
1134  * JBD Might read a cached version of another nodes journal file. We
1135  * don't want this as this file changes often and we get no
1136  * notification on those changes. The only way to be sure that we've
1137  * got the most up to date version of those blocks then is to force
1138  * read them off disk. Just searching through the buffer cache won't
1139  * work as there may be pages backing this file which are still marked
1140  * up to date. We know things can't change on this file underneath us
1141  * as we have the lock by now :)
1142  */
1143 static int ocfs2_force_read_journal(struct inode *inode)
1144 {
1145 	int status = 0;
1146 	int i;
1147 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1148 	struct buffer_head *bh = NULL;
1149 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1150 
1151 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1152 	v_blkno = 0;
1153 	while (v_blkno < num_blocks) {
1154 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1155 						     &p_blkno, &p_blocks, NULL);
1156 		if (status < 0) {
1157 			mlog_errno(status);
1158 			goto bail;
1159 		}
1160 
1161 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1162 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1163 					osb->sb->s_blocksize);
1164 			/* block not cached. */
1165 			if (!bh)
1166 				continue;
1167 
1168 			brelse(bh);
1169 			bh = NULL;
1170 			/* We are reading journal data which should not
1171 			 * be put in the uptodate cache.
1172 			 */
1173 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1174 			if (status < 0) {
1175 				mlog_errno(status);
1176 				goto bail;
1177 			}
1178 
1179 			brelse(bh);
1180 			bh = NULL;
1181 		}
1182 
1183 		v_blkno += p_blocks;
1184 	}
1185 
1186 bail:
1187 	return status;
1188 }
1189 
1190 struct ocfs2_la_recovery_item {
1191 	struct list_head	lri_list;
1192 	int			lri_slot;
1193 	struct ocfs2_dinode	*lri_la_dinode;
1194 	struct ocfs2_dinode	*lri_tl_dinode;
1195 	struct ocfs2_quota_recovery *lri_qrec;
1196 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1197 };
1198 
1199 /* Does the second half of the recovery process. By this point, the
1200  * node is marked clean and can actually be considered recovered,
1201  * hence it's no longer in the recovery map, but there's still some
1202  * cleanup we can do which shouldn't happen within the recovery thread
1203  * as locking in that context becomes very difficult if we are to take
1204  * recovering nodes into account.
1205  *
1206  * NOTE: This function can and will sleep on recovery of other nodes
1207  * during cluster locking, just like any other ocfs2 process.
1208  */
1209 void ocfs2_complete_recovery(struct work_struct *work)
1210 {
1211 	int ret = 0;
1212 	struct ocfs2_journal *journal =
1213 		container_of(work, struct ocfs2_journal, j_recovery_work);
1214 	struct ocfs2_super *osb = journal->j_osb;
1215 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1216 	struct ocfs2_la_recovery_item *item, *n;
1217 	struct ocfs2_quota_recovery *qrec;
1218 	enum ocfs2_orphan_reco_type orphan_reco_type;
1219 	LIST_HEAD(tmp_la_list);
1220 
1221 	trace_ocfs2_complete_recovery(
1222 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1223 
1224 	spin_lock(&journal->j_lock);
1225 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1226 	spin_unlock(&journal->j_lock);
1227 
1228 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1229 		list_del_init(&item->lri_list);
1230 
1231 		ocfs2_wait_on_quotas(osb);
1232 
1233 		la_dinode = item->lri_la_dinode;
1234 		tl_dinode = item->lri_tl_dinode;
1235 		qrec = item->lri_qrec;
1236 		orphan_reco_type = item->lri_orphan_reco_type;
1237 
1238 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1239 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1240 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1241 			qrec);
1242 
1243 		if (la_dinode) {
1244 			ret = ocfs2_complete_local_alloc_recovery(osb,
1245 								  la_dinode);
1246 			if (ret < 0)
1247 				mlog_errno(ret);
1248 
1249 			kfree(la_dinode);
1250 		}
1251 
1252 		if (tl_dinode) {
1253 			ret = ocfs2_complete_truncate_log_recovery(osb,
1254 								   tl_dinode);
1255 			if (ret < 0)
1256 				mlog_errno(ret);
1257 
1258 			kfree(tl_dinode);
1259 		}
1260 
1261 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1262 				orphan_reco_type);
1263 		if (ret < 0)
1264 			mlog_errno(ret);
1265 
1266 		if (qrec) {
1267 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1268 							  item->lri_slot);
1269 			if (ret < 0)
1270 				mlog_errno(ret);
1271 			/* Recovery info is already freed now */
1272 		}
1273 
1274 		kfree(item);
1275 	}
1276 
1277 	trace_ocfs2_complete_recovery_end(ret);
1278 }
1279 
1280 /* NOTE: This function always eats your references to la_dinode and
1281  * tl_dinode, either manually on error, or by passing them to
1282  * ocfs2_complete_recovery */
1283 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1284 					    int slot_num,
1285 					    struct ocfs2_dinode *la_dinode,
1286 					    struct ocfs2_dinode *tl_dinode,
1287 					    struct ocfs2_quota_recovery *qrec,
1288 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1289 {
1290 	struct ocfs2_la_recovery_item *item;
1291 
1292 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1293 	if (!item) {
1294 		/* Though we wish to avoid it, we are in fact safe in
1295 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1296 		 * than capable of reclaiming unused space. */
1297 		kfree(la_dinode);
1298 		kfree(tl_dinode);
1299 
1300 		if (qrec)
1301 			ocfs2_free_quota_recovery(qrec);
1302 
1303 		mlog_errno(-ENOMEM);
1304 		return;
1305 	}
1306 
1307 	INIT_LIST_HEAD(&item->lri_list);
1308 	item->lri_la_dinode = la_dinode;
1309 	item->lri_slot = slot_num;
1310 	item->lri_tl_dinode = tl_dinode;
1311 	item->lri_qrec = qrec;
1312 	item->lri_orphan_reco_type = orphan_reco_type;
1313 
1314 	spin_lock(&journal->j_lock);
1315 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1316 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1317 	spin_unlock(&journal->j_lock);
1318 }
1319 
1320 /* Called by the mount code to queue recovery the last part of
1321  * recovery for it's own and offline slot(s). */
1322 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1323 {
1324 	struct ocfs2_journal *journal = osb->journal;
1325 
1326 	if (ocfs2_is_hard_readonly(osb))
1327 		return;
1328 
1329 	/* No need to queue up our truncate_log as regular cleanup will catch
1330 	 * that */
1331 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1332 					osb->local_alloc_copy, NULL, NULL,
1333 					ORPHAN_NEED_TRUNCATE);
1334 	ocfs2_schedule_truncate_log_flush(osb, 0);
1335 
1336 	osb->local_alloc_copy = NULL;
1337 
1338 	/* queue to recover orphan slots for all offline slots */
1339 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1340 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1341 	ocfs2_free_replay_slots(osb);
1342 }
1343 
1344 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1345 {
1346 	if (osb->quota_rec) {
1347 		ocfs2_queue_recovery_completion(osb->journal,
1348 						osb->slot_num,
1349 						NULL,
1350 						NULL,
1351 						osb->quota_rec,
1352 						ORPHAN_NEED_TRUNCATE);
1353 		osb->quota_rec = NULL;
1354 	}
1355 }
1356 
1357 static int __ocfs2_recovery_thread(void *arg)
1358 {
1359 	int status, node_num, slot_num;
1360 	struct ocfs2_super *osb = arg;
1361 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1362 	int *rm_quota = NULL;
1363 	int rm_quota_used = 0, i;
1364 	struct ocfs2_quota_recovery *qrec;
1365 
1366 	/* Whether the quota supported. */
1367 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1368 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1369 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1370 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1371 
1372 	status = ocfs2_wait_on_mount(osb);
1373 	if (status < 0) {
1374 		goto bail;
1375 	}
1376 
1377 	if (quota_enabled) {
1378 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1379 		if (!rm_quota) {
1380 			status = -ENOMEM;
1381 			goto bail;
1382 		}
1383 	}
1384 restart:
1385 	status = ocfs2_super_lock(osb, 1);
1386 	if (status < 0) {
1387 		mlog_errno(status);
1388 		goto bail;
1389 	}
1390 
1391 	status = ocfs2_compute_replay_slots(osb);
1392 	if (status < 0)
1393 		mlog_errno(status);
1394 
1395 	/* queue recovery for our own slot */
1396 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1397 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1398 
1399 	spin_lock(&osb->osb_lock);
1400 	while (rm->rm_used) {
1401 		/* It's always safe to remove entry zero, as we won't
1402 		 * clear it until ocfs2_recover_node() has succeeded. */
1403 		node_num = rm->rm_entries[0];
1404 		spin_unlock(&osb->osb_lock);
1405 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1406 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1407 		if (slot_num == -ENOENT) {
1408 			status = 0;
1409 			goto skip_recovery;
1410 		}
1411 
1412 		/* It is a bit subtle with quota recovery. We cannot do it
1413 		 * immediately because we have to obtain cluster locks from
1414 		 * quota files and we also don't want to just skip it because
1415 		 * then quota usage would be out of sync until some node takes
1416 		 * the slot. So we remember which nodes need quota recovery
1417 		 * and when everything else is done, we recover quotas. */
1418 		if (quota_enabled) {
1419 			for (i = 0; i < rm_quota_used
1420 					&& rm_quota[i] != slot_num; i++)
1421 				;
1422 
1423 			if (i == rm_quota_used)
1424 				rm_quota[rm_quota_used++] = slot_num;
1425 		}
1426 
1427 		status = ocfs2_recover_node(osb, node_num, slot_num);
1428 skip_recovery:
1429 		if (!status) {
1430 			ocfs2_recovery_map_clear(osb, node_num);
1431 		} else {
1432 			mlog(ML_ERROR,
1433 			     "Error %d recovering node %d on device (%u,%u)!\n",
1434 			     status, node_num,
1435 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1436 			mlog(ML_ERROR, "Volume requires unmount.\n");
1437 		}
1438 
1439 		spin_lock(&osb->osb_lock);
1440 	}
1441 	spin_unlock(&osb->osb_lock);
1442 	trace_ocfs2_recovery_thread_end(status);
1443 
1444 	/* Refresh all journal recovery generations from disk */
1445 	status = ocfs2_check_journals_nolocks(osb);
1446 	status = (status == -EROFS) ? 0 : status;
1447 	if (status < 0)
1448 		mlog_errno(status);
1449 
1450 	/* Now it is right time to recover quotas... We have to do this under
1451 	 * superblock lock so that no one can start using the slot (and crash)
1452 	 * before we recover it */
1453 	if (quota_enabled) {
1454 		for (i = 0; i < rm_quota_used; i++) {
1455 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1456 			if (IS_ERR(qrec)) {
1457 				status = PTR_ERR(qrec);
1458 				mlog_errno(status);
1459 				continue;
1460 			}
1461 			ocfs2_queue_recovery_completion(osb->journal,
1462 					rm_quota[i],
1463 					NULL, NULL, qrec,
1464 					ORPHAN_NEED_TRUNCATE);
1465 		}
1466 	}
1467 
1468 	ocfs2_super_unlock(osb, 1);
1469 
1470 	/* queue recovery for offline slots */
1471 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1472 
1473 bail:
1474 	mutex_lock(&osb->recovery_lock);
1475 	if (!status && !ocfs2_recovery_completed(osb)) {
1476 		mutex_unlock(&osb->recovery_lock);
1477 		goto restart;
1478 	}
1479 
1480 	ocfs2_free_replay_slots(osb);
1481 	osb->recovery_thread_task = NULL;
1482 	mb(); /* sync with ocfs2_recovery_thread_running */
1483 	wake_up(&osb->recovery_event);
1484 
1485 	mutex_unlock(&osb->recovery_lock);
1486 
1487 	if (quota_enabled)
1488 		kfree(rm_quota);
1489 
1490 	/* no one is callint kthread_stop() for us so the kthread() api
1491 	 * requires that we call do_exit().  And it isn't exported, but
1492 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1493 	complete_and_exit(NULL, status);
1494 }
1495 
1496 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1497 {
1498 	mutex_lock(&osb->recovery_lock);
1499 
1500 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1501 		osb->disable_recovery, osb->recovery_thread_task,
1502 		osb->disable_recovery ?
1503 		-1 : ocfs2_recovery_map_set(osb, node_num));
1504 
1505 	if (osb->disable_recovery)
1506 		goto out;
1507 
1508 	if (osb->recovery_thread_task)
1509 		goto out;
1510 
1511 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1512 			"ocfs2rec-%s", osb->uuid_str);
1513 	if (IS_ERR(osb->recovery_thread_task)) {
1514 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1515 		osb->recovery_thread_task = NULL;
1516 	}
1517 
1518 out:
1519 	mutex_unlock(&osb->recovery_lock);
1520 	wake_up(&osb->recovery_event);
1521 }
1522 
1523 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1524 				    int slot_num,
1525 				    struct buffer_head **bh,
1526 				    struct inode **ret_inode)
1527 {
1528 	int status = -EACCES;
1529 	struct inode *inode = NULL;
1530 
1531 	BUG_ON(slot_num >= osb->max_slots);
1532 
1533 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1534 					    slot_num);
1535 	if (!inode || is_bad_inode(inode)) {
1536 		mlog_errno(status);
1537 		goto bail;
1538 	}
1539 	SET_INODE_JOURNAL(inode);
1540 
1541 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1542 	if (status < 0) {
1543 		mlog_errno(status);
1544 		goto bail;
1545 	}
1546 
1547 	status = 0;
1548 
1549 bail:
1550 	if (inode) {
1551 		if (status || !ret_inode)
1552 			iput(inode);
1553 		else
1554 			*ret_inode = inode;
1555 	}
1556 	return status;
1557 }
1558 
1559 /* Does the actual journal replay and marks the journal inode as
1560  * clean. Will only replay if the journal inode is marked dirty. */
1561 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1562 				int node_num,
1563 				int slot_num)
1564 {
1565 	int status;
1566 	int got_lock = 0;
1567 	unsigned int flags;
1568 	struct inode *inode = NULL;
1569 	struct ocfs2_dinode *fe;
1570 	journal_t *journal = NULL;
1571 	struct buffer_head *bh = NULL;
1572 	u32 slot_reco_gen;
1573 
1574 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1575 	if (status) {
1576 		mlog_errno(status);
1577 		goto done;
1578 	}
1579 
1580 	fe = (struct ocfs2_dinode *)bh->b_data;
1581 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1582 	brelse(bh);
1583 	bh = NULL;
1584 
1585 	/*
1586 	 * As the fs recovery is asynchronous, there is a small chance that
1587 	 * another node mounted (and recovered) the slot before the recovery
1588 	 * thread could get the lock. To handle that, we dirty read the journal
1589 	 * inode for that slot to get the recovery generation. If it is
1590 	 * different than what we expected, the slot has been recovered.
1591 	 * If not, it needs recovery.
1592 	 */
1593 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1594 		trace_ocfs2_replay_journal_recovered(slot_num,
1595 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1596 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1597 		status = -EBUSY;
1598 		goto done;
1599 	}
1600 
1601 	/* Continue with recovery as the journal has not yet been recovered */
1602 
1603 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1604 	if (status < 0) {
1605 		trace_ocfs2_replay_journal_lock_err(status);
1606 		if (status != -ERESTARTSYS)
1607 			mlog(ML_ERROR, "Could not lock journal!\n");
1608 		goto done;
1609 	}
1610 	got_lock = 1;
1611 
1612 	fe = (struct ocfs2_dinode *) bh->b_data;
1613 
1614 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1615 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1616 
1617 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1618 		trace_ocfs2_replay_journal_skip(node_num);
1619 		/* Refresh recovery generation for the slot */
1620 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1621 		goto done;
1622 	}
1623 
1624 	/* we need to run complete recovery for offline orphan slots */
1625 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1626 
1627 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1628 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1629 	       MINOR(osb->sb->s_dev));
1630 
1631 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1632 
1633 	status = ocfs2_force_read_journal(inode);
1634 	if (status < 0) {
1635 		mlog_errno(status);
1636 		goto done;
1637 	}
1638 
1639 	journal = jbd2_journal_init_inode(inode);
1640 	if (journal == NULL) {
1641 		mlog(ML_ERROR, "Linux journal layer error\n");
1642 		status = -EIO;
1643 		goto done;
1644 	}
1645 
1646 	status = jbd2_journal_load(journal);
1647 	if (status < 0) {
1648 		mlog_errno(status);
1649 		if (!igrab(inode))
1650 			BUG();
1651 		jbd2_journal_destroy(journal);
1652 		goto done;
1653 	}
1654 
1655 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1656 
1657 	/* wipe the journal */
1658 	jbd2_journal_lock_updates(journal);
1659 	status = jbd2_journal_flush(journal);
1660 	jbd2_journal_unlock_updates(journal);
1661 	if (status < 0)
1662 		mlog_errno(status);
1663 
1664 	/* This will mark the node clean */
1665 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1666 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1667 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1668 
1669 	/* Increment recovery generation to indicate successful recovery */
1670 	ocfs2_bump_recovery_generation(fe);
1671 	osb->slot_recovery_generations[slot_num] =
1672 					ocfs2_get_recovery_generation(fe);
1673 
1674 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1675 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1676 	if (status < 0)
1677 		mlog_errno(status);
1678 
1679 	if (!igrab(inode))
1680 		BUG();
1681 
1682 	jbd2_journal_destroy(journal);
1683 
1684 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1685 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1686 	       MINOR(osb->sb->s_dev));
1687 done:
1688 	/* drop the lock on this nodes journal */
1689 	if (got_lock)
1690 		ocfs2_inode_unlock(inode, 1);
1691 
1692 	iput(inode);
1693 	brelse(bh);
1694 
1695 	return status;
1696 }
1697 
1698 /*
1699  * Do the most important parts of node recovery:
1700  *  - Replay it's journal
1701  *  - Stamp a clean local allocator file
1702  *  - Stamp a clean truncate log
1703  *  - Mark the node clean
1704  *
1705  * If this function completes without error, a node in OCFS2 can be
1706  * said to have been safely recovered. As a result, failure during the
1707  * second part of a nodes recovery process (local alloc recovery) is
1708  * far less concerning.
1709  */
1710 static int ocfs2_recover_node(struct ocfs2_super *osb,
1711 			      int node_num, int slot_num)
1712 {
1713 	int status = 0;
1714 	struct ocfs2_dinode *la_copy = NULL;
1715 	struct ocfs2_dinode *tl_copy = NULL;
1716 
1717 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1718 
1719 	/* Should not ever be called to recover ourselves -- in that
1720 	 * case we should've called ocfs2_journal_load instead. */
1721 	BUG_ON(osb->node_num == node_num);
1722 
1723 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1724 	if (status < 0) {
1725 		if (status == -EBUSY) {
1726 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1727 			status = 0;
1728 			goto done;
1729 		}
1730 		mlog_errno(status);
1731 		goto done;
1732 	}
1733 
1734 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1735 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1736 	if (status < 0) {
1737 		mlog_errno(status);
1738 		goto done;
1739 	}
1740 
1741 	/* An error from begin_truncate_log_recovery is not
1742 	 * serious enough to warrant halting the rest of
1743 	 * recovery. */
1744 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1745 	if (status < 0)
1746 		mlog_errno(status);
1747 
1748 	/* Likewise, this would be a strange but ultimately not so
1749 	 * harmful place to get an error... */
1750 	status = ocfs2_clear_slot(osb, slot_num);
1751 	if (status < 0)
1752 		mlog_errno(status);
1753 
1754 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1755 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1756 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1757 
1758 	status = 0;
1759 done:
1760 
1761 	return status;
1762 }
1763 
1764 /* Test node liveness by trylocking his journal. If we get the lock,
1765  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1766  * still alive (we couldn't get the lock) and < 0 on error. */
1767 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1768 				 int slot_num)
1769 {
1770 	int status, flags;
1771 	struct inode *inode = NULL;
1772 
1773 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1774 					    slot_num);
1775 	if (inode == NULL) {
1776 		mlog(ML_ERROR, "access error\n");
1777 		status = -EACCES;
1778 		goto bail;
1779 	}
1780 	if (is_bad_inode(inode)) {
1781 		mlog(ML_ERROR, "access error (bad inode)\n");
1782 		iput(inode);
1783 		inode = NULL;
1784 		status = -EACCES;
1785 		goto bail;
1786 	}
1787 	SET_INODE_JOURNAL(inode);
1788 
1789 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1790 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1791 	if (status < 0) {
1792 		if (status != -EAGAIN)
1793 			mlog_errno(status);
1794 		goto bail;
1795 	}
1796 
1797 	ocfs2_inode_unlock(inode, 1);
1798 bail:
1799 	iput(inode);
1800 
1801 	return status;
1802 }
1803 
1804 /* Call this underneath ocfs2_super_lock. It also assumes that the
1805  * slot info struct has been updated from disk. */
1806 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1807 {
1808 	unsigned int node_num;
1809 	int status, i;
1810 	u32 gen;
1811 	struct buffer_head *bh = NULL;
1812 	struct ocfs2_dinode *di;
1813 
1814 	/* This is called with the super block cluster lock, so we
1815 	 * know that the slot map can't change underneath us. */
1816 
1817 	for (i = 0; i < osb->max_slots; i++) {
1818 		/* Read journal inode to get the recovery generation */
1819 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1820 		if (status) {
1821 			mlog_errno(status);
1822 			goto bail;
1823 		}
1824 		di = (struct ocfs2_dinode *)bh->b_data;
1825 		gen = ocfs2_get_recovery_generation(di);
1826 		brelse(bh);
1827 		bh = NULL;
1828 
1829 		spin_lock(&osb->osb_lock);
1830 		osb->slot_recovery_generations[i] = gen;
1831 
1832 		trace_ocfs2_mark_dead_nodes(i,
1833 					    osb->slot_recovery_generations[i]);
1834 
1835 		if (i == osb->slot_num) {
1836 			spin_unlock(&osb->osb_lock);
1837 			continue;
1838 		}
1839 
1840 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1841 		if (status == -ENOENT) {
1842 			spin_unlock(&osb->osb_lock);
1843 			continue;
1844 		}
1845 
1846 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1847 			spin_unlock(&osb->osb_lock);
1848 			continue;
1849 		}
1850 		spin_unlock(&osb->osb_lock);
1851 
1852 		/* Ok, we have a slot occupied by another node which
1853 		 * is not in the recovery map. We trylock his journal
1854 		 * file here to test if he's alive. */
1855 		status = ocfs2_trylock_journal(osb, i);
1856 		if (!status) {
1857 			/* Since we're called from mount, we know that
1858 			 * the recovery thread can't race us on
1859 			 * setting / checking the recovery bits. */
1860 			ocfs2_recovery_thread(osb, node_num);
1861 		} else if ((status < 0) && (status != -EAGAIN)) {
1862 			mlog_errno(status);
1863 			goto bail;
1864 		}
1865 	}
1866 
1867 	status = 0;
1868 bail:
1869 	return status;
1870 }
1871 
1872 /*
1873  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1874  * randomness to the timeout to minimize multple nodes firing the timer at the
1875  * same time.
1876  */
1877 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1878 {
1879 	unsigned long time;
1880 
1881 	get_random_bytes(&time, sizeof(time));
1882 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1883 	return msecs_to_jiffies(time);
1884 }
1885 
1886 /*
1887  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1888  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1889  * is done to catch any orphans that are left over in orphan directories.
1890  *
1891  * It scans all slots, even ones that are in use. It does so to handle the
1892  * case described below:
1893  *
1894  *   Node 1 has an inode it was using. The dentry went away due to memory
1895  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1896  *   has the open lock.
1897  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1898  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1899  *   open lock, sees that another node has a PR, and does nothing.
1900  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1901  *   open lock, sees the PR still, and does nothing.
1902  *   Basically, we have to trigger an orphan iput on node 1. The only way
1903  *   for this to happen is if node 1 runs node 2's orphan dir.
1904  *
1905  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1906  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1907  * stored in LVB. If the sequence number has changed, it means some other
1908  * node has done the scan.  This node skips the scan and tracks the
1909  * sequence number.  If the sequence number didn't change, it means a scan
1910  * hasn't happened.  The node queues a scan and increments the
1911  * sequence number in the LVB.
1912  */
1913 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1914 {
1915 	struct ocfs2_orphan_scan *os;
1916 	int status, i;
1917 	u32 seqno = 0;
1918 
1919 	os = &osb->osb_orphan_scan;
1920 
1921 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1922 		goto out;
1923 
1924 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1925 					    atomic_read(&os->os_state));
1926 
1927 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1928 	if (status < 0) {
1929 		if (status != -EAGAIN)
1930 			mlog_errno(status);
1931 		goto out;
1932 	}
1933 
1934 	/* Do no queue the tasks if the volume is being umounted */
1935 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1936 		goto unlock;
1937 
1938 	if (os->os_seqno != seqno) {
1939 		os->os_seqno = seqno;
1940 		goto unlock;
1941 	}
1942 
1943 	for (i = 0; i < osb->max_slots; i++)
1944 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1945 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1946 	/*
1947 	 * We queued a recovery on orphan slots, increment the sequence
1948 	 * number and update LVB so other node will skip the scan for a while
1949 	 */
1950 	seqno++;
1951 	os->os_count++;
1952 	os->os_scantime = ktime_get_seconds();
1953 unlock:
1954 	ocfs2_orphan_scan_unlock(osb, seqno);
1955 out:
1956 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1957 					  atomic_read(&os->os_state));
1958 	return;
1959 }
1960 
1961 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1962 static void ocfs2_orphan_scan_work(struct work_struct *work)
1963 {
1964 	struct ocfs2_orphan_scan *os;
1965 	struct ocfs2_super *osb;
1966 
1967 	os = container_of(work, struct ocfs2_orphan_scan,
1968 			  os_orphan_scan_work.work);
1969 	osb = os->os_osb;
1970 
1971 	mutex_lock(&os->os_lock);
1972 	ocfs2_queue_orphan_scan(osb);
1973 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1974 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1975 				      ocfs2_orphan_scan_timeout());
1976 	mutex_unlock(&os->os_lock);
1977 }
1978 
1979 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1980 {
1981 	struct ocfs2_orphan_scan *os;
1982 
1983 	os = &osb->osb_orphan_scan;
1984 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1985 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1986 		mutex_lock(&os->os_lock);
1987 		cancel_delayed_work(&os->os_orphan_scan_work);
1988 		mutex_unlock(&os->os_lock);
1989 	}
1990 }
1991 
1992 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1993 {
1994 	struct ocfs2_orphan_scan *os;
1995 
1996 	os = &osb->osb_orphan_scan;
1997 	os->os_osb = osb;
1998 	os->os_count = 0;
1999 	os->os_seqno = 0;
2000 	mutex_init(&os->os_lock);
2001 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2002 }
2003 
2004 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2005 {
2006 	struct ocfs2_orphan_scan *os;
2007 
2008 	os = &osb->osb_orphan_scan;
2009 	os->os_scantime = ktime_get_seconds();
2010 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2011 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2012 	else {
2013 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2014 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2015 				   ocfs2_orphan_scan_timeout());
2016 	}
2017 }
2018 
2019 struct ocfs2_orphan_filldir_priv {
2020 	struct dir_context	ctx;
2021 	struct inode		*head;
2022 	struct ocfs2_super	*osb;
2023 	enum ocfs2_orphan_reco_type orphan_reco_type;
2024 };
2025 
2026 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2027 				int name_len, loff_t pos, u64 ino,
2028 				unsigned type)
2029 {
2030 	struct ocfs2_orphan_filldir_priv *p =
2031 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2032 	struct inode *iter;
2033 
2034 	if (name_len == 1 && !strncmp(".", name, 1))
2035 		return 0;
2036 	if (name_len == 2 && !strncmp("..", name, 2))
2037 		return 0;
2038 
2039 	/* do not include dio entry in case of orphan scan */
2040 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2041 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2042 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2043 		return 0;
2044 
2045 	/* Skip bad inodes so that recovery can continue */
2046 	iter = ocfs2_iget(p->osb, ino,
2047 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2048 	if (IS_ERR(iter))
2049 		return 0;
2050 
2051 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2052 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2053 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2054 
2055 	/* Skip inodes which are already added to recover list, since dio may
2056 	 * happen concurrently with unlink/rename */
2057 	if (OCFS2_I(iter)->ip_next_orphan) {
2058 		iput(iter);
2059 		return 0;
2060 	}
2061 
2062 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2063 	/* No locking is required for the next_orphan queue as there
2064 	 * is only ever a single process doing orphan recovery. */
2065 	OCFS2_I(iter)->ip_next_orphan = p->head;
2066 	p->head = iter;
2067 
2068 	return 0;
2069 }
2070 
2071 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2072 			       int slot,
2073 			       struct inode **head,
2074 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2075 {
2076 	int status;
2077 	struct inode *orphan_dir_inode = NULL;
2078 	struct ocfs2_orphan_filldir_priv priv = {
2079 		.ctx.actor = ocfs2_orphan_filldir,
2080 		.osb = osb,
2081 		.head = *head,
2082 		.orphan_reco_type = orphan_reco_type
2083 	};
2084 
2085 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2086 						       ORPHAN_DIR_SYSTEM_INODE,
2087 						       slot);
2088 	if  (!orphan_dir_inode) {
2089 		status = -ENOENT;
2090 		mlog_errno(status);
2091 		return status;
2092 	}
2093 
2094 	inode_lock(orphan_dir_inode);
2095 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2096 	if (status < 0) {
2097 		mlog_errno(status);
2098 		goto out;
2099 	}
2100 
2101 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2102 	if (status) {
2103 		mlog_errno(status);
2104 		goto out_cluster;
2105 	}
2106 
2107 	*head = priv.head;
2108 
2109 out_cluster:
2110 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2111 out:
2112 	inode_unlock(orphan_dir_inode);
2113 	iput(orphan_dir_inode);
2114 	return status;
2115 }
2116 
2117 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2118 					      int slot)
2119 {
2120 	int ret;
2121 
2122 	spin_lock(&osb->osb_lock);
2123 	ret = !osb->osb_orphan_wipes[slot];
2124 	spin_unlock(&osb->osb_lock);
2125 	return ret;
2126 }
2127 
2128 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2129 					     int slot)
2130 {
2131 	spin_lock(&osb->osb_lock);
2132 	/* Mark ourselves such that new processes in delete_inode()
2133 	 * know to quit early. */
2134 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2135 	while (osb->osb_orphan_wipes[slot]) {
2136 		/* If any processes are already in the middle of an
2137 		 * orphan wipe on this dir, then we need to wait for
2138 		 * them. */
2139 		spin_unlock(&osb->osb_lock);
2140 		wait_event_interruptible(osb->osb_wipe_event,
2141 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2142 		spin_lock(&osb->osb_lock);
2143 	}
2144 	spin_unlock(&osb->osb_lock);
2145 }
2146 
2147 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2148 					      int slot)
2149 {
2150 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2151 }
2152 
2153 /*
2154  * Orphan recovery. Each mounted node has it's own orphan dir which we
2155  * must run during recovery. Our strategy here is to build a list of
2156  * the inodes in the orphan dir and iget/iput them. The VFS does
2157  * (most) of the rest of the work.
2158  *
2159  * Orphan recovery can happen at any time, not just mount so we have a
2160  * couple of extra considerations.
2161  *
2162  * - We grab as many inodes as we can under the orphan dir lock -
2163  *   doing iget() outside the orphan dir risks getting a reference on
2164  *   an invalid inode.
2165  * - We must be sure not to deadlock with other processes on the
2166  *   system wanting to run delete_inode(). This can happen when they go
2167  *   to lock the orphan dir and the orphan recovery process attempts to
2168  *   iget() inside the orphan dir lock. This can be avoided by
2169  *   advertising our state to ocfs2_delete_inode().
2170  */
2171 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2172 				 int slot,
2173 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2174 {
2175 	int ret = 0;
2176 	struct inode *inode = NULL;
2177 	struct inode *iter;
2178 	struct ocfs2_inode_info *oi;
2179 	struct buffer_head *di_bh = NULL;
2180 	struct ocfs2_dinode *di = NULL;
2181 
2182 	trace_ocfs2_recover_orphans(slot);
2183 
2184 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2185 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2186 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2187 
2188 	/* Error here should be noted, but we want to continue with as
2189 	 * many queued inodes as we've got. */
2190 	if (ret)
2191 		mlog_errno(ret);
2192 
2193 	while (inode) {
2194 		oi = OCFS2_I(inode);
2195 		trace_ocfs2_recover_orphans_iput(
2196 					(unsigned long long)oi->ip_blkno);
2197 
2198 		iter = oi->ip_next_orphan;
2199 		oi->ip_next_orphan = NULL;
2200 
2201 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2202 			inode_lock(inode);
2203 			ret = ocfs2_rw_lock(inode, 1);
2204 			if (ret < 0) {
2205 				mlog_errno(ret);
2206 				goto unlock_mutex;
2207 			}
2208 			/*
2209 			 * We need to take and drop the inode lock to
2210 			 * force read inode from disk.
2211 			 */
2212 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2213 			if (ret) {
2214 				mlog_errno(ret);
2215 				goto unlock_rw;
2216 			}
2217 
2218 			di = (struct ocfs2_dinode *)di_bh->b_data;
2219 
2220 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2221 				ret = ocfs2_truncate_file(inode, di_bh,
2222 						i_size_read(inode));
2223 				if (ret < 0) {
2224 					if (ret != -ENOSPC)
2225 						mlog_errno(ret);
2226 					goto unlock_inode;
2227 				}
2228 
2229 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2230 						di_bh, 0, 0);
2231 				if (ret)
2232 					mlog_errno(ret);
2233 			}
2234 unlock_inode:
2235 			ocfs2_inode_unlock(inode, 1);
2236 			brelse(di_bh);
2237 			di_bh = NULL;
2238 unlock_rw:
2239 			ocfs2_rw_unlock(inode, 1);
2240 unlock_mutex:
2241 			inode_unlock(inode);
2242 
2243 			/* clear dio flag in ocfs2_inode_info */
2244 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2245 		} else {
2246 			spin_lock(&oi->ip_lock);
2247 			/* Set the proper information to get us going into
2248 			 * ocfs2_delete_inode. */
2249 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2250 			spin_unlock(&oi->ip_lock);
2251 		}
2252 
2253 		iput(inode);
2254 		inode = iter;
2255 	}
2256 
2257 	return ret;
2258 }
2259 
2260 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2261 {
2262 	/* This check is good because ocfs2 will wait on our recovery
2263 	 * thread before changing it to something other than MOUNTED
2264 	 * or DISABLED. */
2265 	wait_event(osb->osb_mount_event,
2266 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2267 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2268 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2269 
2270 	/* If there's an error on mount, then we may never get to the
2271 	 * MOUNTED flag, but this is set right before
2272 	 * dismount_volume() so we can trust it. */
2273 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2274 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2275 		mlog(0, "mount error, exiting!\n");
2276 		return -EBUSY;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 static int ocfs2_commit_thread(void *arg)
2283 {
2284 	int status;
2285 	struct ocfs2_super *osb = arg;
2286 	struct ocfs2_journal *journal = osb->journal;
2287 
2288 	/* we can trust j_num_trans here because _should_stop() is only set in
2289 	 * shutdown and nobody other than ourselves should be able to start
2290 	 * transactions.  committing on shutdown might take a few iterations
2291 	 * as final transactions put deleted inodes on the list */
2292 	while (!(kthread_should_stop() &&
2293 		 atomic_read(&journal->j_num_trans) == 0)) {
2294 
2295 		wait_event_interruptible(osb->checkpoint_event,
2296 					 atomic_read(&journal->j_num_trans)
2297 					 || kthread_should_stop());
2298 
2299 		status = ocfs2_commit_cache(osb);
2300 		if (status < 0) {
2301 			static unsigned long abort_warn_time;
2302 
2303 			/* Warn about this once per minute */
2304 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2305 				mlog(ML_ERROR, "status = %d, journal is "
2306 						"already aborted.\n", status);
2307 			/*
2308 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2309 			 * non-zero value.  Sleep here to avoid a busy-wait
2310 			 * loop.
2311 			 */
2312 			msleep_interruptible(1000);
2313 		}
2314 
2315 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2316 			mlog(ML_KTHREAD,
2317 			     "commit_thread: %u transactions pending on "
2318 			     "shutdown\n",
2319 			     atomic_read(&journal->j_num_trans));
2320 		}
2321 	}
2322 
2323 	return 0;
2324 }
2325 
2326 /* Reads all the journal inodes without taking any cluster locks. Used
2327  * for hard readonly access to determine whether any journal requires
2328  * recovery. Also used to refresh the recovery generation numbers after
2329  * a journal has been recovered by another node.
2330  */
2331 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2332 {
2333 	int ret = 0;
2334 	unsigned int slot;
2335 	struct buffer_head *di_bh = NULL;
2336 	struct ocfs2_dinode *di;
2337 	int journal_dirty = 0;
2338 
2339 	for(slot = 0; slot < osb->max_slots; slot++) {
2340 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2341 		if (ret) {
2342 			mlog_errno(ret);
2343 			goto out;
2344 		}
2345 
2346 		di = (struct ocfs2_dinode *) di_bh->b_data;
2347 
2348 		osb->slot_recovery_generations[slot] =
2349 					ocfs2_get_recovery_generation(di);
2350 
2351 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2352 		    OCFS2_JOURNAL_DIRTY_FL)
2353 			journal_dirty = 1;
2354 
2355 		brelse(di_bh);
2356 		di_bh = NULL;
2357 	}
2358 
2359 out:
2360 	if (journal_dirty)
2361 		ret = -EROFS;
2362 	return ret;
2363 }
2364