1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[] __counted_by(rm_slots); 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, 118 osb->max_slots), 119 GFP_KERNEL); 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->disable_recovery = 0; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 osb->recovery_map = rm; 189 190 return 0; 191 } 192 193 /* we can't grab the goofy sem lock from inside wait_event, so we use 194 * memory barriers to make sure that we'll see the null task before 195 * being woken up */ 196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 197 { 198 mb(); 199 return osb->recovery_thread_task != NULL; 200 } 201 202 void ocfs2_recovery_exit(struct ocfs2_super *osb) 203 { 204 struct ocfs2_recovery_map *rm; 205 206 /* disable any new recovery threads and wait for any currently 207 * running ones to exit. Do this before setting the vol_state. */ 208 mutex_lock(&osb->recovery_lock); 209 osb->disable_recovery = 1; 210 mutex_unlock(&osb->recovery_lock); 211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 212 213 /* At this point, we know that no more recovery threads can be 214 * launched, so wait for any recovery completion work to 215 * complete. */ 216 if (osb->ocfs2_wq) 217 flush_workqueue(osb->ocfs2_wq); 218 219 /* 220 * Now that recovery is shut down, and the osb is about to be 221 * freed, the osb_lock is not taken here. 222 */ 223 rm = osb->recovery_map; 224 /* XXX: Should we bug if there are dirty entries? */ 225 226 kfree(rm); 227 } 228 229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 230 unsigned int node_num) 231 { 232 int i; 233 struct ocfs2_recovery_map *rm = osb->recovery_map; 234 235 assert_spin_locked(&osb->osb_lock); 236 237 for (i = 0; i < rm->rm_used; i++) { 238 if (rm->rm_entries[i] == node_num) 239 return 1; 240 } 241 242 return 0; 243 } 244 245 /* Behaves like test-and-set. Returns the previous value */ 246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 247 unsigned int node_num) 248 { 249 struct ocfs2_recovery_map *rm = osb->recovery_map; 250 251 spin_lock(&osb->osb_lock); 252 if (__ocfs2_recovery_map_test(osb, node_num)) { 253 spin_unlock(&osb->osb_lock); 254 return 1; 255 } 256 257 /* XXX: Can this be exploited? Not from o2dlm... */ 258 BUG_ON(rm->rm_used >= osb->max_slots); 259 260 rm->rm_entries[rm->rm_used] = node_num; 261 rm->rm_used++; 262 spin_unlock(&osb->osb_lock); 263 264 return 0; 265 } 266 267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 268 unsigned int node_num) 269 { 270 int i; 271 struct ocfs2_recovery_map *rm = osb->recovery_map; 272 273 spin_lock(&osb->osb_lock); 274 275 for (i = 0; i < rm->rm_used; i++) { 276 if (rm->rm_entries[i] == node_num) 277 break; 278 } 279 280 if (i < rm->rm_used) { 281 /* XXX: be careful with the pointer math */ 282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 283 (rm->rm_used - i - 1) * sizeof(unsigned int)); 284 rm->rm_used--; 285 } 286 287 spin_unlock(&osb->osb_lock); 288 } 289 290 static int ocfs2_commit_cache(struct ocfs2_super *osb) 291 { 292 int status = 0; 293 unsigned int flushed; 294 struct ocfs2_journal *journal = NULL; 295 296 journal = osb->journal; 297 298 /* Flush all pending commits and checkpoint the journal. */ 299 down_write(&journal->j_trans_barrier); 300 301 flushed = atomic_read(&journal->j_num_trans); 302 trace_ocfs2_commit_cache_begin(flushed); 303 if (flushed == 0) { 304 up_write(&journal->j_trans_barrier); 305 goto finally; 306 } 307 308 jbd2_journal_lock_updates(journal->j_journal); 309 status = jbd2_journal_flush(journal->j_journal, 0); 310 jbd2_journal_unlock_updates(journal->j_journal); 311 if (status < 0) { 312 up_write(&journal->j_trans_barrier); 313 mlog_errno(status); 314 goto finally; 315 } 316 317 ocfs2_inc_trans_id(journal); 318 319 flushed = atomic_read(&journal->j_num_trans); 320 atomic_set(&journal->j_num_trans, 0); 321 up_write(&journal->j_trans_barrier); 322 323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 324 325 ocfs2_wake_downconvert_thread(osb); 326 wake_up(&journal->j_checkpointed); 327 finally: 328 return status; 329 } 330 331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 332 { 333 journal_t *journal = osb->journal->j_journal; 334 handle_t *handle; 335 336 BUG_ON(!osb || !osb->journal->j_journal); 337 338 if (ocfs2_is_hard_readonly(osb)) 339 return ERR_PTR(-EROFS); 340 341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 342 BUG_ON(max_buffs <= 0); 343 344 /* Nested transaction? Just return the handle... */ 345 if (journal_current_handle()) 346 return jbd2_journal_start(journal, max_buffs); 347 348 sb_start_intwrite(osb->sb); 349 350 down_read(&osb->journal->j_trans_barrier); 351 352 handle = jbd2_journal_start(journal, max_buffs); 353 if (IS_ERR(handle)) { 354 up_read(&osb->journal->j_trans_barrier); 355 sb_end_intwrite(osb->sb); 356 357 mlog_errno(PTR_ERR(handle)); 358 359 if (is_journal_aborted(journal)) { 360 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 361 handle = ERR_PTR(-EROFS); 362 } 363 } else { 364 if (!ocfs2_mount_local(osb)) 365 atomic_inc(&(osb->journal->j_num_trans)); 366 } 367 368 return handle; 369 } 370 371 int ocfs2_commit_trans(struct ocfs2_super *osb, 372 handle_t *handle) 373 { 374 int ret, nested; 375 struct ocfs2_journal *journal = osb->journal; 376 377 BUG_ON(!handle); 378 379 nested = handle->h_ref > 1; 380 ret = jbd2_journal_stop(handle); 381 if (ret < 0) 382 mlog_errno(ret); 383 384 if (!nested) { 385 up_read(&journal->j_trans_barrier); 386 sb_end_intwrite(osb->sb); 387 } 388 389 return ret; 390 } 391 392 /* 393 * 'nblocks' is what you want to add to the current transaction. 394 * 395 * This might call jbd2_journal_restart() which will commit dirty buffers 396 * and then restart the transaction. Before calling 397 * ocfs2_extend_trans(), any changed blocks should have been 398 * dirtied. After calling it, all blocks which need to be changed must 399 * go through another set of journal_access/journal_dirty calls. 400 * 401 * WARNING: This will not release any semaphores or disk locks taken 402 * during the transaction, so make sure they were taken *before* 403 * start_trans or we'll have ordering deadlocks. 404 * 405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 406 * good because transaction ids haven't yet been recorded on the 407 * cluster locks associated with this handle. 408 */ 409 int ocfs2_extend_trans(handle_t *handle, int nblocks) 410 { 411 int status, old_nblocks; 412 413 BUG_ON(!handle); 414 BUG_ON(nblocks < 0); 415 416 if (!nblocks) 417 return 0; 418 419 old_nblocks = jbd2_handle_buffer_credits(handle); 420 421 trace_ocfs2_extend_trans(old_nblocks, nblocks); 422 423 #ifdef CONFIG_OCFS2_DEBUG_FS 424 status = 1; 425 #else 426 status = jbd2_journal_extend(handle, nblocks, 0); 427 if (status < 0) { 428 mlog_errno(status); 429 goto bail; 430 } 431 #endif 432 433 if (status > 0) { 434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 435 status = jbd2_journal_restart(handle, 436 old_nblocks + nblocks); 437 if (status < 0) { 438 mlog_errno(status); 439 goto bail; 440 } 441 } 442 443 status = 0; 444 bail: 445 return status; 446 } 447 448 /* 449 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 450 * If that fails, restart the transaction & regain write access for the 451 * buffer head which is used for metadata modifications. 452 * Taken from Ext4: extend_or_restart_transaction() 453 */ 454 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 455 { 456 int status, old_nblks; 457 458 BUG_ON(!handle); 459 460 old_nblks = jbd2_handle_buffer_credits(handle); 461 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 462 463 if (old_nblks < thresh) 464 return 0; 465 466 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 467 if (status < 0) { 468 mlog_errno(status); 469 goto bail; 470 } 471 472 if (status > 0) { 473 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 474 if (status < 0) 475 mlog_errno(status); 476 } 477 478 bail: 479 return status; 480 } 481 482 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 483 { 484 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 485 } 486 487 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 488 struct buffer_head *bh, 489 void *data, size_t size) 490 { 491 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 492 493 /* 494 * We aren't guaranteed to have the superblock here, so we 495 * must unconditionally compute the ecc data. 496 * __ocfs2_journal_access() will only set the triggers if 497 * metaecc is enabled. 498 */ 499 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 500 } 501 502 /* 503 * Quota blocks have their own trigger because the struct ocfs2_block_check 504 * offset depends on the blocksize. 505 */ 506 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 507 struct buffer_head *bh, 508 void *data, size_t size) 509 { 510 struct ocfs2_disk_dqtrailer *dqt = 511 ocfs2_block_dqtrailer(size, data); 512 513 /* 514 * We aren't guaranteed to have the superblock here, so we 515 * must unconditionally compute the ecc data. 516 * __ocfs2_journal_access() will only set the triggers if 517 * metaecc is enabled. 518 */ 519 ocfs2_block_check_compute(data, size, &dqt->dq_check); 520 } 521 522 /* 523 * Directory blocks also have their own trigger because the 524 * struct ocfs2_block_check offset depends on the blocksize. 525 */ 526 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 527 struct buffer_head *bh, 528 void *data, size_t size) 529 { 530 struct ocfs2_dir_block_trailer *trailer = 531 ocfs2_dir_trailer_from_size(size, data); 532 533 /* 534 * We aren't guaranteed to have the superblock here, so we 535 * must unconditionally compute the ecc data. 536 * __ocfs2_journal_access() will only set the triggers if 537 * metaecc is enabled. 538 */ 539 ocfs2_block_check_compute(data, size, &trailer->db_check); 540 } 541 542 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 543 struct buffer_head *bh) 544 { 545 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 546 547 mlog(ML_ERROR, 548 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 549 "bh->b_blocknr = %llu\n", 550 (unsigned long)bh, 551 (unsigned long long)bh->b_blocknr); 552 553 ocfs2_error(ot->sb, 554 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 555 } 556 557 static void ocfs2_setup_csum_triggers(struct super_block *sb, 558 enum ocfs2_journal_trigger_type type, 559 struct ocfs2_triggers *ot) 560 { 561 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT); 562 563 switch (type) { 564 case OCFS2_JTR_DI: 565 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 566 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check); 567 break; 568 case OCFS2_JTR_EB: 569 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 570 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check); 571 break; 572 case OCFS2_JTR_RB: 573 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 574 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check); 575 break; 576 case OCFS2_JTR_GD: 577 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 578 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check); 579 break; 580 case OCFS2_JTR_DB: 581 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger; 582 break; 583 case OCFS2_JTR_XB: 584 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 585 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check); 586 break; 587 case OCFS2_JTR_DQ: 588 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger; 589 break; 590 case OCFS2_JTR_DR: 591 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 592 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check); 593 break; 594 case OCFS2_JTR_DL: 595 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 596 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check); 597 break; 598 case OCFS2_JTR_NONE: 599 /* To make compiler happy... */ 600 return; 601 } 602 603 ot->ot_triggers.t_abort = ocfs2_abort_trigger; 604 ot->sb = sb; 605 } 606 607 void ocfs2_initialize_journal_triggers(struct super_block *sb, 608 struct ocfs2_triggers triggers[]) 609 { 610 enum ocfs2_journal_trigger_type type; 611 612 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++) 613 ocfs2_setup_csum_triggers(sb, type, &triggers[type]); 614 } 615 616 static int __ocfs2_journal_access(handle_t *handle, 617 struct ocfs2_caching_info *ci, 618 struct buffer_head *bh, 619 struct ocfs2_triggers *triggers, 620 int type) 621 { 622 int status; 623 struct ocfs2_super *osb = 624 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 625 626 BUG_ON(!ci || !ci->ci_ops); 627 BUG_ON(!handle); 628 BUG_ON(!bh); 629 630 trace_ocfs2_journal_access( 631 (unsigned long long)ocfs2_metadata_cache_owner(ci), 632 (unsigned long long)bh->b_blocknr, type, bh->b_size); 633 634 /* we can safely remove this assertion after testing. */ 635 if (!buffer_uptodate(bh)) { 636 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 637 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 638 (unsigned long long)bh->b_blocknr, bh->b_state); 639 640 lock_buffer(bh); 641 /* 642 * A previous transaction with a couple of buffer heads fail 643 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 644 * For current transaction, the bh is just among those error 645 * bhs which previous transaction handle. We can't just clear 646 * its BH_Write_EIO and reuse directly, since other bhs are 647 * not written to disk yet and that will cause metadata 648 * inconsistency. So we should set fs read-only to avoid 649 * further damage. 650 */ 651 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 652 unlock_buffer(bh); 653 return ocfs2_error(osb->sb, "A previous attempt to " 654 "write this buffer head failed\n"); 655 } 656 unlock_buffer(bh); 657 } 658 659 /* Set the current transaction information on the ci so 660 * that the locking code knows whether it can drop it's locks 661 * on this ci or not. We're protected from the commit 662 * thread updating the current transaction id until 663 * ocfs2_commit_trans() because ocfs2_start_trans() took 664 * j_trans_barrier for us. */ 665 ocfs2_set_ci_lock_trans(osb->journal, ci); 666 667 ocfs2_metadata_cache_io_lock(ci); 668 switch (type) { 669 case OCFS2_JOURNAL_ACCESS_CREATE: 670 case OCFS2_JOURNAL_ACCESS_WRITE: 671 status = jbd2_journal_get_write_access(handle, bh); 672 break; 673 674 case OCFS2_JOURNAL_ACCESS_UNDO: 675 status = jbd2_journal_get_undo_access(handle, bh); 676 break; 677 678 default: 679 status = -EINVAL; 680 mlog(ML_ERROR, "Unknown access type!\n"); 681 } 682 if (!status && ocfs2_meta_ecc(osb) && triggers) 683 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 684 ocfs2_metadata_cache_io_unlock(ci); 685 686 if (status < 0) 687 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 688 status, type); 689 690 return status; 691 } 692 693 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 694 struct buffer_head *bh, int type) 695 { 696 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 697 698 return __ocfs2_journal_access(handle, ci, bh, 699 &osb->s_journal_triggers[OCFS2_JTR_DI], 700 type); 701 } 702 703 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 704 struct buffer_head *bh, int type) 705 { 706 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 707 708 return __ocfs2_journal_access(handle, ci, bh, 709 &osb->s_journal_triggers[OCFS2_JTR_EB], 710 type); 711 } 712 713 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 714 struct buffer_head *bh, int type) 715 { 716 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 717 718 return __ocfs2_journal_access(handle, ci, bh, 719 &osb->s_journal_triggers[OCFS2_JTR_RB], 720 type); 721 } 722 723 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 724 struct buffer_head *bh, int type) 725 { 726 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 727 728 return __ocfs2_journal_access(handle, ci, bh, 729 &osb->s_journal_triggers[OCFS2_JTR_GD], 730 type); 731 } 732 733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 734 struct buffer_head *bh, int type) 735 { 736 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 737 738 return __ocfs2_journal_access(handle, ci, bh, 739 &osb->s_journal_triggers[OCFS2_JTR_DB], 740 type); 741 } 742 743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 744 struct buffer_head *bh, int type) 745 { 746 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 747 748 return __ocfs2_journal_access(handle, ci, bh, 749 &osb->s_journal_triggers[OCFS2_JTR_XB], 750 type); 751 } 752 753 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 754 struct buffer_head *bh, int type) 755 { 756 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 757 758 return __ocfs2_journal_access(handle, ci, bh, 759 &osb->s_journal_triggers[OCFS2_JTR_DQ], 760 type); 761 } 762 763 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 764 struct buffer_head *bh, int type) 765 { 766 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 767 768 return __ocfs2_journal_access(handle, ci, bh, 769 &osb->s_journal_triggers[OCFS2_JTR_DR], 770 type); 771 } 772 773 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 774 struct buffer_head *bh, int type) 775 { 776 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 777 778 return __ocfs2_journal_access(handle, ci, bh, 779 &osb->s_journal_triggers[OCFS2_JTR_DL], 780 type); 781 } 782 783 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 784 struct buffer_head *bh, int type) 785 { 786 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 787 } 788 789 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 790 { 791 int status; 792 793 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 794 795 status = jbd2_journal_dirty_metadata(handle, bh); 796 if (status) { 797 mlog_errno(status); 798 if (!is_handle_aborted(handle)) { 799 journal_t *journal = handle->h_transaction->t_journal; 800 801 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: " 802 "handle type %u started at line %u, credits %u/%u " 803 "errcode %d. Aborting transaction and journal.\n", 804 handle->h_type, handle->h_line_no, 805 handle->h_requested_credits, 806 jbd2_handle_buffer_credits(handle), status); 807 handle->h_err = status; 808 jbd2_journal_abort_handle(handle); 809 jbd2_journal_abort(journal, status); 810 } 811 } 812 } 813 814 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 815 816 void ocfs2_set_journal_params(struct ocfs2_super *osb) 817 { 818 journal_t *journal = osb->journal->j_journal; 819 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 820 821 if (osb->osb_commit_interval) 822 commit_interval = osb->osb_commit_interval; 823 824 write_lock(&journal->j_state_lock); 825 journal->j_commit_interval = commit_interval; 826 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 827 journal->j_flags |= JBD2_BARRIER; 828 else 829 journal->j_flags &= ~JBD2_BARRIER; 830 write_unlock(&journal->j_state_lock); 831 } 832 833 /* 834 * alloc & initialize skeleton for journal structure. 835 * ocfs2_journal_init() will make fs have journal ability. 836 */ 837 int ocfs2_journal_alloc(struct ocfs2_super *osb) 838 { 839 int status = 0; 840 struct ocfs2_journal *journal; 841 842 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 843 if (!journal) { 844 mlog(ML_ERROR, "unable to alloc journal\n"); 845 status = -ENOMEM; 846 goto bail; 847 } 848 osb->journal = journal; 849 journal->j_osb = osb; 850 851 atomic_set(&journal->j_num_trans, 0); 852 init_rwsem(&journal->j_trans_barrier); 853 init_waitqueue_head(&journal->j_checkpointed); 854 spin_lock_init(&journal->j_lock); 855 journal->j_trans_id = 1UL; 856 INIT_LIST_HEAD(&journal->j_la_cleanups); 857 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 858 journal->j_state = OCFS2_JOURNAL_FREE; 859 860 bail: 861 return status; 862 } 863 864 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 865 { 866 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 867 struct writeback_control wbc = { 868 .sync_mode = WB_SYNC_ALL, 869 .nr_to_write = mapping->nrpages * 2, 870 .range_start = jinode->i_dirty_start, 871 .range_end = jinode->i_dirty_end, 872 }; 873 874 return filemap_fdatawrite_wbc(mapping, &wbc); 875 } 876 877 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 878 { 879 int status = -1; 880 struct inode *inode = NULL; /* the journal inode */ 881 journal_t *j_journal = NULL; 882 struct ocfs2_journal *journal = osb->journal; 883 struct ocfs2_dinode *di = NULL; 884 struct buffer_head *bh = NULL; 885 int inode_lock = 0; 886 887 BUG_ON(!journal); 888 /* already have the inode for our journal */ 889 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 890 osb->slot_num); 891 if (inode == NULL) { 892 status = -EACCES; 893 mlog_errno(status); 894 goto done; 895 } 896 if (is_bad_inode(inode)) { 897 mlog(ML_ERROR, "access error (bad inode)\n"); 898 iput(inode); 899 inode = NULL; 900 status = -EACCES; 901 goto done; 902 } 903 904 SET_INODE_JOURNAL(inode); 905 OCFS2_I(inode)->ip_open_count++; 906 907 /* Skip recovery waits here - journal inode metadata never 908 * changes in a live cluster so it can be considered an 909 * exception to the rule. */ 910 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 911 if (status < 0) { 912 if (status != -ERESTARTSYS) 913 mlog(ML_ERROR, "Could not get lock on journal!\n"); 914 goto done; 915 } 916 917 inode_lock = 1; 918 di = (struct ocfs2_dinode *)bh->b_data; 919 920 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 921 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 922 i_size_read(inode)); 923 status = -EINVAL; 924 goto done; 925 } 926 927 trace_ocfs2_journal_init(i_size_read(inode), 928 (unsigned long long)inode->i_blocks, 929 OCFS2_I(inode)->ip_clusters); 930 931 /* call the kernels journal init function now */ 932 j_journal = jbd2_journal_init_inode(inode); 933 if (IS_ERR(j_journal)) { 934 mlog(ML_ERROR, "Linux journal layer error\n"); 935 status = PTR_ERR(j_journal); 936 goto done; 937 } 938 939 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 940 941 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 942 OCFS2_JOURNAL_DIRTY_FL); 943 944 journal->j_journal = j_journal; 945 journal->j_journal->j_submit_inode_data_buffers = 946 ocfs2_journal_submit_inode_data_buffers; 947 journal->j_journal->j_finish_inode_data_buffers = 948 jbd2_journal_finish_inode_data_buffers; 949 journal->j_inode = inode; 950 journal->j_bh = bh; 951 952 ocfs2_set_journal_params(osb); 953 954 journal->j_state = OCFS2_JOURNAL_LOADED; 955 956 status = 0; 957 done: 958 if (status < 0) { 959 if (inode_lock) 960 ocfs2_inode_unlock(inode, 1); 961 brelse(bh); 962 if (inode) { 963 OCFS2_I(inode)->ip_open_count--; 964 iput(inode); 965 } 966 } 967 968 return status; 969 } 970 971 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 972 { 973 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 974 } 975 976 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 977 { 978 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 979 } 980 981 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 982 int dirty, int replayed) 983 { 984 int status; 985 unsigned int flags; 986 struct ocfs2_journal *journal = osb->journal; 987 struct buffer_head *bh = journal->j_bh; 988 struct ocfs2_dinode *fe; 989 990 fe = (struct ocfs2_dinode *)bh->b_data; 991 992 /* The journal bh on the osb always comes from ocfs2_journal_init() 993 * and was validated there inside ocfs2_inode_lock_full(). It's a 994 * code bug if we mess it up. */ 995 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 996 997 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 998 if (dirty) 999 flags |= OCFS2_JOURNAL_DIRTY_FL; 1000 else 1001 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1002 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1003 1004 if (replayed) 1005 ocfs2_bump_recovery_generation(fe); 1006 1007 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1008 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 1009 if (status < 0) 1010 mlog_errno(status); 1011 1012 return status; 1013 } 1014 1015 /* 1016 * If the journal has been kmalloc'd it needs to be freed after this 1017 * call. 1018 */ 1019 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 1020 { 1021 struct ocfs2_journal *journal = NULL; 1022 int status = 0; 1023 struct inode *inode = NULL; 1024 int num_running_trans = 0; 1025 1026 BUG_ON(!osb); 1027 1028 journal = osb->journal; 1029 if (!journal) 1030 goto done; 1031 1032 inode = journal->j_inode; 1033 1034 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1035 goto done; 1036 1037 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1038 if (!igrab(inode)) 1039 BUG(); 1040 1041 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 1042 trace_ocfs2_journal_shutdown(num_running_trans); 1043 1044 /* Do a commit_cache here. It will flush our journal, *and* 1045 * release any locks that are still held. 1046 * set the SHUTDOWN flag and release the trans lock. 1047 * the commit thread will take the trans lock for us below. */ 1048 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1049 1050 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1051 * drop the trans_lock (which we want to hold until we 1052 * completely destroy the journal. */ 1053 if (osb->commit_task) { 1054 /* Wait for the commit thread */ 1055 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1056 kthread_stop(osb->commit_task); 1057 osb->commit_task = NULL; 1058 } 1059 1060 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 1061 1062 if (ocfs2_mount_local(osb)) { 1063 jbd2_journal_lock_updates(journal->j_journal); 1064 status = jbd2_journal_flush(journal->j_journal, 0); 1065 jbd2_journal_unlock_updates(journal->j_journal); 1066 if (status < 0) 1067 mlog_errno(status); 1068 } 1069 1070 /* Shutdown the kernel journal system */ 1071 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1072 /* 1073 * Do not toggle if flush was unsuccessful otherwise 1074 * will leave dirty metadata in a "clean" journal 1075 */ 1076 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1077 if (status < 0) 1078 mlog_errno(status); 1079 } 1080 journal->j_journal = NULL; 1081 1082 OCFS2_I(inode)->ip_open_count--; 1083 1084 /* unlock our journal */ 1085 ocfs2_inode_unlock(inode, 1); 1086 1087 brelse(journal->j_bh); 1088 journal->j_bh = NULL; 1089 1090 journal->j_state = OCFS2_JOURNAL_FREE; 1091 1092 done: 1093 iput(inode); 1094 kfree(journal); 1095 osb->journal = NULL; 1096 } 1097 1098 static void ocfs2_clear_journal_error(struct super_block *sb, 1099 journal_t *journal, 1100 int slot) 1101 { 1102 int olderr; 1103 1104 olderr = jbd2_journal_errno(journal); 1105 if (olderr) { 1106 mlog(ML_ERROR, "File system error %d recorded in " 1107 "journal %u.\n", olderr, slot); 1108 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1109 sb->s_id); 1110 1111 jbd2_journal_ack_err(journal); 1112 jbd2_journal_clear_err(journal); 1113 } 1114 } 1115 1116 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1117 { 1118 int status = 0; 1119 struct ocfs2_super *osb; 1120 1121 BUG_ON(!journal); 1122 1123 osb = journal->j_osb; 1124 1125 status = jbd2_journal_load(journal->j_journal); 1126 if (status < 0) { 1127 mlog(ML_ERROR, "Failed to load journal!\n"); 1128 goto done; 1129 } 1130 1131 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1132 1133 if (replayed) { 1134 jbd2_journal_lock_updates(journal->j_journal); 1135 status = jbd2_journal_flush(journal->j_journal, 0); 1136 jbd2_journal_unlock_updates(journal->j_journal); 1137 if (status < 0) 1138 mlog_errno(status); 1139 } 1140 1141 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1142 if (status < 0) { 1143 mlog_errno(status); 1144 goto done; 1145 } 1146 1147 /* Launch the commit thread */ 1148 if (!local) { 1149 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1150 "ocfs2cmt-%s", osb->uuid_str); 1151 if (IS_ERR(osb->commit_task)) { 1152 status = PTR_ERR(osb->commit_task); 1153 osb->commit_task = NULL; 1154 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1155 "error=%d", status); 1156 goto done; 1157 } 1158 } else 1159 osb->commit_task = NULL; 1160 1161 done: 1162 return status; 1163 } 1164 1165 1166 /* 'full' flag tells us whether we clear out all blocks or if we just 1167 * mark the journal clean */ 1168 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1169 { 1170 int status; 1171 1172 BUG_ON(!journal); 1173 1174 status = jbd2_journal_wipe(journal->j_journal, full); 1175 if (status < 0) { 1176 mlog_errno(status); 1177 goto bail; 1178 } 1179 1180 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1181 if (status < 0) 1182 mlog_errno(status); 1183 1184 bail: 1185 return status; 1186 } 1187 1188 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1189 { 1190 int empty; 1191 struct ocfs2_recovery_map *rm = osb->recovery_map; 1192 1193 spin_lock(&osb->osb_lock); 1194 empty = (rm->rm_used == 0); 1195 spin_unlock(&osb->osb_lock); 1196 1197 return empty; 1198 } 1199 1200 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1201 { 1202 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1203 } 1204 1205 /* 1206 * JBD Might read a cached version of another nodes journal file. We 1207 * don't want this as this file changes often and we get no 1208 * notification on those changes. The only way to be sure that we've 1209 * got the most up to date version of those blocks then is to force 1210 * read them off disk. Just searching through the buffer cache won't 1211 * work as there may be pages backing this file which are still marked 1212 * up to date. We know things can't change on this file underneath us 1213 * as we have the lock by now :) 1214 */ 1215 static int ocfs2_force_read_journal(struct inode *inode) 1216 { 1217 int status = 0; 1218 int i; 1219 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1220 struct buffer_head *bh = NULL; 1221 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1222 1223 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1224 v_blkno = 0; 1225 while (v_blkno < num_blocks) { 1226 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1227 &p_blkno, &p_blocks, NULL); 1228 if (status < 0) { 1229 mlog_errno(status); 1230 goto bail; 1231 } 1232 1233 for (i = 0; i < p_blocks; i++, p_blkno++) { 1234 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1235 osb->sb->s_blocksize); 1236 /* block not cached. */ 1237 if (!bh) 1238 continue; 1239 1240 brelse(bh); 1241 bh = NULL; 1242 /* We are reading journal data which should not 1243 * be put in the uptodate cache. 1244 */ 1245 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1246 if (status < 0) { 1247 mlog_errno(status); 1248 goto bail; 1249 } 1250 1251 brelse(bh); 1252 bh = NULL; 1253 } 1254 1255 v_blkno += p_blocks; 1256 } 1257 1258 bail: 1259 return status; 1260 } 1261 1262 struct ocfs2_la_recovery_item { 1263 struct list_head lri_list; 1264 int lri_slot; 1265 struct ocfs2_dinode *lri_la_dinode; 1266 struct ocfs2_dinode *lri_tl_dinode; 1267 struct ocfs2_quota_recovery *lri_qrec; 1268 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1269 }; 1270 1271 /* Does the second half of the recovery process. By this point, the 1272 * node is marked clean and can actually be considered recovered, 1273 * hence it's no longer in the recovery map, but there's still some 1274 * cleanup we can do which shouldn't happen within the recovery thread 1275 * as locking in that context becomes very difficult if we are to take 1276 * recovering nodes into account. 1277 * 1278 * NOTE: This function can and will sleep on recovery of other nodes 1279 * during cluster locking, just like any other ocfs2 process. 1280 */ 1281 void ocfs2_complete_recovery(struct work_struct *work) 1282 { 1283 int ret = 0; 1284 struct ocfs2_journal *journal = 1285 container_of(work, struct ocfs2_journal, j_recovery_work); 1286 struct ocfs2_super *osb = journal->j_osb; 1287 struct ocfs2_dinode *la_dinode, *tl_dinode; 1288 struct ocfs2_la_recovery_item *item, *n; 1289 struct ocfs2_quota_recovery *qrec; 1290 enum ocfs2_orphan_reco_type orphan_reco_type; 1291 LIST_HEAD(tmp_la_list); 1292 1293 trace_ocfs2_complete_recovery( 1294 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1295 1296 spin_lock(&journal->j_lock); 1297 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1298 spin_unlock(&journal->j_lock); 1299 1300 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1301 list_del_init(&item->lri_list); 1302 1303 ocfs2_wait_on_quotas(osb); 1304 1305 la_dinode = item->lri_la_dinode; 1306 tl_dinode = item->lri_tl_dinode; 1307 qrec = item->lri_qrec; 1308 orphan_reco_type = item->lri_orphan_reco_type; 1309 1310 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1311 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1312 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1313 qrec); 1314 1315 if (la_dinode) { 1316 ret = ocfs2_complete_local_alloc_recovery(osb, 1317 la_dinode); 1318 if (ret < 0) 1319 mlog_errno(ret); 1320 1321 kfree(la_dinode); 1322 } 1323 1324 if (tl_dinode) { 1325 ret = ocfs2_complete_truncate_log_recovery(osb, 1326 tl_dinode); 1327 if (ret < 0) 1328 mlog_errno(ret); 1329 1330 kfree(tl_dinode); 1331 } 1332 1333 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1334 orphan_reco_type); 1335 if (ret < 0) 1336 mlog_errno(ret); 1337 1338 if (qrec) { 1339 ret = ocfs2_finish_quota_recovery(osb, qrec, 1340 item->lri_slot); 1341 if (ret < 0) 1342 mlog_errno(ret); 1343 /* Recovery info is already freed now */ 1344 } 1345 1346 kfree(item); 1347 } 1348 1349 trace_ocfs2_complete_recovery_end(ret); 1350 } 1351 1352 /* NOTE: This function always eats your references to la_dinode and 1353 * tl_dinode, either manually on error, or by passing them to 1354 * ocfs2_complete_recovery */ 1355 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1356 int slot_num, 1357 struct ocfs2_dinode *la_dinode, 1358 struct ocfs2_dinode *tl_dinode, 1359 struct ocfs2_quota_recovery *qrec, 1360 enum ocfs2_orphan_reco_type orphan_reco_type) 1361 { 1362 struct ocfs2_la_recovery_item *item; 1363 1364 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1365 if (!item) { 1366 /* Though we wish to avoid it, we are in fact safe in 1367 * skipping local alloc cleanup as fsck.ocfs2 is more 1368 * than capable of reclaiming unused space. */ 1369 kfree(la_dinode); 1370 kfree(tl_dinode); 1371 1372 if (qrec) 1373 ocfs2_free_quota_recovery(qrec); 1374 1375 mlog_errno(-ENOMEM); 1376 return; 1377 } 1378 1379 INIT_LIST_HEAD(&item->lri_list); 1380 item->lri_la_dinode = la_dinode; 1381 item->lri_slot = slot_num; 1382 item->lri_tl_dinode = tl_dinode; 1383 item->lri_qrec = qrec; 1384 item->lri_orphan_reco_type = orphan_reco_type; 1385 1386 spin_lock(&journal->j_lock); 1387 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1388 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1389 spin_unlock(&journal->j_lock); 1390 } 1391 1392 /* Called by the mount code to queue recovery the last part of 1393 * recovery for it's own and offline slot(s). */ 1394 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1395 { 1396 struct ocfs2_journal *journal = osb->journal; 1397 1398 if (ocfs2_is_hard_readonly(osb)) 1399 return; 1400 1401 /* No need to queue up our truncate_log as regular cleanup will catch 1402 * that */ 1403 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1404 osb->local_alloc_copy, NULL, NULL, 1405 ORPHAN_NEED_TRUNCATE); 1406 ocfs2_schedule_truncate_log_flush(osb, 0); 1407 1408 osb->local_alloc_copy = NULL; 1409 1410 /* queue to recover orphan slots for all offline slots */ 1411 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1412 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1413 ocfs2_free_replay_slots(osb); 1414 } 1415 1416 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1417 { 1418 if (osb->quota_rec) { 1419 ocfs2_queue_recovery_completion(osb->journal, 1420 osb->slot_num, 1421 NULL, 1422 NULL, 1423 osb->quota_rec, 1424 ORPHAN_NEED_TRUNCATE); 1425 osb->quota_rec = NULL; 1426 } 1427 } 1428 1429 static int __ocfs2_recovery_thread(void *arg) 1430 { 1431 int status, node_num, slot_num; 1432 struct ocfs2_super *osb = arg; 1433 struct ocfs2_recovery_map *rm = osb->recovery_map; 1434 int *rm_quota = NULL; 1435 int rm_quota_used = 0, i; 1436 struct ocfs2_quota_recovery *qrec; 1437 1438 /* Whether the quota supported. */ 1439 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1440 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1441 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1442 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1443 1444 status = ocfs2_wait_on_mount(osb); 1445 if (status < 0) { 1446 goto bail; 1447 } 1448 1449 if (quota_enabled) { 1450 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1451 if (!rm_quota) { 1452 status = -ENOMEM; 1453 goto bail; 1454 } 1455 } 1456 restart: 1457 status = ocfs2_super_lock(osb, 1); 1458 if (status < 0) { 1459 mlog_errno(status); 1460 goto bail; 1461 } 1462 1463 status = ocfs2_compute_replay_slots(osb); 1464 if (status < 0) 1465 mlog_errno(status); 1466 1467 /* queue recovery for our own slot */ 1468 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1469 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1470 1471 spin_lock(&osb->osb_lock); 1472 while (rm->rm_used) { 1473 /* It's always safe to remove entry zero, as we won't 1474 * clear it until ocfs2_recover_node() has succeeded. */ 1475 node_num = rm->rm_entries[0]; 1476 spin_unlock(&osb->osb_lock); 1477 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1478 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1479 if (slot_num == -ENOENT) { 1480 status = 0; 1481 goto skip_recovery; 1482 } 1483 1484 /* It is a bit subtle with quota recovery. We cannot do it 1485 * immediately because we have to obtain cluster locks from 1486 * quota files and we also don't want to just skip it because 1487 * then quota usage would be out of sync until some node takes 1488 * the slot. So we remember which nodes need quota recovery 1489 * and when everything else is done, we recover quotas. */ 1490 if (quota_enabled) { 1491 for (i = 0; i < rm_quota_used 1492 && rm_quota[i] != slot_num; i++) 1493 ; 1494 1495 if (i == rm_quota_used) 1496 rm_quota[rm_quota_used++] = slot_num; 1497 } 1498 1499 status = ocfs2_recover_node(osb, node_num, slot_num); 1500 skip_recovery: 1501 if (!status) { 1502 ocfs2_recovery_map_clear(osb, node_num); 1503 } else { 1504 mlog(ML_ERROR, 1505 "Error %d recovering node %d on device (%u,%u)!\n", 1506 status, node_num, 1507 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1508 mlog(ML_ERROR, "Volume requires unmount.\n"); 1509 } 1510 1511 spin_lock(&osb->osb_lock); 1512 } 1513 spin_unlock(&osb->osb_lock); 1514 trace_ocfs2_recovery_thread_end(status); 1515 1516 /* Refresh all journal recovery generations from disk */ 1517 status = ocfs2_check_journals_nolocks(osb); 1518 status = (status == -EROFS) ? 0 : status; 1519 if (status < 0) 1520 mlog_errno(status); 1521 1522 /* Now it is right time to recover quotas... We have to do this under 1523 * superblock lock so that no one can start using the slot (and crash) 1524 * before we recover it */ 1525 if (quota_enabled) { 1526 for (i = 0; i < rm_quota_used; i++) { 1527 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1528 if (IS_ERR(qrec)) { 1529 status = PTR_ERR(qrec); 1530 mlog_errno(status); 1531 continue; 1532 } 1533 ocfs2_queue_recovery_completion(osb->journal, 1534 rm_quota[i], 1535 NULL, NULL, qrec, 1536 ORPHAN_NEED_TRUNCATE); 1537 } 1538 } 1539 1540 ocfs2_super_unlock(osb, 1); 1541 1542 /* queue recovery for offline slots */ 1543 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1544 1545 bail: 1546 mutex_lock(&osb->recovery_lock); 1547 if (!status && !ocfs2_recovery_completed(osb)) { 1548 mutex_unlock(&osb->recovery_lock); 1549 goto restart; 1550 } 1551 1552 ocfs2_free_replay_slots(osb); 1553 osb->recovery_thread_task = NULL; 1554 mb(); /* sync with ocfs2_recovery_thread_running */ 1555 wake_up(&osb->recovery_event); 1556 1557 mutex_unlock(&osb->recovery_lock); 1558 1559 if (quota_enabled) 1560 kfree(rm_quota); 1561 1562 return status; 1563 } 1564 1565 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1566 { 1567 mutex_lock(&osb->recovery_lock); 1568 1569 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1570 osb->disable_recovery, osb->recovery_thread_task, 1571 osb->disable_recovery ? 1572 -1 : ocfs2_recovery_map_set(osb, node_num)); 1573 1574 if (osb->disable_recovery) 1575 goto out; 1576 1577 if (osb->recovery_thread_task) 1578 goto out; 1579 1580 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1581 "ocfs2rec-%s", osb->uuid_str); 1582 if (IS_ERR(osb->recovery_thread_task)) { 1583 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1584 osb->recovery_thread_task = NULL; 1585 } 1586 1587 out: 1588 mutex_unlock(&osb->recovery_lock); 1589 wake_up(&osb->recovery_event); 1590 } 1591 1592 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1593 int slot_num, 1594 struct buffer_head **bh, 1595 struct inode **ret_inode) 1596 { 1597 int status = -EACCES; 1598 struct inode *inode = NULL; 1599 1600 BUG_ON(slot_num >= osb->max_slots); 1601 1602 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1603 slot_num); 1604 if (!inode || is_bad_inode(inode)) { 1605 mlog_errno(status); 1606 goto bail; 1607 } 1608 SET_INODE_JOURNAL(inode); 1609 1610 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1611 if (status < 0) { 1612 mlog_errno(status); 1613 goto bail; 1614 } 1615 1616 status = 0; 1617 1618 bail: 1619 if (inode) { 1620 if (status || !ret_inode) 1621 iput(inode); 1622 else 1623 *ret_inode = inode; 1624 } 1625 return status; 1626 } 1627 1628 /* Does the actual journal replay and marks the journal inode as 1629 * clean. Will only replay if the journal inode is marked dirty. */ 1630 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1631 int node_num, 1632 int slot_num) 1633 { 1634 int status; 1635 int got_lock = 0; 1636 unsigned int flags; 1637 struct inode *inode = NULL; 1638 struct ocfs2_dinode *fe; 1639 journal_t *journal = NULL; 1640 struct buffer_head *bh = NULL; 1641 u32 slot_reco_gen; 1642 1643 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1644 if (status) { 1645 mlog_errno(status); 1646 goto done; 1647 } 1648 1649 fe = (struct ocfs2_dinode *)bh->b_data; 1650 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1651 brelse(bh); 1652 bh = NULL; 1653 1654 /* 1655 * As the fs recovery is asynchronous, there is a small chance that 1656 * another node mounted (and recovered) the slot before the recovery 1657 * thread could get the lock. To handle that, we dirty read the journal 1658 * inode for that slot to get the recovery generation. If it is 1659 * different than what we expected, the slot has been recovered. 1660 * If not, it needs recovery. 1661 */ 1662 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1663 trace_ocfs2_replay_journal_recovered(slot_num, 1664 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1665 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1666 status = -EBUSY; 1667 goto done; 1668 } 1669 1670 /* Continue with recovery as the journal has not yet been recovered */ 1671 1672 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1673 if (status < 0) { 1674 trace_ocfs2_replay_journal_lock_err(status); 1675 if (status != -ERESTARTSYS) 1676 mlog(ML_ERROR, "Could not lock journal!\n"); 1677 goto done; 1678 } 1679 got_lock = 1; 1680 1681 fe = (struct ocfs2_dinode *) bh->b_data; 1682 1683 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1684 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1685 1686 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1687 trace_ocfs2_replay_journal_skip(node_num); 1688 /* Refresh recovery generation for the slot */ 1689 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1690 goto done; 1691 } 1692 1693 /* we need to run complete recovery for offline orphan slots */ 1694 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1695 1696 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1697 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1698 MINOR(osb->sb->s_dev)); 1699 1700 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1701 1702 status = ocfs2_force_read_journal(inode); 1703 if (status < 0) { 1704 mlog_errno(status); 1705 goto done; 1706 } 1707 1708 journal = jbd2_journal_init_inode(inode); 1709 if (IS_ERR(journal)) { 1710 mlog(ML_ERROR, "Linux journal layer error\n"); 1711 status = PTR_ERR(journal); 1712 goto done; 1713 } 1714 1715 status = jbd2_journal_load(journal); 1716 if (status < 0) { 1717 mlog_errno(status); 1718 BUG_ON(!igrab(inode)); 1719 jbd2_journal_destroy(journal); 1720 goto done; 1721 } 1722 1723 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1724 1725 /* wipe the journal */ 1726 jbd2_journal_lock_updates(journal); 1727 status = jbd2_journal_flush(journal, 0); 1728 jbd2_journal_unlock_updates(journal); 1729 if (status < 0) 1730 mlog_errno(status); 1731 1732 /* This will mark the node clean */ 1733 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1734 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1735 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1736 1737 /* Increment recovery generation to indicate successful recovery */ 1738 ocfs2_bump_recovery_generation(fe); 1739 osb->slot_recovery_generations[slot_num] = 1740 ocfs2_get_recovery_generation(fe); 1741 1742 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1743 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1744 if (status < 0) 1745 mlog_errno(status); 1746 1747 BUG_ON(!igrab(inode)); 1748 1749 jbd2_journal_destroy(journal); 1750 1751 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1752 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1753 MINOR(osb->sb->s_dev)); 1754 done: 1755 /* drop the lock on this nodes journal */ 1756 if (got_lock) 1757 ocfs2_inode_unlock(inode, 1); 1758 1759 iput(inode); 1760 brelse(bh); 1761 1762 return status; 1763 } 1764 1765 /* 1766 * Do the most important parts of node recovery: 1767 * - Replay it's journal 1768 * - Stamp a clean local allocator file 1769 * - Stamp a clean truncate log 1770 * - Mark the node clean 1771 * 1772 * If this function completes without error, a node in OCFS2 can be 1773 * said to have been safely recovered. As a result, failure during the 1774 * second part of a nodes recovery process (local alloc recovery) is 1775 * far less concerning. 1776 */ 1777 static int ocfs2_recover_node(struct ocfs2_super *osb, 1778 int node_num, int slot_num) 1779 { 1780 int status = 0; 1781 struct ocfs2_dinode *la_copy = NULL; 1782 struct ocfs2_dinode *tl_copy = NULL; 1783 1784 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1785 1786 /* Should not ever be called to recover ourselves -- in that 1787 * case we should've called ocfs2_journal_load instead. */ 1788 BUG_ON(osb->node_num == node_num); 1789 1790 status = ocfs2_replay_journal(osb, node_num, slot_num); 1791 if (status < 0) { 1792 if (status == -EBUSY) { 1793 trace_ocfs2_recover_node_skip(slot_num, node_num); 1794 status = 0; 1795 goto done; 1796 } 1797 mlog_errno(status); 1798 goto done; 1799 } 1800 1801 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1802 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1803 if (status < 0) { 1804 mlog_errno(status); 1805 goto done; 1806 } 1807 1808 /* An error from begin_truncate_log_recovery is not 1809 * serious enough to warrant halting the rest of 1810 * recovery. */ 1811 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1812 if (status < 0) 1813 mlog_errno(status); 1814 1815 /* Likewise, this would be a strange but ultimately not so 1816 * harmful place to get an error... */ 1817 status = ocfs2_clear_slot(osb, slot_num); 1818 if (status < 0) 1819 mlog_errno(status); 1820 1821 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1822 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1823 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1824 1825 status = 0; 1826 done: 1827 1828 return status; 1829 } 1830 1831 /* Test node liveness by trylocking his journal. If we get the lock, 1832 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1833 * still alive (we couldn't get the lock) and < 0 on error. */ 1834 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1835 int slot_num) 1836 { 1837 int status, flags; 1838 struct inode *inode = NULL; 1839 1840 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1841 slot_num); 1842 if (inode == NULL) { 1843 mlog(ML_ERROR, "access error\n"); 1844 status = -EACCES; 1845 goto bail; 1846 } 1847 if (is_bad_inode(inode)) { 1848 mlog(ML_ERROR, "access error (bad inode)\n"); 1849 iput(inode); 1850 inode = NULL; 1851 status = -EACCES; 1852 goto bail; 1853 } 1854 SET_INODE_JOURNAL(inode); 1855 1856 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1857 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1858 if (status < 0) { 1859 if (status != -EAGAIN) 1860 mlog_errno(status); 1861 goto bail; 1862 } 1863 1864 ocfs2_inode_unlock(inode, 1); 1865 bail: 1866 iput(inode); 1867 1868 return status; 1869 } 1870 1871 /* Call this underneath ocfs2_super_lock. It also assumes that the 1872 * slot info struct has been updated from disk. */ 1873 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1874 { 1875 unsigned int node_num; 1876 int status, i; 1877 u32 gen; 1878 struct buffer_head *bh = NULL; 1879 struct ocfs2_dinode *di; 1880 1881 /* This is called with the super block cluster lock, so we 1882 * know that the slot map can't change underneath us. */ 1883 1884 for (i = 0; i < osb->max_slots; i++) { 1885 /* Read journal inode to get the recovery generation */ 1886 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1887 if (status) { 1888 mlog_errno(status); 1889 goto bail; 1890 } 1891 di = (struct ocfs2_dinode *)bh->b_data; 1892 gen = ocfs2_get_recovery_generation(di); 1893 brelse(bh); 1894 bh = NULL; 1895 1896 spin_lock(&osb->osb_lock); 1897 osb->slot_recovery_generations[i] = gen; 1898 1899 trace_ocfs2_mark_dead_nodes(i, 1900 osb->slot_recovery_generations[i]); 1901 1902 if (i == osb->slot_num) { 1903 spin_unlock(&osb->osb_lock); 1904 continue; 1905 } 1906 1907 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1908 if (status == -ENOENT) { 1909 spin_unlock(&osb->osb_lock); 1910 continue; 1911 } 1912 1913 if (__ocfs2_recovery_map_test(osb, node_num)) { 1914 spin_unlock(&osb->osb_lock); 1915 continue; 1916 } 1917 spin_unlock(&osb->osb_lock); 1918 1919 /* Ok, we have a slot occupied by another node which 1920 * is not in the recovery map. We trylock his journal 1921 * file here to test if he's alive. */ 1922 status = ocfs2_trylock_journal(osb, i); 1923 if (!status) { 1924 /* Since we're called from mount, we know that 1925 * the recovery thread can't race us on 1926 * setting / checking the recovery bits. */ 1927 ocfs2_recovery_thread(osb, node_num); 1928 } else if ((status < 0) && (status != -EAGAIN)) { 1929 mlog_errno(status); 1930 goto bail; 1931 } 1932 } 1933 1934 status = 0; 1935 bail: 1936 return status; 1937 } 1938 1939 /* 1940 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1941 * randomness to the timeout to minimize multple nodes firing the timer at the 1942 * same time. 1943 */ 1944 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1945 { 1946 unsigned long time; 1947 1948 get_random_bytes(&time, sizeof(time)); 1949 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1950 return msecs_to_jiffies(time); 1951 } 1952 1953 /* 1954 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1955 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1956 * is done to catch any orphans that are left over in orphan directories. 1957 * 1958 * It scans all slots, even ones that are in use. It does so to handle the 1959 * case described below: 1960 * 1961 * Node 1 has an inode it was using. The dentry went away due to memory 1962 * pressure. Node 1 closes the inode, but it's on the free list. The node 1963 * has the open lock. 1964 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1965 * but node 1 has no dentry and doesn't get the message. It trylocks the 1966 * open lock, sees that another node has a PR, and does nothing. 1967 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1968 * open lock, sees the PR still, and does nothing. 1969 * Basically, we have to trigger an orphan iput on node 1. The only way 1970 * for this to happen is if node 1 runs node 2's orphan dir. 1971 * 1972 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1973 * seconds. It gets an EX lock on os_lockres and checks sequence number 1974 * stored in LVB. If the sequence number has changed, it means some other 1975 * node has done the scan. This node skips the scan and tracks the 1976 * sequence number. If the sequence number didn't change, it means a scan 1977 * hasn't happened. The node queues a scan and increments the 1978 * sequence number in the LVB. 1979 */ 1980 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1981 { 1982 struct ocfs2_orphan_scan *os; 1983 int status, i; 1984 u32 seqno = 0; 1985 1986 os = &osb->osb_orphan_scan; 1987 1988 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1989 goto out; 1990 1991 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1992 atomic_read(&os->os_state)); 1993 1994 status = ocfs2_orphan_scan_lock(osb, &seqno); 1995 if (status < 0) { 1996 if (status != -EAGAIN) 1997 mlog_errno(status); 1998 goto out; 1999 } 2000 2001 /* Do no queue the tasks if the volume is being umounted */ 2002 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2003 goto unlock; 2004 2005 if (os->os_seqno != seqno) { 2006 os->os_seqno = seqno; 2007 goto unlock; 2008 } 2009 2010 for (i = 0; i < osb->max_slots; i++) 2011 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 2012 NULL, ORPHAN_NO_NEED_TRUNCATE); 2013 /* 2014 * We queued a recovery on orphan slots, increment the sequence 2015 * number and update LVB so other node will skip the scan for a while 2016 */ 2017 seqno++; 2018 os->os_count++; 2019 os->os_scantime = ktime_get_seconds(); 2020 unlock: 2021 ocfs2_orphan_scan_unlock(osb, seqno); 2022 out: 2023 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2024 atomic_read(&os->os_state)); 2025 return; 2026 } 2027 2028 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2029 static void ocfs2_orphan_scan_work(struct work_struct *work) 2030 { 2031 struct ocfs2_orphan_scan *os; 2032 struct ocfs2_super *osb; 2033 2034 os = container_of(work, struct ocfs2_orphan_scan, 2035 os_orphan_scan_work.work); 2036 osb = os->os_osb; 2037 2038 mutex_lock(&os->os_lock); 2039 ocfs2_queue_orphan_scan(osb); 2040 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2041 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2042 ocfs2_orphan_scan_timeout()); 2043 mutex_unlock(&os->os_lock); 2044 } 2045 2046 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2047 { 2048 struct ocfs2_orphan_scan *os; 2049 2050 os = &osb->osb_orphan_scan; 2051 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2052 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2053 mutex_lock(&os->os_lock); 2054 cancel_delayed_work(&os->os_orphan_scan_work); 2055 mutex_unlock(&os->os_lock); 2056 } 2057 } 2058 2059 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2060 { 2061 struct ocfs2_orphan_scan *os; 2062 2063 os = &osb->osb_orphan_scan; 2064 os->os_osb = osb; 2065 os->os_count = 0; 2066 os->os_seqno = 0; 2067 mutex_init(&os->os_lock); 2068 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2069 } 2070 2071 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2072 { 2073 struct ocfs2_orphan_scan *os; 2074 2075 os = &osb->osb_orphan_scan; 2076 os->os_scantime = ktime_get_seconds(); 2077 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2078 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2079 else { 2080 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2081 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2082 ocfs2_orphan_scan_timeout()); 2083 } 2084 } 2085 2086 struct ocfs2_orphan_filldir_priv { 2087 struct dir_context ctx; 2088 struct inode *head; 2089 struct ocfs2_super *osb; 2090 enum ocfs2_orphan_reco_type orphan_reco_type; 2091 }; 2092 2093 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2094 int name_len, loff_t pos, u64 ino, 2095 unsigned type) 2096 { 2097 struct ocfs2_orphan_filldir_priv *p = 2098 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2099 struct inode *iter; 2100 2101 if (name_len == 1 && !strncmp(".", name, 1)) 2102 return true; 2103 if (name_len == 2 && !strncmp("..", name, 2)) 2104 return true; 2105 2106 /* do not include dio entry in case of orphan scan */ 2107 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2108 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2109 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2110 return true; 2111 2112 /* Skip bad inodes so that recovery can continue */ 2113 iter = ocfs2_iget(p->osb, ino, 2114 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2115 if (IS_ERR(iter)) 2116 return true; 2117 2118 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2119 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2120 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2121 2122 /* Skip inodes which are already added to recover list, since dio may 2123 * happen concurrently with unlink/rename */ 2124 if (OCFS2_I(iter)->ip_next_orphan) { 2125 iput(iter); 2126 return true; 2127 } 2128 2129 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2130 /* No locking is required for the next_orphan queue as there 2131 * is only ever a single process doing orphan recovery. */ 2132 OCFS2_I(iter)->ip_next_orphan = p->head; 2133 p->head = iter; 2134 2135 return true; 2136 } 2137 2138 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2139 int slot, 2140 struct inode **head, 2141 enum ocfs2_orphan_reco_type orphan_reco_type) 2142 { 2143 int status; 2144 struct inode *orphan_dir_inode = NULL; 2145 struct ocfs2_orphan_filldir_priv priv = { 2146 .ctx.actor = ocfs2_orphan_filldir, 2147 .osb = osb, 2148 .head = *head, 2149 .orphan_reco_type = orphan_reco_type 2150 }; 2151 2152 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2153 ORPHAN_DIR_SYSTEM_INODE, 2154 slot); 2155 if (!orphan_dir_inode) { 2156 status = -ENOENT; 2157 mlog_errno(status); 2158 return status; 2159 } 2160 2161 inode_lock(orphan_dir_inode); 2162 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2163 if (status < 0) { 2164 mlog_errno(status); 2165 goto out; 2166 } 2167 2168 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2169 if (status) { 2170 mlog_errno(status); 2171 goto out_cluster; 2172 } 2173 2174 *head = priv.head; 2175 2176 out_cluster: 2177 ocfs2_inode_unlock(orphan_dir_inode, 0); 2178 out: 2179 inode_unlock(orphan_dir_inode); 2180 iput(orphan_dir_inode); 2181 return status; 2182 } 2183 2184 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2185 int slot) 2186 { 2187 int ret; 2188 2189 spin_lock(&osb->osb_lock); 2190 ret = !osb->osb_orphan_wipes[slot]; 2191 spin_unlock(&osb->osb_lock); 2192 return ret; 2193 } 2194 2195 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2196 int slot) 2197 { 2198 spin_lock(&osb->osb_lock); 2199 /* Mark ourselves such that new processes in delete_inode() 2200 * know to quit early. */ 2201 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2202 while (osb->osb_orphan_wipes[slot]) { 2203 /* If any processes are already in the middle of an 2204 * orphan wipe on this dir, then we need to wait for 2205 * them. */ 2206 spin_unlock(&osb->osb_lock); 2207 wait_event_interruptible(osb->osb_wipe_event, 2208 ocfs2_orphan_recovery_can_continue(osb, slot)); 2209 spin_lock(&osb->osb_lock); 2210 } 2211 spin_unlock(&osb->osb_lock); 2212 } 2213 2214 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2215 int slot) 2216 { 2217 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2218 } 2219 2220 /* 2221 * Orphan recovery. Each mounted node has it's own orphan dir which we 2222 * must run during recovery. Our strategy here is to build a list of 2223 * the inodes in the orphan dir and iget/iput them. The VFS does 2224 * (most) of the rest of the work. 2225 * 2226 * Orphan recovery can happen at any time, not just mount so we have a 2227 * couple of extra considerations. 2228 * 2229 * - We grab as many inodes as we can under the orphan dir lock - 2230 * doing iget() outside the orphan dir risks getting a reference on 2231 * an invalid inode. 2232 * - We must be sure not to deadlock with other processes on the 2233 * system wanting to run delete_inode(). This can happen when they go 2234 * to lock the orphan dir and the orphan recovery process attempts to 2235 * iget() inside the orphan dir lock. This can be avoided by 2236 * advertising our state to ocfs2_delete_inode(). 2237 */ 2238 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2239 int slot, 2240 enum ocfs2_orphan_reco_type orphan_reco_type) 2241 { 2242 int ret = 0; 2243 struct inode *inode = NULL; 2244 struct inode *iter; 2245 struct ocfs2_inode_info *oi; 2246 struct buffer_head *di_bh = NULL; 2247 struct ocfs2_dinode *di = NULL; 2248 2249 trace_ocfs2_recover_orphans(slot); 2250 2251 ocfs2_mark_recovering_orphan_dir(osb, slot); 2252 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2253 ocfs2_clear_recovering_orphan_dir(osb, slot); 2254 2255 /* Error here should be noted, but we want to continue with as 2256 * many queued inodes as we've got. */ 2257 if (ret) 2258 mlog_errno(ret); 2259 2260 while (inode) { 2261 oi = OCFS2_I(inode); 2262 trace_ocfs2_recover_orphans_iput( 2263 (unsigned long long)oi->ip_blkno); 2264 2265 iter = oi->ip_next_orphan; 2266 oi->ip_next_orphan = NULL; 2267 2268 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2269 inode_lock(inode); 2270 ret = ocfs2_rw_lock(inode, 1); 2271 if (ret < 0) { 2272 mlog_errno(ret); 2273 goto unlock_mutex; 2274 } 2275 /* 2276 * We need to take and drop the inode lock to 2277 * force read inode from disk. 2278 */ 2279 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2280 if (ret) { 2281 mlog_errno(ret); 2282 goto unlock_rw; 2283 } 2284 2285 di = (struct ocfs2_dinode *)di_bh->b_data; 2286 2287 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2288 ret = ocfs2_truncate_file(inode, di_bh, 2289 i_size_read(inode)); 2290 if (ret < 0) { 2291 if (ret != -ENOSPC) 2292 mlog_errno(ret); 2293 goto unlock_inode; 2294 } 2295 2296 ret = ocfs2_del_inode_from_orphan(osb, inode, 2297 di_bh, 0, 0); 2298 if (ret) 2299 mlog_errno(ret); 2300 } 2301 unlock_inode: 2302 ocfs2_inode_unlock(inode, 1); 2303 brelse(di_bh); 2304 di_bh = NULL; 2305 unlock_rw: 2306 ocfs2_rw_unlock(inode, 1); 2307 unlock_mutex: 2308 inode_unlock(inode); 2309 2310 /* clear dio flag in ocfs2_inode_info */ 2311 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2312 } else { 2313 spin_lock(&oi->ip_lock); 2314 /* Set the proper information to get us going into 2315 * ocfs2_delete_inode. */ 2316 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2317 spin_unlock(&oi->ip_lock); 2318 } 2319 2320 iput(inode); 2321 inode = iter; 2322 } 2323 2324 return ret; 2325 } 2326 2327 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2328 { 2329 /* This check is good because ocfs2 will wait on our recovery 2330 * thread before changing it to something other than MOUNTED 2331 * or DISABLED. */ 2332 wait_event(osb->osb_mount_event, 2333 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2334 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2335 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2336 2337 /* If there's an error on mount, then we may never get to the 2338 * MOUNTED flag, but this is set right before 2339 * dismount_volume() so we can trust it. */ 2340 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2341 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2342 mlog(0, "mount error, exiting!\n"); 2343 return -EBUSY; 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int ocfs2_commit_thread(void *arg) 2350 { 2351 int status; 2352 struct ocfs2_super *osb = arg; 2353 struct ocfs2_journal *journal = osb->journal; 2354 2355 /* we can trust j_num_trans here because _should_stop() is only set in 2356 * shutdown and nobody other than ourselves should be able to start 2357 * transactions. committing on shutdown might take a few iterations 2358 * as final transactions put deleted inodes on the list */ 2359 while (!(kthread_should_stop() && 2360 atomic_read(&journal->j_num_trans) == 0)) { 2361 2362 wait_event_interruptible(osb->checkpoint_event, 2363 atomic_read(&journal->j_num_trans) 2364 || kthread_should_stop()); 2365 2366 status = ocfs2_commit_cache(osb); 2367 if (status < 0) { 2368 static unsigned long abort_warn_time; 2369 2370 /* Warn about this once per minute */ 2371 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2372 mlog(ML_ERROR, "status = %d, journal is " 2373 "already aborted.\n", status); 2374 /* 2375 * After ocfs2_commit_cache() fails, j_num_trans has a 2376 * non-zero value. Sleep here to avoid a busy-wait 2377 * loop. 2378 */ 2379 msleep_interruptible(1000); 2380 } 2381 2382 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2383 mlog(ML_KTHREAD, 2384 "commit_thread: %u transactions pending on " 2385 "shutdown\n", 2386 atomic_read(&journal->j_num_trans)); 2387 } 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* Reads all the journal inodes without taking any cluster locks. Used 2394 * for hard readonly access to determine whether any journal requires 2395 * recovery. Also used to refresh the recovery generation numbers after 2396 * a journal has been recovered by another node. 2397 */ 2398 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2399 { 2400 int ret = 0; 2401 unsigned int slot; 2402 struct buffer_head *di_bh = NULL; 2403 struct ocfs2_dinode *di; 2404 int journal_dirty = 0; 2405 2406 for(slot = 0; slot < osb->max_slots; slot++) { 2407 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2408 if (ret) { 2409 mlog_errno(ret); 2410 goto out; 2411 } 2412 2413 di = (struct ocfs2_dinode *) di_bh->b_data; 2414 2415 osb->slot_recovery_generations[slot] = 2416 ocfs2_get_recovery_generation(di); 2417 2418 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2419 OCFS2_JOURNAL_DIRTY_FL) 2420 journal_dirty = 1; 2421 2422 brelse(di_bh); 2423 di_bh = NULL; 2424 } 2425 2426 out: 2427 if (journal_dirty) 2428 ret = -EROFS; 2429 return ret; 2430 } 2431