1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[] __counted_by(rm_slots); 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, 118 osb->max_slots), 119 GFP_KERNEL); 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->recovery_state = OCFS2_REC_ENABLED; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 osb->recovery_map = rm; 189 190 return 0; 191 } 192 193 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 194 { 195 return osb->recovery_thread_task != NULL; 196 } 197 198 static void ocfs2_recovery_disable(struct ocfs2_super *osb, 199 enum ocfs2_recovery_state state) 200 { 201 mutex_lock(&osb->recovery_lock); 202 /* 203 * If recovery thread is not running, we can directly transition to 204 * final state. 205 */ 206 if (!ocfs2_recovery_thread_running(osb)) { 207 osb->recovery_state = state + 1; 208 goto out_lock; 209 } 210 osb->recovery_state = state; 211 /* Wait for recovery thread to acknowledge state transition */ 212 wait_event_cmd(osb->recovery_event, 213 !ocfs2_recovery_thread_running(osb) || 214 osb->recovery_state >= state + 1, 215 mutex_unlock(&osb->recovery_lock), 216 mutex_lock(&osb->recovery_lock)); 217 out_lock: 218 mutex_unlock(&osb->recovery_lock); 219 220 /* 221 * At this point we know that no more recovery work can be queued so 222 * wait for any recovery completion work to complete. 223 */ 224 if (osb->ocfs2_wq) 225 flush_workqueue(osb->ocfs2_wq); 226 } 227 228 void ocfs2_recovery_disable_quota(struct ocfs2_super *osb) 229 { 230 ocfs2_recovery_disable(osb, OCFS2_REC_QUOTA_WANT_DISABLE); 231 } 232 233 void ocfs2_recovery_exit(struct ocfs2_super *osb) 234 { 235 struct ocfs2_recovery_map *rm; 236 237 /* disable any new recovery threads and wait for any currently 238 * running ones to exit. Do this before setting the vol_state. */ 239 ocfs2_recovery_disable(osb, OCFS2_REC_WANT_DISABLE); 240 241 /* 242 * Now that recovery is shut down, and the osb is about to be 243 * freed, the osb_lock is not taken here. 244 */ 245 rm = osb->recovery_map; 246 /* XXX: Should we bug if there are dirty entries? */ 247 248 kfree(rm); 249 } 250 251 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 252 unsigned int node_num) 253 { 254 int i; 255 struct ocfs2_recovery_map *rm = osb->recovery_map; 256 257 assert_spin_locked(&osb->osb_lock); 258 259 for (i = 0; i < rm->rm_used; i++) { 260 if (rm->rm_entries[i] == node_num) 261 return 1; 262 } 263 264 return 0; 265 } 266 267 /* Behaves like test-and-set. Returns the previous value */ 268 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 269 unsigned int node_num) 270 { 271 struct ocfs2_recovery_map *rm = osb->recovery_map; 272 273 spin_lock(&osb->osb_lock); 274 if (__ocfs2_recovery_map_test(osb, node_num)) { 275 spin_unlock(&osb->osb_lock); 276 return 1; 277 } 278 279 /* XXX: Can this be exploited? Not from o2dlm... */ 280 BUG_ON(rm->rm_used >= osb->max_slots); 281 282 rm->rm_entries[rm->rm_used] = node_num; 283 rm->rm_used++; 284 spin_unlock(&osb->osb_lock); 285 286 return 0; 287 } 288 289 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 290 unsigned int node_num) 291 { 292 int i; 293 struct ocfs2_recovery_map *rm = osb->recovery_map; 294 295 spin_lock(&osb->osb_lock); 296 297 for (i = 0; i < rm->rm_used; i++) { 298 if (rm->rm_entries[i] == node_num) 299 break; 300 } 301 302 if (i < rm->rm_used) { 303 /* XXX: be careful with the pointer math */ 304 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 305 (rm->rm_used - i - 1) * sizeof(unsigned int)); 306 rm->rm_used--; 307 } 308 309 spin_unlock(&osb->osb_lock); 310 } 311 312 static int ocfs2_commit_cache(struct ocfs2_super *osb) 313 { 314 int status = 0; 315 unsigned int flushed; 316 struct ocfs2_journal *journal = NULL; 317 318 journal = osb->journal; 319 320 /* Flush all pending commits and checkpoint the journal. */ 321 down_write(&journal->j_trans_barrier); 322 323 flushed = atomic_read(&journal->j_num_trans); 324 trace_ocfs2_commit_cache_begin(flushed); 325 if (flushed == 0) { 326 up_write(&journal->j_trans_barrier); 327 goto finally; 328 } 329 330 jbd2_journal_lock_updates(journal->j_journal); 331 status = jbd2_journal_flush(journal->j_journal, 0); 332 jbd2_journal_unlock_updates(journal->j_journal); 333 if (status < 0) { 334 up_write(&journal->j_trans_barrier); 335 mlog_errno(status); 336 goto finally; 337 } 338 339 ocfs2_inc_trans_id(journal); 340 341 flushed = atomic_read(&journal->j_num_trans); 342 atomic_set(&journal->j_num_trans, 0); 343 up_write(&journal->j_trans_barrier); 344 345 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 346 347 ocfs2_wake_downconvert_thread(osb); 348 wake_up(&journal->j_checkpointed); 349 finally: 350 return status; 351 } 352 353 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 354 { 355 journal_t *journal = osb->journal->j_journal; 356 handle_t *handle; 357 358 BUG_ON(!osb || !osb->journal->j_journal); 359 360 if (ocfs2_is_hard_readonly(osb)) 361 return ERR_PTR(-EROFS); 362 363 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 364 BUG_ON(max_buffs <= 0); 365 366 /* Nested transaction? Just return the handle... */ 367 if (journal_current_handle()) 368 return jbd2_journal_start(journal, max_buffs); 369 370 sb_start_intwrite(osb->sb); 371 372 down_read(&osb->journal->j_trans_barrier); 373 374 handle = jbd2_journal_start(journal, max_buffs); 375 if (IS_ERR(handle)) { 376 up_read(&osb->journal->j_trans_barrier); 377 sb_end_intwrite(osb->sb); 378 379 mlog_errno(PTR_ERR(handle)); 380 381 if (is_journal_aborted(journal)) { 382 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 383 handle = ERR_PTR(-EROFS); 384 } 385 } else { 386 if (!ocfs2_mount_local(osb)) 387 atomic_inc(&(osb->journal->j_num_trans)); 388 } 389 390 return handle; 391 } 392 393 int ocfs2_commit_trans(struct ocfs2_super *osb, 394 handle_t *handle) 395 { 396 int ret, nested; 397 struct ocfs2_journal *journal = osb->journal; 398 399 BUG_ON(!handle); 400 401 nested = handle->h_ref > 1; 402 ret = jbd2_journal_stop(handle); 403 if (ret < 0) 404 mlog_errno(ret); 405 406 if (!nested) { 407 up_read(&journal->j_trans_barrier); 408 sb_end_intwrite(osb->sb); 409 } 410 411 return ret; 412 } 413 414 /* 415 * 'nblocks' is what you want to add to the current transaction. 416 * 417 * This might call jbd2_journal_restart() which will commit dirty buffers 418 * and then restart the transaction. Before calling 419 * ocfs2_extend_trans(), any changed blocks should have been 420 * dirtied. After calling it, all blocks which need to be changed must 421 * go through another set of journal_access/journal_dirty calls. 422 * 423 * WARNING: This will not release any semaphores or disk locks taken 424 * during the transaction, so make sure they were taken *before* 425 * start_trans or we'll have ordering deadlocks. 426 * 427 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 428 * good because transaction ids haven't yet been recorded on the 429 * cluster locks associated with this handle. 430 */ 431 int ocfs2_extend_trans(handle_t *handle, int nblocks) 432 { 433 int status, old_nblocks; 434 435 BUG_ON(!handle); 436 BUG_ON(nblocks < 0); 437 438 if (!nblocks) 439 return 0; 440 441 old_nblocks = jbd2_handle_buffer_credits(handle); 442 443 trace_ocfs2_extend_trans(old_nblocks, nblocks); 444 445 #ifdef CONFIG_OCFS2_DEBUG_FS 446 status = 1; 447 #else 448 status = jbd2_journal_extend(handle, nblocks, 0); 449 if (status < 0) { 450 mlog_errno(status); 451 goto bail; 452 } 453 #endif 454 455 if (status > 0) { 456 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 457 status = jbd2_journal_restart(handle, 458 old_nblocks + nblocks); 459 if (status < 0) { 460 mlog_errno(status); 461 goto bail; 462 } 463 } 464 465 status = 0; 466 bail: 467 return status; 468 } 469 470 /* 471 * Make sure handle has at least 'nblocks' credits available. If it does not 472 * have that many credits available, we will try to extend the handle to have 473 * enough credits. If that fails, we will restart transaction to have enough 474 * credits. Similar notes regarding data consistency and locking implications 475 * as for ocfs2_extend_trans() apply here. 476 */ 477 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks) 478 { 479 int old_nblks = jbd2_handle_buffer_credits(handle); 480 481 trace_ocfs2_assure_trans_credits(old_nblks); 482 if (old_nblks >= nblocks) 483 return 0; 484 return ocfs2_extend_trans(handle, nblocks - old_nblks); 485 } 486 487 /* 488 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 489 * If that fails, restart the transaction & regain write access for the 490 * buffer head which is used for metadata modifications. 491 * Taken from Ext4: extend_or_restart_transaction() 492 */ 493 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 494 { 495 int status, old_nblks; 496 497 BUG_ON(!handle); 498 499 old_nblks = jbd2_handle_buffer_credits(handle); 500 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 501 502 if (old_nblks < thresh) 503 return 0; 504 505 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail; 509 } 510 511 if (status > 0) { 512 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 513 if (status < 0) 514 mlog_errno(status); 515 } 516 517 bail: 518 return status; 519 } 520 521 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 522 { 523 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 524 } 525 526 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 527 struct buffer_head *bh, 528 void *data, size_t size) 529 { 530 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 531 532 /* 533 * We aren't guaranteed to have the superblock here, so we 534 * must unconditionally compute the ecc data. 535 * __ocfs2_journal_access() will only set the triggers if 536 * metaecc is enabled. 537 */ 538 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 539 } 540 541 /* 542 * Quota blocks have their own trigger because the struct ocfs2_block_check 543 * offset depends on the blocksize. 544 */ 545 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 546 struct buffer_head *bh, 547 void *data, size_t size) 548 { 549 struct ocfs2_disk_dqtrailer *dqt = 550 ocfs2_block_dqtrailer(size, data); 551 552 /* 553 * We aren't guaranteed to have the superblock here, so we 554 * must unconditionally compute the ecc data. 555 * __ocfs2_journal_access() will only set the triggers if 556 * metaecc is enabled. 557 */ 558 ocfs2_block_check_compute(data, size, &dqt->dq_check); 559 } 560 561 /* 562 * Directory blocks also have their own trigger because the 563 * struct ocfs2_block_check offset depends on the blocksize. 564 */ 565 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh, 567 void *data, size_t size) 568 { 569 struct ocfs2_dir_block_trailer *trailer = 570 ocfs2_dir_trailer_from_size(size, data); 571 572 /* 573 * We aren't guaranteed to have the superblock here, so we 574 * must unconditionally compute the ecc data. 575 * __ocfs2_journal_access() will only set the triggers if 576 * metaecc is enabled. 577 */ 578 ocfs2_block_check_compute(data, size, &trailer->db_check); 579 } 580 581 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 582 struct buffer_head *bh) 583 { 584 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 585 586 mlog(ML_ERROR, 587 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 588 "bh->b_blocknr = %llu\n", 589 (unsigned long)bh, 590 (unsigned long long)bh->b_blocknr); 591 592 ocfs2_error(ot->sb, 593 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 594 } 595 596 static void ocfs2_setup_csum_triggers(struct super_block *sb, 597 enum ocfs2_journal_trigger_type type, 598 struct ocfs2_triggers *ot) 599 { 600 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT); 601 602 switch (type) { 603 case OCFS2_JTR_DI: 604 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 605 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check); 606 break; 607 case OCFS2_JTR_EB: 608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 609 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check); 610 break; 611 case OCFS2_JTR_RB: 612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 613 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check); 614 break; 615 case OCFS2_JTR_GD: 616 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 617 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check); 618 break; 619 case OCFS2_JTR_DB: 620 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger; 621 break; 622 case OCFS2_JTR_XB: 623 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 624 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check); 625 break; 626 case OCFS2_JTR_DQ: 627 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger; 628 break; 629 case OCFS2_JTR_DR: 630 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 631 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check); 632 break; 633 case OCFS2_JTR_DL: 634 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 635 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check); 636 break; 637 case OCFS2_JTR_NONE: 638 /* To make compiler happy... */ 639 return; 640 } 641 642 ot->ot_triggers.t_abort = ocfs2_abort_trigger; 643 ot->sb = sb; 644 } 645 646 void ocfs2_initialize_journal_triggers(struct super_block *sb, 647 struct ocfs2_triggers triggers[]) 648 { 649 enum ocfs2_journal_trigger_type type; 650 651 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++) 652 ocfs2_setup_csum_triggers(sb, type, &triggers[type]); 653 } 654 655 static int __ocfs2_journal_access(handle_t *handle, 656 struct ocfs2_caching_info *ci, 657 struct buffer_head *bh, 658 struct ocfs2_triggers *triggers, 659 int type) 660 { 661 int status; 662 struct ocfs2_super *osb = 663 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 664 665 BUG_ON(!ci || !ci->ci_ops); 666 BUG_ON(!handle); 667 BUG_ON(!bh); 668 669 trace_ocfs2_journal_access( 670 (unsigned long long)ocfs2_metadata_cache_owner(ci), 671 (unsigned long long)bh->b_blocknr, type, bh->b_size); 672 673 /* we can safely remove this assertion after testing. */ 674 if (!buffer_uptodate(bh)) { 675 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 676 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 677 (unsigned long long)bh->b_blocknr, bh->b_state); 678 679 lock_buffer(bh); 680 /* 681 * A previous transaction with a couple of buffer heads fail 682 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 683 * For current transaction, the bh is just among those error 684 * bhs which previous transaction handle. We can't just clear 685 * its BH_Write_EIO and reuse directly, since other bhs are 686 * not written to disk yet and that will cause metadata 687 * inconsistency. So we should set fs read-only to avoid 688 * further damage. 689 */ 690 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 691 unlock_buffer(bh); 692 return ocfs2_error(osb->sb, "A previous attempt to " 693 "write this buffer head failed\n"); 694 } 695 unlock_buffer(bh); 696 } 697 698 /* Set the current transaction information on the ci so 699 * that the locking code knows whether it can drop it's locks 700 * on this ci or not. We're protected from the commit 701 * thread updating the current transaction id until 702 * ocfs2_commit_trans() because ocfs2_start_trans() took 703 * j_trans_barrier for us. */ 704 ocfs2_set_ci_lock_trans(osb->journal, ci); 705 706 ocfs2_metadata_cache_io_lock(ci); 707 switch (type) { 708 case OCFS2_JOURNAL_ACCESS_CREATE: 709 case OCFS2_JOURNAL_ACCESS_WRITE: 710 status = jbd2_journal_get_write_access(handle, bh); 711 break; 712 713 case OCFS2_JOURNAL_ACCESS_UNDO: 714 status = jbd2_journal_get_undo_access(handle, bh); 715 break; 716 717 default: 718 status = -EINVAL; 719 mlog(ML_ERROR, "Unknown access type!\n"); 720 } 721 if (!status && ocfs2_meta_ecc(osb) && triggers) 722 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 723 ocfs2_metadata_cache_io_unlock(ci); 724 725 if (status < 0) 726 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 727 status, type); 728 729 return status; 730 } 731 732 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 733 struct buffer_head *bh, int type) 734 { 735 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 736 737 return __ocfs2_journal_access(handle, ci, bh, 738 &osb->s_journal_triggers[OCFS2_JTR_DI], 739 type); 740 } 741 742 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 743 struct buffer_head *bh, int type) 744 { 745 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 746 747 return __ocfs2_journal_access(handle, ci, bh, 748 &osb->s_journal_triggers[OCFS2_JTR_EB], 749 type); 750 } 751 752 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 753 struct buffer_head *bh, int type) 754 { 755 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 756 757 return __ocfs2_journal_access(handle, ci, bh, 758 &osb->s_journal_triggers[OCFS2_JTR_RB], 759 type); 760 } 761 762 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 763 struct buffer_head *bh, int type) 764 { 765 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 766 767 return __ocfs2_journal_access(handle, ci, bh, 768 &osb->s_journal_triggers[OCFS2_JTR_GD], 769 type); 770 } 771 772 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 773 struct buffer_head *bh, int type) 774 { 775 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 776 777 return __ocfs2_journal_access(handle, ci, bh, 778 &osb->s_journal_triggers[OCFS2_JTR_DB], 779 type); 780 } 781 782 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 783 struct buffer_head *bh, int type) 784 { 785 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 786 787 return __ocfs2_journal_access(handle, ci, bh, 788 &osb->s_journal_triggers[OCFS2_JTR_XB], 789 type); 790 } 791 792 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 793 struct buffer_head *bh, int type) 794 { 795 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 796 797 return __ocfs2_journal_access(handle, ci, bh, 798 &osb->s_journal_triggers[OCFS2_JTR_DQ], 799 type); 800 } 801 802 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 803 struct buffer_head *bh, int type) 804 { 805 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 806 807 return __ocfs2_journal_access(handle, ci, bh, 808 &osb->s_journal_triggers[OCFS2_JTR_DR], 809 type); 810 } 811 812 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 813 struct buffer_head *bh, int type) 814 { 815 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 816 817 return __ocfs2_journal_access(handle, ci, bh, 818 &osb->s_journal_triggers[OCFS2_JTR_DL], 819 type); 820 } 821 822 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 823 struct buffer_head *bh, int type) 824 { 825 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 826 } 827 828 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 829 { 830 int status; 831 832 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 833 834 status = jbd2_journal_dirty_metadata(handle, bh); 835 if (status) { 836 mlog_errno(status); 837 if (!is_handle_aborted(handle)) { 838 journal_t *journal = handle->h_transaction->t_journal; 839 840 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: " 841 "handle type %u started at line %u, credits %u/%u " 842 "errcode %d. Aborting transaction and journal.\n", 843 handle->h_type, handle->h_line_no, 844 handle->h_requested_credits, 845 jbd2_handle_buffer_credits(handle), status); 846 handle->h_err = status; 847 jbd2_journal_abort_handle(handle); 848 jbd2_journal_abort(journal, status); 849 } 850 } 851 } 852 853 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 854 855 void ocfs2_set_journal_params(struct ocfs2_super *osb) 856 { 857 journal_t *journal = osb->journal->j_journal; 858 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 859 860 if (osb->osb_commit_interval) 861 commit_interval = osb->osb_commit_interval; 862 863 write_lock(&journal->j_state_lock); 864 journal->j_commit_interval = commit_interval; 865 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 866 journal->j_flags |= JBD2_BARRIER; 867 else 868 journal->j_flags &= ~JBD2_BARRIER; 869 write_unlock(&journal->j_state_lock); 870 } 871 872 /* 873 * alloc & initialize skeleton for journal structure. 874 * ocfs2_journal_init() will make fs have journal ability. 875 */ 876 int ocfs2_journal_alloc(struct ocfs2_super *osb) 877 { 878 int status = 0; 879 struct ocfs2_journal *journal; 880 881 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 882 if (!journal) { 883 mlog(ML_ERROR, "unable to alloc journal\n"); 884 status = -ENOMEM; 885 goto bail; 886 } 887 osb->journal = journal; 888 journal->j_osb = osb; 889 890 atomic_set(&journal->j_num_trans, 0); 891 init_rwsem(&journal->j_trans_barrier); 892 init_waitqueue_head(&journal->j_checkpointed); 893 spin_lock_init(&journal->j_lock); 894 journal->j_trans_id = 1UL; 895 INIT_LIST_HEAD(&journal->j_la_cleanups); 896 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 897 journal->j_state = OCFS2_JOURNAL_FREE; 898 899 bail: 900 return status; 901 } 902 903 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 904 { 905 return filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 906 jinode->i_dirty_start, jinode->i_dirty_end); 907 } 908 909 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 910 { 911 int status = -1; 912 struct inode *inode = NULL; /* the journal inode */ 913 journal_t *j_journal = NULL; 914 struct ocfs2_journal *journal = osb->journal; 915 struct ocfs2_dinode *di = NULL; 916 struct buffer_head *bh = NULL; 917 int inode_lock = 0; 918 919 BUG_ON(!journal); 920 /* already have the inode for our journal */ 921 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 922 osb->slot_num); 923 if (inode == NULL) { 924 status = -EACCES; 925 mlog_errno(status); 926 goto done; 927 } 928 if (is_bad_inode(inode)) { 929 mlog(ML_ERROR, "access error (bad inode)\n"); 930 iput(inode); 931 inode = NULL; 932 status = -EACCES; 933 goto done; 934 } 935 936 SET_INODE_JOURNAL(inode); 937 OCFS2_I(inode)->ip_open_count++; 938 939 /* Skip recovery waits here - journal inode metadata never 940 * changes in a live cluster so it can be considered an 941 * exception to the rule. */ 942 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 943 if (status < 0) { 944 if (status != -ERESTARTSYS) 945 mlog(ML_ERROR, "Could not get lock on journal!\n"); 946 goto done; 947 } 948 949 inode_lock = 1; 950 di = (struct ocfs2_dinode *)bh->b_data; 951 952 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 953 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 954 i_size_read(inode)); 955 status = -EINVAL; 956 goto done; 957 } 958 959 trace_ocfs2_journal_init(i_size_read(inode), 960 (unsigned long long)inode->i_blocks, 961 OCFS2_I(inode)->ip_clusters); 962 963 /* call the kernels journal init function now */ 964 j_journal = jbd2_journal_init_inode(inode); 965 if (IS_ERR(j_journal)) { 966 mlog(ML_ERROR, "Linux journal layer error\n"); 967 status = PTR_ERR(j_journal); 968 goto done; 969 } 970 971 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 972 973 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 974 OCFS2_JOURNAL_DIRTY_FL); 975 976 journal->j_journal = j_journal; 977 journal->j_journal->j_submit_inode_data_buffers = 978 ocfs2_journal_submit_inode_data_buffers; 979 journal->j_journal->j_finish_inode_data_buffers = 980 jbd2_journal_finish_inode_data_buffers; 981 journal->j_inode = inode; 982 journal->j_bh = bh; 983 984 ocfs2_set_journal_params(osb); 985 986 journal->j_state = OCFS2_JOURNAL_LOADED; 987 988 status = 0; 989 done: 990 if (status < 0) { 991 if (inode_lock) 992 ocfs2_inode_unlock(inode, 1); 993 brelse(bh); 994 if (inode) { 995 OCFS2_I(inode)->ip_open_count--; 996 iput(inode); 997 } 998 } 999 1000 return status; 1001 } 1002 1003 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 1004 { 1005 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 1006 } 1007 1008 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 1009 { 1010 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 1011 } 1012 1013 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 1014 int dirty, int replayed) 1015 { 1016 int status; 1017 unsigned int flags; 1018 struct ocfs2_journal *journal = osb->journal; 1019 struct buffer_head *bh = journal->j_bh; 1020 struct ocfs2_dinode *fe; 1021 1022 fe = (struct ocfs2_dinode *)bh->b_data; 1023 1024 /* The journal bh on the osb always comes from ocfs2_journal_init() 1025 * and was validated there inside ocfs2_inode_lock_full(). It's a 1026 * code bug if we mess it up. */ 1027 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 1028 1029 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1030 if (dirty) 1031 flags |= OCFS2_JOURNAL_DIRTY_FL; 1032 else 1033 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1034 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1035 1036 if (replayed) 1037 ocfs2_bump_recovery_generation(fe); 1038 1039 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1040 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 1041 if (status < 0) 1042 mlog_errno(status); 1043 1044 return status; 1045 } 1046 1047 /* 1048 * If the journal has been kmalloc'd it needs to be freed after this 1049 * call. 1050 */ 1051 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 1052 { 1053 struct ocfs2_journal *journal = NULL; 1054 int status = 0; 1055 struct inode *inode = NULL; 1056 int num_running_trans = 0; 1057 1058 BUG_ON(!osb); 1059 1060 journal = osb->journal; 1061 if (!journal) 1062 goto done; 1063 1064 inode = journal->j_inode; 1065 1066 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1067 goto done; 1068 1069 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1070 if (!igrab(inode)) 1071 BUG(); 1072 1073 num_running_trans = atomic_read(&(journal->j_num_trans)); 1074 trace_ocfs2_journal_shutdown(num_running_trans); 1075 1076 /* Do a commit_cache here. It will flush our journal, *and* 1077 * release any locks that are still held. 1078 * set the SHUTDOWN flag and release the trans lock. 1079 * the commit thread will take the trans lock for us below. */ 1080 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1081 1082 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1083 * drop the trans_lock (which we want to hold until we 1084 * completely destroy the journal. */ 1085 if (osb->commit_task) { 1086 /* Wait for the commit thread */ 1087 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1088 kthread_stop(osb->commit_task); 1089 osb->commit_task = NULL; 1090 } 1091 1092 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0); 1093 1094 if (ocfs2_mount_local(osb) && 1095 (journal->j_journal->j_flags & JBD2_LOADED)) { 1096 jbd2_journal_lock_updates(journal->j_journal); 1097 status = jbd2_journal_flush(journal->j_journal, 0); 1098 jbd2_journal_unlock_updates(journal->j_journal); 1099 if (status < 0) 1100 mlog_errno(status); 1101 } 1102 1103 /* Shutdown the kernel journal system */ 1104 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1105 /* 1106 * Do not toggle if flush was unsuccessful otherwise 1107 * will leave dirty metadata in a "clean" journal 1108 */ 1109 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1110 if (status < 0) 1111 mlog_errno(status); 1112 } 1113 journal->j_journal = NULL; 1114 1115 OCFS2_I(inode)->ip_open_count--; 1116 1117 /* unlock our journal */ 1118 ocfs2_inode_unlock(inode, 1); 1119 1120 brelse(journal->j_bh); 1121 journal->j_bh = NULL; 1122 1123 journal->j_state = OCFS2_JOURNAL_FREE; 1124 1125 done: 1126 iput(inode); 1127 kfree(journal); 1128 osb->journal = NULL; 1129 } 1130 1131 static void ocfs2_clear_journal_error(struct super_block *sb, 1132 journal_t *journal, 1133 int slot) 1134 { 1135 int olderr; 1136 1137 olderr = jbd2_journal_errno(journal); 1138 if (olderr) { 1139 mlog(ML_ERROR, "File system error %d recorded in " 1140 "journal %u.\n", olderr, slot); 1141 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1142 sb->s_id); 1143 1144 jbd2_journal_ack_err(journal); 1145 jbd2_journal_clear_err(journal); 1146 } 1147 } 1148 1149 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1150 { 1151 int status = 0; 1152 struct ocfs2_super *osb; 1153 1154 BUG_ON(!journal); 1155 1156 osb = journal->j_osb; 1157 1158 status = jbd2_journal_load(journal->j_journal); 1159 if (status < 0) { 1160 mlog(ML_ERROR, "Failed to load journal!\n"); 1161 goto done; 1162 } 1163 1164 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1165 1166 if (replayed) { 1167 jbd2_journal_lock_updates(journal->j_journal); 1168 status = jbd2_journal_flush(journal->j_journal, 0); 1169 jbd2_journal_unlock_updates(journal->j_journal); 1170 if (status < 0) 1171 mlog_errno(status); 1172 } 1173 1174 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1175 if (status < 0) { 1176 mlog_errno(status); 1177 goto done; 1178 } 1179 1180 /* Launch the commit thread */ 1181 if (!local) { 1182 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1183 "ocfs2cmt-%s", osb->uuid_str); 1184 if (IS_ERR(osb->commit_task)) { 1185 status = PTR_ERR(osb->commit_task); 1186 osb->commit_task = NULL; 1187 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1188 "error=%d", status); 1189 goto done; 1190 } 1191 } else 1192 osb->commit_task = NULL; 1193 1194 done: 1195 return status; 1196 } 1197 1198 1199 /* 'full' flag tells us whether we clear out all blocks or if we just 1200 * mark the journal clean */ 1201 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1202 { 1203 int status; 1204 1205 BUG_ON(!journal); 1206 1207 status = jbd2_journal_wipe(journal->j_journal, full); 1208 if (status < 0) { 1209 mlog_errno(status); 1210 goto bail; 1211 } 1212 1213 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1214 if (status < 0) 1215 mlog_errno(status); 1216 1217 bail: 1218 return status; 1219 } 1220 1221 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1222 { 1223 int empty; 1224 struct ocfs2_recovery_map *rm = osb->recovery_map; 1225 1226 spin_lock(&osb->osb_lock); 1227 empty = (rm->rm_used == 0); 1228 spin_unlock(&osb->osb_lock); 1229 1230 return empty; 1231 } 1232 1233 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1234 { 1235 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1236 } 1237 1238 /* 1239 * JBD Might read a cached version of another nodes journal file. We 1240 * don't want this as this file changes often and we get no 1241 * notification on those changes. The only way to be sure that we've 1242 * got the most up to date version of those blocks then is to force 1243 * read them off disk. Just searching through the buffer cache won't 1244 * work as there may be pages backing this file which are still marked 1245 * up to date. We know things can't change on this file underneath us 1246 * as we have the lock by now :) 1247 */ 1248 static int ocfs2_force_read_journal(struct inode *inode) 1249 { 1250 int status = 0; 1251 int i; 1252 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1253 struct buffer_head *bh = NULL; 1254 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1255 1256 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1257 v_blkno = 0; 1258 while (v_blkno < num_blocks) { 1259 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1260 &p_blkno, &p_blocks, NULL); 1261 if (status < 0) { 1262 mlog_errno(status); 1263 goto bail; 1264 } 1265 1266 for (i = 0; i < p_blocks; i++, p_blkno++) { 1267 bh = __find_get_block_nonatomic(osb->sb->s_bdev, p_blkno, 1268 osb->sb->s_blocksize); 1269 /* block not cached. */ 1270 if (!bh) 1271 continue; 1272 1273 brelse(bh); 1274 bh = NULL; 1275 /* We are reading journal data which should not 1276 * be put in the uptodate cache. 1277 */ 1278 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1279 if (status < 0) { 1280 mlog_errno(status); 1281 goto bail; 1282 } 1283 1284 brelse(bh); 1285 bh = NULL; 1286 } 1287 1288 v_blkno += p_blocks; 1289 } 1290 1291 bail: 1292 return status; 1293 } 1294 1295 struct ocfs2_la_recovery_item { 1296 struct list_head lri_list; 1297 int lri_slot; 1298 struct ocfs2_dinode *lri_la_dinode; 1299 struct ocfs2_dinode *lri_tl_dinode; 1300 struct ocfs2_quota_recovery *lri_qrec; 1301 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1302 }; 1303 1304 /* Does the second half of the recovery process. By this point, the 1305 * node is marked clean and can actually be considered recovered, 1306 * hence it's no longer in the recovery map, but there's still some 1307 * cleanup we can do which shouldn't happen within the recovery thread 1308 * as locking in that context becomes very difficult if we are to take 1309 * recovering nodes into account. 1310 * 1311 * NOTE: This function can and will sleep on recovery of other nodes 1312 * during cluster locking, just like any other ocfs2 process. 1313 */ 1314 void ocfs2_complete_recovery(struct work_struct *work) 1315 { 1316 int ret = 0; 1317 struct ocfs2_journal *journal = 1318 container_of(work, struct ocfs2_journal, j_recovery_work); 1319 struct ocfs2_super *osb = journal->j_osb; 1320 struct ocfs2_dinode *la_dinode, *tl_dinode; 1321 struct ocfs2_la_recovery_item *item, *n; 1322 struct ocfs2_quota_recovery *qrec; 1323 enum ocfs2_orphan_reco_type orphan_reco_type; 1324 LIST_HEAD(tmp_la_list); 1325 1326 trace_ocfs2_complete_recovery( 1327 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1328 1329 spin_lock(&journal->j_lock); 1330 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1331 spin_unlock(&journal->j_lock); 1332 1333 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1334 list_del_init(&item->lri_list); 1335 1336 ocfs2_wait_on_quotas(osb); 1337 1338 la_dinode = item->lri_la_dinode; 1339 tl_dinode = item->lri_tl_dinode; 1340 qrec = item->lri_qrec; 1341 orphan_reco_type = item->lri_orphan_reco_type; 1342 1343 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1344 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1345 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1346 qrec); 1347 1348 if (la_dinode) { 1349 ret = ocfs2_complete_local_alloc_recovery(osb, 1350 la_dinode); 1351 if (ret < 0) 1352 mlog_errno(ret); 1353 1354 kfree(la_dinode); 1355 } 1356 1357 if (tl_dinode) { 1358 ret = ocfs2_complete_truncate_log_recovery(osb, 1359 tl_dinode); 1360 if (ret < 0) 1361 mlog_errno(ret); 1362 1363 kfree(tl_dinode); 1364 } 1365 1366 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1367 orphan_reco_type); 1368 if (ret < 0) 1369 mlog_errno(ret); 1370 1371 if (qrec) { 1372 ret = ocfs2_finish_quota_recovery(osb, qrec, 1373 item->lri_slot); 1374 if (ret < 0) 1375 mlog_errno(ret); 1376 /* Recovery info is already freed now */ 1377 } 1378 1379 kfree(item); 1380 } 1381 1382 trace_ocfs2_complete_recovery_end(ret); 1383 } 1384 1385 /* NOTE: This function always eats your references to la_dinode and 1386 * tl_dinode, either manually on error, or by passing them to 1387 * ocfs2_complete_recovery */ 1388 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1389 int slot_num, 1390 struct ocfs2_dinode *la_dinode, 1391 struct ocfs2_dinode *tl_dinode, 1392 struct ocfs2_quota_recovery *qrec, 1393 enum ocfs2_orphan_reco_type orphan_reco_type) 1394 { 1395 struct ocfs2_la_recovery_item *item; 1396 1397 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1398 if (!item) { 1399 /* Though we wish to avoid it, we are in fact safe in 1400 * skipping local alloc cleanup as fsck.ocfs2 is more 1401 * than capable of reclaiming unused space. */ 1402 kfree(la_dinode); 1403 kfree(tl_dinode); 1404 1405 if (qrec) 1406 ocfs2_free_quota_recovery(qrec); 1407 1408 mlog_errno(-ENOMEM); 1409 return; 1410 } 1411 1412 INIT_LIST_HEAD(&item->lri_list); 1413 item->lri_la_dinode = la_dinode; 1414 item->lri_slot = slot_num; 1415 item->lri_tl_dinode = tl_dinode; 1416 item->lri_qrec = qrec; 1417 item->lri_orphan_reco_type = orphan_reco_type; 1418 1419 spin_lock(&journal->j_lock); 1420 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1421 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1422 spin_unlock(&journal->j_lock); 1423 } 1424 1425 /* Called by the mount code to queue recovery the last part of 1426 * recovery for it's own and offline slot(s). */ 1427 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1428 { 1429 struct ocfs2_journal *journal = osb->journal; 1430 1431 if (ocfs2_is_hard_readonly(osb)) 1432 return; 1433 1434 /* No need to queue up our truncate_log as regular cleanup will catch 1435 * that */ 1436 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1437 osb->local_alloc_copy, NULL, NULL, 1438 ORPHAN_NEED_TRUNCATE); 1439 ocfs2_schedule_truncate_log_flush(osb, 0); 1440 1441 osb->local_alloc_copy = NULL; 1442 1443 /* queue to recover orphan slots for all offline slots */ 1444 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1445 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1446 ocfs2_free_replay_slots(osb); 1447 } 1448 1449 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1450 { 1451 if (osb->quota_rec) { 1452 ocfs2_queue_recovery_completion(osb->journal, 1453 osb->slot_num, 1454 NULL, 1455 NULL, 1456 osb->quota_rec, 1457 ORPHAN_NEED_TRUNCATE); 1458 osb->quota_rec = NULL; 1459 } 1460 } 1461 1462 static int __ocfs2_recovery_thread(void *arg) 1463 { 1464 int status, node_num, slot_num; 1465 struct ocfs2_super *osb = arg; 1466 struct ocfs2_recovery_map *rm = osb->recovery_map; 1467 int *rm_quota = NULL; 1468 int rm_quota_used = 0, i; 1469 struct ocfs2_quota_recovery *qrec; 1470 1471 /* Whether the quota supported. */ 1472 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1473 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1474 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1475 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1476 1477 status = ocfs2_wait_on_mount(osb); 1478 if (status < 0) { 1479 goto bail; 1480 } 1481 1482 if (quota_enabled) { 1483 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1484 if (!rm_quota) { 1485 status = -ENOMEM; 1486 goto bail; 1487 } 1488 } 1489 restart: 1490 if (quota_enabled) { 1491 mutex_lock(&osb->recovery_lock); 1492 /* Confirm that recovery thread will no longer recover quotas */ 1493 if (osb->recovery_state == OCFS2_REC_QUOTA_WANT_DISABLE) { 1494 osb->recovery_state = OCFS2_REC_QUOTA_DISABLED; 1495 wake_up(&osb->recovery_event); 1496 } 1497 if (osb->recovery_state >= OCFS2_REC_QUOTA_DISABLED) 1498 quota_enabled = 0; 1499 mutex_unlock(&osb->recovery_lock); 1500 } 1501 1502 status = ocfs2_super_lock(osb, 1); 1503 if (status < 0) { 1504 mlog_errno(status); 1505 goto bail; 1506 } 1507 1508 status = ocfs2_compute_replay_slots(osb); 1509 if (status < 0) 1510 mlog_errno(status); 1511 1512 /* queue recovery for our own slot */ 1513 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1514 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1515 1516 spin_lock(&osb->osb_lock); 1517 while (rm->rm_used) { 1518 /* It's always safe to remove entry zero, as we won't 1519 * clear it until ocfs2_recover_node() has succeeded. */ 1520 node_num = rm->rm_entries[0]; 1521 spin_unlock(&osb->osb_lock); 1522 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1523 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1524 if (slot_num == -ENOENT) { 1525 status = 0; 1526 goto skip_recovery; 1527 } 1528 1529 /* It is a bit subtle with quota recovery. We cannot do it 1530 * immediately because we have to obtain cluster locks from 1531 * quota files and we also don't want to just skip it because 1532 * then quota usage would be out of sync until some node takes 1533 * the slot. So we remember which nodes need quota recovery 1534 * and when everything else is done, we recover quotas. */ 1535 if (quota_enabled) { 1536 for (i = 0; i < rm_quota_used 1537 && rm_quota[i] != slot_num; i++) 1538 ; 1539 1540 if (i == rm_quota_used) 1541 rm_quota[rm_quota_used++] = slot_num; 1542 } 1543 1544 status = ocfs2_recover_node(osb, node_num, slot_num); 1545 skip_recovery: 1546 if (!status) { 1547 ocfs2_recovery_map_clear(osb, node_num); 1548 } else { 1549 mlog(ML_ERROR, 1550 "Error %d recovering node %d on device (%u,%u)!\n", 1551 status, node_num, 1552 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1553 mlog(ML_ERROR, "Volume requires unmount.\n"); 1554 } 1555 1556 spin_lock(&osb->osb_lock); 1557 } 1558 spin_unlock(&osb->osb_lock); 1559 trace_ocfs2_recovery_thread_end(status); 1560 1561 /* Refresh all journal recovery generations from disk */ 1562 status = ocfs2_check_journals_nolocks(osb); 1563 status = (status == -EROFS) ? 0 : status; 1564 if (status < 0) 1565 mlog_errno(status); 1566 1567 /* Now it is right time to recover quotas... We have to do this under 1568 * superblock lock so that no one can start using the slot (and crash) 1569 * before we recover it */ 1570 if (quota_enabled) { 1571 for (i = 0; i < rm_quota_used; i++) { 1572 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1573 if (IS_ERR(qrec)) { 1574 status = PTR_ERR(qrec); 1575 mlog_errno(status); 1576 continue; 1577 } 1578 ocfs2_queue_recovery_completion(osb->journal, 1579 rm_quota[i], 1580 NULL, NULL, qrec, 1581 ORPHAN_NEED_TRUNCATE); 1582 } 1583 } 1584 1585 ocfs2_super_unlock(osb, 1); 1586 1587 /* queue recovery for offline slots */ 1588 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1589 1590 bail: 1591 mutex_lock(&osb->recovery_lock); 1592 if (!status && !ocfs2_recovery_completed(osb)) { 1593 mutex_unlock(&osb->recovery_lock); 1594 goto restart; 1595 } 1596 1597 ocfs2_free_replay_slots(osb); 1598 osb->recovery_thread_task = NULL; 1599 if (osb->recovery_state == OCFS2_REC_WANT_DISABLE) 1600 osb->recovery_state = OCFS2_REC_DISABLED; 1601 wake_up(&osb->recovery_event); 1602 1603 mutex_unlock(&osb->recovery_lock); 1604 1605 kfree(rm_quota); 1606 1607 return status; 1608 } 1609 1610 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1611 { 1612 int was_set = -1; 1613 1614 mutex_lock(&osb->recovery_lock); 1615 if (osb->recovery_state < OCFS2_REC_WANT_DISABLE) 1616 was_set = ocfs2_recovery_map_set(osb, node_num); 1617 1618 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1619 osb->recovery_state, osb->recovery_thread_task, was_set); 1620 1621 if (osb->recovery_state >= OCFS2_REC_WANT_DISABLE) 1622 goto out; 1623 1624 if (osb->recovery_thread_task) 1625 goto out; 1626 1627 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1628 "ocfs2rec-%s", osb->uuid_str); 1629 if (IS_ERR(osb->recovery_thread_task)) { 1630 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1631 osb->recovery_thread_task = NULL; 1632 } 1633 1634 out: 1635 mutex_unlock(&osb->recovery_lock); 1636 wake_up(&osb->recovery_event); 1637 } 1638 1639 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1640 int slot_num, 1641 struct buffer_head **bh, 1642 struct inode **ret_inode) 1643 { 1644 int status = -EACCES; 1645 struct inode *inode = NULL; 1646 1647 BUG_ON(slot_num >= osb->max_slots); 1648 1649 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1650 slot_num); 1651 if (!inode || is_bad_inode(inode)) { 1652 mlog_errno(status); 1653 goto bail; 1654 } 1655 SET_INODE_JOURNAL(inode); 1656 1657 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1658 if (status < 0) { 1659 mlog_errno(status); 1660 goto bail; 1661 } 1662 1663 status = 0; 1664 1665 bail: 1666 if (inode) { 1667 if (status || !ret_inode) 1668 iput(inode); 1669 else 1670 *ret_inode = inode; 1671 } 1672 return status; 1673 } 1674 1675 /* Does the actual journal replay and marks the journal inode as 1676 * clean. Will only replay if the journal inode is marked dirty. */ 1677 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1678 int node_num, 1679 int slot_num) 1680 { 1681 int status; 1682 int got_lock = 0; 1683 unsigned int flags; 1684 struct inode *inode = NULL; 1685 struct ocfs2_dinode *fe; 1686 journal_t *journal = NULL; 1687 struct buffer_head *bh = NULL; 1688 u32 slot_reco_gen; 1689 1690 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1691 if (status) { 1692 mlog_errno(status); 1693 goto done; 1694 } 1695 1696 fe = (struct ocfs2_dinode *)bh->b_data; 1697 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1698 brelse(bh); 1699 bh = NULL; 1700 1701 /* 1702 * As the fs recovery is asynchronous, there is a small chance that 1703 * another node mounted (and recovered) the slot before the recovery 1704 * thread could get the lock. To handle that, we dirty read the journal 1705 * inode for that slot to get the recovery generation. If it is 1706 * different than what we expected, the slot has been recovered. 1707 * If not, it needs recovery. 1708 */ 1709 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1710 trace_ocfs2_replay_journal_recovered(slot_num, 1711 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1712 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1713 status = -EBUSY; 1714 goto done; 1715 } 1716 1717 /* Continue with recovery as the journal has not yet been recovered */ 1718 1719 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1720 if (status < 0) { 1721 trace_ocfs2_replay_journal_lock_err(status); 1722 if (status != -ERESTARTSYS) 1723 mlog(ML_ERROR, "Could not lock journal!\n"); 1724 goto done; 1725 } 1726 got_lock = 1; 1727 1728 fe = (struct ocfs2_dinode *) bh->b_data; 1729 1730 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1731 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1732 1733 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1734 trace_ocfs2_replay_journal_skip(node_num); 1735 /* Refresh recovery generation for the slot */ 1736 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1737 goto done; 1738 } 1739 1740 /* we need to run complete recovery for offline orphan slots */ 1741 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1742 1743 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1744 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1745 MINOR(osb->sb->s_dev)); 1746 1747 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1748 1749 status = ocfs2_force_read_journal(inode); 1750 if (status < 0) { 1751 mlog_errno(status); 1752 goto done; 1753 } 1754 1755 journal = jbd2_journal_init_inode(inode); 1756 if (IS_ERR(journal)) { 1757 mlog(ML_ERROR, "Linux journal layer error\n"); 1758 status = PTR_ERR(journal); 1759 goto done; 1760 } 1761 1762 status = jbd2_journal_load(journal); 1763 if (status < 0) { 1764 mlog_errno(status); 1765 BUG_ON(!igrab(inode)); 1766 jbd2_journal_destroy(journal); 1767 goto done; 1768 } 1769 1770 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1771 1772 /* wipe the journal */ 1773 jbd2_journal_lock_updates(journal); 1774 status = jbd2_journal_flush(journal, 0); 1775 jbd2_journal_unlock_updates(journal); 1776 if (status < 0) 1777 mlog_errno(status); 1778 1779 /* This will mark the node clean */ 1780 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1781 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1782 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1783 1784 /* Increment recovery generation to indicate successful recovery */ 1785 ocfs2_bump_recovery_generation(fe); 1786 osb->slot_recovery_generations[slot_num] = 1787 ocfs2_get_recovery_generation(fe); 1788 1789 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1790 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1791 if (status < 0) 1792 mlog_errno(status); 1793 1794 BUG_ON(!igrab(inode)); 1795 1796 jbd2_journal_destroy(journal); 1797 1798 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1799 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1800 MINOR(osb->sb->s_dev)); 1801 done: 1802 /* drop the lock on this nodes journal */ 1803 if (got_lock) 1804 ocfs2_inode_unlock(inode, 1); 1805 1806 iput(inode); 1807 brelse(bh); 1808 1809 return status; 1810 } 1811 1812 /* 1813 * Do the most important parts of node recovery: 1814 * - Replay it's journal 1815 * - Stamp a clean local allocator file 1816 * - Stamp a clean truncate log 1817 * - Mark the node clean 1818 * 1819 * If this function completes without error, a node in OCFS2 can be 1820 * said to have been safely recovered. As a result, failure during the 1821 * second part of a nodes recovery process (local alloc recovery) is 1822 * far less concerning. 1823 */ 1824 static int ocfs2_recover_node(struct ocfs2_super *osb, 1825 int node_num, int slot_num) 1826 { 1827 int status = 0; 1828 struct ocfs2_dinode *la_copy = NULL; 1829 struct ocfs2_dinode *tl_copy = NULL; 1830 1831 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1832 1833 /* Should not ever be called to recover ourselves -- in that 1834 * case we should've called ocfs2_journal_load instead. */ 1835 BUG_ON(osb->node_num == node_num); 1836 1837 status = ocfs2_replay_journal(osb, node_num, slot_num); 1838 if (status < 0) { 1839 if (status == -EBUSY) { 1840 trace_ocfs2_recover_node_skip(slot_num, node_num); 1841 status = 0; 1842 goto done; 1843 } 1844 mlog_errno(status); 1845 goto done; 1846 } 1847 1848 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1849 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1850 if (status < 0) { 1851 mlog_errno(status); 1852 goto done; 1853 } 1854 1855 /* An error from begin_truncate_log_recovery is not 1856 * serious enough to warrant halting the rest of 1857 * recovery. */ 1858 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1859 if (status < 0) 1860 mlog_errno(status); 1861 1862 /* Likewise, this would be a strange but ultimately not so 1863 * harmful place to get an error... */ 1864 status = ocfs2_clear_slot(osb, slot_num); 1865 if (status < 0) 1866 mlog_errno(status); 1867 1868 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1869 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1870 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1871 1872 status = 0; 1873 done: 1874 1875 return status; 1876 } 1877 1878 /* Test node liveness by trylocking his journal. If we get the lock, 1879 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1880 * still alive (we couldn't get the lock) and < 0 on error. */ 1881 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1882 int slot_num) 1883 { 1884 int status, flags; 1885 struct inode *inode = NULL; 1886 1887 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1888 slot_num); 1889 if (inode == NULL) { 1890 mlog(ML_ERROR, "access error\n"); 1891 status = -EACCES; 1892 goto bail; 1893 } 1894 if (is_bad_inode(inode)) { 1895 mlog(ML_ERROR, "access error (bad inode)\n"); 1896 iput(inode); 1897 inode = NULL; 1898 status = -EACCES; 1899 goto bail; 1900 } 1901 SET_INODE_JOURNAL(inode); 1902 1903 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1904 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1905 if (status < 0) { 1906 if (status != -EAGAIN) 1907 mlog_errno(status); 1908 goto bail; 1909 } 1910 1911 ocfs2_inode_unlock(inode, 1); 1912 bail: 1913 iput(inode); 1914 1915 return status; 1916 } 1917 1918 /* Call this underneath ocfs2_super_lock. It also assumes that the 1919 * slot info struct has been updated from disk. */ 1920 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1921 { 1922 unsigned int node_num; 1923 int status, i; 1924 u32 gen; 1925 struct buffer_head *bh = NULL; 1926 struct ocfs2_dinode *di; 1927 1928 /* This is called with the super block cluster lock, so we 1929 * know that the slot map can't change underneath us. */ 1930 1931 for (i = 0; i < osb->max_slots; i++) { 1932 /* Read journal inode to get the recovery generation */ 1933 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1934 if (status) { 1935 mlog_errno(status); 1936 goto bail; 1937 } 1938 di = (struct ocfs2_dinode *)bh->b_data; 1939 gen = ocfs2_get_recovery_generation(di); 1940 brelse(bh); 1941 bh = NULL; 1942 1943 spin_lock(&osb->osb_lock); 1944 osb->slot_recovery_generations[i] = gen; 1945 1946 trace_ocfs2_mark_dead_nodes(i, 1947 osb->slot_recovery_generations[i]); 1948 1949 if (i == osb->slot_num) { 1950 spin_unlock(&osb->osb_lock); 1951 continue; 1952 } 1953 1954 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1955 if (status == -ENOENT) { 1956 spin_unlock(&osb->osb_lock); 1957 continue; 1958 } 1959 1960 if (__ocfs2_recovery_map_test(osb, node_num)) { 1961 spin_unlock(&osb->osb_lock); 1962 continue; 1963 } 1964 spin_unlock(&osb->osb_lock); 1965 1966 /* Ok, we have a slot occupied by another node which 1967 * is not in the recovery map. We trylock his journal 1968 * file here to test if he's alive. */ 1969 status = ocfs2_trylock_journal(osb, i); 1970 if (!status) { 1971 /* Since we're called from mount, we know that 1972 * the recovery thread can't race us on 1973 * setting / checking the recovery bits. */ 1974 ocfs2_recovery_thread(osb, node_num); 1975 } else if ((status < 0) && (status != -EAGAIN)) { 1976 mlog_errno(status); 1977 goto bail; 1978 } 1979 } 1980 1981 status = 0; 1982 bail: 1983 return status; 1984 } 1985 1986 /* 1987 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1988 * randomness to the timeout to minimize multiple nodes firing the timer at the 1989 * same time. 1990 */ 1991 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1992 { 1993 unsigned long time; 1994 1995 get_random_bytes(&time, sizeof(time)); 1996 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1997 return msecs_to_jiffies(time); 1998 } 1999 2000 /* 2001 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 2002 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 2003 * is done to catch any orphans that are left over in orphan directories. 2004 * 2005 * It scans all slots, even ones that are in use. It does so to handle the 2006 * case described below: 2007 * 2008 * Node 1 has an inode it was using. The dentry went away due to memory 2009 * pressure. Node 1 closes the inode, but it's on the free list. The node 2010 * has the open lock. 2011 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 2012 * but node 1 has no dentry and doesn't get the message. It trylocks the 2013 * open lock, sees that another node has a PR, and does nothing. 2014 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 2015 * open lock, sees the PR still, and does nothing. 2016 * Basically, we have to trigger an orphan iput on node 1. The only way 2017 * for this to happen is if node 1 runs node 2's orphan dir. 2018 * 2019 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 2020 * seconds. It gets an EX lock on os_lockres and checks sequence number 2021 * stored in LVB. If the sequence number has changed, it means some other 2022 * node has done the scan. This node skips the scan and tracks the 2023 * sequence number. If the sequence number didn't change, it means a scan 2024 * hasn't happened. The node queues a scan and increments the 2025 * sequence number in the LVB. 2026 */ 2027 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 2028 { 2029 struct ocfs2_orphan_scan *os; 2030 int status, i; 2031 u32 seqno = 0; 2032 2033 os = &osb->osb_orphan_scan; 2034 2035 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2036 goto out; 2037 2038 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 2039 atomic_read(&os->os_state)); 2040 2041 status = ocfs2_orphan_scan_lock(osb, &seqno); 2042 if (status < 0) { 2043 if (status != -EAGAIN) 2044 mlog_errno(status); 2045 goto out; 2046 } 2047 2048 /* Do no queue the tasks if the volume is being umounted */ 2049 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2050 goto unlock; 2051 2052 if (os->os_seqno != seqno) { 2053 os->os_seqno = seqno; 2054 goto unlock; 2055 } 2056 2057 for (i = 0; i < osb->max_slots; i++) 2058 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 2059 NULL, ORPHAN_NO_NEED_TRUNCATE); 2060 /* 2061 * We queued a recovery on orphan slots, increment the sequence 2062 * number and update LVB so other node will skip the scan for a while 2063 */ 2064 seqno++; 2065 os->os_count++; 2066 os->os_scantime = ktime_get_seconds(); 2067 unlock: 2068 ocfs2_orphan_scan_unlock(osb, seqno); 2069 out: 2070 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2071 atomic_read(&os->os_state)); 2072 return; 2073 } 2074 2075 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2076 static void ocfs2_orphan_scan_work(struct work_struct *work) 2077 { 2078 struct ocfs2_orphan_scan *os; 2079 struct ocfs2_super *osb; 2080 2081 os = container_of(work, struct ocfs2_orphan_scan, 2082 os_orphan_scan_work.work); 2083 osb = os->os_osb; 2084 2085 mutex_lock(&os->os_lock); 2086 ocfs2_queue_orphan_scan(osb); 2087 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2088 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2089 ocfs2_orphan_scan_timeout()); 2090 mutex_unlock(&os->os_lock); 2091 } 2092 2093 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2094 { 2095 struct ocfs2_orphan_scan *os; 2096 2097 os = &osb->osb_orphan_scan; 2098 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2099 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2100 mutex_lock(&os->os_lock); 2101 cancel_delayed_work(&os->os_orphan_scan_work); 2102 mutex_unlock(&os->os_lock); 2103 } 2104 } 2105 2106 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2107 { 2108 struct ocfs2_orphan_scan *os; 2109 2110 os = &osb->osb_orphan_scan; 2111 os->os_osb = osb; 2112 os->os_count = 0; 2113 os->os_seqno = 0; 2114 mutex_init(&os->os_lock); 2115 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2116 } 2117 2118 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2119 { 2120 struct ocfs2_orphan_scan *os; 2121 2122 os = &osb->osb_orphan_scan; 2123 os->os_scantime = ktime_get_seconds(); 2124 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2125 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2126 else { 2127 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2128 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2129 ocfs2_orphan_scan_timeout()); 2130 } 2131 } 2132 2133 struct ocfs2_orphan_filldir_priv { 2134 struct dir_context ctx; 2135 struct inode *head; 2136 struct ocfs2_super *osb; 2137 enum ocfs2_orphan_reco_type orphan_reco_type; 2138 }; 2139 2140 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2141 int name_len, loff_t pos, u64 ino, 2142 unsigned type) 2143 { 2144 struct ocfs2_orphan_filldir_priv *p = 2145 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2146 struct inode *iter; 2147 2148 if (name_len == 1 && !strncmp(".", name, 1)) 2149 return true; 2150 if (name_len == 2 && !strncmp("..", name, 2)) 2151 return true; 2152 2153 /* do not include dio entry in case of orphan scan */ 2154 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2155 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2156 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2157 return true; 2158 2159 /* Skip bad inodes so that recovery can continue */ 2160 iter = ocfs2_iget(p->osb, ino, 2161 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2162 if (IS_ERR(iter)) 2163 return true; 2164 2165 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2166 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2167 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2168 2169 /* Skip inodes which are already added to recover list, since dio may 2170 * happen concurrently with unlink/rename */ 2171 if (OCFS2_I(iter)->ip_next_orphan) { 2172 iput(iter); 2173 return true; 2174 } 2175 2176 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2177 /* No locking is required for the next_orphan queue as there 2178 * is only ever a single process doing orphan recovery. */ 2179 OCFS2_I(iter)->ip_next_orphan = p->head; 2180 p->head = iter; 2181 2182 return true; 2183 } 2184 2185 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2186 int slot, 2187 struct inode **head, 2188 enum ocfs2_orphan_reco_type orphan_reco_type) 2189 { 2190 int status; 2191 struct inode *orphan_dir_inode = NULL; 2192 struct ocfs2_orphan_filldir_priv priv = { 2193 .ctx.actor = ocfs2_orphan_filldir, 2194 .osb = osb, 2195 .head = *head, 2196 .orphan_reco_type = orphan_reco_type 2197 }; 2198 2199 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2200 ORPHAN_DIR_SYSTEM_INODE, 2201 slot); 2202 if (!orphan_dir_inode) { 2203 status = -ENOENT; 2204 mlog_errno(status); 2205 return status; 2206 } 2207 2208 inode_lock(orphan_dir_inode); 2209 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2210 if (status < 0) { 2211 mlog_errno(status); 2212 goto out; 2213 } 2214 2215 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2216 if (status) { 2217 mlog_errno(status); 2218 goto out_cluster; 2219 } 2220 2221 *head = priv.head; 2222 2223 out_cluster: 2224 ocfs2_inode_unlock(orphan_dir_inode, 0); 2225 out: 2226 inode_unlock(orphan_dir_inode); 2227 iput(orphan_dir_inode); 2228 return status; 2229 } 2230 2231 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2232 int slot) 2233 { 2234 int ret; 2235 2236 spin_lock(&osb->osb_lock); 2237 ret = !osb->osb_orphan_wipes[slot]; 2238 spin_unlock(&osb->osb_lock); 2239 return ret; 2240 } 2241 2242 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2243 int slot) 2244 { 2245 spin_lock(&osb->osb_lock); 2246 /* Mark ourselves such that new processes in delete_inode() 2247 * know to quit early. */ 2248 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2249 while (osb->osb_orphan_wipes[slot]) { 2250 /* If any processes are already in the middle of an 2251 * orphan wipe on this dir, then we need to wait for 2252 * them. */ 2253 spin_unlock(&osb->osb_lock); 2254 wait_event_interruptible(osb->osb_wipe_event, 2255 ocfs2_orphan_recovery_can_continue(osb, slot)); 2256 spin_lock(&osb->osb_lock); 2257 } 2258 spin_unlock(&osb->osb_lock); 2259 } 2260 2261 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2262 int slot) 2263 { 2264 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2265 } 2266 2267 /* 2268 * Orphan recovery. Each mounted node has it's own orphan dir which we 2269 * must run during recovery. Our strategy here is to build a list of 2270 * the inodes in the orphan dir and iget/iput them. The VFS does 2271 * (most) of the rest of the work. 2272 * 2273 * Orphan recovery can happen at any time, not just mount so we have a 2274 * couple of extra considerations. 2275 * 2276 * - We grab as many inodes as we can under the orphan dir lock - 2277 * doing iget() outside the orphan dir risks getting a reference on 2278 * an invalid inode. 2279 * - We must be sure not to deadlock with other processes on the 2280 * system wanting to run delete_inode(). This can happen when they go 2281 * to lock the orphan dir and the orphan recovery process attempts to 2282 * iget() inside the orphan dir lock. This can be avoided by 2283 * advertising our state to ocfs2_delete_inode(). 2284 */ 2285 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2286 int slot, 2287 enum ocfs2_orphan_reco_type orphan_reco_type) 2288 { 2289 int ret = 0; 2290 struct inode *inode = NULL; 2291 struct inode *iter; 2292 struct ocfs2_inode_info *oi; 2293 struct buffer_head *di_bh = NULL; 2294 struct ocfs2_dinode *di = NULL; 2295 2296 trace_ocfs2_recover_orphans(slot); 2297 2298 ocfs2_mark_recovering_orphan_dir(osb, slot); 2299 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2300 ocfs2_clear_recovering_orphan_dir(osb, slot); 2301 2302 /* Error here should be noted, but we want to continue with as 2303 * many queued inodes as we've got. */ 2304 if (ret) 2305 mlog_errno(ret); 2306 2307 while (inode) { 2308 oi = OCFS2_I(inode); 2309 trace_ocfs2_recover_orphans_iput( 2310 (unsigned long long)oi->ip_blkno); 2311 2312 iter = oi->ip_next_orphan; 2313 oi->ip_next_orphan = NULL; 2314 2315 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2316 inode_lock(inode); 2317 ret = ocfs2_rw_lock(inode, 1); 2318 if (ret < 0) { 2319 mlog_errno(ret); 2320 goto unlock_mutex; 2321 } 2322 /* 2323 * We need to take and drop the inode lock to 2324 * force read inode from disk. 2325 */ 2326 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2327 if (ret) { 2328 mlog_errno(ret); 2329 goto unlock_rw; 2330 } 2331 2332 di = (struct ocfs2_dinode *)di_bh->b_data; 2333 2334 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2335 ret = ocfs2_truncate_file(inode, di_bh, 2336 i_size_read(inode)); 2337 if (ret < 0) { 2338 if (ret != -ENOSPC) 2339 mlog_errno(ret); 2340 goto unlock_inode; 2341 } 2342 2343 ret = ocfs2_del_inode_from_orphan(osb, inode, 2344 di_bh, 0, 0); 2345 if (ret) 2346 mlog_errno(ret); 2347 } 2348 unlock_inode: 2349 ocfs2_inode_unlock(inode, 1); 2350 brelse(di_bh); 2351 di_bh = NULL; 2352 unlock_rw: 2353 ocfs2_rw_unlock(inode, 1); 2354 unlock_mutex: 2355 inode_unlock(inode); 2356 2357 /* clear dio flag in ocfs2_inode_info */ 2358 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2359 } else { 2360 spin_lock(&oi->ip_lock); 2361 /* Set the proper information to get us going into 2362 * ocfs2_delete_inode. */ 2363 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2364 spin_unlock(&oi->ip_lock); 2365 } 2366 2367 iput(inode); 2368 inode = iter; 2369 } 2370 2371 return ret; 2372 } 2373 2374 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2375 { 2376 /* This check is good because ocfs2 will wait on our recovery 2377 * thread before changing it to something other than MOUNTED 2378 * or DISABLED. */ 2379 wait_event(osb->osb_mount_event, 2380 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2381 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2382 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2383 2384 /* If there's an error on mount, then we may never get to the 2385 * MOUNTED flag, but this is set right before 2386 * dismount_volume() so we can trust it. */ 2387 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2388 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2389 mlog(0, "mount error, exiting!\n"); 2390 return -EBUSY; 2391 } 2392 2393 return 0; 2394 } 2395 2396 static int ocfs2_commit_thread(void *arg) 2397 { 2398 int status; 2399 struct ocfs2_super *osb = arg; 2400 struct ocfs2_journal *journal = osb->journal; 2401 2402 /* we can trust j_num_trans here because _should_stop() is only set in 2403 * shutdown and nobody other than ourselves should be able to start 2404 * transactions. committing on shutdown might take a few iterations 2405 * as final transactions put deleted inodes on the list */ 2406 while (!(kthread_should_stop() && 2407 atomic_read(&journal->j_num_trans) == 0)) { 2408 2409 wait_event_interruptible(osb->checkpoint_event, 2410 atomic_read(&journal->j_num_trans) 2411 || kthread_should_stop()); 2412 2413 status = ocfs2_commit_cache(osb); 2414 if (status < 0) { 2415 static unsigned long abort_warn_time; 2416 2417 /* Warn about this once per minute */ 2418 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2419 mlog(ML_ERROR, "status = %d, journal is " 2420 "already aborted.\n", status); 2421 /* 2422 * After ocfs2_commit_cache() fails, j_num_trans has a 2423 * non-zero value. Sleep here to avoid a busy-wait 2424 * loop. 2425 */ 2426 msleep_interruptible(1000); 2427 } 2428 2429 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2430 mlog(ML_KTHREAD, 2431 "commit_thread: %u transactions pending on " 2432 "shutdown\n", 2433 atomic_read(&journal->j_num_trans)); 2434 } 2435 } 2436 2437 return 0; 2438 } 2439 2440 /* Reads all the journal inodes without taking any cluster locks. Used 2441 * for hard readonly access to determine whether any journal requires 2442 * recovery. Also used to refresh the recovery generation numbers after 2443 * a journal has been recovered by another node. 2444 */ 2445 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2446 { 2447 int ret = 0; 2448 unsigned int slot; 2449 struct buffer_head *di_bh = NULL; 2450 struct ocfs2_dinode *di; 2451 int journal_dirty = 0; 2452 2453 for(slot = 0; slot < osb->max_slots; slot++) { 2454 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2455 if (ret) { 2456 mlog_errno(ret); 2457 goto out; 2458 } 2459 2460 di = (struct ocfs2_dinode *) di_bh->b_data; 2461 2462 osb->slot_recovery_generations[slot] = 2463 ocfs2_get_recovery_generation(di); 2464 2465 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2466 OCFS2_JOURNAL_DIRTY_FL) 2467 journal_dirty = 1; 2468 2469 brelse(di_bh); 2470 di_bh = NULL; 2471 } 2472 2473 out: 2474 if (journal_dirty) 2475 ret = -EROFS; 2476 return ret; 2477 } 2478