xref: /linux/fs/ocfs2/journal.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[] __counted_by(rm_slots);
94 };
95 
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 					 osb->max_slots),
119 			     GFP_KERNEL);
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->disable_recovery = 0;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	osb->recovery_map = rm;
189 
190 	return 0;
191 }
192 
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194  * memory barriers to make sure that we'll see the null task before
195  * being woken up */
196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197 {
198 	mb();
199 	return osb->recovery_thread_task != NULL;
200 }
201 
202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
203 {
204 	struct ocfs2_recovery_map *rm;
205 
206 	/* disable any new recovery threads and wait for any currently
207 	 * running ones to exit. Do this before setting the vol_state. */
208 	mutex_lock(&osb->recovery_lock);
209 	osb->disable_recovery = 1;
210 	mutex_unlock(&osb->recovery_lock);
211 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212 
213 	/* At this point, we know that no more recovery threads can be
214 	 * launched, so wait for any recovery completion work to
215 	 * complete. */
216 	if (osb->ocfs2_wq)
217 		flush_workqueue(osb->ocfs2_wq);
218 
219 	/*
220 	 * Now that recovery is shut down, and the osb is about to be
221 	 * freed,  the osb_lock is not taken here.
222 	 */
223 	rm = osb->recovery_map;
224 	/* XXX: Should we bug if there are dirty entries? */
225 
226 	kfree(rm);
227 }
228 
229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 				     unsigned int node_num)
231 {
232 	int i;
233 	struct ocfs2_recovery_map *rm = osb->recovery_map;
234 
235 	assert_spin_locked(&osb->osb_lock);
236 
237 	for (i = 0; i < rm->rm_used; i++) {
238 		if (rm->rm_entries[i] == node_num)
239 			return 1;
240 	}
241 
242 	return 0;
243 }
244 
245 /* Behaves like test-and-set.  Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 				  unsigned int node_num)
248 {
249 	struct ocfs2_recovery_map *rm = osb->recovery_map;
250 
251 	spin_lock(&osb->osb_lock);
252 	if (__ocfs2_recovery_map_test(osb, node_num)) {
253 		spin_unlock(&osb->osb_lock);
254 		return 1;
255 	}
256 
257 	/* XXX: Can this be exploited? Not from o2dlm... */
258 	BUG_ON(rm->rm_used >= osb->max_slots);
259 
260 	rm->rm_entries[rm->rm_used] = node_num;
261 	rm->rm_used++;
262 	spin_unlock(&osb->osb_lock);
263 
264 	return 0;
265 }
266 
267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 				     unsigned int node_num)
269 {
270 	int i;
271 	struct ocfs2_recovery_map *rm = osb->recovery_map;
272 
273 	spin_lock(&osb->osb_lock);
274 
275 	for (i = 0; i < rm->rm_used; i++) {
276 		if (rm->rm_entries[i] == node_num)
277 			break;
278 	}
279 
280 	if (i < rm->rm_used) {
281 		/* XXX: be careful with the pointer math */
282 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 			(rm->rm_used - i - 1) * sizeof(unsigned int));
284 		rm->rm_used--;
285 	}
286 
287 	spin_unlock(&osb->osb_lock);
288 }
289 
290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
291 {
292 	int status = 0;
293 	unsigned int flushed;
294 	struct ocfs2_journal *journal = NULL;
295 
296 	journal = osb->journal;
297 
298 	/* Flush all pending commits and checkpoint the journal. */
299 	down_write(&journal->j_trans_barrier);
300 
301 	flushed = atomic_read(&journal->j_num_trans);
302 	trace_ocfs2_commit_cache_begin(flushed);
303 	if (flushed == 0) {
304 		up_write(&journal->j_trans_barrier);
305 		goto finally;
306 	}
307 
308 	jbd2_journal_lock_updates(journal->j_journal);
309 	status = jbd2_journal_flush(journal->j_journal, 0);
310 	jbd2_journal_unlock_updates(journal->j_journal);
311 	if (status < 0) {
312 		up_write(&journal->j_trans_barrier);
313 		mlog_errno(status);
314 		goto finally;
315 	}
316 
317 	ocfs2_inc_trans_id(journal);
318 
319 	flushed = atomic_read(&journal->j_num_trans);
320 	atomic_set(&journal->j_num_trans, 0);
321 	up_write(&journal->j_trans_barrier);
322 
323 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324 
325 	ocfs2_wake_downconvert_thread(osb);
326 	wake_up(&journal->j_checkpointed);
327 finally:
328 	return status;
329 }
330 
331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332 {
333 	journal_t *journal = osb->journal->j_journal;
334 	handle_t *handle;
335 
336 	BUG_ON(!osb || !osb->journal->j_journal);
337 
338 	if (ocfs2_is_hard_readonly(osb))
339 		return ERR_PTR(-EROFS);
340 
341 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 	BUG_ON(max_buffs <= 0);
343 
344 	/* Nested transaction? Just return the handle... */
345 	if (journal_current_handle())
346 		return jbd2_journal_start(journal, max_buffs);
347 
348 	sb_start_intwrite(osb->sb);
349 
350 	down_read(&osb->journal->j_trans_barrier);
351 
352 	handle = jbd2_journal_start(journal, max_buffs);
353 	if (IS_ERR(handle)) {
354 		up_read(&osb->journal->j_trans_barrier);
355 		sb_end_intwrite(osb->sb);
356 
357 		mlog_errno(PTR_ERR(handle));
358 
359 		if (is_journal_aborted(journal)) {
360 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 			handle = ERR_PTR(-EROFS);
362 		}
363 	} else {
364 		if (!ocfs2_mount_local(osb))
365 			atomic_inc(&(osb->journal->j_num_trans));
366 	}
367 
368 	return handle;
369 }
370 
371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372 		       handle_t *handle)
373 {
374 	int ret, nested;
375 	struct ocfs2_journal *journal = osb->journal;
376 
377 	BUG_ON(!handle);
378 
379 	nested = handle->h_ref > 1;
380 	ret = jbd2_journal_stop(handle);
381 	if (ret < 0)
382 		mlog_errno(ret);
383 
384 	if (!nested) {
385 		up_read(&journal->j_trans_barrier);
386 		sb_end_intwrite(osb->sb);
387 	}
388 
389 	return ret;
390 }
391 
392 /*
393  * 'nblocks' is what you want to add to the current transaction.
394  *
395  * This might call jbd2_journal_restart() which will commit dirty buffers
396  * and then restart the transaction. Before calling
397  * ocfs2_extend_trans(), any changed blocks should have been
398  * dirtied. After calling it, all blocks which need to be changed must
399  * go through another set of journal_access/journal_dirty calls.
400  *
401  * WARNING: This will not release any semaphores or disk locks taken
402  * during the transaction, so make sure they were taken *before*
403  * start_trans or we'll have ordering deadlocks.
404  *
405  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406  * good because transaction ids haven't yet been recorded on the
407  * cluster locks associated with this handle.
408  */
409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
410 {
411 	int status, old_nblocks;
412 
413 	BUG_ON(!handle);
414 	BUG_ON(nblocks < 0);
415 
416 	if (!nblocks)
417 		return 0;
418 
419 	old_nblocks = jbd2_handle_buffer_credits(handle);
420 
421 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
422 
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424 	status = 1;
425 #else
426 	status = jbd2_journal_extend(handle, nblocks, 0);
427 	if (status < 0) {
428 		mlog_errno(status);
429 		goto bail;
430 	}
431 #endif
432 
433 	if (status > 0) {
434 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 		status = jbd2_journal_restart(handle,
436 					      old_nblocks + nblocks);
437 		if (status < 0) {
438 			mlog_errno(status);
439 			goto bail;
440 		}
441 	}
442 
443 	status = 0;
444 bail:
445 	return status;
446 }
447 
448 /*
449  * Make sure handle has at least 'nblocks' credits available. If it does not
450  * have that many credits available, we will try to extend the handle to have
451  * enough credits. If that fails, we will restart transaction to have enough
452  * credits. Similar notes regarding data consistency and locking implications
453  * as for ocfs2_extend_trans() apply here.
454  */
455 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
456 {
457 	int old_nblks = jbd2_handle_buffer_credits(handle);
458 
459 	trace_ocfs2_assure_trans_credits(old_nblks);
460 	if (old_nblks >= nblocks)
461 		return 0;
462 	return ocfs2_extend_trans(handle, nblocks - old_nblks);
463 }
464 
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 	int status, old_nblks;
474 
475 	BUG_ON(!handle);
476 
477 	old_nblks = jbd2_handle_buffer_credits(handle);
478 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479 
480 	if (old_nblks < thresh)
481 		return 0;
482 
483 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484 	if (status < 0) {
485 		mlog_errno(status);
486 		goto bail;
487 	}
488 
489 	if (status > 0) {
490 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 		if (status < 0)
492 			mlog_errno(status);
493 	}
494 
495 bail:
496 	return status;
497 }
498 
499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500 {
501 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502 }
503 
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 				 struct buffer_head *bh,
506 				 void *data, size_t size)
507 {
508 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509 
510 	/*
511 	 * We aren't guaranteed to have the superblock here, so we
512 	 * must unconditionally compute the ecc data.
513 	 * __ocfs2_journal_access() will only set the triggers if
514 	 * metaecc is enabled.
515 	 */
516 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517 }
518 
519 /*
520  * Quota blocks have their own trigger because the struct ocfs2_block_check
521  * offset depends on the blocksize.
522  */
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 				 struct buffer_head *bh,
525 				 void *data, size_t size)
526 {
527 	struct ocfs2_disk_dqtrailer *dqt =
528 		ocfs2_block_dqtrailer(size, data);
529 
530 	/*
531 	 * We aren't guaranteed to have the superblock here, so we
532 	 * must unconditionally compute the ecc data.
533 	 * __ocfs2_journal_access() will only set the triggers if
534 	 * metaecc is enabled.
535 	 */
536 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
537 }
538 
539 /*
540  * Directory blocks also have their own trigger because the
541  * struct ocfs2_block_check offset depends on the blocksize.
542  */
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 				 struct buffer_head *bh,
545 				 void *data, size_t size)
546 {
547 	struct ocfs2_dir_block_trailer *trailer =
548 		ocfs2_dir_trailer_from_size(size, data);
549 
550 	/*
551 	 * We aren't guaranteed to have the superblock here, so we
552 	 * must unconditionally compute the ecc data.
553 	 * __ocfs2_journal_access() will only set the triggers if
554 	 * metaecc is enabled.
555 	 */
556 	ocfs2_block_check_compute(data, size, &trailer->db_check);
557 }
558 
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 				struct buffer_head *bh)
561 {
562 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
563 
564 	mlog(ML_ERROR,
565 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
566 	     "bh->b_blocknr = %llu\n",
567 	     (unsigned long)bh,
568 	     (unsigned long long)bh->b_blocknr);
569 
570 	ocfs2_error(ot->sb,
571 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572 }
573 
574 static void ocfs2_setup_csum_triggers(struct super_block *sb,
575 				      enum ocfs2_journal_trigger_type type,
576 				      struct ocfs2_triggers *ot)
577 {
578 	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
579 
580 	switch (type) {
581 	case OCFS2_JTR_DI:
582 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583 		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584 		break;
585 	case OCFS2_JTR_EB:
586 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587 		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588 		break;
589 	case OCFS2_JTR_RB:
590 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591 		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592 		break;
593 	case OCFS2_JTR_GD:
594 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595 		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596 		break;
597 	case OCFS2_JTR_DB:
598 		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599 		break;
600 	case OCFS2_JTR_XB:
601 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602 		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603 		break;
604 	case OCFS2_JTR_DQ:
605 		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606 		break;
607 	case OCFS2_JTR_DR:
608 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610 		break;
611 	case OCFS2_JTR_DL:
612 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614 		break;
615 	case OCFS2_JTR_NONE:
616 		/* To make compiler happy... */
617 		return;
618 	}
619 
620 	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621 	ot->sb = sb;
622 }
623 
624 void ocfs2_initialize_journal_triggers(struct super_block *sb,
625 				       struct ocfs2_triggers triggers[])
626 {
627 	enum ocfs2_journal_trigger_type type;
628 
629 	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630 		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
631 }
632 
633 static int __ocfs2_journal_access(handle_t *handle,
634 				  struct ocfs2_caching_info *ci,
635 				  struct buffer_head *bh,
636 				  struct ocfs2_triggers *triggers,
637 				  int type)
638 {
639 	int status;
640 	struct ocfs2_super *osb =
641 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642 
643 	BUG_ON(!ci || !ci->ci_ops);
644 	BUG_ON(!handle);
645 	BUG_ON(!bh);
646 
647 	trace_ocfs2_journal_access(
648 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
649 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
650 
651 	/* we can safely remove this assertion after testing. */
652 	if (!buffer_uptodate(bh)) {
653 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 		     (unsigned long long)bh->b_blocknr, bh->b_state);
656 
657 		lock_buffer(bh);
658 		/*
659 		 * A previous transaction with a couple of buffer heads fail
660 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 		 * For current transaction, the bh is just among those error
662 		 * bhs which previous transaction handle. We can't just clear
663 		 * its BH_Write_EIO and reuse directly, since other bhs are
664 		 * not written to disk yet and that will cause metadata
665 		 * inconsistency. So we should set fs read-only to avoid
666 		 * further damage.
667 		 */
668 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 			unlock_buffer(bh);
670 			return ocfs2_error(osb->sb, "A previous attempt to "
671 					"write this buffer head failed\n");
672 		}
673 		unlock_buffer(bh);
674 	}
675 
676 	/* Set the current transaction information on the ci so
677 	 * that the locking code knows whether it can drop it's locks
678 	 * on this ci or not. We're protected from the commit
679 	 * thread updating the current transaction id until
680 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 	 * j_trans_barrier for us. */
682 	ocfs2_set_ci_lock_trans(osb->journal, ci);
683 
684 	ocfs2_metadata_cache_io_lock(ci);
685 	switch (type) {
686 	case OCFS2_JOURNAL_ACCESS_CREATE:
687 	case OCFS2_JOURNAL_ACCESS_WRITE:
688 		status = jbd2_journal_get_write_access(handle, bh);
689 		break;
690 
691 	case OCFS2_JOURNAL_ACCESS_UNDO:
692 		status = jbd2_journal_get_undo_access(handle, bh);
693 		break;
694 
695 	default:
696 		status = -EINVAL;
697 		mlog(ML_ERROR, "Unknown access type!\n");
698 	}
699 	if (!status && ocfs2_meta_ecc(osb) && triggers)
700 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 	ocfs2_metadata_cache_io_unlock(ci);
702 
703 	if (status < 0)
704 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 		     status, type);
706 
707 	return status;
708 }
709 
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
714 
715 	return __ocfs2_journal_access(handle, ci, bh,
716 				      &osb->s_journal_triggers[OCFS2_JTR_DI],
717 				      type);
718 }
719 
720 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721 			    struct buffer_head *bh, int type)
722 {
723 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
724 
725 	return __ocfs2_journal_access(handle, ci, bh,
726 				      &osb->s_journal_triggers[OCFS2_JTR_EB],
727 				      type);
728 }
729 
730 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731 			    struct buffer_head *bh, int type)
732 {
733 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
734 
735 	return __ocfs2_journal_access(handle, ci, bh,
736 				      &osb->s_journal_triggers[OCFS2_JTR_RB],
737 				      type);
738 }
739 
740 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741 			    struct buffer_head *bh, int type)
742 {
743 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
744 
745 	return __ocfs2_journal_access(handle, ci, bh,
746 				     &osb->s_journal_triggers[OCFS2_JTR_GD],
747 				     type);
748 }
749 
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 			    struct buffer_head *bh, int type)
752 {
753 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
754 
755 	return __ocfs2_journal_access(handle, ci, bh,
756 				     &osb->s_journal_triggers[OCFS2_JTR_DB],
757 				     type);
758 }
759 
760 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761 			    struct buffer_head *bh, int type)
762 {
763 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
764 
765 	return __ocfs2_journal_access(handle, ci, bh,
766 				     &osb->s_journal_triggers[OCFS2_JTR_XB],
767 				     type);
768 }
769 
770 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771 			    struct buffer_head *bh, int type)
772 {
773 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
774 
775 	return __ocfs2_journal_access(handle, ci, bh,
776 				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
777 				     type);
778 }
779 
780 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781 			    struct buffer_head *bh, int type)
782 {
783 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
784 
785 	return __ocfs2_journal_access(handle, ci, bh,
786 				     &osb->s_journal_triggers[OCFS2_JTR_DR],
787 				     type);
788 }
789 
790 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791 			    struct buffer_head *bh, int type)
792 {
793 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
794 
795 	return __ocfs2_journal_access(handle, ci, bh,
796 				     &osb->s_journal_triggers[OCFS2_JTR_DL],
797 				     type);
798 }
799 
800 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801 			 struct buffer_head *bh, int type)
802 {
803 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
804 }
805 
806 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
807 {
808 	int status;
809 
810 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
811 
812 	status = jbd2_journal_dirty_metadata(handle, bh);
813 	if (status) {
814 		mlog_errno(status);
815 		if (!is_handle_aborted(handle)) {
816 			journal_t *journal = handle->h_transaction->t_journal;
817 
818 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819 			     "handle type %u started at line %u, credits %u/%u "
820 			     "errcode %d. Aborting transaction and journal.\n",
821 			     handle->h_type, handle->h_line_no,
822 			     handle->h_requested_credits,
823 			     jbd2_handle_buffer_credits(handle), status);
824 			handle->h_err = status;
825 			jbd2_journal_abort_handle(handle);
826 			jbd2_journal_abort(journal, status);
827 		}
828 	}
829 }
830 
831 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
832 
833 void ocfs2_set_journal_params(struct ocfs2_super *osb)
834 {
835 	journal_t *journal = osb->journal->j_journal;
836 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
837 
838 	if (osb->osb_commit_interval)
839 		commit_interval = osb->osb_commit_interval;
840 
841 	write_lock(&journal->j_state_lock);
842 	journal->j_commit_interval = commit_interval;
843 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844 		journal->j_flags |= JBD2_BARRIER;
845 	else
846 		journal->j_flags &= ~JBD2_BARRIER;
847 	write_unlock(&journal->j_state_lock);
848 }
849 
850 /*
851  * alloc & initialize skeleton for journal structure.
852  * ocfs2_journal_init() will make fs have journal ability.
853  */
854 int ocfs2_journal_alloc(struct ocfs2_super *osb)
855 {
856 	int status = 0;
857 	struct ocfs2_journal *journal;
858 
859 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860 	if (!journal) {
861 		mlog(ML_ERROR, "unable to alloc journal\n");
862 		status = -ENOMEM;
863 		goto bail;
864 	}
865 	osb->journal = journal;
866 	journal->j_osb = osb;
867 
868 	atomic_set(&journal->j_num_trans, 0);
869 	init_rwsem(&journal->j_trans_barrier);
870 	init_waitqueue_head(&journal->j_checkpointed);
871 	spin_lock_init(&journal->j_lock);
872 	journal->j_trans_id = 1UL;
873 	INIT_LIST_HEAD(&journal->j_la_cleanups);
874 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875 	journal->j_state = OCFS2_JOURNAL_FREE;
876 
877 bail:
878 	return status;
879 }
880 
881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
882 {
883 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884 	struct writeback_control wbc = {
885 		.sync_mode =  WB_SYNC_ALL,
886 		.nr_to_write = mapping->nrpages * 2,
887 		.range_start = jinode->i_dirty_start,
888 		.range_end = jinode->i_dirty_end,
889 	};
890 
891 	return filemap_fdatawrite_wbc(mapping, &wbc);
892 }
893 
894 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
895 {
896 	int status = -1;
897 	struct inode *inode = NULL; /* the journal inode */
898 	journal_t *j_journal = NULL;
899 	struct ocfs2_journal *journal = osb->journal;
900 	struct ocfs2_dinode *di = NULL;
901 	struct buffer_head *bh = NULL;
902 	int inode_lock = 0;
903 
904 	BUG_ON(!journal);
905 	/* already have the inode for our journal */
906 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907 					    osb->slot_num);
908 	if (inode == NULL) {
909 		status = -EACCES;
910 		mlog_errno(status);
911 		goto done;
912 	}
913 	if (is_bad_inode(inode)) {
914 		mlog(ML_ERROR, "access error (bad inode)\n");
915 		iput(inode);
916 		inode = NULL;
917 		status = -EACCES;
918 		goto done;
919 	}
920 
921 	SET_INODE_JOURNAL(inode);
922 	OCFS2_I(inode)->ip_open_count++;
923 
924 	/* Skip recovery waits here - journal inode metadata never
925 	 * changes in a live cluster so it can be considered an
926 	 * exception to the rule. */
927 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928 	if (status < 0) {
929 		if (status != -ERESTARTSYS)
930 			mlog(ML_ERROR, "Could not get lock on journal!\n");
931 		goto done;
932 	}
933 
934 	inode_lock = 1;
935 	di = (struct ocfs2_dinode *)bh->b_data;
936 
937 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
938 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939 		     i_size_read(inode));
940 		status = -EINVAL;
941 		goto done;
942 	}
943 
944 	trace_ocfs2_journal_init(i_size_read(inode),
945 				 (unsigned long long)inode->i_blocks,
946 				 OCFS2_I(inode)->ip_clusters);
947 
948 	/* call the kernels journal init function now */
949 	j_journal = jbd2_journal_init_inode(inode);
950 	if (IS_ERR(j_journal)) {
951 		mlog(ML_ERROR, "Linux journal layer error\n");
952 		status = PTR_ERR(j_journal);
953 		goto done;
954 	}
955 
956 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
957 
958 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959 		  OCFS2_JOURNAL_DIRTY_FL);
960 
961 	journal->j_journal = j_journal;
962 	journal->j_journal->j_submit_inode_data_buffers =
963 		ocfs2_journal_submit_inode_data_buffers;
964 	journal->j_journal->j_finish_inode_data_buffers =
965 		jbd2_journal_finish_inode_data_buffers;
966 	journal->j_inode = inode;
967 	journal->j_bh = bh;
968 
969 	ocfs2_set_journal_params(osb);
970 
971 	journal->j_state = OCFS2_JOURNAL_LOADED;
972 
973 	status = 0;
974 done:
975 	if (status < 0) {
976 		if (inode_lock)
977 			ocfs2_inode_unlock(inode, 1);
978 		brelse(bh);
979 		if (inode) {
980 			OCFS2_I(inode)->ip_open_count--;
981 			iput(inode);
982 		}
983 	}
984 
985 	return status;
986 }
987 
988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
989 {
990 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
991 }
992 
993 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
994 {
995 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
996 }
997 
998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999 				      int dirty, int replayed)
1000 {
1001 	int status;
1002 	unsigned int flags;
1003 	struct ocfs2_journal *journal = osb->journal;
1004 	struct buffer_head *bh = journal->j_bh;
1005 	struct ocfs2_dinode *fe;
1006 
1007 	fe = (struct ocfs2_dinode *)bh->b_data;
1008 
1009 	/* The journal bh on the osb always comes from ocfs2_journal_init()
1010 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1011 	 * code bug if we mess it up. */
1012 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013 
1014 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 	if (dirty)
1016 		flags |= OCFS2_JOURNAL_DIRTY_FL;
1017 	else
1018 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020 
1021 	if (replayed)
1022 		ocfs2_bump_recovery_generation(fe);
1023 
1024 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026 	if (status < 0)
1027 		mlog_errno(status);
1028 
1029 	return status;
1030 }
1031 
1032 /*
1033  * If the journal has been kmalloc'd it needs to be freed after this
1034  * call.
1035  */
1036 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037 {
1038 	struct ocfs2_journal *journal = NULL;
1039 	int status = 0;
1040 	struct inode *inode = NULL;
1041 	int num_running_trans = 0;
1042 
1043 	BUG_ON(!osb);
1044 
1045 	journal = osb->journal;
1046 	if (!journal)
1047 		goto done;
1048 
1049 	inode = journal->j_inode;
1050 
1051 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052 		goto done;
1053 
1054 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1055 	if (!igrab(inode))
1056 		BUG();
1057 
1058 	num_running_trans = atomic_read(&(journal->j_num_trans));
1059 	trace_ocfs2_journal_shutdown(num_running_trans);
1060 
1061 	/* Do a commit_cache here. It will flush our journal, *and*
1062 	 * release any locks that are still held.
1063 	 * set the SHUTDOWN flag and release the trans lock.
1064 	 * the commit thread will take the trans lock for us below. */
1065 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066 
1067 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 	 * drop the trans_lock (which we want to hold until we
1069 	 * completely destroy the journal. */
1070 	if (osb->commit_task) {
1071 		/* Wait for the commit thread */
1072 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073 		kthread_stop(osb->commit_task);
1074 		osb->commit_task = NULL;
1075 	}
1076 
1077 	BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1078 
1079 	if (ocfs2_mount_local(osb) &&
1080 	    (journal->j_journal->j_flags & JBD2_LOADED)) {
1081 		jbd2_journal_lock_updates(journal->j_journal);
1082 		status = jbd2_journal_flush(journal->j_journal, 0);
1083 		jbd2_journal_unlock_updates(journal->j_journal);
1084 		if (status < 0)
1085 			mlog_errno(status);
1086 	}
1087 
1088 	/* Shutdown the kernel journal system */
1089 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1090 		/*
1091 		 * Do not toggle if flush was unsuccessful otherwise
1092 		 * will leave dirty metadata in a "clean" journal
1093 		 */
1094 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1095 		if (status < 0)
1096 			mlog_errno(status);
1097 	}
1098 	journal->j_journal = NULL;
1099 
1100 	OCFS2_I(inode)->ip_open_count--;
1101 
1102 	/* unlock our journal */
1103 	ocfs2_inode_unlock(inode, 1);
1104 
1105 	brelse(journal->j_bh);
1106 	journal->j_bh = NULL;
1107 
1108 	journal->j_state = OCFS2_JOURNAL_FREE;
1109 
1110 done:
1111 	iput(inode);
1112 	kfree(journal);
1113 	osb->journal = NULL;
1114 }
1115 
1116 static void ocfs2_clear_journal_error(struct super_block *sb,
1117 				      journal_t *journal,
1118 				      int slot)
1119 {
1120 	int olderr;
1121 
1122 	olderr = jbd2_journal_errno(journal);
1123 	if (olderr) {
1124 		mlog(ML_ERROR, "File system error %d recorded in "
1125 		     "journal %u.\n", olderr, slot);
1126 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1127 		     sb->s_id);
1128 
1129 		jbd2_journal_ack_err(journal);
1130 		jbd2_journal_clear_err(journal);
1131 	}
1132 }
1133 
1134 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1135 {
1136 	int status = 0;
1137 	struct ocfs2_super *osb;
1138 
1139 	BUG_ON(!journal);
1140 
1141 	osb = journal->j_osb;
1142 
1143 	status = jbd2_journal_load(journal->j_journal);
1144 	if (status < 0) {
1145 		mlog(ML_ERROR, "Failed to load journal!\n");
1146 		goto done;
1147 	}
1148 
1149 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1150 
1151 	if (replayed) {
1152 		jbd2_journal_lock_updates(journal->j_journal);
1153 		status = jbd2_journal_flush(journal->j_journal, 0);
1154 		jbd2_journal_unlock_updates(journal->j_journal);
1155 		if (status < 0)
1156 			mlog_errno(status);
1157 	}
1158 
1159 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1160 	if (status < 0) {
1161 		mlog_errno(status);
1162 		goto done;
1163 	}
1164 
1165 	/* Launch the commit thread */
1166 	if (!local) {
1167 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1168 				"ocfs2cmt-%s", osb->uuid_str);
1169 		if (IS_ERR(osb->commit_task)) {
1170 			status = PTR_ERR(osb->commit_task);
1171 			osb->commit_task = NULL;
1172 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1173 			     "error=%d", status);
1174 			goto done;
1175 		}
1176 	} else
1177 		osb->commit_task = NULL;
1178 
1179 done:
1180 	return status;
1181 }
1182 
1183 
1184 /* 'full' flag tells us whether we clear out all blocks or if we just
1185  * mark the journal clean */
1186 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1187 {
1188 	int status;
1189 
1190 	BUG_ON(!journal);
1191 
1192 	status = jbd2_journal_wipe(journal->j_journal, full);
1193 	if (status < 0) {
1194 		mlog_errno(status);
1195 		goto bail;
1196 	}
1197 
1198 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1199 	if (status < 0)
1200 		mlog_errno(status);
1201 
1202 bail:
1203 	return status;
1204 }
1205 
1206 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1207 {
1208 	int empty;
1209 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1210 
1211 	spin_lock(&osb->osb_lock);
1212 	empty = (rm->rm_used == 0);
1213 	spin_unlock(&osb->osb_lock);
1214 
1215 	return empty;
1216 }
1217 
1218 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1219 {
1220 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1221 }
1222 
1223 /*
1224  * JBD Might read a cached version of another nodes journal file. We
1225  * don't want this as this file changes often and we get no
1226  * notification on those changes. The only way to be sure that we've
1227  * got the most up to date version of those blocks then is to force
1228  * read them off disk. Just searching through the buffer cache won't
1229  * work as there may be pages backing this file which are still marked
1230  * up to date. We know things can't change on this file underneath us
1231  * as we have the lock by now :)
1232  */
1233 static int ocfs2_force_read_journal(struct inode *inode)
1234 {
1235 	int status = 0;
1236 	int i;
1237 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1238 	struct buffer_head *bh = NULL;
1239 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1240 
1241 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1242 	v_blkno = 0;
1243 	while (v_blkno < num_blocks) {
1244 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1245 						     &p_blkno, &p_blocks, NULL);
1246 		if (status < 0) {
1247 			mlog_errno(status);
1248 			goto bail;
1249 		}
1250 
1251 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1252 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1253 					osb->sb->s_blocksize);
1254 			/* block not cached. */
1255 			if (!bh)
1256 				continue;
1257 
1258 			brelse(bh);
1259 			bh = NULL;
1260 			/* We are reading journal data which should not
1261 			 * be put in the uptodate cache.
1262 			 */
1263 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1264 			if (status < 0) {
1265 				mlog_errno(status);
1266 				goto bail;
1267 			}
1268 
1269 			brelse(bh);
1270 			bh = NULL;
1271 		}
1272 
1273 		v_blkno += p_blocks;
1274 	}
1275 
1276 bail:
1277 	return status;
1278 }
1279 
1280 struct ocfs2_la_recovery_item {
1281 	struct list_head	lri_list;
1282 	int			lri_slot;
1283 	struct ocfs2_dinode	*lri_la_dinode;
1284 	struct ocfs2_dinode	*lri_tl_dinode;
1285 	struct ocfs2_quota_recovery *lri_qrec;
1286 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1287 };
1288 
1289 /* Does the second half of the recovery process. By this point, the
1290  * node is marked clean and can actually be considered recovered,
1291  * hence it's no longer in the recovery map, but there's still some
1292  * cleanup we can do which shouldn't happen within the recovery thread
1293  * as locking in that context becomes very difficult if we are to take
1294  * recovering nodes into account.
1295  *
1296  * NOTE: This function can and will sleep on recovery of other nodes
1297  * during cluster locking, just like any other ocfs2 process.
1298  */
1299 void ocfs2_complete_recovery(struct work_struct *work)
1300 {
1301 	int ret = 0;
1302 	struct ocfs2_journal *journal =
1303 		container_of(work, struct ocfs2_journal, j_recovery_work);
1304 	struct ocfs2_super *osb = journal->j_osb;
1305 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1306 	struct ocfs2_la_recovery_item *item, *n;
1307 	struct ocfs2_quota_recovery *qrec;
1308 	enum ocfs2_orphan_reco_type orphan_reco_type;
1309 	LIST_HEAD(tmp_la_list);
1310 
1311 	trace_ocfs2_complete_recovery(
1312 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1313 
1314 	spin_lock(&journal->j_lock);
1315 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1316 	spin_unlock(&journal->j_lock);
1317 
1318 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1319 		list_del_init(&item->lri_list);
1320 
1321 		ocfs2_wait_on_quotas(osb);
1322 
1323 		la_dinode = item->lri_la_dinode;
1324 		tl_dinode = item->lri_tl_dinode;
1325 		qrec = item->lri_qrec;
1326 		orphan_reco_type = item->lri_orphan_reco_type;
1327 
1328 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1329 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1330 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1331 			qrec);
1332 
1333 		if (la_dinode) {
1334 			ret = ocfs2_complete_local_alloc_recovery(osb,
1335 								  la_dinode);
1336 			if (ret < 0)
1337 				mlog_errno(ret);
1338 
1339 			kfree(la_dinode);
1340 		}
1341 
1342 		if (tl_dinode) {
1343 			ret = ocfs2_complete_truncate_log_recovery(osb,
1344 								   tl_dinode);
1345 			if (ret < 0)
1346 				mlog_errno(ret);
1347 
1348 			kfree(tl_dinode);
1349 		}
1350 
1351 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1352 				orphan_reco_type);
1353 		if (ret < 0)
1354 			mlog_errno(ret);
1355 
1356 		if (qrec) {
1357 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1358 							  item->lri_slot);
1359 			if (ret < 0)
1360 				mlog_errno(ret);
1361 			/* Recovery info is already freed now */
1362 		}
1363 
1364 		kfree(item);
1365 	}
1366 
1367 	trace_ocfs2_complete_recovery_end(ret);
1368 }
1369 
1370 /* NOTE: This function always eats your references to la_dinode and
1371  * tl_dinode, either manually on error, or by passing them to
1372  * ocfs2_complete_recovery */
1373 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1374 					    int slot_num,
1375 					    struct ocfs2_dinode *la_dinode,
1376 					    struct ocfs2_dinode *tl_dinode,
1377 					    struct ocfs2_quota_recovery *qrec,
1378 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1379 {
1380 	struct ocfs2_la_recovery_item *item;
1381 
1382 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1383 	if (!item) {
1384 		/* Though we wish to avoid it, we are in fact safe in
1385 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1386 		 * than capable of reclaiming unused space. */
1387 		kfree(la_dinode);
1388 		kfree(tl_dinode);
1389 
1390 		if (qrec)
1391 			ocfs2_free_quota_recovery(qrec);
1392 
1393 		mlog_errno(-ENOMEM);
1394 		return;
1395 	}
1396 
1397 	INIT_LIST_HEAD(&item->lri_list);
1398 	item->lri_la_dinode = la_dinode;
1399 	item->lri_slot = slot_num;
1400 	item->lri_tl_dinode = tl_dinode;
1401 	item->lri_qrec = qrec;
1402 	item->lri_orphan_reco_type = orphan_reco_type;
1403 
1404 	spin_lock(&journal->j_lock);
1405 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1406 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1407 	spin_unlock(&journal->j_lock);
1408 }
1409 
1410 /* Called by the mount code to queue recovery the last part of
1411  * recovery for it's own and offline slot(s). */
1412 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1413 {
1414 	struct ocfs2_journal *journal = osb->journal;
1415 
1416 	if (ocfs2_is_hard_readonly(osb))
1417 		return;
1418 
1419 	/* No need to queue up our truncate_log as regular cleanup will catch
1420 	 * that */
1421 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1422 					osb->local_alloc_copy, NULL, NULL,
1423 					ORPHAN_NEED_TRUNCATE);
1424 	ocfs2_schedule_truncate_log_flush(osb, 0);
1425 
1426 	osb->local_alloc_copy = NULL;
1427 
1428 	/* queue to recover orphan slots for all offline slots */
1429 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1430 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1431 	ocfs2_free_replay_slots(osb);
1432 }
1433 
1434 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1435 {
1436 	if (osb->quota_rec) {
1437 		ocfs2_queue_recovery_completion(osb->journal,
1438 						osb->slot_num,
1439 						NULL,
1440 						NULL,
1441 						osb->quota_rec,
1442 						ORPHAN_NEED_TRUNCATE);
1443 		osb->quota_rec = NULL;
1444 	}
1445 }
1446 
1447 static int __ocfs2_recovery_thread(void *arg)
1448 {
1449 	int status, node_num, slot_num;
1450 	struct ocfs2_super *osb = arg;
1451 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1452 	int *rm_quota = NULL;
1453 	int rm_quota_used = 0, i;
1454 	struct ocfs2_quota_recovery *qrec;
1455 
1456 	/* Whether the quota supported. */
1457 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1458 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1459 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1460 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1461 
1462 	status = ocfs2_wait_on_mount(osb);
1463 	if (status < 0) {
1464 		goto bail;
1465 	}
1466 
1467 	if (quota_enabled) {
1468 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1469 		if (!rm_quota) {
1470 			status = -ENOMEM;
1471 			goto bail;
1472 		}
1473 	}
1474 restart:
1475 	status = ocfs2_super_lock(osb, 1);
1476 	if (status < 0) {
1477 		mlog_errno(status);
1478 		goto bail;
1479 	}
1480 
1481 	status = ocfs2_compute_replay_slots(osb);
1482 	if (status < 0)
1483 		mlog_errno(status);
1484 
1485 	/* queue recovery for our own slot */
1486 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1487 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1488 
1489 	spin_lock(&osb->osb_lock);
1490 	while (rm->rm_used) {
1491 		/* It's always safe to remove entry zero, as we won't
1492 		 * clear it until ocfs2_recover_node() has succeeded. */
1493 		node_num = rm->rm_entries[0];
1494 		spin_unlock(&osb->osb_lock);
1495 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1496 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1497 		if (slot_num == -ENOENT) {
1498 			status = 0;
1499 			goto skip_recovery;
1500 		}
1501 
1502 		/* It is a bit subtle with quota recovery. We cannot do it
1503 		 * immediately because we have to obtain cluster locks from
1504 		 * quota files and we also don't want to just skip it because
1505 		 * then quota usage would be out of sync until some node takes
1506 		 * the slot. So we remember which nodes need quota recovery
1507 		 * and when everything else is done, we recover quotas. */
1508 		if (quota_enabled) {
1509 			for (i = 0; i < rm_quota_used
1510 					&& rm_quota[i] != slot_num; i++)
1511 				;
1512 
1513 			if (i == rm_quota_used)
1514 				rm_quota[rm_quota_used++] = slot_num;
1515 		}
1516 
1517 		status = ocfs2_recover_node(osb, node_num, slot_num);
1518 skip_recovery:
1519 		if (!status) {
1520 			ocfs2_recovery_map_clear(osb, node_num);
1521 		} else {
1522 			mlog(ML_ERROR,
1523 			     "Error %d recovering node %d on device (%u,%u)!\n",
1524 			     status, node_num,
1525 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1526 			mlog(ML_ERROR, "Volume requires unmount.\n");
1527 		}
1528 
1529 		spin_lock(&osb->osb_lock);
1530 	}
1531 	spin_unlock(&osb->osb_lock);
1532 	trace_ocfs2_recovery_thread_end(status);
1533 
1534 	/* Refresh all journal recovery generations from disk */
1535 	status = ocfs2_check_journals_nolocks(osb);
1536 	status = (status == -EROFS) ? 0 : status;
1537 	if (status < 0)
1538 		mlog_errno(status);
1539 
1540 	/* Now it is right time to recover quotas... We have to do this under
1541 	 * superblock lock so that no one can start using the slot (and crash)
1542 	 * before we recover it */
1543 	if (quota_enabled) {
1544 		for (i = 0; i < rm_quota_used; i++) {
1545 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1546 			if (IS_ERR(qrec)) {
1547 				status = PTR_ERR(qrec);
1548 				mlog_errno(status);
1549 				continue;
1550 			}
1551 			ocfs2_queue_recovery_completion(osb->journal,
1552 					rm_quota[i],
1553 					NULL, NULL, qrec,
1554 					ORPHAN_NEED_TRUNCATE);
1555 		}
1556 	}
1557 
1558 	ocfs2_super_unlock(osb, 1);
1559 
1560 	/* queue recovery for offline slots */
1561 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1562 
1563 bail:
1564 	mutex_lock(&osb->recovery_lock);
1565 	if (!status && !ocfs2_recovery_completed(osb)) {
1566 		mutex_unlock(&osb->recovery_lock);
1567 		goto restart;
1568 	}
1569 
1570 	ocfs2_free_replay_slots(osb);
1571 	osb->recovery_thread_task = NULL;
1572 	mb(); /* sync with ocfs2_recovery_thread_running */
1573 	wake_up(&osb->recovery_event);
1574 
1575 	mutex_unlock(&osb->recovery_lock);
1576 
1577 	if (quota_enabled)
1578 		kfree(rm_quota);
1579 
1580 	return status;
1581 }
1582 
1583 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1584 {
1585 	mutex_lock(&osb->recovery_lock);
1586 
1587 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1588 		osb->disable_recovery, osb->recovery_thread_task,
1589 		osb->disable_recovery ?
1590 		-1 : ocfs2_recovery_map_set(osb, node_num));
1591 
1592 	if (osb->disable_recovery)
1593 		goto out;
1594 
1595 	if (osb->recovery_thread_task)
1596 		goto out;
1597 
1598 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1599 			"ocfs2rec-%s", osb->uuid_str);
1600 	if (IS_ERR(osb->recovery_thread_task)) {
1601 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1602 		osb->recovery_thread_task = NULL;
1603 	}
1604 
1605 out:
1606 	mutex_unlock(&osb->recovery_lock);
1607 	wake_up(&osb->recovery_event);
1608 }
1609 
1610 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1611 				    int slot_num,
1612 				    struct buffer_head **bh,
1613 				    struct inode **ret_inode)
1614 {
1615 	int status = -EACCES;
1616 	struct inode *inode = NULL;
1617 
1618 	BUG_ON(slot_num >= osb->max_slots);
1619 
1620 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621 					    slot_num);
1622 	if (!inode || is_bad_inode(inode)) {
1623 		mlog_errno(status);
1624 		goto bail;
1625 	}
1626 	SET_INODE_JOURNAL(inode);
1627 
1628 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1629 	if (status < 0) {
1630 		mlog_errno(status);
1631 		goto bail;
1632 	}
1633 
1634 	status = 0;
1635 
1636 bail:
1637 	if (inode) {
1638 		if (status || !ret_inode)
1639 			iput(inode);
1640 		else
1641 			*ret_inode = inode;
1642 	}
1643 	return status;
1644 }
1645 
1646 /* Does the actual journal replay and marks the journal inode as
1647  * clean. Will only replay if the journal inode is marked dirty. */
1648 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1649 				int node_num,
1650 				int slot_num)
1651 {
1652 	int status;
1653 	int got_lock = 0;
1654 	unsigned int flags;
1655 	struct inode *inode = NULL;
1656 	struct ocfs2_dinode *fe;
1657 	journal_t *journal = NULL;
1658 	struct buffer_head *bh = NULL;
1659 	u32 slot_reco_gen;
1660 
1661 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1662 	if (status) {
1663 		mlog_errno(status);
1664 		goto done;
1665 	}
1666 
1667 	fe = (struct ocfs2_dinode *)bh->b_data;
1668 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1669 	brelse(bh);
1670 	bh = NULL;
1671 
1672 	/*
1673 	 * As the fs recovery is asynchronous, there is a small chance that
1674 	 * another node mounted (and recovered) the slot before the recovery
1675 	 * thread could get the lock. To handle that, we dirty read the journal
1676 	 * inode for that slot to get the recovery generation. If it is
1677 	 * different than what we expected, the slot has been recovered.
1678 	 * If not, it needs recovery.
1679 	 */
1680 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1681 		trace_ocfs2_replay_journal_recovered(slot_num,
1682 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1683 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1684 		status = -EBUSY;
1685 		goto done;
1686 	}
1687 
1688 	/* Continue with recovery as the journal has not yet been recovered */
1689 
1690 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1691 	if (status < 0) {
1692 		trace_ocfs2_replay_journal_lock_err(status);
1693 		if (status != -ERESTARTSYS)
1694 			mlog(ML_ERROR, "Could not lock journal!\n");
1695 		goto done;
1696 	}
1697 	got_lock = 1;
1698 
1699 	fe = (struct ocfs2_dinode *) bh->b_data;
1700 
1701 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1702 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1703 
1704 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1705 		trace_ocfs2_replay_journal_skip(node_num);
1706 		/* Refresh recovery generation for the slot */
1707 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1708 		goto done;
1709 	}
1710 
1711 	/* we need to run complete recovery for offline orphan slots */
1712 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1713 
1714 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1715 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1716 	       MINOR(osb->sb->s_dev));
1717 
1718 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1719 
1720 	status = ocfs2_force_read_journal(inode);
1721 	if (status < 0) {
1722 		mlog_errno(status);
1723 		goto done;
1724 	}
1725 
1726 	journal = jbd2_journal_init_inode(inode);
1727 	if (IS_ERR(journal)) {
1728 		mlog(ML_ERROR, "Linux journal layer error\n");
1729 		status = PTR_ERR(journal);
1730 		goto done;
1731 	}
1732 
1733 	status = jbd2_journal_load(journal);
1734 	if (status < 0) {
1735 		mlog_errno(status);
1736 		BUG_ON(!igrab(inode));
1737 		jbd2_journal_destroy(journal);
1738 		goto done;
1739 	}
1740 
1741 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1742 
1743 	/* wipe the journal */
1744 	jbd2_journal_lock_updates(journal);
1745 	status = jbd2_journal_flush(journal, 0);
1746 	jbd2_journal_unlock_updates(journal);
1747 	if (status < 0)
1748 		mlog_errno(status);
1749 
1750 	/* This will mark the node clean */
1751 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1752 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1753 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1754 
1755 	/* Increment recovery generation to indicate successful recovery */
1756 	ocfs2_bump_recovery_generation(fe);
1757 	osb->slot_recovery_generations[slot_num] =
1758 					ocfs2_get_recovery_generation(fe);
1759 
1760 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1761 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1762 	if (status < 0)
1763 		mlog_errno(status);
1764 
1765 	BUG_ON(!igrab(inode));
1766 
1767 	jbd2_journal_destroy(journal);
1768 
1769 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1770 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1771 	       MINOR(osb->sb->s_dev));
1772 done:
1773 	/* drop the lock on this nodes journal */
1774 	if (got_lock)
1775 		ocfs2_inode_unlock(inode, 1);
1776 
1777 	iput(inode);
1778 	brelse(bh);
1779 
1780 	return status;
1781 }
1782 
1783 /*
1784  * Do the most important parts of node recovery:
1785  *  - Replay it's journal
1786  *  - Stamp a clean local allocator file
1787  *  - Stamp a clean truncate log
1788  *  - Mark the node clean
1789  *
1790  * If this function completes without error, a node in OCFS2 can be
1791  * said to have been safely recovered. As a result, failure during the
1792  * second part of a nodes recovery process (local alloc recovery) is
1793  * far less concerning.
1794  */
1795 static int ocfs2_recover_node(struct ocfs2_super *osb,
1796 			      int node_num, int slot_num)
1797 {
1798 	int status = 0;
1799 	struct ocfs2_dinode *la_copy = NULL;
1800 	struct ocfs2_dinode *tl_copy = NULL;
1801 
1802 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1803 
1804 	/* Should not ever be called to recover ourselves -- in that
1805 	 * case we should've called ocfs2_journal_load instead. */
1806 	BUG_ON(osb->node_num == node_num);
1807 
1808 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1809 	if (status < 0) {
1810 		if (status == -EBUSY) {
1811 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1812 			status = 0;
1813 			goto done;
1814 		}
1815 		mlog_errno(status);
1816 		goto done;
1817 	}
1818 
1819 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1820 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1821 	if (status < 0) {
1822 		mlog_errno(status);
1823 		goto done;
1824 	}
1825 
1826 	/* An error from begin_truncate_log_recovery is not
1827 	 * serious enough to warrant halting the rest of
1828 	 * recovery. */
1829 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1830 	if (status < 0)
1831 		mlog_errno(status);
1832 
1833 	/* Likewise, this would be a strange but ultimately not so
1834 	 * harmful place to get an error... */
1835 	status = ocfs2_clear_slot(osb, slot_num);
1836 	if (status < 0)
1837 		mlog_errno(status);
1838 
1839 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1840 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1841 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1842 
1843 	status = 0;
1844 done:
1845 
1846 	return status;
1847 }
1848 
1849 /* Test node liveness by trylocking his journal. If we get the lock,
1850  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851  * still alive (we couldn't get the lock) and < 0 on error. */
1852 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1853 				 int slot_num)
1854 {
1855 	int status, flags;
1856 	struct inode *inode = NULL;
1857 
1858 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1859 					    slot_num);
1860 	if (inode == NULL) {
1861 		mlog(ML_ERROR, "access error\n");
1862 		status = -EACCES;
1863 		goto bail;
1864 	}
1865 	if (is_bad_inode(inode)) {
1866 		mlog(ML_ERROR, "access error (bad inode)\n");
1867 		iput(inode);
1868 		inode = NULL;
1869 		status = -EACCES;
1870 		goto bail;
1871 	}
1872 	SET_INODE_JOURNAL(inode);
1873 
1874 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1875 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1876 	if (status < 0) {
1877 		if (status != -EAGAIN)
1878 			mlog_errno(status);
1879 		goto bail;
1880 	}
1881 
1882 	ocfs2_inode_unlock(inode, 1);
1883 bail:
1884 	iput(inode);
1885 
1886 	return status;
1887 }
1888 
1889 /* Call this underneath ocfs2_super_lock. It also assumes that the
1890  * slot info struct has been updated from disk. */
1891 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1892 {
1893 	unsigned int node_num;
1894 	int status, i;
1895 	u32 gen;
1896 	struct buffer_head *bh = NULL;
1897 	struct ocfs2_dinode *di;
1898 
1899 	/* This is called with the super block cluster lock, so we
1900 	 * know that the slot map can't change underneath us. */
1901 
1902 	for (i = 0; i < osb->max_slots; i++) {
1903 		/* Read journal inode to get the recovery generation */
1904 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1905 		if (status) {
1906 			mlog_errno(status);
1907 			goto bail;
1908 		}
1909 		di = (struct ocfs2_dinode *)bh->b_data;
1910 		gen = ocfs2_get_recovery_generation(di);
1911 		brelse(bh);
1912 		bh = NULL;
1913 
1914 		spin_lock(&osb->osb_lock);
1915 		osb->slot_recovery_generations[i] = gen;
1916 
1917 		trace_ocfs2_mark_dead_nodes(i,
1918 					    osb->slot_recovery_generations[i]);
1919 
1920 		if (i == osb->slot_num) {
1921 			spin_unlock(&osb->osb_lock);
1922 			continue;
1923 		}
1924 
1925 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1926 		if (status == -ENOENT) {
1927 			spin_unlock(&osb->osb_lock);
1928 			continue;
1929 		}
1930 
1931 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1932 			spin_unlock(&osb->osb_lock);
1933 			continue;
1934 		}
1935 		spin_unlock(&osb->osb_lock);
1936 
1937 		/* Ok, we have a slot occupied by another node which
1938 		 * is not in the recovery map. We trylock his journal
1939 		 * file here to test if he's alive. */
1940 		status = ocfs2_trylock_journal(osb, i);
1941 		if (!status) {
1942 			/* Since we're called from mount, we know that
1943 			 * the recovery thread can't race us on
1944 			 * setting / checking the recovery bits. */
1945 			ocfs2_recovery_thread(osb, node_num);
1946 		} else if ((status < 0) && (status != -EAGAIN)) {
1947 			mlog_errno(status);
1948 			goto bail;
1949 		}
1950 	}
1951 
1952 	status = 0;
1953 bail:
1954 	return status;
1955 }
1956 
1957 /*
1958  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959  * randomness to the timeout to minimize multple nodes firing the timer at the
1960  * same time.
1961  */
1962 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1963 {
1964 	unsigned long time;
1965 
1966 	get_random_bytes(&time, sizeof(time));
1967 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1968 	return msecs_to_jiffies(time);
1969 }
1970 
1971 /*
1972  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974  * is done to catch any orphans that are left over in orphan directories.
1975  *
1976  * It scans all slots, even ones that are in use. It does so to handle the
1977  * case described below:
1978  *
1979  *   Node 1 has an inode it was using. The dentry went away due to memory
1980  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1981  *   has the open lock.
1982  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1984  *   open lock, sees that another node has a PR, and does nothing.
1985  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986  *   open lock, sees the PR still, and does nothing.
1987  *   Basically, we have to trigger an orphan iput on node 1. The only way
1988  *   for this to happen is if node 1 runs node 2's orphan dir.
1989  *
1990  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1992  * stored in LVB. If the sequence number has changed, it means some other
1993  * node has done the scan.  This node skips the scan and tracks the
1994  * sequence number.  If the sequence number didn't change, it means a scan
1995  * hasn't happened.  The node queues a scan and increments the
1996  * sequence number in the LVB.
1997  */
1998 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1999 {
2000 	struct ocfs2_orphan_scan *os;
2001 	int status, i;
2002 	u32 seqno = 0;
2003 
2004 	os = &osb->osb_orphan_scan;
2005 
2006 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2007 		goto out;
2008 
2009 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2010 					    atomic_read(&os->os_state));
2011 
2012 	status = ocfs2_orphan_scan_lock(osb, &seqno);
2013 	if (status < 0) {
2014 		if (status != -EAGAIN)
2015 			mlog_errno(status);
2016 		goto out;
2017 	}
2018 
2019 	/* Do no queue the tasks if the volume is being umounted */
2020 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2021 		goto unlock;
2022 
2023 	if (os->os_seqno != seqno) {
2024 		os->os_seqno = seqno;
2025 		goto unlock;
2026 	}
2027 
2028 	for (i = 0; i < osb->max_slots; i++)
2029 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2030 						NULL, ORPHAN_NO_NEED_TRUNCATE);
2031 	/*
2032 	 * We queued a recovery on orphan slots, increment the sequence
2033 	 * number and update LVB so other node will skip the scan for a while
2034 	 */
2035 	seqno++;
2036 	os->os_count++;
2037 	os->os_scantime = ktime_get_seconds();
2038 unlock:
2039 	ocfs2_orphan_scan_unlock(osb, seqno);
2040 out:
2041 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2042 					  atomic_read(&os->os_state));
2043 	return;
2044 }
2045 
2046 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2047 static void ocfs2_orphan_scan_work(struct work_struct *work)
2048 {
2049 	struct ocfs2_orphan_scan *os;
2050 	struct ocfs2_super *osb;
2051 
2052 	os = container_of(work, struct ocfs2_orphan_scan,
2053 			  os_orphan_scan_work.work);
2054 	osb = os->os_osb;
2055 
2056 	mutex_lock(&os->os_lock);
2057 	ocfs2_queue_orphan_scan(osb);
2058 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2059 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060 				      ocfs2_orphan_scan_timeout());
2061 	mutex_unlock(&os->os_lock);
2062 }
2063 
2064 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2065 {
2066 	struct ocfs2_orphan_scan *os;
2067 
2068 	os = &osb->osb_orphan_scan;
2069 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2070 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2071 		mutex_lock(&os->os_lock);
2072 		cancel_delayed_work(&os->os_orphan_scan_work);
2073 		mutex_unlock(&os->os_lock);
2074 	}
2075 }
2076 
2077 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2078 {
2079 	struct ocfs2_orphan_scan *os;
2080 
2081 	os = &osb->osb_orphan_scan;
2082 	os->os_osb = osb;
2083 	os->os_count = 0;
2084 	os->os_seqno = 0;
2085 	mutex_init(&os->os_lock);
2086 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2087 }
2088 
2089 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2090 {
2091 	struct ocfs2_orphan_scan *os;
2092 
2093 	os = &osb->osb_orphan_scan;
2094 	os->os_scantime = ktime_get_seconds();
2095 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2096 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2097 	else {
2098 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2099 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2100 				   ocfs2_orphan_scan_timeout());
2101 	}
2102 }
2103 
2104 struct ocfs2_orphan_filldir_priv {
2105 	struct dir_context	ctx;
2106 	struct inode		*head;
2107 	struct ocfs2_super	*osb;
2108 	enum ocfs2_orphan_reco_type orphan_reco_type;
2109 };
2110 
2111 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2112 				int name_len, loff_t pos, u64 ino,
2113 				unsigned type)
2114 {
2115 	struct ocfs2_orphan_filldir_priv *p =
2116 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2117 	struct inode *iter;
2118 
2119 	if (name_len == 1 && !strncmp(".", name, 1))
2120 		return true;
2121 	if (name_len == 2 && !strncmp("..", name, 2))
2122 		return true;
2123 
2124 	/* do not include dio entry in case of orphan scan */
2125 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2126 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2127 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2128 		return true;
2129 
2130 	/* Skip bad inodes so that recovery can continue */
2131 	iter = ocfs2_iget(p->osb, ino,
2132 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2133 	if (IS_ERR(iter))
2134 		return true;
2135 
2136 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2137 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2138 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2139 
2140 	/* Skip inodes which are already added to recover list, since dio may
2141 	 * happen concurrently with unlink/rename */
2142 	if (OCFS2_I(iter)->ip_next_orphan) {
2143 		iput(iter);
2144 		return true;
2145 	}
2146 
2147 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2148 	/* No locking is required for the next_orphan queue as there
2149 	 * is only ever a single process doing orphan recovery. */
2150 	OCFS2_I(iter)->ip_next_orphan = p->head;
2151 	p->head = iter;
2152 
2153 	return true;
2154 }
2155 
2156 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2157 			       int slot,
2158 			       struct inode **head,
2159 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2160 {
2161 	int status;
2162 	struct inode *orphan_dir_inode = NULL;
2163 	struct ocfs2_orphan_filldir_priv priv = {
2164 		.ctx.actor = ocfs2_orphan_filldir,
2165 		.osb = osb,
2166 		.head = *head,
2167 		.orphan_reco_type = orphan_reco_type
2168 	};
2169 
2170 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2171 						       ORPHAN_DIR_SYSTEM_INODE,
2172 						       slot);
2173 	if  (!orphan_dir_inode) {
2174 		status = -ENOENT;
2175 		mlog_errno(status);
2176 		return status;
2177 	}
2178 
2179 	inode_lock(orphan_dir_inode);
2180 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2181 	if (status < 0) {
2182 		mlog_errno(status);
2183 		goto out;
2184 	}
2185 
2186 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2187 	if (status) {
2188 		mlog_errno(status);
2189 		goto out_cluster;
2190 	}
2191 
2192 	*head = priv.head;
2193 
2194 out_cluster:
2195 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2196 out:
2197 	inode_unlock(orphan_dir_inode);
2198 	iput(orphan_dir_inode);
2199 	return status;
2200 }
2201 
2202 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2203 					      int slot)
2204 {
2205 	int ret;
2206 
2207 	spin_lock(&osb->osb_lock);
2208 	ret = !osb->osb_orphan_wipes[slot];
2209 	spin_unlock(&osb->osb_lock);
2210 	return ret;
2211 }
2212 
2213 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2214 					     int slot)
2215 {
2216 	spin_lock(&osb->osb_lock);
2217 	/* Mark ourselves such that new processes in delete_inode()
2218 	 * know to quit early. */
2219 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2220 	while (osb->osb_orphan_wipes[slot]) {
2221 		/* If any processes are already in the middle of an
2222 		 * orphan wipe on this dir, then we need to wait for
2223 		 * them. */
2224 		spin_unlock(&osb->osb_lock);
2225 		wait_event_interruptible(osb->osb_wipe_event,
2226 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2227 		spin_lock(&osb->osb_lock);
2228 	}
2229 	spin_unlock(&osb->osb_lock);
2230 }
2231 
2232 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2233 					      int slot)
2234 {
2235 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2236 }
2237 
2238 /*
2239  * Orphan recovery. Each mounted node has it's own orphan dir which we
2240  * must run during recovery. Our strategy here is to build a list of
2241  * the inodes in the orphan dir and iget/iput them. The VFS does
2242  * (most) of the rest of the work.
2243  *
2244  * Orphan recovery can happen at any time, not just mount so we have a
2245  * couple of extra considerations.
2246  *
2247  * - We grab as many inodes as we can under the orphan dir lock -
2248  *   doing iget() outside the orphan dir risks getting a reference on
2249  *   an invalid inode.
2250  * - We must be sure not to deadlock with other processes on the
2251  *   system wanting to run delete_inode(). This can happen when they go
2252  *   to lock the orphan dir and the orphan recovery process attempts to
2253  *   iget() inside the orphan dir lock. This can be avoided by
2254  *   advertising our state to ocfs2_delete_inode().
2255  */
2256 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2257 				 int slot,
2258 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2259 {
2260 	int ret = 0;
2261 	struct inode *inode = NULL;
2262 	struct inode *iter;
2263 	struct ocfs2_inode_info *oi;
2264 	struct buffer_head *di_bh = NULL;
2265 	struct ocfs2_dinode *di = NULL;
2266 
2267 	trace_ocfs2_recover_orphans(slot);
2268 
2269 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2270 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2271 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2272 
2273 	/* Error here should be noted, but we want to continue with as
2274 	 * many queued inodes as we've got. */
2275 	if (ret)
2276 		mlog_errno(ret);
2277 
2278 	while (inode) {
2279 		oi = OCFS2_I(inode);
2280 		trace_ocfs2_recover_orphans_iput(
2281 					(unsigned long long)oi->ip_blkno);
2282 
2283 		iter = oi->ip_next_orphan;
2284 		oi->ip_next_orphan = NULL;
2285 
2286 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2287 			inode_lock(inode);
2288 			ret = ocfs2_rw_lock(inode, 1);
2289 			if (ret < 0) {
2290 				mlog_errno(ret);
2291 				goto unlock_mutex;
2292 			}
2293 			/*
2294 			 * We need to take and drop the inode lock to
2295 			 * force read inode from disk.
2296 			 */
2297 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2298 			if (ret) {
2299 				mlog_errno(ret);
2300 				goto unlock_rw;
2301 			}
2302 
2303 			di = (struct ocfs2_dinode *)di_bh->b_data;
2304 
2305 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2306 				ret = ocfs2_truncate_file(inode, di_bh,
2307 						i_size_read(inode));
2308 				if (ret < 0) {
2309 					if (ret != -ENOSPC)
2310 						mlog_errno(ret);
2311 					goto unlock_inode;
2312 				}
2313 
2314 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2315 						di_bh, 0, 0);
2316 				if (ret)
2317 					mlog_errno(ret);
2318 			}
2319 unlock_inode:
2320 			ocfs2_inode_unlock(inode, 1);
2321 			brelse(di_bh);
2322 			di_bh = NULL;
2323 unlock_rw:
2324 			ocfs2_rw_unlock(inode, 1);
2325 unlock_mutex:
2326 			inode_unlock(inode);
2327 
2328 			/* clear dio flag in ocfs2_inode_info */
2329 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2330 		} else {
2331 			spin_lock(&oi->ip_lock);
2332 			/* Set the proper information to get us going into
2333 			 * ocfs2_delete_inode. */
2334 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2335 			spin_unlock(&oi->ip_lock);
2336 		}
2337 
2338 		iput(inode);
2339 		inode = iter;
2340 	}
2341 
2342 	return ret;
2343 }
2344 
2345 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2346 {
2347 	/* This check is good because ocfs2 will wait on our recovery
2348 	 * thread before changing it to something other than MOUNTED
2349 	 * or DISABLED. */
2350 	wait_event(osb->osb_mount_event,
2351 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2352 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2353 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2354 
2355 	/* If there's an error on mount, then we may never get to the
2356 	 * MOUNTED flag, but this is set right before
2357 	 * dismount_volume() so we can trust it. */
2358 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2359 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2360 		mlog(0, "mount error, exiting!\n");
2361 		return -EBUSY;
2362 	}
2363 
2364 	return 0;
2365 }
2366 
2367 static int ocfs2_commit_thread(void *arg)
2368 {
2369 	int status;
2370 	struct ocfs2_super *osb = arg;
2371 	struct ocfs2_journal *journal = osb->journal;
2372 
2373 	/* we can trust j_num_trans here because _should_stop() is only set in
2374 	 * shutdown and nobody other than ourselves should be able to start
2375 	 * transactions.  committing on shutdown might take a few iterations
2376 	 * as final transactions put deleted inodes on the list */
2377 	while (!(kthread_should_stop() &&
2378 		 atomic_read(&journal->j_num_trans) == 0)) {
2379 
2380 		wait_event_interruptible(osb->checkpoint_event,
2381 					 atomic_read(&journal->j_num_trans)
2382 					 || kthread_should_stop());
2383 
2384 		status = ocfs2_commit_cache(osb);
2385 		if (status < 0) {
2386 			static unsigned long abort_warn_time;
2387 
2388 			/* Warn about this once per minute */
2389 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2390 				mlog(ML_ERROR, "status = %d, journal is "
2391 						"already aborted.\n", status);
2392 			/*
2393 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2394 			 * non-zero value.  Sleep here to avoid a busy-wait
2395 			 * loop.
2396 			 */
2397 			msleep_interruptible(1000);
2398 		}
2399 
2400 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2401 			mlog(ML_KTHREAD,
2402 			     "commit_thread: %u transactions pending on "
2403 			     "shutdown\n",
2404 			     atomic_read(&journal->j_num_trans));
2405 		}
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 /* Reads all the journal inodes without taking any cluster locks. Used
2412  * for hard readonly access to determine whether any journal requires
2413  * recovery. Also used to refresh the recovery generation numbers after
2414  * a journal has been recovered by another node.
2415  */
2416 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2417 {
2418 	int ret = 0;
2419 	unsigned int slot;
2420 	struct buffer_head *di_bh = NULL;
2421 	struct ocfs2_dinode *di;
2422 	int journal_dirty = 0;
2423 
2424 	for(slot = 0; slot < osb->max_slots; slot++) {
2425 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2426 		if (ret) {
2427 			mlog_errno(ret);
2428 			goto out;
2429 		}
2430 
2431 		di = (struct ocfs2_dinode *) di_bh->b_data;
2432 
2433 		osb->slot_recovery_generations[slot] =
2434 					ocfs2_get_recovery_generation(di);
2435 
2436 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2437 		    OCFS2_JOURNAL_DIRTY_FL)
2438 			journal_dirty = 1;
2439 
2440 		brelse(di_bh);
2441 		di_bh = NULL;
2442 	}
2443 
2444 out:
2445 	if (journal_dirty)
2446 		ret = -EROFS;
2447 	return ret;
2448 }
2449