xref: /linux/fs/ocfs2/journal.c (revision 4e95bc268b915c3a19ec8b9110f61e4ea41a1ed0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * journal.c
6  *
7  * Defines functions of journalling api
8  *
9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20 
21 #include <cluster/masklog.h>
22 
23 #include "ocfs2.h"
24 
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41 
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44 
45 DEFINE_SPINLOCK(trans_inc_lock);
46 
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48 
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51 			      int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56 				      int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58 				 int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60 				 int slot,
61 				 enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64 					    int slot_num,
65 					    struct ocfs2_dinode *la_dinode,
66 					    struct ocfs2_dinode *tl_dinode,
67 					    struct ocfs2_quota_recovery *qrec,
68 					    enum ocfs2_orphan_reco_type orphan_reco_type);
69 
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72 	return __ocfs2_wait_on_mount(osb, 0);
73 }
74 
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77 	return __ocfs2_wait_on_mount(osb, 1);
78 }
79 
80 /*
81  * This replay_map is to track online/offline slots, so we could recover
82  * offline slots during recovery and mount
83  */
84 
85 enum ocfs2_replay_state {
86 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
87 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
88 	REPLAY_DONE 		/* Replay was already queued */
89 };
90 
91 struct ocfs2_replay_map {
92 	unsigned int rm_slots;
93 	enum ocfs2_replay_state rm_state;
94 	unsigned char rm_replay_slots[0];
95 };
96 
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99 	if (!osb->replay_map)
100 		return;
101 
102 	/* If we've already queued the replay, we don't have any more to do */
103 	if (osb->replay_map->rm_state == REPLAY_DONE)
104 		return;
105 
106 	osb->replay_map->rm_state = state;
107 }
108 
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111 	struct ocfs2_replay_map *replay_map;
112 	int i, node_num;
113 
114 	/* If replay map is already set, we don't do it again */
115 	if (osb->replay_map)
116 		return 0;
117 
118 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
120 
121 	if (!replay_map) {
122 		mlog_errno(-ENOMEM);
123 		return -ENOMEM;
124 	}
125 
126 	spin_lock(&osb->osb_lock);
127 
128 	replay_map->rm_slots = osb->max_slots;
129 	replay_map->rm_state = REPLAY_UNNEEDED;
130 
131 	/* set rm_replay_slots for offline slot(s) */
132 	for (i = 0; i < replay_map->rm_slots; i++) {
133 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134 			replay_map->rm_replay_slots[i] = 1;
135 	}
136 
137 	osb->replay_map = replay_map;
138 	spin_unlock(&osb->osb_lock);
139 	return 0;
140 }
141 
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143 		enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145 	struct ocfs2_replay_map *replay_map = osb->replay_map;
146 	int i;
147 
148 	if (!replay_map)
149 		return;
150 
151 	if (replay_map->rm_state != REPLAY_NEEDED)
152 		return;
153 
154 	for (i = 0; i < replay_map->rm_slots; i++)
155 		if (replay_map->rm_replay_slots[i])
156 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157 							NULL, NULL,
158 							orphan_reco_type);
159 	replay_map->rm_state = REPLAY_DONE;
160 }
161 
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164 	struct ocfs2_replay_map *replay_map = osb->replay_map;
165 
166 	if (!osb->replay_map)
167 		return;
168 
169 	kfree(replay_map);
170 	osb->replay_map = NULL;
171 }
172 
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175 	struct ocfs2_recovery_map *rm;
176 
177 	mutex_init(&osb->recovery_lock);
178 	osb->disable_recovery = 0;
179 	osb->recovery_thread_task = NULL;
180 	init_waitqueue_head(&osb->recovery_event);
181 
182 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183 		     osb->max_slots * sizeof(unsigned int),
184 		     GFP_KERNEL);
185 	if (!rm) {
186 		mlog_errno(-ENOMEM);
187 		return -ENOMEM;
188 	}
189 
190 	rm->rm_entries = (unsigned int *)((char *)rm +
191 					  sizeof(struct ocfs2_recovery_map));
192 	osb->recovery_map = rm;
193 
194 	return 0;
195 }
196 
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198  * memory barriers to make sure that we'll see the null task before
199  * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202 	mb();
203 	return osb->recovery_thread_task != NULL;
204 }
205 
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208 	struct ocfs2_recovery_map *rm;
209 
210 	/* disable any new recovery threads and wait for any currently
211 	 * running ones to exit. Do this before setting the vol_state. */
212 	mutex_lock(&osb->recovery_lock);
213 	osb->disable_recovery = 1;
214 	mutex_unlock(&osb->recovery_lock);
215 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216 
217 	/* At this point, we know that no more recovery threads can be
218 	 * launched, so wait for any recovery completion work to
219 	 * complete. */
220 	flush_workqueue(osb->ocfs2_wq);
221 
222 	/*
223 	 * Now that recovery is shut down, and the osb is about to be
224 	 * freed,  the osb_lock is not taken here.
225 	 */
226 	rm = osb->recovery_map;
227 	/* XXX: Should we bug if there are dirty entries? */
228 
229 	kfree(rm);
230 }
231 
232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
233 				     unsigned int node_num)
234 {
235 	int i;
236 	struct ocfs2_recovery_map *rm = osb->recovery_map;
237 
238 	assert_spin_locked(&osb->osb_lock);
239 
240 	for (i = 0; i < rm->rm_used; i++) {
241 		if (rm->rm_entries[i] == node_num)
242 			return 1;
243 	}
244 
245 	return 0;
246 }
247 
248 /* Behaves like test-and-set.  Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
250 				  unsigned int node_num)
251 {
252 	struct ocfs2_recovery_map *rm = osb->recovery_map;
253 
254 	spin_lock(&osb->osb_lock);
255 	if (__ocfs2_recovery_map_test(osb, node_num)) {
256 		spin_unlock(&osb->osb_lock);
257 		return 1;
258 	}
259 
260 	/* XXX: Can this be exploited? Not from o2dlm... */
261 	BUG_ON(rm->rm_used >= osb->max_slots);
262 
263 	rm->rm_entries[rm->rm_used] = node_num;
264 	rm->rm_used++;
265 	spin_unlock(&osb->osb_lock);
266 
267 	return 0;
268 }
269 
270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
271 				     unsigned int node_num)
272 {
273 	int i;
274 	struct ocfs2_recovery_map *rm = osb->recovery_map;
275 
276 	spin_lock(&osb->osb_lock);
277 
278 	for (i = 0; i < rm->rm_used; i++) {
279 		if (rm->rm_entries[i] == node_num)
280 			break;
281 	}
282 
283 	if (i < rm->rm_used) {
284 		/* XXX: be careful with the pointer math */
285 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
286 			(rm->rm_used - i - 1) * sizeof(unsigned int));
287 		rm->rm_used--;
288 	}
289 
290 	spin_unlock(&osb->osb_lock);
291 }
292 
293 static int ocfs2_commit_cache(struct ocfs2_super *osb)
294 {
295 	int status = 0;
296 	unsigned int flushed;
297 	struct ocfs2_journal *journal = NULL;
298 
299 	journal = osb->journal;
300 
301 	/* Flush all pending commits and checkpoint the journal. */
302 	down_write(&journal->j_trans_barrier);
303 
304 	flushed = atomic_read(&journal->j_num_trans);
305 	trace_ocfs2_commit_cache_begin(flushed);
306 	if (flushed == 0) {
307 		up_write(&journal->j_trans_barrier);
308 		goto finally;
309 	}
310 
311 	jbd2_journal_lock_updates(journal->j_journal);
312 	status = jbd2_journal_flush(journal->j_journal);
313 	jbd2_journal_unlock_updates(journal->j_journal);
314 	if (status < 0) {
315 		up_write(&journal->j_trans_barrier);
316 		mlog_errno(status);
317 		goto finally;
318 	}
319 
320 	ocfs2_inc_trans_id(journal);
321 
322 	flushed = atomic_read(&journal->j_num_trans);
323 	atomic_set(&journal->j_num_trans, 0);
324 	up_write(&journal->j_trans_barrier);
325 
326 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
327 
328 	ocfs2_wake_downconvert_thread(osb);
329 	wake_up(&journal->j_checkpointed);
330 finally:
331 	return status;
332 }
333 
334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
335 {
336 	journal_t *journal = osb->journal->j_journal;
337 	handle_t *handle;
338 
339 	BUG_ON(!osb || !osb->journal->j_journal);
340 
341 	if (ocfs2_is_hard_readonly(osb))
342 		return ERR_PTR(-EROFS);
343 
344 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
345 	BUG_ON(max_buffs <= 0);
346 
347 	/* Nested transaction? Just return the handle... */
348 	if (journal_current_handle())
349 		return jbd2_journal_start(journal, max_buffs);
350 
351 	sb_start_intwrite(osb->sb);
352 
353 	down_read(&osb->journal->j_trans_barrier);
354 
355 	handle = jbd2_journal_start(journal, max_buffs);
356 	if (IS_ERR(handle)) {
357 		up_read(&osb->journal->j_trans_barrier);
358 		sb_end_intwrite(osb->sb);
359 
360 		mlog_errno(PTR_ERR(handle));
361 
362 		if (is_journal_aborted(journal)) {
363 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
364 			handle = ERR_PTR(-EROFS);
365 		}
366 	} else {
367 		if (!ocfs2_mount_local(osb))
368 			atomic_inc(&(osb->journal->j_num_trans));
369 	}
370 
371 	return handle;
372 }
373 
374 int ocfs2_commit_trans(struct ocfs2_super *osb,
375 		       handle_t *handle)
376 {
377 	int ret, nested;
378 	struct ocfs2_journal *journal = osb->journal;
379 
380 	BUG_ON(!handle);
381 
382 	nested = handle->h_ref > 1;
383 	ret = jbd2_journal_stop(handle);
384 	if (ret < 0)
385 		mlog_errno(ret);
386 
387 	if (!nested) {
388 		up_read(&journal->j_trans_barrier);
389 		sb_end_intwrite(osb->sb);
390 	}
391 
392 	return ret;
393 }
394 
395 /*
396  * 'nblocks' is what you want to add to the current transaction.
397  *
398  * This might call jbd2_journal_restart() which will commit dirty buffers
399  * and then restart the transaction. Before calling
400  * ocfs2_extend_trans(), any changed blocks should have been
401  * dirtied. After calling it, all blocks which need to be changed must
402  * go through another set of journal_access/journal_dirty calls.
403  *
404  * WARNING: This will not release any semaphores or disk locks taken
405  * during the transaction, so make sure they were taken *before*
406  * start_trans or we'll have ordering deadlocks.
407  *
408  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409  * good because transaction ids haven't yet been recorded on the
410  * cluster locks associated with this handle.
411  */
412 int ocfs2_extend_trans(handle_t *handle, int nblocks)
413 {
414 	int status, old_nblocks;
415 
416 	BUG_ON(!handle);
417 	BUG_ON(nblocks < 0);
418 
419 	if (!nblocks)
420 		return 0;
421 
422 	old_nblocks = handle->h_buffer_credits;
423 
424 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
425 
426 #ifdef CONFIG_OCFS2_DEBUG_FS
427 	status = 1;
428 #else
429 	status = jbd2_journal_extend(handle, nblocks);
430 	if (status < 0) {
431 		mlog_errno(status);
432 		goto bail;
433 	}
434 #endif
435 
436 	if (status > 0) {
437 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
438 		status = jbd2_journal_restart(handle,
439 					      old_nblocks + nblocks);
440 		if (status < 0) {
441 			mlog_errno(status);
442 			goto bail;
443 		}
444 	}
445 
446 	status = 0;
447 bail:
448 	return status;
449 }
450 
451 /*
452  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453  * If that fails, restart the transaction & regain write access for the
454  * buffer head which is used for metadata modifications.
455  * Taken from Ext4: extend_or_restart_transaction()
456  */
457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
458 {
459 	int status, old_nblks;
460 
461 	BUG_ON(!handle);
462 
463 	old_nblks = handle->h_buffer_credits;
464 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
465 
466 	if (old_nblks < thresh)
467 		return 0;
468 
469 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
470 	if (status < 0) {
471 		mlog_errno(status);
472 		goto bail;
473 	}
474 
475 	if (status > 0) {
476 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
477 		if (status < 0)
478 			mlog_errno(status);
479 	}
480 
481 bail:
482 	return status;
483 }
484 
485 
486 struct ocfs2_triggers {
487 	struct jbd2_buffer_trigger_type	ot_triggers;
488 	int				ot_offset;
489 };
490 
491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
492 {
493 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
494 }
495 
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
497 				 struct buffer_head *bh,
498 				 void *data, size_t size)
499 {
500 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
501 
502 	/*
503 	 * We aren't guaranteed to have the superblock here, so we
504 	 * must unconditionally compute the ecc data.
505 	 * __ocfs2_journal_access() will only set the triggers if
506 	 * metaecc is enabled.
507 	 */
508 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
509 }
510 
511 /*
512  * Quota blocks have their own trigger because the struct ocfs2_block_check
513  * offset depends on the blocksize.
514  */
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
516 				 struct buffer_head *bh,
517 				 void *data, size_t size)
518 {
519 	struct ocfs2_disk_dqtrailer *dqt =
520 		ocfs2_block_dqtrailer(size, data);
521 
522 	/*
523 	 * We aren't guaranteed to have the superblock here, so we
524 	 * must unconditionally compute the ecc data.
525 	 * __ocfs2_journal_access() will only set the triggers if
526 	 * metaecc is enabled.
527 	 */
528 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
529 }
530 
531 /*
532  * Directory blocks also have their own trigger because the
533  * struct ocfs2_block_check offset depends on the blocksize.
534  */
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
536 				 struct buffer_head *bh,
537 				 void *data, size_t size)
538 {
539 	struct ocfs2_dir_block_trailer *trailer =
540 		ocfs2_dir_trailer_from_size(size, data);
541 
542 	/*
543 	 * We aren't guaranteed to have the superblock here, so we
544 	 * must unconditionally compute the ecc data.
545 	 * __ocfs2_journal_access() will only set the triggers if
546 	 * metaecc is enabled.
547 	 */
548 	ocfs2_block_check_compute(data, size, &trailer->db_check);
549 }
550 
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
552 				struct buffer_head *bh)
553 {
554 	mlog(ML_ERROR,
555 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
556 	     "bh->b_blocknr = %llu\n",
557 	     (unsigned long)bh,
558 	     (unsigned long long)bh->b_blocknr);
559 
560 	ocfs2_error(bh->b_bdev->bd_super,
561 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
562 }
563 
564 static struct ocfs2_triggers di_triggers = {
565 	.ot_triggers = {
566 		.t_frozen = ocfs2_frozen_trigger,
567 		.t_abort = ocfs2_abort_trigger,
568 	},
569 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
570 };
571 
572 static struct ocfs2_triggers eb_triggers = {
573 	.ot_triggers = {
574 		.t_frozen = ocfs2_frozen_trigger,
575 		.t_abort = ocfs2_abort_trigger,
576 	},
577 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
578 };
579 
580 static struct ocfs2_triggers rb_triggers = {
581 	.ot_triggers = {
582 		.t_frozen = ocfs2_frozen_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
586 };
587 
588 static struct ocfs2_triggers gd_triggers = {
589 	.ot_triggers = {
590 		.t_frozen = ocfs2_frozen_trigger,
591 		.t_abort = ocfs2_abort_trigger,
592 	},
593 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
594 };
595 
596 static struct ocfs2_triggers db_triggers = {
597 	.ot_triggers = {
598 		.t_frozen = ocfs2_db_frozen_trigger,
599 		.t_abort = ocfs2_abort_trigger,
600 	},
601 };
602 
603 static struct ocfs2_triggers xb_triggers = {
604 	.ot_triggers = {
605 		.t_frozen = ocfs2_frozen_trigger,
606 		.t_abort = ocfs2_abort_trigger,
607 	},
608 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
609 };
610 
611 static struct ocfs2_triggers dq_triggers = {
612 	.ot_triggers = {
613 		.t_frozen = ocfs2_dq_frozen_trigger,
614 		.t_abort = ocfs2_abort_trigger,
615 	},
616 };
617 
618 static struct ocfs2_triggers dr_triggers = {
619 	.ot_triggers = {
620 		.t_frozen = ocfs2_frozen_trigger,
621 		.t_abort = ocfs2_abort_trigger,
622 	},
623 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
624 };
625 
626 static struct ocfs2_triggers dl_triggers = {
627 	.ot_triggers = {
628 		.t_frozen = ocfs2_frozen_trigger,
629 		.t_abort = ocfs2_abort_trigger,
630 	},
631 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
632 };
633 
634 static int __ocfs2_journal_access(handle_t *handle,
635 				  struct ocfs2_caching_info *ci,
636 				  struct buffer_head *bh,
637 				  struct ocfs2_triggers *triggers,
638 				  int type)
639 {
640 	int status;
641 	struct ocfs2_super *osb =
642 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
643 
644 	BUG_ON(!ci || !ci->ci_ops);
645 	BUG_ON(!handle);
646 	BUG_ON(!bh);
647 
648 	trace_ocfs2_journal_access(
649 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
650 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
651 
652 	/* we can safely remove this assertion after testing. */
653 	if (!buffer_uptodate(bh)) {
654 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
655 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
656 		     (unsigned long long)bh->b_blocknr, bh->b_state);
657 
658 		lock_buffer(bh);
659 		/*
660 		 * A previous transaction with a couple of buffer heads fail
661 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662 		 * For current transaction, the bh is just among those error
663 		 * bhs which previous transaction handle. We can't just clear
664 		 * its BH_Write_EIO and reuse directly, since other bhs are
665 		 * not written to disk yet and that will cause metadata
666 		 * inconsistency. So we should set fs read-only to avoid
667 		 * further damage.
668 		 */
669 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
670 			unlock_buffer(bh);
671 			return ocfs2_error(osb->sb, "A previous attempt to "
672 					"write this buffer head failed\n");
673 		}
674 		unlock_buffer(bh);
675 	}
676 
677 	/* Set the current transaction information on the ci so
678 	 * that the locking code knows whether it can drop it's locks
679 	 * on this ci or not. We're protected from the commit
680 	 * thread updating the current transaction id until
681 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
682 	 * j_trans_barrier for us. */
683 	ocfs2_set_ci_lock_trans(osb->journal, ci);
684 
685 	ocfs2_metadata_cache_io_lock(ci);
686 	switch (type) {
687 	case OCFS2_JOURNAL_ACCESS_CREATE:
688 	case OCFS2_JOURNAL_ACCESS_WRITE:
689 		status = jbd2_journal_get_write_access(handle, bh);
690 		break;
691 
692 	case OCFS2_JOURNAL_ACCESS_UNDO:
693 		status = jbd2_journal_get_undo_access(handle, bh);
694 		break;
695 
696 	default:
697 		status = -EINVAL;
698 		mlog(ML_ERROR, "Unknown access type!\n");
699 	}
700 	if (!status && ocfs2_meta_ecc(osb) && triggers)
701 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
702 	ocfs2_metadata_cache_io_unlock(ci);
703 
704 	if (status < 0)
705 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
706 		     status, type);
707 
708 	return status;
709 }
710 
711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
712 			    struct buffer_head *bh, int type)
713 {
714 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
715 }
716 
717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
718 			    struct buffer_head *bh, int type)
719 {
720 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
721 }
722 
723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
724 			    struct buffer_head *bh, int type)
725 {
726 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
727 				      type);
728 }
729 
730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
731 			    struct buffer_head *bh, int type)
732 {
733 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
734 }
735 
736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
737 			    struct buffer_head *bh, int type)
738 {
739 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
740 }
741 
742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
743 			    struct buffer_head *bh, int type)
744 {
745 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
746 }
747 
748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
749 			    struct buffer_head *bh, int type)
750 {
751 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
752 }
753 
754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
755 			    struct buffer_head *bh, int type)
756 {
757 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
758 }
759 
760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
761 			    struct buffer_head *bh, int type)
762 {
763 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
764 }
765 
766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
767 			 struct buffer_head *bh, int type)
768 {
769 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
770 }
771 
772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
773 {
774 	int status;
775 
776 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
777 
778 	status = jbd2_journal_dirty_metadata(handle, bh);
779 	if (status) {
780 		mlog_errno(status);
781 		if (!is_handle_aborted(handle)) {
782 			journal_t *journal = handle->h_transaction->t_journal;
783 			struct super_block *sb = bh->b_bdev->bd_super;
784 
785 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
786 					"Aborting transaction and journal.\n");
787 			handle->h_err = status;
788 			jbd2_journal_abort_handle(handle);
789 			jbd2_journal_abort(journal, status);
790 			ocfs2_abort(sb, "Journal already aborted.\n");
791 		}
792 	}
793 }
794 
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
796 
797 void ocfs2_set_journal_params(struct ocfs2_super *osb)
798 {
799 	journal_t *journal = osb->journal->j_journal;
800 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
801 
802 	if (osb->osb_commit_interval)
803 		commit_interval = osb->osb_commit_interval;
804 
805 	write_lock(&journal->j_state_lock);
806 	journal->j_commit_interval = commit_interval;
807 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
808 		journal->j_flags |= JBD2_BARRIER;
809 	else
810 		journal->j_flags &= ~JBD2_BARRIER;
811 	write_unlock(&journal->j_state_lock);
812 }
813 
814 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
815 {
816 	int status = -1;
817 	struct inode *inode = NULL; /* the journal inode */
818 	journal_t *j_journal = NULL;
819 	struct ocfs2_dinode *di = NULL;
820 	struct buffer_head *bh = NULL;
821 	struct ocfs2_super *osb;
822 	int inode_lock = 0;
823 
824 	BUG_ON(!journal);
825 
826 	osb = journal->j_osb;
827 
828 	/* already have the inode for our journal */
829 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
830 					    osb->slot_num);
831 	if (inode == NULL) {
832 		status = -EACCES;
833 		mlog_errno(status);
834 		goto done;
835 	}
836 	if (is_bad_inode(inode)) {
837 		mlog(ML_ERROR, "access error (bad inode)\n");
838 		iput(inode);
839 		inode = NULL;
840 		status = -EACCES;
841 		goto done;
842 	}
843 
844 	SET_INODE_JOURNAL(inode);
845 	OCFS2_I(inode)->ip_open_count++;
846 
847 	/* Skip recovery waits here - journal inode metadata never
848 	 * changes in a live cluster so it can be considered an
849 	 * exception to the rule. */
850 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
851 	if (status < 0) {
852 		if (status != -ERESTARTSYS)
853 			mlog(ML_ERROR, "Could not get lock on journal!\n");
854 		goto done;
855 	}
856 
857 	inode_lock = 1;
858 	di = (struct ocfs2_dinode *)bh->b_data;
859 
860 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
861 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
862 		     i_size_read(inode));
863 		status = -EINVAL;
864 		goto done;
865 	}
866 
867 	trace_ocfs2_journal_init(i_size_read(inode),
868 				 (unsigned long long)inode->i_blocks,
869 				 OCFS2_I(inode)->ip_clusters);
870 
871 	/* call the kernels journal init function now */
872 	j_journal = jbd2_journal_init_inode(inode);
873 	if (j_journal == NULL) {
874 		mlog(ML_ERROR, "Linux journal layer error\n");
875 		status = -EINVAL;
876 		goto done;
877 	}
878 
879 	trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
880 
881 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
882 		  OCFS2_JOURNAL_DIRTY_FL);
883 
884 	journal->j_journal = j_journal;
885 	journal->j_inode = inode;
886 	journal->j_bh = bh;
887 
888 	ocfs2_set_journal_params(osb);
889 
890 	journal->j_state = OCFS2_JOURNAL_LOADED;
891 
892 	status = 0;
893 done:
894 	if (status < 0) {
895 		if (inode_lock)
896 			ocfs2_inode_unlock(inode, 1);
897 		brelse(bh);
898 		if (inode) {
899 			OCFS2_I(inode)->ip_open_count--;
900 			iput(inode);
901 		}
902 	}
903 
904 	return status;
905 }
906 
907 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
908 {
909 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
910 }
911 
912 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
913 {
914 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
915 }
916 
917 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
918 				      int dirty, int replayed)
919 {
920 	int status;
921 	unsigned int flags;
922 	struct ocfs2_journal *journal = osb->journal;
923 	struct buffer_head *bh = journal->j_bh;
924 	struct ocfs2_dinode *fe;
925 
926 	fe = (struct ocfs2_dinode *)bh->b_data;
927 
928 	/* The journal bh on the osb always comes from ocfs2_journal_init()
929 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
930 	 * code bug if we mess it up. */
931 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
932 
933 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
934 	if (dirty)
935 		flags |= OCFS2_JOURNAL_DIRTY_FL;
936 	else
937 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
938 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
939 
940 	if (replayed)
941 		ocfs2_bump_recovery_generation(fe);
942 
943 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
944 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
945 	if (status < 0)
946 		mlog_errno(status);
947 
948 	return status;
949 }
950 
951 /*
952  * If the journal has been kmalloc'd it needs to be freed after this
953  * call.
954  */
955 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
956 {
957 	struct ocfs2_journal *journal = NULL;
958 	int status = 0;
959 	struct inode *inode = NULL;
960 	int num_running_trans = 0;
961 
962 	BUG_ON(!osb);
963 
964 	journal = osb->journal;
965 	if (!journal)
966 		goto done;
967 
968 	inode = journal->j_inode;
969 
970 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
971 		goto done;
972 
973 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
974 	if (!igrab(inode))
975 		BUG();
976 
977 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
978 	trace_ocfs2_journal_shutdown(num_running_trans);
979 
980 	/* Do a commit_cache here. It will flush our journal, *and*
981 	 * release any locks that are still held.
982 	 * set the SHUTDOWN flag and release the trans lock.
983 	 * the commit thread will take the trans lock for us below. */
984 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
985 
986 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
987 	 * drop the trans_lock (which we want to hold until we
988 	 * completely destroy the journal. */
989 	if (osb->commit_task) {
990 		/* Wait for the commit thread */
991 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
992 		kthread_stop(osb->commit_task);
993 		osb->commit_task = NULL;
994 	}
995 
996 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
997 
998 	if (ocfs2_mount_local(osb)) {
999 		jbd2_journal_lock_updates(journal->j_journal);
1000 		status = jbd2_journal_flush(journal->j_journal);
1001 		jbd2_journal_unlock_updates(journal->j_journal);
1002 		if (status < 0)
1003 			mlog_errno(status);
1004 	}
1005 
1006 	/* Shutdown the kernel journal system */
1007 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1008 		/*
1009 		 * Do not toggle if flush was unsuccessful otherwise
1010 		 * will leave dirty metadata in a "clean" journal
1011 		 */
1012 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1013 		if (status < 0)
1014 			mlog_errno(status);
1015 	}
1016 	journal->j_journal = NULL;
1017 
1018 	OCFS2_I(inode)->ip_open_count--;
1019 
1020 	/* unlock our journal */
1021 	ocfs2_inode_unlock(inode, 1);
1022 
1023 	brelse(journal->j_bh);
1024 	journal->j_bh = NULL;
1025 
1026 	journal->j_state = OCFS2_JOURNAL_FREE;
1027 
1028 //	up_write(&journal->j_trans_barrier);
1029 done:
1030 	iput(inode);
1031 }
1032 
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034 				      journal_t *journal,
1035 				      int slot)
1036 {
1037 	int olderr;
1038 
1039 	olderr = jbd2_journal_errno(journal);
1040 	if (olderr) {
1041 		mlog(ML_ERROR, "File system error %d recorded in "
1042 		     "journal %u.\n", olderr, slot);
1043 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044 		     sb->s_id);
1045 
1046 		jbd2_journal_ack_err(journal);
1047 		jbd2_journal_clear_err(journal);
1048 	}
1049 }
1050 
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1052 {
1053 	int status = 0;
1054 	struct ocfs2_super *osb;
1055 
1056 	BUG_ON(!journal);
1057 
1058 	osb = journal->j_osb;
1059 
1060 	status = jbd2_journal_load(journal->j_journal);
1061 	if (status < 0) {
1062 		mlog(ML_ERROR, "Failed to load journal!\n");
1063 		goto done;
1064 	}
1065 
1066 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1067 
1068 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069 	if (status < 0) {
1070 		mlog_errno(status);
1071 		goto done;
1072 	}
1073 
1074 	/* Launch the commit thread */
1075 	if (!local) {
1076 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077 				"ocfs2cmt-%s", osb->uuid_str);
1078 		if (IS_ERR(osb->commit_task)) {
1079 			status = PTR_ERR(osb->commit_task);
1080 			osb->commit_task = NULL;
1081 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082 			     "error=%d", status);
1083 			goto done;
1084 		}
1085 	} else
1086 		osb->commit_task = NULL;
1087 
1088 done:
1089 	return status;
1090 }
1091 
1092 
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094  * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1096 {
1097 	int status;
1098 
1099 	BUG_ON(!journal);
1100 
1101 	status = jbd2_journal_wipe(journal->j_journal, full);
1102 	if (status < 0) {
1103 		mlog_errno(status);
1104 		goto bail;
1105 	}
1106 
1107 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108 	if (status < 0)
1109 		mlog_errno(status);
1110 
1111 bail:
1112 	return status;
1113 }
1114 
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1116 {
1117 	int empty;
1118 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1119 
1120 	spin_lock(&osb->osb_lock);
1121 	empty = (rm->rm_used == 0);
1122 	spin_unlock(&osb->osb_lock);
1123 
1124 	return empty;
1125 }
1126 
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1128 {
1129 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1130 }
1131 
1132 /*
1133  * JBD Might read a cached version of another nodes journal file. We
1134  * don't want this as this file changes often and we get no
1135  * notification on those changes. The only way to be sure that we've
1136  * got the most up to date version of those blocks then is to force
1137  * read them off disk. Just searching through the buffer cache won't
1138  * work as there may be pages backing this file which are still marked
1139  * up to date. We know things can't change on this file underneath us
1140  * as we have the lock by now :)
1141  */
1142 static int ocfs2_force_read_journal(struct inode *inode)
1143 {
1144 	int status = 0;
1145 	int i;
1146 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147 	struct buffer_head *bh = NULL;
1148 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1149 
1150 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1151 	v_blkno = 0;
1152 	while (v_blkno < num_blocks) {
1153 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1154 						     &p_blkno, &p_blocks, NULL);
1155 		if (status < 0) {
1156 			mlog_errno(status);
1157 			goto bail;
1158 		}
1159 
1160 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1161 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1162 					osb->sb->s_blocksize);
1163 			/* block not cached. */
1164 			if (!bh)
1165 				continue;
1166 
1167 			brelse(bh);
1168 			bh = NULL;
1169 			/* We are reading journal data which should not
1170 			 * be put in the uptodate cache.
1171 			 */
1172 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1173 			if (status < 0) {
1174 				mlog_errno(status);
1175 				goto bail;
1176 			}
1177 
1178 			brelse(bh);
1179 			bh = NULL;
1180 		}
1181 
1182 		v_blkno += p_blocks;
1183 	}
1184 
1185 bail:
1186 	return status;
1187 }
1188 
1189 struct ocfs2_la_recovery_item {
1190 	struct list_head	lri_list;
1191 	int			lri_slot;
1192 	struct ocfs2_dinode	*lri_la_dinode;
1193 	struct ocfs2_dinode	*lri_tl_dinode;
1194 	struct ocfs2_quota_recovery *lri_qrec;
1195 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1196 };
1197 
1198 /* Does the second half of the recovery process. By this point, the
1199  * node is marked clean and can actually be considered recovered,
1200  * hence it's no longer in the recovery map, but there's still some
1201  * cleanup we can do which shouldn't happen within the recovery thread
1202  * as locking in that context becomes very difficult if we are to take
1203  * recovering nodes into account.
1204  *
1205  * NOTE: This function can and will sleep on recovery of other nodes
1206  * during cluster locking, just like any other ocfs2 process.
1207  */
1208 void ocfs2_complete_recovery(struct work_struct *work)
1209 {
1210 	int ret = 0;
1211 	struct ocfs2_journal *journal =
1212 		container_of(work, struct ocfs2_journal, j_recovery_work);
1213 	struct ocfs2_super *osb = journal->j_osb;
1214 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1215 	struct ocfs2_la_recovery_item *item, *n;
1216 	struct ocfs2_quota_recovery *qrec;
1217 	enum ocfs2_orphan_reco_type orphan_reco_type;
1218 	LIST_HEAD(tmp_la_list);
1219 
1220 	trace_ocfs2_complete_recovery(
1221 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1222 
1223 	spin_lock(&journal->j_lock);
1224 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1225 	spin_unlock(&journal->j_lock);
1226 
1227 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1228 		list_del_init(&item->lri_list);
1229 
1230 		ocfs2_wait_on_quotas(osb);
1231 
1232 		la_dinode = item->lri_la_dinode;
1233 		tl_dinode = item->lri_tl_dinode;
1234 		qrec = item->lri_qrec;
1235 		orphan_reco_type = item->lri_orphan_reco_type;
1236 
1237 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1238 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1239 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1240 			qrec);
1241 
1242 		if (la_dinode) {
1243 			ret = ocfs2_complete_local_alloc_recovery(osb,
1244 								  la_dinode);
1245 			if (ret < 0)
1246 				mlog_errno(ret);
1247 
1248 			kfree(la_dinode);
1249 		}
1250 
1251 		if (tl_dinode) {
1252 			ret = ocfs2_complete_truncate_log_recovery(osb,
1253 								   tl_dinode);
1254 			if (ret < 0)
1255 				mlog_errno(ret);
1256 
1257 			kfree(tl_dinode);
1258 		}
1259 
1260 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1261 				orphan_reco_type);
1262 		if (ret < 0)
1263 			mlog_errno(ret);
1264 
1265 		if (qrec) {
1266 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1267 							  item->lri_slot);
1268 			if (ret < 0)
1269 				mlog_errno(ret);
1270 			/* Recovery info is already freed now */
1271 		}
1272 
1273 		kfree(item);
1274 	}
1275 
1276 	trace_ocfs2_complete_recovery_end(ret);
1277 }
1278 
1279 /* NOTE: This function always eats your references to la_dinode and
1280  * tl_dinode, either manually on error, or by passing them to
1281  * ocfs2_complete_recovery */
1282 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1283 					    int slot_num,
1284 					    struct ocfs2_dinode *la_dinode,
1285 					    struct ocfs2_dinode *tl_dinode,
1286 					    struct ocfs2_quota_recovery *qrec,
1287 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1288 {
1289 	struct ocfs2_la_recovery_item *item;
1290 
1291 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1292 	if (!item) {
1293 		/* Though we wish to avoid it, we are in fact safe in
1294 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1295 		 * than capable of reclaiming unused space. */
1296 		kfree(la_dinode);
1297 		kfree(tl_dinode);
1298 
1299 		if (qrec)
1300 			ocfs2_free_quota_recovery(qrec);
1301 
1302 		mlog_errno(-ENOMEM);
1303 		return;
1304 	}
1305 
1306 	INIT_LIST_HEAD(&item->lri_list);
1307 	item->lri_la_dinode = la_dinode;
1308 	item->lri_slot = slot_num;
1309 	item->lri_tl_dinode = tl_dinode;
1310 	item->lri_qrec = qrec;
1311 	item->lri_orphan_reco_type = orphan_reco_type;
1312 
1313 	spin_lock(&journal->j_lock);
1314 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1315 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1316 	spin_unlock(&journal->j_lock);
1317 }
1318 
1319 /* Called by the mount code to queue recovery the last part of
1320  * recovery for it's own and offline slot(s). */
1321 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1322 {
1323 	struct ocfs2_journal *journal = osb->journal;
1324 
1325 	if (ocfs2_is_hard_readonly(osb))
1326 		return;
1327 
1328 	/* No need to queue up our truncate_log as regular cleanup will catch
1329 	 * that */
1330 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1331 					osb->local_alloc_copy, NULL, NULL,
1332 					ORPHAN_NEED_TRUNCATE);
1333 	ocfs2_schedule_truncate_log_flush(osb, 0);
1334 
1335 	osb->local_alloc_copy = NULL;
1336 
1337 	/* queue to recover orphan slots for all offline slots */
1338 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340 	ocfs2_free_replay_slots(osb);
1341 }
1342 
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1344 {
1345 	if (osb->quota_rec) {
1346 		ocfs2_queue_recovery_completion(osb->journal,
1347 						osb->slot_num,
1348 						NULL,
1349 						NULL,
1350 						osb->quota_rec,
1351 						ORPHAN_NEED_TRUNCATE);
1352 		osb->quota_rec = NULL;
1353 	}
1354 }
1355 
1356 static int __ocfs2_recovery_thread(void *arg)
1357 {
1358 	int status, node_num, slot_num;
1359 	struct ocfs2_super *osb = arg;
1360 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1361 	int *rm_quota = NULL;
1362 	int rm_quota_used = 0, i;
1363 	struct ocfs2_quota_recovery *qrec;
1364 
1365 	/* Whether the quota supported. */
1366 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1367 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1368 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1369 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1370 
1371 	status = ocfs2_wait_on_mount(osb);
1372 	if (status < 0) {
1373 		goto bail;
1374 	}
1375 
1376 	if (quota_enabled) {
1377 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1378 		if (!rm_quota) {
1379 			status = -ENOMEM;
1380 			goto bail;
1381 		}
1382 	}
1383 restart:
1384 	status = ocfs2_super_lock(osb, 1);
1385 	if (status < 0) {
1386 		mlog_errno(status);
1387 		goto bail;
1388 	}
1389 
1390 	status = ocfs2_compute_replay_slots(osb);
1391 	if (status < 0)
1392 		mlog_errno(status);
1393 
1394 	/* queue recovery for our own slot */
1395 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1396 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1397 
1398 	spin_lock(&osb->osb_lock);
1399 	while (rm->rm_used) {
1400 		/* It's always safe to remove entry zero, as we won't
1401 		 * clear it until ocfs2_recover_node() has succeeded. */
1402 		node_num = rm->rm_entries[0];
1403 		spin_unlock(&osb->osb_lock);
1404 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1405 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1406 		if (slot_num == -ENOENT) {
1407 			status = 0;
1408 			goto skip_recovery;
1409 		}
1410 
1411 		/* It is a bit subtle with quota recovery. We cannot do it
1412 		 * immediately because we have to obtain cluster locks from
1413 		 * quota files and we also don't want to just skip it because
1414 		 * then quota usage would be out of sync until some node takes
1415 		 * the slot. So we remember which nodes need quota recovery
1416 		 * and when everything else is done, we recover quotas. */
1417 		if (quota_enabled) {
1418 			for (i = 0; i < rm_quota_used
1419 					&& rm_quota[i] != slot_num; i++)
1420 				;
1421 
1422 			if (i == rm_quota_used)
1423 				rm_quota[rm_quota_used++] = slot_num;
1424 		}
1425 
1426 		status = ocfs2_recover_node(osb, node_num, slot_num);
1427 skip_recovery:
1428 		if (!status) {
1429 			ocfs2_recovery_map_clear(osb, node_num);
1430 		} else {
1431 			mlog(ML_ERROR,
1432 			     "Error %d recovering node %d on device (%u,%u)!\n",
1433 			     status, node_num,
1434 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1435 			mlog(ML_ERROR, "Volume requires unmount.\n");
1436 		}
1437 
1438 		spin_lock(&osb->osb_lock);
1439 	}
1440 	spin_unlock(&osb->osb_lock);
1441 	trace_ocfs2_recovery_thread_end(status);
1442 
1443 	/* Refresh all journal recovery generations from disk */
1444 	status = ocfs2_check_journals_nolocks(osb);
1445 	status = (status == -EROFS) ? 0 : status;
1446 	if (status < 0)
1447 		mlog_errno(status);
1448 
1449 	/* Now it is right time to recover quotas... We have to do this under
1450 	 * superblock lock so that no one can start using the slot (and crash)
1451 	 * before we recover it */
1452 	if (quota_enabled) {
1453 		for (i = 0; i < rm_quota_used; i++) {
1454 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1455 			if (IS_ERR(qrec)) {
1456 				status = PTR_ERR(qrec);
1457 				mlog_errno(status);
1458 				continue;
1459 			}
1460 			ocfs2_queue_recovery_completion(osb->journal,
1461 					rm_quota[i],
1462 					NULL, NULL, qrec,
1463 					ORPHAN_NEED_TRUNCATE);
1464 		}
1465 	}
1466 
1467 	ocfs2_super_unlock(osb, 1);
1468 
1469 	/* queue recovery for offline slots */
1470 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471 
1472 bail:
1473 	mutex_lock(&osb->recovery_lock);
1474 	if (!status && !ocfs2_recovery_completed(osb)) {
1475 		mutex_unlock(&osb->recovery_lock);
1476 		goto restart;
1477 	}
1478 
1479 	ocfs2_free_replay_slots(osb);
1480 	osb->recovery_thread_task = NULL;
1481 	mb(); /* sync with ocfs2_recovery_thread_running */
1482 	wake_up(&osb->recovery_event);
1483 
1484 	mutex_unlock(&osb->recovery_lock);
1485 
1486 	if (quota_enabled)
1487 		kfree(rm_quota);
1488 
1489 	/* no one is callint kthread_stop() for us so the kthread() api
1490 	 * requires that we call do_exit().  And it isn't exported, but
1491 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1492 	complete_and_exit(NULL, status);
1493 }
1494 
1495 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1496 {
1497 	mutex_lock(&osb->recovery_lock);
1498 
1499 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1500 		osb->disable_recovery, osb->recovery_thread_task,
1501 		osb->disable_recovery ?
1502 		-1 : ocfs2_recovery_map_set(osb, node_num));
1503 
1504 	if (osb->disable_recovery)
1505 		goto out;
1506 
1507 	if (osb->recovery_thread_task)
1508 		goto out;
1509 
1510 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1511 			"ocfs2rec-%s", osb->uuid_str);
1512 	if (IS_ERR(osb->recovery_thread_task)) {
1513 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1514 		osb->recovery_thread_task = NULL;
1515 	}
1516 
1517 out:
1518 	mutex_unlock(&osb->recovery_lock);
1519 	wake_up(&osb->recovery_event);
1520 }
1521 
1522 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1523 				    int slot_num,
1524 				    struct buffer_head **bh,
1525 				    struct inode **ret_inode)
1526 {
1527 	int status = -EACCES;
1528 	struct inode *inode = NULL;
1529 
1530 	BUG_ON(slot_num >= osb->max_slots);
1531 
1532 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1533 					    slot_num);
1534 	if (!inode || is_bad_inode(inode)) {
1535 		mlog_errno(status);
1536 		goto bail;
1537 	}
1538 	SET_INODE_JOURNAL(inode);
1539 
1540 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1541 	if (status < 0) {
1542 		mlog_errno(status);
1543 		goto bail;
1544 	}
1545 
1546 	status = 0;
1547 
1548 bail:
1549 	if (inode) {
1550 		if (status || !ret_inode)
1551 			iput(inode);
1552 		else
1553 			*ret_inode = inode;
1554 	}
1555 	return status;
1556 }
1557 
1558 /* Does the actual journal replay and marks the journal inode as
1559  * clean. Will only replay if the journal inode is marked dirty. */
1560 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1561 				int node_num,
1562 				int slot_num)
1563 {
1564 	int status;
1565 	int got_lock = 0;
1566 	unsigned int flags;
1567 	struct inode *inode = NULL;
1568 	struct ocfs2_dinode *fe;
1569 	journal_t *journal = NULL;
1570 	struct buffer_head *bh = NULL;
1571 	u32 slot_reco_gen;
1572 
1573 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1574 	if (status) {
1575 		mlog_errno(status);
1576 		goto done;
1577 	}
1578 
1579 	fe = (struct ocfs2_dinode *)bh->b_data;
1580 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1581 	brelse(bh);
1582 	bh = NULL;
1583 
1584 	/*
1585 	 * As the fs recovery is asynchronous, there is a small chance that
1586 	 * another node mounted (and recovered) the slot before the recovery
1587 	 * thread could get the lock. To handle that, we dirty read the journal
1588 	 * inode for that slot to get the recovery generation. If it is
1589 	 * different than what we expected, the slot has been recovered.
1590 	 * If not, it needs recovery.
1591 	 */
1592 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1593 		trace_ocfs2_replay_journal_recovered(slot_num,
1594 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1595 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1596 		status = -EBUSY;
1597 		goto done;
1598 	}
1599 
1600 	/* Continue with recovery as the journal has not yet been recovered */
1601 
1602 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1603 	if (status < 0) {
1604 		trace_ocfs2_replay_journal_lock_err(status);
1605 		if (status != -ERESTARTSYS)
1606 			mlog(ML_ERROR, "Could not lock journal!\n");
1607 		goto done;
1608 	}
1609 	got_lock = 1;
1610 
1611 	fe = (struct ocfs2_dinode *) bh->b_data;
1612 
1613 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1614 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1615 
1616 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1617 		trace_ocfs2_replay_journal_skip(node_num);
1618 		/* Refresh recovery generation for the slot */
1619 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1620 		goto done;
1621 	}
1622 
1623 	/* we need to run complete recovery for offline orphan slots */
1624 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1625 
1626 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1627 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1628 	       MINOR(osb->sb->s_dev));
1629 
1630 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1631 
1632 	status = ocfs2_force_read_journal(inode);
1633 	if (status < 0) {
1634 		mlog_errno(status);
1635 		goto done;
1636 	}
1637 
1638 	journal = jbd2_journal_init_inode(inode);
1639 	if (journal == NULL) {
1640 		mlog(ML_ERROR, "Linux journal layer error\n");
1641 		status = -EIO;
1642 		goto done;
1643 	}
1644 
1645 	status = jbd2_journal_load(journal);
1646 	if (status < 0) {
1647 		mlog_errno(status);
1648 		if (!igrab(inode))
1649 			BUG();
1650 		jbd2_journal_destroy(journal);
1651 		goto done;
1652 	}
1653 
1654 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1655 
1656 	/* wipe the journal */
1657 	jbd2_journal_lock_updates(journal);
1658 	status = jbd2_journal_flush(journal);
1659 	jbd2_journal_unlock_updates(journal);
1660 	if (status < 0)
1661 		mlog_errno(status);
1662 
1663 	/* This will mark the node clean */
1664 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1665 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1666 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1667 
1668 	/* Increment recovery generation to indicate successful recovery */
1669 	ocfs2_bump_recovery_generation(fe);
1670 	osb->slot_recovery_generations[slot_num] =
1671 					ocfs2_get_recovery_generation(fe);
1672 
1673 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1674 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1675 	if (status < 0)
1676 		mlog_errno(status);
1677 
1678 	if (!igrab(inode))
1679 		BUG();
1680 
1681 	jbd2_journal_destroy(journal);
1682 
1683 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1684 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1685 	       MINOR(osb->sb->s_dev));
1686 done:
1687 	/* drop the lock on this nodes journal */
1688 	if (got_lock)
1689 		ocfs2_inode_unlock(inode, 1);
1690 
1691 	iput(inode);
1692 	brelse(bh);
1693 
1694 	return status;
1695 }
1696 
1697 /*
1698  * Do the most important parts of node recovery:
1699  *  - Replay it's journal
1700  *  - Stamp a clean local allocator file
1701  *  - Stamp a clean truncate log
1702  *  - Mark the node clean
1703  *
1704  * If this function completes without error, a node in OCFS2 can be
1705  * said to have been safely recovered. As a result, failure during the
1706  * second part of a nodes recovery process (local alloc recovery) is
1707  * far less concerning.
1708  */
1709 static int ocfs2_recover_node(struct ocfs2_super *osb,
1710 			      int node_num, int slot_num)
1711 {
1712 	int status = 0;
1713 	struct ocfs2_dinode *la_copy = NULL;
1714 	struct ocfs2_dinode *tl_copy = NULL;
1715 
1716 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1717 
1718 	/* Should not ever be called to recover ourselves -- in that
1719 	 * case we should've called ocfs2_journal_load instead. */
1720 	BUG_ON(osb->node_num == node_num);
1721 
1722 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1723 	if (status < 0) {
1724 		if (status == -EBUSY) {
1725 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1726 			status = 0;
1727 			goto done;
1728 		}
1729 		mlog_errno(status);
1730 		goto done;
1731 	}
1732 
1733 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1734 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1735 	if (status < 0) {
1736 		mlog_errno(status);
1737 		goto done;
1738 	}
1739 
1740 	/* An error from begin_truncate_log_recovery is not
1741 	 * serious enough to warrant halting the rest of
1742 	 * recovery. */
1743 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1744 	if (status < 0)
1745 		mlog_errno(status);
1746 
1747 	/* Likewise, this would be a strange but ultimately not so
1748 	 * harmful place to get an error... */
1749 	status = ocfs2_clear_slot(osb, slot_num);
1750 	if (status < 0)
1751 		mlog_errno(status);
1752 
1753 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1754 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1755 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1756 
1757 	status = 0;
1758 done:
1759 
1760 	return status;
1761 }
1762 
1763 /* Test node liveness by trylocking his journal. If we get the lock,
1764  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1765  * still alive (we couldn't get the lock) and < 0 on error. */
1766 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1767 				 int slot_num)
1768 {
1769 	int status, flags;
1770 	struct inode *inode = NULL;
1771 
1772 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1773 					    slot_num);
1774 	if (inode == NULL) {
1775 		mlog(ML_ERROR, "access error\n");
1776 		status = -EACCES;
1777 		goto bail;
1778 	}
1779 	if (is_bad_inode(inode)) {
1780 		mlog(ML_ERROR, "access error (bad inode)\n");
1781 		iput(inode);
1782 		inode = NULL;
1783 		status = -EACCES;
1784 		goto bail;
1785 	}
1786 	SET_INODE_JOURNAL(inode);
1787 
1788 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1789 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1790 	if (status < 0) {
1791 		if (status != -EAGAIN)
1792 			mlog_errno(status);
1793 		goto bail;
1794 	}
1795 
1796 	ocfs2_inode_unlock(inode, 1);
1797 bail:
1798 	iput(inode);
1799 
1800 	return status;
1801 }
1802 
1803 /* Call this underneath ocfs2_super_lock. It also assumes that the
1804  * slot info struct has been updated from disk. */
1805 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1806 {
1807 	unsigned int node_num;
1808 	int status, i;
1809 	u32 gen;
1810 	struct buffer_head *bh = NULL;
1811 	struct ocfs2_dinode *di;
1812 
1813 	/* This is called with the super block cluster lock, so we
1814 	 * know that the slot map can't change underneath us. */
1815 
1816 	for (i = 0; i < osb->max_slots; i++) {
1817 		/* Read journal inode to get the recovery generation */
1818 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1819 		if (status) {
1820 			mlog_errno(status);
1821 			goto bail;
1822 		}
1823 		di = (struct ocfs2_dinode *)bh->b_data;
1824 		gen = ocfs2_get_recovery_generation(di);
1825 		brelse(bh);
1826 		bh = NULL;
1827 
1828 		spin_lock(&osb->osb_lock);
1829 		osb->slot_recovery_generations[i] = gen;
1830 
1831 		trace_ocfs2_mark_dead_nodes(i,
1832 					    osb->slot_recovery_generations[i]);
1833 
1834 		if (i == osb->slot_num) {
1835 			spin_unlock(&osb->osb_lock);
1836 			continue;
1837 		}
1838 
1839 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1840 		if (status == -ENOENT) {
1841 			spin_unlock(&osb->osb_lock);
1842 			continue;
1843 		}
1844 
1845 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1846 			spin_unlock(&osb->osb_lock);
1847 			continue;
1848 		}
1849 		spin_unlock(&osb->osb_lock);
1850 
1851 		/* Ok, we have a slot occupied by another node which
1852 		 * is not in the recovery map. We trylock his journal
1853 		 * file here to test if he's alive. */
1854 		status = ocfs2_trylock_journal(osb, i);
1855 		if (!status) {
1856 			/* Since we're called from mount, we know that
1857 			 * the recovery thread can't race us on
1858 			 * setting / checking the recovery bits. */
1859 			ocfs2_recovery_thread(osb, node_num);
1860 		} else if ((status < 0) && (status != -EAGAIN)) {
1861 			mlog_errno(status);
1862 			goto bail;
1863 		}
1864 	}
1865 
1866 	status = 0;
1867 bail:
1868 	return status;
1869 }
1870 
1871 /*
1872  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1873  * randomness to the timeout to minimize multple nodes firing the timer at the
1874  * same time.
1875  */
1876 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1877 {
1878 	unsigned long time;
1879 
1880 	get_random_bytes(&time, sizeof(time));
1881 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1882 	return msecs_to_jiffies(time);
1883 }
1884 
1885 /*
1886  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1887  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1888  * is done to catch any orphans that are left over in orphan directories.
1889  *
1890  * It scans all slots, even ones that are in use. It does so to handle the
1891  * case described below:
1892  *
1893  *   Node 1 has an inode it was using. The dentry went away due to memory
1894  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1895  *   has the open lock.
1896  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1897  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1898  *   open lock, sees that another node has a PR, and does nothing.
1899  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1900  *   open lock, sees the PR still, and does nothing.
1901  *   Basically, we have to trigger an orphan iput on node 1. The only way
1902  *   for this to happen is if node 1 runs node 2's orphan dir.
1903  *
1904  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1905  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1906  * stored in LVB. If the sequence number has changed, it means some other
1907  * node has done the scan.  This node skips the scan and tracks the
1908  * sequence number.  If the sequence number didn't change, it means a scan
1909  * hasn't happened.  The node queues a scan and increments the
1910  * sequence number in the LVB.
1911  */
1912 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1913 {
1914 	struct ocfs2_orphan_scan *os;
1915 	int status, i;
1916 	u32 seqno = 0;
1917 
1918 	os = &osb->osb_orphan_scan;
1919 
1920 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921 		goto out;
1922 
1923 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1924 					    atomic_read(&os->os_state));
1925 
1926 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1927 	if (status < 0) {
1928 		if (status != -EAGAIN)
1929 			mlog_errno(status);
1930 		goto out;
1931 	}
1932 
1933 	/* Do no queue the tasks if the volume is being umounted */
1934 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1935 		goto unlock;
1936 
1937 	if (os->os_seqno != seqno) {
1938 		os->os_seqno = seqno;
1939 		goto unlock;
1940 	}
1941 
1942 	for (i = 0; i < osb->max_slots; i++)
1943 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1944 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1945 	/*
1946 	 * We queued a recovery on orphan slots, increment the sequence
1947 	 * number and update LVB so other node will skip the scan for a while
1948 	 */
1949 	seqno++;
1950 	os->os_count++;
1951 	os->os_scantime = ktime_get_seconds();
1952 unlock:
1953 	ocfs2_orphan_scan_unlock(osb, seqno);
1954 out:
1955 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1956 					  atomic_read(&os->os_state));
1957 	return;
1958 }
1959 
1960 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1961 static void ocfs2_orphan_scan_work(struct work_struct *work)
1962 {
1963 	struct ocfs2_orphan_scan *os;
1964 	struct ocfs2_super *osb;
1965 
1966 	os = container_of(work, struct ocfs2_orphan_scan,
1967 			  os_orphan_scan_work.work);
1968 	osb = os->os_osb;
1969 
1970 	mutex_lock(&os->os_lock);
1971 	ocfs2_queue_orphan_scan(osb);
1972 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1973 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1974 				      ocfs2_orphan_scan_timeout());
1975 	mutex_unlock(&os->os_lock);
1976 }
1977 
1978 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1979 {
1980 	struct ocfs2_orphan_scan *os;
1981 
1982 	os = &osb->osb_orphan_scan;
1983 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1984 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1985 		mutex_lock(&os->os_lock);
1986 		cancel_delayed_work(&os->os_orphan_scan_work);
1987 		mutex_unlock(&os->os_lock);
1988 	}
1989 }
1990 
1991 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1992 {
1993 	struct ocfs2_orphan_scan *os;
1994 
1995 	os = &osb->osb_orphan_scan;
1996 	os->os_osb = osb;
1997 	os->os_count = 0;
1998 	os->os_seqno = 0;
1999 	mutex_init(&os->os_lock);
2000 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2001 }
2002 
2003 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2004 {
2005 	struct ocfs2_orphan_scan *os;
2006 
2007 	os = &osb->osb_orphan_scan;
2008 	os->os_scantime = ktime_get_seconds();
2009 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2010 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2011 	else {
2012 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2013 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2014 				   ocfs2_orphan_scan_timeout());
2015 	}
2016 }
2017 
2018 struct ocfs2_orphan_filldir_priv {
2019 	struct dir_context	ctx;
2020 	struct inode		*head;
2021 	struct ocfs2_super	*osb;
2022 	enum ocfs2_orphan_reco_type orphan_reco_type;
2023 };
2024 
2025 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2026 				int name_len, loff_t pos, u64 ino,
2027 				unsigned type)
2028 {
2029 	struct ocfs2_orphan_filldir_priv *p =
2030 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2031 	struct inode *iter;
2032 
2033 	if (name_len == 1 && !strncmp(".", name, 1))
2034 		return 0;
2035 	if (name_len == 2 && !strncmp("..", name, 2))
2036 		return 0;
2037 
2038 	/* do not include dio entry in case of orphan scan */
2039 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2040 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2041 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2042 		return 0;
2043 
2044 	/* Skip bad inodes so that recovery can continue */
2045 	iter = ocfs2_iget(p->osb, ino,
2046 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2047 	if (IS_ERR(iter))
2048 		return 0;
2049 
2050 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2051 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2052 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2053 
2054 	/* Skip inodes which are already added to recover list, since dio may
2055 	 * happen concurrently with unlink/rename */
2056 	if (OCFS2_I(iter)->ip_next_orphan) {
2057 		iput(iter);
2058 		return 0;
2059 	}
2060 
2061 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2062 	/* No locking is required for the next_orphan queue as there
2063 	 * is only ever a single process doing orphan recovery. */
2064 	OCFS2_I(iter)->ip_next_orphan = p->head;
2065 	p->head = iter;
2066 
2067 	return 0;
2068 }
2069 
2070 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2071 			       int slot,
2072 			       struct inode **head,
2073 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2074 {
2075 	int status;
2076 	struct inode *orphan_dir_inode = NULL;
2077 	struct ocfs2_orphan_filldir_priv priv = {
2078 		.ctx.actor = ocfs2_orphan_filldir,
2079 		.osb = osb,
2080 		.head = *head,
2081 		.orphan_reco_type = orphan_reco_type
2082 	};
2083 
2084 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2085 						       ORPHAN_DIR_SYSTEM_INODE,
2086 						       slot);
2087 	if  (!orphan_dir_inode) {
2088 		status = -ENOENT;
2089 		mlog_errno(status);
2090 		return status;
2091 	}
2092 
2093 	inode_lock(orphan_dir_inode);
2094 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2095 	if (status < 0) {
2096 		mlog_errno(status);
2097 		goto out;
2098 	}
2099 
2100 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2101 	if (status) {
2102 		mlog_errno(status);
2103 		goto out_cluster;
2104 	}
2105 
2106 	*head = priv.head;
2107 
2108 out_cluster:
2109 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2110 out:
2111 	inode_unlock(orphan_dir_inode);
2112 	iput(orphan_dir_inode);
2113 	return status;
2114 }
2115 
2116 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2117 					      int slot)
2118 {
2119 	int ret;
2120 
2121 	spin_lock(&osb->osb_lock);
2122 	ret = !osb->osb_orphan_wipes[slot];
2123 	spin_unlock(&osb->osb_lock);
2124 	return ret;
2125 }
2126 
2127 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2128 					     int slot)
2129 {
2130 	spin_lock(&osb->osb_lock);
2131 	/* Mark ourselves such that new processes in delete_inode()
2132 	 * know to quit early. */
2133 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2134 	while (osb->osb_orphan_wipes[slot]) {
2135 		/* If any processes are already in the middle of an
2136 		 * orphan wipe on this dir, then we need to wait for
2137 		 * them. */
2138 		spin_unlock(&osb->osb_lock);
2139 		wait_event_interruptible(osb->osb_wipe_event,
2140 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2141 		spin_lock(&osb->osb_lock);
2142 	}
2143 	spin_unlock(&osb->osb_lock);
2144 }
2145 
2146 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2147 					      int slot)
2148 {
2149 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2150 }
2151 
2152 /*
2153  * Orphan recovery. Each mounted node has it's own orphan dir which we
2154  * must run during recovery. Our strategy here is to build a list of
2155  * the inodes in the orphan dir and iget/iput them. The VFS does
2156  * (most) of the rest of the work.
2157  *
2158  * Orphan recovery can happen at any time, not just mount so we have a
2159  * couple of extra considerations.
2160  *
2161  * - We grab as many inodes as we can under the orphan dir lock -
2162  *   doing iget() outside the orphan dir risks getting a reference on
2163  *   an invalid inode.
2164  * - We must be sure not to deadlock with other processes on the
2165  *   system wanting to run delete_inode(). This can happen when they go
2166  *   to lock the orphan dir and the orphan recovery process attempts to
2167  *   iget() inside the orphan dir lock. This can be avoided by
2168  *   advertising our state to ocfs2_delete_inode().
2169  */
2170 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2171 				 int slot,
2172 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2173 {
2174 	int ret = 0;
2175 	struct inode *inode = NULL;
2176 	struct inode *iter;
2177 	struct ocfs2_inode_info *oi;
2178 	struct buffer_head *di_bh = NULL;
2179 	struct ocfs2_dinode *di = NULL;
2180 
2181 	trace_ocfs2_recover_orphans(slot);
2182 
2183 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2184 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2185 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2186 
2187 	/* Error here should be noted, but we want to continue with as
2188 	 * many queued inodes as we've got. */
2189 	if (ret)
2190 		mlog_errno(ret);
2191 
2192 	while (inode) {
2193 		oi = OCFS2_I(inode);
2194 		trace_ocfs2_recover_orphans_iput(
2195 					(unsigned long long)oi->ip_blkno);
2196 
2197 		iter = oi->ip_next_orphan;
2198 		oi->ip_next_orphan = NULL;
2199 
2200 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2201 			inode_lock(inode);
2202 			ret = ocfs2_rw_lock(inode, 1);
2203 			if (ret < 0) {
2204 				mlog_errno(ret);
2205 				goto unlock_mutex;
2206 			}
2207 			/*
2208 			 * We need to take and drop the inode lock to
2209 			 * force read inode from disk.
2210 			 */
2211 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2212 			if (ret) {
2213 				mlog_errno(ret);
2214 				goto unlock_rw;
2215 			}
2216 
2217 			di = (struct ocfs2_dinode *)di_bh->b_data;
2218 
2219 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2220 				ret = ocfs2_truncate_file(inode, di_bh,
2221 						i_size_read(inode));
2222 				if (ret < 0) {
2223 					if (ret != -ENOSPC)
2224 						mlog_errno(ret);
2225 					goto unlock_inode;
2226 				}
2227 
2228 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2229 						di_bh, 0, 0);
2230 				if (ret)
2231 					mlog_errno(ret);
2232 			}
2233 unlock_inode:
2234 			ocfs2_inode_unlock(inode, 1);
2235 			brelse(di_bh);
2236 			di_bh = NULL;
2237 unlock_rw:
2238 			ocfs2_rw_unlock(inode, 1);
2239 unlock_mutex:
2240 			inode_unlock(inode);
2241 
2242 			/* clear dio flag in ocfs2_inode_info */
2243 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2244 		} else {
2245 			spin_lock(&oi->ip_lock);
2246 			/* Set the proper information to get us going into
2247 			 * ocfs2_delete_inode. */
2248 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2249 			spin_unlock(&oi->ip_lock);
2250 		}
2251 
2252 		iput(inode);
2253 		inode = iter;
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2260 {
2261 	/* This check is good because ocfs2 will wait on our recovery
2262 	 * thread before changing it to something other than MOUNTED
2263 	 * or DISABLED. */
2264 	wait_event(osb->osb_mount_event,
2265 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2266 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2267 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2268 
2269 	/* If there's an error on mount, then we may never get to the
2270 	 * MOUNTED flag, but this is set right before
2271 	 * dismount_volume() so we can trust it. */
2272 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2273 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2274 		mlog(0, "mount error, exiting!\n");
2275 		return -EBUSY;
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 static int ocfs2_commit_thread(void *arg)
2282 {
2283 	int status;
2284 	struct ocfs2_super *osb = arg;
2285 	struct ocfs2_journal *journal = osb->journal;
2286 
2287 	/* we can trust j_num_trans here because _should_stop() is only set in
2288 	 * shutdown and nobody other than ourselves should be able to start
2289 	 * transactions.  committing on shutdown might take a few iterations
2290 	 * as final transactions put deleted inodes on the list */
2291 	while (!(kthread_should_stop() &&
2292 		 atomic_read(&journal->j_num_trans) == 0)) {
2293 
2294 		wait_event_interruptible(osb->checkpoint_event,
2295 					 atomic_read(&journal->j_num_trans)
2296 					 || kthread_should_stop());
2297 
2298 		status = ocfs2_commit_cache(osb);
2299 		if (status < 0) {
2300 			static unsigned long abort_warn_time;
2301 
2302 			/* Warn about this once per minute */
2303 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2304 				mlog(ML_ERROR, "status = %d, journal is "
2305 						"already aborted.\n", status);
2306 			/*
2307 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2308 			 * non-zero value.  Sleep here to avoid a busy-wait
2309 			 * loop.
2310 			 */
2311 			msleep_interruptible(1000);
2312 		}
2313 
2314 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2315 			mlog(ML_KTHREAD,
2316 			     "commit_thread: %u transactions pending on "
2317 			     "shutdown\n",
2318 			     atomic_read(&journal->j_num_trans));
2319 		}
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 /* Reads all the journal inodes without taking any cluster locks. Used
2326  * for hard readonly access to determine whether any journal requires
2327  * recovery. Also used to refresh the recovery generation numbers after
2328  * a journal has been recovered by another node.
2329  */
2330 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2331 {
2332 	int ret = 0;
2333 	unsigned int slot;
2334 	struct buffer_head *di_bh = NULL;
2335 	struct ocfs2_dinode *di;
2336 	int journal_dirty = 0;
2337 
2338 	for(slot = 0; slot < osb->max_slots; slot++) {
2339 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2340 		if (ret) {
2341 			mlog_errno(ret);
2342 			goto out;
2343 		}
2344 
2345 		di = (struct ocfs2_dinode *) di_bh->b_data;
2346 
2347 		osb->slot_recovery_generations[slot] =
2348 					ocfs2_get_recovery_generation(di);
2349 
2350 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2351 		    OCFS2_JOURNAL_DIRTY_FL)
2352 			journal_dirty = 1;
2353 
2354 		brelse(di_bh);
2355 		di_bh = NULL;
2356 	}
2357 
2358 out:
2359 	if (journal_dirty)
2360 		ret = -EROFS;
2361 	return ret;
2362 }
2363