1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "dir.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "heartbeat.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "slot_map.h" 46 #include "super.h" 47 #include "sysfile.h" 48 49 #include "buffer_head_io.h" 50 51 DEFINE_SPINLOCK(trans_inc_lock); 52 53 static int ocfs2_force_read_journal(struct inode *inode); 54 static int ocfs2_recover_node(struct ocfs2_super *osb, 55 int node_num); 56 static int __ocfs2_recovery_thread(void *arg); 57 static int ocfs2_commit_cache(struct ocfs2_super *osb); 58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb); 59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 60 int dirty, int replayed); 61 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 62 int slot_num); 63 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 64 int slot); 65 static int ocfs2_commit_thread(void *arg); 66 67 68 /* 69 * The recovery_list is a simple linked list of node numbers to recover. 70 * It is protected by the recovery_lock. 71 */ 72 73 struct ocfs2_recovery_map { 74 unsigned int rm_used; 75 unsigned int *rm_entries; 76 }; 77 78 int ocfs2_recovery_init(struct ocfs2_super *osb) 79 { 80 struct ocfs2_recovery_map *rm; 81 82 mutex_init(&osb->recovery_lock); 83 osb->disable_recovery = 0; 84 osb->recovery_thread_task = NULL; 85 init_waitqueue_head(&osb->recovery_event); 86 87 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 88 osb->max_slots * sizeof(unsigned int), 89 GFP_KERNEL); 90 if (!rm) { 91 mlog_errno(-ENOMEM); 92 return -ENOMEM; 93 } 94 95 rm->rm_entries = (unsigned int *)((char *)rm + 96 sizeof(struct ocfs2_recovery_map)); 97 osb->recovery_map = rm; 98 99 return 0; 100 } 101 102 /* we can't grab the goofy sem lock from inside wait_event, so we use 103 * memory barriers to make sure that we'll see the null task before 104 * being woken up */ 105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 106 { 107 mb(); 108 return osb->recovery_thread_task != NULL; 109 } 110 111 void ocfs2_recovery_exit(struct ocfs2_super *osb) 112 { 113 struct ocfs2_recovery_map *rm; 114 115 /* disable any new recovery threads and wait for any currently 116 * running ones to exit. Do this before setting the vol_state. */ 117 mutex_lock(&osb->recovery_lock); 118 osb->disable_recovery = 1; 119 mutex_unlock(&osb->recovery_lock); 120 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 121 122 /* At this point, we know that no more recovery threads can be 123 * launched, so wait for any recovery completion work to 124 * complete. */ 125 flush_workqueue(ocfs2_wq); 126 127 /* 128 * Now that recovery is shut down, and the osb is about to be 129 * freed, the osb_lock is not taken here. 130 */ 131 rm = osb->recovery_map; 132 /* XXX: Should we bug if there are dirty entries? */ 133 134 kfree(rm); 135 } 136 137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 138 unsigned int node_num) 139 { 140 int i; 141 struct ocfs2_recovery_map *rm = osb->recovery_map; 142 143 assert_spin_locked(&osb->osb_lock); 144 145 for (i = 0; i < rm->rm_used; i++) { 146 if (rm->rm_entries[i] == node_num) 147 return 1; 148 } 149 150 return 0; 151 } 152 153 /* Behaves like test-and-set. Returns the previous value */ 154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 155 unsigned int node_num) 156 { 157 struct ocfs2_recovery_map *rm = osb->recovery_map; 158 159 spin_lock(&osb->osb_lock); 160 if (__ocfs2_recovery_map_test(osb, node_num)) { 161 spin_unlock(&osb->osb_lock); 162 return 1; 163 } 164 165 /* XXX: Can this be exploited? Not from o2dlm... */ 166 BUG_ON(rm->rm_used >= osb->max_slots); 167 168 rm->rm_entries[rm->rm_used] = node_num; 169 rm->rm_used++; 170 spin_unlock(&osb->osb_lock); 171 172 return 0; 173 } 174 175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 176 unsigned int node_num) 177 { 178 int i; 179 struct ocfs2_recovery_map *rm = osb->recovery_map; 180 181 spin_lock(&osb->osb_lock); 182 183 for (i = 0; i < rm->rm_used; i++) { 184 if (rm->rm_entries[i] == node_num) 185 break; 186 } 187 188 if (i < rm->rm_used) { 189 /* XXX: be careful with the pointer math */ 190 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 191 (rm->rm_used - i - 1) * sizeof(unsigned int)); 192 rm->rm_used--; 193 } 194 195 spin_unlock(&osb->osb_lock); 196 } 197 198 static int ocfs2_commit_cache(struct ocfs2_super *osb) 199 { 200 int status = 0; 201 unsigned int flushed; 202 unsigned long old_id; 203 struct ocfs2_journal *journal = NULL; 204 205 mlog_entry_void(); 206 207 journal = osb->journal; 208 209 /* Flush all pending commits and checkpoint the journal. */ 210 down_write(&journal->j_trans_barrier); 211 212 if (atomic_read(&journal->j_num_trans) == 0) { 213 up_write(&journal->j_trans_barrier); 214 mlog(0, "No transactions for me to flush!\n"); 215 goto finally; 216 } 217 218 journal_lock_updates(journal->j_journal); 219 status = journal_flush(journal->j_journal); 220 journal_unlock_updates(journal->j_journal); 221 if (status < 0) { 222 up_write(&journal->j_trans_barrier); 223 mlog_errno(status); 224 goto finally; 225 } 226 227 old_id = ocfs2_inc_trans_id(journal); 228 229 flushed = atomic_read(&journal->j_num_trans); 230 atomic_set(&journal->j_num_trans, 0); 231 up_write(&journal->j_trans_barrier); 232 233 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 234 journal->j_trans_id, flushed); 235 236 ocfs2_wake_downconvert_thread(osb); 237 wake_up(&journal->j_checkpointed); 238 finally: 239 mlog_exit(status); 240 return status; 241 } 242 243 /* pass it NULL and it will allocate a new handle object for you. If 244 * you pass it a handle however, it may still return error, in which 245 * case it has free'd the passed handle for you. */ 246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 247 { 248 journal_t *journal = osb->journal->j_journal; 249 handle_t *handle; 250 251 BUG_ON(!osb || !osb->journal->j_journal); 252 253 if (ocfs2_is_hard_readonly(osb)) 254 return ERR_PTR(-EROFS); 255 256 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 257 BUG_ON(max_buffs <= 0); 258 259 /* JBD might support this, but our journalling code doesn't yet. */ 260 if (journal_current_handle()) { 261 mlog(ML_ERROR, "Recursive transaction attempted!\n"); 262 BUG(); 263 } 264 265 down_read(&osb->journal->j_trans_barrier); 266 267 handle = journal_start(journal, max_buffs); 268 if (IS_ERR(handle)) { 269 up_read(&osb->journal->j_trans_barrier); 270 271 mlog_errno(PTR_ERR(handle)); 272 273 if (is_journal_aborted(journal)) { 274 ocfs2_abort(osb->sb, "Detected aborted journal"); 275 handle = ERR_PTR(-EROFS); 276 } 277 } else { 278 if (!ocfs2_mount_local(osb)) 279 atomic_inc(&(osb->journal->j_num_trans)); 280 } 281 282 return handle; 283 } 284 285 int ocfs2_commit_trans(struct ocfs2_super *osb, 286 handle_t *handle) 287 { 288 int ret; 289 struct ocfs2_journal *journal = osb->journal; 290 291 BUG_ON(!handle); 292 293 ret = journal_stop(handle); 294 if (ret < 0) 295 mlog_errno(ret); 296 297 up_read(&journal->j_trans_barrier); 298 299 return ret; 300 } 301 302 /* 303 * 'nblocks' is what you want to add to the current 304 * transaction. extend_trans will either extend the current handle by 305 * nblocks, or commit it and start a new one with nblocks credits. 306 * 307 * This might call journal_restart() which will commit dirty buffers 308 * and then restart the transaction. Before calling 309 * ocfs2_extend_trans(), any changed blocks should have been 310 * dirtied. After calling it, all blocks which need to be changed must 311 * go through another set of journal_access/journal_dirty calls. 312 * 313 * WARNING: This will not release any semaphores or disk locks taken 314 * during the transaction, so make sure they were taken *before* 315 * start_trans or we'll have ordering deadlocks. 316 * 317 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 318 * good because transaction ids haven't yet been recorded on the 319 * cluster locks associated with this handle. 320 */ 321 int ocfs2_extend_trans(handle_t *handle, int nblocks) 322 { 323 int status; 324 325 BUG_ON(!handle); 326 BUG_ON(!nblocks); 327 328 mlog_entry_void(); 329 330 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 331 332 #ifdef CONFIG_OCFS2_DEBUG_FS 333 status = 1; 334 #else 335 status = journal_extend(handle, nblocks); 336 if (status < 0) { 337 mlog_errno(status); 338 goto bail; 339 } 340 #endif 341 342 if (status > 0) { 343 mlog(0, "journal_extend failed, trying journal_restart\n"); 344 status = journal_restart(handle, nblocks); 345 if (status < 0) { 346 mlog_errno(status); 347 goto bail; 348 } 349 } 350 351 status = 0; 352 bail: 353 354 mlog_exit(status); 355 return status; 356 } 357 358 int ocfs2_journal_access(handle_t *handle, 359 struct inode *inode, 360 struct buffer_head *bh, 361 int type) 362 { 363 int status; 364 365 BUG_ON(!inode); 366 BUG_ON(!handle); 367 BUG_ON(!bh); 368 369 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 370 (unsigned long long)bh->b_blocknr, type, 371 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 372 "OCFS2_JOURNAL_ACCESS_CREATE" : 373 "OCFS2_JOURNAL_ACCESS_WRITE", 374 bh->b_size); 375 376 /* we can safely remove this assertion after testing. */ 377 if (!buffer_uptodate(bh)) { 378 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 379 mlog(ML_ERROR, "b_blocknr=%llu\n", 380 (unsigned long long)bh->b_blocknr); 381 BUG(); 382 } 383 384 /* Set the current transaction information on the inode so 385 * that the locking code knows whether it can drop it's locks 386 * on this inode or not. We're protected from the commit 387 * thread updating the current transaction id until 388 * ocfs2_commit_trans() because ocfs2_start_trans() took 389 * j_trans_barrier for us. */ 390 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 391 392 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 393 switch (type) { 394 case OCFS2_JOURNAL_ACCESS_CREATE: 395 case OCFS2_JOURNAL_ACCESS_WRITE: 396 status = journal_get_write_access(handle, bh); 397 break; 398 399 case OCFS2_JOURNAL_ACCESS_UNDO: 400 status = journal_get_undo_access(handle, bh); 401 break; 402 403 default: 404 status = -EINVAL; 405 mlog(ML_ERROR, "Uknown access type!\n"); 406 } 407 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 408 409 if (status < 0) 410 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 411 status, type); 412 413 mlog_exit(status); 414 return status; 415 } 416 417 int ocfs2_journal_dirty(handle_t *handle, 418 struct buffer_head *bh) 419 { 420 int status; 421 422 mlog_entry("(bh->b_blocknr=%llu)\n", 423 (unsigned long long)bh->b_blocknr); 424 425 status = journal_dirty_metadata(handle, bh); 426 if (status < 0) 427 mlog(ML_ERROR, "Could not dirty metadata buffer. " 428 "(bh->b_blocknr=%llu)\n", 429 (unsigned long long)bh->b_blocknr); 430 431 mlog_exit(status); 432 return status; 433 } 434 435 int ocfs2_journal_dirty_data(handle_t *handle, 436 struct buffer_head *bh) 437 { 438 int err = journal_dirty_data(handle, bh); 439 if (err) 440 mlog_errno(err); 441 /* TODO: When we can handle it, abort the handle and go RO on 442 * error here. */ 443 444 return err; 445 } 446 447 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD_DEFAULT_MAX_COMMIT_AGE) 448 449 void ocfs2_set_journal_params(struct ocfs2_super *osb) 450 { 451 journal_t *journal = osb->journal->j_journal; 452 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 453 454 if (osb->osb_commit_interval) 455 commit_interval = osb->osb_commit_interval; 456 457 spin_lock(&journal->j_state_lock); 458 journal->j_commit_interval = commit_interval; 459 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 460 journal->j_flags |= JFS_BARRIER; 461 else 462 journal->j_flags &= ~JFS_BARRIER; 463 spin_unlock(&journal->j_state_lock); 464 } 465 466 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 467 { 468 int status = -1; 469 struct inode *inode = NULL; /* the journal inode */ 470 journal_t *j_journal = NULL; 471 struct ocfs2_dinode *di = NULL; 472 struct buffer_head *bh = NULL; 473 struct ocfs2_super *osb; 474 int inode_lock = 0; 475 476 mlog_entry_void(); 477 478 BUG_ON(!journal); 479 480 osb = journal->j_osb; 481 482 /* already have the inode for our journal */ 483 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 484 osb->slot_num); 485 if (inode == NULL) { 486 status = -EACCES; 487 mlog_errno(status); 488 goto done; 489 } 490 if (is_bad_inode(inode)) { 491 mlog(ML_ERROR, "access error (bad inode)\n"); 492 iput(inode); 493 inode = NULL; 494 status = -EACCES; 495 goto done; 496 } 497 498 SET_INODE_JOURNAL(inode); 499 OCFS2_I(inode)->ip_open_count++; 500 501 /* Skip recovery waits here - journal inode metadata never 502 * changes in a live cluster so it can be considered an 503 * exception to the rule. */ 504 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 505 if (status < 0) { 506 if (status != -ERESTARTSYS) 507 mlog(ML_ERROR, "Could not get lock on journal!\n"); 508 goto done; 509 } 510 511 inode_lock = 1; 512 di = (struct ocfs2_dinode *)bh->b_data; 513 514 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 515 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 516 inode->i_size); 517 status = -EINVAL; 518 goto done; 519 } 520 521 mlog(0, "inode->i_size = %lld\n", inode->i_size); 522 mlog(0, "inode->i_blocks = %llu\n", 523 (unsigned long long)inode->i_blocks); 524 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 525 526 /* call the kernels journal init function now */ 527 j_journal = journal_init_inode(inode); 528 if (j_journal == NULL) { 529 mlog(ML_ERROR, "Linux journal layer error\n"); 530 status = -EINVAL; 531 goto done; 532 } 533 534 mlog(0, "Returned from journal_init_inode\n"); 535 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 536 537 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 538 OCFS2_JOURNAL_DIRTY_FL); 539 540 journal->j_journal = j_journal; 541 journal->j_inode = inode; 542 journal->j_bh = bh; 543 544 ocfs2_set_journal_params(osb); 545 546 journal->j_state = OCFS2_JOURNAL_LOADED; 547 548 status = 0; 549 done: 550 if (status < 0) { 551 if (inode_lock) 552 ocfs2_inode_unlock(inode, 1); 553 if (bh != NULL) 554 brelse(bh); 555 if (inode) { 556 OCFS2_I(inode)->ip_open_count--; 557 iput(inode); 558 } 559 } 560 561 mlog_exit(status); 562 return status; 563 } 564 565 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 566 { 567 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 568 } 569 570 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 571 { 572 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 573 } 574 575 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 576 int dirty, int replayed) 577 { 578 int status; 579 unsigned int flags; 580 struct ocfs2_journal *journal = osb->journal; 581 struct buffer_head *bh = journal->j_bh; 582 struct ocfs2_dinode *fe; 583 584 mlog_entry_void(); 585 586 fe = (struct ocfs2_dinode *)bh->b_data; 587 if (!OCFS2_IS_VALID_DINODE(fe)) { 588 /* This is called from startup/shutdown which will 589 * handle the errors in a specific manner, so no need 590 * to call ocfs2_error() here. */ 591 mlog(ML_ERROR, "Journal dinode %llu has invalid " 592 "signature: %.*s", 593 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 594 fe->i_signature); 595 status = -EIO; 596 goto out; 597 } 598 599 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 600 if (dirty) 601 flags |= OCFS2_JOURNAL_DIRTY_FL; 602 else 603 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 604 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 605 606 if (replayed) 607 ocfs2_bump_recovery_generation(fe); 608 609 status = ocfs2_write_block(osb, bh, journal->j_inode); 610 if (status < 0) 611 mlog_errno(status); 612 613 out: 614 mlog_exit(status); 615 return status; 616 } 617 618 /* 619 * If the journal has been kmalloc'd it needs to be freed after this 620 * call. 621 */ 622 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 623 { 624 struct ocfs2_journal *journal = NULL; 625 int status = 0; 626 struct inode *inode = NULL; 627 int num_running_trans = 0; 628 629 mlog_entry_void(); 630 631 BUG_ON(!osb); 632 633 journal = osb->journal; 634 if (!journal) 635 goto done; 636 637 inode = journal->j_inode; 638 639 if (journal->j_state != OCFS2_JOURNAL_LOADED) 640 goto done; 641 642 /* need to inc inode use count as journal_destroy will iput. */ 643 if (!igrab(inode)) 644 BUG(); 645 646 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 647 if (num_running_trans > 0) 648 mlog(0, "Shutting down journal: must wait on %d " 649 "running transactions!\n", 650 num_running_trans); 651 652 /* Do a commit_cache here. It will flush our journal, *and* 653 * release any locks that are still held. 654 * set the SHUTDOWN flag and release the trans lock. 655 * the commit thread will take the trans lock for us below. */ 656 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 657 658 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 659 * drop the trans_lock (which we want to hold until we 660 * completely destroy the journal. */ 661 if (osb->commit_task) { 662 /* Wait for the commit thread */ 663 mlog(0, "Waiting for ocfs2commit to exit....\n"); 664 kthread_stop(osb->commit_task); 665 osb->commit_task = NULL; 666 } 667 668 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 669 670 if (ocfs2_mount_local(osb)) { 671 journal_lock_updates(journal->j_journal); 672 status = journal_flush(journal->j_journal); 673 journal_unlock_updates(journal->j_journal); 674 if (status < 0) 675 mlog_errno(status); 676 } 677 678 if (status == 0) { 679 /* 680 * Do not toggle if flush was unsuccessful otherwise 681 * will leave dirty metadata in a "clean" journal 682 */ 683 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 684 if (status < 0) 685 mlog_errno(status); 686 } 687 688 /* Shutdown the kernel journal system */ 689 journal_destroy(journal->j_journal); 690 691 OCFS2_I(inode)->ip_open_count--; 692 693 /* unlock our journal */ 694 ocfs2_inode_unlock(inode, 1); 695 696 brelse(journal->j_bh); 697 journal->j_bh = NULL; 698 699 journal->j_state = OCFS2_JOURNAL_FREE; 700 701 // up_write(&journal->j_trans_barrier); 702 done: 703 if (inode) 704 iput(inode); 705 mlog_exit_void(); 706 } 707 708 static void ocfs2_clear_journal_error(struct super_block *sb, 709 journal_t *journal, 710 int slot) 711 { 712 int olderr; 713 714 olderr = journal_errno(journal); 715 if (olderr) { 716 mlog(ML_ERROR, "File system error %d recorded in " 717 "journal %u.\n", olderr, slot); 718 mlog(ML_ERROR, "File system on device %s needs checking.\n", 719 sb->s_id); 720 721 journal_ack_err(journal); 722 journal_clear_err(journal); 723 } 724 } 725 726 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 727 { 728 int status = 0; 729 struct ocfs2_super *osb; 730 731 mlog_entry_void(); 732 733 BUG_ON(!journal); 734 735 osb = journal->j_osb; 736 737 status = journal_load(journal->j_journal); 738 if (status < 0) { 739 mlog(ML_ERROR, "Failed to load journal!\n"); 740 goto done; 741 } 742 743 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 744 745 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 746 if (status < 0) { 747 mlog_errno(status); 748 goto done; 749 } 750 751 /* Launch the commit thread */ 752 if (!local) { 753 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 754 "ocfs2cmt"); 755 if (IS_ERR(osb->commit_task)) { 756 status = PTR_ERR(osb->commit_task); 757 osb->commit_task = NULL; 758 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 759 "error=%d", status); 760 goto done; 761 } 762 } else 763 osb->commit_task = NULL; 764 765 done: 766 mlog_exit(status); 767 return status; 768 } 769 770 771 /* 'full' flag tells us whether we clear out all blocks or if we just 772 * mark the journal clean */ 773 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 774 { 775 int status; 776 777 mlog_entry_void(); 778 779 BUG_ON(!journal); 780 781 status = journal_wipe(journal->j_journal, full); 782 if (status < 0) { 783 mlog_errno(status); 784 goto bail; 785 } 786 787 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 788 if (status < 0) 789 mlog_errno(status); 790 791 bail: 792 mlog_exit(status); 793 return status; 794 } 795 796 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 797 { 798 int empty; 799 struct ocfs2_recovery_map *rm = osb->recovery_map; 800 801 spin_lock(&osb->osb_lock); 802 empty = (rm->rm_used == 0); 803 spin_unlock(&osb->osb_lock); 804 805 return empty; 806 } 807 808 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 809 { 810 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 811 } 812 813 /* 814 * JBD Might read a cached version of another nodes journal file. We 815 * don't want this as this file changes often and we get no 816 * notification on those changes. The only way to be sure that we've 817 * got the most up to date version of those blocks then is to force 818 * read them off disk. Just searching through the buffer cache won't 819 * work as there may be pages backing this file which are still marked 820 * up to date. We know things can't change on this file underneath us 821 * as we have the lock by now :) 822 */ 823 static int ocfs2_force_read_journal(struct inode *inode) 824 { 825 int status = 0; 826 int i; 827 u64 v_blkno, p_blkno, p_blocks, num_blocks; 828 #define CONCURRENT_JOURNAL_FILL 32ULL 829 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 830 831 mlog_entry_void(); 832 833 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 834 835 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 836 v_blkno = 0; 837 while (v_blkno < num_blocks) { 838 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 839 &p_blkno, &p_blocks, NULL); 840 if (status < 0) { 841 mlog_errno(status); 842 goto bail; 843 } 844 845 if (p_blocks > CONCURRENT_JOURNAL_FILL) 846 p_blocks = CONCURRENT_JOURNAL_FILL; 847 848 /* We are reading journal data which should not 849 * be put in the uptodate cache */ 850 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb), 851 p_blkno, p_blocks, bhs, 0, 852 NULL); 853 if (status < 0) { 854 mlog_errno(status); 855 goto bail; 856 } 857 858 for(i = 0; i < p_blocks; i++) { 859 brelse(bhs[i]); 860 bhs[i] = NULL; 861 } 862 863 v_blkno += p_blocks; 864 } 865 866 bail: 867 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 868 if (bhs[i]) 869 brelse(bhs[i]); 870 mlog_exit(status); 871 return status; 872 } 873 874 struct ocfs2_la_recovery_item { 875 struct list_head lri_list; 876 int lri_slot; 877 struct ocfs2_dinode *lri_la_dinode; 878 struct ocfs2_dinode *lri_tl_dinode; 879 }; 880 881 /* Does the second half of the recovery process. By this point, the 882 * node is marked clean and can actually be considered recovered, 883 * hence it's no longer in the recovery map, but there's still some 884 * cleanup we can do which shouldn't happen within the recovery thread 885 * as locking in that context becomes very difficult if we are to take 886 * recovering nodes into account. 887 * 888 * NOTE: This function can and will sleep on recovery of other nodes 889 * during cluster locking, just like any other ocfs2 process. 890 */ 891 void ocfs2_complete_recovery(struct work_struct *work) 892 { 893 int ret; 894 struct ocfs2_journal *journal = 895 container_of(work, struct ocfs2_journal, j_recovery_work); 896 struct ocfs2_super *osb = journal->j_osb; 897 struct ocfs2_dinode *la_dinode, *tl_dinode; 898 struct ocfs2_la_recovery_item *item, *n; 899 LIST_HEAD(tmp_la_list); 900 901 mlog_entry_void(); 902 903 mlog(0, "completing recovery from keventd\n"); 904 905 spin_lock(&journal->j_lock); 906 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 907 spin_unlock(&journal->j_lock); 908 909 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 910 list_del_init(&item->lri_list); 911 912 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 913 914 la_dinode = item->lri_la_dinode; 915 if (la_dinode) { 916 mlog(0, "Clean up local alloc %llu\n", 917 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 918 919 ret = ocfs2_complete_local_alloc_recovery(osb, 920 la_dinode); 921 if (ret < 0) 922 mlog_errno(ret); 923 924 kfree(la_dinode); 925 } 926 927 tl_dinode = item->lri_tl_dinode; 928 if (tl_dinode) { 929 mlog(0, "Clean up truncate log %llu\n", 930 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 931 932 ret = ocfs2_complete_truncate_log_recovery(osb, 933 tl_dinode); 934 if (ret < 0) 935 mlog_errno(ret); 936 937 kfree(tl_dinode); 938 } 939 940 ret = ocfs2_recover_orphans(osb, item->lri_slot); 941 if (ret < 0) 942 mlog_errno(ret); 943 944 kfree(item); 945 } 946 947 mlog(0, "Recovery completion\n"); 948 mlog_exit_void(); 949 } 950 951 /* NOTE: This function always eats your references to la_dinode and 952 * tl_dinode, either manually on error, or by passing them to 953 * ocfs2_complete_recovery */ 954 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 955 int slot_num, 956 struct ocfs2_dinode *la_dinode, 957 struct ocfs2_dinode *tl_dinode) 958 { 959 struct ocfs2_la_recovery_item *item; 960 961 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 962 if (!item) { 963 /* Though we wish to avoid it, we are in fact safe in 964 * skipping local alloc cleanup as fsck.ocfs2 is more 965 * than capable of reclaiming unused space. */ 966 if (la_dinode) 967 kfree(la_dinode); 968 969 if (tl_dinode) 970 kfree(tl_dinode); 971 972 mlog_errno(-ENOMEM); 973 return; 974 } 975 976 INIT_LIST_HEAD(&item->lri_list); 977 item->lri_la_dinode = la_dinode; 978 item->lri_slot = slot_num; 979 item->lri_tl_dinode = tl_dinode; 980 981 spin_lock(&journal->j_lock); 982 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 983 queue_work(ocfs2_wq, &journal->j_recovery_work); 984 spin_unlock(&journal->j_lock); 985 } 986 987 /* Called by the mount code to queue recovery the last part of 988 * recovery for it's own slot. */ 989 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 990 { 991 struct ocfs2_journal *journal = osb->journal; 992 993 if (osb->dirty) { 994 /* No need to queue up our truncate_log as regular 995 * cleanup will catch that. */ 996 ocfs2_queue_recovery_completion(journal, 997 osb->slot_num, 998 osb->local_alloc_copy, 999 NULL); 1000 ocfs2_schedule_truncate_log_flush(osb, 0); 1001 1002 osb->local_alloc_copy = NULL; 1003 osb->dirty = 0; 1004 } 1005 } 1006 1007 static int __ocfs2_recovery_thread(void *arg) 1008 { 1009 int status, node_num; 1010 struct ocfs2_super *osb = arg; 1011 struct ocfs2_recovery_map *rm = osb->recovery_map; 1012 1013 mlog_entry_void(); 1014 1015 status = ocfs2_wait_on_mount(osb); 1016 if (status < 0) { 1017 goto bail; 1018 } 1019 1020 restart: 1021 status = ocfs2_super_lock(osb, 1); 1022 if (status < 0) { 1023 mlog_errno(status); 1024 goto bail; 1025 } 1026 1027 spin_lock(&osb->osb_lock); 1028 while (rm->rm_used) { 1029 /* It's always safe to remove entry zero, as we won't 1030 * clear it until ocfs2_recover_node() has succeeded. */ 1031 node_num = rm->rm_entries[0]; 1032 spin_unlock(&osb->osb_lock); 1033 1034 status = ocfs2_recover_node(osb, node_num); 1035 if (!status) { 1036 ocfs2_recovery_map_clear(osb, node_num); 1037 } else { 1038 mlog(ML_ERROR, 1039 "Error %d recovering node %d on device (%u,%u)!\n", 1040 status, node_num, 1041 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1042 mlog(ML_ERROR, "Volume requires unmount.\n"); 1043 } 1044 1045 spin_lock(&osb->osb_lock); 1046 } 1047 spin_unlock(&osb->osb_lock); 1048 mlog(0, "All nodes recovered\n"); 1049 1050 /* Refresh all journal recovery generations from disk */ 1051 status = ocfs2_check_journals_nolocks(osb); 1052 status = (status == -EROFS) ? 0 : status; 1053 if (status < 0) 1054 mlog_errno(status); 1055 1056 ocfs2_super_unlock(osb, 1); 1057 1058 /* We always run recovery on our own orphan dir - the dead 1059 * node(s) may have disallowd a previos inode delete. Re-processing 1060 * is therefore required. */ 1061 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1062 NULL); 1063 1064 bail: 1065 mutex_lock(&osb->recovery_lock); 1066 if (!status && !ocfs2_recovery_completed(osb)) { 1067 mutex_unlock(&osb->recovery_lock); 1068 goto restart; 1069 } 1070 1071 osb->recovery_thread_task = NULL; 1072 mb(); /* sync with ocfs2_recovery_thread_running */ 1073 wake_up(&osb->recovery_event); 1074 1075 mutex_unlock(&osb->recovery_lock); 1076 1077 mlog_exit(status); 1078 /* no one is callint kthread_stop() for us so the kthread() api 1079 * requires that we call do_exit(). And it isn't exported, but 1080 * complete_and_exit() seems to be a minimal wrapper around it. */ 1081 complete_and_exit(NULL, status); 1082 return status; 1083 } 1084 1085 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1086 { 1087 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1088 node_num, osb->node_num); 1089 1090 mutex_lock(&osb->recovery_lock); 1091 if (osb->disable_recovery) 1092 goto out; 1093 1094 /* People waiting on recovery will wait on 1095 * the recovery map to empty. */ 1096 if (ocfs2_recovery_map_set(osb, node_num)) 1097 mlog(0, "node %d already in recovery map.\n", node_num); 1098 1099 mlog(0, "starting recovery thread...\n"); 1100 1101 if (osb->recovery_thread_task) 1102 goto out; 1103 1104 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1105 "ocfs2rec"); 1106 if (IS_ERR(osb->recovery_thread_task)) { 1107 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1108 osb->recovery_thread_task = NULL; 1109 } 1110 1111 out: 1112 mutex_unlock(&osb->recovery_lock); 1113 wake_up(&osb->recovery_event); 1114 1115 mlog_exit_void(); 1116 } 1117 1118 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1119 int slot_num, 1120 struct buffer_head **bh, 1121 struct inode **ret_inode) 1122 { 1123 int status = -EACCES; 1124 struct inode *inode = NULL; 1125 1126 BUG_ON(slot_num >= osb->max_slots); 1127 1128 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1129 slot_num); 1130 if (!inode || is_bad_inode(inode)) { 1131 mlog_errno(status); 1132 goto bail; 1133 } 1134 SET_INODE_JOURNAL(inode); 1135 1136 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, bh, 0, inode); 1137 if (status < 0) { 1138 mlog_errno(status); 1139 goto bail; 1140 } 1141 1142 status = 0; 1143 1144 bail: 1145 if (inode) { 1146 if (status || !ret_inode) 1147 iput(inode); 1148 else 1149 *ret_inode = inode; 1150 } 1151 return status; 1152 } 1153 1154 /* Does the actual journal replay and marks the journal inode as 1155 * clean. Will only replay if the journal inode is marked dirty. */ 1156 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1157 int node_num, 1158 int slot_num) 1159 { 1160 int status; 1161 int got_lock = 0; 1162 unsigned int flags; 1163 struct inode *inode = NULL; 1164 struct ocfs2_dinode *fe; 1165 journal_t *journal = NULL; 1166 struct buffer_head *bh = NULL; 1167 u32 slot_reco_gen; 1168 1169 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1170 if (status) { 1171 mlog_errno(status); 1172 goto done; 1173 } 1174 1175 fe = (struct ocfs2_dinode *)bh->b_data; 1176 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1177 brelse(bh); 1178 bh = NULL; 1179 1180 /* 1181 * As the fs recovery is asynchronous, there is a small chance that 1182 * another node mounted (and recovered) the slot before the recovery 1183 * thread could get the lock. To handle that, we dirty read the journal 1184 * inode for that slot to get the recovery generation. If it is 1185 * different than what we expected, the slot has been recovered. 1186 * If not, it needs recovery. 1187 */ 1188 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1189 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1190 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1191 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1192 status = -EBUSY; 1193 goto done; 1194 } 1195 1196 /* Continue with recovery as the journal has not yet been recovered */ 1197 1198 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1199 if (status < 0) { 1200 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1201 if (status != -ERESTARTSYS) 1202 mlog(ML_ERROR, "Could not lock journal!\n"); 1203 goto done; 1204 } 1205 got_lock = 1; 1206 1207 fe = (struct ocfs2_dinode *) bh->b_data; 1208 1209 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1210 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1211 1212 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1213 mlog(0, "No recovery required for node %d\n", node_num); 1214 /* Refresh recovery generation for the slot */ 1215 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1216 goto done; 1217 } 1218 1219 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1220 node_num, slot_num, 1221 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1222 1223 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1224 1225 status = ocfs2_force_read_journal(inode); 1226 if (status < 0) { 1227 mlog_errno(status); 1228 goto done; 1229 } 1230 1231 mlog(0, "calling journal_init_inode\n"); 1232 journal = journal_init_inode(inode); 1233 if (journal == NULL) { 1234 mlog(ML_ERROR, "Linux journal layer error\n"); 1235 status = -EIO; 1236 goto done; 1237 } 1238 1239 status = journal_load(journal); 1240 if (status < 0) { 1241 mlog_errno(status); 1242 if (!igrab(inode)) 1243 BUG(); 1244 journal_destroy(journal); 1245 goto done; 1246 } 1247 1248 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1249 1250 /* wipe the journal */ 1251 mlog(0, "flushing the journal.\n"); 1252 journal_lock_updates(journal); 1253 status = journal_flush(journal); 1254 journal_unlock_updates(journal); 1255 if (status < 0) 1256 mlog_errno(status); 1257 1258 /* This will mark the node clean */ 1259 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1260 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1261 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1262 1263 /* Increment recovery generation to indicate successful recovery */ 1264 ocfs2_bump_recovery_generation(fe); 1265 osb->slot_recovery_generations[slot_num] = 1266 ocfs2_get_recovery_generation(fe); 1267 1268 status = ocfs2_write_block(osb, bh, inode); 1269 if (status < 0) 1270 mlog_errno(status); 1271 1272 if (!igrab(inode)) 1273 BUG(); 1274 1275 journal_destroy(journal); 1276 1277 done: 1278 /* drop the lock on this nodes journal */ 1279 if (got_lock) 1280 ocfs2_inode_unlock(inode, 1); 1281 1282 if (inode) 1283 iput(inode); 1284 1285 if (bh) 1286 brelse(bh); 1287 1288 mlog_exit(status); 1289 return status; 1290 } 1291 1292 /* 1293 * Do the most important parts of node recovery: 1294 * - Replay it's journal 1295 * - Stamp a clean local allocator file 1296 * - Stamp a clean truncate log 1297 * - Mark the node clean 1298 * 1299 * If this function completes without error, a node in OCFS2 can be 1300 * said to have been safely recovered. As a result, failure during the 1301 * second part of a nodes recovery process (local alloc recovery) is 1302 * far less concerning. 1303 */ 1304 static int ocfs2_recover_node(struct ocfs2_super *osb, 1305 int node_num) 1306 { 1307 int status = 0; 1308 int slot_num; 1309 struct ocfs2_dinode *la_copy = NULL; 1310 struct ocfs2_dinode *tl_copy = NULL; 1311 1312 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1313 node_num, osb->node_num); 1314 1315 mlog(0, "checking node %d\n", node_num); 1316 1317 /* Should not ever be called to recover ourselves -- in that 1318 * case we should've called ocfs2_journal_load instead. */ 1319 BUG_ON(osb->node_num == node_num); 1320 1321 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1322 if (slot_num == -ENOENT) { 1323 status = 0; 1324 mlog(0, "no slot for this node, so no recovery required.\n"); 1325 goto done; 1326 } 1327 1328 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1329 1330 status = ocfs2_replay_journal(osb, node_num, slot_num); 1331 if (status < 0) { 1332 if (status == -EBUSY) { 1333 mlog(0, "Skipping recovery for slot %u (node %u) " 1334 "as another node has recovered it\n", slot_num, 1335 node_num); 1336 status = 0; 1337 goto done; 1338 } 1339 mlog_errno(status); 1340 goto done; 1341 } 1342 1343 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1344 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1345 if (status < 0) { 1346 mlog_errno(status); 1347 goto done; 1348 } 1349 1350 /* An error from begin_truncate_log_recovery is not 1351 * serious enough to warrant halting the rest of 1352 * recovery. */ 1353 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1354 if (status < 0) 1355 mlog_errno(status); 1356 1357 /* Likewise, this would be a strange but ultimately not so 1358 * harmful place to get an error... */ 1359 status = ocfs2_clear_slot(osb, slot_num); 1360 if (status < 0) 1361 mlog_errno(status); 1362 1363 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1364 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1365 tl_copy); 1366 1367 status = 0; 1368 done: 1369 1370 mlog_exit(status); 1371 return status; 1372 } 1373 1374 /* Test node liveness by trylocking his journal. If we get the lock, 1375 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1376 * still alive (we couldn't get the lock) and < 0 on error. */ 1377 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1378 int slot_num) 1379 { 1380 int status, flags; 1381 struct inode *inode = NULL; 1382 1383 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1384 slot_num); 1385 if (inode == NULL) { 1386 mlog(ML_ERROR, "access error\n"); 1387 status = -EACCES; 1388 goto bail; 1389 } 1390 if (is_bad_inode(inode)) { 1391 mlog(ML_ERROR, "access error (bad inode)\n"); 1392 iput(inode); 1393 inode = NULL; 1394 status = -EACCES; 1395 goto bail; 1396 } 1397 SET_INODE_JOURNAL(inode); 1398 1399 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1400 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1401 if (status < 0) { 1402 if (status != -EAGAIN) 1403 mlog_errno(status); 1404 goto bail; 1405 } 1406 1407 ocfs2_inode_unlock(inode, 1); 1408 bail: 1409 if (inode) 1410 iput(inode); 1411 1412 return status; 1413 } 1414 1415 /* Call this underneath ocfs2_super_lock. It also assumes that the 1416 * slot info struct has been updated from disk. */ 1417 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1418 { 1419 unsigned int node_num; 1420 int status, i; 1421 u32 gen; 1422 struct buffer_head *bh = NULL; 1423 struct ocfs2_dinode *di; 1424 1425 /* This is called with the super block cluster lock, so we 1426 * know that the slot map can't change underneath us. */ 1427 1428 for (i = 0; i < osb->max_slots; i++) { 1429 /* Read journal inode to get the recovery generation */ 1430 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1431 if (status) { 1432 mlog_errno(status); 1433 goto bail; 1434 } 1435 di = (struct ocfs2_dinode *)bh->b_data; 1436 gen = ocfs2_get_recovery_generation(di); 1437 brelse(bh); 1438 bh = NULL; 1439 1440 spin_lock(&osb->osb_lock); 1441 osb->slot_recovery_generations[i] = gen; 1442 1443 mlog(0, "Slot %u recovery generation is %u\n", i, 1444 osb->slot_recovery_generations[i]); 1445 1446 if (i == osb->slot_num) { 1447 spin_unlock(&osb->osb_lock); 1448 continue; 1449 } 1450 1451 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1452 if (status == -ENOENT) { 1453 spin_unlock(&osb->osb_lock); 1454 continue; 1455 } 1456 1457 if (__ocfs2_recovery_map_test(osb, node_num)) { 1458 spin_unlock(&osb->osb_lock); 1459 continue; 1460 } 1461 spin_unlock(&osb->osb_lock); 1462 1463 /* Ok, we have a slot occupied by another node which 1464 * is not in the recovery map. We trylock his journal 1465 * file here to test if he's alive. */ 1466 status = ocfs2_trylock_journal(osb, i); 1467 if (!status) { 1468 /* Since we're called from mount, we know that 1469 * the recovery thread can't race us on 1470 * setting / checking the recovery bits. */ 1471 ocfs2_recovery_thread(osb, node_num); 1472 } else if ((status < 0) && (status != -EAGAIN)) { 1473 mlog_errno(status); 1474 goto bail; 1475 } 1476 } 1477 1478 status = 0; 1479 bail: 1480 mlog_exit(status); 1481 return status; 1482 } 1483 1484 struct ocfs2_orphan_filldir_priv { 1485 struct inode *head; 1486 struct ocfs2_super *osb; 1487 }; 1488 1489 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1490 loff_t pos, u64 ino, unsigned type) 1491 { 1492 struct ocfs2_orphan_filldir_priv *p = priv; 1493 struct inode *iter; 1494 1495 if (name_len == 1 && !strncmp(".", name, 1)) 1496 return 0; 1497 if (name_len == 2 && !strncmp("..", name, 2)) 1498 return 0; 1499 1500 /* Skip bad inodes so that recovery can continue */ 1501 iter = ocfs2_iget(p->osb, ino, 1502 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1503 if (IS_ERR(iter)) 1504 return 0; 1505 1506 mlog(0, "queue orphan %llu\n", 1507 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1508 /* No locking is required for the next_orphan queue as there 1509 * is only ever a single process doing orphan recovery. */ 1510 OCFS2_I(iter)->ip_next_orphan = p->head; 1511 p->head = iter; 1512 1513 return 0; 1514 } 1515 1516 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1517 int slot, 1518 struct inode **head) 1519 { 1520 int status; 1521 struct inode *orphan_dir_inode = NULL; 1522 struct ocfs2_orphan_filldir_priv priv; 1523 loff_t pos = 0; 1524 1525 priv.osb = osb; 1526 priv.head = *head; 1527 1528 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1529 ORPHAN_DIR_SYSTEM_INODE, 1530 slot); 1531 if (!orphan_dir_inode) { 1532 status = -ENOENT; 1533 mlog_errno(status); 1534 return status; 1535 } 1536 1537 mutex_lock(&orphan_dir_inode->i_mutex); 1538 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1539 if (status < 0) { 1540 mlog_errno(status); 1541 goto out; 1542 } 1543 1544 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1545 ocfs2_orphan_filldir); 1546 if (status) { 1547 mlog_errno(status); 1548 goto out_cluster; 1549 } 1550 1551 *head = priv.head; 1552 1553 out_cluster: 1554 ocfs2_inode_unlock(orphan_dir_inode, 0); 1555 out: 1556 mutex_unlock(&orphan_dir_inode->i_mutex); 1557 iput(orphan_dir_inode); 1558 return status; 1559 } 1560 1561 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1562 int slot) 1563 { 1564 int ret; 1565 1566 spin_lock(&osb->osb_lock); 1567 ret = !osb->osb_orphan_wipes[slot]; 1568 spin_unlock(&osb->osb_lock); 1569 return ret; 1570 } 1571 1572 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1573 int slot) 1574 { 1575 spin_lock(&osb->osb_lock); 1576 /* Mark ourselves such that new processes in delete_inode() 1577 * know to quit early. */ 1578 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1579 while (osb->osb_orphan_wipes[slot]) { 1580 /* If any processes are already in the middle of an 1581 * orphan wipe on this dir, then we need to wait for 1582 * them. */ 1583 spin_unlock(&osb->osb_lock); 1584 wait_event_interruptible(osb->osb_wipe_event, 1585 ocfs2_orphan_recovery_can_continue(osb, slot)); 1586 spin_lock(&osb->osb_lock); 1587 } 1588 spin_unlock(&osb->osb_lock); 1589 } 1590 1591 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1592 int slot) 1593 { 1594 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1595 } 1596 1597 /* 1598 * Orphan recovery. Each mounted node has it's own orphan dir which we 1599 * must run during recovery. Our strategy here is to build a list of 1600 * the inodes in the orphan dir and iget/iput them. The VFS does 1601 * (most) of the rest of the work. 1602 * 1603 * Orphan recovery can happen at any time, not just mount so we have a 1604 * couple of extra considerations. 1605 * 1606 * - We grab as many inodes as we can under the orphan dir lock - 1607 * doing iget() outside the orphan dir risks getting a reference on 1608 * an invalid inode. 1609 * - We must be sure not to deadlock with other processes on the 1610 * system wanting to run delete_inode(). This can happen when they go 1611 * to lock the orphan dir and the orphan recovery process attempts to 1612 * iget() inside the orphan dir lock. This can be avoided by 1613 * advertising our state to ocfs2_delete_inode(). 1614 */ 1615 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1616 int slot) 1617 { 1618 int ret = 0; 1619 struct inode *inode = NULL; 1620 struct inode *iter; 1621 struct ocfs2_inode_info *oi; 1622 1623 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1624 1625 ocfs2_mark_recovering_orphan_dir(osb, slot); 1626 ret = ocfs2_queue_orphans(osb, slot, &inode); 1627 ocfs2_clear_recovering_orphan_dir(osb, slot); 1628 1629 /* Error here should be noted, but we want to continue with as 1630 * many queued inodes as we've got. */ 1631 if (ret) 1632 mlog_errno(ret); 1633 1634 while (inode) { 1635 oi = OCFS2_I(inode); 1636 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1637 1638 iter = oi->ip_next_orphan; 1639 1640 spin_lock(&oi->ip_lock); 1641 /* The remote delete code may have set these on the 1642 * assumption that the other node would wipe them 1643 * successfully. If they are still in the node's 1644 * orphan dir, we need to reset that state. */ 1645 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1646 1647 /* Set the proper information to get us going into 1648 * ocfs2_delete_inode. */ 1649 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1650 spin_unlock(&oi->ip_lock); 1651 1652 iput(inode); 1653 1654 inode = iter; 1655 } 1656 1657 return ret; 1658 } 1659 1660 static int ocfs2_wait_on_mount(struct ocfs2_super *osb) 1661 { 1662 /* This check is good because ocfs2 will wait on our recovery 1663 * thread before changing it to something other than MOUNTED 1664 * or DISABLED. */ 1665 wait_event(osb->osb_mount_event, 1666 atomic_read(&osb->vol_state) == VOLUME_MOUNTED || 1667 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1668 1669 /* If there's an error on mount, then we may never get to the 1670 * MOUNTED flag, but this is set right before 1671 * dismount_volume() so we can trust it. */ 1672 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1673 mlog(0, "mount error, exiting!\n"); 1674 return -EBUSY; 1675 } 1676 1677 return 0; 1678 } 1679 1680 static int ocfs2_commit_thread(void *arg) 1681 { 1682 int status; 1683 struct ocfs2_super *osb = arg; 1684 struct ocfs2_journal *journal = osb->journal; 1685 1686 /* we can trust j_num_trans here because _should_stop() is only set in 1687 * shutdown and nobody other than ourselves should be able to start 1688 * transactions. committing on shutdown might take a few iterations 1689 * as final transactions put deleted inodes on the list */ 1690 while (!(kthread_should_stop() && 1691 atomic_read(&journal->j_num_trans) == 0)) { 1692 1693 wait_event_interruptible(osb->checkpoint_event, 1694 atomic_read(&journal->j_num_trans) 1695 || kthread_should_stop()); 1696 1697 status = ocfs2_commit_cache(osb); 1698 if (status < 0) 1699 mlog_errno(status); 1700 1701 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1702 mlog(ML_KTHREAD, 1703 "commit_thread: %u transactions pending on " 1704 "shutdown\n", 1705 atomic_read(&journal->j_num_trans)); 1706 } 1707 } 1708 1709 return 0; 1710 } 1711 1712 /* Reads all the journal inodes without taking any cluster locks. Used 1713 * for hard readonly access to determine whether any journal requires 1714 * recovery. Also used to refresh the recovery generation numbers after 1715 * a journal has been recovered by another node. 1716 */ 1717 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1718 { 1719 int ret = 0; 1720 unsigned int slot; 1721 struct buffer_head *di_bh = NULL; 1722 struct ocfs2_dinode *di; 1723 int journal_dirty = 0; 1724 1725 for(slot = 0; slot < osb->max_slots; slot++) { 1726 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 1727 if (ret) { 1728 mlog_errno(ret); 1729 goto out; 1730 } 1731 1732 di = (struct ocfs2_dinode *) di_bh->b_data; 1733 1734 osb->slot_recovery_generations[slot] = 1735 ocfs2_get_recovery_generation(di); 1736 1737 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1738 OCFS2_JOURNAL_DIRTY_FL) 1739 journal_dirty = 1; 1740 1741 brelse(di_bh); 1742 di_bh = NULL; 1743 } 1744 1745 out: 1746 if (journal_dirty) 1747 ret = -EROFS; 1748 return ret; 1749 } 1750