1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * journal.c 6 * 7 * Defines functions of journalling api 8 * 9 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/types.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kthread.h> 17 #include <linux/time.h> 18 #include <linux/random.h> 19 #include <linux/delay.h> 20 21 #include <cluster/masklog.h> 22 23 #include "ocfs2.h" 24 25 #include "alloc.h" 26 #include "blockcheck.h" 27 #include "dir.h" 28 #include "dlmglue.h" 29 #include "extent_map.h" 30 #include "heartbeat.h" 31 #include "inode.h" 32 #include "journal.h" 33 #include "localalloc.h" 34 #include "slot_map.h" 35 #include "super.h" 36 #include "sysfile.h" 37 #include "uptodate.h" 38 #include "quota.h" 39 #include "file.h" 40 #include "namei.h" 41 42 #include "buffer_head_io.h" 43 #include "ocfs2_trace.h" 44 45 DEFINE_SPINLOCK(trans_inc_lock); 46 47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 48 49 static int ocfs2_force_read_journal(struct inode *inode); 50 static int ocfs2_recover_node(struct ocfs2_super *osb, 51 int node_num, int slot_num); 52 static int __ocfs2_recovery_thread(void *arg); 53 static int ocfs2_commit_cache(struct ocfs2_super *osb); 54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 56 int dirty, int replayed); 57 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 58 int slot_num); 59 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 60 int slot, 61 enum ocfs2_orphan_reco_type orphan_reco_type); 62 static int ocfs2_commit_thread(void *arg); 63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 64 int slot_num, 65 struct ocfs2_dinode *la_dinode, 66 struct ocfs2_dinode *tl_dinode, 67 struct ocfs2_quota_recovery *qrec, 68 enum ocfs2_orphan_reco_type orphan_reco_type); 69 70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 71 { 72 return __ocfs2_wait_on_mount(osb, 0); 73 } 74 75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 76 { 77 return __ocfs2_wait_on_mount(osb, 1); 78 } 79 80 /* 81 * This replay_map is to track online/offline slots, so we could recover 82 * offline slots during recovery and mount 83 */ 84 85 enum ocfs2_replay_state { 86 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 87 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 88 REPLAY_DONE /* Replay was already queued */ 89 }; 90 91 struct ocfs2_replay_map { 92 unsigned int rm_slots; 93 enum ocfs2_replay_state rm_state; 94 unsigned char rm_replay_slots[]; 95 }; 96 97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 98 { 99 if (!osb->replay_map) 100 return; 101 102 /* If we've already queued the replay, we don't have any more to do */ 103 if (osb->replay_map->rm_state == REPLAY_DONE) 104 return; 105 106 osb->replay_map->rm_state = state; 107 } 108 109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 110 { 111 struct ocfs2_replay_map *replay_map; 112 int i, node_num; 113 114 /* If replay map is already set, we don't do it again */ 115 if (osb->replay_map) 116 return 0; 117 118 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) + 119 (osb->max_slots * sizeof(char)), GFP_KERNEL); 120 121 if (!replay_map) { 122 mlog_errno(-ENOMEM); 123 return -ENOMEM; 124 } 125 126 spin_lock(&osb->osb_lock); 127 128 replay_map->rm_slots = osb->max_slots; 129 replay_map->rm_state = REPLAY_UNNEEDED; 130 131 /* set rm_replay_slots for offline slot(s) */ 132 for (i = 0; i < replay_map->rm_slots; i++) { 133 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 134 replay_map->rm_replay_slots[i] = 1; 135 } 136 137 osb->replay_map = replay_map; 138 spin_unlock(&osb->osb_lock); 139 return 0; 140 } 141 142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 143 enum ocfs2_orphan_reco_type orphan_reco_type) 144 { 145 struct ocfs2_replay_map *replay_map = osb->replay_map; 146 int i; 147 148 if (!replay_map) 149 return; 150 151 if (replay_map->rm_state != REPLAY_NEEDED) 152 return; 153 154 for (i = 0; i < replay_map->rm_slots; i++) 155 if (replay_map->rm_replay_slots[i]) 156 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 157 NULL, NULL, 158 orphan_reco_type); 159 replay_map->rm_state = REPLAY_DONE; 160 } 161 162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb) 163 { 164 struct ocfs2_replay_map *replay_map = osb->replay_map; 165 166 if (!osb->replay_map) 167 return; 168 169 kfree(replay_map); 170 osb->replay_map = NULL; 171 } 172 173 int ocfs2_recovery_init(struct ocfs2_super *osb) 174 { 175 struct ocfs2_recovery_map *rm; 176 177 mutex_init(&osb->recovery_lock); 178 osb->disable_recovery = 0; 179 osb->recovery_thread_task = NULL; 180 init_waitqueue_head(&osb->recovery_event); 181 182 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 183 osb->max_slots * sizeof(unsigned int), 184 GFP_KERNEL); 185 if (!rm) { 186 mlog_errno(-ENOMEM); 187 return -ENOMEM; 188 } 189 190 rm->rm_entries = (unsigned int *)((char *)rm + 191 sizeof(struct ocfs2_recovery_map)); 192 osb->recovery_map = rm; 193 194 return 0; 195 } 196 197 /* we can't grab the goofy sem lock from inside wait_event, so we use 198 * memory barriers to make sure that we'll see the null task before 199 * being woken up */ 200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 201 { 202 mb(); 203 return osb->recovery_thread_task != NULL; 204 } 205 206 void ocfs2_recovery_exit(struct ocfs2_super *osb) 207 { 208 struct ocfs2_recovery_map *rm; 209 210 /* disable any new recovery threads and wait for any currently 211 * running ones to exit. Do this before setting the vol_state. */ 212 mutex_lock(&osb->recovery_lock); 213 osb->disable_recovery = 1; 214 mutex_unlock(&osb->recovery_lock); 215 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 216 217 /* At this point, we know that no more recovery threads can be 218 * launched, so wait for any recovery completion work to 219 * complete. */ 220 if (osb->ocfs2_wq) 221 flush_workqueue(osb->ocfs2_wq); 222 223 /* 224 * Now that recovery is shut down, and the osb is about to be 225 * freed, the osb_lock is not taken here. 226 */ 227 rm = osb->recovery_map; 228 /* XXX: Should we bug if there are dirty entries? */ 229 230 kfree(rm); 231 } 232 233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 234 unsigned int node_num) 235 { 236 int i; 237 struct ocfs2_recovery_map *rm = osb->recovery_map; 238 239 assert_spin_locked(&osb->osb_lock); 240 241 for (i = 0; i < rm->rm_used; i++) { 242 if (rm->rm_entries[i] == node_num) 243 return 1; 244 } 245 246 return 0; 247 } 248 249 /* Behaves like test-and-set. Returns the previous value */ 250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 251 unsigned int node_num) 252 { 253 struct ocfs2_recovery_map *rm = osb->recovery_map; 254 255 spin_lock(&osb->osb_lock); 256 if (__ocfs2_recovery_map_test(osb, node_num)) { 257 spin_unlock(&osb->osb_lock); 258 return 1; 259 } 260 261 /* XXX: Can this be exploited? Not from o2dlm... */ 262 BUG_ON(rm->rm_used >= osb->max_slots); 263 264 rm->rm_entries[rm->rm_used] = node_num; 265 rm->rm_used++; 266 spin_unlock(&osb->osb_lock); 267 268 return 0; 269 } 270 271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 272 unsigned int node_num) 273 { 274 int i; 275 struct ocfs2_recovery_map *rm = osb->recovery_map; 276 277 spin_lock(&osb->osb_lock); 278 279 for (i = 0; i < rm->rm_used; i++) { 280 if (rm->rm_entries[i] == node_num) 281 break; 282 } 283 284 if (i < rm->rm_used) { 285 /* XXX: be careful with the pointer math */ 286 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 287 (rm->rm_used - i - 1) * sizeof(unsigned int)); 288 rm->rm_used--; 289 } 290 291 spin_unlock(&osb->osb_lock); 292 } 293 294 static int ocfs2_commit_cache(struct ocfs2_super *osb) 295 { 296 int status = 0; 297 unsigned int flushed; 298 struct ocfs2_journal *journal = NULL; 299 300 journal = osb->journal; 301 302 /* Flush all pending commits and checkpoint the journal. */ 303 down_write(&journal->j_trans_barrier); 304 305 flushed = atomic_read(&journal->j_num_trans); 306 trace_ocfs2_commit_cache_begin(flushed); 307 if (flushed == 0) { 308 up_write(&journal->j_trans_barrier); 309 goto finally; 310 } 311 312 jbd2_journal_lock_updates(journal->j_journal); 313 status = jbd2_journal_flush(journal->j_journal); 314 jbd2_journal_unlock_updates(journal->j_journal); 315 if (status < 0) { 316 up_write(&journal->j_trans_barrier); 317 mlog_errno(status); 318 goto finally; 319 } 320 321 ocfs2_inc_trans_id(journal); 322 323 flushed = atomic_read(&journal->j_num_trans); 324 atomic_set(&journal->j_num_trans, 0); 325 up_write(&journal->j_trans_barrier); 326 327 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 328 329 ocfs2_wake_downconvert_thread(osb); 330 wake_up(&journal->j_checkpointed); 331 finally: 332 return status; 333 } 334 335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 336 { 337 journal_t *journal = osb->journal->j_journal; 338 handle_t *handle; 339 340 BUG_ON(!osb || !osb->journal->j_journal); 341 342 if (ocfs2_is_hard_readonly(osb)) 343 return ERR_PTR(-EROFS); 344 345 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 346 BUG_ON(max_buffs <= 0); 347 348 /* Nested transaction? Just return the handle... */ 349 if (journal_current_handle()) 350 return jbd2_journal_start(journal, max_buffs); 351 352 sb_start_intwrite(osb->sb); 353 354 down_read(&osb->journal->j_trans_barrier); 355 356 handle = jbd2_journal_start(journal, max_buffs); 357 if (IS_ERR(handle)) { 358 up_read(&osb->journal->j_trans_barrier); 359 sb_end_intwrite(osb->sb); 360 361 mlog_errno(PTR_ERR(handle)); 362 363 if (is_journal_aborted(journal)) { 364 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 365 handle = ERR_PTR(-EROFS); 366 } 367 } else { 368 if (!ocfs2_mount_local(osb)) 369 atomic_inc(&(osb->journal->j_num_trans)); 370 } 371 372 return handle; 373 } 374 375 int ocfs2_commit_trans(struct ocfs2_super *osb, 376 handle_t *handle) 377 { 378 int ret, nested; 379 struct ocfs2_journal *journal = osb->journal; 380 381 BUG_ON(!handle); 382 383 nested = handle->h_ref > 1; 384 ret = jbd2_journal_stop(handle); 385 if (ret < 0) 386 mlog_errno(ret); 387 388 if (!nested) { 389 up_read(&journal->j_trans_barrier); 390 sb_end_intwrite(osb->sb); 391 } 392 393 return ret; 394 } 395 396 /* 397 * 'nblocks' is what you want to add to the current transaction. 398 * 399 * This might call jbd2_journal_restart() which will commit dirty buffers 400 * and then restart the transaction. Before calling 401 * ocfs2_extend_trans(), any changed blocks should have been 402 * dirtied. After calling it, all blocks which need to be changed must 403 * go through another set of journal_access/journal_dirty calls. 404 * 405 * WARNING: This will not release any semaphores or disk locks taken 406 * during the transaction, so make sure they were taken *before* 407 * start_trans or we'll have ordering deadlocks. 408 * 409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 410 * good because transaction ids haven't yet been recorded on the 411 * cluster locks associated with this handle. 412 */ 413 int ocfs2_extend_trans(handle_t *handle, int nblocks) 414 { 415 int status, old_nblocks; 416 417 BUG_ON(!handle); 418 BUG_ON(nblocks < 0); 419 420 if (!nblocks) 421 return 0; 422 423 old_nblocks = jbd2_handle_buffer_credits(handle); 424 425 trace_ocfs2_extend_trans(old_nblocks, nblocks); 426 427 #ifdef CONFIG_OCFS2_DEBUG_FS 428 status = 1; 429 #else 430 status = jbd2_journal_extend(handle, nblocks, 0); 431 if (status < 0) { 432 mlog_errno(status); 433 goto bail; 434 } 435 #endif 436 437 if (status > 0) { 438 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 439 status = jbd2_journal_restart(handle, 440 old_nblocks + nblocks); 441 if (status < 0) { 442 mlog_errno(status); 443 goto bail; 444 } 445 } 446 447 status = 0; 448 bail: 449 return status; 450 } 451 452 /* 453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 454 * If that fails, restart the transaction & regain write access for the 455 * buffer head which is used for metadata modifications. 456 * Taken from Ext4: extend_or_restart_transaction() 457 */ 458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 459 { 460 int status, old_nblks; 461 462 BUG_ON(!handle); 463 464 old_nblks = jbd2_handle_buffer_credits(handle); 465 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 466 467 if (old_nblks < thresh) 468 return 0; 469 470 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 471 if (status < 0) { 472 mlog_errno(status); 473 goto bail; 474 } 475 476 if (status > 0) { 477 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 478 if (status < 0) 479 mlog_errno(status); 480 } 481 482 bail: 483 return status; 484 } 485 486 487 struct ocfs2_triggers { 488 struct jbd2_buffer_trigger_type ot_triggers; 489 int ot_offset; 490 }; 491 492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 493 { 494 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 495 } 496 497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 498 struct buffer_head *bh, 499 void *data, size_t size) 500 { 501 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 502 503 /* 504 * We aren't guaranteed to have the superblock here, so we 505 * must unconditionally compute the ecc data. 506 * __ocfs2_journal_access() will only set the triggers if 507 * metaecc is enabled. 508 */ 509 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 510 } 511 512 /* 513 * Quota blocks have their own trigger because the struct ocfs2_block_check 514 * offset depends on the blocksize. 515 */ 516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 517 struct buffer_head *bh, 518 void *data, size_t size) 519 { 520 struct ocfs2_disk_dqtrailer *dqt = 521 ocfs2_block_dqtrailer(size, data); 522 523 /* 524 * We aren't guaranteed to have the superblock here, so we 525 * must unconditionally compute the ecc data. 526 * __ocfs2_journal_access() will only set the triggers if 527 * metaecc is enabled. 528 */ 529 ocfs2_block_check_compute(data, size, &dqt->dq_check); 530 } 531 532 /* 533 * Directory blocks also have their own trigger because the 534 * struct ocfs2_block_check offset depends on the blocksize. 535 */ 536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 537 struct buffer_head *bh, 538 void *data, size_t size) 539 { 540 struct ocfs2_dir_block_trailer *trailer = 541 ocfs2_dir_trailer_from_size(size, data); 542 543 /* 544 * We aren't guaranteed to have the superblock here, so we 545 * must unconditionally compute the ecc data. 546 * __ocfs2_journal_access() will only set the triggers if 547 * metaecc is enabled. 548 */ 549 ocfs2_block_check_compute(data, size, &trailer->db_check); 550 } 551 552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 553 struct buffer_head *bh) 554 { 555 mlog(ML_ERROR, 556 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 557 "bh->b_blocknr = %llu\n", 558 (unsigned long)bh, 559 (unsigned long long)bh->b_blocknr); 560 561 ocfs2_error(bh->b_bdev->bd_super, 562 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 563 } 564 565 static struct ocfs2_triggers di_triggers = { 566 .ot_triggers = { 567 .t_frozen = ocfs2_frozen_trigger, 568 .t_abort = ocfs2_abort_trigger, 569 }, 570 .ot_offset = offsetof(struct ocfs2_dinode, i_check), 571 }; 572 573 static struct ocfs2_triggers eb_triggers = { 574 .ot_triggers = { 575 .t_frozen = ocfs2_frozen_trigger, 576 .t_abort = ocfs2_abort_trigger, 577 }, 578 .ot_offset = offsetof(struct ocfs2_extent_block, h_check), 579 }; 580 581 static struct ocfs2_triggers rb_triggers = { 582 .ot_triggers = { 583 .t_frozen = ocfs2_frozen_trigger, 584 .t_abort = ocfs2_abort_trigger, 585 }, 586 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check), 587 }; 588 589 static struct ocfs2_triggers gd_triggers = { 590 .ot_triggers = { 591 .t_frozen = ocfs2_frozen_trigger, 592 .t_abort = ocfs2_abort_trigger, 593 }, 594 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check), 595 }; 596 597 static struct ocfs2_triggers db_triggers = { 598 .ot_triggers = { 599 .t_frozen = ocfs2_db_frozen_trigger, 600 .t_abort = ocfs2_abort_trigger, 601 }, 602 }; 603 604 static struct ocfs2_triggers xb_triggers = { 605 .ot_triggers = { 606 .t_frozen = ocfs2_frozen_trigger, 607 .t_abort = ocfs2_abort_trigger, 608 }, 609 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check), 610 }; 611 612 static struct ocfs2_triggers dq_triggers = { 613 .ot_triggers = { 614 .t_frozen = ocfs2_dq_frozen_trigger, 615 .t_abort = ocfs2_abort_trigger, 616 }, 617 }; 618 619 static struct ocfs2_triggers dr_triggers = { 620 .ot_triggers = { 621 .t_frozen = ocfs2_frozen_trigger, 622 .t_abort = ocfs2_abort_trigger, 623 }, 624 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check), 625 }; 626 627 static struct ocfs2_triggers dl_triggers = { 628 .ot_triggers = { 629 .t_frozen = ocfs2_frozen_trigger, 630 .t_abort = ocfs2_abort_trigger, 631 }, 632 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check), 633 }; 634 635 static int __ocfs2_journal_access(handle_t *handle, 636 struct ocfs2_caching_info *ci, 637 struct buffer_head *bh, 638 struct ocfs2_triggers *triggers, 639 int type) 640 { 641 int status; 642 struct ocfs2_super *osb = 643 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 644 645 BUG_ON(!ci || !ci->ci_ops); 646 BUG_ON(!handle); 647 BUG_ON(!bh); 648 649 trace_ocfs2_journal_access( 650 (unsigned long long)ocfs2_metadata_cache_owner(ci), 651 (unsigned long long)bh->b_blocknr, type, bh->b_size); 652 653 /* we can safely remove this assertion after testing. */ 654 if (!buffer_uptodate(bh)) { 655 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 656 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 657 (unsigned long long)bh->b_blocknr, bh->b_state); 658 659 lock_buffer(bh); 660 /* 661 * A previous transaction with a couple of buffer heads fail 662 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 663 * For current transaction, the bh is just among those error 664 * bhs which previous transaction handle. We can't just clear 665 * its BH_Write_EIO and reuse directly, since other bhs are 666 * not written to disk yet and that will cause metadata 667 * inconsistency. So we should set fs read-only to avoid 668 * further damage. 669 */ 670 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 671 unlock_buffer(bh); 672 return ocfs2_error(osb->sb, "A previous attempt to " 673 "write this buffer head failed\n"); 674 } 675 unlock_buffer(bh); 676 } 677 678 /* Set the current transaction information on the ci so 679 * that the locking code knows whether it can drop it's locks 680 * on this ci or not. We're protected from the commit 681 * thread updating the current transaction id until 682 * ocfs2_commit_trans() because ocfs2_start_trans() took 683 * j_trans_barrier for us. */ 684 ocfs2_set_ci_lock_trans(osb->journal, ci); 685 686 ocfs2_metadata_cache_io_lock(ci); 687 switch (type) { 688 case OCFS2_JOURNAL_ACCESS_CREATE: 689 case OCFS2_JOURNAL_ACCESS_WRITE: 690 status = jbd2_journal_get_write_access(handle, bh); 691 break; 692 693 case OCFS2_JOURNAL_ACCESS_UNDO: 694 status = jbd2_journal_get_undo_access(handle, bh); 695 break; 696 697 default: 698 status = -EINVAL; 699 mlog(ML_ERROR, "Unknown access type!\n"); 700 } 701 if (!status && ocfs2_meta_ecc(osb) && triggers) 702 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 703 ocfs2_metadata_cache_io_unlock(ci); 704 705 if (status < 0) 706 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 707 status, type); 708 709 return status; 710 } 711 712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 713 struct buffer_head *bh, int type) 714 { 715 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type); 716 } 717 718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 719 struct buffer_head *bh, int type) 720 { 721 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type); 722 } 723 724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 725 struct buffer_head *bh, int type) 726 { 727 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers, 728 type); 729 } 730 731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 732 struct buffer_head *bh, int type) 733 { 734 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type); 735 } 736 737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 738 struct buffer_head *bh, int type) 739 { 740 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type); 741 } 742 743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 744 struct buffer_head *bh, int type) 745 { 746 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type); 747 } 748 749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 750 struct buffer_head *bh, int type) 751 { 752 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type); 753 } 754 755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 756 struct buffer_head *bh, int type) 757 { 758 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type); 759 } 760 761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 762 struct buffer_head *bh, int type) 763 { 764 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type); 765 } 766 767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 768 struct buffer_head *bh, int type) 769 { 770 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 771 } 772 773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 774 { 775 int status; 776 777 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 778 779 status = jbd2_journal_dirty_metadata(handle, bh); 780 if (status) { 781 mlog_errno(status); 782 if (!is_handle_aborted(handle)) { 783 journal_t *journal = handle->h_transaction->t_journal; 784 struct super_block *sb = bh->b_bdev->bd_super; 785 786 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. " 787 "Aborting transaction and journal.\n"); 788 handle->h_err = status; 789 jbd2_journal_abort_handle(handle); 790 jbd2_journal_abort(journal, status); 791 ocfs2_abort(sb, "Journal already aborted.\n"); 792 } 793 } 794 } 795 796 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 797 798 void ocfs2_set_journal_params(struct ocfs2_super *osb) 799 { 800 journal_t *journal = osb->journal->j_journal; 801 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 802 803 if (osb->osb_commit_interval) 804 commit_interval = osb->osb_commit_interval; 805 806 write_lock(&journal->j_state_lock); 807 journal->j_commit_interval = commit_interval; 808 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 809 journal->j_flags |= JBD2_BARRIER; 810 else 811 journal->j_flags &= ~JBD2_BARRIER; 812 write_unlock(&journal->j_state_lock); 813 } 814 815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 816 { 817 int status = -1; 818 struct inode *inode = NULL; /* the journal inode */ 819 journal_t *j_journal = NULL; 820 struct ocfs2_dinode *di = NULL; 821 struct buffer_head *bh = NULL; 822 struct ocfs2_super *osb; 823 int inode_lock = 0; 824 825 BUG_ON(!journal); 826 827 osb = journal->j_osb; 828 829 /* already have the inode for our journal */ 830 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 831 osb->slot_num); 832 if (inode == NULL) { 833 status = -EACCES; 834 mlog_errno(status); 835 goto done; 836 } 837 if (is_bad_inode(inode)) { 838 mlog(ML_ERROR, "access error (bad inode)\n"); 839 iput(inode); 840 inode = NULL; 841 status = -EACCES; 842 goto done; 843 } 844 845 SET_INODE_JOURNAL(inode); 846 OCFS2_I(inode)->ip_open_count++; 847 848 /* Skip recovery waits here - journal inode metadata never 849 * changes in a live cluster so it can be considered an 850 * exception to the rule. */ 851 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 852 if (status < 0) { 853 if (status != -ERESTARTSYS) 854 mlog(ML_ERROR, "Could not get lock on journal!\n"); 855 goto done; 856 } 857 858 inode_lock = 1; 859 di = (struct ocfs2_dinode *)bh->b_data; 860 861 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 862 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 863 i_size_read(inode)); 864 status = -EINVAL; 865 goto done; 866 } 867 868 trace_ocfs2_journal_init(i_size_read(inode), 869 (unsigned long long)inode->i_blocks, 870 OCFS2_I(inode)->ip_clusters); 871 872 /* call the kernels journal init function now */ 873 j_journal = jbd2_journal_init_inode(inode); 874 if (j_journal == NULL) { 875 mlog(ML_ERROR, "Linux journal layer error\n"); 876 status = -EINVAL; 877 goto done; 878 } 879 880 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen); 881 882 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 883 OCFS2_JOURNAL_DIRTY_FL); 884 885 journal->j_journal = j_journal; 886 journal->j_inode = inode; 887 journal->j_bh = bh; 888 889 ocfs2_set_journal_params(osb); 890 891 journal->j_state = OCFS2_JOURNAL_LOADED; 892 893 status = 0; 894 done: 895 if (status < 0) { 896 if (inode_lock) 897 ocfs2_inode_unlock(inode, 1); 898 brelse(bh); 899 if (inode) { 900 OCFS2_I(inode)->ip_open_count--; 901 iput(inode); 902 } 903 } 904 905 return status; 906 } 907 908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 909 { 910 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 911 } 912 913 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 914 { 915 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 916 } 917 918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 919 int dirty, int replayed) 920 { 921 int status; 922 unsigned int flags; 923 struct ocfs2_journal *journal = osb->journal; 924 struct buffer_head *bh = journal->j_bh; 925 struct ocfs2_dinode *fe; 926 927 fe = (struct ocfs2_dinode *)bh->b_data; 928 929 /* The journal bh on the osb always comes from ocfs2_journal_init() 930 * and was validated there inside ocfs2_inode_lock_full(). It's a 931 * code bug if we mess it up. */ 932 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 933 934 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 935 if (dirty) 936 flags |= OCFS2_JOURNAL_DIRTY_FL; 937 else 938 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 939 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 940 941 if (replayed) 942 ocfs2_bump_recovery_generation(fe); 943 944 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 945 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 946 if (status < 0) 947 mlog_errno(status); 948 949 return status; 950 } 951 952 /* 953 * If the journal has been kmalloc'd it needs to be freed after this 954 * call. 955 */ 956 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 957 { 958 struct ocfs2_journal *journal = NULL; 959 int status = 0; 960 struct inode *inode = NULL; 961 int num_running_trans = 0; 962 963 BUG_ON(!osb); 964 965 journal = osb->journal; 966 if (!journal) 967 goto done; 968 969 inode = journal->j_inode; 970 971 if (journal->j_state != OCFS2_JOURNAL_LOADED) 972 goto done; 973 974 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 975 if (!igrab(inode)) 976 BUG(); 977 978 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 979 trace_ocfs2_journal_shutdown(num_running_trans); 980 981 /* Do a commit_cache here. It will flush our journal, *and* 982 * release any locks that are still held. 983 * set the SHUTDOWN flag and release the trans lock. 984 * the commit thread will take the trans lock for us below. */ 985 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 986 987 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 988 * drop the trans_lock (which we want to hold until we 989 * completely destroy the journal. */ 990 if (osb->commit_task) { 991 /* Wait for the commit thread */ 992 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 993 kthread_stop(osb->commit_task); 994 osb->commit_task = NULL; 995 } 996 997 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 998 999 if (ocfs2_mount_local(osb)) { 1000 jbd2_journal_lock_updates(journal->j_journal); 1001 status = jbd2_journal_flush(journal->j_journal); 1002 jbd2_journal_unlock_updates(journal->j_journal); 1003 if (status < 0) 1004 mlog_errno(status); 1005 } 1006 1007 /* Shutdown the kernel journal system */ 1008 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1009 /* 1010 * Do not toggle if flush was unsuccessful otherwise 1011 * will leave dirty metadata in a "clean" journal 1012 */ 1013 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1014 if (status < 0) 1015 mlog_errno(status); 1016 } 1017 journal->j_journal = NULL; 1018 1019 OCFS2_I(inode)->ip_open_count--; 1020 1021 /* unlock our journal */ 1022 ocfs2_inode_unlock(inode, 1); 1023 1024 brelse(journal->j_bh); 1025 journal->j_bh = NULL; 1026 1027 journal->j_state = OCFS2_JOURNAL_FREE; 1028 1029 // up_write(&journal->j_trans_barrier); 1030 done: 1031 iput(inode); 1032 } 1033 1034 static void ocfs2_clear_journal_error(struct super_block *sb, 1035 journal_t *journal, 1036 int slot) 1037 { 1038 int olderr; 1039 1040 olderr = jbd2_journal_errno(journal); 1041 if (olderr) { 1042 mlog(ML_ERROR, "File system error %d recorded in " 1043 "journal %u.\n", olderr, slot); 1044 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1045 sb->s_id); 1046 1047 jbd2_journal_ack_err(journal); 1048 jbd2_journal_clear_err(journal); 1049 } 1050 } 1051 1052 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1053 { 1054 int status = 0; 1055 struct ocfs2_super *osb; 1056 1057 BUG_ON(!journal); 1058 1059 osb = journal->j_osb; 1060 1061 status = jbd2_journal_load(journal->j_journal); 1062 if (status < 0) { 1063 mlog(ML_ERROR, "Failed to load journal!\n"); 1064 goto done; 1065 } 1066 1067 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1068 1069 if (replayed) { 1070 jbd2_journal_lock_updates(journal->j_journal); 1071 status = jbd2_journal_flush(journal->j_journal); 1072 jbd2_journal_unlock_updates(journal->j_journal); 1073 if (status < 0) 1074 mlog_errno(status); 1075 } 1076 1077 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1078 if (status < 0) { 1079 mlog_errno(status); 1080 goto done; 1081 } 1082 1083 /* Launch the commit thread */ 1084 if (!local) { 1085 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1086 "ocfs2cmt-%s", osb->uuid_str); 1087 if (IS_ERR(osb->commit_task)) { 1088 status = PTR_ERR(osb->commit_task); 1089 osb->commit_task = NULL; 1090 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1091 "error=%d", status); 1092 goto done; 1093 } 1094 } else 1095 osb->commit_task = NULL; 1096 1097 done: 1098 return status; 1099 } 1100 1101 1102 /* 'full' flag tells us whether we clear out all blocks or if we just 1103 * mark the journal clean */ 1104 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1105 { 1106 int status; 1107 1108 BUG_ON(!journal); 1109 1110 status = jbd2_journal_wipe(journal->j_journal, full); 1111 if (status < 0) { 1112 mlog_errno(status); 1113 goto bail; 1114 } 1115 1116 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1117 if (status < 0) 1118 mlog_errno(status); 1119 1120 bail: 1121 return status; 1122 } 1123 1124 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1125 { 1126 int empty; 1127 struct ocfs2_recovery_map *rm = osb->recovery_map; 1128 1129 spin_lock(&osb->osb_lock); 1130 empty = (rm->rm_used == 0); 1131 spin_unlock(&osb->osb_lock); 1132 1133 return empty; 1134 } 1135 1136 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1137 { 1138 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1139 } 1140 1141 /* 1142 * JBD Might read a cached version of another nodes journal file. We 1143 * don't want this as this file changes often and we get no 1144 * notification on those changes. The only way to be sure that we've 1145 * got the most up to date version of those blocks then is to force 1146 * read them off disk. Just searching through the buffer cache won't 1147 * work as there may be pages backing this file which are still marked 1148 * up to date. We know things can't change on this file underneath us 1149 * as we have the lock by now :) 1150 */ 1151 static int ocfs2_force_read_journal(struct inode *inode) 1152 { 1153 int status = 0; 1154 int i; 1155 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1156 struct buffer_head *bh = NULL; 1157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1158 1159 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1160 v_blkno = 0; 1161 while (v_blkno < num_blocks) { 1162 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1163 &p_blkno, &p_blocks, NULL); 1164 if (status < 0) { 1165 mlog_errno(status); 1166 goto bail; 1167 } 1168 1169 for (i = 0; i < p_blocks; i++, p_blkno++) { 1170 bh = __find_get_block(osb->sb->s_bdev, p_blkno, 1171 osb->sb->s_blocksize); 1172 /* block not cached. */ 1173 if (!bh) 1174 continue; 1175 1176 brelse(bh); 1177 bh = NULL; 1178 /* We are reading journal data which should not 1179 * be put in the uptodate cache. 1180 */ 1181 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1182 if (status < 0) { 1183 mlog_errno(status); 1184 goto bail; 1185 } 1186 1187 brelse(bh); 1188 bh = NULL; 1189 } 1190 1191 v_blkno += p_blocks; 1192 } 1193 1194 bail: 1195 return status; 1196 } 1197 1198 struct ocfs2_la_recovery_item { 1199 struct list_head lri_list; 1200 int lri_slot; 1201 struct ocfs2_dinode *lri_la_dinode; 1202 struct ocfs2_dinode *lri_tl_dinode; 1203 struct ocfs2_quota_recovery *lri_qrec; 1204 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1205 }; 1206 1207 /* Does the second half of the recovery process. By this point, the 1208 * node is marked clean and can actually be considered recovered, 1209 * hence it's no longer in the recovery map, but there's still some 1210 * cleanup we can do which shouldn't happen within the recovery thread 1211 * as locking in that context becomes very difficult if we are to take 1212 * recovering nodes into account. 1213 * 1214 * NOTE: This function can and will sleep on recovery of other nodes 1215 * during cluster locking, just like any other ocfs2 process. 1216 */ 1217 void ocfs2_complete_recovery(struct work_struct *work) 1218 { 1219 int ret = 0; 1220 struct ocfs2_journal *journal = 1221 container_of(work, struct ocfs2_journal, j_recovery_work); 1222 struct ocfs2_super *osb = journal->j_osb; 1223 struct ocfs2_dinode *la_dinode, *tl_dinode; 1224 struct ocfs2_la_recovery_item *item, *n; 1225 struct ocfs2_quota_recovery *qrec; 1226 enum ocfs2_orphan_reco_type orphan_reco_type; 1227 LIST_HEAD(tmp_la_list); 1228 1229 trace_ocfs2_complete_recovery( 1230 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1231 1232 spin_lock(&journal->j_lock); 1233 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1234 spin_unlock(&journal->j_lock); 1235 1236 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1237 list_del_init(&item->lri_list); 1238 1239 ocfs2_wait_on_quotas(osb); 1240 1241 la_dinode = item->lri_la_dinode; 1242 tl_dinode = item->lri_tl_dinode; 1243 qrec = item->lri_qrec; 1244 orphan_reco_type = item->lri_orphan_reco_type; 1245 1246 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1247 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1248 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1249 qrec); 1250 1251 if (la_dinode) { 1252 ret = ocfs2_complete_local_alloc_recovery(osb, 1253 la_dinode); 1254 if (ret < 0) 1255 mlog_errno(ret); 1256 1257 kfree(la_dinode); 1258 } 1259 1260 if (tl_dinode) { 1261 ret = ocfs2_complete_truncate_log_recovery(osb, 1262 tl_dinode); 1263 if (ret < 0) 1264 mlog_errno(ret); 1265 1266 kfree(tl_dinode); 1267 } 1268 1269 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1270 orphan_reco_type); 1271 if (ret < 0) 1272 mlog_errno(ret); 1273 1274 if (qrec) { 1275 ret = ocfs2_finish_quota_recovery(osb, qrec, 1276 item->lri_slot); 1277 if (ret < 0) 1278 mlog_errno(ret); 1279 /* Recovery info is already freed now */ 1280 } 1281 1282 kfree(item); 1283 } 1284 1285 trace_ocfs2_complete_recovery_end(ret); 1286 } 1287 1288 /* NOTE: This function always eats your references to la_dinode and 1289 * tl_dinode, either manually on error, or by passing them to 1290 * ocfs2_complete_recovery */ 1291 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1292 int slot_num, 1293 struct ocfs2_dinode *la_dinode, 1294 struct ocfs2_dinode *tl_dinode, 1295 struct ocfs2_quota_recovery *qrec, 1296 enum ocfs2_orphan_reco_type orphan_reco_type) 1297 { 1298 struct ocfs2_la_recovery_item *item; 1299 1300 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1301 if (!item) { 1302 /* Though we wish to avoid it, we are in fact safe in 1303 * skipping local alloc cleanup as fsck.ocfs2 is more 1304 * than capable of reclaiming unused space. */ 1305 kfree(la_dinode); 1306 kfree(tl_dinode); 1307 1308 if (qrec) 1309 ocfs2_free_quota_recovery(qrec); 1310 1311 mlog_errno(-ENOMEM); 1312 return; 1313 } 1314 1315 INIT_LIST_HEAD(&item->lri_list); 1316 item->lri_la_dinode = la_dinode; 1317 item->lri_slot = slot_num; 1318 item->lri_tl_dinode = tl_dinode; 1319 item->lri_qrec = qrec; 1320 item->lri_orphan_reco_type = orphan_reco_type; 1321 1322 spin_lock(&journal->j_lock); 1323 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1324 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1325 spin_unlock(&journal->j_lock); 1326 } 1327 1328 /* Called by the mount code to queue recovery the last part of 1329 * recovery for it's own and offline slot(s). */ 1330 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1331 { 1332 struct ocfs2_journal *journal = osb->journal; 1333 1334 if (ocfs2_is_hard_readonly(osb)) 1335 return; 1336 1337 /* No need to queue up our truncate_log as regular cleanup will catch 1338 * that */ 1339 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1340 osb->local_alloc_copy, NULL, NULL, 1341 ORPHAN_NEED_TRUNCATE); 1342 ocfs2_schedule_truncate_log_flush(osb, 0); 1343 1344 osb->local_alloc_copy = NULL; 1345 1346 /* queue to recover orphan slots for all offline slots */ 1347 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1348 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1349 ocfs2_free_replay_slots(osb); 1350 } 1351 1352 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1353 { 1354 if (osb->quota_rec) { 1355 ocfs2_queue_recovery_completion(osb->journal, 1356 osb->slot_num, 1357 NULL, 1358 NULL, 1359 osb->quota_rec, 1360 ORPHAN_NEED_TRUNCATE); 1361 osb->quota_rec = NULL; 1362 } 1363 } 1364 1365 static int __ocfs2_recovery_thread(void *arg) 1366 { 1367 int status, node_num, slot_num; 1368 struct ocfs2_super *osb = arg; 1369 struct ocfs2_recovery_map *rm = osb->recovery_map; 1370 int *rm_quota = NULL; 1371 int rm_quota_used = 0, i; 1372 struct ocfs2_quota_recovery *qrec; 1373 1374 /* Whether the quota supported. */ 1375 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1376 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1377 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1378 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1379 1380 status = ocfs2_wait_on_mount(osb); 1381 if (status < 0) { 1382 goto bail; 1383 } 1384 1385 if (quota_enabled) { 1386 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1387 if (!rm_quota) { 1388 status = -ENOMEM; 1389 goto bail; 1390 } 1391 } 1392 restart: 1393 status = ocfs2_super_lock(osb, 1); 1394 if (status < 0) { 1395 mlog_errno(status); 1396 goto bail; 1397 } 1398 1399 status = ocfs2_compute_replay_slots(osb); 1400 if (status < 0) 1401 mlog_errno(status); 1402 1403 /* queue recovery for our own slot */ 1404 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1405 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1406 1407 spin_lock(&osb->osb_lock); 1408 while (rm->rm_used) { 1409 /* It's always safe to remove entry zero, as we won't 1410 * clear it until ocfs2_recover_node() has succeeded. */ 1411 node_num = rm->rm_entries[0]; 1412 spin_unlock(&osb->osb_lock); 1413 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1414 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1415 if (slot_num == -ENOENT) { 1416 status = 0; 1417 goto skip_recovery; 1418 } 1419 1420 /* It is a bit subtle with quota recovery. We cannot do it 1421 * immediately because we have to obtain cluster locks from 1422 * quota files and we also don't want to just skip it because 1423 * then quota usage would be out of sync until some node takes 1424 * the slot. So we remember which nodes need quota recovery 1425 * and when everything else is done, we recover quotas. */ 1426 if (quota_enabled) { 1427 for (i = 0; i < rm_quota_used 1428 && rm_quota[i] != slot_num; i++) 1429 ; 1430 1431 if (i == rm_quota_used) 1432 rm_quota[rm_quota_used++] = slot_num; 1433 } 1434 1435 status = ocfs2_recover_node(osb, node_num, slot_num); 1436 skip_recovery: 1437 if (!status) { 1438 ocfs2_recovery_map_clear(osb, node_num); 1439 } else { 1440 mlog(ML_ERROR, 1441 "Error %d recovering node %d on device (%u,%u)!\n", 1442 status, node_num, 1443 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1444 mlog(ML_ERROR, "Volume requires unmount.\n"); 1445 } 1446 1447 spin_lock(&osb->osb_lock); 1448 } 1449 spin_unlock(&osb->osb_lock); 1450 trace_ocfs2_recovery_thread_end(status); 1451 1452 /* Refresh all journal recovery generations from disk */ 1453 status = ocfs2_check_journals_nolocks(osb); 1454 status = (status == -EROFS) ? 0 : status; 1455 if (status < 0) 1456 mlog_errno(status); 1457 1458 /* Now it is right time to recover quotas... We have to do this under 1459 * superblock lock so that no one can start using the slot (and crash) 1460 * before we recover it */ 1461 if (quota_enabled) { 1462 for (i = 0; i < rm_quota_used; i++) { 1463 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1464 if (IS_ERR(qrec)) { 1465 status = PTR_ERR(qrec); 1466 mlog_errno(status); 1467 continue; 1468 } 1469 ocfs2_queue_recovery_completion(osb->journal, 1470 rm_quota[i], 1471 NULL, NULL, qrec, 1472 ORPHAN_NEED_TRUNCATE); 1473 } 1474 } 1475 1476 ocfs2_super_unlock(osb, 1); 1477 1478 /* queue recovery for offline slots */ 1479 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1480 1481 bail: 1482 mutex_lock(&osb->recovery_lock); 1483 if (!status && !ocfs2_recovery_completed(osb)) { 1484 mutex_unlock(&osb->recovery_lock); 1485 goto restart; 1486 } 1487 1488 ocfs2_free_replay_slots(osb); 1489 osb->recovery_thread_task = NULL; 1490 mb(); /* sync with ocfs2_recovery_thread_running */ 1491 wake_up(&osb->recovery_event); 1492 1493 mutex_unlock(&osb->recovery_lock); 1494 1495 if (quota_enabled) 1496 kfree(rm_quota); 1497 1498 /* no one is callint kthread_stop() for us so the kthread() api 1499 * requires that we call do_exit(). And it isn't exported, but 1500 * complete_and_exit() seems to be a minimal wrapper around it. */ 1501 complete_and_exit(NULL, status); 1502 } 1503 1504 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1505 { 1506 mutex_lock(&osb->recovery_lock); 1507 1508 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1509 osb->disable_recovery, osb->recovery_thread_task, 1510 osb->disable_recovery ? 1511 -1 : ocfs2_recovery_map_set(osb, node_num)); 1512 1513 if (osb->disable_recovery) 1514 goto out; 1515 1516 if (osb->recovery_thread_task) 1517 goto out; 1518 1519 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1520 "ocfs2rec-%s", osb->uuid_str); 1521 if (IS_ERR(osb->recovery_thread_task)) { 1522 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1523 osb->recovery_thread_task = NULL; 1524 } 1525 1526 out: 1527 mutex_unlock(&osb->recovery_lock); 1528 wake_up(&osb->recovery_event); 1529 } 1530 1531 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1532 int slot_num, 1533 struct buffer_head **bh, 1534 struct inode **ret_inode) 1535 { 1536 int status = -EACCES; 1537 struct inode *inode = NULL; 1538 1539 BUG_ON(slot_num >= osb->max_slots); 1540 1541 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1542 slot_num); 1543 if (!inode || is_bad_inode(inode)) { 1544 mlog_errno(status); 1545 goto bail; 1546 } 1547 SET_INODE_JOURNAL(inode); 1548 1549 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1550 if (status < 0) { 1551 mlog_errno(status); 1552 goto bail; 1553 } 1554 1555 status = 0; 1556 1557 bail: 1558 if (inode) { 1559 if (status || !ret_inode) 1560 iput(inode); 1561 else 1562 *ret_inode = inode; 1563 } 1564 return status; 1565 } 1566 1567 /* Does the actual journal replay and marks the journal inode as 1568 * clean. Will only replay if the journal inode is marked dirty. */ 1569 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1570 int node_num, 1571 int slot_num) 1572 { 1573 int status; 1574 int got_lock = 0; 1575 unsigned int flags; 1576 struct inode *inode = NULL; 1577 struct ocfs2_dinode *fe; 1578 journal_t *journal = NULL; 1579 struct buffer_head *bh = NULL; 1580 u32 slot_reco_gen; 1581 1582 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1583 if (status) { 1584 mlog_errno(status); 1585 goto done; 1586 } 1587 1588 fe = (struct ocfs2_dinode *)bh->b_data; 1589 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1590 brelse(bh); 1591 bh = NULL; 1592 1593 /* 1594 * As the fs recovery is asynchronous, there is a small chance that 1595 * another node mounted (and recovered) the slot before the recovery 1596 * thread could get the lock. To handle that, we dirty read the journal 1597 * inode for that slot to get the recovery generation. If it is 1598 * different than what we expected, the slot has been recovered. 1599 * If not, it needs recovery. 1600 */ 1601 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1602 trace_ocfs2_replay_journal_recovered(slot_num, 1603 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1604 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1605 status = -EBUSY; 1606 goto done; 1607 } 1608 1609 /* Continue with recovery as the journal has not yet been recovered */ 1610 1611 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1612 if (status < 0) { 1613 trace_ocfs2_replay_journal_lock_err(status); 1614 if (status != -ERESTARTSYS) 1615 mlog(ML_ERROR, "Could not lock journal!\n"); 1616 goto done; 1617 } 1618 got_lock = 1; 1619 1620 fe = (struct ocfs2_dinode *) bh->b_data; 1621 1622 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1623 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1624 1625 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1626 trace_ocfs2_replay_journal_skip(node_num); 1627 /* Refresh recovery generation for the slot */ 1628 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1629 goto done; 1630 } 1631 1632 /* we need to run complete recovery for offline orphan slots */ 1633 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1634 1635 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1636 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1637 MINOR(osb->sb->s_dev)); 1638 1639 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1640 1641 status = ocfs2_force_read_journal(inode); 1642 if (status < 0) { 1643 mlog_errno(status); 1644 goto done; 1645 } 1646 1647 journal = jbd2_journal_init_inode(inode); 1648 if (journal == NULL) { 1649 mlog(ML_ERROR, "Linux journal layer error\n"); 1650 status = -EIO; 1651 goto done; 1652 } 1653 1654 status = jbd2_journal_load(journal); 1655 if (status < 0) { 1656 mlog_errno(status); 1657 if (!igrab(inode)) 1658 BUG(); 1659 jbd2_journal_destroy(journal); 1660 goto done; 1661 } 1662 1663 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1664 1665 /* wipe the journal */ 1666 jbd2_journal_lock_updates(journal); 1667 status = jbd2_journal_flush(journal); 1668 jbd2_journal_unlock_updates(journal); 1669 if (status < 0) 1670 mlog_errno(status); 1671 1672 /* This will mark the node clean */ 1673 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1674 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1675 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1676 1677 /* Increment recovery generation to indicate successful recovery */ 1678 ocfs2_bump_recovery_generation(fe); 1679 osb->slot_recovery_generations[slot_num] = 1680 ocfs2_get_recovery_generation(fe); 1681 1682 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1683 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1684 if (status < 0) 1685 mlog_errno(status); 1686 1687 if (!igrab(inode)) 1688 BUG(); 1689 1690 jbd2_journal_destroy(journal); 1691 1692 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1693 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1694 MINOR(osb->sb->s_dev)); 1695 done: 1696 /* drop the lock on this nodes journal */ 1697 if (got_lock) 1698 ocfs2_inode_unlock(inode, 1); 1699 1700 iput(inode); 1701 brelse(bh); 1702 1703 return status; 1704 } 1705 1706 /* 1707 * Do the most important parts of node recovery: 1708 * - Replay it's journal 1709 * - Stamp a clean local allocator file 1710 * - Stamp a clean truncate log 1711 * - Mark the node clean 1712 * 1713 * If this function completes without error, a node in OCFS2 can be 1714 * said to have been safely recovered. As a result, failure during the 1715 * second part of a nodes recovery process (local alloc recovery) is 1716 * far less concerning. 1717 */ 1718 static int ocfs2_recover_node(struct ocfs2_super *osb, 1719 int node_num, int slot_num) 1720 { 1721 int status = 0; 1722 struct ocfs2_dinode *la_copy = NULL; 1723 struct ocfs2_dinode *tl_copy = NULL; 1724 1725 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1726 1727 /* Should not ever be called to recover ourselves -- in that 1728 * case we should've called ocfs2_journal_load instead. */ 1729 BUG_ON(osb->node_num == node_num); 1730 1731 status = ocfs2_replay_journal(osb, node_num, slot_num); 1732 if (status < 0) { 1733 if (status == -EBUSY) { 1734 trace_ocfs2_recover_node_skip(slot_num, node_num); 1735 status = 0; 1736 goto done; 1737 } 1738 mlog_errno(status); 1739 goto done; 1740 } 1741 1742 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1743 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1744 if (status < 0) { 1745 mlog_errno(status); 1746 goto done; 1747 } 1748 1749 /* An error from begin_truncate_log_recovery is not 1750 * serious enough to warrant halting the rest of 1751 * recovery. */ 1752 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1753 if (status < 0) 1754 mlog_errno(status); 1755 1756 /* Likewise, this would be a strange but ultimately not so 1757 * harmful place to get an error... */ 1758 status = ocfs2_clear_slot(osb, slot_num); 1759 if (status < 0) 1760 mlog_errno(status); 1761 1762 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1763 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1764 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1765 1766 status = 0; 1767 done: 1768 1769 return status; 1770 } 1771 1772 /* Test node liveness by trylocking his journal. If we get the lock, 1773 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1774 * still alive (we couldn't get the lock) and < 0 on error. */ 1775 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1776 int slot_num) 1777 { 1778 int status, flags; 1779 struct inode *inode = NULL; 1780 1781 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1782 slot_num); 1783 if (inode == NULL) { 1784 mlog(ML_ERROR, "access error\n"); 1785 status = -EACCES; 1786 goto bail; 1787 } 1788 if (is_bad_inode(inode)) { 1789 mlog(ML_ERROR, "access error (bad inode)\n"); 1790 iput(inode); 1791 inode = NULL; 1792 status = -EACCES; 1793 goto bail; 1794 } 1795 SET_INODE_JOURNAL(inode); 1796 1797 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1798 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1799 if (status < 0) { 1800 if (status != -EAGAIN) 1801 mlog_errno(status); 1802 goto bail; 1803 } 1804 1805 ocfs2_inode_unlock(inode, 1); 1806 bail: 1807 iput(inode); 1808 1809 return status; 1810 } 1811 1812 /* Call this underneath ocfs2_super_lock. It also assumes that the 1813 * slot info struct has been updated from disk. */ 1814 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1815 { 1816 unsigned int node_num; 1817 int status, i; 1818 u32 gen; 1819 struct buffer_head *bh = NULL; 1820 struct ocfs2_dinode *di; 1821 1822 /* This is called with the super block cluster lock, so we 1823 * know that the slot map can't change underneath us. */ 1824 1825 for (i = 0; i < osb->max_slots; i++) { 1826 /* Read journal inode to get the recovery generation */ 1827 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1828 if (status) { 1829 mlog_errno(status); 1830 goto bail; 1831 } 1832 di = (struct ocfs2_dinode *)bh->b_data; 1833 gen = ocfs2_get_recovery_generation(di); 1834 brelse(bh); 1835 bh = NULL; 1836 1837 spin_lock(&osb->osb_lock); 1838 osb->slot_recovery_generations[i] = gen; 1839 1840 trace_ocfs2_mark_dead_nodes(i, 1841 osb->slot_recovery_generations[i]); 1842 1843 if (i == osb->slot_num) { 1844 spin_unlock(&osb->osb_lock); 1845 continue; 1846 } 1847 1848 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1849 if (status == -ENOENT) { 1850 spin_unlock(&osb->osb_lock); 1851 continue; 1852 } 1853 1854 if (__ocfs2_recovery_map_test(osb, node_num)) { 1855 spin_unlock(&osb->osb_lock); 1856 continue; 1857 } 1858 spin_unlock(&osb->osb_lock); 1859 1860 /* Ok, we have a slot occupied by another node which 1861 * is not in the recovery map. We trylock his journal 1862 * file here to test if he's alive. */ 1863 status = ocfs2_trylock_journal(osb, i); 1864 if (!status) { 1865 /* Since we're called from mount, we know that 1866 * the recovery thread can't race us on 1867 * setting / checking the recovery bits. */ 1868 ocfs2_recovery_thread(osb, node_num); 1869 } else if ((status < 0) && (status != -EAGAIN)) { 1870 mlog_errno(status); 1871 goto bail; 1872 } 1873 } 1874 1875 status = 0; 1876 bail: 1877 return status; 1878 } 1879 1880 /* 1881 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1882 * randomness to the timeout to minimize multple nodes firing the timer at the 1883 * same time. 1884 */ 1885 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1886 { 1887 unsigned long time; 1888 1889 get_random_bytes(&time, sizeof(time)); 1890 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 1891 return msecs_to_jiffies(time); 1892 } 1893 1894 /* 1895 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 1896 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 1897 * is done to catch any orphans that are left over in orphan directories. 1898 * 1899 * It scans all slots, even ones that are in use. It does so to handle the 1900 * case described below: 1901 * 1902 * Node 1 has an inode it was using. The dentry went away due to memory 1903 * pressure. Node 1 closes the inode, but it's on the free list. The node 1904 * has the open lock. 1905 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 1906 * but node 1 has no dentry and doesn't get the message. It trylocks the 1907 * open lock, sees that another node has a PR, and does nothing. 1908 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 1909 * open lock, sees the PR still, and does nothing. 1910 * Basically, we have to trigger an orphan iput on node 1. The only way 1911 * for this to happen is if node 1 runs node 2's orphan dir. 1912 * 1913 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 1914 * seconds. It gets an EX lock on os_lockres and checks sequence number 1915 * stored in LVB. If the sequence number has changed, it means some other 1916 * node has done the scan. This node skips the scan and tracks the 1917 * sequence number. If the sequence number didn't change, it means a scan 1918 * hasn't happened. The node queues a scan and increments the 1919 * sequence number in the LVB. 1920 */ 1921 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 1922 { 1923 struct ocfs2_orphan_scan *os; 1924 int status, i; 1925 u32 seqno = 0; 1926 1927 os = &osb->osb_orphan_scan; 1928 1929 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1930 goto out; 1931 1932 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 1933 atomic_read(&os->os_state)); 1934 1935 status = ocfs2_orphan_scan_lock(osb, &seqno); 1936 if (status < 0) { 1937 if (status != -EAGAIN) 1938 mlog_errno(status); 1939 goto out; 1940 } 1941 1942 /* Do no queue the tasks if the volume is being umounted */ 1943 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 1944 goto unlock; 1945 1946 if (os->os_seqno != seqno) { 1947 os->os_seqno = seqno; 1948 goto unlock; 1949 } 1950 1951 for (i = 0; i < osb->max_slots; i++) 1952 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 1953 NULL, ORPHAN_NO_NEED_TRUNCATE); 1954 /* 1955 * We queued a recovery on orphan slots, increment the sequence 1956 * number and update LVB so other node will skip the scan for a while 1957 */ 1958 seqno++; 1959 os->os_count++; 1960 os->os_scantime = ktime_get_seconds(); 1961 unlock: 1962 ocfs2_orphan_scan_unlock(osb, seqno); 1963 out: 1964 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 1965 atomic_read(&os->os_state)); 1966 return; 1967 } 1968 1969 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 1970 static void ocfs2_orphan_scan_work(struct work_struct *work) 1971 { 1972 struct ocfs2_orphan_scan *os; 1973 struct ocfs2_super *osb; 1974 1975 os = container_of(work, struct ocfs2_orphan_scan, 1976 os_orphan_scan_work.work); 1977 osb = os->os_osb; 1978 1979 mutex_lock(&os->os_lock); 1980 ocfs2_queue_orphan_scan(osb); 1981 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 1982 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 1983 ocfs2_orphan_scan_timeout()); 1984 mutex_unlock(&os->os_lock); 1985 } 1986 1987 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 1988 { 1989 struct ocfs2_orphan_scan *os; 1990 1991 os = &osb->osb_orphan_scan; 1992 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 1993 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 1994 mutex_lock(&os->os_lock); 1995 cancel_delayed_work(&os->os_orphan_scan_work); 1996 mutex_unlock(&os->os_lock); 1997 } 1998 } 1999 2000 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2001 { 2002 struct ocfs2_orphan_scan *os; 2003 2004 os = &osb->osb_orphan_scan; 2005 os->os_osb = osb; 2006 os->os_count = 0; 2007 os->os_seqno = 0; 2008 mutex_init(&os->os_lock); 2009 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2010 } 2011 2012 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2013 { 2014 struct ocfs2_orphan_scan *os; 2015 2016 os = &osb->osb_orphan_scan; 2017 os->os_scantime = ktime_get_seconds(); 2018 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2019 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2020 else { 2021 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2022 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2023 ocfs2_orphan_scan_timeout()); 2024 } 2025 } 2026 2027 struct ocfs2_orphan_filldir_priv { 2028 struct dir_context ctx; 2029 struct inode *head; 2030 struct ocfs2_super *osb; 2031 enum ocfs2_orphan_reco_type orphan_reco_type; 2032 }; 2033 2034 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2035 int name_len, loff_t pos, u64 ino, 2036 unsigned type) 2037 { 2038 struct ocfs2_orphan_filldir_priv *p = 2039 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2040 struct inode *iter; 2041 2042 if (name_len == 1 && !strncmp(".", name, 1)) 2043 return 0; 2044 if (name_len == 2 && !strncmp("..", name, 2)) 2045 return 0; 2046 2047 /* do not include dio entry in case of orphan scan */ 2048 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2049 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2050 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2051 return 0; 2052 2053 /* Skip bad inodes so that recovery can continue */ 2054 iter = ocfs2_iget(p->osb, ino, 2055 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2056 if (IS_ERR(iter)) 2057 return 0; 2058 2059 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2060 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2061 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2062 2063 /* Skip inodes which are already added to recover list, since dio may 2064 * happen concurrently with unlink/rename */ 2065 if (OCFS2_I(iter)->ip_next_orphan) { 2066 iput(iter); 2067 return 0; 2068 } 2069 2070 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2071 /* No locking is required for the next_orphan queue as there 2072 * is only ever a single process doing orphan recovery. */ 2073 OCFS2_I(iter)->ip_next_orphan = p->head; 2074 p->head = iter; 2075 2076 return 0; 2077 } 2078 2079 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2080 int slot, 2081 struct inode **head, 2082 enum ocfs2_orphan_reco_type orphan_reco_type) 2083 { 2084 int status; 2085 struct inode *orphan_dir_inode = NULL; 2086 struct ocfs2_orphan_filldir_priv priv = { 2087 .ctx.actor = ocfs2_orphan_filldir, 2088 .osb = osb, 2089 .head = *head, 2090 .orphan_reco_type = orphan_reco_type 2091 }; 2092 2093 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2094 ORPHAN_DIR_SYSTEM_INODE, 2095 slot); 2096 if (!orphan_dir_inode) { 2097 status = -ENOENT; 2098 mlog_errno(status); 2099 return status; 2100 } 2101 2102 inode_lock(orphan_dir_inode); 2103 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2104 if (status < 0) { 2105 mlog_errno(status); 2106 goto out; 2107 } 2108 2109 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2110 if (status) { 2111 mlog_errno(status); 2112 goto out_cluster; 2113 } 2114 2115 *head = priv.head; 2116 2117 out_cluster: 2118 ocfs2_inode_unlock(orphan_dir_inode, 0); 2119 out: 2120 inode_unlock(orphan_dir_inode); 2121 iput(orphan_dir_inode); 2122 return status; 2123 } 2124 2125 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2126 int slot) 2127 { 2128 int ret; 2129 2130 spin_lock(&osb->osb_lock); 2131 ret = !osb->osb_orphan_wipes[slot]; 2132 spin_unlock(&osb->osb_lock); 2133 return ret; 2134 } 2135 2136 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2137 int slot) 2138 { 2139 spin_lock(&osb->osb_lock); 2140 /* Mark ourselves such that new processes in delete_inode() 2141 * know to quit early. */ 2142 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2143 while (osb->osb_orphan_wipes[slot]) { 2144 /* If any processes are already in the middle of an 2145 * orphan wipe on this dir, then we need to wait for 2146 * them. */ 2147 spin_unlock(&osb->osb_lock); 2148 wait_event_interruptible(osb->osb_wipe_event, 2149 ocfs2_orphan_recovery_can_continue(osb, slot)); 2150 spin_lock(&osb->osb_lock); 2151 } 2152 spin_unlock(&osb->osb_lock); 2153 } 2154 2155 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2156 int slot) 2157 { 2158 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2159 } 2160 2161 /* 2162 * Orphan recovery. Each mounted node has it's own orphan dir which we 2163 * must run during recovery. Our strategy here is to build a list of 2164 * the inodes in the orphan dir and iget/iput them. The VFS does 2165 * (most) of the rest of the work. 2166 * 2167 * Orphan recovery can happen at any time, not just mount so we have a 2168 * couple of extra considerations. 2169 * 2170 * - We grab as many inodes as we can under the orphan dir lock - 2171 * doing iget() outside the orphan dir risks getting a reference on 2172 * an invalid inode. 2173 * - We must be sure not to deadlock with other processes on the 2174 * system wanting to run delete_inode(). This can happen when they go 2175 * to lock the orphan dir and the orphan recovery process attempts to 2176 * iget() inside the orphan dir lock. This can be avoided by 2177 * advertising our state to ocfs2_delete_inode(). 2178 */ 2179 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2180 int slot, 2181 enum ocfs2_orphan_reco_type orphan_reco_type) 2182 { 2183 int ret = 0; 2184 struct inode *inode = NULL; 2185 struct inode *iter; 2186 struct ocfs2_inode_info *oi; 2187 struct buffer_head *di_bh = NULL; 2188 struct ocfs2_dinode *di = NULL; 2189 2190 trace_ocfs2_recover_orphans(slot); 2191 2192 ocfs2_mark_recovering_orphan_dir(osb, slot); 2193 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2194 ocfs2_clear_recovering_orphan_dir(osb, slot); 2195 2196 /* Error here should be noted, but we want to continue with as 2197 * many queued inodes as we've got. */ 2198 if (ret) 2199 mlog_errno(ret); 2200 2201 while (inode) { 2202 oi = OCFS2_I(inode); 2203 trace_ocfs2_recover_orphans_iput( 2204 (unsigned long long)oi->ip_blkno); 2205 2206 iter = oi->ip_next_orphan; 2207 oi->ip_next_orphan = NULL; 2208 2209 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2210 inode_lock(inode); 2211 ret = ocfs2_rw_lock(inode, 1); 2212 if (ret < 0) { 2213 mlog_errno(ret); 2214 goto unlock_mutex; 2215 } 2216 /* 2217 * We need to take and drop the inode lock to 2218 * force read inode from disk. 2219 */ 2220 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2221 if (ret) { 2222 mlog_errno(ret); 2223 goto unlock_rw; 2224 } 2225 2226 di = (struct ocfs2_dinode *)di_bh->b_data; 2227 2228 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2229 ret = ocfs2_truncate_file(inode, di_bh, 2230 i_size_read(inode)); 2231 if (ret < 0) { 2232 if (ret != -ENOSPC) 2233 mlog_errno(ret); 2234 goto unlock_inode; 2235 } 2236 2237 ret = ocfs2_del_inode_from_orphan(osb, inode, 2238 di_bh, 0, 0); 2239 if (ret) 2240 mlog_errno(ret); 2241 } 2242 unlock_inode: 2243 ocfs2_inode_unlock(inode, 1); 2244 brelse(di_bh); 2245 di_bh = NULL; 2246 unlock_rw: 2247 ocfs2_rw_unlock(inode, 1); 2248 unlock_mutex: 2249 inode_unlock(inode); 2250 2251 /* clear dio flag in ocfs2_inode_info */ 2252 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2253 } else { 2254 spin_lock(&oi->ip_lock); 2255 /* Set the proper information to get us going into 2256 * ocfs2_delete_inode. */ 2257 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2258 spin_unlock(&oi->ip_lock); 2259 } 2260 2261 iput(inode); 2262 inode = iter; 2263 } 2264 2265 return ret; 2266 } 2267 2268 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2269 { 2270 /* This check is good because ocfs2 will wait on our recovery 2271 * thread before changing it to something other than MOUNTED 2272 * or DISABLED. */ 2273 wait_event(osb->osb_mount_event, 2274 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2275 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2276 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2277 2278 /* If there's an error on mount, then we may never get to the 2279 * MOUNTED flag, but this is set right before 2280 * dismount_volume() so we can trust it. */ 2281 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2282 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2283 mlog(0, "mount error, exiting!\n"); 2284 return -EBUSY; 2285 } 2286 2287 return 0; 2288 } 2289 2290 static int ocfs2_commit_thread(void *arg) 2291 { 2292 int status; 2293 struct ocfs2_super *osb = arg; 2294 struct ocfs2_journal *journal = osb->journal; 2295 2296 /* we can trust j_num_trans here because _should_stop() is only set in 2297 * shutdown and nobody other than ourselves should be able to start 2298 * transactions. committing on shutdown might take a few iterations 2299 * as final transactions put deleted inodes on the list */ 2300 while (!(kthread_should_stop() && 2301 atomic_read(&journal->j_num_trans) == 0)) { 2302 2303 wait_event_interruptible(osb->checkpoint_event, 2304 atomic_read(&journal->j_num_trans) 2305 || kthread_should_stop()); 2306 2307 status = ocfs2_commit_cache(osb); 2308 if (status < 0) { 2309 static unsigned long abort_warn_time; 2310 2311 /* Warn about this once per minute */ 2312 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2313 mlog(ML_ERROR, "status = %d, journal is " 2314 "already aborted.\n", status); 2315 /* 2316 * After ocfs2_commit_cache() fails, j_num_trans has a 2317 * non-zero value. Sleep here to avoid a busy-wait 2318 * loop. 2319 */ 2320 msleep_interruptible(1000); 2321 } 2322 2323 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2324 mlog(ML_KTHREAD, 2325 "commit_thread: %u transactions pending on " 2326 "shutdown\n", 2327 atomic_read(&journal->j_num_trans)); 2328 } 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* Reads all the journal inodes without taking any cluster locks. Used 2335 * for hard readonly access to determine whether any journal requires 2336 * recovery. Also used to refresh the recovery generation numbers after 2337 * a journal has been recovered by another node. 2338 */ 2339 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2340 { 2341 int ret = 0; 2342 unsigned int slot; 2343 struct buffer_head *di_bh = NULL; 2344 struct ocfs2_dinode *di; 2345 int journal_dirty = 0; 2346 2347 for(slot = 0; slot < osb->max_slots; slot++) { 2348 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2349 if (ret) { 2350 mlog_errno(ret); 2351 goto out; 2352 } 2353 2354 di = (struct ocfs2_dinode *) di_bh->b_data; 2355 2356 osb->slot_recovery_generations[slot] = 2357 ocfs2_get_recovery_generation(di); 2358 2359 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2360 OCFS2_JOURNAL_DIRTY_FL) 2361 journal_dirty = 1; 2362 2363 brelse(di_bh); 2364 di_bh = NULL; 2365 } 2366 2367 out: 2368 if (journal_dirty) 2369 ret = -EROFS; 2370 return ret; 2371 } 2372