1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * journal.c 5 * 6 * Defines functions of journalling api 7 * 8 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/kthread.h> 31 32 #define MLOG_MASK_PREFIX ML_JOURNAL 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "dir.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "heartbeat.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "slot_map.h" 46 #include "super.h" 47 #include "sysfile.h" 48 49 #include "buffer_head_io.h" 50 51 DEFINE_SPINLOCK(trans_inc_lock); 52 53 static int ocfs2_force_read_journal(struct inode *inode); 54 static int ocfs2_recover_node(struct ocfs2_super *osb, 55 int node_num); 56 static int __ocfs2_recovery_thread(void *arg); 57 static int ocfs2_commit_cache(struct ocfs2_super *osb); 58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb); 59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 60 int dirty, int replayed); 61 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 62 int slot_num); 63 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 64 int slot); 65 static int ocfs2_commit_thread(void *arg); 66 67 68 /* 69 * The recovery_list is a simple linked list of node numbers to recover. 70 * It is protected by the recovery_lock. 71 */ 72 73 struct ocfs2_recovery_map { 74 unsigned int rm_used; 75 unsigned int *rm_entries; 76 }; 77 78 int ocfs2_recovery_init(struct ocfs2_super *osb) 79 { 80 struct ocfs2_recovery_map *rm; 81 82 mutex_init(&osb->recovery_lock); 83 osb->disable_recovery = 0; 84 osb->recovery_thread_task = NULL; 85 init_waitqueue_head(&osb->recovery_event); 86 87 rm = kzalloc(sizeof(struct ocfs2_recovery_map) + 88 osb->max_slots * sizeof(unsigned int), 89 GFP_KERNEL); 90 if (!rm) { 91 mlog_errno(-ENOMEM); 92 return -ENOMEM; 93 } 94 95 rm->rm_entries = (unsigned int *)((char *)rm + 96 sizeof(struct ocfs2_recovery_map)); 97 osb->recovery_map = rm; 98 99 return 0; 100 } 101 102 /* we can't grab the goofy sem lock from inside wait_event, so we use 103 * memory barriers to make sure that we'll see the null task before 104 * being woken up */ 105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 106 { 107 mb(); 108 return osb->recovery_thread_task != NULL; 109 } 110 111 void ocfs2_recovery_exit(struct ocfs2_super *osb) 112 { 113 struct ocfs2_recovery_map *rm; 114 115 /* disable any new recovery threads and wait for any currently 116 * running ones to exit. Do this before setting the vol_state. */ 117 mutex_lock(&osb->recovery_lock); 118 osb->disable_recovery = 1; 119 mutex_unlock(&osb->recovery_lock); 120 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb)); 121 122 /* At this point, we know that no more recovery threads can be 123 * launched, so wait for any recovery completion work to 124 * complete. */ 125 flush_workqueue(ocfs2_wq); 126 127 /* 128 * Now that recovery is shut down, and the osb is about to be 129 * freed, the osb_lock is not taken here. 130 */ 131 rm = osb->recovery_map; 132 /* XXX: Should we bug if there are dirty entries? */ 133 134 kfree(rm); 135 } 136 137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 138 unsigned int node_num) 139 { 140 int i; 141 struct ocfs2_recovery_map *rm = osb->recovery_map; 142 143 assert_spin_locked(&osb->osb_lock); 144 145 for (i = 0; i < rm->rm_used; i++) { 146 if (rm->rm_entries[i] == node_num) 147 return 1; 148 } 149 150 return 0; 151 } 152 153 /* Behaves like test-and-set. Returns the previous value */ 154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 155 unsigned int node_num) 156 { 157 struct ocfs2_recovery_map *rm = osb->recovery_map; 158 159 spin_lock(&osb->osb_lock); 160 if (__ocfs2_recovery_map_test(osb, node_num)) { 161 spin_unlock(&osb->osb_lock); 162 return 1; 163 } 164 165 /* XXX: Can this be exploited? Not from o2dlm... */ 166 BUG_ON(rm->rm_used >= osb->max_slots); 167 168 rm->rm_entries[rm->rm_used] = node_num; 169 rm->rm_used++; 170 spin_unlock(&osb->osb_lock); 171 172 return 0; 173 } 174 175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 176 unsigned int node_num) 177 { 178 int i; 179 struct ocfs2_recovery_map *rm = osb->recovery_map; 180 181 spin_lock(&osb->osb_lock); 182 183 for (i = 0; i < rm->rm_used; i++) { 184 if (rm->rm_entries[i] == node_num) 185 break; 186 } 187 188 if (i < rm->rm_used) { 189 /* XXX: be careful with the pointer math */ 190 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 191 (rm->rm_used - i - 1) * sizeof(unsigned int)); 192 rm->rm_used--; 193 } 194 195 spin_unlock(&osb->osb_lock); 196 } 197 198 static int ocfs2_commit_cache(struct ocfs2_super *osb) 199 { 200 int status = 0; 201 unsigned int flushed; 202 unsigned long old_id; 203 struct ocfs2_journal *journal = NULL; 204 205 mlog_entry_void(); 206 207 journal = osb->journal; 208 209 /* Flush all pending commits and checkpoint the journal. */ 210 down_write(&journal->j_trans_barrier); 211 212 if (atomic_read(&journal->j_num_trans) == 0) { 213 up_write(&journal->j_trans_barrier); 214 mlog(0, "No transactions for me to flush!\n"); 215 goto finally; 216 } 217 218 jbd2_journal_lock_updates(journal->j_journal); 219 status = jbd2_journal_flush(journal->j_journal); 220 jbd2_journal_unlock_updates(journal->j_journal); 221 if (status < 0) { 222 up_write(&journal->j_trans_barrier); 223 mlog_errno(status); 224 goto finally; 225 } 226 227 old_id = ocfs2_inc_trans_id(journal); 228 229 flushed = atomic_read(&journal->j_num_trans); 230 atomic_set(&journal->j_num_trans, 0); 231 up_write(&journal->j_trans_barrier); 232 233 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", 234 journal->j_trans_id, flushed); 235 236 ocfs2_wake_downconvert_thread(osb); 237 wake_up(&journal->j_checkpointed); 238 finally: 239 mlog_exit(status); 240 return status; 241 } 242 243 /* pass it NULL and it will allocate a new handle object for you. If 244 * you pass it a handle however, it may still return error, in which 245 * case it has free'd the passed handle for you. */ 246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 247 { 248 journal_t *journal = osb->journal->j_journal; 249 handle_t *handle; 250 251 BUG_ON(!osb || !osb->journal->j_journal); 252 253 if (ocfs2_is_hard_readonly(osb)) 254 return ERR_PTR(-EROFS); 255 256 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 257 BUG_ON(max_buffs <= 0); 258 259 /* JBD might support this, but our journalling code doesn't yet. */ 260 if (journal_current_handle()) { 261 mlog(ML_ERROR, "Recursive transaction attempted!\n"); 262 BUG(); 263 } 264 265 down_read(&osb->journal->j_trans_barrier); 266 267 handle = jbd2_journal_start(journal, max_buffs); 268 if (IS_ERR(handle)) { 269 up_read(&osb->journal->j_trans_barrier); 270 271 mlog_errno(PTR_ERR(handle)); 272 273 if (is_journal_aborted(journal)) { 274 ocfs2_abort(osb->sb, "Detected aborted journal"); 275 handle = ERR_PTR(-EROFS); 276 } 277 } else { 278 if (!ocfs2_mount_local(osb)) 279 atomic_inc(&(osb->journal->j_num_trans)); 280 } 281 282 return handle; 283 } 284 285 int ocfs2_commit_trans(struct ocfs2_super *osb, 286 handle_t *handle) 287 { 288 int ret; 289 struct ocfs2_journal *journal = osb->journal; 290 291 BUG_ON(!handle); 292 293 ret = jbd2_journal_stop(handle); 294 if (ret < 0) 295 mlog_errno(ret); 296 297 up_read(&journal->j_trans_barrier); 298 299 return ret; 300 } 301 302 /* 303 * 'nblocks' is what you want to add to the current 304 * transaction. extend_trans will either extend the current handle by 305 * nblocks, or commit it and start a new one with nblocks credits. 306 * 307 * This might call jbd2_journal_restart() which will commit dirty buffers 308 * and then restart the transaction. Before calling 309 * ocfs2_extend_trans(), any changed blocks should have been 310 * dirtied. After calling it, all blocks which need to be changed must 311 * go through another set of journal_access/journal_dirty calls. 312 * 313 * WARNING: This will not release any semaphores or disk locks taken 314 * during the transaction, so make sure they were taken *before* 315 * start_trans or we'll have ordering deadlocks. 316 * 317 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 318 * good because transaction ids haven't yet been recorded on the 319 * cluster locks associated with this handle. 320 */ 321 int ocfs2_extend_trans(handle_t *handle, int nblocks) 322 { 323 int status; 324 325 BUG_ON(!handle); 326 BUG_ON(!nblocks); 327 328 mlog_entry_void(); 329 330 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); 331 332 #ifdef CONFIG_OCFS2_DEBUG_FS 333 status = 1; 334 #else 335 status = jbd2_journal_extend(handle, nblocks); 336 if (status < 0) { 337 mlog_errno(status); 338 goto bail; 339 } 340 #endif 341 342 if (status > 0) { 343 mlog(0, 344 "jbd2_journal_extend failed, trying " 345 "jbd2_journal_restart\n"); 346 status = jbd2_journal_restart(handle, nblocks); 347 if (status < 0) { 348 mlog_errno(status); 349 goto bail; 350 } 351 } 352 353 status = 0; 354 bail: 355 356 mlog_exit(status); 357 return status; 358 } 359 360 int ocfs2_journal_access(handle_t *handle, 361 struct inode *inode, 362 struct buffer_head *bh, 363 int type) 364 { 365 int status; 366 367 BUG_ON(!inode); 368 BUG_ON(!handle); 369 BUG_ON(!bh); 370 371 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", 372 (unsigned long long)bh->b_blocknr, type, 373 (type == OCFS2_JOURNAL_ACCESS_CREATE) ? 374 "OCFS2_JOURNAL_ACCESS_CREATE" : 375 "OCFS2_JOURNAL_ACCESS_WRITE", 376 bh->b_size); 377 378 /* we can safely remove this assertion after testing. */ 379 if (!buffer_uptodate(bh)) { 380 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 381 mlog(ML_ERROR, "b_blocknr=%llu\n", 382 (unsigned long long)bh->b_blocknr); 383 BUG(); 384 } 385 386 /* Set the current transaction information on the inode so 387 * that the locking code knows whether it can drop it's locks 388 * on this inode or not. We're protected from the commit 389 * thread updating the current transaction id until 390 * ocfs2_commit_trans() because ocfs2_start_trans() took 391 * j_trans_barrier for us. */ 392 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); 393 394 mutex_lock(&OCFS2_I(inode)->ip_io_mutex); 395 switch (type) { 396 case OCFS2_JOURNAL_ACCESS_CREATE: 397 case OCFS2_JOURNAL_ACCESS_WRITE: 398 status = jbd2_journal_get_write_access(handle, bh); 399 break; 400 401 case OCFS2_JOURNAL_ACCESS_UNDO: 402 status = jbd2_journal_get_undo_access(handle, bh); 403 break; 404 405 default: 406 status = -EINVAL; 407 mlog(ML_ERROR, "Uknown access type!\n"); 408 } 409 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); 410 411 if (status < 0) 412 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 413 status, type); 414 415 mlog_exit(status); 416 return status; 417 } 418 419 int ocfs2_journal_dirty(handle_t *handle, 420 struct buffer_head *bh) 421 { 422 int status; 423 424 mlog_entry("(bh->b_blocknr=%llu)\n", 425 (unsigned long long)bh->b_blocknr); 426 427 status = jbd2_journal_dirty_metadata(handle, bh); 428 if (status < 0) 429 mlog(ML_ERROR, "Could not dirty metadata buffer. " 430 "(bh->b_blocknr=%llu)\n", 431 (unsigned long long)bh->b_blocknr); 432 433 mlog_exit(status); 434 return status; 435 } 436 437 #ifdef CONFIG_OCFS2_COMPAT_JBD 438 int ocfs2_journal_dirty_data(handle_t *handle, 439 struct buffer_head *bh) 440 { 441 int err = journal_dirty_data(handle, bh); 442 if (err) 443 mlog_errno(err); 444 /* TODO: When we can handle it, abort the handle and go RO on 445 * error here. */ 446 447 return err; 448 } 449 #endif 450 451 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 452 453 void ocfs2_set_journal_params(struct ocfs2_super *osb) 454 { 455 journal_t *journal = osb->journal->j_journal; 456 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 457 458 if (osb->osb_commit_interval) 459 commit_interval = osb->osb_commit_interval; 460 461 spin_lock(&journal->j_state_lock); 462 journal->j_commit_interval = commit_interval; 463 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 464 journal->j_flags |= JBD2_BARRIER; 465 else 466 journal->j_flags &= ~JBD2_BARRIER; 467 spin_unlock(&journal->j_state_lock); 468 } 469 470 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) 471 { 472 int status = -1; 473 struct inode *inode = NULL; /* the journal inode */ 474 journal_t *j_journal = NULL; 475 struct ocfs2_dinode *di = NULL; 476 struct buffer_head *bh = NULL; 477 struct ocfs2_super *osb; 478 int inode_lock = 0; 479 480 mlog_entry_void(); 481 482 BUG_ON(!journal); 483 484 osb = journal->j_osb; 485 486 /* already have the inode for our journal */ 487 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 488 osb->slot_num); 489 if (inode == NULL) { 490 status = -EACCES; 491 mlog_errno(status); 492 goto done; 493 } 494 if (is_bad_inode(inode)) { 495 mlog(ML_ERROR, "access error (bad inode)\n"); 496 iput(inode); 497 inode = NULL; 498 status = -EACCES; 499 goto done; 500 } 501 502 SET_INODE_JOURNAL(inode); 503 OCFS2_I(inode)->ip_open_count++; 504 505 /* Skip recovery waits here - journal inode metadata never 506 * changes in a live cluster so it can be considered an 507 * exception to the rule. */ 508 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 509 if (status < 0) { 510 if (status != -ERESTARTSYS) 511 mlog(ML_ERROR, "Could not get lock on journal!\n"); 512 goto done; 513 } 514 515 inode_lock = 1; 516 di = (struct ocfs2_dinode *)bh->b_data; 517 518 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { 519 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 520 inode->i_size); 521 status = -EINVAL; 522 goto done; 523 } 524 525 mlog(0, "inode->i_size = %lld\n", inode->i_size); 526 mlog(0, "inode->i_blocks = %llu\n", 527 (unsigned long long)inode->i_blocks); 528 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); 529 530 /* call the kernels journal init function now */ 531 j_journal = jbd2_journal_init_inode(inode); 532 if (j_journal == NULL) { 533 mlog(ML_ERROR, "Linux journal layer error\n"); 534 status = -EINVAL; 535 goto done; 536 } 537 538 mlog(0, "Returned from jbd2_journal_init_inode\n"); 539 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); 540 541 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 542 OCFS2_JOURNAL_DIRTY_FL); 543 544 journal->j_journal = j_journal; 545 journal->j_inode = inode; 546 journal->j_bh = bh; 547 548 ocfs2_set_journal_params(osb); 549 550 journal->j_state = OCFS2_JOURNAL_LOADED; 551 552 status = 0; 553 done: 554 if (status < 0) { 555 if (inode_lock) 556 ocfs2_inode_unlock(inode, 1); 557 brelse(bh); 558 if (inode) { 559 OCFS2_I(inode)->ip_open_count--; 560 iput(inode); 561 } 562 } 563 564 mlog_exit(status); 565 return status; 566 } 567 568 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 569 { 570 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 571 } 572 573 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 574 { 575 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 576 } 577 578 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 579 int dirty, int replayed) 580 { 581 int status; 582 unsigned int flags; 583 struct ocfs2_journal *journal = osb->journal; 584 struct buffer_head *bh = journal->j_bh; 585 struct ocfs2_dinode *fe; 586 587 mlog_entry_void(); 588 589 fe = (struct ocfs2_dinode *)bh->b_data; 590 if (!OCFS2_IS_VALID_DINODE(fe)) { 591 /* This is called from startup/shutdown which will 592 * handle the errors in a specific manner, so no need 593 * to call ocfs2_error() here. */ 594 mlog(ML_ERROR, "Journal dinode %llu has invalid " 595 "signature: %.*s", 596 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 597 fe->i_signature); 598 status = -EIO; 599 goto out; 600 } 601 602 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 603 if (dirty) 604 flags |= OCFS2_JOURNAL_DIRTY_FL; 605 else 606 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 607 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 608 609 if (replayed) 610 ocfs2_bump_recovery_generation(fe); 611 612 status = ocfs2_write_block(osb, bh, journal->j_inode); 613 if (status < 0) 614 mlog_errno(status); 615 616 out: 617 mlog_exit(status); 618 return status; 619 } 620 621 /* 622 * If the journal has been kmalloc'd it needs to be freed after this 623 * call. 624 */ 625 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 626 { 627 struct ocfs2_journal *journal = NULL; 628 int status = 0; 629 struct inode *inode = NULL; 630 int num_running_trans = 0; 631 632 mlog_entry_void(); 633 634 BUG_ON(!osb); 635 636 journal = osb->journal; 637 if (!journal) 638 goto done; 639 640 inode = journal->j_inode; 641 642 if (journal->j_state != OCFS2_JOURNAL_LOADED) 643 goto done; 644 645 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 646 if (!igrab(inode)) 647 BUG(); 648 649 num_running_trans = atomic_read(&(osb->journal->j_num_trans)); 650 if (num_running_trans > 0) 651 mlog(0, "Shutting down journal: must wait on %d " 652 "running transactions!\n", 653 num_running_trans); 654 655 /* Do a commit_cache here. It will flush our journal, *and* 656 * release any locks that are still held. 657 * set the SHUTDOWN flag and release the trans lock. 658 * the commit thread will take the trans lock for us below. */ 659 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 660 661 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 662 * drop the trans_lock (which we want to hold until we 663 * completely destroy the journal. */ 664 if (osb->commit_task) { 665 /* Wait for the commit thread */ 666 mlog(0, "Waiting for ocfs2commit to exit....\n"); 667 kthread_stop(osb->commit_task); 668 osb->commit_task = NULL; 669 } 670 671 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); 672 673 if (ocfs2_mount_local(osb)) { 674 jbd2_journal_lock_updates(journal->j_journal); 675 status = jbd2_journal_flush(journal->j_journal); 676 jbd2_journal_unlock_updates(journal->j_journal); 677 if (status < 0) 678 mlog_errno(status); 679 } 680 681 if (status == 0) { 682 /* 683 * Do not toggle if flush was unsuccessful otherwise 684 * will leave dirty metadata in a "clean" journal 685 */ 686 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 687 if (status < 0) 688 mlog_errno(status); 689 } 690 691 /* Shutdown the kernel journal system */ 692 jbd2_journal_destroy(journal->j_journal); 693 694 OCFS2_I(inode)->ip_open_count--; 695 696 /* unlock our journal */ 697 ocfs2_inode_unlock(inode, 1); 698 699 brelse(journal->j_bh); 700 journal->j_bh = NULL; 701 702 journal->j_state = OCFS2_JOURNAL_FREE; 703 704 // up_write(&journal->j_trans_barrier); 705 done: 706 if (inode) 707 iput(inode); 708 mlog_exit_void(); 709 } 710 711 static void ocfs2_clear_journal_error(struct super_block *sb, 712 journal_t *journal, 713 int slot) 714 { 715 int olderr; 716 717 olderr = jbd2_journal_errno(journal); 718 if (olderr) { 719 mlog(ML_ERROR, "File system error %d recorded in " 720 "journal %u.\n", olderr, slot); 721 mlog(ML_ERROR, "File system on device %s needs checking.\n", 722 sb->s_id); 723 724 jbd2_journal_ack_err(journal); 725 jbd2_journal_clear_err(journal); 726 } 727 } 728 729 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 730 { 731 int status = 0; 732 struct ocfs2_super *osb; 733 734 mlog_entry_void(); 735 736 BUG_ON(!journal); 737 738 osb = journal->j_osb; 739 740 status = jbd2_journal_load(journal->j_journal); 741 if (status < 0) { 742 mlog(ML_ERROR, "Failed to load journal!\n"); 743 goto done; 744 } 745 746 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 747 748 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 749 if (status < 0) { 750 mlog_errno(status); 751 goto done; 752 } 753 754 /* Launch the commit thread */ 755 if (!local) { 756 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 757 "ocfs2cmt"); 758 if (IS_ERR(osb->commit_task)) { 759 status = PTR_ERR(osb->commit_task); 760 osb->commit_task = NULL; 761 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 762 "error=%d", status); 763 goto done; 764 } 765 } else 766 osb->commit_task = NULL; 767 768 done: 769 mlog_exit(status); 770 return status; 771 } 772 773 774 /* 'full' flag tells us whether we clear out all blocks or if we just 775 * mark the journal clean */ 776 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 777 { 778 int status; 779 780 mlog_entry_void(); 781 782 BUG_ON(!journal); 783 784 status = jbd2_journal_wipe(journal->j_journal, full); 785 if (status < 0) { 786 mlog_errno(status); 787 goto bail; 788 } 789 790 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 791 if (status < 0) 792 mlog_errno(status); 793 794 bail: 795 mlog_exit(status); 796 return status; 797 } 798 799 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 800 { 801 int empty; 802 struct ocfs2_recovery_map *rm = osb->recovery_map; 803 804 spin_lock(&osb->osb_lock); 805 empty = (rm->rm_used == 0); 806 spin_unlock(&osb->osb_lock); 807 808 return empty; 809 } 810 811 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 812 { 813 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 814 } 815 816 /* 817 * JBD Might read a cached version of another nodes journal file. We 818 * don't want this as this file changes often and we get no 819 * notification on those changes. The only way to be sure that we've 820 * got the most up to date version of those blocks then is to force 821 * read them off disk. Just searching through the buffer cache won't 822 * work as there may be pages backing this file which are still marked 823 * up to date. We know things can't change on this file underneath us 824 * as we have the lock by now :) 825 */ 826 static int ocfs2_force_read_journal(struct inode *inode) 827 { 828 int status = 0; 829 int i; 830 u64 v_blkno, p_blkno, p_blocks, num_blocks; 831 #define CONCURRENT_JOURNAL_FILL 32ULL 832 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; 833 834 mlog_entry_void(); 835 836 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); 837 838 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size); 839 v_blkno = 0; 840 while (v_blkno < num_blocks) { 841 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 842 &p_blkno, &p_blocks, NULL); 843 if (status < 0) { 844 mlog_errno(status); 845 goto bail; 846 } 847 848 if (p_blocks > CONCURRENT_JOURNAL_FILL) 849 p_blocks = CONCURRENT_JOURNAL_FILL; 850 851 /* We are reading journal data which should not 852 * be put in the uptodate cache */ 853 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb), 854 p_blkno, p_blocks, bhs); 855 if (status < 0) { 856 mlog_errno(status); 857 goto bail; 858 } 859 860 for(i = 0; i < p_blocks; i++) { 861 brelse(bhs[i]); 862 bhs[i] = NULL; 863 } 864 865 v_blkno += p_blocks; 866 } 867 868 bail: 869 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) 870 brelse(bhs[i]); 871 mlog_exit(status); 872 return status; 873 } 874 875 struct ocfs2_la_recovery_item { 876 struct list_head lri_list; 877 int lri_slot; 878 struct ocfs2_dinode *lri_la_dinode; 879 struct ocfs2_dinode *lri_tl_dinode; 880 }; 881 882 /* Does the second half of the recovery process. By this point, the 883 * node is marked clean and can actually be considered recovered, 884 * hence it's no longer in the recovery map, but there's still some 885 * cleanup we can do which shouldn't happen within the recovery thread 886 * as locking in that context becomes very difficult if we are to take 887 * recovering nodes into account. 888 * 889 * NOTE: This function can and will sleep on recovery of other nodes 890 * during cluster locking, just like any other ocfs2 process. 891 */ 892 void ocfs2_complete_recovery(struct work_struct *work) 893 { 894 int ret; 895 struct ocfs2_journal *journal = 896 container_of(work, struct ocfs2_journal, j_recovery_work); 897 struct ocfs2_super *osb = journal->j_osb; 898 struct ocfs2_dinode *la_dinode, *tl_dinode; 899 struct ocfs2_la_recovery_item *item, *n; 900 LIST_HEAD(tmp_la_list); 901 902 mlog_entry_void(); 903 904 mlog(0, "completing recovery from keventd\n"); 905 906 spin_lock(&journal->j_lock); 907 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 908 spin_unlock(&journal->j_lock); 909 910 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 911 list_del_init(&item->lri_list); 912 913 mlog(0, "Complete recovery for slot %d\n", item->lri_slot); 914 915 la_dinode = item->lri_la_dinode; 916 if (la_dinode) { 917 mlog(0, "Clean up local alloc %llu\n", 918 (unsigned long long)le64_to_cpu(la_dinode->i_blkno)); 919 920 ret = ocfs2_complete_local_alloc_recovery(osb, 921 la_dinode); 922 if (ret < 0) 923 mlog_errno(ret); 924 925 kfree(la_dinode); 926 } 927 928 tl_dinode = item->lri_tl_dinode; 929 if (tl_dinode) { 930 mlog(0, "Clean up truncate log %llu\n", 931 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno)); 932 933 ret = ocfs2_complete_truncate_log_recovery(osb, 934 tl_dinode); 935 if (ret < 0) 936 mlog_errno(ret); 937 938 kfree(tl_dinode); 939 } 940 941 ret = ocfs2_recover_orphans(osb, item->lri_slot); 942 if (ret < 0) 943 mlog_errno(ret); 944 945 kfree(item); 946 } 947 948 mlog(0, "Recovery completion\n"); 949 mlog_exit_void(); 950 } 951 952 /* NOTE: This function always eats your references to la_dinode and 953 * tl_dinode, either manually on error, or by passing them to 954 * ocfs2_complete_recovery */ 955 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 956 int slot_num, 957 struct ocfs2_dinode *la_dinode, 958 struct ocfs2_dinode *tl_dinode) 959 { 960 struct ocfs2_la_recovery_item *item; 961 962 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 963 if (!item) { 964 /* Though we wish to avoid it, we are in fact safe in 965 * skipping local alloc cleanup as fsck.ocfs2 is more 966 * than capable of reclaiming unused space. */ 967 if (la_dinode) 968 kfree(la_dinode); 969 970 if (tl_dinode) 971 kfree(tl_dinode); 972 973 mlog_errno(-ENOMEM); 974 return; 975 } 976 977 INIT_LIST_HEAD(&item->lri_list); 978 item->lri_la_dinode = la_dinode; 979 item->lri_slot = slot_num; 980 item->lri_tl_dinode = tl_dinode; 981 982 spin_lock(&journal->j_lock); 983 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 984 queue_work(ocfs2_wq, &journal->j_recovery_work); 985 spin_unlock(&journal->j_lock); 986 } 987 988 /* Called by the mount code to queue recovery the last part of 989 * recovery for it's own slot. */ 990 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 991 { 992 struct ocfs2_journal *journal = osb->journal; 993 994 if (osb->dirty) { 995 /* No need to queue up our truncate_log as regular 996 * cleanup will catch that. */ 997 ocfs2_queue_recovery_completion(journal, 998 osb->slot_num, 999 osb->local_alloc_copy, 1000 NULL); 1001 ocfs2_schedule_truncate_log_flush(osb, 0); 1002 1003 osb->local_alloc_copy = NULL; 1004 osb->dirty = 0; 1005 } 1006 } 1007 1008 static int __ocfs2_recovery_thread(void *arg) 1009 { 1010 int status, node_num; 1011 struct ocfs2_super *osb = arg; 1012 struct ocfs2_recovery_map *rm = osb->recovery_map; 1013 1014 mlog_entry_void(); 1015 1016 status = ocfs2_wait_on_mount(osb); 1017 if (status < 0) { 1018 goto bail; 1019 } 1020 1021 restart: 1022 status = ocfs2_super_lock(osb, 1); 1023 if (status < 0) { 1024 mlog_errno(status); 1025 goto bail; 1026 } 1027 1028 spin_lock(&osb->osb_lock); 1029 while (rm->rm_used) { 1030 /* It's always safe to remove entry zero, as we won't 1031 * clear it until ocfs2_recover_node() has succeeded. */ 1032 node_num = rm->rm_entries[0]; 1033 spin_unlock(&osb->osb_lock); 1034 1035 status = ocfs2_recover_node(osb, node_num); 1036 if (!status) { 1037 ocfs2_recovery_map_clear(osb, node_num); 1038 } else { 1039 mlog(ML_ERROR, 1040 "Error %d recovering node %d on device (%u,%u)!\n", 1041 status, node_num, 1042 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1043 mlog(ML_ERROR, "Volume requires unmount.\n"); 1044 } 1045 1046 spin_lock(&osb->osb_lock); 1047 } 1048 spin_unlock(&osb->osb_lock); 1049 mlog(0, "All nodes recovered\n"); 1050 1051 /* Refresh all journal recovery generations from disk */ 1052 status = ocfs2_check_journals_nolocks(osb); 1053 status = (status == -EROFS) ? 0 : status; 1054 if (status < 0) 1055 mlog_errno(status); 1056 1057 ocfs2_super_unlock(osb, 1); 1058 1059 /* We always run recovery on our own orphan dir - the dead 1060 * node(s) may have disallowd a previos inode delete. Re-processing 1061 * is therefore required. */ 1062 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1063 NULL); 1064 1065 bail: 1066 mutex_lock(&osb->recovery_lock); 1067 if (!status && !ocfs2_recovery_completed(osb)) { 1068 mutex_unlock(&osb->recovery_lock); 1069 goto restart; 1070 } 1071 1072 osb->recovery_thread_task = NULL; 1073 mb(); /* sync with ocfs2_recovery_thread_running */ 1074 wake_up(&osb->recovery_event); 1075 1076 mutex_unlock(&osb->recovery_lock); 1077 1078 mlog_exit(status); 1079 /* no one is callint kthread_stop() for us so the kthread() api 1080 * requires that we call do_exit(). And it isn't exported, but 1081 * complete_and_exit() seems to be a minimal wrapper around it. */ 1082 complete_and_exit(NULL, status); 1083 return status; 1084 } 1085 1086 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1087 { 1088 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1089 node_num, osb->node_num); 1090 1091 mutex_lock(&osb->recovery_lock); 1092 if (osb->disable_recovery) 1093 goto out; 1094 1095 /* People waiting on recovery will wait on 1096 * the recovery map to empty. */ 1097 if (ocfs2_recovery_map_set(osb, node_num)) 1098 mlog(0, "node %d already in recovery map.\n", node_num); 1099 1100 mlog(0, "starting recovery thread...\n"); 1101 1102 if (osb->recovery_thread_task) 1103 goto out; 1104 1105 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1106 "ocfs2rec"); 1107 if (IS_ERR(osb->recovery_thread_task)) { 1108 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1109 osb->recovery_thread_task = NULL; 1110 } 1111 1112 out: 1113 mutex_unlock(&osb->recovery_lock); 1114 wake_up(&osb->recovery_event); 1115 1116 mlog_exit_void(); 1117 } 1118 1119 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1120 int slot_num, 1121 struct buffer_head **bh, 1122 struct inode **ret_inode) 1123 { 1124 int status = -EACCES; 1125 struct inode *inode = NULL; 1126 1127 BUG_ON(slot_num >= osb->max_slots); 1128 1129 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1130 slot_num); 1131 if (!inode || is_bad_inode(inode)) { 1132 mlog_errno(status); 1133 goto bail; 1134 } 1135 SET_INODE_JOURNAL(inode); 1136 1137 status = ocfs2_read_blocks(inode, OCFS2_I(inode)->ip_blkno, 1, bh, 1138 OCFS2_BH_IGNORE_CACHE); 1139 if (status < 0) { 1140 mlog_errno(status); 1141 goto bail; 1142 } 1143 1144 status = 0; 1145 1146 bail: 1147 if (inode) { 1148 if (status || !ret_inode) 1149 iput(inode); 1150 else 1151 *ret_inode = inode; 1152 } 1153 return status; 1154 } 1155 1156 /* Does the actual journal replay and marks the journal inode as 1157 * clean. Will only replay if the journal inode is marked dirty. */ 1158 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1159 int node_num, 1160 int slot_num) 1161 { 1162 int status; 1163 int got_lock = 0; 1164 unsigned int flags; 1165 struct inode *inode = NULL; 1166 struct ocfs2_dinode *fe; 1167 journal_t *journal = NULL; 1168 struct buffer_head *bh = NULL; 1169 u32 slot_reco_gen; 1170 1171 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1172 if (status) { 1173 mlog_errno(status); 1174 goto done; 1175 } 1176 1177 fe = (struct ocfs2_dinode *)bh->b_data; 1178 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1179 brelse(bh); 1180 bh = NULL; 1181 1182 /* 1183 * As the fs recovery is asynchronous, there is a small chance that 1184 * another node mounted (and recovered) the slot before the recovery 1185 * thread could get the lock. To handle that, we dirty read the journal 1186 * inode for that slot to get the recovery generation. If it is 1187 * different than what we expected, the slot has been recovered. 1188 * If not, it needs recovery. 1189 */ 1190 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1191 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num, 1192 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1193 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1194 status = -EBUSY; 1195 goto done; 1196 } 1197 1198 /* Continue with recovery as the journal has not yet been recovered */ 1199 1200 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1201 if (status < 0) { 1202 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status); 1203 if (status != -ERESTARTSYS) 1204 mlog(ML_ERROR, "Could not lock journal!\n"); 1205 goto done; 1206 } 1207 got_lock = 1; 1208 1209 fe = (struct ocfs2_dinode *) bh->b_data; 1210 1211 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1212 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1213 1214 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1215 mlog(0, "No recovery required for node %d\n", node_num); 1216 /* Refresh recovery generation for the slot */ 1217 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1218 goto done; 1219 } 1220 1221 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", 1222 node_num, slot_num, 1223 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1224 1225 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1226 1227 status = ocfs2_force_read_journal(inode); 1228 if (status < 0) { 1229 mlog_errno(status); 1230 goto done; 1231 } 1232 1233 mlog(0, "calling journal_init_inode\n"); 1234 journal = jbd2_journal_init_inode(inode); 1235 if (journal == NULL) { 1236 mlog(ML_ERROR, "Linux journal layer error\n"); 1237 status = -EIO; 1238 goto done; 1239 } 1240 1241 status = jbd2_journal_load(journal); 1242 if (status < 0) { 1243 mlog_errno(status); 1244 if (!igrab(inode)) 1245 BUG(); 1246 jbd2_journal_destroy(journal); 1247 goto done; 1248 } 1249 1250 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1251 1252 /* wipe the journal */ 1253 mlog(0, "flushing the journal.\n"); 1254 jbd2_journal_lock_updates(journal); 1255 status = jbd2_journal_flush(journal); 1256 jbd2_journal_unlock_updates(journal); 1257 if (status < 0) 1258 mlog_errno(status); 1259 1260 /* This will mark the node clean */ 1261 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1262 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1263 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1264 1265 /* Increment recovery generation to indicate successful recovery */ 1266 ocfs2_bump_recovery_generation(fe); 1267 osb->slot_recovery_generations[slot_num] = 1268 ocfs2_get_recovery_generation(fe); 1269 1270 status = ocfs2_write_block(osb, bh, inode); 1271 if (status < 0) 1272 mlog_errno(status); 1273 1274 if (!igrab(inode)) 1275 BUG(); 1276 1277 jbd2_journal_destroy(journal); 1278 1279 done: 1280 /* drop the lock on this nodes journal */ 1281 if (got_lock) 1282 ocfs2_inode_unlock(inode, 1); 1283 1284 if (inode) 1285 iput(inode); 1286 1287 brelse(bh); 1288 1289 mlog_exit(status); 1290 return status; 1291 } 1292 1293 /* 1294 * Do the most important parts of node recovery: 1295 * - Replay it's journal 1296 * - Stamp a clean local allocator file 1297 * - Stamp a clean truncate log 1298 * - Mark the node clean 1299 * 1300 * If this function completes without error, a node in OCFS2 can be 1301 * said to have been safely recovered. As a result, failure during the 1302 * second part of a nodes recovery process (local alloc recovery) is 1303 * far less concerning. 1304 */ 1305 static int ocfs2_recover_node(struct ocfs2_super *osb, 1306 int node_num) 1307 { 1308 int status = 0; 1309 int slot_num; 1310 struct ocfs2_dinode *la_copy = NULL; 1311 struct ocfs2_dinode *tl_copy = NULL; 1312 1313 mlog_entry("(node_num=%d, osb->node_num = %d)\n", 1314 node_num, osb->node_num); 1315 1316 mlog(0, "checking node %d\n", node_num); 1317 1318 /* Should not ever be called to recover ourselves -- in that 1319 * case we should've called ocfs2_journal_load instead. */ 1320 BUG_ON(osb->node_num == node_num); 1321 1322 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1323 if (slot_num == -ENOENT) { 1324 status = 0; 1325 mlog(0, "no slot for this node, so no recovery required.\n"); 1326 goto done; 1327 } 1328 1329 mlog(0, "node %d was using slot %d\n", node_num, slot_num); 1330 1331 status = ocfs2_replay_journal(osb, node_num, slot_num); 1332 if (status < 0) { 1333 if (status == -EBUSY) { 1334 mlog(0, "Skipping recovery for slot %u (node %u) " 1335 "as another node has recovered it\n", slot_num, 1336 node_num); 1337 status = 0; 1338 goto done; 1339 } 1340 mlog_errno(status); 1341 goto done; 1342 } 1343 1344 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1345 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1346 if (status < 0) { 1347 mlog_errno(status); 1348 goto done; 1349 } 1350 1351 /* An error from begin_truncate_log_recovery is not 1352 * serious enough to warrant halting the rest of 1353 * recovery. */ 1354 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1355 if (status < 0) 1356 mlog_errno(status); 1357 1358 /* Likewise, this would be a strange but ultimately not so 1359 * harmful place to get an error... */ 1360 status = ocfs2_clear_slot(osb, slot_num); 1361 if (status < 0) 1362 mlog_errno(status); 1363 1364 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1365 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1366 tl_copy); 1367 1368 status = 0; 1369 done: 1370 1371 mlog_exit(status); 1372 return status; 1373 } 1374 1375 /* Test node liveness by trylocking his journal. If we get the lock, 1376 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1377 * still alive (we couldn't get the lock) and < 0 on error. */ 1378 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1379 int slot_num) 1380 { 1381 int status, flags; 1382 struct inode *inode = NULL; 1383 1384 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1385 slot_num); 1386 if (inode == NULL) { 1387 mlog(ML_ERROR, "access error\n"); 1388 status = -EACCES; 1389 goto bail; 1390 } 1391 if (is_bad_inode(inode)) { 1392 mlog(ML_ERROR, "access error (bad inode)\n"); 1393 iput(inode); 1394 inode = NULL; 1395 status = -EACCES; 1396 goto bail; 1397 } 1398 SET_INODE_JOURNAL(inode); 1399 1400 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1401 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1402 if (status < 0) { 1403 if (status != -EAGAIN) 1404 mlog_errno(status); 1405 goto bail; 1406 } 1407 1408 ocfs2_inode_unlock(inode, 1); 1409 bail: 1410 if (inode) 1411 iput(inode); 1412 1413 return status; 1414 } 1415 1416 /* Call this underneath ocfs2_super_lock. It also assumes that the 1417 * slot info struct has been updated from disk. */ 1418 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1419 { 1420 unsigned int node_num; 1421 int status, i; 1422 u32 gen; 1423 struct buffer_head *bh = NULL; 1424 struct ocfs2_dinode *di; 1425 1426 /* This is called with the super block cluster lock, so we 1427 * know that the slot map can't change underneath us. */ 1428 1429 for (i = 0; i < osb->max_slots; i++) { 1430 /* Read journal inode to get the recovery generation */ 1431 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1432 if (status) { 1433 mlog_errno(status); 1434 goto bail; 1435 } 1436 di = (struct ocfs2_dinode *)bh->b_data; 1437 gen = ocfs2_get_recovery_generation(di); 1438 brelse(bh); 1439 bh = NULL; 1440 1441 spin_lock(&osb->osb_lock); 1442 osb->slot_recovery_generations[i] = gen; 1443 1444 mlog(0, "Slot %u recovery generation is %u\n", i, 1445 osb->slot_recovery_generations[i]); 1446 1447 if (i == osb->slot_num) { 1448 spin_unlock(&osb->osb_lock); 1449 continue; 1450 } 1451 1452 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1453 if (status == -ENOENT) { 1454 spin_unlock(&osb->osb_lock); 1455 continue; 1456 } 1457 1458 if (__ocfs2_recovery_map_test(osb, node_num)) { 1459 spin_unlock(&osb->osb_lock); 1460 continue; 1461 } 1462 spin_unlock(&osb->osb_lock); 1463 1464 /* Ok, we have a slot occupied by another node which 1465 * is not in the recovery map. We trylock his journal 1466 * file here to test if he's alive. */ 1467 status = ocfs2_trylock_journal(osb, i); 1468 if (!status) { 1469 /* Since we're called from mount, we know that 1470 * the recovery thread can't race us on 1471 * setting / checking the recovery bits. */ 1472 ocfs2_recovery_thread(osb, node_num); 1473 } else if ((status < 0) && (status != -EAGAIN)) { 1474 mlog_errno(status); 1475 goto bail; 1476 } 1477 } 1478 1479 status = 0; 1480 bail: 1481 mlog_exit(status); 1482 return status; 1483 } 1484 1485 struct ocfs2_orphan_filldir_priv { 1486 struct inode *head; 1487 struct ocfs2_super *osb; 1488 }; 1489 1490 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len, 1491 loff_t pos, u64 ino, unsigned type) 1492 { 1493 struct ocfs2_orphan_filldir_priv *p = priv; 1494 struct inode *iter; 1495 1496 if (name_len == 1 && !strncmp(".", name, 1)) 1497 return 0; 1498 if (name_len == 2 && !strncmp("..", name, 2)) 1499 return 0; 1500 1501 /* Skip bad inodes so that recovery can continue */ 1502 iter = ocfs2_iget(p->osb, ino, 1503 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 1504 if (IS_ERR(iter)) 1505 return 0; 1506 1507 mlog(0, "queue orphan %llu\n", 1508 (unsigned long long)OCFS2_I(iter)->ip_blkno); 1509 /* No locking is required for the next_orphan queue as there 1510 * is only ever a single process doing orphan recovery. */ 1511 OCFS2_I(iter)->ip_next_orphan = p->head; 1512 p->head = iter; 1513 1514 return 0; 1515 } 1516 1517 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 1518 int slot, 1519 struct inode **head) 1520 { 1521 int status; 1522 struct inode *orphan_dir_inode = NULL; 1523 struct ocfs2_orphan_filldir_priv priv; 1524 loff_t pos = 0; 1525 1526 priv.osb = osb; 1527 priv.head = *head; 1528 1529 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 1530 ORPHAN_DIR_SYSTEM_INODE, 1531 slot); 1532 if (!orphan_dir_inode) { 1533 status = -ENOENT; 1534 mlog_errno(status); 1535 return status; 1536 } 1537 1538 mutex_lock(&orphan_dir_inode->i_mutex); 1539 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 1540 if (status < 0) { 1541 mlog_errno(status); 1542 goto out; 1543 } 1544 1545 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv, 1546 ocfs2_orphan_filldir); 1547 if (status) { 1548 mlog_errno(status); 1549 goto out_cluster; 1550 } 1551 1552 *head = priv.head; 1553 1554 out_cluster: 1555 ocfs2_inode_unlock(orphan_dir_inode, 0); 1556 out: 1557 mutex_unlock(&orphan_dir_inode->i_mutex); 1558 iput(orphan_dir_inode); 1559 return status; 1560 } 1561 1562 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 1563 int slot) 1564 { 1565 int ret; 1566 1567 spin_lock(&osb->osb_lock); 1568 ret = !osb->osb_orphan_wipes[slot]; 1569 spin_unlock(&osb->osb_lock); 1570 return ret; 1571 } 1572 1573 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 1574 int slot) 1575 { 1576 spin_lock(&osb->osb_lock); 1577 /* Mark ourselves such that new processes in delete_inode() 1578 * know to quit early. */ 1579 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1580 while (osb->osb_orphan_wipes[slot]) { 1581 /* If any processes are already in the middle of an 1582 * orphan wipe on this dir, then we need to wait for 1583 * them. */ 1584 spin_unlock(&osb->osb_lock); 1585 wait_event_interruptible(osb->osb_wipe_event, 1586 ocfs2_orphan_recovery_can_continue(osb, slot)); 1587 spin_lock(&osb->osb_lock); 1588 } 1589 spin_unlock(&osb->osb_lock); 1590 } 1591 1592 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 1593 int slot) 1594 { 1595 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 1596 } 1597 1598 /* 1599 * Orphan recovery. Each mounted node has it's own orphan dir which we 1600 * must run during recovery. Our strategy here is to build a list of 1601 * the inodes in the orphan dir and iget/iput them. The VFS does 1602 * (most) of the rest of the work. 1603 * 1604 * Orphan recovery can happen at any time, not just mount so we have a 1605 * couple of extra considerations. 1606 * 1607 * - We grab as many inodes as we can under the orphan dir lock - 1608 * doing iget() outside the orphan dir risks getting a reference on 1609 * an invalid inode. 1610 * - We must be sure not to deadlock with other processes on the 1611 * system wanting to run delete_inode(). This can happen when they go 1612 * to lock the orphan dir and the orphan recovery process attempts to 1613 * iget() inside the orphan dir lock. This can be avoided by 1614 * advertising our state to ocfs2_delete_inode(). 1615 */ 1616 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 1617 int slot) 1618 { 1619 int ret = 0; 1620 struct inode *inode = NULL; 1621 struct inode *iter; 1622 struct ocfs2_inode_info *oi; 1623 1624 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); 1625 1626 ocfs2_mark_recovering_orphan_dir(osb, slot); 1627 ret = ocfs2_queue_orphans(osb, slot, &inode); 1628 ocfs2_clear_recovering_orphan_dir(osb, slot); 1629 1630 /* Error here should be noted, but we want to continue with as 1631 * many queued inodes as we've got. */ 1632 if (ret) 1633 mlog_errno(ret); 1634 1635 while (inode) { 1636 oi = OCFS2_I(inode); 1637 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); 1638 1639 iter = oi->ip_next_orphan; 1640 1641 spin_lock(&oi->ip_lock); 1642 /* The remote delete code may have set these on the 1643 * assumption that the other node would wipe them 1644 * successfully. If they are still in the node's 1645 * orphan dir, we need to reset that state. */ 1646 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); 1647 1648 /* Set the proper information to get us going into 1649 * ocfs2_delete_inode. */ 1650 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 1651 spin_unlock(&oi->ip_lock); 1652 1653 iput(inode); 1654 1655 inode = iter; 1656 } 1657 1658 return ret; 1659 } 1660 1661 static int ocfs2_wait_on_mount(struct ocfs2_super *osb) 1662 { 1663 /* This check is good because ocfs2 will wait on our recovery 1664 * thread before changing it to something other than MOUNTED 1665 * or DISABLED. */ 1666 wait_event(osb->osb_mount_event, 1667 atomic_read(&osb->vol_state) == VOLUME_MOUNTED || 1668 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 1669 1670 /* If there's an error on mount, then we may never get to the 1671 * MOUNTED flag, but this is set right before 1672 * dismount_volume() so we can trust it. */ 1673 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 1674 mlog(0, "mount error, exiting!\n"); 1675 return -EBUSY; 1676 } 1677 1678 return 0; 1679 } 1680 1681 static int ocfs2_commit_thread(void *arg) 1682 { 1683 int status; 1684 struct ocfs2_super *osb = arg; 1685 struct ocfs2_journal *journal = osb->journal; 1686 1687 /* we can trust j_num_trans here because _should_stop() is only set in 1688 * shutdown and nobody other than ourselves should be able to start 1689 * transactions. committing on shutdown might take a few iterations 1690 * as final transactions put deleted inodes on the list */ 1691 while (!(kthread_should_stop() && 1692 atomic_read(&journal->j_num_trans) == 0)) { 1693 1694 wait_event_interruptible(osb->checkpoint_event, 1695 atomic_read(&journal->j_num_trans) 1696 || kthread_should_stop()); 1697 1698 status = ocfs2_commit_cache(osb); 1699 if (status < 0) 1700 mlog_errno(status); 1701 1702 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 1703 mlog(ML_KTHREAD, 1704 "commit_thread: %u transactions pending on " 1705 "shutdown\n", 1706 atomic_read(&journal->j_num_trans)); 1707 } 1708 } 1709 1710 return 0; 1711 } 1712 1713 /* Reads all the journal inodes without taking any cluster locks. Used 1714 * for hard readonly access to determine whether any journal requires 1715 * recovery. Also used to refresh the recovery generation numbers after 1716 * a journal has been recovered by another node. 1717 */ 1718 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 1719 { 1720 int ret = 0; 1721 unsigned int slot; 1722 struct buffer_head *di_bh = NULL; 1723 struct ocfs2_dinode *di; 1724 int journal_dirty = 0; 1725 1726 for(slot = 0; slot < osb->max_slots; slot++) { 1727 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 1728 if (ret) { 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 1733 di = (struct ocfs2_dinode *) di_bh->b_data; 1734 1735 osb->slot_recovery_generations[slot] = 1736 ocfs2_get_recovery_generation(di); 1737 1738 if (le32_to_cpu(di->id1.journal1.ij_flags) & 1739 OCFS2_JOURNAL_DIRTY_FL) 1740 journal_dirty = 1; 1741 1742 brelse(di_bh); 1743 di_bh = NULL; 1744 } 1745 1746 out: 1747 if (journal_dirty) 1748 ret = -EROFS; 1749 return ret; 1750 } 1751