xref: /linux/fs/ocfs2/journal.c (revision 20a72af11f411bb74c14bd424f33b02e03937cf6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[];
94 };
95 
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
118 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
119 
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->disable_recovery = 0;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
182 		     osb->max_slots * sizeof(unsigned int),
183 		     GFP_KERNEL);
184 	if (!rm) {
185 		mlog_errno(-ENOMEM);
186 		return -ENOMEM;
187 	}
188 
189 	rm->rm_entries = (unsigned int *)((char *)rm +
190 					  sizeof(struct ocfs2_recovery_map));
191 	osb->recovery_map = rm;
192 
193 	return 0;
194 }
195 
196 /* we can't grab the goofy sem lock from inside wait_event, so we use
197  * memory barriers to make sure that we'll see the null task before
198  * being woken up */
199 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
200 {
201 	mb();
202 	return osb->recovery_thread_task != NULL;
203 }
204 
205 void ocfs2_recovery_exit(struct ocfs2_super *osb)
206 {
207 	struct ocfs2_recovery_map *rm;
208 
209 	/* disable any new recovery threads and wait for any currently
210 	 * running ones to exit. Do this before setting the vol_state. */
211 	mutex_lock(&osb->recovery_lock);
212 	osb->disable_recovery = 1;
213 	mutex_unlock(&osb->recovery_lock);
214 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
215 
216 	/* At this point, we know that no more recovery threads can be
217 	 * launched, so wait for any recovery completion work to
218 	 * complete. */
219 	if (osb->ocfs2_wq)
220 		flush_workqueue(osb->ocfs2_wq);
221 
222 	/*
223 	 * Now that recovery is shut down, and the osb is about to be
224 	 * freed,  the osb_lock is not taken here.
225 	 */
226 	rm = osb->recovery_map;
227 	/* XXX: Should we bug if there are dirty entries? */
228 
229 	kfree(rm);
230 }
231 
232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
233 				     unsigned int node_num)
234 {
235 	int i;
236 	struct ocfs2_recovery_map *rm = osb->recovery_map;
237 
238 	assert_spin_locked(&osb->osb_lock);
239 
240 	for (i = 0; i < rm->rm_used; i++) {
241 		if (rm->rm_entries[i] == node_num)
242 			return 1;
243 	}
244 
245 	return 0;
246 }
247 
248 /* Behaves like test-and-set.  Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
250 				  unsigned int node_num)
251 {
252 	struct ocfs2_recovery_map *rm = osb->recovery_map;
253 
254 	spin_lock(&osb->osb_lock);
255 	if (__ocfs2_recovery_map_test(osb, node_num)) {
256 		spin_unlock(&osb->osb_lock);
257 		return 1;
258 	}
259 
260 	/* XXX: Can this be exploited? Not from o2dlm... */
261 	BUG_ON(rm->rm_used >= osb->max_slots);
262 
263 	rm->rm_entries[rm->rm_used] = node_num;
264 	rm->rm_used++;
265 	spin_unlock(&osb->osb_lock);
266 
267 	return 0;
268 }
269 
270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
271 				     unsigned int node_num)
272 {
273 	int i;
274 	struct ocfs2_recovery_map *rm = osb->recovery_map;
275 
276 	spin_lock(&osb->osb_lock);
277 
278 	for (i = 0; i < rm->rm_used; i++) {
279 		if (rm->rm_entries[i] == node_num)
280 			break;
281 	}
282 
283 	if (i < rm->rm_used) {
284 		/* XXX: be careful with the pointer math */
285 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
286 			(rm->rm_used - i - 1) * sizeof(unsigned int));
287 		rm->rm_used--;
288 	}
289 
290 	spin_unlock(&osb->osb_lock);
291 }
292 
293 static int ocfs2_commit_cache(struct ocfs2_super *osb)
294 {
295 	int status = 0;
296 	unsigned int flushed;
297 	struct ocfs2_journal *journal = NULL;
298 
299 	journal = osb->journal;
300 
301 	/* Flush all pending commits and checkpoint the journal. */
302 	down_write(&journal->j_trans_barrier);
303 
304 	flushed = atomic_read(&journal->j_num_trans);
305 	trace_ocfs2_commit_cache_begin(flushed);
306 	if (flushed == 0) {
307 		up_write(&journal->j_trans_barrier);
308 		goto finally;
309 	}
310 
311 	jbd2_journal_lock_updates(journal->j_journal);
312 	status = jbd2_journal_flush(journal->j_journal, 0);
313 	jbd2_journal_unlock_updates(journal->j_journal);
314 	if (status < 0) {
315 		up_write(&journal->j_trans_barrier);
316 		mlog_errno(status);
317 		goto finally;
318 	}
319 
320 	ocfs2_inc_trans_id(journal);
321 
322 	flushed = atomic_read(&journal->j_num_trans);
323 	atomic_set(&journal->j_num_trans, 0);
324 	up_write(&journal->j_trans_barrier);
325 
326 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
327 
328 	ocfs2_wake_downconvert_thread(osb);
329 	wake_up(&journal->j_checkpointed);
330 finally:
331 	return status;
332 }
333 
334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
335 {
336 	journal_t *journal = osb->journal->j_journal;
337 	handle_t *handle;
338 
339 	BUG_ON(!osb || !osb->journal->j_journal);
340 
341 	if (ocfs2_is_hard_readonly(osb))
342 		return ERR_PTR(-EROFS);
343 
344 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
345 	BUG_ON(max_buffs <= 0);
346 
347 	/* Nested transaction? Just return the handle... */
348 	if (journal_current_handle())
349 		return jbd2_journal_start(journal, max_buffs);
350 
351 	sb_start_intwrite(osb->sb);
352 
353 	down_read(&osb->journal->j_trans_barrier);
354 
355 	handle = jbd2_journal_start(journal, max_buffs);
356 	if (IS_ERR(handle)) {
357 		up_read(&osb->journal->j_trans_barrier);
358 		sb_end_intwrite(osb->sb);
359 
360 		mlog_errno(PTR_ERR(handle));
361 
362 		if (is_journal_aborted(journal)) {
363 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
364 			handle = ERR_PTR(-EROFS);
365 		}
366 	} else {
367 		if (!ocfs2_mount_local(osb))
368 			atomic_inc(&(osb->journal->j_num_trans));
369 	}
370 
371 	return handle;
372 }
373 
374 int ocfs2_commit_trans(struct ocfs2_super *osb,
375 		       handle_t *handle)
376 {
377 	int ret, nested;
378 	struct ocfs2_journal *journal = osb->journal;
379 
380 	BUG_ON(!handle);
381 
382 	nested = handle->h_ref > 1;
383 	ret = jbd2_journal_stop(handle);
384 	if (ret < 0)
385 		mlog_errno(ret);
386 
387 	if (!nested) {
388 		up_read(&journal->j_trans_barrier);
389 		sb_end_intwrite(osb->sb);
390 	}
391 
392 	return ret;
393 }
394 
395 /*
396  * 'nblocks' is what you want to add to the current transaction.
397  *
398  * This might call jbd2_journal_restart() which will commit dirty buffers
399  * and then restart the transaction. Before calling
400  * ocfs2_extend_trans(), any changed blocks should have been
401  * dirtied. After calling it, all blocks which need to be changed must
402  * go through another set of journal_access/journal_dirty calls.
403  *
404  * WARNING: This will not release any semaphores or disk locks taken
405  * during the transaction, so make sure they were taken *before*
406  * start_trans or we'll have ordering deadlocks.
407  *
408  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409  * good because transaction ids haven't yet been recorded on the
410  * cluster locks associated with this handle.
411  */
412 int ocfs2_extend_trans(handle_t *handle, int nblocks)
413 {
414 	int status, old_nblocks;
415 
416 	BUG_ON(!handle);
417 	BUG_ON(nblocks < 0);
418 
419 	if (!nblocks)
420 		return 0;
421 
422 	old_nblocks = jbd2_handle_buffer_credits(handle);
423 
424 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
425 
426 #ifdef CONFIG_OCFS2_DEBUG_FS
427 	status = 1;
428 #else
429 	status = jbd2_journal_extend(handle, nblocks, 0);
430 	if (status < 0) {
431 		mlog_errno(status);
432 		goto bail;
433 	}
434 #endif
435 
436 	if (status > 0) {
437 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
438 		status = jbd2_journal_restart(handle,
439 					      old_nblocks + nblocks);
440 		if (status < 0) {
441 			mlog_errno(status);
442 			goto bail;
443 		}
444 	}
445 
446 	status = 0;
447 bail:
448 	return status;
449 }
450 
451 /*
452  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453  * If that fails, restart the transaction & regain write access for the
454  * buffer head which is used for metadata modifications.
455  * Taken from Ext4: extend_or_restart_transaction()
456  */
457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
458 {
459 	int status, old_nblks;
460 
461 	BUG_ON(!handle);
462 
463 	old_nblks = jbd2_handle_buffer_credits(handle);
464 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
465 
466 	if (old_nblks < thresh)
467 		return 0;
468 
469 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
470 	if (status < 0) {
471 		mlog_errno(status);
472 		goto bail;
473 	}
474 
475 	if (status > 0) {
476 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
477 		if (status < 0)
478 			mlog_errno(status);
479 	}
480 
481 bail:
482 	return status;
483 }
484 
485 
486 struct ocfs2_triggers {
487 	struct jbd2_buffer_trigger_type	ot_triggers;
488 	int				ot_offset;
489 };
490 
491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
492 {
493 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
494 }
495 
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
497 				 struct buffer_head *bh,
498 				 void *data, size_t size)
499 {
500 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
501 
502 	/*
503 	 * We aren't guaranteed to have the superblock here, so we
504 	 * must unconditionally compute the ecc data.
505 	 * __ocfs2_journal_access() will only set the triggers if
506 	 * metaecc is enabled.
507 	 */
508 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
509 }
510 
511 /*
512  * Quota blocks have their own trigger because the struct ocfs2_block_check
513  * offset depends on the blocksize.
514  */
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
516 				 struct buffer_head *bh,
517 				 void *data, size_t size)
518 {
519 	struct ocfs2_disk_dqtrailer *dqt =
520 		ocfs2_block_dqtrailer(size, data);
521 
522 	/*
523 	 * We aren't guaranteed to have the superblock here, so we
524 	 * must unconditionally compute the ecc data.
525 	 * __ocfs2_journal_access() will only set the triggers if
526 	 * metaecc is enabled.
527 	 */
528 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
529 }
530 
531 /*
532  * Directory blocks also have their own trigger because the
533  * struct ocfs2_block_check offset depends on the blocksize.
534  */
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
536 				 struct buffer_head *bh,
537 				 void *data, size_t size)
538 {
539 	struct ocfs2_dir_block_trailer *trailer =
540 		ocfs2_dir_trailer_from_size(size, data);
541 
542 	/*
543 	 * We aren't guaranteed to have the superblock here, so we
544 	 * must unconditionally compute the ecc data.
545 	 * __ocfs2_journal_access() will only set the triggers if
546 	 * metaecc is enabled.
547 	 */
548 	ocfs2_block_check_compute(data, size, &trailer->db_check);
549 }
550 
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
552 				struct buffer_head *bh)
553 {
554 	mlog(ML_ERROR,
555 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
556 	     "bh->b_blocknr = %llu\n",
557 	     (unsigned long)bh,
558 	     (unsigned long long)bh->b_blocknr);
559 
560 	ocfs2_error(bh->b_bdev->bd_super,
561 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
562 }
563 
564 static struct ocfs2_triggers di_triggers = {
565 	.ot_triggers = {
566 		.t_frozen = ocfs2_frozen_trigger,
567 		.t_abort = ocfs2_abort_trigger,
568 	},
569 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
570 };
571 
572 static struct ocfs2_triggers eb_triggers = {
573 	.ot_triggers = {
574 		.t_frozen = ocfs2_frozen_trigger,
575 		.t_abort = ocfs2_abort_trigger,
576 	},
577 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
578 };
579 
580 static struct ocfs2_triggers rb_triggers = {
581 	.ot_triggers = {
582 		.t_frozen = ocfs2_frozen_trigger,
583 		.t_abort = ocfs2_abort_trigger,
584 	},
585 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
586 };
587 
588 static struct ocfs2_triggers gd_triggers = {
589 	.ot_triggers = {
590 		.t_frozen = ocfs2_frozen_trigger,
591 		.t_abort = ocfs2_abort_trigger,
592 	},
593 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
594 };
595 
596 static struct ocfs2_triggers db_triggers = {
597 	.ot_triggers = {
598 		.t_frozen = ocfs2_db_frozen_trigger,
599 		.t_abort = ocfs2_abort_trigger,
600 	},
601 };
602 
603 static struct ocfs2_triggers xb_triggers = {
604 	.ot_triggers = {
605 		.t_frozen = ocfs2_frozen_trigger,
606 		.t_abort = ocfs2_abort_trigger,
607 	},
608 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
609 };
610 
611 static struct ocfs2_triggers dq_triggers = {
612 	.ot_triggers = {
613 		.t_frozen = ocfs2_dq_frozen_trigger,
614 		.t_abort = ocfs2_abort_trigger,
615 	},
616 };
617 
618 static struct ocfs2_triggers dr_triggers = {
619 	.ot_triggers = {
620 		.t_frozen = ocfs2_frozen_trigger,
621 		.t_abort = ocfs2_abort_trigger,
622 	},
623 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
624 };
625 
626 static struct ocfs2_triggers dl_triggers = {
627 	.ot_triggers = {
628 		.t_frozen = ocfs2_frozen_trigger,
629 		.t_abort = ocfs2_abort_trigger,
630 	},
631 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
632 };
633 
634 static int __ocfs2_journal_access(handle_t *handle,
635 				  struct ocfs2_caching_info *ci,
636 				  struct buffer_head *bh,
637 				  struct ocfs2_triggers *triggers,
638 				  int type)
639 {
640 	int status;
641 	struct ocfs2_super *osb =
642 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
643 
644 	BUG_ON(!ci || !ci->ci_ops);
645 	BUG_ON(!handle);
646 	BUG_ON(!bh);
647 
648 	trace_ocfs2_journal_access(
649 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
650 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
651 
652 	/* we can safely remove this assertion after testing. */
653 	if (!buffer_uptodate(bh)) {
654 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
655 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
656 		     (unsigned long long)bh->b_blocknr, bh->b_state);
657 
658 		lock_buffer(bh);
659 		/*
660 		 * A previous transaction with a couple of buffer heads fail
661 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662 		 * For current transaction, the bh is just among those error
663 		 * bhs which previous transaction handle. We can't just clear
664 		 * its BH_Write_EIO and reuse directly, since other bhs are
665 		 * not written to disk yet and that will cause metadata
666 		 * inconsistency. So we should set fs read-only to avoid
667 		 * further damage.
668 		 */
669 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
670 			unlock_buffer(bh);
671 			return ocfs2_error(osb->sb, "A previous attempt to "
672 					"write this buffer head failed\n");
673 		}
674 		unlock_buffer(bh);
675 	}
676 
677 	/* Set the current transaction information on the ci so
678 	 * that the locking code knows whether it can drop it's locks
679 	 * on this ci or not. We're protected from the commit
680 	 * thread updating the current transaction id until
681 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
682 	 * j_trans_barrier for us. */
683 	ocfs2_set_ci_lock_trans(osb->journal, ci);
684 
685 	ocfs2_metadata_cache_io_lock(ci);
686 	switch (type) {
687 	case OCFS2_JOURNAL_ACCESS_CREATE:
688 	case OCFS2_JOURNAL_ACCESS_WRITE:
689 		status = jbd2_journal_get_write_access(handle, bh);
690 		break;
691 
692 	case OCFS2_JOURNAL_ACCESS_UNDO:
693 		status = jbd2_journal_get_undo_access(handle, bh);
694 		break;
695 
696 	default:
697 		status = -EINVAL;
698 		mlog(ML_ERROR, "Unknown access type!\n");
699 	}
700 	if (!status && ocfs2_meta_ecc(osb) && triggers)
701 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
702 	ocfs2_metadata_cache_io_unlock(ci);
703 
704 	if (status < 0)
705 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
706 		     status, type);
707 
708 	return status;
709 }
710 
711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
712 			    struct buffer_head *bh, int type)
713 {
714 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
715 }
716 
717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
718 			    struct buffer_head *bh, int type)
719 {
720 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
721 }
722 
723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
724 			    struct buffer_head *bh, int type)
725 {
726 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
727 				      type);
728 }
729 
730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
731 			    struct buffer_head *bh, int type)
732 {
733 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
734 }
735 
736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
737 			    struct buffer_head *bh, int type)
738 {
739 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
740 }
741 
742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
743 			    struct buffer_head *bh, int type)
744 {
745 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
746 }
747 
748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
749 			    struct buffer_head *bh, int type)
750 {
751 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
752 }
753 
754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
755 			    struct buffer_head *bh, int type)
756 {
757 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
758 }
759 
760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
761 			    struct buffer_head *bh, int type)
762 {
763 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
764 }
765 
766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
767 			 struct buffer_head *bh, int type)
768 {
769 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
770 }
771 
772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
773 {
774 	int status;
775 
776 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
777 
778 	status = jbd2_journal_dirty_metadata(handle, bh);
779 	if (status) {
780 		mlog_errno(status);
781 		if (!is_handle_aborted(handle)) {
782 			journal_t *journal = handle->h_transaction->t_journal;
783 			struct super_block *sb = bh->b_bdev->bd_super;
784 
785 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
786 					"Aborting transaction and journal.\n");
787 			handle->h_err = status;
788 			jbd2_journal_abort_handle(handle);
789 			jbd2_journal_abort(journal, status);
790 			ocfs2_abort(sb, "Journal already aborted.\n");
791 		}
792 	}
793 }
794 
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
796 
797 void ocfs2_set_journal_params(struct ocfs2_super *osb)
798 {
799 	journal_t *journal = osb->journal->j_journal;
800 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
801 
802 	if (osb->osb_commit_interval)
803 		commit_interval = osb->osb_commit_interval;
804 
805 	write_lock(&journal->j_state_lock);
806 	journal->j_commit_interval = commit_interval;
807 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
808 		journal->j_flags |= JBD2_BARRIER;
809 	else
810 		journal->j_flags &= ~JBD2_BARRIER;
811 	write_unlock(&journal->j_state_lock);
812 }
813 
814 /*
815  * alloc & initialize skeleton for journal structure.
816  * ocfs2_journal_init() will make fs have journal ability.
817  */
818 int ocfs2_journal_alloc(struct ocfs2_super *osb)
819 {
820 	int status = 0;
821 	struct ocfs2_journal *journal;
822 
823 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
824 	if (!journal) {
825 		mlog(ML_ERROR, "unable to alloc journal\n");
826 		status = -ENOMEM;
827 		goto bail;
828 	}
829 	osb->journal = journal;
830 	journal->j_osb = osb;
831 
832 	atomic_set(&journal->j_num_trans, 0);
833 	init_rwsem(&journal->j_trans_barrier);
834 	init_waitqueue_head(&journal->j_checkpointed);
835 	spin_lock_init(&journal->j_lock);
836 	journal->j_trans_id = 1UL;
837 	INIT_LIST_HEAD(&journal->j_la_cleanups);
838 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
839 	journal->j_state = OCFS2_JOURNAL_FREE;
840 
841 bail:
842 	return status;
843 }
844 
845 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
846 {
847 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
848 	struct writeback_control wbc = {
849 		.sync_mode =  WB_SYNC_ALL,
850 		.nr_to_write = mapping->nrpages * 2,
851 		.range_start = jinode->i_dirty_start,
852 		.range_end = jinode->i_dirty_end,
853 	};
854 
855 	return filemap_fdatawrite_wbc(mapping, &wbc);
856 }
857 
858 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
859 {
860 	int status = -1;
861 	struct inode *inode = NULL; /* the journal inode */
862 	journal_t *j_journal = NULL;
863 	struct ocfs2_journal *journal = osb->journal;
864 	struct ocfs2_dinode *di = NULL;
865 	struct buffer_head *bh = NULL;
866 	int inode_lock = 0;
867 
868 	BUG_ON(!journal);
869 	/* already have the inode for our journal */
870 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
871 					    osb->slot_num);
872 	if (inode == NULL) {
873 		status = -EACCES;
874 		mlog_errno(status);
875 		goto done;
876 	}
877 	if (is_bad_inode(inode)) {
878 		mlog(ML_ERROR, "access error (bad inode)\n");
879 		iput(inode);
880 		inode = NULL;
881 		status = -EACCES;
882 		goto done;
883 	}
884 
885 	SET_INODE_JOURNAL(inode);
886 	OCFS2_I(inode)->ip_open_count++;
887 
888 	/* Skip recovery waits here - journal inode metadata never
889 	 * changes in a live cluster so it can be considered an
890 	 * exception to the rule. */
891 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
892 	if (status < 0) {
893 		if (status != -ERESTARTSYS)
894 			mlog(ML_ERROR, "Could not get lock on journal!\n");
895 		goto done;
896 	}
897 
898 	inode_lock = 1;
899 	di = (struct ocfs2_dinode *)bh->b_data;
900 
901 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
902 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
903 		     i_size_read(inode));
904 		status = -EINVAL;
905 		goto done;
906 	}
907 
908 	trace_ocfs2_journal_init(i_size_read(inode),
909 				 (unsigned long long)inode->i_blocks,
910 				 OCFS2_I(inode)->ip_clusters);
911 
912 	/* call the kernels journal init function now */
913 	j_journal = jbd2_journal_init_inode(inode);
914 	if (j_journal == NULL) {
915 		mlog(ML_ERROR, "Linux journal layer error\n");
916 		status = -EINVAL;
917 		goto done;
918 	}
919 
920 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
921 
922 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
923 		  OCFS2_JOURNAL_DIRTY_FL);
924 
925 	journal->j_journal = j_journal;
926 	journal->j_journal->j_submit_inode_data_buffers =
927 		ocfs2_journal_submit_inode_data_buffers;
928 	journal->j_journal->j_finish_inode_data_buffers =
929 		jbd2_journal_finish_inode_data_buffers;
930 	journal->j_inode = inode;
931 	journal->j_bh = bh;
932 
933 	ocfs2_set_journal_params(osb);
934 
935 	journal->j_state = OCFS2_JOURNAL_LOADED;
936 
937 	status = 0;
938 done:
939 	if (status < 0) {
940 		if (inode_lock)
941 			ocfs2_inode_unlock(inode, 1);
942 		brelse(bh);
943 		if (inode) {
944 			OCFS2_I(inode)->ip_open_count--;
945 			iput(inode);
946 		}
947 	}
948 
949 	return status;
950 }
951 
952 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
953 {
954 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
955 }
956 
957 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
958 {
959 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
960 }
961 
962 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
963 				      int dirty, int replayed)
964 {
965 	int status;
966 	unsigned int flags;
967 	struct ocfs2_journal *journal = osb->journal;
968 	struct buffer_head *bh = journal->j_bh;
969 	struct ocfs2_dinode *fe;
970 
971 	fe = (struct ocfs2_dinode *)bh->b_data;
972 
973 	/* The journal bh on the osb always comes from ocfs2_journal_init()
974 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
975 	 * code bug if we mess it up. */
976 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
977 
978 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
979 	if (dirty)
980 		flags |= OCFS2_JOURNAL_DIRTY_FL;
981 	else
982 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
983 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
984 
985 	if (replayed)
986 		ocfs2_bump_recovery_generation(fe);
987 
988 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
989 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
990 	if (status < 0)
991 		mlog_errno(status);
992 
993 	return status;
994 }
995 
996 /*
997  * If the journal has been kmalloc'd it needs to be freed after this
998  * call.
999  */
1000 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1001 {
1002 	struct ocfs2_journal *journal = NULL;
1003 	int status = 0;
1004 	struct inode *inode = NULL;
1005 	int num_running_trans = 0;
1006 
1007 	BUG_ON(!osb);
1008 
1009 	journal = osb->journal;
1010 	if (!journal)
1011 		goto done;
1012 
1013 	inode = journal->j_inode;
1014 
1015 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1016 		goto done;
1017 
1018 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1019 	if (!igrab(inode))
1020 		BUG();
1021 
1022 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1023 	trace_ocfs2_journal_shutdown(num_running_trans);
1024 
1025 	/* Do a commit_cache here. It will flush our journal, *and*
1026 	 * release any locks that are still held.
1027 	 * set the SHUTDOWN flag and release the trans lock.
1028 	 * the commit thread will take the trans lock for us below. */
1029 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1030 
1031 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1032 	 * drop the trans_lock (which we want to hold until we
1033 	 * completely destroy the journal. */
1034 	if (osb->commit_task) {
1035 		/* Wait for the commit thread */
1036 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1037 		kthread_stop(osb->commit_task);
1038 		osb->commit_task = NULL;
1039 	}
1040 
1041 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1042 
1043 	if (ocfs2_mount_local(osb)) {
1044 		jbd2_journal_lock_updates(journal->j_journal);
1045 		status = jbd2_journal_flush(journal->j_journal, 0);
1046 		jbd2_journal_unlock_updates(journal->j_journal);
1047 		if (status < 0)
1048 			mlog_errno(status);
1049 	}
1050 
1051 	/* Shutdown the kernel journal system */
1052 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1053 		/*
1054 		 * Do not toggle if flush was unsuccessful otherwise
1055 		 * will leave dirty metadata in a "clean" journal
1056 		 */
1057 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1058 		if (status < 0)
1059 			mlog_errno(status);
1060 	}
1061 	journal->j_journal = NULL;
1062 
1063 	OCFS2_I(inode)->ip_open_count--;
1064 
1065 	/* unlock our journal */
1066 	ocfs2_inode_unlock(inode, 1);
1067 
1068 	brelse(journal->j_bh);
1069 	journal->j_bh = NULL;
1070 
1071 	journal->j_state = OCFS2_JOURNAL_FREE;
1072 
1073 done:
1074 	iput(inode);
1075 	kfree(journal);
1076 	osb->journal = NULL;
1077 }
1078 
1079 static void ocfs2_clear_journal_error(struct super_block *sb,
1080 				      journal_t *journal,
1081 				      int slot)
1082 {
1083 	int olderr;
1084 
1085 	olderr = jbd2_journal_errno(journal);
1086 	if (olderr) {
1087 		mlog(ML_ERROR, "File system error %d recorded in "
1088 		     "journal %u.\n", olderr, slot);
1089 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1090 		     sb->s_id);
1091 
1092 		jbd2_journal_ack_err(journal);
1093 		jbd2_journal_clear_err(journal);
1094 	}
1095 }
1096 
1097 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1098 {
1099 	int status = 0;
1100 	struct ocfs2_super *osb;
1101 
1102 	BUG_ON(!journal);
1103 
1104 	osb = journal->j_osb;
1105 
1106 	status = jbd2_journal_load(journal->j_journal);
1107 	if (status < 0) {
1108 		mlog(ML_ERROR, "Failed to load journal!\n");
1109 		goto done;
1110 	}
1111 
1112 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1113 
1114 	if (replayed) {
1115 		jbd2_journal_lock_updates(journal->j_journal);
1116 		status = jbd2_journal_flush(journal->j_journal, 0);
1117 		jbd2_journal_unlock_updates(journal->j_journal);
1118 		if (status < 0)
1119 			mlog_errno(status);
1120 	}
1121 
1122 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1123 	if (status < 0) {
1124 		mlog_errno(status);
1125 		goto done;
1126 	}
1127 
1128 	/* Launch the commit thread */
1129 	if (!local) {
1130 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1131 				"ocfs2cmt-%s", osb->uuid_str);
1132 		if (IS_ERR(osb->commit_task)) {
1133 			status = PTR_ERR(osb->commit_task);
1134 			osb->commit_task = NULL;
1135 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1136 			     "error=%d", status);
1137 			goto done;
1138 		}
1139 	} else
1140 		osb->commit_task = NULL;
1141 
1142 done:
1143 	return status;
1144 }
1145 
1146 
1147 /* 'full' flag tells us whether we clear out all blocks or if we just
1148  * mark the journal clean */
1149 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1150 {
1151 	int status;
1152 
1153 	BUG_ON(!journal);
1154 
1155 	status = jbd2_journal_wipe(journal->j_journal, full);
1156 	if (status < 0) {
1157 		mlog_errno(status);
1158 		goto bail;
1159 	}
1160 
1161 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1162 	if (status < 0)
1163 		mlog_errno(status);
1164 
1165 bail:
1166 	return status;
1167 }
1168 
1169 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1170 {
1171 	int empty;
1172 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1173 
1174 	spin_lock(&osb->osb_lock);
1175 	empty = (rm->rm_used == 0);
1176 	spin_unlock(&osb->osb_lock);
1177 
1178 	return empty;
1179 }
1180 
1181 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1182 {
1183 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1184 }
1185 
1186 /*
1187  * JBD Might read a cached version of another nodes journal file. We
1188  * don't want this as this file changes often and we get no
1189  * notification on those changes. The only way to be sure that we've
1190  * got the most up to date version of those blocks then is to force
1191  * read them off disk. Just searching through the buffer cache won't
1192  * work as there may be pages backing this file which are still marked
1193  * up to date. We know things can't change on this file underneath us
1194  * as we have the lock by now :)
1195  */
1196 static int ocfs2_force_read_journal(struct inode *inode)
1197 {
1198 	int status = 0;
1199 	int i;
1200 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1201 	struct buffer_head *bh = NULL;
1202 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1203 
1204 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1205 	v_blkno = 0;
1206 	while (v_blkno < num_blocks) {
1207 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1208 						     &p_blkno, &p_blocks, NULL);
1209 		if (status < 0) {
1210 			mlog_errno(status);
1211 			goto bail;
1212 		}
1213 
1214 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1215 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1216 					osb->sb->s_blocksize);
1217 			/* block not cached. */
1218 			if (!bh)
1219 				continue;
1220 
1221 			brelse(bh);
1222 			bh = NULL;
1223 			/* We are reading journal data which should not
1224 			 * be put in the uptodate cache.
1225 			 */
1226 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1227 			if (status < 0) {
1228 				mlog_errno(status);
1229 				goto bail;
1230 			}
1231 
1232 			brelse(bh);
1233 			bh = NULL;
1234 		}
1235 
1236 		v_blkno += p_blocks;
1237 	}
1238 
1239 bail:
1240 	return status;
1241 }
1242 
1243 struct ocfs2_la_recovery_item {
1244 	struct list_head	lri_list;
1245 	int			lri_slot;
1246 	struct ocfs2_dinode	*lri_la_dinode;
1247 	struct ocfs2_dinode	*lri_tl_dinode;
1248 	struct ocfs2_quota_recovery *lri_qrec;
1249 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1250 };
1251 
1252 /* Does the second half of the recovery process. By this point, the
1253  * node is marked clean and can actually be considered recovered,
1254  * hence it's no longer in the recovery map, but there's still some
1255  * cleanup we can do which shouldn't happen within the recovery thread
1256  * as locking in that context becomes very difficult if we are to take
1257  * recovering nodes into account.
1258  *
1259  * NOTE: This function can and will sleep on recovery of other nodes
1260  * during cluster locking, just like any other ocfs2 process.
1261  */
1262 void ocfs2_complete_recovery(struct work_struct *work)
1263 {
1264 	int ret = 0;
1265 	struct ocfs2_journal *journal =
1266 		container_of(work, struct ocfs2_journal, j_recovery_work);
1267 	struct ocfs2_super *osb = journal->j_osb;
1268 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1269 	struct ocfs2_la_recovery_item *item, *n;
1270 	struct ocfs2_quota_recovery *qrec;
1271 	enum ocfs2_orphan_reco_type orphan_reco_type;
1272 	LIST_HEAD(tmp_la_list);
1273 
1274 	trace_ocfs2_complete_recovery(
1275 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1276 
1277 	spin_lock(&journal->j_lock);
1278 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1279 	spin_unlock(&journal->j_lock);
1280 
1281 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1282 		list_del_init(&item->lri_list);
1283 
1284 		ocfs2_wait_on_quotas(osb);
1285 
1286 		la_dinode = item->lri_la_dinode;
1287 		tl_dinode = item->lri_tl_dinode;
1288 		qrec = item->lri_qrec;
1289 		orphan_reco_type = item->lri_orphan_reco_type;
1290 
1291 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1292 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1293 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1294 			qrec);
1295 
1296 		if (la_dinode) {
1297 			ret = ocfs2_complete_local_alloc_recovery(osb,
1298 								  la_dinode);
1299 			if (ret < 0)
1300 				mlog_errno(ret);
1301 
1302 			kfree(la_dinode);
1303 		}
1304 
1305 		if (tl_dinode) {
1306 			ret = ocfs2_complete_truncate_log_recovery(osb,
1307 								   tl_dinode);
1308 			if (ret < 0)
1309 				mlog_errno(ret);
1310 
1311 			kfree(tl_dinode);
1312 		}
1313 
1314 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1315 				orphan_reco_type);
1316 		if (ret < 0)
1317 			mlog_errno(ret);
1318 
1319 		if (qrec) {
1320 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1321 							  item->lri_slot);
1322 			if (ret < 0)
1323 				mlog_errno(ret);
1324 			/* Recovery info is already freed now */
1325 		}
1326 
1327 		kfree(item);
1328 	}
1329 
1330 	trace_ocfs2_complete_recovery_end(ret);
1331 }
1332 
1333 /* NOTE: This function always eats your references to la_dinode and
1334  * tl_dinode, either manually on error, or by passing them to
1335  * ocfs2_complete_recovery */
1336 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1337 					    int slot_num,
1338 					    struct ocfs2_dinode *la_dinode,
1339 					    struct ocfs2_dinode *tl_dinode,
1340 					    struct ocfs2_quota_recovery *qrec,
1341 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1342 {
1343 	struct ocfs2_la_recovery_item *item;
1344 
1345 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1346 	if (!item) {
1347 		/* Though we wish to avoid it, we are in fact safe in
1348 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1349 		 * than capable of reclaiming unused space. */
1350 		kfree(la_dinode);
1351 		kfree(tl_dinode);
1352 
1353 		if (qrec)
1354 			ocfs2_free_quota_recovery(qrec);
1355 
1356 		mlog_errno(-ENOMEM);
1357 		return;
1358 	}
1359 
1360 	INIT_LIST_HEAD(&item->lri_list);
1361 	item->lri_la_dinode = la_dinode;
1362 	item->lri_slot = slot_num;
1363 	item->lri_tl_dinode = tl_dinode;
1364 	item->lri_qrec = qrec;
1365 	item->lri_orphan_reco_type = orphan_reco_type;
1366 
1367 	spin_lock(&journal->j_lock);
1368 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1369 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1370 	spin_unlock(&journal->j_lock);
1371 }
1372 
1373 /* Called by the mount code to queue recovery the last part of
1374  * recovery for it's own and offline slot(s). */
1375 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1376 {
1377 	struct ocfs2_journal *journal = osb->journal;
1378 
1379 	if (ocfs2_is_hard_readonly(osb))
1380 		return;
1381 
1382 	/* No need to queue up our truncate_log as regular cleanup will catch
1383 	 * that */
1384 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1385 					osb->local_alloc_copy, NULL, NULL,
1386 					ORPHAN_NEED_TRUNCATE);
1387 	ocfs2_schedule_truncate_log_flush(osb, 0);
1388 
1389 	osb->local_alloc_copy = NULL;
1390 
1391 	/* queue to recover orphan slots for all offline slots */
1392 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1393 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1394 	ocfs2_free_replay_slots(osb);
1395 }
1396 
1397 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1398 {
1399 	if (osb->quota_rec) {
1400 		ocfs2_queue_recovery_completion(osb->journal,
1401 						osb->slot_num,
1402 						NULL,
1403 						NULL,
1404 						osb->quota_rec,
1405 						ORPHAN_NEED_TRUNCATE);
1406 		osb->quota_rec = NULL;
1407 	}
1408 }
1409 
1410 static int __ocfs2_recovery_thread(void *arg)
1411 {
1412 	int status, node_num, slot_num;
1413 	struct ocfs2_super *osb = arg;
1414 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1415 	int *rm_quota = NULL;
1416 	int rm_quota_used = 0, i;
1417 	struct ocfs2_quota_recovery *qrec;
1418 
1419 	/* Whether the quota supported. */
1420 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1421 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1422 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1423 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1424 
1425 	status = ocfs2_wait_on_mount(osb);
1426 	if (status < 0) {
1427 		goto bail;
1428 	}
1429 
1430 	if (quota_enabled) {
1431 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1432 		if (!rm_quota) {
1433 			status = -ENOMEM;
1434 			goto bail;
1435 		}
1436 	}
1437 restart:
1438 	status = ocfs2_super_lock(osb, 1);
1439 	if (status < 0) {
1440 		mlog_errno(status);
1441 		goto bail;
1442 	}
1443 
1444 	status = ocfs2_compute_replay_slots(osb);
1445 	if (status < 0)
1446 		mlog_errno(status);
1447 
1448 	/* queue recovery for our own slot */
1449 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1450 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1451 
1452 	spin_lock(&osb->osb_lock);
1453 	while (rm->rm_used) {
1454 		/* It's always safe to remove entry zero, as we won't
1455 		 * clear it until ocfs2_recover_node() has succeeded. */
1456 		node_num = rm->rm_entries[0];
1457 		spin_unlock(&osb->osb_lock);
1458 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1459 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1460 		if (slot_num == -ENOENT) {
1461 			status = 0;
1462 			goto skip_recovery;
1463 		}
1464 
1465 		/* It is a bit subtle with quota recovery. We cannot do it
1466 		 * immediately because we have to obtain cluster locks from
1467 		 * quota files and we also don't want to just skip it because
1468 		 * then quota usage would be out of sync until some node takes
1469 		 * the slot. So we remember which nodes need quota recovery
1470 		 * and when everything else is done, we recover quotas. */
1471 		if (quota_enabled) {
1472 			for (i = 0; i < rm_quota_used
1473 					&& rm_quota[i] != slot_num; i++)
1474 				;
1475 
1476 			if (i == rm_quota_used)
1477 				rm_quota[rm_quota_used++] = slot_num;
1478 		}
1479 
1480 		status = ocfs2_recover_node(osb, node_num, slot_num);
1481 skip_recovery:
1482 		if (!status) {
1483 			ocfs2_recovery_map_clear(osb, node_num);
1484 		} else {
1485 			mlog(ML_ERROR,
1486 			     "Error %d recovering node %d on device (%u,%u)!\n",
1487 			     status, node_num,
1488 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1489 			mlog(ML_ERROR, "Volume requires unmount.\n");
1490 		}
1491 
1492 		spin_lock(&osb->osb_lock);
1493 	}
1494 	spin_unlock(&osb->osb_lock);
1495 	trace_ocfs2_recovery_thread_end(status);
1496 
1497 	/* Refresh all journal recovery generations from disk */
1498 	status = ocfs2_check_journals_nolocks(osb);
1499 	status = (status == -EROFS) ? 0 : status;
1500 	if (status < 0)
1501 		mlog_errno(status);
1502 
1503 	/* Now it is right time to recover quotas... We have to do this under
1504 	 * superblock lock so that no one can start using the slot (and crash)
1505 	 * before we recover it */
1506 	if (quota_enabled) {
1507 		for (i = 0; i < rm_quota_used; i++) {
1508 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1509 			if (IS_ERR(qrec)) {
1510 				status = PTR_ERR(qrec);
1511 				mlog_errno(status);
1512 				continue;
1513 			}
1514 			ocfs2_queue_recovery_completion(osb->journal,
1515 					rm_quota[i],
1516 					NULL, NULL, qrec,
1517 					ORPHAN_NEED_TRUNCATE);
1518 		}
1519 	}
1520 
1521 	ocfs2_super_unlock(osb, 1);
1522 
1523 	/* queue recovery for offline slots */
1524 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1525 
1526 bail:
1527 	mutex_lock(&osb->recovery_lock);
1528 	if (!status && !ocfs2_recovery_completed(osb)) {
1529 		mutex_unlock(&osb->recovery_lock);
1530 		goto restart;
1531 	}
1532 
1533 	ocfs2_free_replay_slots(osb);
1534 	osb->recovery_thread_task = NULL;
1535 	mb(); /* sync with ocfs2_recovery_thread_running */
1536 	wake_up(&osb->recovery_event);
1537 
1538 	mutex_unlock(&osb->recovery_lock);
1539 
1540 	if (quota_enabled)
1541 		kfree(rm_quota);
1542 
1543 	return status;
1544 }
1545 
1546 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1547 {
1548 	mutex_lock(&osb->recovery_lock);
1549 
1550 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1551 		osb->disable_recovery, osb->recovery_thread_task,
1552 		osb->disable_recovery ?
1553 		-1 : ocfs2_recovery_map_set(osb, node_num));
1554 
1555 	if (osb->disable_recovery)
1556 		goto out;
1557 
1558 	if (osb->recovery_thread_task)
1559 		goto out;
1560 
1561 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1562 			"ocfs2rec-%s", osb->uuid_str);
1563 	if (IS_ERR(osb->recovery_thread_task)) {
1564 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1565 		osb->recovery_thread_task = NULL;
1566 	}
1567 
1568 out:
1569 	mutex_unlock(&osb->recovery_lock);
1570 	wake_up(&osb->recovery_event);
1571 }
1572 
1573 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1574 				    int slot_num,
1575 				    struct buffer_head **bh,
1576 				    struct inode **ret_inode)
1577 {
1578 	int status = -EACCES;
1579 	struct inode *inode = NULL;
1580 
1581 	BUG_ON(slot_num >= osb->max_slots);
1582 
1583 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1584 					    slot_num);
1585 	if (!inode || is_bad_inode(inode)) {
1586 		mlog_errno(status);
1587 		goto bail;
1588 	}
1589 	SET_INODE_JOURNAL(inode);
1590 
1591 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1592 	if (status < 0) {
1593 		mlog_errno(status);
1594 		goto bail;
1595 	}
1596 
1597 	status = 0;
1598 
1599 bail:
1600 	if (inode) {
1601 		if (status || !ret_inode)
1602 			iput(inode);
1603 		else
1604 			*ret_inode = inode;
1605 	}
1606 	return status;
1607 }
1608 
1609 /* Does the actual journal replay and marks the journal inode as
1610  * clean. Will only replay if the journal inode is marked dirty. */
1611 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1612 				int node_num,
1613 				int slot_num)
1614 {
1615 	int status;
1616 	int got_lock = 0;
1617 	unsigned int flags;
1618 	struct inode *inode = NULL;
1619 	struct ocfs2_dinode *fe;
1620 	journal_t *journal = NULL;
1621 	struct buffer_head *bh = NULL;
1622 	u32 slot_reco_gen;
1623 
1624 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1625 	if (status) {
1626 		mlog_errno(status);
1627 		goto done;
1628 	}
1629 
1630 	fe = (struct ocfs2_dinode *)bh->b_data;
1631 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1632 	brelse(bh);
1633 	bh = NULL;
1634 
1635 	/*
1636 	 * As the fs recovery is asynchronous, there is a small chance that
1637 	 * another node mounted (and recovered) the slot before the recovery
1638 	 * thread could get the lock. To handle that, we dirty read the journal
1639 	 * inode for that slot to get the recovery generation. If it is
1640 	 * different than what we expected, the slot has been recovered.
1641 	 * If not, it needs recovery.
1642 	 */
1643 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1644 		trace_ocfs2_replay_journal_recovered(slot_num,
1645 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1646 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1647 		status = -EBUSY;
1648 		goto done;
1649 	}
1650 
1651 	/* Continue with recovery as the journal has not yet been recovered */
1652 
1653 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1654 	if (status < 0) {
1655 		trace_ocfs2_replay_journal_lock_err(status);
1656 		if (status != -ERESTARTSYS)
1657 			mlog(ML_ERROR, "Could not lock journal!\n");
1658 		goto done;
1659 	}
1660 	got_lock = 1;
1661 
1662 	fe = (struct ocfs2_dinode *) bh->b_data;
1663 
1664 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1665 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1666 
1667 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1668 		trace_ocfs2_replay_journal_skip(node_num);
1669 		/* Refresh recovery generation for the slot */
1670 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1671 		goto done;
1672 	}
1673 
1674 	/* we need to run complete recovery for offline orphan slots */
1675 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1676 
1677 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1678 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1679 	       MINOR(osb->sb->s_dev));
1680 
1681 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1682 
1683 	status = ocfs2_force_read_journal(inode);
1684 	if (status < 0) {
1685 		mlog_errno(status);
1686 		goto done;
1687 	}
1688 
1689 	journal = jbd2_journal_init_inode(inode);
1690 	if (journal == NULL) {
1691 		mlog(ML_ERROR, "Linux journal layer error\n");
1692 		status = -EIO;
1693 		goto done;
1694 	}
1695 
1696 	status = jbd2_journal_load(journal);
1697 	if (status < 0) {
1698 		mlog_errno(status);
1699 		BUG_ON(!igrab(inode));
1700 		jbd2_journal_destroy(journal);
1701 		goto done;
1702 	}
1703 
1704 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1705 
1706 	/* wipe the journal */
1707 	jbd2_journal_lock_updates(journal);
1708 	status = jbd2_journal_flush(journal, 0);
1709 	jbd2_journal_unlock_updates(journal);
1710 	if (status < 0)
1711 		mlog_errno(status);
1712 
1713 	/* This will mark the node clean */
1714 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1715 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1716 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1717 
1718 	/* Increment recovery generation to indicate successful recovery */
1719 	ocfs2_bump_recovery_generation(fe);
1720 	osb->slot_recovery_generations[slot_num] =
1721 					ocfs2_get_recovery_generation(fe);
1722 
1723 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1724 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1725 	if (status < 0)
1726 		mlog_errno(status);
1727 
1728 	BUG_ON(!igrab(inode));
1729 
1730 	jbd2_journal_destroy(journal);
1731 
1732 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1733 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1734 	       MINOR(osb->sb->s_dev));
1735 done:
1736 	/* drop the lock on this nodes journal */
1737 	if (got_lock)
1738 		ocfs2_inode_unlock(inode, 1);
1739 
1740 	iput(inode);
1741 	brelse(bh);
1742 
1743 	return status;
1744 }
1745 
1746 /*
1747  * Do the most important parts of node recovery:
1748  *  - Replay it's journal
1749  *  - Stamp a clean local allocator file
1750  *  - Stamp a clean truncate log
1751  *  - Mark the node clean
1752  *
1753  * If this function completes without error, a node in OCFS2 can be
1754  * said to have been safely recovered. As a result, failure during the
1755  * second part of a nodes recovery process (local alloc recovery) is
1756  * far less concerning.
1757  */
1758 static int ocfs2_recover_node(struct ocfs2_super *osb,
1759 			      int node_num, int slot_num)
1760 {
1761 	int status = 0;
1762 	struct ocfs2_dinode *la_copy = NULL;
1763 	struct ocfs2_dinode *tl_copy = NULL;
1764 
1765 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1766 
1767 	/* Should not ever be called to recover ourselves -- in that
1768 	 * case we should've called ocfs2_journal_load instead. */
1769 	BUG_ON(osb->node_num == node_num);
1770 
1771 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1772 	if (status < 0) {
1773 		if (status == -EBUSY) {
1774 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1775 			status = 0;
1776 			goto done;
1777 		}
1778 		mlog_errno(status);
1779 		goto done;
1780 	}
1781 
1782 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1783 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1784 	if (status < 0) {
1785 		mlog_errno(status);
1786 		goto done;
1787 	}
1788 
1789 	/* An error from begin_truncate_log_recovery is not
1790 	 * serious enough to warrant halting the rest of
1791 	 * recovery. */
1792 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1793 	if (status < 0)
1794 		mlog_errno(status);
1795 
1796 	/* Likewise, this would be a strange but ultimately not so
1797 	 * harmful place to get an error... */
1798 	status = ocfs2_clear_slot(osb, slot_num);
1799 	if (status < 0)
1800 		mlog_errno(status);
1801 
1802 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1803 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1804 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1805 
1806 	status = 0;
1807 done:
1808 
1809 	return status;
1810 }
1811 
1812 /* Test node liveness by trylocking his journal. If we get the lock,
1813  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1814  * still alive (we couldn't get the lock) and < 0 on error. */
1815 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1816 				 int slot_num)
1817 {
1818 	int status, flags;
1819 	struct inode *inode = NULL;
1820 
1821 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1822 					    slot_num);
1823 	if (inode == NULL) {
1824 		mlog(ML_ERROR, "access error\n");
1825 		status = -EACCES;
1826 		goto bail;
1827 	}
1828 	if (is_bad_inode(inode)) {
1829 		mlog(ML_ERROR, "access error (bad inode)\n");
1830 		iput(inode);
1831 		inode = NULL;
1832 		status = -EACCES;
1833 		goto bail;
1834 	}
1835 	SET_INODE_JOURNAL(inode);
1836 
1837 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1838 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1839 	if (status < 0) {
1840 		if (status != -EAGAIN)
1841 			mlog_errno(status);
1842 		goto bail;
1843 	}
1844 
1845 	ocfs2_inode_unlock(inode, 1);
1846 bail:
1847 	iput(inode);
1848 
1849 	return status;
1850 }
1851 
1852 /* Call this underneath ocfs2_super_lock. It also assumes that the
1853  * slot info struct has been updated from disk. */
1854 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1855 {
1856 	unsigned int node_num;
1857 	int status, i;
1858 	u32 gen;
1859 	struct buffer_head *bh = NULL;
1860 	struct ocfs2_dinode *di;
1861 
1862 	/* This is called with the super block cluster lock, so we
1863 	 * know that the slot map can't change underneath us. */
1864 
1865 	for (i = 0; i < osb->max_slots; i++) {
1866 		/* Read journal inode to get the recovery generation */
1867 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1868 		if (status) {
1869 			mlog_errno(status);
1870 			goto bail;
1871 		}
1872 		di = (struct ocfs2_dinode *)bh->b_data;
1873 		gen = ocfs2_get_recovery_generation(di);
1874 		brelse(bh);
1875 		bh = NULL;
1876 
1877 		spin_lock(&osb->osb_lock);
1878 		osb->slot_recovery_generations[i] = gen;
1879 
1880 		trace_ocfs2_mark_dead_nodes(i,
1881 					    osb->slot_recovery_generations[i]);
1882 
1883 		if (i == osb->slot_num) {
1884 			spin_unlock(&osb->osb_lock);
1885 			continue;
1886 		}
1887 
1888 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1889 		if (status == -ENOENT) {
1890 			spin_unlock(&osb->osb_lock);
1891 			continue;
1892 		}
1893 
1894 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1895 			spin_unlock(&osb->osb_lock);
1896 			continue;
1897 		}
1898 		spin_unlock(&osb->osb_lock);
1899 
1900 		/* Ok, we have a slot occupied by another node which
1901 		 * is not in the recovery map. We trylock his journal
1902 		 * file here to test if he's alive. */
1903 		status = ocfs2_trylock_journal(osb, i);
1904 		if (!status) {
1905 			/* Since we're called from mount, we know that
1906 			 * the recovery thread can't race us on
1907 			 * setting / checking the recovery bits. */
1908 			ocfs2_recovery_thread(osb, node_num);
1909 		} else if ((status < 0) && (status != -EAGAIN)) {
1910 			mlog_errno(status);
1911 			goto bail;
1912 		}
1913 	}
1914 
1915 	status = 0;
1916 bail:
1917 	return status;
1918 }
1919 
1920 /*
1921  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1922  * randomness to the timeout to minimize multple nodes firing the timer at the
1923  * same time.
1924  */
1925 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1926 {
1927 	unsigned long time;
1928 
1929 	get_random_bytes(&time, sizeof(time));
1930 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1931 	return msecs_to_jiffies(time);
1932 }
1933 
1934 /*
1935  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1936  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1937  * is done to catch any orphans that are left over in orphan directories.
1938  *
1939  * It scans all slots, even ones that are in use. It does so to handle the
1940  * case described below:
1941  *
1942  *   Node 1 has an inode it was using. The dentry went away due to memory
1943  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1944  *   has the open lock.
1945  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1946  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1947  *   open lock, sees that another node has a PR, and does nothing.
1948  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1949  *   open lock, sees the PR still, and does nothing.
1950  *   Basically, we have to trigger an orphan iput on node 1. The only way
1951  *   for this to happen is if node 1 runs node 2's orphan dir.
1952  *
1953  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1954  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1955  * stored in LVB. If the sequence number has changed, it means some other
1956  * node has done the scan.  This node skips the scan and tracks the
1957  * sequence number.  If the sequence number didn't change, it means a scan
1958  * hasn't happened.  The node queues a scan and increments the
1959  * sequence number in the LVB.
1960  */
1961 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1962 {
1963 	struct ocfs2_orphan_scan *os;
1964 	int status, i;
1965 	u32 seqno = 0;
1966 
1967 	os = &osb->osb_orphan_scan;
1968 
1969 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1970 		goto out;
1971 
1972 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1973 					    atomic_read(&os->os_state));
1974 
1975 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1976 	if (status < 0) {
1977 		if (status != -EAGAIN)
1978 			mlog_errno(status);
1979 		goto out;
1980 	}
1981 
1982 	/* Do no queue the tasks if the volume is being umounted */
1983 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1984 		goto unlock;
1985 
1986 	if (os->os_seqno != seqno) {
1987 		os->os_seqno = seqno;
1988 		goto unlock;
1989 	}
1990 
1991 	for (i = 0; i < osb->max_slots; i++)
1992 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1993 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1994 	/*
1995 	 * We queued a recovery on orphan slots, increment the sequence
1996 	 * number and update LVB so other node will skip the scan for a while
1997 	 */
1998 	seqno++;
1999 	os->os_count++;
2000 	os->os_scantime = ktime_get_seconds();
2001 unlock:
2002 	ocfs2_orphan_scan_unlock(osb, seqno);
2003 out:
2004 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2005 					  atomic_read(&os->os_state));
2006 	return;
2007 }
2008 
2009 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2010 static void ocfs2_orphan_scan_work(struct work_struct *work)
2011 {
2012 	struct ocfs2_orphan_scan *os;
2013 	struct ocfs2_super *osb;
2014 
2015 	os = container_of(work, struct ocfs2_orphan_scan,
2016 			  os_orphan_scan_work.work);
2017 	osb = os->os_osb;
2018 
2019 	mutex_lock(&os->os_lock);
2020 	ocfs2_queue_orphan_scan(osb);
2021 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2022 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2023 				      ocfs2_orphan_scan_timeout());
2024 	mutex_unlock(&os->os_lock);
2025 }
2026 
2027 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2028 {
2029 	struct ocfs2_orphan_scan *os;
2030 
2031 	os = &osb->osb_orphan_scan;
2032 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2033 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2034 		mutex_lock(&os->os_lock);
2035 		cancel_delayed_work(&os->os_orphan_scan_work);
2036 		mutex_unlock(&os->os_lock);
2037 	}
2038 }
2039 
2040 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2041 {
2042 	struct ocfs2_orphan_scan *os;
2043 
2044 	os = &osb->osb_orphan_scan;
2045 	os->os_osb = osb;
2046 	os->os_count = 0;
2047 	os->os_seqno = 0;
2048 	mutex_init(&os->os_lock);
2049 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2050 }
2051 
2052 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2053 {
2054 	struct ocfs2_orphan_scan *os;
2055 
2056 	os = &osb->osb_orphan_scan;
2057 	os->os_scantime = ktime_get_seconds();
2058 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2059 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2060 	else {
2061 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2062 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2063 				   ocfs2_orphan_scan_timeout());
2064 	}
2065 }
2066 
2067 struct ocfs2_orphan_filldir_priv {
2068 	struct dir_context	ctx;
2069 	struct inode		*head;
2070 	struct ocfs2_super	*osb;
2071 	enum ocfs2_orphan_reco_type orphan_reco_type;
2072 };
2073 
2074 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2075 				int name_len, loff_t pos, u64 ino,
2076 				unsigned type)
2077 {
2078 	struct ocfs2_orphan_filldir_priv *p =
2079 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2080 	struct inode *iter;
2081 
2082 	if (name_len == 1 && !strncmp(".", name, 1))
2083 		return true;
2084 	if (name_len == 2 && !strncmp("..", name, 2))
2085 		return true;
2086 
2087 	/* do not include dio entry in case of orphan scan */
2088 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2089 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2090 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2091 		return true;
2092 
2093 	/* Skip bad inodes so that recovery can continue */
2094 	iter = ocfs2_iget(p->osb, ino,
2095 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2096 	if (IS_ERR(iter))
2097 		return true;
2098 
2099 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2100 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2101 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2102 
2103 	/* Skip inodes which are already added to recover list, since dio may
2104 	 * happen concurrently with unlink/rename */
2105 	if (OCFS2_I(iter)->ip_next_orphan) {
2106 		iput(iter);
2107 		return true;
2108 	}
2109 
2110 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2111 	/* No locking is required for the next_orphan queue as there
2112 	 * is only ever a single process doing orphan recovery. */
2113 	OCFS2_I(iter)->ip_next_orphan = p->head;
2114 	p->head = iter;
2115 
2116 	return true;
2117 }
2118 
2119 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2120 			       int slot,
2121 			       struct inode **head,
2122 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2123 {
2124 	int status;
2125 	struct inode *orphan_dir_inode = NULL;
2126 	struct ocfs2_orphan_filldir_priv priv = {
2127 		.ctx.actor = ocfs2_orphan_filldir,
2128 		.osb = osb,
2129 		.head = *head,
2130 		.orphan_reco_type = orphan_reco_type
2131 	};
2132 
2133 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2134 						       ORPHAN_DIR_SYSTEM_INODE,
2135 						       slot);
2136 	if  (!orphan_dir_inode) {
2137 		status = -ENOENT;
2138 		mlog_errno(status);
2139 		return status;
2140 	}
2141 
2142 	inode_lock(orphan_dir_inode);
2143 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2144 	if (status < 0) {
2145 		mlog_errno(status);
2146 		goto out;
2147 	}
2148 
2149 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2150 	if (status) {
2151 		mlog_errno(status);
2152 		goto out_cluster;
2153 	}
2154 
2155 	*head = priv.head;
2156 
2157 out_cluster:
2158 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2159 out:
2160 	inode_unlock(orphan_dir_inode);
2161 	iput(orphan_dir_inode);
2162 	return status;
2163 }
2164 
2165 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2166 					      int slot)
2167 {
2168 	int ret;
2169 
2170 	spin_lock(&osb->osb_lock);
2171 	ret = !osb->osb_orphan_wipes[slot];
2172 	spin_unlock(&osb->osb_lock);
2173 	return ret;
2174 }
2175 
2176 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2177 					     int slot)
2178 {
2179 	spin_lock(&osb->osb_lock);
2180 	/* Mark ourselves such that new processes in delete_inode()
2181 	 * know to quit early. */
2182 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2183 	while (osb->osb_orphan_wipes[slot]) {
2184 		/* If any processes are already in the middle of an
2185 		 * orphan wipe on this dir, then we need to wait for
2186 		 * them. */
2187 		spin_unlock(&osb->osb_lock);
2188 		wait_event_interruptible(osb->osb_wipe_event,
2189 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2190 		spin_lock(&osb->osb_lock);
2191 	}
2192 	spin_unlock(&osb->osb_lock);
2193 }
2194 
2195 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2196 					      int slot)
2197 {
2198 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2199 }
2200 
2201 /*
2202  * Orphan recovery. Each mounted node has it's own orphan dir which we
2203  * must run during recovery. Our strategy here is to build a list of
2204  * the inodes in the orphan dir and iget/iput them. The VFS does
2205  * (most) of the rest of the work.
2206  *
2207  * Orphan recovery can happen at any time, not just mount so we have a
2208  * couple of extra considerations.
2209  *
2210  * - We grab as many inodes as we can under the orphan dir lock -
2211  *   doing iget() outside the orphan dir risks getting a reference on
2212  *   an invalid inode.
2213  * - We must be sure not to deadlock with other processes on the
2214  *   system wanting to run delete_inode(). This can happen when they go
2215  *   to lock the orphan dir and the orphan recovery process attempts to
2216  *   iget() inside the orphan dir lock. This can be avoided by
2217  *   advertising our state to ocfs2_delete_inode().
2218  */
2219 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2220 				 int slot,
2221 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2222 {
2223 	int ret = 0;
2224 	struct inode *inode = NULL;
2225 	struct inode *iter;
2226 	struct ocfs2_inode_info *oi;
2227 	struct buffer_head *di_bh = NULL;
2228 	struct ocfs2_dinode *di = NULL;
2229 
2230 	trace_ocfs2_recover_orphans(slot);
2231 
2232 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2233 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2234 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2235 
2236 	/* Error here should be noted, but we want to continue with as
2237 	 * many queued inodes as we've got. */
2238 	if (ret)
2239 		mlog_errno(ret);
2240 
2241 	while (inode) {
2242 		oi = OCFS2_I(inode);
2243 		trace_ocfs2_recover_orphans_iput(
2244 					(unsigned long long)oi->ip_blkno);
2245 
2246 		iter = oi->ip_next_orphan;
2247 		oi->ip_next_orphan = NULL;
2248 
2249 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2250 			inode_lock(inode);
2251 			ret = ocfs2_rw_lock(inode, 1);
2252 			if (ret < 0) {
2253 				mlog_errno(ret);
2254 				goto unlock_mutex;
2255 			}
2256 			/*
2257 			 * We need to take and drop the inode lock to
2258 			 * force read inode from disk.
2259 			 */
2260 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2261 			if (ret) {
2262 				mlog_errno(ret);
2263 				goto unlock_rw;
2264 			}
2265 
2266 			di = (struct ocfs2_dinode *)di_bh->b_data;
2267 
2268 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2269 				ret = ocfs2_truncate_file(inode, di_bh,
2270 						i_size_read(inode));
2271 				if (ret < 0) {
2272 					if (ret != -ENOSPC)
2273 						mlog_errno(ret);
2274 					goto unlock_inode;
2275 				}
2276 
2277 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2278 						di_bh, 0, 0);
2279 				if (ret)
2280 					mlog_errno(ret);
2281 			}
2282 unlock_inode:
2283 			ocfs2_inode_unlock(inode, 1);
2284 			brelse(di_bh);
2285 			di_bh = NULL;
2286 unlock_rw:
2287 			ocfs2_rw_unlock(inode, 1);
2288 unlock_mutex:
2289 			inode_unlock(inode);
2290 
2291 			/* clear dio flag in ocfs2_inode_info */
2292 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2293 		} else {
2294 			spin_lock(&oi->ip_lock);
2295 			/* Set the proper information to get us going into
2296 			 * ocfs2_delete_inode. */
2297 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2298 			spin_unlock(&oi->ip_lock);
2299 		}
2300 
2301 		iput(inode);
2302 		inode = iter;
2303 	}
2304 
2305 	return ret;
2306 }
2307 
2308 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2309 {
2310 	/* This check is good because ocfs2 will wait on our recovery
2311 	 * thread before changing it to something other than MOUNTED
2312 	 * or DISABLED. */
2313 	wait_event(osb->osb_mount_event,
2314 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2315 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2316 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2317 
2318 	/* If there's an error on mount, then we may never get to the
2319 	 * MOUNTED flag, but this is set right before
2320 	 * dismount_volume() so we can trust it. */
2321 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2322 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2323 		mlog(0, "mount error, exiting!\n");
2324 		return -EBUSY;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static int ocfs2_commit_thread(void *arg)
2331 {
2332 	int status;
2333 	struct ocfs2_super *osb = arg;
2334 	struct ocfs2_journal *journal = osb->journal;
2335 
2336 	/* we can trust j_num_trans here because _should_stop() is only set in
2337 	 * shutdown and nobody other than ourselves should be able to start
2338 	 * transactions.  committing on shutdown might take a few iterations
2339 	 * as final transactions put deleted inodes on the list */
2340 	while (!(kthread_should_stop() &&
2341 		 atomic_read(&journal->j_num_trans) == 0)) {
2342 
2343 		wait_event_interruptible(osb->checkpoint_event,
2344 					 atomic_read(&journal->j_num_trans)
2345 					 || kthread_should_stop());
2346 
2347 		status = ocfs2_commit_cache(osb);
2348 		if (status < 0) {
2349 			static unsigned long abort_warn_time;
2350 
2351 			/* Warn about this once per minute */
2352 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2353 				mlog(ML_ERROR, "status = %d, journal is "
2354 						"already aborted.\n", status);
2355 			/*
2356 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2357 			 * non-zero value.  Sleep here to avoid a busy-wait
2358 			 * loop.
2359 			 */
2360 			msleep_interruptible(1000);
2361 		}
2362 
2363 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2364 			mlog(ML_KTHREAD,
2365 			     "commit_thread: %u transactions pending on "
2366 			     "shutdown\n",
2367 			     atomic_read(&journal->j_num_trans));
2368 		}
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 /* Reads all the journal inodes without taking any cluster locks. Used
2375  * for hard readonly access to determine whether any journal requires
2376  * recovery. Also used to refresh the recovery generation numbers after
2377  * a journal has been recovered by another node.
2378  */
2379 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2380 {
2381 	int ret = 0;
2382 	unsigned int slot;
2383 	struct buffer_head *di_bh = NULL;
2384 	struct ocfs2_dinode *di;
2385 	int journal_dirty = 0;
2386 
2387 	for(slot = 0; slot < osb->max_slots; slot++) {
2388 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2389 		if (ret) {
2390 			mlog_errno(ret);
2391 			goto out;
2392 		}
2393 
2394 		di = (struct ocfs2_dinode *) di_bh->b_data;
2395 
2396 		osb->slot_recovery_generations[slot] =
2397 					ocfs2_get_recovery_generation(di);
2398 
2399 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2400 		    OCFS2_JOURNAL_DIRTY_FL)
2401 			journal_dirty = 1;
2402 
2403 		brelse(di_bh);
2404 		di_bh = NULL;
2405 	}
2406 
2407 out:
2408 	if (journal_dirty)
2409 		ret = -EROFS;
2410 	return ret;
2411 }
2412