1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * journal.c 4 * 5 * Defines functions of journalling api 6 * 7 * Copyright (C) 2003, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kthread.h> 15 #include <linux/time.h> 16 #include <linux/random.h> 17 #include <linux/delay.h> 18 #include <linux/writeback.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "blockcheck.h" 26 #include "dir.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "heartbeat.h" 30 #include "inode.h" 31 #include "journal.h" 32 #include "localalloc.h" 33 #include "slot_map.h" 34 #include "super.h" 35 #include "sysfile.h" 36 #include "uptodate.h" 37 #include "quota.h" 38 #include "file.h" 39 #include "namei.h" 40 41 #include "buffer_head_io.h" 42 #include "ocfs2_trace.h" 43 44 DEFINE_SPINLOCK(trans_inc_lock); 45 46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000 47 48 static int ocfs2_force_read_journal(struct inode *inode); 49 static int ocfs2_recover_node(struct ocfs2_super *osb, 50 int node_num, int slot_num); 51 static int __ocfs2_recovery_thread(void *arg); 52 static int ocfs2_commit_cache(struct ocfs2_super *osb); 53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota); 54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 55 int dirty, int replayed); 56 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 57 int slot_num); 58 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 59 int slot, 60 enum ocfs2_orphan_reco_type orphan_reco_type); 61 static int ocfs2_commit_thread(void *arg); 62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 63 int slot_num, 64 struct ocfs2_dinode *la_dinode, 65 struct ocfs2_dinode *tl_dinode, 66 struct ocfs2_quota_recovery *qrec, 67 enum ocfs2_orphan_reco_type orphan_reco_type); 68 69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb) 70 { 71 return __ocfs2_wait_on_mount(osb, 0); 72 } 73 74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb) 75 { 76 return __ocfs2_wait_on_mount(osb, 1); 77 } 78 79 /* 80 * This replay_map is to track online/offline slots, so we could recover 81 * offline slots during recovery and mount 82 */ 83 84 enum ocfs2_replay_state { 85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */ 86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */ 87 REPLAY_DONE /* Replay was already queued */ 88 }; 89 90 struct ocfs2_replay_map { 91 unsigned int rm_slots; 92 enum ocfs2_replay_state rm_state; 93 unsigned char rm_replay_slots[] __counted_by(rm_slots); 94 }; 95 96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state) 97 { 98 if (!osb->replay_map) 99 return; 100 101 /* If we've already queued the replay, we don't have any more to do */ 102 if (osb->replay_map->rm_state == REPLAY_DONE) 103 return; 104 105 osb->replay_map->rm_state = state; 106 } 107 108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb) 109 { 110 struct ocfs2_replay_map *replay_map; 111 int i, node_num; 112 113 /* If replay map is already set, we don't do it again */ 114 if (osb->replay_map) 115 return 0; 116 117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots, 118 osb->max_slots), 119 GFP_KERNEL); 120 if (!replay_map) { 121 mlog_errno(-ENOMEM); 122 return -ENOMEM; 123 } 124 125 spin_lock(&osb->osb_lock); 126 127 replay_map->rm_slots = osb->max_slots; 128 replay_map->rm_state = REPLAY_UNNEEDED; 129 130 /* set rm_replay_slots for offline slot(s) */ 131 for (i = 0; i < replay_map->rm_slots; i++) { 132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT) 133 replay_map->rm_replay_slots[i] = 1; 134 } 135 136 osb->replay_map = replay_map; 137 spin_unlock(&osb->osb_lock); 138 return 0; 139 } 140 141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb, 142 enum ocfs2_orphan_reco_type orphan_reco_type) 143 { 144 struct ocfs2_replay_map *replay_map = osb->replay_map; 145 int i; 146 147 if (!replay_map) 148 return; 149 150 if (replay_map->rm_state != REPLAY_NEEDED) 151 return; 152 153 for (i = 0; i < replay_map->rm_slots; i++) 154 if (replay_map->rm_replay_slots[i]) 155 ocfs2_queue_recovery_completion(osb->journal, i, NULL, 156 NULL, NULL, 157 orphan_reco_type); 158 replay_map->rm_state = REPLAY_DONE; 159 } 160 161 void ocfs2_free_replay_slots(struct ocfs2_super *osb) 162 { 163 struct ocfs2_replay_map *replay_map = osb->replay_map; 164 165 if (!osb->replay_map) 166 return; 167 168 kfree(replay_map); 169 osb->replay_map = NULL; 170 } 171 172 int ocfs2_recovery_init(struct ocfs2_super *osb) 173 { 174 struct ocfs2_recovery_map *rm; 175 176 mutex_init(&osb->recovery_lock); 177 osb->recovery_state = OCFS2_REC_ENABLED; 178 osb->recovery_thread_task = NULL; 179 init_waitqueue_head(&osb->recovery_event); 180 181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots), 182 GFP_KERNEL); 183 if (!rm) { 184 mlog_errno(-ENOMEM); 185 return -ENOMEM; 186 } 187 188 osb->recovery_map = rm; 189 190 return 0; 191 } 192 193 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb) 194 { 195 return osb->recovery_thread_task != NULL; 196 } 197 198 static void ocfs2_recovery_disable(struct ocfs2_super *osb, 199 enum ocfs2_recovery_state state) 200 { 201 mutex_lock(&osb->recovery_lock); 202 /* 203 * If recovery thread is not running, we can directly transition to 204 * final state. 205 */ 206 if (!ocfs2_recovery_thread_running(osb)) { 207 osb->recovery_state = state + 1; 208 goto out_lock; 209 } 210 osb->recovery_state = state; 211 /* Wait for recovery thread to acknowledge state transition */ 212 wait_event_cmd(osb->recovery_event, 213 !ocfs2_recovery_thread_running(osb) || 214 osb->recovery_state >= state + 1, 215 mutex_unlock(&osb->recovery_lock), 216 mutex_lock(&osb->recovery_lock)); 217 out_lock: 218 mutex_unlock(&osb->recovery_lock); 219 220 /* 221 * At this point we know that no more recovery work can be queued so 222 * wait for any recovery completion work to complete. 223 */ 224 if (osb->ocfs2_wq) 225 flush_workqueue(osb->ocfs2_wq); 226 } 227 228 void ocfs2_recovery_disable_quota(struct ocfs2_super *osb) 229 { 230 ocfs2_recovery_disable(osb, OCFS2_REC_QUOTA_WANT_DISABLE); 231 } 232 233 void ocfs2_recovery_exit(struct ocfs2_super *osb) 234 { 235 struct ocfs2_recovery_map *rm; 236 237 /* disable any new recovery threads and wait for any currently 238 * running ones to exit. Do this before setting the vol_state. */ 239 ocfs2_recovery_disable(osb, OCFS2_REC_WANT_DISABLE); 240 241 /* 242 * Now that recovery is shut down, and the osb is about to be 243 * freed, the osb_lock is not taken here. 244 */ 245 rm = osb->recovery_map; 246 /* XXX: Should we bug if there are dirty entries? */ 247 248 kfree(rm); 249 } 250 251 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb, 252 unsigned int node_num) 253 { 254 int i; 255 struct ocfs2_recovery_map *rm = osb->recovery_map; 256 257 assert_spin_locked(&osb->osb_lock); 258 259 for (i = 0; i < rm->rm_used; i++) { 260 if (rm->rm_entries[i] == node_num) 261 return 1; 262 } 263 264 return 0; 265 } 266 267 /* Behaves like test-and-set. Returns the previous value */ 268 static int ocfs2_recovery_map_set(struct ocfs2_super *osb, 269 unsigned int node_num) 270 { 271 struct ocfs2_recovery_map *rm = osb->recovery_map; 272 273 spin_lock(&osb->osb_lock); 274 if (__ocfs2_recovery_map_test(osb, node_num)) { 275 spin_unlock(&osb->osb_lock); 276 return 1; 277 } 278 279 /* XXX: Can this be exploited? Not from o2dlm... */ 280 BUG_ON(rm->rm_used >= osb->max_slots); 281 282 rm->rm_entries[rm->rm_used] = node_num; 283 rm->rm_used++; 284 spin_unlock(&osb->osb_lock); 285 286 return 0; 287 } 288 289 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb, 290 unsigned int node_num) 291 { 292 int i; 293 struct ocfs2_recovery_map *rm = osb->recovery_map; 294 295 spin_lock(&osb->osb_lock); 296 297 for (i = 0; i < rm->rm_used; i++) { 298 if (rm->rm_entries[i] == node_num) 299 break; 300 } 301 302 if (i < rm->rm_used) { 303 /* XXX: be careful with the pointer math */ 304 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]), 305 (rm->rm_used - i - 1) * sizeof(unsigned int)); 306 rm->rm_used--; 307 } 308 309 spin_unlock(&osb->osb_lock); 310 } 311 312 static int ocfs2_commit_cache(struct ocfs2_super *osb) 313 { 314 int status = 0; 315 unsigned int flushed; 316 struct ocfs2_journal *journal = NULL; 317 318 journal = osb->journal; 319 320 /* Flush all pending commits and checkpoint the journal. */ 321 down_write(&journal->j_trans_barrier); 322 323 flushed = atomic_read(&journal->j_num_trans); 324 trace_ocfs2_commit_cache_begin(flushed); 325 if (flushed == 0) { 326 up_write(&journal->j_trans_barrier); 327 goto finally; 328 } 329 330 jbd2_journal_lock_updates(journal->j_journal); 331 status = jbd2_journal_flush(journal->j_journal, 0); 332 jbd2_journal_unlock_updates(journal->j_journal); 333 if (status < 0) { 334 up_write(&journal->j_trans_barrier); 335 mlog_errno(status); 336 goto finally; 337 } 338 339 ocfs2_inc_trans_id(journal); 340 341 flushed = atomic_read(&journal->j_num_trans); 342 atomic_set(&journal->j_num_trans, 0); 343 up_write(&journal->j_trans_barrier); 344 345 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed); 346 347 ocfs2_wake_downconvert_thread(osb); 348 wake_up(&journal->j_checkpointed); 349 finally: 350 return status; 351 } 352 353 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs) 354 { 355 journal_t *journal = osb->journal->j_journal; 356 handle_t *handle; 357 358 BUG_ON(!osb || !osb->journal->j_journal); 359 360 if (ocfs2_is_hard_readonly(osb)) 361 return ERR_PTR(-EROFS); 362 363 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); 364 BUG_ON(max_buffs <= 0); 365 366 /* Nested transaction? Just return the handle... */ 367 if (journal_current_handle()) 368 return jbd2_journal_start(journal, max_buffs); 369 370 sb_start_intwrite(osb->sb); 371 372 down_read(&osb->journal->j_trans_barrier); 373 374 handle = jbd2_journal_start(journal, max_buffs); 375 if (IS_ERR(handle)) { 376 up_read(&osb->journal->j_trans_barrier); 377 sb_end_intwrite(osb->sb); 378 379 mlog_errno(PTR_ERR(handle)); 380 381 if (is_journal_aborted(journal)) { 382 ocfs2_abort(osb->sb, "Detected aborted journal\n"); 383 handle = ERR_PTR(-EROFS); 384 } 385 } else { 386 if (!ocfs2_mount_local(osb)) 387 atomic_inc(&(osb->journal->j_num_trans)); 388 } 389 390 return handle; 391 } 392 393 int ocfs2_commit_trans(struct ocfs2_super *osb, 394 handle_t *handle) 395 { 396 int ret, nested; 397 struct ocfs2_journal *journal = osb->journal; 398 399 BUG_ON(!handle); 400 401 nested = handle->h_ref > 1; 402 ret = jbd2_journal_stop(handle); 403 if (ret < 0) 404 mlog_errno(ret); 405 406 if (!nested) { 407 up_read(&journal->j_trans_barrier); 408 sb_end_intwrite(osb->sb); 409 } 410 411 return ret; 412 } 413 414 /* 415 * 'nblocks' is what you want to add to the current transaction. 416 * 417 * This might call jbd2_journal_restart() which will commit dirty buffers 418 * and then restart the transaction. Before calling 419 * ocfs2_extend_trans(), any changed blocks should have been 420 * dirtied. After calling it, all blocks which need to be changed must 421 * go through another set of journal_access/journal_dirty calls. 422 * 423 * WARNING: This will not release any semaphores or disk locks taken 424 * during the transaction, so make sure they were taken *before* 425 * start_trans or we'll have ordering deadlocks. 426 * 427 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is 428 * good because transaction ids haven't yet been recorded on the 429 * cluster locks associated with this handle. 430 */ 431 int ocfs2_extend_trans(handle_t *handle, int nblocks) 432 { 433 int status, old_nblocks; 434 435 BUG_ON(!handle); 436 BUG_ON(nblocks < 0); 437 438 if (!nblocks) 439 return 0; 440 441 old_nblocks = jbd2_handle_buffer_credits(handle); 442 443 trace_ocfs2_extend_trans(old_nblocks, nblocks); 444 445 #ifdef CONFIG_OCFS2_DEBUG_FS 446 status = 1; 447 #else 448 status = jbd2_journal_extend(handle, nblocks, 0); 449 if (status < 0) { 450 mlog_errno(status); 451 goto bail; 452 } 453 #endif 454 455 if (status > 0) { 456 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks); 457 status = jbd2_journal_restart(handle, 458 old_nblocks + nblocks); 459 if (status < 0) { 460 mlog_errno(status); 461 goto bail; 462 } 463 } 464 465 status = 0; 466 bail: 467 return status; 468 } 469 470 /* 471 * Make sure handle has at least 'nblocks' credits available. If it does not 472 * have that many credits available, we will try to extend the handle to have 473 * enough credits. If that fails, we will restart transaction to have enough 474 * credits. Similar notes regarding data consistency and locking implications 475 * as for ocfs2_extend_trans() apply here. 476 */ 477 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks) 478 { 479 int old_nblks = jbd2_handle_buffer_credits(handle); 480 481 trace_ocfs2_assure_trans_credits(old_nblks); 482 if (old_nblks >= nblocks) 483 return 0; 484 return ocfs2_extend_trans(handle, nblocks - old_nblks); 485 } 486 487 /* 488 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA. 489 * If that fails, restart the transaction & regain write access for the 490 * buffer head which is used for metadata modifications. 491 * Taken from Ext4: extend_or_restart_transaction() 492 */ 493 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh) 494 { 495 int status, old_nblks; 496 497 BUG_ON(!handle); 498 499 old_nblks = jbd2_handle_buffer_credits(handle); 500 trace_ocfs2_allocate_extend_trans(old_nblks, thresh); 501 502 if (old_nblks < thresh) 503 return 0; 504 505 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail; 509 } 510 511 if (status > 0) { 512 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA); 513 if (status < 0) 514 mlog_errno(status); 515 } 516 517 bail: 518 return status; 519 } 520 521 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers) 522 { 523 return container_of(triggers, struct ocfs2_triggers, ot_triggers); 524 } 525 526 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 527 struct buffer_head *bh, 528 void *data, size_t size) 529 { 530 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 531 532 /* 533 * We aren't guaranteed to have the superblock here, so we 534 * must unconditionally compute the ecc data. 535 * __ocfs2_journal_access() will only set the triggers if 536 * metaecc is enabled. 537 */ 538 ocfs2_block_check_compute(data, size, data + ot->ot_offset); 539 } 540 541 /* 542 * Quota blocks have their own trigger because the struct ocfs2_block_check 543 * offset depends on the blocksize. 544 */ 545 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 546 struct buffer_head *bh, 547 void *data, size_t size) 548 { 549 struct ocfs2_disk_dqtrailer *dqt = 550 ocfs2_block_dqtrailer(size, data); 551 552 /* 553 * We aren't guaranteed to have the superblock here, so we 554 * must unconditionally compute the ecc data. 555 * __ocfs2_journal_access() will only set the triggers if 556 * metaecc is enabled. 557 */ 558 ocfs2_block_check_compute(data, size, &dqt->dq_check); 559 } 560 561 /* 562 * Directory blocks also have their own trigger because the 563 * struct ocfs2_block_check offset depends on the blocksize. 564 */ 565 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers, 566 struct buffer_head *bh, 567 void *data, size_t size) 568 { 569 struct ocfs2_dir_block_trailer *trailer = 570 ocfs2_dir_trailer_from_size(size, data); 571 572 /* 573 * We aren't guaranteed to have the superblock here, so we 574 * must unconditionally compute the ecc data. 575 * __ocfs2_journal_access() will only set the triggers if 576 * metaecc is enabled. 577 */ 578 ocfs2_block_check_compute(data, size, &trailer->db_check); 579 } 580 581 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers, 582 struct buffer_head *bh) 583 { 584 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers); 585 586 mlog(ML_ERROR, 587 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, " 588 "bh->b_blocknr = %llu\n", 589 (unsigned long)bh, 590 (unsigned long long)bh->b_blocknr); 591 592 ocfs2_error(ot->sb, 593 "JBD2 has aborted our journal, ocfs2 cannot continue\n"); 594 } 595 596 static void ocfs2_setup_csum_triggers(struct super_block *sb, 597 enum ocfs2_journal_trigger_type type, 598 struct ocfs2_triggers *ot) 599 { 600 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT); 601 602 switch (type) { 603 case OCFS2_JTR_DI: 604 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 605 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check); 606 break; 607 case OCFS2_JTR_EB: 608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 609 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check); 610 break; 611 case OCFS2_JTR_RB: 612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 613 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check); 614 break; 615 case OCFS2_JTR_GD: 616 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 617 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check); 618 break; 619 case OCFS2_JTR_DB: 620 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger; 621 break; 622 case OCFS2_JTR_XB: 623 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 624 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check); 625 break; 626 case OCFS2_JTR_DQ: 627 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger; 628 break; 629 case OCFS2_JTR_DR: 630 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 631 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check); 632 break; 633 case OCFS2_JTR_DL: 634 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger; 635 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check); 636 break; 637 case OCFS2_JTR_NONE: 638 /* To make compiler happy... */ 639 return; 640 } 641 642 ot->ot_triggers.t_abort = ocfs2_abort_trigger; 643 ot->sb = sb; 644 } 645 646 void ocfs2_initialize_journal_triggers(struct super_block *sb, 647 struct ocfs2_triggers triggers[]) 648 { 649 enum ocfs2_journal_trigger_type type; 650 651 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++) 652 ocfs2_setup_csum_triggers(sb, type, &triggers[type]); 653 } 654 655 static int __ocfs2_journal_access(handle_t *handle, 656 struct ocfs2_caching_info *ci, 657 struct buffer_head *bh, 658 struct ocfs2_triggers *triggers, 659 int type) 660 { 661 int status; 662 struct ocfs2_super *osb = 663 OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 664 665 BUG_ON(!ci || !ci->ci_ops); 666 BUG_ON(!handle); 667 BUG_ON(!bh); 668 669 trace_ocfs2_journal_access( 670 (unsigned long long)ocfs2_metadata_cache_owner(ci), 671 (unsigned long long)bh->b_blocknr, type, bh->b_size); 672 673 /* we can safely remove this assertion after testing. */ 674 if (!buffer_uptodate(bh)) { 675 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); 676 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n", 677 (unsigned long long)bh->b_blocknr, bh->b_state); 678 679 lock_buffer(bh); 680 /* 681 * A previous transaction with a couple of buffer heads fail 682 * to checkpoint, so all the bhs are marked as BH_Write_EIO. 683 * For current transaction, the bh is just among those error 684 * bhs which previous transaction handle. We can't just clear 685 * its BH_Write_EIO and reuse directly, since other bhs are 686 * not written to disk yet and that will cause metadata 687 * inconsistency. So we should set fs read-only to avoid 688 * further damage. 689 */ 690 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) { 691 unlock_buffer(bh); 692 return ocfs2_error(osb->sb, "A previous attempt to " 693 "write this buffer head failed\n"); 694 } 695 unlock_buffer(bh); 696 } 697 698 /* Set the current transaction information on the ci so 699 * that the locking code knows whether it can drop it's locks 700 * on this ci or not. We're protected from the commit 701 * thread updating the current transaction id until 702 * ocfs2_commit_trans() because ocfs2_start_trans() took 703 * j_trans_barrier for us. */ 704 ocfs2_set_ci_lock_trans(osb->journal, ci); 705 706 ocfs2_metadata_cache_io_lock(ci); 707 switch (type) { 708 case OCFS2_JOURNAL_ACCESS_CREATE: 709 case OCFS2_JOURNAL_ACCESS_WRITE: 710 status = jbd2_journal_get_write_access(handle, bh); 711 break; 712 713 case OCFS2_JOURNAL_ACCESS_UNDO: 714 status = jbd2_journal_get_undo_access(handle, bh); 715 break; 716 717 default: 718 status = -EINVAL; 719 mlog(ML_ERROR, "Unknown access type!\n"); 720 } 721 if (!status && ocfs2_meta_ecc(osb) && triggers) 722 jbd2_journal_set_triggers(bh, &triggers->ot_triggers); 723 ocfs2_metadata_cache_io_unlock(ci); 724 725 if (status < 0) 726 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", 727 status, type); 728 729 return status; 730 } 731 732 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci, 733 struct buffer_head *bh, int type) 734 { 735 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 736 737 return __ocfs2_journal_access(handle, ci, bh, 738 &osb->s_journal_triggers[OCFS2_JTR_DI], 739 type); 740 } 741 742 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci, 743 struct buffer_head *bh, int type) 744 { 745 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 746 747 return __ocfs2_journal_access(handle, ci, bh, 748 &osb->s_journal_triggers[OCFS2_JTR_EB], 749 type); 750 } 751 752 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci, 753 struct buffer_head *bh, int type) 754 { 755 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 756 757 return __ocfs2_journal_access(handle, ci, bh, 758 &osb->s_journal_triggers[OCFS2_JTR_RB], 759 type); 760 } 761 762 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci, 763 struct buffer_head *bh, int type) 764 { 765 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 766 767 return __ocfs2_journal_access(handle, ci, bh, 768 &osb->s_journal_triggers[OCFS2_JTR_GD], 769 type); 770 } 771 772 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci, 773 struct buffer_head *bh, int type) 774 { 775 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 776 777 return __ocfs2_journal_access(handle, ci, bh, 778 &osb->s_journal_triggers[OCFS2_JTR_DB], 779 type); 780 } 781 782 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci, 783 struct buffer_head *bh, int type) 784 { 785 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 786 787 return __ocfs2_journal_access(handle, ci, bh, 788 &osb->s_journal_triggers[OCFS2_JTR_XB], 789 type); 790 } 791 792 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci, 793 struct buffer_head *bh, int type) 794 { 795 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 796 797 return __ocfs2_journal_access(handle, ci, bh, 798 &osb->s_journal_triggers[OCFS2_JTR_DQ], 799 type); 800 } 801 802 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci, 803 struct buffer_head *bh, int type) 804 { 805 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 806 807 return __ocfs2_journal_access(handle, ci, bh, 808 &osb->s_journal_triggers[OCFS2_JTR_DR], 809 type); 810 } 811 812 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci, 813 struct buffer_head *bh, int type) 814 { 815 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci)); 816 817 return __ocfs2_journal_access(handle, ci, bh, 818 &osb->s_journal_triggers[OCFS2_JTR_DL], 819 type); 820 } 821 822 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci, 823 struct buffer_head *bh, int type) 824 { 825 return __ocfs2_journal_access(handle, ci, bh, NULL, type); 826 } 827 828 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh) 829 { 830 int status; 831 832 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr); 833 834 status = jbd2_journal_dirty_metadata(handle, bh); 835 if (status) { 836 mlog_errno(status); 837 if (!is_handle_aborted(handle)) { 838 journal_t *journal = handle->h_transaction->t_journal; 839 840 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: " 841 "handle type %u started at line %u, credits %u/%u " 842 "errcode %d. Aborting transaction and journal.\n", 843 handle->h_type, handle->h_line_no, 844 handle->h_requested_credits, 845 jbd2_handle_buffer_credits(handle), status); 846 handle->h_err = status; 847 jbd2_journal_abort_handle(handle); 848 jbd2_journal_abort(journal, status); 849 } 850 } 851 } 852 853 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE) 854 855 void ocfs2_set_journal_params(struct ocfs2_super *osb) 856 { 857 journal_t *journal = osb->journal->j_journal; 858 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; 859 860 if (osb->osb_commit_interval) 861 commit_interval = osb->osb_commit_interval; 862 863 write_lock(&journal->j_state_lock); 864 journal->j_commit_interval = commit_interval; 865 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) 866 journal->j_flags |= JBD2_BARRIER; 867 else 868 journal->j_flags &= ~JBD2_BARRIER; 869 write_unlock(&journal->j_state_lock); 870 } 871 872 /* 873 * alloc & initialize skeleton for journal structure. 874 * ocfs2_journal_init() will make fs have journal ability. 875 */ 876 int ocfs2_journal_alloc(struct ocfs2_super *osb) 877 { 878 int status = 0; 879 struct ocfs2_journal *journal; 880 881 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL); 882 if (!journal) { 883 mlog(ML_ERROR, "unable to alloc journal\n"); 884 status = -ENOMEM; 885 goto bail; 886 } 887 osb->journal = journal; 888 journal->j_osb = osb; 889 890 atomic_set(&journal->j_num_trans, 0); 891 init_rwsem(&journal->j_trans_barrier); 892 init_waitqueue_head(&journal->j_checkpointed); 893 spin_lock_init(&journal->j_lock); 894 journal->j_trans_id = 1UL; 895 INIT_LIST_HEAD(&journal->j_la_cleanups); 896 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery); 897 journal->j_state = OCFS2_JOURNAL_FREE; 898 899 bail: 900 return status; 901 } 902 903 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 904 { 905 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 906 struct writeback_control wbc = { 907 .sync_mode = WB_SYNC_ALL, 908 .nr_to_write = mapping->nrpages * 2, 909 .range_start = jinode->i_dirty_start, 910 .range_end = jinode->i_dirty_end, 911 }; 912 913 return filemap_fdatawrite_wbc(mapping, &wbc); 914 } 915 916 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty) 917 { 918 int status = -1; 919 struct inode *inode = NULL; /* the journal inode */ 920 journal_t *j_journal = NULL; 921 struct ocfs2_journal *journal = osb->journal; 922 struct ocfs2_dinode *di = NULL; 923 struct buffer_head *bh = NULL; 924 int inode_lock = 0; 925 926 BUG_ON(!journal); 927 /* already have the inode for our journal */ 928 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 929 osb->slot_num); 930 if (inode == NULL) { 931 status = -EACCES; 932 mlog_errno(status); 933 goto done; 934 } 935 if (is_bad_inode(inode)) { 936 mlog(ML_ERROR, "access error (bad inode)\n"); 937 iput(inode); 938 inode = NULL; 939 status = -EACCES; 940 goto done; 941 } 942 943 SET_INODE_JOURNAL(inode); 944 OCFS2_I(inode)->ip_open_count++; 945 946 /* Skip recovery waits here - journal inode metadata never 947 * changes in a live cluster so it can be considered an 948 * exception to the rule. */ 949 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 950 if (status < 0) { 951 if (status != -ERESTARTSYS) 952 mlog(ML_ERROR, "Could not get lock on journal!\n"); 953 goto done; 954 } 955 956 inode_lock = 1; 957 di = (struct ocfs2_dinode *)bh->b_data; 958 959 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) { 960 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", 961 i_size_read(inode)); 962 status = -EINVAL; 963 goto done; 964 } 965 966 trace_ocfs2_journal_init(i_size_read(inode), 967 (unsigned long long)inode->i_blocks, 968 OCFS2_I(inode)->ip_clusters); 969 970 /* call the kernels journal init function now */ 971 j_journal = jbd2_journal_init_inode(inode); 972 if (IS_ERR(j_journal)) { 973 mlog(ML_ERROR, "Linux journal layer error\n"); 974 status = PTR_ERR(j_journal); 975 goto done; 976 } 977 978 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len); 979 980 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & 981 OCFS2_JOURNAL_DIRTY_FL); 982 983 journal->j_journal = j_journal; 984 journal->j_journal->j_submit_inode_data_buffers = 985 ocfs2_journal_submit_inode_data_buffers; 986 journal->j_journal->j_finish_inode_data_buffers = 987 jbd2_journal_finish_inode_data_buffers; 988 journal->j_inode = inode; 989 journal->j_bh = bh; 990 991 ocfs2_set_journal_params(osb); 992 993 journal->j_state = OCFS2_JOURNAL_LOADED; 994 995 status = 0; 996 done: 997 if (status < 0) { 998 if (inode_lock) 999 ocfs2_inode_unlock(inode, 1); 1000 brelse(bh); 1001 if (inode) { 1002 OCFS2_I(inode)->ip_open_count--; 1003 iput(inode); 1004 } 1005 } 1006 1007 return status; 1008 } 1009 1010 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di) 1011 { 1012 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1); 1013 } 1014 1015 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di) 1016 { 1017 return le32_to_cpu(di->id1.journal1.ij_recovery_generation); 1018 } 1019 1020 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, 1021 int dirty, int replayed) 1022 { 1023 int status; 1024 unsigned int flags; 1025 struct ocfs2_journal *journal = osb->journal; 1026 struct buffer_head *bh = journal->j_bh; 1027 struct ocfs2_dinode *fe; 1028 1029 fe = (struct ocfs2_dinode *)bh->b_data; 1030 1031 /* The journal bh on the osb always comes from ocfs2_journal_init() 1032 * and was validated there inside ocfs2_inode_lock_full(). It's a 1033 * code bug if we mess it up. */ 1034 BUG_ON(!OCFS2_IS_VALID_DINODE(fe)); 1035 1036 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1037 if (dirty) 1038 flags |= OCFS2_JOURNAL_DIRTY_FL; 1039 else 1040 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1041 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1042 1043 if (replayed) 1044 ocfs2_bump_recovery_generation(fe); 1045 1046 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1047 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode)); 1048 if (status < 0) 1049 mlog_errno(status); 1050 1051 return status; 1052 } 1053 1054 /* 1055 * If the journal has been kmalloc'd it needs to be freed after this 1056 * call. 1057 */ 1058 void ocfs2_journal_shutdown(struct ocfs2_super *osb) 1059 { 1060 struct ocfs2_journal *journal = NULL; 1061 int status = 0; 1062 struct inode *inode = NULL; 1063 int num_running_trans = 0; 1064 1065 BUG_ON(!osb); 1066 1067 journal = osb->journal; 1068 if (!journal) 1069 goto done; 1070 1071 inode = journal->j_inode; 1072 1073 if (journal->j_state != OCFS2_JOURNAL_LOADED) 1074 goto done; 1075 1076 /* need to inc inode use count - jbd2_journal_destroy will iput. */ 1077 if (!igrab(inode)) 1078 BUG(); 1079 1080 num_running_trans = atomic_read(&(journal->j_num_trans)); 1081 trace_ocfs2_journal_shutdown(num_running_trans); 1082 1083 /* Do a commit_cache here. It will flush our journal, *and* 1084 * release any locks that are still held. 1085 * set the SHUTDOWN flag and release the trans lock. 1086 * the commit thread will take the trans lock for us below. */ 1087 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; 1088 1089 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not 1090 * drop the trans_lock (which we want to hold until we 1091 * completely destroy the journal. */ 1092 if (osb->commit_task) { 1093 /* Wait for the commit thread */ 1094 trace_ocfs2_journal_shutdown_wait(osb->commit_task); 1095 kthread_stop(osb->commit_task); 1096 osb->commit_task = NULL; 1097 } 1098 1099 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0); 1100 1101 if (ocfs2_mount_local(osb) && 1102 (journal->j_journal->j_flags & JBD2_LOADED)) { 1103 jbd2_journal_lock_updates(journal->j_journal); 1104 status = jbd2_journal_flush(journal->j_journal, 0); 1105 jbd2_journal_unlock_updates(journal->j_journal); 1106 if (status < 0) 1107 mlog_errno(status); 1108 } 1109 1110 /* Shutdown the kernel journal system */ 1111 if (!jbd2_journal_destroy(journal->j_journal) && !status) { 1112 /* 1113 * Do not toggle if flush was unsuccessful otherwise 1114 * will leave dirty metadata in a "clean" journal 1115 */ 1116 status = ocfs2_journal_toggle_dirty(osb, 0, 0); 1117 if (status < 0) 1118 mlog_errno(status); 1119 } 1120 journal->j_journal = NULL; 1121 1122 OCFS2_I(inode)->ip_open_count--; 1123 1124 /* unlock our journal */ 1125 ocfs2_inode_unlock(inode, 1); 1126 1127 brelse(journal->j_bh); 1128 journal->j_bh = NULL; 1129 1130 journal->j_state = OCFS2_JOURNAL_FREE; 1131 1132 done: 1133 iput(inode); 1134 kfree(journal); 1135 osb->journal = NULL; 1136 } 1137 1138 static void ocfs2_clear_journal_error(struct super_block *sb, 1139 journal_t *journal, 1140 int slot) 1141 { 1142 int olderr; 1143 1144 olderr = jbd2_journal_errno(journal); 1145 if (olderr) { 1146 mlog(ML_ERROR, "File system error %d recorded in " 1147 "journal %u.\n", olderr, slot); 1148 mlog(ML_ERROR, "File system on device %s needs checking.\n", 1149 sb->s_id); 1150 1151 jbd2_journal_ack_err(journal); 1152 jbd2_journal_clear_err(journal); 1153 } 1154 } 1155 1156 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed) 1157 { 1158 int status = 0; 1159 struct ocfs2_super *osb; 1160 1161 BUG_ON(!journal); 1162 1163 osb = journal->j_osb; 1164 1165 status = jbd2_journal_load(journal->j_journal); 1166 if (status < 0) { 1167 mlog(ML_ERROR, "Failed to load journal!\n"); 1168 goto done; 1169 } 1170 1171 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); 1172 1173 if (replayed) { 1174 jbd2_journal_lock_updates(journal->j_journal); 1175 status = jbd2_journal_flush(journal->j_journal, 0); 1176 jbd2_journal_unlock_updates(journal->j_journal); 1177 if (status < 0) 1178 mlog_errno(status); 1179 } 1180 1181 status = ocfs2_journal_toggle_dirty(osb, 1, replayed); 1182 if (status < 0) { 1183 mlog_errno(status); 1184 goto done; 1185 } 1186 1187 /* Launch the commit thread */ 1188 if (!local) { 1189 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, 1190 "ocfs2cmt-%s", osb->uuid_str); 1191 if (IS_ERR(osb->commit_task)) { 1192 status = PTR_ERR(osb->commit_task); 1193 osb->commit_task = NULL; 1194 mlog(ML_ERROR, "unable to launch ocfs2commit thread, " 1195 "error=%d", status); 1196 goto done; 1197 } 1198 } else 1199 osb->commit_task = NULL; 1200 1201 done: 1202 return status; 1203 } 1204 1205 1206 /* 'full' flag tells us whether we clear out all blocks or if we just 1207 * mark the journal clean */ 1208 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) 1209 { 1210 int status; 1211 1212 BUG_ON(!journal); 1213 1214 status = jbd2_journal_wipe(journal->j_journal, full); 1215 if (status < 0) { 1216 mlog_errno(status); 1217 goto bail; 1218 } 1219 1220 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0); 1221 if (status < 0) 1222 mlog_errno(status); 1223 1224 bail: 1225 return status; 1226 } 1227 1228 static int ocfs2_recovery_completed(struct ocfs2_super *osb) 1229 { 1230 int empty; 1231 struct ocfs2_recovery_map *rm = osb->recovery_map; 1232 1233 spin_lock(&osb->osb_lock); 1234 empty = (rm->rm_used == 0); 1235 spin_unlock(&osb->osb_lock); 1236 1237 return empty; 1238 } 1239 1240 void ocfs2_wait_for_recovery(struct ocfs2_super *osb) 1241 { 1242 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb)); 1243 } 1244 1245 /* 1246 * JBD Might read a cached version of another nodes journal file. We 1247 * don't want this as this file changes often and we get no 1248 * notification on those changes. The only way to be sure that we've 1249 * got the most up to date version of those blocks then is to force 1250 * read them off disk. Just searching through the buffer cache won't 1251 * work as there may be pages backing this file which are still marked 1252 * up to date. We know things can't change on this file underneath us 1253 * as we have the lock by now :) 1254 */ 1255 static int ocfs2_force_read_journal(struct inode *inode) 1256 { 1257 int status = 0; 1258 int i; 1259 u64 v_blkno, p_blkno, p_blocks, num_blocks; 1260 struct buffer_head *bh = NULL; 1261 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1262 1263 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 1264 v_blkno = 0; 1265 while (v_blkno < num_blocks) { 1266 status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1267 &p_blkno, &p_blocks, NULL); 1268 if (status < 0) { 1269 mlog_errno(status); 1270 goto bail; 1271 } 1272 1273 for (i = 0; i < p_blocks; i++, p_blkno++) { 1274 bh = __find_get_block_nonatomic(osb->sb->s_bdev, p_blkno, 1275 osb->sb->s_blocksize); 1276 /* block not cached. */ 1277 if (!bh) 1278 continue; 1279 1280 brelse(bh); 1281 bh = NULL; 1282 /* We are reading journal data which should not 1283 * be put in the uptodate cache. 1284 */ 1285 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh); 1286 if (status < 0) { 1287 mlog_errno(status); 1288 goto bail; 1289 } 1290 1291 brelse(bh); 1292 bh = NULL; 1293 } 1294 1295 v_blkno += p_blocks; 1296 } 1297 1298 bail: 1299 return status; 1300 } 1301 1302 struct ocfs2_la_recovery_item { 1303 struct list_head lri_list; 1304 int lri_slot; 1305 struct ocfs2_dinode *lri_la_dinode; 1306 struct ocfs2_dinode *lri_tl_dinode; 1307 struct ocfs2_quota_recovery *lri_qrec; 1308 enum ocfs2_orphan_reco_type lri_orphan_reco_type; 1309 }; 1310 1311 /* Does the second half of the recovery process. By this point, the 1312 * node is marked clean and can actually be considered recovered, 1313 * hence it's no longer in the recovery map, but there's still some 1314 * cleanup we can do which shouldn't happen within the recovery thread 1315 * as locking in that context becomes very difficult if we are to take 1316 * recovering nodes into account. 1317 * 1318 * NOTE: This function can and will sleep on recovery of other nodes 1319 * during cluster locking, just like any other ocfs2 process. 1320 */ 1321 void ocfs2_complete_recovery(struct work_struct *work) 1322 { 1323 int ret = 0; 1324 struct ocfs2_journal *journal = 1325 container_of(work, struct ocfs2_journal, j_recovery_work); 1326 struct ocfs2_super *osb = journal->j_osb; 1327 struct ocfs2_dinode *la_dinode, *tl_dinode; 1328 struct ocfs2_la_recovery_item *item, *n; 1329 struct ocfs2_quota_recovery *qrec; 1330 enum ocfs2_orphan_reco_type orphan_reco_type; 1331 LIST_HEAD(tmp_la_list); 1332 1333 trace_ocfs2_complete_recovery( 1334 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno); 1335 1336 spin_lock(&journal->j_lock); 1337 list_splice_init(&journal->j_la_cleanups, &tmp_la_list); 1338 spin_unlock(&journal->j_lock); 1339 1340 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) { 1341 list_del_init(&item->lri_list); 1342 1343 ocfs2_wait_on_quotas(osb); 1344 1345 la_dinode = item->lri_la_dinode; 1346 tl_dinode = item->lri_tl_dinode; 1347 qrec = item->lri_qrec; 1348 orphan_reco_type = item->lri_orphan_reco_type; 1349 1350 trace_ocfs2_complete_recovery_slot(item->lri_slot, 1351 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0, 1352 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0, 1353 qrec); 1354 1355 if (la_dinode) { 1356 ret = ocfs2_complete_local_alloc_recovery(osb, 1357 la_dinode); 1358 if (ret < 0) 1359 mlog_errno(ret); 1360 1361 kfree(la_dinode); 1362 } 1363 1364 if (tl_dinode) { 1365 ret = ocfs2_complete_truncate_log_recovery(osb, 1366 tl_dinode); 1367 if (ret < 0) 1368 mlog_errno(ret); 1369 1370 kfree(tl_dinode); 1371 } 1372 1373 ret = ocfs2_recover_orphans(osb, item->lri_slot, 1374 orphan_reco_type); 1375 if (ret < 0) 1376 mlog_errno(ret); 1377 1378 if (qrec) { 1379 ret = ocfs2_finish_quota_recovery(osb, qrec, 1380 item->lri_slot); 1381 if (ret < 0) 1382 mlog_errno(ret); 1383 /* Recovery info is already freed now */ 1384 } 1385 1386 kfree(item); 1387 } 1388 1389 trace_ocfs2_complete_recovery_end(ret); 1390 } 1391 1392 /* NOTE: This function always eats your references to la_dinode and 1393 * tl_dinode, either manually on error, or by passing them to 1394 * ocfs2_complete_recovery */ 1395 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, 1396 int slot_num, 1397 struct ocfs2_dinode *la_dinode, 1398 struct ocfs2_dinode *tl_dinode, 1399 struct ocfs2_quota_recovery *qrec, 1400 enum ocfs2_orphan_reco_type orphan_reco_type) 1401 { 1402 struct ocfs2_la_recovery_item *item; 1403 1404 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); 1405 if (!item) { 1406 /* Though we wish to avoid it, we are in fact safe in 1407 * skipping local alloc cleanup as fsck.ocfs2 is more 1408 * than capable of reclaiming unused space. */ 1409 kfree(la_dinode); 1410 kfree(tl_dinode); 1411 1412 if (qrec) 1413 ocfs2_free_quota_recovery(qrec); 1414 1415 mlog_errno(-ENOMEM); 1416 return; 1417 } 1418 1419 INIT_LIST_HEAD(&item->lri_list); 1420 item->lri_la_dinode = la_dinode; 1421 item->lri_slot = slot_num; 1422 item->lri_tl_dinode = tl_dinode; 1423 item->lri_qrec = qrec; 1424 item->lri_orphan_reco_type = orphan_reco_type; 1425 1426 spin_lock(&journal->j_lock); 1427 list_add_tail(&item->lri_list, &journal->j_la_cleanups); 1428 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work); 1429 spin_unlock(&journal->j_lock); 1430 } 1431 1432 /* Called by the mount code to queue recovery the last part of 1433 * recovery for it's own and offline slot(s). */ 1434 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) 1435 { 1436 struct ocfs2_journal *journal = osb->journal; 1437 1438 if (ocfs2_is_hard_readonly(osb)) 1439 return; 1440 1441 /* No need to queue up our truncate_log as regular cleanup will catch 1442 * that */ 1443 ocfs2_queue_recovery_completion(journal, osb->slot_num, 1444 osb->local_alloc_copy, NULL, NULL, 1445 ORPHAN_NEED_TRUNCATE); 1446 ocfs2_schedule_truncate_log_flush(osb, 0); 1447 1448 osb->local_alloc_copy = NULL; 1449 1450 /* queue to recover orphan slots for all offline slots */ 1451 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1452 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1453 ocfs2_free_replay_slots(osb); 1454 } 1455 1456 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb) 1457 { 1458 if (osb->quota_rec) { 1459 ocfs2_queue_recovery_completion(osb->journal, 1460 osb->slot_num, 1461 NULL, 1462 NULL, 1463 osb->quota_rec, 1464 ORPHAN_NEED_TRUNCATE); 1465 osb->quota_rec = NULL; 1466 } 1467 } 1468 1469 static int __ocfs2_recovery_thread(void *arg) 1470 { 1471 int status, node_num, slot_num; 1472 struct ocfs2_super *osb = arg; 1473 struct ocfs2_recovery_map *rm = osb->recovery_map; 1474 int *rm_quota = NULL; 1475 int rm_quota_used = 0, i; 1476 struct ocfs2_quota_recovery *qrec; 1477 1478 /* Whether the quota supported. */ 1479 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1480 OCFS2_FEATURE_RO_COMPAT_USRQUOTA) 1481 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, 1482 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA); 1483 1484 status = ocfs2_wait_on_mount(osb); 1485 if (status < 0) { 1486 goto bail; 1487 } 1488 1489 if (quota_enabled) { 1490 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS); 1491 if (!rm_quota) { 1492 status = -ENOMEM; 1493 goto bail; 1494 } 1495 } 1496 restart: 1497 if (quota_enabled) { 1498 mutex_lock(&osb->recovery_lock); 1499 /* Confirm that recovery thread will no longer recover quotas */ 1500 if (osb->recovery_state == OCFS2_REC_QUOTA_WANT_DISABLE) { 1501 osb->recovery_state = OCFS2_REC_QUOTA_DISABLED; 1502 wake_up(&osb->recovery_event); 1503 } 1504 if (osb->recovery_state >= OCFS2_REC_QUOTA_DISABLED) 1505 quota_enabled = 0; 1506 mutex_unlock(&osb->recovery_lock); 1507 } 1508 1509 status = ocfs2_super_lock(osb, 1); 1510 if (status < 0) { 1511 mlog_errno(status); 1512 goto bail; 1513 } 1514 1515 status = ocfs2_compute_replay_slots(osb); 1516 if (status < 0) 1517 mlog_errno(status); 1518 1519 /* queue recovery for our own slot */ 1520 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, 1521 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE); 1522 1523 spin_lock(&osb->osb_lock); 1524 while (rm->rm_used) { 1525 /* It's always safe to remove entry zero, as we won't 1526 * clear it until ocfs2_recover_node() has succeeded. */ 1527 node_num = rm->rm_entries[0]; 1528 spin_unlock(&osb->osb_lock); 1529 slot_num = ocfs2_node_num_to_slot(osb, node_num); 1530 trace_ocfs2_recovery_thread_node(node_num, slot_num); 1531 if (slot_num == -ENOENT) { 1532 status = 0; 1533 goto skip_recovery; 1534 } 1535 1536 /* It is a bit subtle with quota recovery. We cannot do it 1537 * immediately because we have to obtain cluster locks from 1538 * quota files and we also don't want to just skip it because 1539 * then quota usage would be out of sync until some node takes 1540 * the slot. So we remember which nodes need quota recovery 1541 * and when everything else is done, we recover quotas. */ 1542 if (quota_enabled) { 1543 for (i = 0; i < rm_quota_used 1544 && rm_quota[i] != slot_num; i++) 1545 ; 1546 1547 if (i == rm_quota_used) 1548 rm_quota[rm_quota_used++] = slot_num; 1549 } 1550 1551 status = ocfs2_recover_node(osb, node_num, slot_num); 1552 skip_recovery: 1553 if (!status) { 1554 ocfs2_recovery_map_clear(osb, node_num); 1555 } else { 1556 mlog(ML_ERROR, 1557 "Error %d recovering node %d on device (%u,%u)!\n", 1558 status, node_num, 1559 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); 1560 mlog(ML_ERROR, "Volume requires unmount.\n"); 1561 } 1562 1563 spin_lock(&osb->osb_lock); 1564 } 1565 spin_unlock(&osb->osb_lock); 1566 trace_ocfs2_recovery_thread_end(status); 1567 1568 /* Refresh all journal recovery generations from disk */ 1569 status = ocfs2_check_journals_nolocks(osb); 1570 status = (status == -EROFS) ? 0 : status; 1571 if (status < 0) 1572 mlog_errno(status); 1573 1574 /* Now it is right time to recover quotas... We have to do this under 1575 * superblock lock so that no one can start using the slot (and crash) 1576 * before we recover it */ 1577 if (quota_enabled) { 1578 for (i = 0; i < rm_quota_used; i++) { 1579 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]); 1580 if (IS_ERR(qrec)) { 1581 status = PTR_ERR(qrec); 1582 mlog_errno(status); 1583 continue; 1584 } 1585 ocfs2_queue_recovery_completion(osb->journal, 1586 rm_quota[i], 1587 NULL, NULL, qrec, 1588 ORPHAN_NEED_TRUNCATE); 1589 } 1590 } 1591 1592 ocfs2_super_unlock(osb, 1); 1593 1594 /* queue recovery for offline slots */ 1595 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE); 1596 1597 bail: 1598 mutex_lock(&osb->recovery_lock); 1599 if (!status && !ocfs2_recovery_completed(osb)) { 1600 mutex_unlock(&osb->recovery_lock); 1601 goto restart; 1602 } 1603 1604 ocfs2_free_replay_slots(osb); 1605 osb->recovery_thread_task = NULL; 1606 if (osb->recovery_state == OCFS2_REC_WANT_DISABLE) 1607 osb->recovery_state = OCFS2_REC_DISABLED; 1608 wake_up(&osb->recovery_event); 1609 1610 mutex_unlock(&osb->recovery_lock); 1611 1612 kfree(rm_quota); 1613 1614 return status; 1615 } 1616 1617 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) 1618 { 1619 int was_set = -1; 1620 1621 mutex_lock(&osb->recovery_lock); 1622 if (osb->recovery_state < OCFS2_REC_WANT_DISABLE) 1623 was_set = ocfs2_recovery_map_set(osb, node_num); 1624 1625 trace_ocfs2_recovery_thread(node_num, osb->node_num, 1626 osb->recovery_state, osb->recovery_thread_task, was_set); 1627 1628 if (osb->recovery_state >= OCFS2_REC_WANT_DISABLE) 1629 goto out; 1630 1631 if (osb->recovery_thread_task) 1632 goto out; 1633 1634 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, 1635 "ocfs2rec-%s", osb->uuid_str); 1636 if (IS_ERR(osb->recovery_thread_task)) { 1637 mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); 1638 osb->recovery_thread_task = NULL; 1639 } 1640 1641 out: 1642 mutex_unlock(&osb->recovery_lock); 1643 wake_up(&osb->recovery_event); 1644 } 1645 1646 static int ocfs2_read_journal_inode(struct ocfs2_super *osb, 1647 int slot_num, 1648 struct buffer_head **bh, 1649 struct inode **ret_inode) 1650 { 1651 int status = -EACCES; 1652 struct inode *inode = NULL; 1653 1654 BUG_ON(slot_num >= osb->max_slots); 1655 1656 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1657 slot_num); 1658 if (!inode || is_bad_inode(inode)) { 1659 mlog_errno(status); 1660 goto bail; 1661 } 1662 SET_INODE_JOURNAL(inode); 1663 1664 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE); 1665 if (status < 0) { 1666 mlog_errno(status); 1667 goto bail; 1668 } 1669 1670 status = 0; 1671 1672 bail: 1673 if (inode) { 1674 if (status || !ret_inode) 1675 iput(inode); 1676 else 1677 *ret_inode = inode; 1678 } 1679 return status; 1680 } 1681 1682 /* Does the actual journal replay and marks the journal inode as 1683 * clean. Will only replay if the journal inode is marked dirty. */ 1684 static int ocfs2_replay_journal(struct ocfs2_super *osb, 1685 int node_num, 1686 int slot_num) 1687 { 1688 int status; 1689 int got_lock = 0; 1690 unsigned int flags; 1691 struct inode *inode = NULL; 1692 struct ocfs2_dinode *fe; 1693 journal_t *journal = NULL; 1694 struct buffer_head *bh = NULL; 1695 u32 slot_reco_gen; 1696 1697 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode); 1698 if (status) { 1699 mlog_errno(status); 1700 goto done; 1701 } 1702 1703 fe = (struct ocfs2_dinode *)bh->b_data; 1704 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1705 brelse(bh); 1706 bh = NULL; 1707 1708 /* 1709 * As the fs recovery is asynchronous, there is a small chance that 1710 * another node mounted (and recovered) the slot before the recovery 1711 * thread could get the lock. To handle that, we dirty read the journal 1712 * inode for that slot to get the recovery generation. If it is 1713 * different than what we expected, the slot has been recovered. 1714 * If not, it needs recovery. 1715 */ 1716 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) { 1717 trace_ocfs2_replay_journal_recovered(slot_num, 1718 osb->slot_recovery_generations[slot_num], slot_reco_gen); 1719 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1720 status = -EBUSY; 1721 goto done; 1722 } 1723 1724 /* Continue with recovery as the journal has not yet been recovered */ 1725 1726 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY); 1727 if (status < 0) { 1728 trace_ocfs2_replay_journal_lock_err(status); 1729 if (status != -ERESTARTSYS) 1730 mlog(ML_ERROR, "Could not lock journal!\n"); 1731 goto done; 1732 } 1733 got_lock = 1; 1734 1735 fe = (struct ocfs2_dinode *) bh->b_data; 1736 1737 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1738 slot_reco_gen = ocfs2_get_recovery_generation(fe); 1739 1740 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { 1741 trace_ocfs2_replay_journal_skip(node_num); 1742 /* Refresh recovery generation for the slot */ 1743 osb->slot_recovery_generations[slot_num] = slot_reco_gen; 1744 goto done; 1745 } 1746 1747 /* we need to run complete recovery for offline orphan slots */ 1748 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED); 1749 1750 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\ 1751 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1752 MINOR(osb->sb->s_dev)); 1753 1754 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); 1755 1756 status = ocfs2_force_read_journal(inode); 1757 if (status < 0) { 1758 mlog_errno(status); 1759 goto done; 1760 } 1761 1762 journal = jbd2_journal_init_inode(inode); 1763 if (IS_ERR(journal)) { 1764 mlog(ML_ERROR, "Linux journal layer error\n"); 1765 status = PTR_ERR(journal); 1766 goto done; 1767 } 1768 1769 status = jbd2_journal_load(journal); 1770 if (status < 0) { 1771 mlog_errno(status); 1772 BUG_ON(!igrab(inode)); 1773 jbd2_journal_destroy(journal); 1774 goto done; 1775 } 1776 1777 ocfs2_clear_journal_error(osb->sb, journal, slot_num); 1778 1779 /* wipe the journal */ 1780 jbd2_journal_lock_updates(journal); 1781 status = jbd2_journal_flush(journal, 0); 1782 jbd2_journal_unlock_updates(journal); 1783 if (status < 0) 1784 mlog_errno(status); 1785 1786 /* This will mark the node clean */ 1787 flags = le32_to_cpu(fe->id1.journal1.ij_flags); 1788 flags &= ~OCFS2_JOURNAL_DIRTY_FL; 1789 fe->id1.journal1.ij_flags = cpu_to_le32(flags); 1790 1791 /* Increment recovery generation to indicate successful recovery */ 1792 ocfs2_bump_recovery_generation(fe); 1793 osb->slot_recovery_generations[slot_num] = 1794 ocfs2_get_recovery_generation(fe); 1795 1796 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check); 1797 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode)); 1798 if (status < 0) 1799 mlog_errno(status); 1800 1801 BUG_ON(!igrab(inode)); 1802 1803 jbd2_journal_destroy(journal); 1804 1805 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\ 1806 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), 1807 MINOR(osb->sb->s_dev)); 1808 done: 1809 /* drop the lock on this nodes journal */ 1810 if (got_lock) 1811 ocfs2_inode_unlock(inode, 1); 1812 1813 iput(inode); 1814 brelse(bh); 1815 1816 return status; 1817 } 1818 1819 /* 1820 * Do the most important parts of node recovery: 1821 * - Replay it's journal 1822 * - Stamp a clean local allocator file 1823 * - Stamp a clean truncate log 1824 * - Mark the node clean 1825 * 1826 * If this function completes without error, a node in OCFS2 can be 1827 * said to have been safely recovered. As a result, failure during the 1828 * second part of a nodes recovery process (local alloc recovery) is 1829 * far less concerning. 1830 */ 1831 static int ocfs2_recover_node(struct ocfs2_super *osb, 1832 int node_num, int slot_num) 1833 { 1834 int status = 0; 1835 struct ocfs2_dinode *la_copy = NULL; 1836 struct ocfs2_dinode *tl_copy = NULL; 1837 1838 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num); 1839 1840 /* Should not ever be called to recover ourselves -- in that 1841 * case we should've called ocfs2_journal_load instead. */ 1842 BUG_ON(osb->node_num == node_num); 1843 1844 status = ocfs2_replay_journal(osb, node_num, slot_num); 1845 if (status < 0) { 1846 if (status == -EBUSY) { 1847 trace_ocfs2_recover_node_skip(slot_num, node_num); 1848 status = 0; 1849 goto done; 1850 } 1851 mlog_errno(status); 1852 goto done; 1853 } 1854 1855 /* Stamp a clean local alloc file AFTER recovering the journal... */ 1856 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); 1857 if (status < 0) { 1858 mlog_errno(status); 1859 goto done; 1860 } 1861 1862 /* An error from begin_truncate_log_recovery is not 1863 * serious enough to warrant halting the rest of 1864 * recovery. */ 1865 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); 1866 if (status < 0) 1867 mlog_errno(status); 1868 1869 /* Likewise, this would be a strange but ultimately not so 1870 * harmful place to get an error... */ 1871 status = ocfs2_clear_slot(osb, slot_num); 1872 if (status < 0) 1873 mlog_errno(status); 1874 1875 /* This will kfree the memory pointed to by la_copy and tl_copy */ 1876 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, 1877 tl_copy, NULL, ORPHAN_NEED_TRUNCATE); 1878 1879 status = 0; 1880 done: 1881 1882 return status; 1883 } 1884 1885 /* Test node liveness by trylocking his journal. If we get the lock, 1886 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is 1887 * still alive (we couldn't get the lock) and < 0 on error. */ 1888 static int ocfs2_trylock_journal(struct ocfs2_super *osb, 1889 int slot_num) 1890 { 1891 int status, flags; 1892 struct inode *inode = NULL; 1893 1894 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, 1895 slot_num); 1896 if (inode == NULL) { 1897 mlog(ML_ERROR, "access error\n"); 1898 status = -EACCES; 1899 goto bail; 1900 } 1901 if (is_bad_inode(inode)) { 1902 mlog(ML_ERROR, "access error (bad inode)\n"); 1903 iput(inode); 1904 inode = NULL; 1905 status = -EACCES; 1906 goto bail; 1907 } 1908 SET_INODE_JOURNAL(inode); 1909 1910 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; 1911 status = ocfs2_inode_lock_full(inode, NULL, 1, flags); 1912 if (status < 0) { 1913 if (status != -EAGAIN) 1914 mlog_errno(status); 1915 goto bail; 1916 } 1917 1918 ocfs2_inode_unlock(inode, 1); 1919 bail: 1920 iput(inode); 1921 1922 return status; 1923 } 1924 1925 /* Call this underneath ocfs2_super_lock. It also assumes that the 1926 * slot info struct has been updated from disk. */ 1927 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) 1928 { 1929 unsigned int node_num; 1930 int status, i; 1931 u32 gen; 1932 struct buffer_head *bh = NULL; 1933 struct ocfs2_dinode *di; 1934 1935 /* This is called with the super block cluster lock, so we 1936 * know that the slot map can't change underneath us. */ 1937 1938 for (i = 0; i < osb->max_slots; i++) { 1939 /* Read journal inode to get the recovery generation */ 1940 status = ocfs2_read_journal_inode(osb, i, &bh, NULL); 1941 if (status) { 1942 mlog_errno(status); 1943 goto bail; 1944 } 1945 di = (struct ocfs2_dinode *)bh->b_data; 1946 gen = ocfs2_get_recovery_generation(di); 1947 brelse(bh); 1948 bh = NULL; 1949 1950 spin_lock(&osb->osb_lock); 1951 osb->slot_recovery_generations[i] = gen; 1952 1953 trace_ocfs2_mark_dead_nodes(i, 1954 osb->slot_recovery_generations[i]); 1955 1956 if (i == osb->slot_num) { 1957 spin_unlock(&osb->osb_lock); 1958 continue; 1959 } 1960 1961 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num); 1962 if (status == -ENOENT) { 1963 spin_unlock(&osb->osb_lock); 1964 continue; 1965 } 1966 1967 if (__ocfs2_recovery_map_test(osb, node_num)) { 1968 spin_unlock(&osb->osb_lock); 1969 continue; 1970 } 1971 spin_unlock(&osb->osb_lock); 1972 1973 /* Ok, we have a slot occupied by another node which 1974 * is not in the recovery map. We trylock his journal 1975 * file here to test if he's alive. */ 1976 status = ocfs2_trylock_journal(osb, i); 1977 if (!status) { 1978 /* Since we're called from mount, we know that 1979 * the recovery thread can't race us on 1980 * setting / checking the recovery bits. */ 1981 ocfs2_recovery_thread(osb, node_num); 1982 } else if ((status < 0) && (status != -EAGAIN)) { 1983 mlog_errno(status); 1984 goto bail; 1985 } 1986 } 1987 1988 status = 0; 1989 bail: 1990 return status; 1991 } 1992 1993 /* 1994 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some 1995 * randomness to the timeout to minimize multiple nodes firing the timer at the 1996 * same time. 1997 */ 1998 static inline unsigned long ocfs2_orphan_scan_timeout(void) 1999 { 2000 unsigned long time; 2001 2002 get_random_bytes(&time, sizeof(time)); 2003 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000); 2004 return msecs_to_jiffies(time); 2005 } 2006 2007 /* 2008 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for 2009 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This 2010 * is done to catch any orphans that are left over in orphan directories. 2011 * 2012 * It scans all slots, even ones that are in use. It does so to handle the 2013 * case described below: 2014 * 2015 * Node 1 has an inode it was using. The dentry went away due to memory 2016 * pressure. Node 1 closes the inode, but it's on the free list. The node 2017 * has the open lock. 2018 * Node 2 unlinks the inode. It grabs the dentry lock to notify others, 2019 * but node 1 has no dentry and doesn't get the message. It trylocks the 2020 * open lock, sees that another node has a PR, and does nothing. 2021 * Later node 2 runs its orphan dir. It igets the inode, trylocks the 2022 * open lock, sees the PR still, and does nothing. 2023 * Basically, we have to trigger an orphan iput on node 1. The only way 2024 * for this to happen is if node 1 runs node 2's orphan dir. 2025 * 2026 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT 2027 * seconds. It gets an EX lock on os_lockres and checks sequence number 2028 * stored in LVB. If the sequence number has changed, it means some other 2029 * node has done the scan. This node skips the scan and tracks the 2030 * sequence number. If the sequence number didn't change, it means a scan 2031 * hasn't happened. The node queues a scan and increments the 2032 * sequence number in the LVB. 2033 */ 2034 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb) 2035 { 2036 struct ocfs2_orphan_scan *os; 2037 int status, i; 2038 u32 seqno = 0; 2039 2040 os = &osb->osb_orphan_scan; 2041 2042 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2043 goto out; 2044 2045 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno, 2046 atomic_read(&os->os_state)); 2047 2048 status = ocfs2_orphan_scan_lock(osb, &seqno); 2049 if (status < 0) { 2050 if (status != -EAGAIN) 2051 mlog_errno(status); 2052 goto out; 2053 } 2054 2055 /* Do no queue the tasks if the volume is being umounted */ 2056 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE) 2057 goto unlock; 2058 2059 if (os->os_seqno != seqno) { 2060 os->os_seqno = seqno; 2061 goto unlock; 2062 } 2063 2064 for (i = 0; i < osb->max_slots; i++) 2065 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL, 2066 NULL, ORPHAN_NO_NEED_TRUNCATE); 2067 /* 2068 * We queued a recovery on orphan slots, increment the sequence 2069 * number and update LVB so other node will skip the scan for a while 2070 */ 2071 seqno++; 2072 os->os_count++; 2073 os->os_scantime = ktime_get_seconds(); 2074 unlock: 2075 ocfs2_orphan_scan_unlock(osb, seqno); 2076 out: 2077 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno, 2078 atomic_read(&os->os_state)); 2079 return; 2080 } 2081 2082 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */ 2083 static void ocfs2_orphan_scan_work(struct work_struct *work) 2084 { 2085 struct ocfs2_orphan_scan *os; 2086 struct ocfs2_super *osb; 2087 2088 os = container_of(work, struct ocfs2_orphan_scan, 2089 os_orphan_scan_work.work); 2090 osb = os->os_osb; 2091 2092 mutex_lock(&os->os_lock); 2093 ocfs2_queue_orphan_scan(osb); 2094 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) 2095 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2096 ocfs2_orphan_scan_timeout()); 2097 mutex_unlock(&os->os_lock); 2098 } 2099 2100 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb) 2101 { 2102 struct ocfs2_orphan_scan *os; 2103 2104 os = &osb->osb_orphan_scan; 2105 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) { 2106 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2107 mutex_lock(&os->os_lock); 2108 cancel_delayed_work(&os->os_orphan_scan_work); 2109 mutex_unlock(&os->os_lock); 2110 } 2111 } 2112 2113 void ocfs2_orphan_scan_init(struct ocfs2_super *osb) 2114 { 2115 struct ocfs2_orphan_scan *os; 2116 2117 os = &osb->osb_orphan_scan; 2118 os->os_osb = osb; 2119 os->os_count = 0; 2120 os->os_seqno = 0; 2121 mutex_init(&os->os_lock); 2122 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work); 2123 } 2124 2125 void ocfs2_orphan_scan_start(struct ocfs2_super *osb) 2126 { 2127 struct ocfs2_orphan_scan *os; 2128 2129 os = &osb->osb_orphan_scan; 2130 os->os_scantime = ktime_get_seconds(); 2131 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb)) 2132 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE); 2133 else { 2134 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE); 2135 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work, 2136 ocfs2_orphan_scan_timeout()); 2137 } 2138 } 2139 2140 struct ocfs2_orphan_filldir_priv { 2141 struct dir_context ctx; 2142 struct inode *head; 2143 struct ocfs2_super *osb; 2144 enum ocfs2_orphan_reco_type orphan_reco_type; 2145 }; 2146 2147 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name, 2148 int name_len, loff_t pos, u64 ino, 2149 unsigned type) 2150 { 2151 struct ocfs2_orphan_filldir_priv *p = 2152 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx); 2153 struct inode *iter; 2154 2155 if (name_len == 1 && !strncmp(".", name, 1)) 2156 return true; 2157 if (name_len == 2 && !strncmp("..", name, 2)) 2158 return true; 2159 2160 /* do not include dio entry in case of orphan scan */ 2161 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) && 2162 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2163 OCFS2_DIO_ORPHAN_PREFIX_LEN))) 2164 return true; 2165 2166 /* Skip bad inodes so that recovery can continue */ 2167 iter = ocfs2_iget(p->osb, ino, 2168 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0); 2169 if (IS_ERR(iter)) 2170 return true; 2171 2172 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX, 2173 OCFS2_DIO_ORPHAN_PREFIX_LEN)) 2174 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY; 2175 2176 /* Skip inodes which are already added to recover list, since dio may 2177 * happen concurrently with unlink/rename */ 2178 if (OCFS2_I(iter)->ip_next_orphan) { 2179 iput(iter); 2180 return true; 2181 } 2182 2183 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno); 2184 /* No locking is required for the next_orphan queue as there 2185 * is only ever a single process doing orphan recovery. */ 2186 OCFS2_I(iter)->ip_next_orphan = p->head; 2187 p->head = iter; 2188 2189 return true; 2190 } 2191 2192 static int ocfs2_queue_orphans(struct ocfs2_super *osb, 2193 int slot, 2194 struct inode **head, 2195 enum ocfs2_orphan_reco_type orphan_reco_type) 2196 { 2197 int status; 2198 struct inode *orphan_dir_inode = NULL; 2199 struct ocfs2_orphan_filldir_priv priv = { 2200 .ctx.actor = ocfs2_orphan_filldir, 2201 .osb = osb, 2202 .head = *head, 2203 .orphan_reco_type = orphan_reco_type 2204 }; 2205 2206 orphan_dir_inode = ocfs2_get_system_file_inode(osb, 2207 ORPHAN_DIR_SYSTEM_INODE, 2208 slot); 2209 if (!orphan_dir_inode) { 2210 status = -ENOENT; 2211 mlog_errno(status); 2212 return status; 2213 } 2214 2215 inode_lock(orphan_dir_inode); 2216 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0); 2217 if (status < 0) { 2218 mlog_errno(status); 2219 goto out; 2220 } 2221 2222 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx); 2223 if (status) { 2224 mlog_errno(status); 2225 goto out_cluster; 2226 } 2227 2228 *head = priv.head; 2229 2230 out_cluster: 2231 ocfs2_inode_unlock(orphan_dir_inode, 0); 2232 out: 2233 inode_unlock(orphan_dir_inode); 2234 iput(orphan_dir_inode); 2235 return status; 2236 } 2237 2238 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, 2239 int slot) 2240 { 2241 int ret; 2242 2243 spin_lock(&osb->osb_lock); 2244 ret = !osb->osb_orphan_wipes[slot]; 2245 spin_unlock(&osb->osb_lock); 2246 return ret; 2247 } 2248 2249 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, 2250 int slot) 2251 { 2252 spin_lock(&osb->osb_lock); 2253 /* Mark ourselves such that new processes in delete_inode() 2254 * know to quit early. */ 2255 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2256 while (osb->osb_orphan_wipes[slot]) { 2257 /* If any processes are already in the middle of an 2258 * orphan wipe on this dir, then we need to wait for 2259 * them. */ 2260 spin_unlock(&osb->osb_lock); 2261 wait_event_interruptible(osb->osb_wipe_event, 2262 ocfs2_orphan_recovery_can_continue(osb, slot)); 2263 spin_lock(&osb->osb_lock); 2264 } 2265 spin_unlock(&osb->osb_lock); 2266 } 2267 2268 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, 2269 int slot) 2270 { 2271 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); 2272 } 2273 2274 /* 2275 * Orphan recovery. Each mounted node has it's own orphan dir which we 2276 * must run during recovery. Our strategy here is to build a list of 2277 * the inodes in the orphan dir and iget/iput them. The VFS does 2278 * (most) of the rest of the work. 2279 * 2280 * Orphan recovery can happen at any time, not just mount so we have a 2281 * couple of extra considerations. 2282 * 2283 * - We grab as many inodes as we can under the orphan dir lock - 2284 * doing iget() outside the orphan dir risks getting a reference on 2285 * an invalid inode. 2286 * - We must be sure not to deadlock with other processes on the 2287 * system wanting to run delete_inode(). This can happen when they go 2288 * to lock the orphan dir and the orphan recovery process attempts to 2289 * iget() inside the orphan dir lock. This can be avoided by 2290 * advertising our state to ocfs2_delete_inode(). 2291 */ 2292 static int ocfs2_recover_orphans(struct ocfs2_super *osb, 2293 int slot, 2294 enum ocfs2_orphan_reco_type orphan_reco_type) 2295 { 2296 int ret = 0; 2297 struct inode *inode = NULL; 2298 struct inode *iter; 2299 struct ocfs2_inode_info *oi; 2300 struct buffer_head *di_bh = NULL; 2301 struct ocfs2_dinode *di = NULL; 2302 2303 trace_ocfs2_recover_orphans(slot); 2304 2305 ocfs2_mark_recovering_orphan_dir(osb, slot); 2306 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type); 2307 ocfs2_clear_recovering_orphan_dir(osb, slot); 2308 2309 /* Error here should be noted, but we want to continue with as 2310 * many queued inodes as we've got. */ 2311 if (ret) 2312 mlog_errno(ret); 2313 2314 while (inode) { 2315 oi = OCFS2_I(inode); 2316 trace_ocfs2_recover_orphans_iput( 2317 (unsigned long long)oi->ip_blkno); 2318 2319 iter = oi->ip_next_orphan; 2320 oi->ip_next_orphan = NULL; 2321 2322 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) { 2323 inode_lock(inode); 2324 ret = ocfs2_rw_lock(inode, 1); 2325 if (ret < 0) { 2326 mlog_errno(ret); 2327 goto unlock_mutex; 2328 } 2329 /* 2330 * We need to take and drop the inode lock to 2331 * force read inode from disk. 2332 */ 2333 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2334 if (ret) { 2335 mlog_errno(ret); 2336 goto unlock_rw; 2337 } 2338 2339 di = (struct ocfs2_dinode *)di_bh->b_data; 2340 2341 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) { 2342 ret = ocfs2_truncate_file(inode, di_bh, 2343 i_size_read(inode)); 2344 if (ret < 0) { 2345 if (ret != -ENOSPC) 2346 mlog_errno(ret); 2347 goto unlock_inode; 2348 } 2349 2350 ret = ocfs2_del_inode_from_orphan(osb, inode, 2351 di_bh, 0, 0); 2352 if (ret) 2353 mlog_errno(ret); 2354 } 2355 unlock_inode: 2356 ocfs2_inode_unlock(inode, 1); 2357 brelse(di_bh); 2358 di_bh = NULL; 2359 unlock_rw: 2360 ocfs2_rw_unlock(inode, 1); 2361 unlock_mutex: 2362 inode_unlock(inode); 2363 2364 /* clear dio flag in ocfs2_inode_info */ 2365 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY; 2366 } else { 2367 spin_lock(&oi->ip_lock); 2368 /* Set the proper information to get us going into 2369 * ocfs2_delete_inode. */ 2370 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; 2371 spin_unlock(&oi->ip_lock); 2372 } 2373 2374 iput(inode); 2375 inode = iter; 2376 } 2377 2378 return ret; 2379 } 2380 2381 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota) 2382 { 2383 /* This check is good because ocfs2 will wait on our recovery 2384 * thread before changing it to something other than MOUNTED 2385 * or DISABLED. */ 2386 wait_event(osb->osb_mount_event, 2387 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) || 2388 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS || 2389 atomic_read(&osb->vol_state) == VOLUME_DISABLED); 2390 2391 /* If there's an error on mount, then we may never get to the 2392 * MOUNTED flag, but this is set right before 2393 * dismount_volume() so we can trust it. */ 2394 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { 2395 trace_ocfs2_wait_on_mount(VOLUME_DISABLED); 2396 mlog(0, "mount error, exiting!\n"); 2397 return -EBUSY; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int ocfs2_commit_thread(void *arg) 2404 { 2405 int status; 2406 struct ocfs2_super *osb = arg; 2407 struct ocfs2_journal *journal = osb->journal; 2408 2409 /* we can trust j_num_trans here because _should_stop() is only set in 2410 * shutdown and nobody other than ourselves should be able to start 2411 * transactions. committing on shutdown might take a few iterations 2412 * as final transactions put deleted inodes on the list */ 2413 while (!(kthread_should_stop() && 2414 atomic_read(&journal->j_num_trans) == 0)) { 2415 2416 wait_event_interruptible(osb->checkpoint_event, 2417 atomic_read(&journal->j_num_trans) 2418 || kthread_should_stop()); 2419 2420 status = ocfs2_commit_cache(osb); 2421 if (status < 0) { 2422 static unsigned long abort_warn_time; 2423 2424 /* Warn about this once per minute */ 2425 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ)) 2426 mlog(ML_ERROR, "status = %d, journal is " 2427 "already aborted.\n", status); 2428 /* 2429 * After ocfs2_commit_cache() fails, j_num_trans has a 2430 * non-zero value. Sleep here to avoid a busy-wait 2431 * loop. 2432 */ 2433 msleep_interruptible(1000); 2434 } 2435 2436 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ 2437 mlog(ML_KTHREAD, 2438 "commit_thread: %u transactions pending on " 2439 "shutdown\n", 2440 atomic_read(&journal->j_num_trans)); 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 /* Reads all the journal inodes without taking any cluster locks. Used 2448 * for hard readonly access to determine whether any journal requires 2449 * recovery. Also used to refresh the recovery generation numbers after 2450 * a journal has been recovered by another node. 2451 */ 2452 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) 2453 { 2454 int ret = 0; 2455 unsigned int slot; 2456 struct buffer_head *di_bh = NULL; 2457 struct ocfs2_dinode *di; 2458 int journal_dirty = 0; 2459 2460 for(slot = 0; slot < osb->max_slots; slot++) { 2461 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL); 2462 if (ret) { 2463 mlog_errno(ret); 2464 goto out; 2465 } 2466 2467 di = (struct ocfs2_dinode *) di_bh->b_data; 2468 2469 osb->slot_recovery_generations[slot] = 2470 ocfs2_get_recovery_generation(di); 2471 2472 if (le32_to_cpu(di->id1.journal1.ij_flags) & 2473 OCFS2_JOURNAL_DIRTY_FL) 2474 journal_dirty = 1; 2475 2476 brelse(di_bh); 2477 di_bh = NULL; 2478 } 2479 2480 out: 2481 if (journal_dirty) 2482 ret = -EROFS; 2483 return ret; 2484 } 2485