1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 #include "ocfs2_trace.h" 64 65 #include "buffer_head_io.h" 66 67 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 68 { 69 struct ocfs2_file_private *fp; 70 71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 72 if (!fp) 73 return -ENOMEM; 74 75 fp->fp_file = file; 76 mutex_init(&fp->fp_mutex); 77 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 78 file->private_data = fp; 79 80 return 0; 81 } 82 83 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 84 { 85 struct ocfs2_file_private *fp = file->private_data; 86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 87 88 if (fp) { 89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 90 ocfs2_lock_res_free(&fp->fp_flock); 91 kfree(fp); 92 file->private_data = NULL; 93 } 94 } 95 96 static int ocfs2_file_open(struct inode *inode, struct file *file) 97 { 98 int status; 99 int mode = file->f_flags; 100 struct ocfs2_inode_info *oi = OCFS2_I(inode); 101 102 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 103 (unsigned long long)OCFS2_I(inode)->ip_blkno, 104 file->f_path.dentry->d_name.len, 105 file->f_path.dentry->d_name.name, mode); 106 107 if (file->f_mode & FMODE_WRITE) 108 dquot_initialize(inode); 109 110 spin_lock(&oi->ip_lock); 111 112 /* Check that the inode hasn't been wiped from disk by another 113 * node. If it hasn't then we're safe as long as we hold the 114 * spin lock until our increment of open count. */ 115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 116 spin_unlock(&oi->ip_lock); 117 118 status = -ENOENT; 119 goto leave; 120 } 121 122 if (mode & O_DIRECT) 123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 124 125 oi->ip_open_count++; 126 spin_unlock(&oi->ip_lock); 127 128 status = ocfs2_init_file_private(inode, file); 129 if (status) { 130 /* 131 * We want to set open count back if we're failing the 132 * open. 133 */ 134 spin_lock(&oi->ip_lock); 135 oi->ip_open_count--; 136 spin_unlock(&oi->ip_lock); 137 } 138 139 leave: 140 return status; 141 } 142 143 static int ocfs2_file_release(struct inode *inode, struct file *file) 144 { 145 struct ocfs2_inode_info *oi = OCFS2_I(inode); 146 147 spin_lock(&oi->ip_lock); 148 if (!--oi->ip_open_count) 149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 150 151 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 152 oi->ip_blkno, 153 file->f_path.dentry->d_name.len, 154 file->f_path.dentry->d_name.name, 155 oi->ip_open_count); 156 spin_unlock(&oi->ip_lock); 157 158 ocfs2_free_file_private(inode, file); 159 160 return 0; 161 } 162 163 static int ocfs2_dir_open(struct inode *inode, struct file *file) 164 { 165 return ocfs2_init_file_private(inode, file); 166 } 167 168 static int ocfs2_dir_release(struct inode *inode, struct file *file) 169 { 170 ocfs2_free_file_private(inode, file); 171 return 0; 172 } 173 174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 175 int datasync) 176 { 177 int err = 0; 178 struct inode *inode = file->f_mapping->host; 179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 180 struct ocfs2_inode_info *oi = OCFS2_I(inode); 181 journal_t *journal = osb->journal->j_journal; 182 int ret; 183 tid_t commit_tid; 184 bool needs_barrier = false; 185 186 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 187 OCFS2_I(inode)->ip_blkno, 188 file->f_path.dentry->d_name.len, 189 file->f_path.dentry->d_name.name, 190 (unsigned long long)datasync); 191 192 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 193 return -EROFS; 194 195 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 196 if (err) 197 return err; 198 199 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 200 if (journal->j_flags & JBD2_BARRIER && 201 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 202 needs_barrier = true; 203 err = jbd2_complete_transaction(journal, commit_tid); 204 if (needs_barrier) { 205 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 206 if (!err) 207 err = ret; 208 } 209 210 if (err) 211 mlog_errno(err); 212 213 return (err < 0) ? -EIO : 0; 214 } 215 216 int ocfs2_should_update_atime(struct inode *inode, 217 struct vfsmount *vfsmnt) 218 { 219 struct timespec now; 220 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 221 222 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 223 return 0; 224 225 if ((inode->i_flags & S_NOATIME) || 226 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 227 return 0; 228 229 /* 230 * We can be called with no vfsmnt structure - NFSD will 231 * sometimes do this. 232 * 233 * Note that our action here is different than touch_atime() - 234 * if we can't tell whether this is a noatime mount, then we 235 * don't know whether to trust the value of s_atime_quantum. 236 */ 237 if (vfsmnt == NULL) 238 return 0; 239 240 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 241 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 242 return 0; 243 244 if (vfsmnt->mnt_flags & MNT_RELATIME) { 245 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 246 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 247 return 1; 248 249 return 0; 250 } 251 252 now = CURRENT_TIME; 253 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 254 return 0; 255 else 256 return 1; 257 } 258 259 int ocfs2_update_inode_atime(struct inode *inode, 260 struct buffer_head *bh) 261 { 262 int ret; 263 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 264 handle_t *handle; 265 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 266 267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 268 if (IS_ERR(handle)) { 269 ret = PTR_ERR(handle); 270 mlog_errno(ret); 271 goto out; 272 } 273 274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 275 OCFS2_JOURNAL_ACCESS_WRITE); 276 if (ret) { 277 mlog_errno(ret); 278 goto out_commit; 279 } 280 281 /* 282 * Don't use ocfs2_mark_inode_dirty() here as we don't always 283 * have i_mutex to guard against concurrent changes to other 284 * inode fields. 285 */ 286 inode->i_atime = CURRENT_TIME; 287 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 288 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 289 ocfs2_update_inode_fsync_trans(handle, inode, 0); 290 ocfs2_journal_dirty(handle, bh); 291 292 out_commit: 293 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 294 out: 295 return ret; 296 } 297 298 int ocfs2_set_inode_size(handle_t *handle, 299 struct inode *inode, 300 struct buffer_head *fe_bh, 301 u64 new_i_size) 302 { 303 int status; 304 305 i_size_write(inode, new_i_size); 306 inode->i_blocks = ocfs2_inode_sector_count(inode); 307 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 308 309 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 310 if (status < 0) { 311 mlog_errno(status); 312 goto bail; 313 } 314 315 bail: 316 return status; 317 } 318 319 int ocfs2_simple_size_update(struct inode *inode, 320 struct buffer_head *di_bh, 321 u64 new_i_size) 322 { 323 int ret; 324 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 325 handle_t *handle = NULL; 326 327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 328 if (IS_ERR(handle)) { 329 ret = PTR_ERR(handle); 330 mlog_errno(ret); 331 goto out; 332 } 333 334 ret = ocfs2_set_inode_size(handle, inode, di_bh, 335 new_i_size); 336 if (ret < 0) 337 mlog_errno(ret); 338 339 ocfs2_update_inode_fsync_trans(handle, inode, 0); 340 ocfs2_commit_trans(osb, handle); 341 out: 342 return ret; 343 } 344 345 static int ocfs2_cow_file_pos(struct inode *inode, 346 struct buffer_head *fe_bh, 347 u64 offset) 348 { 349 int status; 350 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 351 unsigned int num_clusters = 0; 352 unsigned int ext_flags = 0; 353 354 /* 355 * If the new offset is aligned to the range of the cluster, there is 356 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 357 * CoW either. 358 */ 359 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 360 return 0; 361 362 status = ocfs2_get_clusters(inode, cpos, &phys, 363 &num_clusters, &ext_flags); 364 if (status) { 365 mlog_errno(status); 366 goto out; 367 } 368 369 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 370 goto out; 371 372 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 373 374 out: 375 return status; 376 } 377 378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 379 struct inode *inode, 380 struct buffer_head *fe_bh, 381 u64 new_i_size) 382 { 383 int status; 384 handle_t *handle; 385 struct ocfs2_dinode *di; 386 u64 cluster_bytes; 387 388 /* 389 * We need to CoW the cluster contains the offset if it is reflinked 390 * since we will call ocfs2_zero_range_for_truncate later which will 391 * write "0" from offset to the end of the cluster. 392 */ 393 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 394 if (status) { 395 mlog_errno(status); 396 return status; 397 } 398 399 /* TODO: This needs to actually orphan the inode in this 400 * transaction. */ 401 402 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 403 if (IS_ERR(handle)) { 404 status = PTR_ERR(handle); 405 mlog_errno(status); 406 goto out; 407 } 408 409 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 410 OCFS2_JOURNAL_ACCESS_WRITE); 411 if (status < 0) { 412 mlog_errno(status); 413 goto out_commit; 414 } 415 416 /* 417 * Do this before setting i_size. 418 */ 419 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 420 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 421 cluster_bytes); 422 if (status) { 423 mlog_errno(status); 424 goto out_commit; 425 } 426 427 i_size_write(inode, new_i_size); 428 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 429 430 di = (struct ocfs2_dinode *) fe_bh->b_data; 431 di->i_size = cpu_to_le64(new_i_size); 432 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 433 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 434 ocfs2_update_inode_fsync_trans(handle, inode, 0); 435 436 ocfs2_journal_dirty(handle, fe_bh); 437 438 out_commit: 439 ocfs2_commit_trans(osb, handle); 440 out: 441 return status; 442 } 443 444 int ocfs2_truncate_file(struct inode *inode, 445 struct buffer_head *di_bh, 446 u64 new_i_size) 447 { 448 int status = 0; 449 struct ocfs2_dinode *fe = NULL; 450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 451 452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 453 * already validated it */ 454 fe = (struct ocfs2_dinode *) di_bh->b_data; 455 456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 (unsigned long long)new_i_size); 459 460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 461 "Inode %llu, inode i_size = %lld != di " 462 "i_size = %llu, i_flags = 0x%x\n", 463 (unsigned long long)OCFS2_I(inode)->ip_blkno, 464 i_size_read(inode), 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 le32_to_cpu(fe->i_flags)); 467 468 if (new_i_size > le64_to_cpu(fe->i_size)) { 469 trace_ocfs2_truncate_file_error( 470 (unsigned long long)le64_to_cpu(fe->i_size), 471 (unsigned long long)new_i_size); 472 status = -EINVAL; 473 mlog_errno(status); 474 goto bail; 475 } 476 477 down_write(&OCFS2_I(inode)->ip_alloc_sem); 478 479 ocfs2_resv_discard(&osb->osb_la_resmap, 480 &OCFS2_I(inode)->ip_la_data_resv); 481 482 /* 483 * The inode lock forced other nodes to sync and drop their 484 * pages, which (correctly) happens even if we have a truncate 485 * without allocation change - ocfs2 cluster sizes can be much 486 * greater than page size, so we have to truncate them 487 * anyway. 488 */ 489 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 490 truncate_inode_pages(inode->i_mapping, new_i_size); 491 492 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 493 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 494 i_size_read(inode), 1); 495 if (status) 496 mlog_errno(status); 497 498 goto bail_unlock_sem; 499 } 500 501 /* alright, we're going to need to do a full blown alloc size 502 * change. Orphan the inode so that recovery can complete the 503 * truncate if necessary. This does the task of marking 504 * i_size. */ 505 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 506 if (status < 0) { 507 mlog_errno(status); 508 goto bail_unlock_sem; 509 } 510 511 status = ocfs2_commit_truncate(osb, inode, di_bh); 512 if (status < 0) { 513 mlog_errno(status); 514 goto bail_unlock_sem; 515 } 516 517 /* TODO: orphan dir cleanup here. */ 518 bail_unlock_sem: 519 up_write(&OCFS2_I(inode)->ip_alloc_sem); 520 521 bail: 522 if (!status && OCFS2_I(inode)->ip_clusters == 0) 523 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 524 525 return status; 526 } 527 528 /* 529 * extend file allocation only here. 530 * we'll update all the disk stuff, and oip->alloc_size 531 * 532 * expect stuff to be locked, a transaction started and enough data / 533 * metadata reservations in the contexts. 534 * 535 * Will return -EAGAIN, and a reason if a restart is needed. 536 * If passed in, *reason will always be set, even in error. 537 */ 538 int ocfs2_add_inode_data(struct ocfs2_super *osb, 539 struct inode *inode, 540 u32 *logical_offset, 541 u32 clusters_to_add, 542 int mark_unwritten, 543 struct buffer_head *fe_bh, 544 handle_t *handle, 545 struct ocfs2_alloc_context *data_ac, 546 struct ocfs2_alloc_context *meta_ac, 547 enum ocfs2_alloc_restarted *reason_ret) 548 { 549 int ret; 550 struct ocfs2_extent_tree et; 551 552 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 553 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 554 clusters_to_add, mark_unwritten, 555 data_ac, meta_ac, reason_ret); 556 557 return ret; 558 } 559 560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 561 u32 clusters_to_add, int mark_unwritten) 562 { 563 int status = 0; 564 int restart_func = 0; 565 int credits; 566 u32 prev_clusters; 567 struct buffer_head *bh = NULL; 568 struct ocfs2_dinode *fe = NULL; 569 handle_t *handle = NULL; 570 struct ocfs2_alloc_context *data_ac = NULL; 571 struct ocfs2_alloc_context *meta_ac = NULL; 572 enum ocfs2_alloc_restarted why = RESTART_NONE; 573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 574 struct ocfs2_extent_tree et; 575 int did_quota = 0; 576 577 /* 578 * Unwritten extent only exists for file systems which 579 * support holes. 580 */ 581 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 582 583 status = ocfs2_read_inode_block(inode, &bh); 584 if (status < 0) { 585 mlog_errno(status); 586 goto leave; 587 } 588 fe = (struct ocfs2_dinode *) bh->b_data; 589 590 restart_all: 591 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 592 593 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 594 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 595 &data_ac, &meta_ac); 596 if (status) { 597 mlog_errno(status); 598 goto leave; 599 } 600 601 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 602 handle = ocfs2_start_trans(osb, credits); 603 if (IS_ERR(handle)) { 604 status = PTR_ERR(handle); 605 handle = NULL; 606 mlog_errno(status); 607 goto leave; 608 } 609 610 restarted_transaction: 611 trace_ocfs2_extend_allocation( 612 (unsigned long long)OCFS2_I(inode)->ip_blkno, 613 (unsigned long long)i_size_read(inode), 614 le32_to_cpu(fe->i_clusters), clusters_to_add, 615 why, restart_func); 616 617 status = dquot_alloc_space_nodirty(inode, 618 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 619 if (status) 620 goto leave; 621 did_quota = 1; 622 623 /* reserve a write to the file entry early on - that we if we 624 * run out of credits in the allocation path, we can still 625 * update i_size. */ 626 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 627 OCFS2_JOURNAL_ACCESS_WRITE); 628 if (status < 0) { 629 mlog_errno(status); 630 goto leave; 631 } 632 633 prev_clusters = OCFS2_I(inode)->ip_clusters; 634 635 status = ocfs2_add_inode_data(osb, 636 inode, 637 &logical_start, 638 clusters_to_add, 639 mark_unwritten, 640 bh, 641 handle, 642 data_ac, 643 meta_ac, 644 &why); 645 if ((status < 0) && (status != -EAGAIN)) { 646 if (status != -ENOSPC) 647 mlog_errno(status); 648 goto leave; 649 } 650 ocfs2_update_inode_fsync_trans(handle, inode, 1); 651 ocfs2_journal_dirty(handle, bh); 652 653 spin_lock(&OCFS2_I(inode)->ip_lock); 654 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 655 spin_unlock(&OCFS2_I(inode)->ip_lock); 656 /* Release unused quota reservation */ 657 dquot_free_space(inode, 658 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 659 did_quota = 0; 660 661 if (why != RESTART_NONE && clusters_to_add) { 662 if (why == RESTART_META) { 663 restart_func = 1; 664 status = 0; 665 } else { 666 BUG_ON(why != RESTART_TRANS); 667 668 status = ocfs2_allocate_extend_trans(handle, 1); 669 if (status < 0) { 670 /* handle still has to be committed at 671 * this point. */ 672 status = -ENOMEM; 673 mlog_errno(status); 674 goto leave; 675 } 676 goto restarted_transaction; 677 } 678 } 679 680 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 681 le32_to_cpu(fe->i_clusters), 682 (unsigned long long)le64_to_cpu(fe->i_size), 683 OCFS2_I(inode)->ip_clusters, 684 (unsigned long long)i_size_read(inode)); 685 686 leave: 687 if (status < 0 && did_quota) 688 dquot_free_space(inode, 689 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 690 if (handle) { 691 ocfs2_commit_trans(osb, handle); 692 handle = NULL; 693 } 694 if (data_ac) { 695 ocfs2_free_alloc_context(data_ac); 696 data_ac = NULL; 697 } 698 if (meta_ac) { 699 ocfs2_free_alloc_context(meta_ac); 700 meta_ac = NULL; 701 } 702 if ((!status) && restart_func) { 703 restart_func = 0; 704 goto restart_all; 705 } 706 brelse(bh); 707 bh = NULL; 708 709 return status; 710 } 711 712 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 713 u32 clusters_to_add, int mark_unwritten) 714 { 715 return __ocfs2_extend_allocation(inode, logical_start, 716 clusters_to_add, mark_unwritten); 717 } 718 719 /* 720 * While a write will already be ordering the data, a truncate will not. 721 * Thus, we need to explicitly order the zeroed pages. 722 */ 723 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 724 struct buffer_head *di_bh) 725 { 726 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 727 handle_t *handle = NULL; 728 int ret = 0; 729 730 if (!ocfs2_should_order_data(inode)) 731 goto out; 732 733 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 734 if (IS_ERR(handle)) { 735 ret = -ENOMEM; 736 mlog_errno(ret); 737 goto out; 738 } 739 740 ret = ocfs2_jbd2_file_inode(handle, inode); 741 if (ret < 0) { 742 mlog_errno(ret); 743 goto out; 744 } 745 746 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 747 OCFS2_JOURNAL_ACCESS_WRITE); 748 if (ret) 749 mlog_errno(ret); 750 ocfs2_update_inode_fsync_trans(handle, inode, 1); 751 752 out: 753 if (ret) { 754 if (!IS_ERR(handle)) 755 ocfs2_commit_trans(osb, handle); 756 handle = ERR_PTR(ret); 757 } 758 return handle; 759 } 760 761 /* Some parts of this taken from generic_cont_expand, which turned out 762 * to be too fragile to do exactly what we need without us having to 763 * worry about recursive locking in ->write_begin() and ->write_end(). */ 764 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 765 u64 abs_to, struct buffer_head *di_bh) 766 { 767 struct address_space *mapping = inode->i_mapping; 768 struct page *page; 769 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 770 handle_t *handle; 771 int ret = 0; 772 unsigned zero_from, zero_to, block_start, block_end; 773 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 774 775 BUG_ON(abs_from >= abs_to); 776 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 777 BUG_ON(abs_from & (inode->i_blkbits - 1)); 778 779 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh); 780 if (IS_ERR(handle)) { 781 ret = PTR_ERR(handle); 782 goto out; 783 } 784 785 page = find_or_create_page(mapping, index, GFP_NOFS); 786 if (!page) { 787 ret = -ENOMEM; 788 mlog_errno(ret); 789 goto out_commit_trans; 790 } 791 792 /* Get the offsets within the page that we want to zero */ 793 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 794 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 795 if (!zero_to) 796 zero_to = PAGE_CACHE_SIZE; 797 798 trace_ocfs2_write_zero_page( 799 (unsigned long long)OCFS2_I(inode)->ip_blkno, 800 (unsigned long long)abs_from, 801 (unsigned long long)abs_to, 802 index, zero_from, zero_to); 803 804 /* We know that zero_from is block aligned */ 805 for (block_start = zero_from; block_start < zero_to; 806 block_start = block_end) { 807 block_end = block_start + (1 << inode->i_blkbits); 808 809 /* 810 * block_start is block-aligned. Bump it by one to force 811 * __block_write_begin and block_commit_write to zero the 812 * whole block. 813 */ 814 ret = __block_write_begin(page, block_start + 1, 0, 815 ocfs2_get_block); 816 if (ret < 0) { 817 mlog_errno(ret); 818 goto out_unlock; 819 } 820 821 822 /* must not update i_size! */ 823 ret = block_commit_write(page, block_start + 1, 824 block_start + 1); 825 if (ret < 0) 826 mlog_errno(ret); 827 else 828 ret = 0; 829 } 830 831 /* 832 * fs-writeback will release the dirty pages without page lock 833 * whose offset are over inode size, the release happens at 834 * block_write_full_page(). 835 */ 836 i_size_write(inode, abs_to); 837 inode->i_blocks = ocfs2_inode_sector_count(inode); 838 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 839 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 840 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 841 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 842 di->i_mtime_nsec = di->i_ctime_nsec; 843 if (handle) { 844 ocfs2_journal_dirty(handle, di_bh); 845 ocfs2_update_inode_fsync_trans(handle, inode, 1); 846 } 847 848 out_unlock: 849 unlock_page(page); 850 page_cache_release(page); 851 out_commit_trans: 852 if (handle) 853 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 854 out: 855 return ret; 856 } 857 858 /* 859 * Find the next range to zero. We do this in terms of bytes because 860 * that's what ocfs2_zero_extend() wants, and it is dealing with the 861 * pagecache. We may return multiple extents. 862 * 863 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 864 * needs to be zeroed. range_start and range_end return the next zeroing 865 * range. A subsequent call should pass the previous range_end as its 866 * zero_start. If range_end is 0, there's nothing to do. 867 * 868 * Unwritten extents are skipped over. Refcounted extents are CoWd. 869 */ 870 static int ocfs2_zero_extend_get_range(struct inode *inode, 871 struct buffer_head *di_bh, 872 u64 zero_start, u64 zero_end, 873 u64 *range_start, u64 *range_end) 874 { 875 int rc = 0, needs_cow = 0; 876 u32 p_cpos, zero_clusters = 0; 877 u32 zero_cpos = 878 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 879 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 880 unsigned int num_clusters = 0; 881 unsigned int ext_flags = 0; 882 883 while (zero_cpos < last_cpos) { 884 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 885 &num_clusters, &ext_flags); 886 if (rc) { 887 mlog_errno(rc); 888 goto out; 889 } 890 891 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 892 zero_clusters = num_clusters; 893 if (ext_flags & OCFS2_EXT_REFCOUNTED) 894 needs_cow = 1; 895 break; 896 } 897 898 zero_cpos += num_clusters; 899 } 900 if (!zero_clusters) { 901 *range_end = 0; 902 goto out; 903 } 904 905 while ((zero_cpos + zero_clusters) < last_cpos) { 906 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 907 &p_cpos, &num_clusters, 908 &ext_flags); 909 if (rc) { 910 mlog_errno(rc); 911 goto out; 912 } 913 914 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 915 break; 916 if (ext_flags & OCFS2_EXT_REFCOUNTED) 917 needs_cow = 1; 918 zero_clusters += num_clusters; 919 } 920 if ((zero_cpos + zero_clusters) > last_cpos) 921 zero_clusters = last_cpos - zero_cpos; 922 923 if (needs_cow) { 924 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 925 zero_clusters, UINT_MAX); 926 if (rc) { 927 mlog_errno(rc); 928 goto out; 929 } 930 } 931 932 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 933 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 934 zero_cpos + zero_clusters); 935 936 out: 937 return rc; 938 } 939 940 /* 941 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 942 * has made sure that the entire range needs zeroing. 943 */ 944 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 945 u64 range_end, struct buffer_head *di_bh) 946 { 947 int rc = 0; 948 u64 next_pos; 949 u64 zero_pos = range_start; 950 951 trace_ocfs2_zero_extend_range( 952 (unsigned long long)OCFS2_I(inode)->ip_blkno, 953 (unsigned long long)range_start, 954 (unsigned long long)range_end); 955 BUG_ON(range_start >= range_end); 956 957 while (zero_pos < range_end) { 958 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 959 if (next_pos > range_end) 960 next_pos = range_end; 961 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 962 if (rc < 0) { 963 mlog_errno(rc); 964 break; 965 } 966 zero_pos = next_pos; 967 968 /* 969 * Very large extends have the potential to lock up 970 * the cpu for extended periods of time. 971 */ 972 cond_resched(); 973 } 974 975 return rc; 976 } 977 978 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 979 loff_t zero_to_size) 980 { 981 int ret = 0; 982 u64 zero_start, range_start = 0, range_end = 0; 983 struct super_block *sb = inode->i_sb; 984 985 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 986 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 987 (unsigned long long)zero_start, 988 (unsigned long long)i_size_read(inode)); 989 while (zero_start < zero_to_size) { 990 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 991 zero_to_size, 992 &range_start, 993 &range_end); 994 if (ret) { 995 mlog_errno(ret); 996 break; 997 } 998 if (!range_end) 999 break; 1000 /* Trim the ends */ 1001 if (range_start < zero_start) 1002 range_start = zero_start; 1003 if (range_end > zero_to_size) 1004 range_end = zero_to_size; 1005 1006 ret = ocfs2_zero_extend_range(inode, range_start, 1007 range_end, di_bh); 1008 if (ret) { 1009 mlog_errno(ret); 1010 break; 1011 } 1012 zero_start = range_end; 1013 } 1014 1015 return ret; 1016 } 1017 1018 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1019 u64 new_i_size, u64 zero_to) 1020 { 1021 int ret; 1022 u32 clusters_to_add; 1023 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1024 1025 /* 1026 * Only quota files call this without a bh, and they can't be 1027 * refcounted. 1028 */ 1029 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1030 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1031 1032 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1033 if (clusters_to_add < oi->ip_clusters) 1034 clusters_to_add = 0; 1035 else 1036 clusters_to_add -= oi->ip_clusters; 1037 1038 if (clusters_to_add) { 1039 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1040 clusters_to_add, 0); 1041 if (ret) { 1042 mlog_errno(ret); 1043 goto out; 1044 } 1045 } 1046 1047 /* 1048 * Call this even if we don't add any clusters to the tree. We 1049 * still need to zero the area between the old i_size and the 1050 * new i_size. 1051 */ 1052 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1053 if (ret < 0) 1054 mlog_errno(ret); 1055 1056 out: 1057 return ret; 1058 } 1059 1060 static int ocfs2_extend_file(struct inode *inode, 1061 struct buffer_head *di_bh, 1062 u64 new_i_size) 1063 { 1064 int ret = 0; 1065 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1066 1067 BUG_ON(!di_bh); 1068 1069 /* setattr sometimes calls us like this. */ 1070 if (new_i_size == 0) 1071 goto out; 1072 1073 if (i_size_read(inode) == new_i_size) 1074 goto out; 1075 BUG_ON(new_i_size < i_size_read(inode)); 1076 1077 /* 1078 * The alloc sem blocks people in read/write from reading our 1079 * allocation until we're done changing it. We depend on 1080 * i_mutex to block other extend/truncate calls while we're 1081 * here. We even have to hold it for sparse files because there 1082 * might be some tail zeroing. 1083 */ 1084 down_write(&oi->ip_alloc_sem); 1085 1086 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1087 /* 1088 * We can optimize small extends by keeping the inodes 1089 * inline data. 1090 */ 1091 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1092 up_write(&oi->ip_alloc_sem); 1093 goto out_update_size; 1094 } 1095 1096 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1097 if (ret) { 1098 up_write(&oi->ip_alloc_sem); 1099 mlog_errno(ret); 1100 goto out; 1101 } 1102 } 1103 1104 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1105 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1106 else 1107 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1108 new_i_size); 1109 1110 up_write(&oi->ip_alloc_sem); 1111 1112 if (ret < 0) { 1113 mlog_errno(ret); 1114 goto out; 1115 } 1116 1117 out_update_size: 1118 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1119 if (ret < 0) 1120 mlog_errno(ret); 1121 1122 out: 1123 return ret; 1124 } 1125 1126 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1127 { 1128 int status = 0, size_change; 1129 struct inode *inode = dentry->d_inode; 1130 struct super_block *sb = inode->i_sb; 1131 struct ocfs2_super *osb = OCFS2_SB(sb); 1132 struct buffer_head *bh = NULL; 1133 handle_t *handle = NULL; 1134 struct dquot *transfer_to[MAXQUOTAS] = { }; 1135 int qtype; 1136 1137 trace_ocfs2_setattr(inode, dentry, 1138 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1139 dentry->d_name.len, dentry->d_name.name, 1140 attr->ia_valid, attr->ia_mode, 1141 from_kuid(&init_user_ns, attr->ia_uid), 1142 from_kgid(&init_user_ns, attr->ia_gid)); 1143 1144 /* ensuring we don't even attempt to truncate a symlink */ 1145 if (S_ISLNK(inode->i_mode)) 1146 attr->ia_valid &= ~ATTR_SIZE; 1147 1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1149 | ATTR_GID | ATTR_UID | ATTR_MODE) 1150 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1151 return 0; 1152 1153 status = inode_change_ok(inode, attr); 1154 if (status) 1155 return status; 1156 1157 if (is_quota_modification(inode, attr)) 1158 dquot_initialize(inode); 1159 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1160 if (size_change) { 1161 status = ocfs2_rw_lock(inode, 1); 1162 if (status < 0) { 1163 mlog_errno(status); 1164 goto bail; 1165 } 1166 } 1167 1168 status = ocfs2_inode_lock(inode, &bh, 1); 1169 if (status < 0) { 1170 if (status != -ENOENT) 1171 mlog_errno(status); 1172 goto bail_unlock_rw; 1173 } 1174 1175 if (size_change) { 1176 status = inode_newsize_ok(inode, attr->ia_size); 1177 if (status) 1178 goto bail_unlock; 1179 1180 inode_dio_wait(inode); 1181 1182 if (i_size_read(inode) >= attr->ia_size) { 1183 if (ocfs2_should_order_data(inode)) { 1184 status = ocfs2_begin_ordered_truncate(inode, 1185 attr->ia_size); 1186 if (status) 1187 goto bail_unlock; 1188 } 1189 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1190 } else 1191 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1192 if (status < 0) { 1193 if (status != -ENOSPC) 1194 mlog_errno(status); 1195 status = -ENOSPC; 1196 goto bail_unlock; 1197 } 1198 } 1199 1200 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1201 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1202 /* 1203 * Gather pointers to quota structures so that allocation / 1204 * freeing of quota structures happens here and not inside 1205 * dquot_transfer() where we have problems with lock ordering 1206 */ 1207 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1208 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1209 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1210 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1211 if (!transfer_to[USRQUOTA]) { 1212 status = -ESRCH; 1213 goto bail_unlock; 1214 } 1215 } 1216 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1217 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1218 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1219 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1220 if (!transfer_to[GRPQUOTA]) { 1221 status = -ESRCH; 1222 goto bail_unlock; 1223 } 1224 } 1225 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1226 2 * ocfs2_quota_trans_credits(sb)); 1227 if (IS_ERR(handle)) { 1228 status = PTR_ERR(handle); 1229 mlog_errno(status); 1230 goto bail_unlock; 1231 } 1232 status = __dquot_transfer(inode, transfer_to); 1233 if (status < 0) 1234 goto bail_commit; 1235 } else { 1236 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1237 if (IS_ERR(handle)) { 1238 status = PTR_ERR(handle); 1239 mlog_errno(status); 1240 goto bail_unlock; 1241 } 1242 } 1243 1244 setattr_copy(inode, attr); 1245 mark_inode_dirty(inode); 1246 1247 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1248 if (status < 0) 1249 mlog_errno(status); 1250 1251 bail_commit: 1252 ocfs2_commit_trans(osb, handle); 1253 bail_unlock: 1254 ocfs2_inode_unlock(inode, 1); 1255 bail_unlock_rw: 1256 if (size_change) 1257 ocfs2_rw_unlock(inode, 1); 1258 bail: 1259 brelse(bh); 1260 1261 /* Release quota pointers in case we acquired them */ 1262 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1263 dqput(transfer_to[qtype]); 1264 1265 if (!status && attr->ia_valid & ATTR_MODE) { 1266 status = posix_acl_chmod(inode, inode->i_mode); 1267 if (status < 0) 1268 mlog_errno(status); 1269 } 1270 1271 return status; 1272 } 1273 1274 int ocfs2_getattr(struct vfsmount *mnt, 1275 struct dentry *dentry, 1276 struct kstat *stat) 1277 { 1278 struct inode *inode = dentry->d_inode; 1279 struct super_block *sb = dentry->d_inode->i_sb; 1280 struct ocfs2_super *osb = sb->s_fs_info; 1281 int err; 1282 1283 err = ocfs2_inode_revalidate(dentry); 1284 if (err) { 1285 if (err != -ENOENT) 1286 mlog_errno(err); 1287 goto bail; 1288 } 1289 1290 generic_fillattr(inode, stat); 1291 1292 /* We set the blksize from the cluster size for performance */ 1293 stat->blksize = osb->s_clustersize; 1294 1295 bail: 1296 return err; 1297 } 1298 1299 int ocfs2_permission(struct inode *inode, int mask) 1300 { 1301 int ret; 1302 1303 if (mask & MAY_NOT_BLOCK) 1304 return -ECHILD; 1305 1306 ret = ocfs2_inode_lock(inode, NULL, 0); 1307 if (ret) { 1308 if (ret != -ENOENT) 1309 mlog_errno(ret); 1310 goto out; 1311 } 1312 1313 ret = generic_permission(inode, mask); 1314 1315 ocfs2_inode_unlock(inode, 0); 1316 out: 1317 return ret; 1318 } 1319 1320 static int __ocfs2_write_remove_suid(struct inode *inode, 1321 struct buffer_head *bh) 1322 { 1323 int ret; 1324 handle_t *handle; 1325 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1326 struct ocfs2_dinode *di; 1327 1328 trace_ocfs2_write_remove_suid( 1329 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1330 inode->i_mode); 1331 1332 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1333 if (IS_ERR(handle)) { 1334 ret = PTR_ERR(handle); 1335 mlog_errno(ret); 1336 goto out; 1337 } 1338 1339 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1340 OCFS2_JOURNAL_ACCESS_WRITE); 1341 if (ret < 0) { 1342 mlog_errno(ret); 1343 goto out_trans; 1344 } 1345 1346 inode->i_mode &= ~S_ISUID; 1347 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1348 inode->i_mode &= ~S_ISGID; 1349 1350 di = (struct ocfs2_dinode *) bh->b_data; 1351 di->i_mode = cpu_to_le16(inode->i_mode); 1352 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1353 1354 ocfs2_journal_dirty(handle, bh); 1355 1356 out_trans: 1357 ocfs2_commit_trans(osb, handle); 1358 out: 1359 return ret; 1360 } 1361 1362 /* 1363 * Will look for holes and unwritten extents in the range starting at 1364 * pos for count bytes (inclusive). 1365 */ 1366 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1367 size_t count) 1368 { 1369 int ret = 0; 1370 unsigned int extent_flags; 1371 u32 cpos, clusters, extent_len, phys_cpos; 1372 struct super_block *sb = inode->i_sb; 1373 1374 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1375 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1376 1377 while (clusters) { 1378 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1379 &extent_flags); 1380 if (ret < 0) { 1381 mlog_errno(ret); 1382 goto out; 1383 } 1384 1385 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1386 ret = 1; 1387 break; 1388 } 1389 1390 if (extent_len > clusters) 1391 extent_len = clusters; 1392 1393 clusters -= extent_len; 1394 cpos += extent_len; 1395 } 1396 out: 1397 return ret; 1398 } 1399 1400 static int ocfs2_write_remove_suid(struct inode *inode) 1401 { 1402 int ret; 1403 struct buffer_head *bh = NULL; 1404 1405 ret = ocfs2_read_inode_block(inode, &bh); 1406 if (ret < 0) { 1407 mlog_errno(ret); 1408 goto out; 1409 } 1410 1411 ret = __ocfs2_write_remove_suid(inode, bh); 1412 out: 1413 brelse(bh); 1414 return ret; 1415 } 1416 1417 /* 1418 * Allocate enough extents to cover the region starting at byte offset 1419 * start for len bytes. Existing extents are skipped, any extents 1420 * added are marked as "unwritten". 1421 */ 1422 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1423 u64 start, u64 len) 1424 { 1425 int ret; 1426 u32 cpos, phys_cpos, clusters, alloc_size; 1427 u64 end = start + len; 1428 struct buffer_head *di_bh = NULL; 1429 1430 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1431 ret = ocfs2_read_inode_block(inode, &di_bh); 1432 if (ret) { 1433 mlog_errno(ret); 1434 goto out; 1435 } 1436 1437 /* 1438 * Nothing to do if the requested reservation range 1439 * fits within the inode. 1440 */ 1441 if (ocfs2_size_fits_inline_data(di_bh, end)) 1442 goto out; 1443 1444 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1445 if (ret) { 1446 mlog_errno(ret); 1447 goto out; 1448 } 1449 } 1450 1451 /* 1452 * We consider both start and len to be inclusive. 1453 */ 1454 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1455 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1456 clusters -= cpos; 1457 1458 while (clusters) { 1459 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1460 &alloc_size, NULL); 1461 if (ret) { 1462 mlog_errno(ret); 1463 goto out; 1464 } 1465 1466 /* 1467 * Hole or existing extent len can be arbitrary, so 1468 * cap it to our own allocation request. 1469 */ 1470 if (alloc_size > clusters) 1471 alloc_size = clusters; 1472 1473 if (phys_cpos) { 1474 /* 1475 * We already have an allocation at this 1476 * region so we can safely skip it. 1477 */ 1478 goto next; 1479 } 1480 1481 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1482 if (ret) { 1483 if (ret != -ENOSPC) 1484 mlog_errno(ret); 1485 goto out; 1486 } 1487 1488 next: 1489 cpos += alloc_size; 1490 clusters -= alloc_size; 1491 } 1492 1493 ret = 0; 1494 out: 1495 1496 brelse(di_bh); 1497 return ret; 1498 } 1499 1500 /* 1501 * Truncate a byte range, avoiding pages within partial clusters. This 1502 * preserves those pages for the zeroing code to write to. 1503 */ 1504 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1505 u64 byte_len) 1506 { 1507 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1508 loff_t start, end; 1509 struct address_space *mapping = inode->i_mapping; 1510 1511 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1512 end = byte_start + byte_len; 1513 end = end & ~(osb->s_clustersize - 1); 1514 1515 if (start < end) { 1516 unmap_mapping_range(mapping, start, end - start, 0); 1517 truncate_inode_pages_range(mapping, start, end - 1); 1518 } 1519 } 1520 1521 static int ocfs2_zero_partial_clusters(struct inode *inode, 1522 u64 start, u64 len) 1523 { 1524 int ret = 0; 1525 u64 tmpend, end = start + len; 1526 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1527 unsigned int csize = osb->s_clustersize; 1528 handle_t *handle; 1529 1530 /* 1531 * The "start" and "end" values are NOT necessarily part of 1532 * the range whose allocation is being deleted. Rather, this 1533 * is what the user passed in with the request. We must zero 1534 * partial clusters here. There's no need to worry about 1535 * physical allocation - the zeroing code knows to skip holes. 1536 */ 1537 trace_ocfs2_zero_partial_clusters( 1538 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1539 (unsigned long long)start, (unsigned long long)end); 1540 1541 /* 1542 * If both edges are on a cluster boundary then there's no 1543 * zeroing required as the region is part of the allocation to 1544 * be truncated. 1545 */ 1546 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1547 goto out; 1548 1549 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1550 if (IS_ERR(handle)) { 1551 ret = PTR_ERR(handle); 1552 mlog_errno(ret); 1553 goto out; 1554 } 1555 1556 /* 1557 * We want to get the byte offset of the end of the 1st cluster. 1558 */ 1559 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1560 if (tmpend > end) 1561 tmpend = end; 1562 1563 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1564 (unsigned long long)tmpend); 1565 1566 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1567 if (ret) 1568 mlog_errno(ret); 1569 1570 if (tmpend < end) { 1571 /* 1572 * This may make start and end equal, but the zeroing 1573 * code will skip any work in that case so there's no 1574 * need to catch it up here. 1575 */ 1576 start = end & ~(osb->s_clustersize - 1); 1577 1578 trace_ocfs2_zero_partial_clusters_range2( 1579 (unsigned long long)start, (unsigned long long)end); 1580 1581 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1582 if (ret) 1583 mlog_errno(ret); 1584 } 1585 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1586 1587 ocfs2_commit_trans(osb, handle); 1588 out: 1589 return ret; 1590 } 1591 1592 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1593 { 1594 int i; 1595 struct ocfs2_extent_rec *rec = NULL; 1596 1597 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1598 1599 rec = &el->l_recs[i]; 1600 1601 if (le32_to_cpu(rec->e_cpos) < pos) 1602 break; 1603 } 1604 1605 return i; 1606 } 1607 1608 /* 1609 * Helper to calculate the punching pos and length in one run, we handle the 1610 * following three cases in order: 1611 * 1612 * - remove the entire record 1613 * - remove a partial record 1614 * - no record needs to be removed (hole-punching completed) 1615 */ 1616 static void ocfs2_calc_trunc_pos(struct inode *inode, 1617 struct ocfs2_extent_list *el, 1618 struct ocfs2_extent_rec *rec, 1619 u32 trunc_start, u32 *trunc_cpos, 1620 u32 *trunc_len, u32 *trunc_end, 1621 u64 *blkno, int *done) 1622 { 1623 int ret = 0; 1624 u32 coff, range; 1625 1626 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1627 1628 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1629 /* 1630 * remove an entire extent record. 1631 */ 1632 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1633 /* 1634 * Skip holes if any. 1635 */ 1636 if (range < *trunc_end) 1637 *trunc_end = range; 1638 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1639 *blkno = le64_to_cpu(rec->e_blkno); 1640 *trunc_end = le32_to_cpu(rec->e_cpos); 1641 } else if (range > trunc_start) { 1642 /* 1643 * remove a partial extent record, which means we're 1644 * removing the last extent record. 1645 */ 1646 *trunc_cpos = trunc_start; 1647 /* 1648 * skip hole if any. 1649 */ 1650 if (range < *trunc_end) 1651 *trunc_end = range; 1652 *trunc_len = *trunc_end - trunc_start; 1653 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1654 *blkno = le64_to_cpu(rec->e_blkno) + 1655 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1656 *trunc_end = trunc_start; 1657 } else { 1658 /* 1659 * It may have two following possibilities: 1660 * 1661 * - last record has been removed 1662 * - trunc_start was within a hole 1663 * 1664 * both two cases mean the completion of hole punching. 1665 */ 1666 ret = 1; 1667 } 1668 1669 *done = ret; 1670 } 1671 1672 static int ocfs2_remove_inode_range(struct inode *inode, 1673 struct buffer_head *di_bh, u64 byte_start, 1674 u64 byte_len) 1675 { 1676 int ret = 0, flags = 0, done = 0, i; 1677 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1678 u32 cluster_in_el; 1679 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1680 struct ocfs2_cached_dealloc_ctxt dealloc; 1681 struct address_space *mapping = inode->i_mapping; 1682 struct ocfs2_extent_tree et; 1683 struct ocfs2_path *path = NULL; 1684 struct ocfs2_extent_list *el = NULL; 1685 struct ocfs2_extent_rec *rec = NULL; 1686 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1687 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1688 1689 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1690 ocfs2_init_dealloc_ctxt(&dealloc); 1691 1692 trace_ocfs2_remove_inode_range( 1693 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1694 (unsigned long long)byte_start, 1695 (unsigned long long)byte_len); 1696 1697 if (byte_len == 0) 1698 return 0; 1699 1700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1701 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1702 byte_start + byte_len, 0); 1703 if (ret) { 1704 mlog_errno(ret); 1705 goto out; 1706 } 1707 /* 1708 * There's no need to get fancy with the page cache 1709 * truncate of an inline-data inode. We're talking 1710 * about less than a page here, which will be cached 1711 * in the dinode buffer anyway. 1712 */ 1713 unmap_mapping_range(mapping, 0, 0, 0); 1714 truncate_inode_pages(mapping, 0); 1715 goto out; 1716 } 1717 1718 /* 1719 * For reflinks, we may need to CoW 2 clusters which might be 1720 * partially zero'd later, if hole's start and end offset were 1721 * within one cluster(means is not exactly aligned to clustersize). 1722 */ 1723 1724 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1725 1726 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1727 if (ret) { 1728 mlog_errno(ret); 1729 goto out; 1730 } 1731 1732 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1733 if (ret) { 1734 mlog_errno(ret); 1735 goto out; 1736 } 1737 } 1738 1739 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1740 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1741 cluster_in_el = trunc_end; 1742 1743 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1744 if (ret) { 1745 mlog_errno(ret); 1746 goto out; 1747 } 1748 1749 path = ocfs2_new_path_from_et(&et); 1750 if (!path) { 1751 ret = -ENOMEM; 1752 mlog_errno(ret); 1753 goto out; 1754 } 1755 1756 while (trunc_end > trunc_start) { 1757 1758 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1759 cluster_in_el); 1760 if (ret) { 1761 mlog_errno(ret); 1762 goto out; 1763 } 1764 1765 el = path_leaf_el(path); 1766 1767 i = ocfs2_find_rec(el, trunc_end); 1768 /* 1769 * Need to go to previous extent block. 1770 */ 1771 if (i < 0) { 1772 if (path->p_tree_depth == 0) 1773 break; 1774 1775 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1776 path, 1777 &cluster_in_el); 1778 if (ret) { 1779 mlog_errno(ret); 1780 goto out; 1781 } 1782 1783 /* 1784 * We've reached the leftmost extent block, 1785 * it's safe to leave. 1786 */ 1787 if (cluster_in_el == 0) 1788 break; 1789 1790 /* 1791 * The 'pos' searched for previous extent block is 1792 * always one cluster less than actual trunc_end. 1793 */ 1794 trunc_end = cluster_in_el + 1; 1795 1796 ocfs2_reinit_path(path, 1); 1797 1798 continue; 1799 1800 } else 1801 rec = &el->l_recs[i]; 1802 1803 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1804 &trunc_len, &trunc_end, &blkno, &done); 1805 if (done) 1806 break; 1807 1808 flags = rec->e_flags; 1809 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1810 1811 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1812 phys_cpos, trunc_len, flags, 1813 &dealloc, refcount_loc, false); 1814 if (ret < 0) { 1815 mlog_errno(ret); 1816 goto out; 1817 } 1818 1819 cluster_in_el = trunc_end; 1820 1821 ocfs2_reinit_path(path, 1); 1822 } 1823 1824 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1825 1826 out: 1827 ocfs2_free_path(path); 1828 ocfs2_schedule_truncate_log_flush(osb, 1); 1829 ocfs2_run_deallocs(osb, &dealloc); 1830 1831 return ret; 1832 } 1833 1834 /* 1835 * Parts of this function taken from xfs_change_file_space() 1836 */ 1837 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1838 loff_t f_pos, unsigned int cmd, 1839 struct ocfs2_space_resv *sr, 1840 int change_size) 1841 { 1842 int ret; 1843 s64 llen; 1844 loff_t size; 1845 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1846 struct buffer_head *di_bh = NULL; 1847 handle_t *handle; 1848 unsigned long long max_off = inode->i_sb->s_maxbytes; 1849 1850 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1851 return -EROFS; 1852 1853 mutex_lock(&inode->i_mutex); 1854 1855 /* 1856 * This prevents concurrent writes on other nodes 1857 */ 1858 ret = ocfs2_rw_lock(inode, 1); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out; 1862 } 1863 1864 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1865 if (ret) { 1866 mlog_errno(ret); 1867 goto out_rw_unlock; 1868 } 1869 1870 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1871 ret = -EPERM; 1872 goto out_inode_unlock; 1873 } 1874 1875 switch (sr->l_whence) { 1876 case 0: /*SEEK_SET*/ 1877 break; 1878 case 1: /*SEEK_CUR*/ 1879 sr->l_start += f_pos; 1880 break; 1881 case 2: /*SEEK_END*/ 1882 sr->l_start += i_size_read(inode); 1883 break; 1884 default: 1885 ret = -EINVAL; 1886 goto out_inode_unlock; 1887 } 1888 sr->l_whence = 0; 1889 1890 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1891 1892 if (sr->l_start < 0 1893 || sr->l_start > max_off 1894 || (sr->l_start + llen) < 0 1895 || (sr->l_start + llen) > max_off) { 1896 ret = -EINVAL; 1897 goto out_inode_unlock; 1898 } 1899 size = sr->l_start + sr->l_len; 1900 1901 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1902 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1903 if (sr->l_len <= 0) { 1904 ret = -EINVAL; 1905 goto out_inode_unlock; 1906 } 1907 } 1908 1909 if (file && should_remove_suid(file->f_path.dentry)) { 1910 ret = __ocfs2_write_remove_suid(inode, di_bh); 1911 if (ret) { 1912 mlog_errno(ret); 1913 goto out_inode_unlock; 1914 } 1915 } 1916 1917 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1918 switch (cmd) { 1919 case OCFS2_IOC_RESVSP: 1920 case OCFS2_IOC_RESVSP64: 1921 /* 1922 * This takes unsigned offsets, but the signed ones we 1923 * pass have been checked against overflow above. 1924 */ 1925 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1926 sr->l_len); 1927 break; 1928 case OCFS2_IOC_UNRESVSP: 1929 case OCFS2_IOC_UNRESVSP64: 1930 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1931 sr->l_len); 1932 break; 1933 default: 1934 ret = -EINVAL; 1935 } 1936 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1937 if (ret) { 1938 mlog_errno(ret); 1939 goto out_inode_unlock; 1940 } 1941 1942 /* 1943 * We update c/mtime for these changes 1944 */ 1945 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1946 if (IS_ERR(handle)) { 1947 ret = PTR_ERR(handle); 1948 mlog_errno(ret); 1949 goto out_inode_unlock; 1950 } 1951 1952 if (change_size && i_size_read(inode) < size) 1953 i_size_write(inode, size); 1954 1955 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1956 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1957 if (ret < 0) 1958 mlog_errno(ret); 1959 1960 if (file && (file->f_flags & O_SYNC)) 1961 handle->h_sync = 1; 1962 1963 ocfs2_commit_trans(osb, handle); 1964 1965 out_inode_unlock: 1966 brelse(di_bh); 1967 ocfs2_inode_unlock(inode, 1); 1968 out_rw_unlock: 1969 ocfs2_rw_unlock(inode, 1); 1970 1971 out: 1972 mutex_unlock(&inode->i_mutex); 1973 return ret; 1974 } 1975 1976 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1977 struct ocfs2_space_resv *sr) 1978 { 1979 struct inode *inode = file_inode(file); 1980 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1981 int ret; 1982 1983 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1984 !ocfs2_writes_unwritten_extents(osb)) 1985 return -ENOTTY; 1986 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1987 !ocfs2_sparse_alloc(osb)) 1988 return -ENOTTY; 1989 1990 if (!S_ISREG(inode->i_mode)) 1991 return -EINVAL; 1992 1993 if (!(file->f_mode & FMODE_WRITE)) 1994 return -EBADF; 1995 1996 ret = mnt_want_write_file(file); 1997 if (ret) 1998 return ret; 1999 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2000 mnt_drop_write_file(file); 2001 return ret; 2002 } 2003 2004 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2005 loff_t len) 2006 { 2007 struct inode *inode = file_inode(file); 2008 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2009 struct ocfs2_space_resv sr; 2010 int change_size = 1; 2011 int cmd = OCFS2_IOC_RESVSP64; 2012 2013 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2014 return -EOPNOTSUPP; 2015 if (!ocfs2_writes_unwritten_extents(osb)) 2016 return -EOPNOTSUPP; 2017 2018 if (mode & FALLOC_FL_KEEP_SIZE) 2019 change_size = 0; 2020 2021 if (mode & FALLOC_FL_PUNCH_HOLE) 2022 cmd = OCFS2_IOC_UNRESVSP64; 2023 2024 sr.l_whence = 0; 2025 sr.l_start = (s64)offset; 2026 sr.l_len = (s64)len; 2027 2028 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2029 change_size); 2030 } 2031 2032 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2033 size_t count) 2034 { 2035 int ret = 0; 2036 unsigned int extent_flags; 2037 u32 cpos, clusters, extent_len, phys_cpos; 2038 struct super_block *sb = inode->i_sb; 2039 2040 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2041 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2042 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2043 return 0; 2044 2045 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2046 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2047 2048 while (clusters) { 2049 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2050 &extent_flags); 2051 if (ret < 0) { 2052 mlog_errno(ret); 2053 goto out; 2054 } 2055 2056 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2057 ret = 1; 2058 break; 2059 } 2060 2061 if (extent_len > clusters) 2062 extent_len = clusters; 2063 2064 clusters -= extent_len; 2065 cpos += extent_len; 2066 } 2067 out: 2068 return ret; 2069 } 2070 2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2072 { 2073 int blockmask = inode->i_sb->s_blocksize - 1; 2074 loff_t final_size = pos + count; 2075 2076 if ((pos & blockmask) || (final_size & blockmask)) 2077 return 1; 2078 return 0; 2079 } 2080 2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2082 struct file *file, 2083 loff_t pos, size_t count, 2084 int *meta_level) 2085 { 2086 int ret; 2087 struct buffer_head *di_bh = NULL; 2088 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2089 u32 clusters = 2090 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2091 2092 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2093 if (ret) { 2094 mlog_errno(ret); 2095 goto out; 2096 } 2097 2098 *meta_level = 1; 2099 2100 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2101 if (ret) 2102 mlog_errno(ret); 2103 out: 2104 brelse(di_bh); 2105 return ret; 2106 } 2107 2108 static int ocfs2_prepare_inode_for_write(struct file *file, 2109 loff_t *ppos, 2110 size_t count, 2111 int appending, 2112 int *direct_io, 2113 int *has_refcount) 2114 { 2115 int ret = 0, meta_level = 0; 2116 struct dentry *dentry = file->f_path.dentry; 2117 struct inode *inode = dentry->d_inode; 2118 loff_t saved_pos = 0, end; 2119 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2120 int full_coherency = !(osb->s_mount_opt & 2121 OCFS2_MOUNT_COHERENCY_BUFFERED); 2122 2123 /* 2124 * We start with a read level meta lock and only jump to an ex 2125 * if we need to make modifications here. 2126 */ 2127 for(;;) { 2128 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2129 if (ret < 0) { 2130 meta_level = -1; 2131 mlog_errno(ret); 2132 goto out; 2133 } 2134 2135 /* Clear suid / sgid if necessary. We do this here 2136 * instead of later in the write path because 2137 * remove_suid() calls ->setattr without any hint that 2138 * we may have already done our cluster locking. Since 2139 * ocfs2_setattr() *must* take cluster locks to 2140 * proceed, this will lead us to recursively lock the 2141 * inode. There's also the dinode i_size state which 2142 * can be lost via setattr during extending writes (we 2143 * set inode->i_size at the end of a write. */ 2144 if (should_remove_suid(dentry)) { 2145 if (meta_level == 0) { 2146 ocfs2_inode_unlock(inode, meta_level); 2147 meta_level = 1; 2148 continue; 2149 } 2150 2151 ret = ocfs2_write_remove_suid(inode); 2152 if (ret < 0) { 2153 mlog_errno(ret); 2154 goto out_unlock; 2155 } 2156 } 2157 2158 /* work on a copy of ppos until we're sure that we won't have 2159 * to recalculate it due to relocking. */ 2160 if (appending) 2161 saved_pos = i_size_read(inode); 2162 else 2163 saved_pos = *ppos; 2164 2165 end = saved_pos + count; 2166 2167 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2168 if (ret == 1) { 2169 ocfs2_inode_unlock(inode, meta_level); 2170 meta_level = -1; 2171 2172 ret = ocfs2_prepare_inode_for_refcount(inode, 2173 file, 2174 saved_pos, 2175 count, 2176 &meta_level); 2177 if (has_refcount) 2178 *has_refcount = 1; 2179 if (direct_io) 2180 *direct_io = 0; 2181 } 2182 2183 if (ret < 0) { 2184 mlog_errno(ret); 2185 goto out_unlock; 2186 } 2187 2188 /* 2189 * Skip the O_DIRECT checks if we don't need 2190 * them. 2191 */ 2192 if (!direct_io || !(*direct_io)) 2193 break; 2194 2195 /* 2196 * There's no sane way to do direct writes to an inode 2197 * with inline data. 2198 */ 2199 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2200 *direct_io = 0; 2201 break; 2202 } 2203 2204 /* 2205 * Allowing concurrent direct writes means 2206 * i_size changes wouldn't be synchronized, so 2207 * one node could wind up truncating another 2208 * nodes writes. 2209 */ 2210 if (end > i_size_read(inode) && !full_coherency) { 2211 *direct_io = 0; 2212 break; 2213 } 2214 2215 /* 2216 * Fallback to old way if the feature bit is not set. 2217 */ 2218 if (end > i_size_read(inode) && 2219 !ocfs2_supports_append_dio(osb)) { 2220 *direct_io = 0; 2221 break; 2222 } 2223 2224 /* 2225 * We don't fill holes during direct io, so 2226 * check for them here. If any are found, the 2227 * caller will have to retake some cluster 2228 * locks and initiate the io as buffered. 2229 */ 2230 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2231 if (ret == 1) { 2232 /* 2233 * Fallback to old way if the feature bit is not set. 2234 * Otherwise try dio first and then complete the rest 2235 * request through buffer io. 2236 */ 2237 if (!ocfs2_supports_append_dio(osb)) 2238 *direct_io = 0; 2239 ret = 0; 2240 } else if (ret < 0) 2241 mlog_errno(ret); 2242 break; 2243 } 2244 2245 if (appending) 2246 *ppos = saved_pos; 2247 2248 out_unlock: 2249 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2250 saved_pos, appending, count, 2251 direct_io, has_refcount); 2252 2253 if (meta_level >= 0) 2254 ocfs2_inode_unlock(inode, meta_level); 2255 2256 out: 2257 return ret; 2258 } 2259 2260 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2261 struct iov_iter *from) 2262 { 2263 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2264 int can_do_direct, has_refcount = 0; 2265 ssize_t written = 0; 2266 size_t count = iov_iter_count(from); 2267 loff_t old_size, *ppos = &iocb->ki_pos; 2268 u32 old_clusters; 2269 struct file *file = iocb->ki_filp; 2270 struct inode *inode = file_inode(file); 2271 struct address_space *mapping = file->f_mapping; 2272 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2273 int full_coherency = !(osb->s_mount_opt & 2274 OCFS2_MOUNT_COHERENCY_BUFFERED); 2275 int unaligned_dio = 0; 2276 2277 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2278 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2279 file->f_path.dentry->d_name.len, 2280 file->f_path.dentry->d_name.name, 2281 (unsigned int)from->nr_segs); /* GRRRRR */ 2282 2283 if (iocb->ki_nbytes == 0) 2284 return 0; 2285 2286 appending = file->f_flags & O_APPEND ? 1 : 0; 2287 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2288 2289 mutex_lock(&inode->i_mutex); 2290 2291 ocfs2_iocb_clear_sem_locked(iocb); 2292 2293 relock: 2294 /* to match setattr's i_mutex -> rw_lock ordering */ 2295 if (direct_io) { 2296 have_alloc_sem = 1; 2297 /* communicate with ocfs2_dio_end_io */ 2298 ocfs2_iocb_set_sem_locked(iocb); 2299 } 2300 2301 /* 2302 * Concurrent O_DIRECT writes are allowed with 2303 * mount_option "coherency=buffered". 2304 */ 2305 rw_level = (!direct_io || full_coherency); 2306 2307 ret = ocfs2_rw_lock(inode, rw_level); 2308 if (ret < 0) { 2309 mlog_errno(ret); 2310 goto out_sems; 2311 } 2312 2313 /* 2314 * O_DIRECT writes with "coherency=full" need to take EX cluster 2315 * inode_lock to guarantee coherency. 2316 */ 2317 if (direct_io && full_coherency) { 2318 /* 2319 * We need to take and drop the inode lock to force 2320 * other nodes to drop their caches. Buffered I/O 2321 * already does this in write_begin(). 2322 */ 2323 ret = ocfs2_inode_lock(inode, NULL, 1); 2324 if (ret < 0) { 2325 mlog_errno(ret); 2326 goto out; 2327 } 2328 2329 ocfs2_inode_unlock(inode, 1); 2330 } 2331 2332 can_do_direct = direct_io; 2333 ret = ocfs2_prepare_inode_for_write(file, ppos, 2334 iocb->ki_nbytes, appending, 2335 &can_do_direct, &has_refcount); 2336 if (ret < 0) { 2337 mlog_errno(ret); 2338 goto out; 2339 } 2340 2341 if (direct_io && !is_sync_kiocb(iocb)) 2342 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes, 2343 *ppos); 2344 2345 /* 2346 * We can't complete the direct I/O as requested, fall back to 2347 * buffered I/O. 2348 */ 2349 if (direct_io && !can_do_direct) { 2350 ocfs2_rw_unlock(inode, rw_level); 2351 2352 have_alloc_sem = 0; 2353 rw_level = -1; 2354 2355 direct_io = 0; 2356 goto relock; 2357 } 2358 2359 if (unaligned_dio) { 2360 /* 2361 * Wait on previous unaligned aio to complete before 2362 * proceeding. 2363 */ 2364 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio); 2365 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */ 2366 ocfs2_iocb_set_unaligned_aio(iocb); 2367 } 2368 2369 /* 2370 * To later detect whether a journal commit for sync writes is 2371 * necessary, we sample i_size, and cluster count here. 2372 */ 2373 old_size = i_size_read(inode); 2374 old_clusters = OCFS2_I(inode)->ip_clusters; 2375 2376 /* communicate with ocfs2_dio_end_io */ 2377 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2378 2379 ret = generic_write_checks(file, ppos, &count, 2380 S_ISBLK(inode->i_mode)); 2381 if (ret) 2382 goto out_dio; 2383 2384 iov_iter_truncate(from, count); 2385 if (direct_io) { 2386 loff_t endbyte; 2387 ssize_t written_buffered; 2388 written = generic_file_direct_write(iocb, from, *ppos); 2389 if (written < 0 || written == count) { 2390 ret = written; 2391 goto out_dio; 2392 } 2393 2394 /* 2395 * for completing the rest of the request. 2396 */ 2397 count -= written; 2398 written_buffered = generic_perform_write(file, from, *ppos); 2399 /* 2400 * If generic_file_buffered_write() returned a synchronous error 2401 * then we want to return the number of bytes which were 2402 * direct-written, or the error code if that was zero. Note 2403 * that this differs from normal direct-io semantics, which 2404 * will return -EFOO even if some bytes were written. 2405 */ 2406 if (written_buffered < 0) { 2407 ret = written_buffered; 2408 goto out_dio; 2409 } 2410 2411 /* We need to ensure that the page cache pages are written to 2412 * disk and invalidated to preserve the expected O_DIRECT 2413 * semantics. 2414 */ 2415 endbyte = *ppos + written_buffered - 1; 2416 ret = filemap_write_and_wait_range(file->f_mapping, *ppos, 2417 endbyte); 2418 if (ret == 0) { 2419 iocb->ki_pos = *ppos + written_buffered; 2420 written += written_buffered; 2421 invalidate_mapping_pages(mapping, 2422 *ppos >> PAGE_CACHE_SHIFT, 2423 endbyte >> PAGE_CACHE_SHIFT); 2424 } else { 2425 /* 2426 * We don't know how much we wrote, so just return 2427 * the number of bytes which were direct-written 2428 */ 2429 } 2430 } else { 2431 current->backing_dev_info = inode_to_bdi(inode); 2432 written = generic_perform_write(file, from, *ppos); 2433 if (likely(written >= 0)) 2434 iocb->ki_pos = *ppos + written; 2435 current->backing_dev_info = NULL; 2436 } 2437 2438 out_dio: 2439 /* buffered aio wouldn't have proper lock coverage today */ 2440 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2441 2442 if (unlikely(written <= 0)) 2443 goto no_sync; 2444 2445 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2446 ((file->f_flags & O_DIRECT) && !direct_io)) { 2447 ret = filemap_fdatawrite_range(file->f_mapping, 2448 iocb->ki_pos - written, 2449 iocb->ki_pos - 1); 2450 if (ret < 0) 2451 written = ret; 2452 2453 if (!ret) { 2454 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2455 if (ret < 0) 2456 written = ret; 2457 } 2458 2459 if (!ret) 2460 ret = filemap_fdatawait_range(file->f_mapping, 2461 iocb->ki_pos - written, 2462 iocb->ki_pos - 1); 2463 } 2464 2465 no_sync: 2466 /* 2467 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2468 * function pointer which is called when o_direct io completes so that 2469 * it can unlock our rw lock. 2470 * Unfortunately there are error cases which call end_io and others 2471 * that don't. so we don't have to unlock the rw_lock if either an 2472 * async dio is going to do it in the future or an end_io after an 2473 * error has already done it. 2474 */ 2475 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2476 rw_level = -1; 2477 have_alloc_sem = 0; 2478 unaligned_dio = 0; 2479 } 2480 2481 if (unaligned_dio) { 2482 ocfs2_iocb_clear_unaligned_aio(iocb); 2483 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 2484 } 2485 2486 out: 2487 if (rw_level != -1) 2488 ocfs2_rw_unlock(inode, rw_level); 2489 2490 out_sems: 2491 if (have_alloc_sem) 2492 ocfs2_iocb_clear_sem_locked(iocb); 2493 2494 mutex_unlock(&inode->i_mutex); 2495 2496 if (written) 2497 ret = written; 2498 return ret; 2499 } 2500 2501 static ssize_t ocfs2_file_splice_read(struct file *in, 2502 loff_t *ppos, 2503 struct pipe_inode_info *pipe, 2504 size_t len, 2505 unsigned int flags) 2506 { 2507 int ret = 0, lock_level = 0; 2508 struct inode *inode = file_inode(in); 2509 2510 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2511 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2512 in->f_path.dentry->d_name.len, 2513 in->f_path.dentry->d_name.name, len); 2514 2515 /* 2516 * See the comment in ocfs2_file_read_iter() 2517 */ 2518 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2519 if (ret < 0) { 2520 mlog_errno(ret); 2521 goto bail; 2522 } 2523 ocfs2_inode_unlock(inode, lock_level); 2524 2525 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2526 2527 bail: 2528 return ret; 2529 } 2530 2531 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2532 struct iov_iter *to) 2533 { 2534 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2535 struct file *filp = iocb->ki_filp; 2536 struct inode *inode = file_inode(filp); 2537 2538 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2539 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2540 filp->f_path.dentry->d_name.len, 2541 filp->f_path.dentry->d_name.name, 2542 to->nr_segs); /* GRRRRR */ 2543 2544 2545 if (!inode) { 2546 ret = -EINVAL; 2547 mlog_errno(ret); 2548 goto bail; 2549 } 2550 2551 ocfs2_iocb_clear_sem_locked(iocb); 2552 2553 /* 2554 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2555 * need locks to protect pending reads from racing with truncate. 2556 */ 2557 if (filp->f_flags & O_DIRECT) { 2558 have_alloc_sem = 1; 2559 ocfs2_iocb_set_sem_locked(iocb); 2560 2561 ret = ocfs2_rw_lock(inode, 0); 2562 if (ret < 0) { 2563 mlog_errno(ret); 2564 goto bail; 2565 } 2566 rw_level = 0; 2567 /* communicate with ocfs2_dio_end_io */ 2568 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2569 } 2570 2571 /* 2572 * We're fine letting folks race truncates and extending 2573 * writes with read across the cluster, just like they can 2574 * locally. Hence no rw_lock during read. 2575 * 2576 * Take and drop the meta data lock to update inode fields 2577 * like i_size. This allows the checks down below 2578 * generic_file_aio_read() a chance of actually working. 2579 */ 2580 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2581 if (ret < 0) { 2582 mlog_errno(ret); 2583 goto bail; 2584 } 2585 ocfs2_inode_unlock(inode, lock_level); 2586 2587 ret = generic_file_read_iter(iocb, to); 2588 trace_generic_file_aio_read_ret(ret); 2589 2590 /* buffered aio wouldn't have proper lock coverage today */ 2591 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2592 2593 /* see ocfs2_file_write_iter */ 2594 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2595 rw_level = -1; 2596 have_alloc_sem = 0; 2597 } 2598 2599 bail: 2600 if (have_alloc_sem) 2601 ocfs2_iocb_clear_sem_locked(iocb); 2602 2603 if (rw_level != -1) 2604 ocfs2_rw_unlock(inode, rw_level); 2605 2606 return ret; 2607 } 2608 2609 /* Refer generic_file_llseek_unlocked() */ 2610 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2611 { 2612 struct inode *inode = file->f_mapping->host; 2613 int ret = 0; 2614 2615 mutex_lock(&inode->i_mutex); 2616 2617 switch (whence) { 2618 case SEEK_SET: 2619 break; 2620 case SEEK_END: 2621 /* SEEK_END requires the OCFS2 inode lock for the file 2622 * because it references the file's size. 2623 */ 2624 ret = ocfs2_inode_lock(inode, NULL, 0); 2625 if (ret < 0) { 2626 mlog_errno(ret); 2627 goto out; 2628 } 2629 offset += i_size_read(inode); 2630 ocfs2_inode_unlock(inode, 0); 2631 break; 2632 case SEEK_CUR: 2633 if (offset == 0) { 2634 offset = file->f_pos; 2635 goto out; 2636 } 2637 offset += file->f_pos; 2638 break; 2639 case SEEK_DATA: 2640 case SEEK_HOLE: 2641 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2642 if (ret) 2643 goto out; 2644 break; 2645 default: 2646 ret = -EINVAL; 2647 goto out; 2648 } 2649 2650 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2651 2652 out: 2653 mutex_unlock(&inode->i_mutex); 2654 if (ret) 2655 return ret; 2656 return offset; 2657 } 2658 2659 const struct inode_operations ocfs2_file_iops = { 2660 .setattr = ocfs2_setattr, 2661 .getattr = ocfs2_getattr, 2662 .permission = ocfs2_permission, 2663 .setxattr = generic_setxattr, 2664 .getxattr = generic_getxattr, 2665 .listxattr = ocfs2_listxattr, 2666 .removexattr = generic_removexattr, 2667 .fiemap = ocfs2_fiemap, 2668 .get_acl = ocfs2_iop_get_acl, 2669 .set_acl = ocfs2_iop_set_acl, 2670 }; 2671 2672 const struct inode_operations ocfs2_special_file_iops = { 2673 .setattr = ocfs2_setattr, 2674 .getattr = ocfs2_getattr, 2675 .permission = ocfs2_permission, 2676 .get_acl = ocfs2_iop_get_acl, 2677 .set_acl = ocfs2_iop_set_acl, 2678 }; 2679 2680 /* 2681 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2682 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2683 */ 2684 const struct file_operations ocfs2_fops = { 2685 .llseek = ocfs2_file_llseek, 2686 .read = new_sync_read, 2687 .write = new_sync_write, 2688 .mmap = ocfs2_mmap, 2689 .fsync = ocfs2_sync_file, 2690 .release = ocfs2_file_release, 2691 .open = ocfs2_file_open, 2692 .read_iter = ocfs2_file_read_iter, 2693 .write_iter = ocfs2_file_write_iter, 2694 .unlocked_ioctl = ocfs2_ioctl, 2695 #ifdef CONFIG_COMPAT 2696 .compat_ioctl = ocfs2_compat_ioctl, 2697 #endif 2698 .lock = ocfs2_lock, 2699 .flock = ocfs2_flock, 2700 .splice_read = ocfs2_file_splice_read, 2701 .splice_write = iter_file_splice_write, 2702 .fallocate = ocfs2_fallocate, 2703 }; 2704 2705 const struct file_operations ocfs2_dops = { 2706 .llseek = generic_file_llseek, 2707 .read = generic_read_dir, 2708 .iterate = ocfs2_readdir, 2709 .fsync = ocfs2_sync_file, 2710 .release = ocfs2_dir_release, 2711 .open = ocfs2_dir_open, 2712 .unlocked_ioctl = ocfs2_ioctl, 2713 #ifdef CONFIG_COMPAT 2714 .compat_ioctl = ocfs2_compat_ioctl, 2715 #endif 2716 .lock = ocfs2_lock, 2717 .flock = ocfs2_flock, 2718 }; 2719 2720 /* 2721 * POSIX-lockless variants of our file_operations. 2722 * 2723 * These will be used if the underlying cluster stack does not support 2724 * posix file locking, if the user passes the "localflocks" mount 2725 * option, or if we have a local-only fs. 2726 * 2727 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2728 * so we still want it in the case of no stack support for 2729 * plocks. Internally, it will do the right thing when asked to ignore 2730 * the cluster. 2731 */ 2732 const struct file_operations ocfs2_fops_no_plocks = { 2733 .llseek = ocfs2_file_llseek, 2734 .read = new_sync_read, 2735 .write = new_sync_write, 2736 .mmap = ocfs2_mmap, 2737 .fsync = ocfs2_sync_file, 2738 .release = ocfs2_file_release, 2739 .open = ocfs2_file_open, 2740 .read_iter = ocfs2_file_read_iter, 2741 .write_iter = ocfs2_file_write_iter, 2742 .unlocked_ioctl = ocfs2_ioctl, 2743 #ifdef CONFIG_COMPAT 2744 .compat_ioctl = ocfs2_compat_ioctl, 2745 #endif 2746 .flock = ocfs2_flock, 2747 .splice_read = ocfs2_file_splice_read, 2748 .splice_write = iter_file_splice_write, 2749 .fallocate = ocfs2_fallocate, 2750 }; 2751 2752 const struct file_operations ocfs2_dops_no_plocks = { 2753 .llseek = generic_file_llseek, 2754 .read = generic_read_dir, 2755 .iterate = ocfs2_readdir, 2756 .fsync = ocfs2_sync_file, 2757 .release = ocfs2_dir_release, 2758 .open = ocfs2_dir_open, 2759 .unlocked_ioctl = ocfs2_ioctl, 2760 #ifdef CONFIG_COMPAT 2761 .compat_ioctl = ocfs2_compat_ioctl, 2762 #endif 2763 .flock = ocfs2_flock, 2764 }; 2765