1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 40 #define MLOG_MASK_PREFIX ML_INODE 41 #include <cluster/masklog.h> 42 43 #include "ocfs2.h" 44 45 #include "alloc.h" 46 #include "aops.h" 47 #include "dir.h" 48 #include "dlmglue.h" 49 #include "extent_map.h" 50 #include "file.h" 51 #include "sysfile.h" 52 #include "inode.h" 53 #include "ioctl.h" 54 #include "journal.h" 55 #include "locks.h" 56 #include "mmap.h" 57 #include "suballoc.h" 58 #include "super.h" 59 #include "xattr.h" 60 #include "acl.h" 61 #include "quota.h" 62 #include "refcounttree.h" 63 64 #include "buffer_head_io.h" 65 66 static int ocfs2_sync_inode(struct inode *inode) 67 { 68 filemap_fdatawrite(inode->i_mapping); 69 return sync_mapping_buffers(inode->i_mapping); 70 } 71 72 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 73 { 74 struct ocfs2_file_private *fp; 75 76 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 77 if (!fp) 78 return -ENOMEM; 79 80 fp->fp_file = file; 81 mutex_init(&fp->fp_mutex); 82 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 83 file->private_data = fp; 84 85 return 0; 86 } 87 88 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 89 { 90 struct ocfs2_file_private *fp = file->private_data; 91 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 92 93 if (fp) { 94 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 95 ocfs2_lock_res_free(&fp->fp_flock); 96 kfree(fp); 97 file->private_data = NULL; 98 } 99 } 100 101 static int ocfs2_file_open(struct inode *inode, struct file *file) 102 { 103 int status; 104 int mode = file->f_flags; 105 struct ocfs2_inode_info *oi = OCFS2_I(inode); 106 107 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, 108 file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); 109 110 if (file->f_mode & FMODE_WRITE) 111 dquot_initialize(inode); 112 113 spin_lock(&oi->ip_lock); 114 115 /* Check that the inode hasn't been wiped from disk by another 116 * node. If it hasn't then we're safe as long as we hold the 117 * spin lock until our increment of open count. */ 118 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 119 spin_unlock(&oi->ip_lock); 120 121 status = -ENOENT; 122 goto leave; 123 } 124 125 if (mode & O_DIRECT) 126 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 127 128 oi->ip_open_count++; 129 spin_unlock(&oi->ip_lock); 130 131 status = ocfs2_init_file_private(inode, file); 132 if (status) { 133 /* 134 * We want to set open count back if we're failing the 135 * open. 136 */ 137 spin_lock(&oi->ip_lock); 138 oi->ip_open_count--; 139 spin_unlock(&oi->ip_lock); 140 } 141 142 leave: 143 mlog_exit(status); 144 return status; 145 } 146 147 static int ocfs2_file_release(struct inode *inode, struct file *file) 148 { 149 struct ocfs2_inode_info *oi = OCFS2_I(inode); 150 151 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, 152 file->f_path.dentry->d_name.len, 153 file->f_path.dentry->d_name.name); 154 155 spin_lock(&oi->ip_lock); 156 if (!--oi->ip_open_count) 157 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 158 spin_unlock(&oi->ip_lock); 159 160 ocfs2_free_file_private(inode, file); 161 162 mlog_exit(0); 163 164 return 0; 165 } 166 167 static int ocfs2_dir_open(struct inode *inode, struct file *file) 168 { 169 return ocfs2_init_file_private(inode, file); 170 } 171 172 static int ocfs2_dir_release(struct inode *inode, struct file *file) 173 { 174 ocfs2_free_file_private(inode, file); 175 return 0; 176 } 177 178 static int ocfs2_sync_file(struct file *file, int datasync) 179 { 180 int err = 0; 181 journal_t *journal; 182 struct dentry *dentry = file->f_path.dentry; 183 struct inode *inode = file->f_mapping->host; 184 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 185 186 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file, dentry, datasync, 187 dentry->d_name.len, dentry->d_name.name); 188 189 err = ocfs2_sync_inode(dentry->d_inode); 190 if (err) 191 goto bail; 192 193 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 194 goto bail; 195 196 journal = osb->journal->j_journal; 197 err = jbd2_journal_force_commit(journal); 198 199 bail: 200 mlog_exit(err); 201 202 return (err < 0) ? -EIO : 0; 203 } 204 205 int ocfs2_should_update_atime(struct inode *inode, 206 struct vfsmount *vfsmnt) 207 { 208 struct timespec now; 209 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 210 211 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 212 return 0; 213 214 if ((inode->i_flags & S_NOATIME) || 215 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 216 return 0; 217 218 /* 219 * We can be called with no vfsmnt structure - NFSD will 220 * sometimes do this. 221 * 222 * Note that our action here is different than touch_atime() - 223 * if we can't tell whether this is a noatime mount, then we 224 * don't know whether to trust the value of s_atime_quantum. 225 */ 226 if (vfsmnt == NULL) 227 return 0; 228 229 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 230 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 231 return 0; 232 233 if (vfsmnt->mnt_flags & MNT_RELATIME) { 234 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 235 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 236 return 1; 237 238 return 0; 239 } 240 241 now = CURRENT_TIME; 242 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 243 return 0; 244 else 245 return 1; 246 } 247 248 int ocfs2_update_inode_atime(struct inode *inode, 249 struct buffer_head *bh) 250 { 251 int ret; 252 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 253 handle_t *handle; 254 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 255 256 mlog_entry_void(); 257 258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 259 if (IS_ERR(handle)) { 260 ret = PTR_ERR(handle); 261 mlog_errno(ret); 262 goto out; 263 } 264 265 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 266 OCFS2_JOURNAL_ACCESS_WRITE); 267 if (ret) { 268 mlog_errno(ret); 269 goto out_commit; 270 } 271 272 /* 273 * Don't use ocfs2_mark_inode_dirty() here as we don't always 274 * have i_mutex to guard against concurrent changes to other 275 * inode fields. 276 */ 277 inode->i_atime = CURRENT_TIME; 278 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 279 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 280 ocfs2_journal_dirty(handle, bh); 281 282 out_commit: 283 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 284 out: 285 mlog_exit(ret); 286 return ret; 287 } 288 289 static int ocfs2_set_inode_size(handle_t *handle, 290 struct inode *inode, 291 struct buffer_head *fe_bh, 292 u64 new_i_size) 293 { 294 int status; 295 296 mlog_entry_void(); 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307 bail: 308 mlog_exit(status); 309 return status; 310 } 311 312 int ocfs2_simple_size_update(struct inode *inode, 313 struct buffer_head *di_bh, 314 u64 new_i_size) 315 { 316 int ret; 317 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 318 handle_t *handle = NULL; 319 320 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 321 if (IS_ERR(handle)) { 322 ret = PTR_ERR(handle); 323 mlog_errno(ret); 324 goto out; 325 } 326 327 ret = ocfs2_set_inode_size(handle, inode, di_bh, 328 new_i_size); 329 if (ret < 0) 330 mlog_errno(ret); 331 332 ocfs2_commit_trans(osb, handle); 333 out: 334 return ret; 335 } 336 337 static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340 { 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366 out: 367 return status; 368 } 369 370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374 { 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 mlog_entry_void(); 381 382 /* 383 * We need to CoW the cluster contains the offset if it is reflinked 384 * since we will call ocfs2_zero_range_for_truncate later which will 385 * write "0" from offset to the end of the cluster. 386 */ 387 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 388 if (status) { 389 mlog_errno(status); 390 return status; 391 } 392 393 /* TODO: This needs to actually orphan the inode in this 394 * transaction. */ 395 396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 397 if (IS_ERR(handle)) { 398 status = PTR_ERR(handle); 399 mlog_errno(status); 400 goto out; 401 } 402 403 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 404 OCFS2_JOURNAL_ACCESS_WRITE); 405 if (status < 0) { 406 mlog_errno(status); 407 goto out_commit; 408 } 409 410 /* 411 * Do this before setting i_size. 412 */ 413 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 414 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 415 cluster_bytes); 416 if (status) { 417 mlog_errno(status); 418 goto out_commit; 419 } 420 421 i_size_write(inode, new_i_size); 422 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 423 424 di = (struct ocfs2_dinode *) fe_bh->b_data; 425 di->i_size = cpu_to_le64(new_i_size); 426 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 427 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 428 429 ocfs2_journal_dirty(handle, fe_bh); 430 431 out_commit: 432 ocfs2_commit_trans(osb, handle); 433 out: 434 435 mlog_exit(status); 436 return status; 437 } 438 439 static int ocfs2_truncate_file(struct inode *inode, 440 struct buffer_head *di_bh, 441 u64 new_i_size) 442 { 443 int status = 0; 444 struct ocfs2_dinode *fe = NULL; 445 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 446 447 mlog_entry("(inode = %llu, new_i_size = %llu\n", 448 (unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)new_i_size); 450 451 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 452 * already validated it */ 453 fe = (struct ocfs2_dinode *) di_bh->b_data; 454 455 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 456 "Inode %llu, inode i_size = %lld != di " 457 "i_size = %llu, i_flags = 0x%x\n", 458 (unsigned long long)OCFS2_I(inode)->ip_blkno, 459 i_size_read(inode), 460 (unsigned long long)le64_to_cpu(fe->i_size), 461 le32_to_cpu(fe->i_flags)); 462 463 if (new_i_size > le64_to_cpu(fe->i_size)) { 464 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n", 465 (unsigned long long)le64_to_cpu(fe->i_size), 466 (unsigned long long)new_i_size); 467 status = -EINVAL; 468 mlog_errno(status); 469 goto bail; 470 } 471 472 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n", 473 (unsigned long long)le64_to_cpu(fe->i_blkno), 474 (unsigned long long)le64_to_cpu(fe->i_size), 475 (unsigned long long)new_i_size); 476 477 /* lets handle the simple truncate cases before doing any more 478 * cluster locking. */ 479 if (new_i_size == le64_to_cpu(fe->i_size)) 480 goto bail; 481 482 down_write(&OCFS2_I(inode)->ip_alloc_sem); 483 484 ocfs2_resv_discard(&osb->osb_la_resmap, 485 &OCFS2_I(inode)->ip_la_data_resv); 486 487 /* 488 * The inode lock forced other nodes to sync and drop their 489 * pages, which (correctly) happens even if we have a truncate 490 * without allocation change - ocfs2 cluster sizes can be much 491 * greater than page size, so we have to truncate them 492 * anyway. 493 */ 494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 495 truncate_inode_pages(inode->i_mapping, new_i_size); 496 497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 499 i_size_read(inode), 1); 500 if (status) 501 mlog_errno(status); 502 503 goto bail_unlock_sem; 504 } 505 506 /* alright, we're going to need to do a full blown alloc size 507 * change. Orphan the inode so that recovery can complete the 508 * truncate if necessary. This does the task of marking 509 * i_size. */ 510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 511 if (status < 0) { 512 mlog_errno(status); 513 goto bail_unlock_sem; 514 } 515 516 status = ocfs2_commit_truncate(osb, inode, di_bh); 517 if (status < 0) { 518 mlog_errno(status); 519 goto bail_unlock_sem; 520 } 521 522 /* TODO: orphan dir cleanup here. */ 523 bail_unlock_sem: 524 up_write(&OCFS2_I(inode)->ip_alloc_sem); 525 526 bail: 527 if (!status && OCFS2_I(inode)->ip_clusters == 0) 528 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 529 530 mlog_exit(status); 531 return status; 532 } 533 534 /* 535 * extend file allocation only here. 536 * we'll update all the disk stuff, and oip->alloc_size 537 * 538 * expect stuff to be locked, a transaction started and enough data / 539 * metadata reservations in the contexts. 540 * 541 * Will return -EAGAIN, and a reason if a restart is needed. 542 * If passed in, *reason will always be set, even in error. 543 */ 544 int ocfs2_add_inode_data(struct ocfs2_super *osb, 545 struct inode *inode, 546 u32 *logical_offset, 547 u32 clusters_to_add, 548 int mark_unwritten, 549 struct buffer_head *fe_bh, 550 handle_t *handle, 551 struct ocfs2_alloc_context *data_ac, 552 struct ocfs2_alloc_context *meta_ac, 553 enum ocfs2_alloc_restarted *reason_ret) 554 { 555 int ret; 556 struct ocfs2_extent_tree et; 557 558 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 559 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 560 clusters_to_add, mark_unwritten, 561 data_ac, meta_ac, reason_ret); 562 563 return ret; 564 } 565 566 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 567 u32 clusters_to_add, int mark_unwritten) 568 { 569 int status = 0; 570 int restart_func = 0; 571 int credits; 572 u32 prev_clusters; 573 struct buffer_head *bh = NULL; 574 struct ocfs2_dinode *fe = NULL; 575 handle_t *handle = NULL; 576 struct ocfs2_alloc_context *data_ac = NULL; 577 struct ocfs2_alloc_context *meta_ac = NULL; 578 enum ocfs2_alloc_restarted why; 579 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 580 struct ocfs2_extent_tree et; 581 int did_quota = 0; 582 583 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add); 584 585 /* 586 * This function only exists for file systems which don't 587 * support holes. 588 */ 589 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 590 591 status = ocfs2_read_inode_block(inode, &bh); 592 if (status < 0) { 593 mlog_errno(status); 594 goto leave; 595 } 596 fe = (struct ocfs2_dinode *) bh->b_data; 597 598 restart_all: 599 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 600 601 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, " 602 "clusters_to_add = %u\n", 603 (unsigned long long)OCFS2_I(inode)->ip_blkno, 604 (long long)i_size_read(inode), le32_to_cpu(fe->i_clusters), 605 clusters_to_add); 606 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 607 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 608 &data_ac, &meta_ac); 609 if (status) { 610 mlog_errno(status); 611 goto leave; 612 } 613 614 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list, 615 clusters_to_add); 616 handle = ocfs2_start_trans(osb, credits); 617 if (IS_ERR(handle)) { 618 status = PTR_ERR(handle); 619 handle = NULL; 620 mlog_errno(status); 621 goto leave; 622 } 623 624 restarted_transaction: 625 status = dquot_alloc_space_nodirty(inode, 626 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 627 if (status) 628 goto leave; 629 did_quota = 1; 630 631 /* reserve a write to the file entry early on - that we if we 632 * run out of credits in the allocation path, we can still 633 * update i_size. */ 634 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 635 OCFS2_JOURNAL_ACCESS_WRITE); 636 if (status < 0) { 637 mlog_errno(status); 638 goto leave; 639 } 640 641 prev_clusters = OCFS2_I(inode)->ip_clusters; 642 643 status = ocfs2_add_inode_data(osb, 644 inode, 645 &logical_start, 646 clusters_to_add, 647 mark_unwritten, 648 bh, 649 handle, 650 data_ac, 651 meta_ac, 652 &why); 653 if ((status < 0) && (status != -EAGAIN)) { 654 if (status != -ENOSPC) 655 mlog_errno(status); 656 goto leave; 657 } 658 659 ocfs2_journal_dirty(handle, bh); 660 661 spin_lock(&OCFS2_I(inode)->ip_lock); 662 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 663 spin_unlock(&OCFS2_I(inode)->ip_lock); 664 /* Release unused quota reservation */ 665 dquot_free_space(inode, 666 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 667 did_quota = 0; 668 669 if (why != RESTART_NONE && clusters_to_add) { 670 if (why == RESTART_META) { 671 mlog(0, "restarting function.\n"); 672 restart_func = 1; 673 status = 0; 674 } else { 675 BUG_ON(why != RESTART_TRANS); 676 677 mlog(0, "restarting transaction.\n"); 678 /* TODO: This can be more intelligent. */ 679 credits = ocfs2_calc_extend_credits(osb->sb, 680 &fe->id2.i_list, 681 clusters_to_add); 682 status = ocfs2_extend_trans(handle, credits); 683 if (status < 0) { 684 /* handle still has to be committed at 685 * this point. */ 686 status = -ENOMEM; 687 mlog_errno(status); 688 goto leave; 689 } 690 goto restarted_transaction; 691 } 692 } 693 694 mlog(0, "fe: i_clusters = %u, i_size=%llu\n", 695 le32_to_cpu(fe->i_clusters), 696 (unsigned long long)le64_to_cpu(fe->i_size)); 697 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n", 698 OCFS2_I(inode)->ip_clusters, (long long)i_size_read(inode)); 699 700 leave: 701 if (status < 0 && did_quota) 702 dquot_free_space(inode, 703 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 704 if (handle) { 705 ocfs2_commit_trans(osb, handle); 706 handle = NULL; 707 } 708 if (data_ac) { 709 ocfs2_free_alloc_context(data_ac); 710 data_ac = NULL; 711 } 712 if (meta_ac) { 713 ocfs2_free_alloc_context(meta_ac); 714 meta_ac = NULL; 715 } 716 if ((!status) && restart_func) { 717 restart_func = 0; 718 goto restart_all; 719 } 720 brelse(bh); 721 bh = NULL; 722 723 mlog_exit(status); 724 return status; 725 } 726 727 /* 728 * While a write will already be ordering the data, a truncate will not. 729 * Thus, we need to explicitly order the zeroed pages. 730 */ 731 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode) 732 { 733 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 734 handle_t *handle = NULL; 735 int ret = 0; 736 737 if (!ocfs2_should_order_data(inode)) 738 goto out; 739 740 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 741 if (IS_ERR(handle)) { 742 ret = -ENOMEM; 743 mlog_errno(ret); 744 goto out; 745 } 746 747 ret = ocfs2_jbd2_file_inode(handle, inode); 748 if (ret < 0) 749 mlog_errno(ret); 750 751 out: 752 if (ret) { 753 if (!IS_ERR(handle)) 754 ocfs2_commit_trans(osb, handle); 755 handle = ERR_PTR(ret); 756 } 757 return handle; 758 } 759 760 /* Some parts of this taken from generic_cont_expand, which turned out 761 * to be too fragile to do exactly what we need without us having to 762 * worry about recursive locking in ->write_begin() and ->write_end(). */ 763 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 764 u64 abs_to) 765 { 766 struct address_space *mapping = inode->i_mapping; 767 struct page *page; 768 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 769 handle_t *handle = NULL; 770 int ret = 0; 771 unsigned zero_from, zero_to, block_start, block_end; 772 773 BUG_ON(abs_from >= abs_to); 774 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 775 BUG_ON(abs_from & (inode->i_blkbits - 1)); 776 777 page = grab_cache_page(mapping, index); 778 if (!page) { 779 ret = -ENOMEM; 780 mlog_errno(ret); 781 goto out; 782 } 783 784 /* Get the offsets within the page that we want to zero */ 785 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 786 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 787 if (!zero_to) 788 zero_to = PAGE_CACHE_SIZE; 789 790 mlog(0, 791 "abs_from = %llu, abs_to = %llu, index = %lu, zero_from = %u, zero_to = %u\n", 792 (unsigned long long)abs_from, (unsigned long long)abs_to, 793 index, zero_from, zero_to); 794 795 /* We know that zero_from is block aligned */ 796 for (block_start = zero_from; block_start < zero_to; 797 block_start = block_end) { 798 block_end = block_start + (1 << inode->i_blkbits); 799 800 /* 801 * block_start is block-aligned. Bump it by one to 802 * force ocfs2_{prepare,commit}_write() to zero the 803 * whole block. 804 */ 805 ret = ocfs2_prepare_write_nolock(inode, page, 806 block_start + 1, 807 block_start + 1); 808 if (ret < 0) { 809 mlog_errno(ret); 810 goto out_unlock; 811 } 812 813 if (!handle) { 814 handle = ocfs2_zero_start_ordered_transaction(inode); 815 if (IS_ERR(handle)) { 816 ret = PTR_ERR(handle); 817 handle = NULL; 818 break; 819 } 820 } 821 822 /* must not update i_size! */ 823 ret = block_commit_write(page, block_start + 1, 824 block_start + 1); 825 if (ret < 0) 826 mlog_errno(ret); 827 else 828 ret = 0; 829 } 830 831 if (handle) 832 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 833 834 out_unlock: 835 unlock_page(page); 836 page_cache_release(page); 837 out: 838 return ret; 839 } 840 841 /* 842 * Find the next range to zero. We do this in terms of bytes because 843 * that's what ocfs2_zero_extend() wants, and it is dealing with the 844 * pagecache. We may return multiple extents. 845 * 846 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 847 * needs to be zeroed. range_start and range_end return the next zeroing 848 * range. A subsequent call should pass the previous range_end as its 849 * zero_start. If range_end is 0, there's nothing to do. 850 * 851 * Unwritten extents are skipped over. Refcounted extents are CoWd. 852 */ 853 static int ocfs2_zero_extend_get_range(struct inode *inode, 854 struct buffer_head *di_bh, 855 u64 zero_start, u64 zero_end, 856 u64 *range_start, u64 *range_end) 857 { 858 int rc = 0, needs_cow = 0; 859 u32 p_cpos, zero_clusters = 0; 860 u32 zero_cpos = 861 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 862 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 863 unsigned int num_clusters = 0; 864 unsigned int ext_flags = 0; 865 866 while (zero_cpos < last_cpos) { 867 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 868 &num_clusters, &ext_flags); 869 if (rc) { 870 mlog_errno(rc); 871 goto out; 872 } 873 874 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 875 zero_clusters = num_clusters; 876 if (ext_flags & OCFS2_EXT_REFCOUNTED) 877 needs_cow = 1; 878 break; 879 } 880 881 zero_cpos += num_clusters; 882 } 883 if (!zero_clusters) { 884 *range_end = 0; 885 goto out; 886 } 887 888 while ((zero_cpos + zero_clusters) < last_cpos) { 889 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 890 &p_cpos, &num_clusters, 891 &ext_flags); 892 if (rc) { 893 mlog_errno(rc); 894 goto out; 895 } 896 897 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 898 break; 899 if (ext_flags & OCFS2_EXT_REFCOUNTED) 900 needs_cow = 1; 901 zero_clusters += num_clusters; 902 } 903 if ((zero_cpos + zero_clusters) > last_cpos) 904 zero_clusters = last_cpos - zero_cpos; 905 906 if (needs_cow) { 907 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, zero_clusters, 908 UINT_MAX); 909 if (rc) { 910 mlog_errno(rc); 911 goto out; 912 } 913 } 914 915 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 916 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 917 zero_cpos + zero_clusters); 918 919 out: 920 return rc; 921 } 922 923 /* 924 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 925 * has made sure that the entire range needs zeroing. 926 */ 927 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 928 u64 range_end) 929 { 930 int rc = 0; 931 u64 next_pos; 932 u64 zero_pos = range_start; 933 934 mlog(0, "range_start = %llu, range_end = %llu\n", 935 (unsigned long long)range_start, 936 (unsigned long long)range_end); 937 BUG_ON(range_start >= range_end); 938 939 while (zero_pos < range_end) { 940 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 941 if (next_pos > range_end) 942 next_pos = range_end; 943 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos); 944 if (rc < 0) { 945 mlog_errno(rc); 946 break; 947 } 948 zero_pos = next_pos; 949 950 /* 951 * Very large extends have the potential to lock up 952 * the cpu for extended periods of time. 953 */ 954 cond_resched(); 955 } 956 957 return rc; 958 } 959 960 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 961 loff_t zero_to_size) 962 { 963 int ret = 0; 964 u64 zero_start, range_start = 0, range_end = 0; 965 struct super_block *sb = inode->i_sb; 966 967 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 968 mlog(0, "zero_start %llu for i_size %llu\n", 969 (unsigned long long)zero_start, 970 (unsigned long long)i_size_read(inode)); 971 while (zero_start < zero_to_size) { 972 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 973 zero_to_size, 974 &range_start, 975 &range_end); 976 if (ret) { 977 mlog_errno(ret); 978 break; 979 } 980 if (!range_end) 981 break; 982 /* Trim the ends */ 983 if (range_start < zero_start) 984 range_start = zero_start; 985 if (range_end > zero_to_size) 986 range_end = zero_to_size; 987 988 ret = ocfs2_zero_extend_range(inode, range_start, 989 range_end); 990 if (ret) { 991 mlog_errno(ret); 992 break; 993 } 994 zero_start = range_end; 995 } 996 997 return ret; 998 } 999 1000 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1001 u64 new_i_size, u64 zero_to) 1002 { 1003 int ret; 1004 u32 clusters_to_add; 1005 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1006 1007 /* 1008 * Only quota files call this without a bh, and they can't be 1009 * refcounted. 1010 */ 1011 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1012 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1013 1014 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1015 if (clusters_to_add < oi->ip_clusters) 1016 clusters_to_add = 0; 1017 else 1018 clusters_to_add -= oi->ip_clusters; 1019 1020 if (clusters_to_add) { 1021 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1022 clusters_to_add, 0); 1023 if (ret) { 1024 mlog_errno(ret); 1025 goto out; 1026 } 1027 } 1028 1029 /* 1030 * Call this even if we don't add any clusters to the tree. We 1031 * still need to zero the area between the old i_size and the 1032 * new i_size. 1033 */ 1034 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1035 if (ret < 0) 1036 mlog_errno(ret); 1037 1038 out: 1039 return ret; 1040 } 1041 1042 static int ocfs2_extend_file(struct inode *inode, 1043 struct buffer_head *di_bh, 1044 u64 new_i_size) 1045 { 1046 int ret = 0; 1047 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1048 1049 BUG_ON(!di_bh); 1050 1051 /* setattr sometimes calls us like this. */ 1052 if (new_i_size == 0) 1053 goto out; 1054 1055 if (i_size_read(inode) == new_i_size) 1056 goto out; 1057 BUG_ON(new_i_size < i_size_read(inode)); 1058 1059 /* 1060 * The alloc sem blocks people in read/write from reading our 1061 * allocation until we're done changing it. We depend on 1062 * i_mutex to block other extend/truncate calls while we're 1063 * here. We even have to hold it for sparse files because there 1064 * might be some tail zeroing. 1065 */ 1066 down_write(&oi->ip_alloc_sem); 1067 1068 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1069 /* 1070 * We can optimize small extends by keeping the inodes 1071 * inline data. 1072 */ 1073 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1074 up_write(&oi->ip_alloc_sem); 1075 goto out_update_size; 1076 } 1077 1078 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1079 if (ret) { 1080 up_write(&oi->ip_alloc_sem); 1081 mlog_errno(ret); 1082 goto out; 1083 } 1084 } 1085 1086 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1087 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1088 else 1089 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1090 new_i_size); 1091 1092 up_write(&oi->ip_alloc_sem); 1093 1094 if (ret < 0) { 1095 mlog_errno(ret); 1096 goto out; 1097 } 1098 1099 out_update_size: 1100 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1101 if (ret < 0) 1102 mlog_errno(ret); 1103 1104 out: 1105 return ret; 1106 } 1107 1108 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1109 { 1110 int status = 0, size_change; 1111 struct inode *inode = dentry->d_inode; 1112 struct super_block *sb = inode->i_sb; 1113 struct ocfs2_super *osb = OCFS2_SB(sb); 1114 struct buffer_head *bh = NULL; 1115 handle_t *handle = NULL; 1116 struct dquot *transfer_to[MAXQUOTAS] = { }; 1117 int qtype; 1118 1119 mlog_entry("(0x%p, '%.*s')\n", dentry, 1120 dentry->d_name.len, dentry->d_name.name); 1121 1122 /* ensuring we don't even attempt to truncate a symlink */ 1123 if (S_ISLNK(inode->i_mode)) 1124 attr->ia_valid &= ~ATTR_SIZE; 1125 1126 if (attr->ia_valid & ATTR_MODE) 1127 mlog(0, "mode change: %d\n", attr->ia_mode); 1128 if (attr->ia_valid & ATTR_UID) 1129 mlog(0, "uid change: %d\n", attr->ia_uid); 1130 if (attr->ia_valid & ATTR_GID) 1131 mlog(0, "gid change: %d\n", attr->ia_gid); 1132 if (attr->ia_valid & ATTR_SIZE) 1133 mlog(0, "size change...\n"); 1134 if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME)) 1135 mlog(0, "time change...\n"); 1136 1137 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1138 | ATTR_GID | ATTR_UID | ATTR_MODE) 1139 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) { 1140 mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid); 1141 return 0; 1142 } 1143 1144 status = inode_change_ok(inode, attr); 1145 if (status) 1146 return status; 1147 1148 if (is_quota_modification(inode, attr)) 1149 dquot_initialize(inode); 1150 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1151 if (size_change) { 1152 status = ocfs2_rw_lock(inode, 1); 1153 if (status < 0) { 1154 mlog_errno(status); 1155 goto bail; 1156 } 1157 } 1158 1159 status = ocfs2_inode_lock(inode, &bh, 1); 1160 if (status < 0) { 1161 if (status != -ENOENT) 1162 mlog_errno(status); 1163 goto bail_unlock_rw; 1164 } 1165 1166 if (size_change && attr->ia_size != i_size_read(inode)) { 1167 status = inode_newsize_ok(inode, attr->ia_size); 1168 if (status) 1169 goto bail_unlock; 1170 1171 if (i_size_read(inode) > attr->ia_size) { 1172 if (ocfs2_should_order_data(inode)) { 1173 status = ocfs2_begin_ordered_truncate(inode, 1174 attr->ia_size); 1175 if (status) 1176 goto bail_unlock; 1177 } 1178 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1179 } else 1180 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1181 if (status < 0) { 1182 if (status != -ENOSPC) 1183 mlog_errno(status); 1184 status = -ENOSPC; 1185 goto bail_unlock; 1186 } 1187 } 1188 1189 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 1190 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 1191 /* 1192 * Gather pointers to quota structures so that allocation / 1193 * freeing of quota structures happens here and not inside 1194 * dquot_transfer() where we have problems with lock ordering 1195 */ 1196 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid 1197 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1198 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1199 transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid, 1200 USRQUOTA); 1201 if (!transfer_to[USRQUOTA]) { 1202 status = -ESRCH; 1203 goto bail_unlock; 1204 } 1205 } 1206 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid 1207 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1208 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1209 transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid, 1210 GRPQUOTA); 1211 if (!transfer_to[GRPQUOTA]) { 1212 status = -ESRCH; 1213 goto bail_unlock; 1214 } 1215 } 1216 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1217 2 * ocfs2_quota_trans_credits(sb)); 1218 if (IS_ERR(handle)) { 1219 status = PTR_ERR(handle); 1220 mlog_errno(status); 1221 goto bail_unlock; 1222 } 1223 status = __dquot_transfer(inode, transfer_to); 1224 if (status < 0) 1225 goto bail_commit; 1226 } else { 1227 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1228 if (IS_ERR(handle)) { 1229 status = PTR_ERR(handle); 1230 mlog_errno(status); 1231 goto bail_unlock; 1232 } 1233 } 1234 1235 /* 1236 * This will intentionally not wind up calling truncate_setsize(), 1237 * since all the work for a size change has been done above. 1238 * Otherwise, we could get into problems with truncate as 1239 * ip_alloc_sem is used there to protect against i_size 1240 * changes. 1241 * 1242 * XXX: this means the conditional below can probably be removed. 1243 */ 1244 if ((attr->ia_valid & ATTR_SIZE) && 1245 attr->ia_size != i_size_read(inode)) { 1246 status = vmtruncate(inode, attr->ia_size); 1247 if (status) { 1248 mlog_errno(status); 1249 goto bail_commit; 1250 } 1251 } 1252 1253 setattr_copy(inode, attr); 1254 mark_inode_dirty(inode); 1255 1256 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1257 if (status < 0) 1258 mlog_errno(status); 1259 1260 bail_commit: 1261 ocfs2_commit_trans(osb, handle); 1262 bail_unlock: 1263 ocfs2_inode_unlock(inode, 1); 1264 bail_unlock_rw: 1265 if (size_change) 1266 ocfs2_rw_unlock(inode, 1); 1267 bail: 1268 brelse(bh); 1269 1270 /* Release quota pointers in case we acquired them */ 1271 for (qtype = 0; qtype < MAXQUOTAS; qtype++) 1272 dqput(transfer_to[qtype]); 1273 1274 if (!status && attr->ia_valid & ATTR_MODE) { 1275 status = ocfs2_acl_chmod(inode); 1276 if (status < 0) 1277 mlog_errno(status); 1278 } 1279 1280 mlog_exit(status); 1281 return status; 1282 } 1283 1284 int ocfs2_getattr(struct vfsmount *mnt, 1285 struct dentry *dentry, 1286 struct kstat *stat) 1287 { 1288 struct inode *inode = dentry->d_inode; 1289 struct super_block *sb = dentry->d_inode->i_sb; 1290 struct ocfs2_super *osb = sb->s_fs_info; 1291 int err; 1292 1293 mlog_entry_void(); 1294 1295 err = ocfs2_inode_revalidate(dentry); 1296 if (err) { 1297 if (err != -ENOENT) 1298 mlog_errno(err); 1299 goto bail; 1300 } 1301 1302 generic_fillattr(inode, stat); 1303 1304 /* We set the blksize from the cluster size for performance */ 1305 stat->blksize = osb->s_clustersize; 1306 1307 bail: 1308 mlog_exit(err); 1309 1310 return err; 1311 } 1312 1313 int ocfs2_permission(struct inode *inode, int mask) 1314 { 1315 int ret; 1316 1317 mlog_entry_void(); 1318 1319 ret = ocfs2_inode_lock(inode, NULL, 0); 1320 if (ret) { 1321 if (ret != -ENOENT) 1322 mlog_errno(ret); 1323 goto out; 1324 } 1325 1326 ret = generic_permission(inode, mask, ocfs2_check_acl); 1327 1328 ocfs2_inode_unlock(inode, 0); 1329 out: 1330 mlog_exit(ret); 1331 return ret; 1332 } 1333 1334 static int __ocfs2_write_remove_suid(struct inode *inode, 1335 struct buffer_head *bh) 1336 { 1337 int ret; 1338 handle_t *handle; 1339 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1340 struct ocfs2_dinode *di; 1341 1342 mlog_entry("(Inode %llu, mode 0%o)\n", 1343 (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode); 1344 1345 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1346 if (IS_ERR(handle)) { 1347 ret = PTR_ERR(handle); 1348 mlog_errno(ret); 1349 goto out; 1350 } 1351 1352 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1353 OCFS2_JOURNAL_ACCESS_WRITE); 1354 if (ret < 0) { 1355 mlog_errno(ret); 1356 goto out_trans; 1357 } 1358 1359 inode->i_mode &= ~S_ISUID; 1360 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1361 inode->i_mode &= ~S_ISGID; 1362 1363 di = (struct ocfs2_dinode *) bh->b_data; 1364 di->i_mode = cpu_to_le16(inode->i_mode); 1365 1366 ocfs2_journal_dirty(handle, bh); 1367 1368 out_trans: 1369 ocfs2_commit_trans(osb, handle); 1370 out: 1371 mlog_exit(ret); 1372 return ret; 1373 } 1374 1375 /* 1376 * Will look for holes and unwritten extents in the range starting at 1377 * pos for count bytes (inclusive). 1378 */ 1379 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1380 size_t count) 1381 { 1382 int ret = 0; 1383 unsigned int extent_flags; 1384 u32 cpos, clusters, extent_len, phys_cpos; 1385 struct super_block *sb = inode->i_sb; 1386 1387 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1388 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1389 1390 while (clusters) { 1391 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1392 &extent_flags); 1393 if (ret < 0) { 1394 mlog_errno(ret); 1395 goto out; 1396 } 1397 1398 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1399 ret = 1; 1400 break; 1401 } 1402 1403 if (extent_len > clusters) 1404 extent_len = clusters; 1405 1406 clusters -= extent_len; 1407 cpos += extent_len; 1408 } 1409 out: 1410 return ret; 1411 } 1412 1413 static int ocfs2_write_remove_suid(struct inode *inode) 1414 { 1415 int ret; 1416 struct buffer_head *bh = NULL; 1417 1418 ret = ocfs2_read_inode_block(inode, &bh); 1419 if (ret < 0) { 1420 mlog_errno(ret); 1421 goto out; 1422 } 1423 1424 ret = __ocfs2_write_remove_suid(inode, bh); 1425 out: 1426 brelse(bh); 1427 return ret; 1428 } 1429 1430 /* 1431 * Allocate enough extents to cover the region starting at byte offset 1432 * start for len bytes. Existing extents are skipped, any extents 1433 * added are marked as "unwritten". 1434 */ 1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1436 u64 start, u64 len) 1437 { 1438 int ret; 1439 u32 cpos, phys_cpos, clusters, alloc_size; 1440 u64 end = start + len; 1441 struct buffer_head *di_bh = NULL; 1442 1443 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1444 ret = ocfs2_read_inode_block(inode, &di_bh); 1445 if (ret) { 1446 mlog_errno(ret); 1447 goto out; 1448 } 1449 1450 /* 1451 * Nothing to do if the requested reservation range 1452 * fits within the inode. 1453 */ 1454 if (ocfs2_size_fits_inline_data(di_bh, end)) 1455 goto out; 1456 1457 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1458 if (ret) { 1459 mlog_errno(ret); 1460 goto out; 1461 } 1462 } 1463 1464 /* 1465 * We consider both start and len to be inclusive. 1466 */ 1467 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1468 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1469 clusters -= cpos; 1470 1471 while (clusters) { 1472 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1473 &alloc_size, NULL); 1474 if (ret) { 1475 mlog_errno(ret); 1476 goto out; 1477 } 1478 1479 /* 1480 * Hole or existing extent len can be arbitrary, so 1481 * cap it to our own allocation request. 1482 */ 1483 if (alloc_size > clusters) 1484 alloc_size = clusters; 1485 1486 if (phys_cpos) { 1487 /* 1488 * We already have an allocation at this 1489 * region so we can safely skip it. 1490 */ 1491 goto next; 1492 } 1493 1494 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1495 if (ret) { 1496 if (ret != -ENOSPC) 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 1501 next: 1502 cpos += alloc_size; 1503 clusters -= alloc_size; 1504 } 1505 1506 ret = 0; 1507 out: 1508 1509 brelse(di_bh); 1510 return ret; 1511 } 1512 1513 /* 1514 * Truncate a byte range, avoiding pages within partial clusters. This 1515 * preserves those pages for the zeroing code to write to. 1516 */ 1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1518 u64 byte_len) 1519 { 1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1521 loff_t start, end; 1522 struct address_space *mapping = inode->i_mapping; 1523 1524 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1525 end = byte_start + byte_len; 1526 end = end & ~(osb->s_clustersize - 1); 1527 1528 if (start < end) { 1529 unmap_mapping_range(mapping, start, end - start, 0); 1530 truncate_inode_pages_range(mapping, start, end - 1); 1531 } 1532 } 1533 1534 static int ocfs2_zero_partial_clusters(struct inode *inode, 1535 u64 start, u64 len) 1536 { 1537 int ret = 0; 1538 u64 tmpend, end = start + len; 1539 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1540 unsigned int csize = osb->s_clustersize; 1541 handle_t *handle; 1542 1543 /* 1544 * The "start" and "end" values are NOT necessarily part of 1545 * the range whose allocation is being deleted. Rather, this 1546 * is what the user passed in with the request. We must zero 1547 * partial clusters here. There's no need to worry about 1548 * physical allocation - the zeroing code knows to skip holes. 1549 */ 1550 mlog(0, "byte start: %llu, end: %llu\n", 1551 (unsigned long long)start, (unsigned long long)end); 1552 1553 /* 1554 * If both edges are on a cluster boundary then there's no 1555 * zeroing required as the region is part of the allocation to 1556 * be truncated. 1557 */ 1558 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1559 goto out; 1560 1561 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1562 if (IS_ERR(handle)) { 1563 ret = PTR_ERR(handle); 1564 mlog_errno(ret); 1565 goto out; 1566 } 1567 1568 /* 1569 * We want to get the byte offset of the end of the 1st cluster. 1570 */ 1571 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1572 if (tmpend > end) 1573 tmpend = end; 1574 1575 mlog(0, "1st range: start: %llu, tmpend: %llu\n", 1576 (unsigned long long)start, (unsigned long long)tmpend); 1577 1578 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1579 if (ret) 1580 mlog_errno(ret); 1581 1582 if (tmpend < end) { 1583 /* 1584 * This may make start and end equal, but the zeroing 1585 * code will skip any work in that case so there's no 1586 * need to catch it up here. 1587 */ 1588 start = end & ~(osb->s_clustersize - 1); 1589 1590 mlog(0, "2nd range: start: %llu, end: %llu\n", 1591 (unsigned long long)start, (unsigned long long)end); 1592 1593 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1594 if (ret) 1595 mlog_errno(ret); 1596 } 1597 1598 ocfs2_commit_trans(osb, handle); 1599 out: 1600 return ret; 1601 } 1602 1603 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1604 { 1605 int i; 1606 struct ocfs2_extent_rec *rec = NULL; 1607 1608 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1609 1610 rec = &el->l_recs[i]; 1611 1612 if (le32_to_cpu(rec->e_cpos) < pos) 1613 break; 1614 } 1615 1616 return i; 1617 } 1618 1619 /* 1620 * Helper to calculate the punching pos and length in one run, we handle the 1621 * following three cases in order: 1622 * 1623 * - remove the entire record 1624 * - remove a partial record 1625 * - no record needs to be removed (hole-punching completed) 1626 */ 1627 static void ocfs2_calc_trunc_pos(struct inode *inode, 1628 struct ocfs2_extent_list *el, 1629 struct ocfs2_extent_rec *rec, 1630 u32 trunc_start, u32 *trunc_cpos, 1631 u32 *trunc_len, u32 *trunc_end, 1632 u64 *blkno, int *done) 1633 { 1634 int ret = 0; 1635 u32 coff, range; 1636 1637 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1638 1639 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1640 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1641 /* 1642 * Skip holes if any. 1643 */ 1644 if (range < *trunc_end) 1645 *trunc_end = range; 1646 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1647 *blkno = le64_to_cpu(rec->e_blkno); 1648 *trunc_end = le32_to_cpu(rec->e_cpos); 1649 } else if (range > trunc_start) { 1650 *trunc_cpos = trunc_start; 1651 *trunc_len = *trunc_end - trunc_start; 1652 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1653 *blkno = le64_to_cpu(rec->e_blkno) + 1654 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1655 *trunc_end = trunc_start; 1656 } else { 1657 /* 1658 * It may have two following possibilities: 1659 * 1660 * - last record has been removed 1661 * - trunc_start was within a hole 1662 * 1663 * both two cases mean the completion of hole punching. 1664 */ 1665 ret = 1; 1666 } 1667 1668 *done = ret; 1669 } 1670 1671 static int ocfs2_remove_inode_range(struct inode *inode, 1672 struct buffer_head *di_bh, u64 byte_start, 1673 u64 byte_len) 1674 { 1675 int ret = 0, flags = 0, done = 0, i; 1676 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1677 u32 cluster_in_el; 1678 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1679 struct ocfs2_cached_dealloc_ctxt dealloc; 1680 struct address_space *mapping = inode->i_mapping; 1681 struct ocfs2_extent_tree et; 1682 struct ocfs2_path *path = NULL; 1683 struct ocfs2_extent_list *el = NULL; 1684 struct ocfs2_extent_rec *rec = NULL; 1685 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1686 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1687 1688 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1689 ocfs2_init_dealloc_ctxt(&dealloc); 1690 1691 if (byte_len == 0) 1692 return 0; 1693 1694 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1695 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1696 byte_start + byte_len, 0); 1697 if (ret) { 1698 mlog_errno(ret); 1699 goto out; 1700 } 1701 /* 1702 * There's no need to get fancy with the page cache 1703 * truncate of an inline-data inode. We're talking 1704 * about less than a page here, which will be cached 1705 * in the dinode buffer anyway. 1706 */ 1707 unmap_mapping_range(mapping, 0, 0, 0); 1708 truncate_inode_pages(mapping, 0); 1709 goto out; 1710 } 1711 1712 /* 1713 * For reflinks, we may need to CoW 2 clusters which might be 1714 * partially zero'd later, if hole's start and end offset were 1715 * within one cluster(means is not exactly aligned to clustersize). 1716 */ 1717 1718 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1719 1720 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1721 if (ret) { 1722 mlog_errno(ret); 1723 goto out; 1724 } 1725 1726 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1727 if (ret) { 1728 mlog_errno(ret); 1729 goto out; 1730 } 1731 } 1732 1733 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1734 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1735 cluster_in_el = trunc_end; 1736 1737 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, cend: %u\n", 1738 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1739 (unsigned long long)byte_start, 1740 (unsigned long long)byte_len, trunc_start, trunc_end); 1741 1742 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1743 if (ret) { 1744 mlog_errno(ret); 1745 goto out; 1746 } 1747 1748 path = ocfs2_new_path_from_et(&et); 1749 if (!path) { 1750 ret = -ENOMEM; 1751 mlog_errno(ret); 1752 goto out; 1753 } 1754 1755 while (trunc_end > trunc_start) { 1756 1757 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1758 cluster_in_el); 1759 if (ret) { 1760 mlog_errno(ret); 1761 goto out; 1762 } 1763 1764 el = path_leaf_el(path); 1765 1766 i = ocfs2_find_rec(el, trunc_end); 1767 /* 1768 * Need to go to previous extent block. 1769 */ 1770 if (i < 0) { 1771 if (path->p_tree_depth == 0) 1772 break; 1773 1774 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1775 path, 1776 &cluster_in_el); 1777 if (ret) { 1778 mlog_errno(ret); 1779 goto out; 1780 } 1781 1782 /* 1783 * We've reached the leftmost extent block, 1784 * it's safe to leave. 1785 */ 1786 if (cluster_in_el == 0) 1787 break; 1788 1789 /* 1790 * The 'pos' searched for previous extent block is 1791 * always one cluster less than actual trunc_end. 1792 */ 1793 trunc_end = cluster_in_el + 1; 1794 1795 ocfs2_reinit_path(path, 1); 1796 1797 continue; 1798 1799 } else 1800 rec = &el->l_recs[i]; 1801 1802 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1803 &trunc_len, &trunc_end, &blkno, &done); 1804 if (done) 1805 break; 1806 1807 flags = rec->e_flags; 1808 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1809 1810 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1811 phys_cpos, trunc_len, flags, 1812 &dealloc, refcount_loc); 1813 if (ret < 0) { 1814 mlog_errno(ret); 1815 goto out; 1816 } 1817 1818 cluster_in_el = trunc_end; 1819 1820 ocfs2_reinit_path(path, 1); 1821 } 1822 1823 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1824 1825 out: 1826 ocfs2_schedule_truncate_log_flush(osb, 1); 1827 ocfs2_run_deallocs(osb, &dealloc); 1828 1829 return ret; 1830 } 1831 1832 /* 1833 * Parts of this function taken from xfs_change_file_space() 1834 */ 1835 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1836 loff_t f_pos, unsigned int cmd, 1837 struct ocfs2_space_resv *sr, 1838 int change_size) 1839 { 1840 int ret; 1841 s64 llen; 1842 loff_t size; 1843 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1844 struct buffer_head *di_bh = NULL; 1845 handle_t *handle; 1846 unsigned long long max_off = inode->i_sb->s_maxbytes; 1847 1848 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1849 return -EROFS; 1850 1851 mutex_lock(&inode->i_mutex); 1852 1853 /* 1854 * This prevents concurrent writes on other nodes 1855 */ 1856 ret = ocfs2_rw_lock(inode, 1); 1857 if (ret) { 1858 mlog_errno(ret); 1859 goto out; 1860 } 1861 1862 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1863 if (ret) { 1864 mlog_errno(ret); 1865 goto out_rw_unlock; 1866 } 1867 1868 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1869 ret = -EPERM; 1870 goto out_inode_unlock; 1871 } 1872 1873 switch (sr->l_whence) { 1874 case 0: /*SEEK_SET*/ 1875 break; 1876 case 1: /*SEEK_CUR*/ 1877 sr->l_start += f_pos; 1878 break; 1879 case 2: /*SEEK_END*/ 1880 sr->l_start += i_size_read(inode); 1881 break; 1882 default: 1883 ret = -EINVAL; 1884 goto out_inode_unlock; 1885 } 1886 sr->l_whence = 0; 1887 1888 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1889 1890 if (sr->l_start < 0 1891 || sr->l_start > max_off 1892 || (sr->l_start + llen) < 0 1893 || (sr->l_start + llen) > max_off) { 1894 ret = -EINVAL; 1895 goto out_inode_unlock; 1896 } 1897 size = sr->l_start + sr->l_len; 1898 1899 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { 1900 if (sr->l_len <= 0) { 1901 ret = -EINVAL; 1902 goto out_inode_unlock; 1903 } 1904 } 1905 1906 if (file && should_remove_suid(file->f_path.dentry)) { 1907 ret = __ocfs2_write_remove_suid(inode, di_bh); 1908 if (ret) { 1909 mlog_errno(ret); 1910 goto out_inode_unlock; 1911 } 1912 } 1913 1914 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1915 switch (cmd) { 1916 case OCFS2_IOC_RESVSP: 1917 case OCFS2_IOC_RESVSP64: 1918 /* 1919 * This takes unsigned offsets, but the signed ones we 1920 * pass have been checked against overflow above. 1921 */ 1922 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1923 sr->l_len); 1924 break; 1925 case OCFS2_IOC_UNRESVSP: 1926 case OCFS2_IOC_UNRESVSP64: 1927 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1928 sr->l_len); 1929 break; 1930 default: 1931 ret = -EINVAL; 1932 } 1933 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1934 if (ret) { 1935 mlog_errno(ret); 1936 goto out_inode_unlock; 1937 } 1938 1939 /* 1940 * We update c/mtime for these changes 1941 */ 1942 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1943 if (IS_ERR(handle)) { 1944 ret = PTR_ERR(handle); 1945 mlog_errno(ret); 1946 goto out_inode_unlock; 1947 } 1948 1949 if (change_size && i_size_read(inode) < size) 1950 i_size_write(inode, size); 1951 1952 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1953 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1954 if (ret < 0) 1955 mlog_errno(ret); 1956 1957 ocfs2_commit_trans(osb, handle); 1958 1959 out_inode_unlock: 1960 brelse(di_bh); 1961 ocfs2_inode_unlock(inode, 1); 1962 out_rw_unlock: 1963 ocfs2_rw_unlock(inode, 1); 1964 1965 out: 1966 mutex_unlock(&inode->i_mutex); 1967 return ret; 1968 } 1969 1970 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1971 struct ocfs2_space_resv *sr) 1972 { 1973 struct inode *inode = file->f_path.dentry->d_inode; 1974 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1975 1976 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1977 !ocfs2_writes_unwritten_extents(osb)) 1978 return -ENOTTY; 1979 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1980 !ocfs2_sparse_alloc(osb)) 1981 return -ENOTTY; 1982 1983 if (!S_ISREG(inode->i_mode)) 1984 return -EINVAL; 1985 1986 if (!(file->f_mode & FMODE_WRITE)) 1987 return -EBADF; 1988 1989 return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 1990 } 1991 1992 static long ocfs2_fallocate(struct inode *inode, int mode, loff_t offset, 1993 loff_t len) 1994 { 1995 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1996 struct ocfs2_space_resv sr; 1997 int change_size = 1; 1998 1999 if (!ocfs2_writes_unwritten_extents(osb)) 2000 return -EOPNOTSUPP; 2001 2002 if (S_ISDIR(inode->i_mode)) 2003 return -ENODEV; 2004 2005 if (mode & FALLOC_FL_KEEP_SIZE) 2006 change_size = 0; 2007 2008 sr.l_whence = 0; 2009 sr.l_start = (s64)offset; 2010 sr.l_len = (s64)len; 2011 2012 return __ocfs2_change_file_space(NULL, inode, offset, 2013 OCFS2_IOC_RESVSP64, &sr, change_size); 2014 } 2015 2016 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2017 size_t count) 2018 { 2019 int ret = 0; 2020 unsigned int extent_flags; 2021 u32 cpos, clusters, extent_len, phys_cpos; 2022 struct super_block *sb = inode->i_sb; 2023 2024 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2025 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2026 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2027 return 0; 2028 2029 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2030 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2031 2032 while (clusters) { 2033 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2034 &extent_flags); 2035 if (ret < 0) { 2036 mlog_errno(ret); 2037 goto out; 2038 } 2039 2040 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2041 ret = 1; 2042 break; 2043 } 2044 2045 if (extent_len > clusters) 2046 extent_len = clusters; 2047 2048 clusters -= extent_len; 2049 cpos += extent_len; 2050 } 2051 out: 2052 return ret; 2053 } 2054 2055 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2056 loff_t pos, size_t count, 2057 int *meta_level) 2058 { 2059 int ret; 2060 struct buffer_head *di_bh = NULL; 2061 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2062 u32 clusters = 2063 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2064 2065 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2066 if (ret) { 2067 mlog_errno(ret); 2068 goto out; 2069 } 2070 2071 *meta_level = 1; 2072 2073 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2074 if (ret) 2075 mlog_errno(ret); 2076 out: 2077 brelse(di_bh); 2078 return ret; 2079 } 2080 2081 static int ocfs2_prepare_inode_for_write(struct dentry *dentry, 2082 loff_t *ppos, 2083 size_t count, 2084 int appending, 2085 int *direct_io, 2086 int *has_refcount) 2087 { 2088 int ret = 0, meta_level = 0; 2089 struct inode *inode = dentry->d_inode; 2090 loff_t saved_pos, end; 2091 2092 /* 2093 * We start with a read level meta lock and only jump to an ex 2094 * if we need to make modifications here. 2095 */ 2096 for(;;) { 2097 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2098 if (ret < 0) { 2099 meta_level = -1; 2100 mlog_errno(ret); 2101 goto out; 2102 } 2103 2104 /* Clear suid / sgid if necessary. We do this here 2105 * instead of later in the write path because 2106 * remove_suid() calls ->setattr without any hint that 2107 * we may have already done our cluster locking. Since 2108 * ocfs2_setattr() *must* take cluster locks to 2109 * proceeed, this will lead us to recursively lock the 2110 * inode. There's also the dinode i_size state which 2111 * can be lost via setattr during extending writes (we 2112 * set inode->i_size at the end of a write. */ 2113 if (should_remove_suid(dentry)) { 2114 if (meta_level == 0) { 2115 ocfs2_inode_unlock(inode, meta_level); 2116 meta_level = 1; 2117 continue; 2118 } 2119 2120 ret = ocfs2_write_remove_suid(inode); 2121 if (ret < 0) { 2122 mlog_errno(ret); 2123 goto out_unlock; 2124 } 2125 } 2126 2127 /* work on a copy of ppos until we're sure that we won't have 2128 * to recalculate it due to relocking. */ 2129 if (appending) { 2130 saved_pos = i_size_read(inode); 2131 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos); 2132 } else { 2133 saved_pos = *ppos; 2134 } 2135 2136 end = saved_pos + count; 2137 2138 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); 2139 if (ret == 1) { 2140 ocfs2_inode_unlock(inode, meta_level); 2141 meta_level = -1; 2142 2143 ret = ocfs2_prepare_inode_for_refcount(inode, 2144 saved_pos, 2145 count, 2146 &meta_level); 2147 if (has_refcount) 2148 *has_refcount = 1; 2149 if (direct_io) 2150 *direct_io = 0; 2151 } 2152 2153 if (ret < 0) { 2154 mlog_errno(ret); 2155 goto out_unlock; 2156 } 2157 2158 /* 2159 * Skip the O_DIRECT checks if we don't need 2160 * them. 2161 */ 2162 if (!direct_io || !(*direct_io)) 2163 break; 2164 2165 /* 2166 * There's no sane way to do direct writes to an inode 2167 * with inline data. 2168 */ 2169 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2170 *direct_io = 0; 2171 break; 2172 } 2173 2174 /* 2175 * Allowing concurrent direct writes means 2176 * i_size changes wouldn't be synchronized, so 2177 * one node could wind up truncating another 2178 * nodes writes. 2179 */ 2180 if (end > i_size_read(inode)) { 2181 *direct_io = 0; 2182 break; 2183 } 2184 2185 /* 2186 * We don't fill holes during direct io, so 2187 * check for them here. If any are found, the 2188 * caller will have to retake some cluster 2189 * locks and initiate the io as buffered. 2190 */ 2191 ret = ocfs2_check_range_for_holes(inode, saved_pos, count); 2192 if (ret == 1) { 2193 *direct_io = 0; 2194 ret = 0; 2195 } else if (ret < 0) 2196 mlog_errno(ret); 2197 break; 2198 } 2199 2200 if (appending) 2201 *ppos = saved_pos; 2202 2203 out_unlock: 2204 if (meta_level >= 0) 2205 ocfs2_inode_unlock(inode, meta_level); 2206 2207 out: 2208 return ret; 2209 } 2210 2211 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, 2212 const struct iovec *iov, 2213 unsigned long nr_segs, 2214 loff_t pos) 2215 { 2216 int ret, direct_io, appending, rw_level, have_alloc_sem = 0; 2217 int can_do_direct, has_refcount = 0; 2218 ssize_t written = 0; 2219 size_t ocount; /* original count */ 2220 size_t count; /* after file limit checks */ 2221 loff_t old_size, *ppos = &iocb->ki_pos; 2222 u32 old_clusters; 2223 struct file *file = iocb->ki_filp; 2224 struct inode *inode = file->f_path.dentry->d_inode; 2225 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2226 2227 mlog_entry("(0x%p, %u, '%.*s')\n", file, 2228 (unsigned int)nr_segs, 2229 file->f_path.dentry->d_name.len, 2230 file->f_path.dentry->d_name.name); 2231 2232 if (iocb->ki_left == 0) 2233 return 0; 2234 2235 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2236 2237 appending = file->f_flags & O_APPEND ? 1 : 0; 2238 direct_io = file->f_flags & O_DIRECT ? 1 : 0; 2239 2240 mutex_lock(&inode->i_mutex); 2241 2242 relock: 2243 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */ 2244 if (direct_io) { 2245 down_read(&inode->i_alloc_sem); 2246 have_alloc_sem = 1; 2247 } 2248 2249 /* concurrent O_DIRECT writes are allowed */ 2250 rw_level = !direct_io; 2251 ret = ocfs2_rw_lock(inode, rw_level); 2252 if (ret < 0) { 2253 mlog_errno(ret); 2254 goto out_sems; 2255 } 2256 2257 can_do_direct = direct_io; 2258 ret = ocfs2_prepare_inode_for_write(file->f_path.dentry, ppos, 2259 iocb->ki_left, appending, 2260 &can_do_direct, &has_refcount); 2261 if (ret < 0) { 2262 mlog_errno(ret); 2263 goto out; 2264 } 2265 2266 /* 2267 * We can't complete the direct I/O as requested, fall back to 2268 * buffered I/O. 2269 */ 2270 if (direct_io && !can_do_direct) { 2271 ocfs2_rw_unlock(inode, rw_level); 2272 up_read(&inode->i_alloc_sem); 2273 2274 have_alloc_sem = 0; 2275 rw_level = -1; 2276 2277 direct_io = 0; 2278 goto relock; 2279 } 2280 2281 /* 2282 * To later detect whether a journal commit for sync writes is 2283 * necessary, we sample i_size, and cluster count here. 2284 */ 2285 old_size = i_size_read(inode); 2286 old_clusters = OCFS2_I(inode)->ip_clusters; 2287 2288 /* communicate with ocfs2_dio_end_io */ 2289 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2290 2291 ret = generic_segment_checks(iov, &nr_segs, &ocount, 2292 VERIFY_READ); 2293 if (ret) 2294 goto out_dio; 2295 2296 count = ocount; 2297 ret = generic_write_checks(file, ppos, &count, 2298 S_ISBLK(inode->i_mode)); 2299 if (ret) 2300 goto out_dio; 2301 2302 if (direct_io) { 2303 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, 2304 ppos, count, ocount); 2305 if (written < 0) { 2306 /* 2307 * direct write may have instantiated a few 2308 * blocks outside i_size. Trim these off again. 2309 * Don't need i_size_read because we hold i_mutex. 2310 * 2311 * XXX(truncate): this looks buggy because ocfs2 did not 2312 * actually implement ->truncate. Take a look at 2313 * the new truncate sequence and update this accordingly 2314 */ 2315 if (*ppos + count > inode->i_size) 2316 truncate_setsize(inode, inode->i_size); 2317 ret = written; 2318 goto out_dio; 2319 } 2320 } else { 2321 current->backing_dev_info = file->f_mapping->backing_dev_info; 2322 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, 2323 ppos, count, 0); 2324 current->backing_dev_info = NULL; 2325 } 2326 2327 out_dio: 2328 /* buffered aio wouldn't have proper lock coverage today */ 2329 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); 2330 2331 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || 2332 ((file->f_flags & O_DIRECT) && has_refcount)) { 2333 ret = filemap_fdatawrite_range(file->f_mapping, pos, 2334 pos + count - 1); 2335 if (ret < 0) 2336 written = ret; 2337 2338 if (!ret && ((old_size != i_size_read(inode)) || 2339 (old_clusters != OCFS2_I(inode)->ip_clusters) || 2340 has_refcount)) { 2341 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2342 if (ret < 0) 2343 written = ret; 2344 } 2345 2346 if (!ret) 2347 ret = filemap_fdatawait_range(file->f_mapping, pos, 2348 pos + count - 1); 2349 } 2350 2351 /* 2352 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2353 * function pointer which is called when o_direct io completes so that 2354 * it can unlock our rw lock. (it's the clustered equivalent of 2355 * i_alloc_sem; protects truncate from racing with pending ios). 2356 * Unfortunately there are error cases which call end_io and others 2357 * that don't. so we don't have to unlock the rw_lock if either an 2358 * async dio is going to do it in the future or an end_io after an 2359 * error has already done it. 2360 */ 2361 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2362 rw_level = -1; 2363 have_alloc_sem = 0; 2364 } 2365 2366 out: 2367 if (rw_level != -1) 2368 ocfs2_rw_unlock(inode, rw_level); 2369 2370 out_sems: 2371 if (have_alloc_sem) 2372 up_read(&inode->i_alloc_sem); 2373 2374 mutex_unlock(&inode->i_mutex); 2375 2376 if (written) 2377 ret = written; 2378 mlog_exit(ret); 2379 return ret; 2380 } 2381 2382 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, 2383 struct file *out, 2384 struct splice_desc *sd) 2385 { 2386 int ret; 2387 2388 ret = ocfs2_prepare_inode_for_write(out->f_path.dentry, &sd->pos, 2389 sd->total_len, 0, NULL, NULL); 2390 if (ret < 0) { 2391 mlog_errno(ret); 2392 return ret; 2393 } 2394 2395 return splice_from_pipe_feed(pipe, sd, pipe_to_file); 2396 } 2397 2398 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, 2399 struct file *out, 2400 loff_t *ppos, 2401 size_t len, 2402 unsigned int flags) 2403 { 2404 int ret; 2405 struct address_space *mapping = out->f_mapping; 2406 struct inode *inode = mapping->host; 2407 struct splice_desc sd = { 2408 .total_len = len, 2409 .flags = flags, 2410 .pos = *ppos, 2411 .u.file = out, 2412 }; 2413 2414 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe, 2415 (unsigned int)len, 2416 out->f_path.dentry->d_name.len, 2417 out->f_path.dentry->d_name.name); 2418 2419 if (pipe->inode) 2420 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT); 2421 2422 splice_from_pipe_begin(&sd); 2423 do { 2424 ret = splice_from_pipe_next(pipe, &sd); 2425 if (ret <= 0) 2426 break; 2427 2428 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2429 ret = ocfs2_rw_lock(inode, 1); 2430 if (ret < 0) 2431 mlog_errno(ret); 2432 else { 2433 ret = ocfs2_splice_to_file(pipe, out, &sd); 2434 ocfs2_rw_unlock(inode, 1); 2435 } 2436 mutex_unlock(&inode->i_mutex); 2437 } while (ret > 0); 2438 splice_from_pipe_end(pipe, &sd); 2439 2440 if (pipe->inode) 2441 mutex_unlock(&pipe->inode->i_mutex); 2442 2443 if (sd.num_spliced) 2444 ret = sd.num_spliced; 2445 2446 if (ret > 0) { 2447 unsigned long nr_pages; 2448 int err; 2449 2450 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2451 2452 err = generic_write_sync(out, *ppos, ret); 2453 if (err) 2454 ret = err; 2455 else 2456 *ppos += ret; 2457 2458 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 2459 } 2460 2461 mlog_exit(ret); 2462 return ret; 2463 } 2464 2465 static ssize_t ocfs2_file_splice_read(struct file *in, 2466 loff_t *ppos, 2467 struct pipe_inode_info *pipe, 2468 size_t len, 2469 unsigned int flags) 2470 { 2471 int ret = 0, lock_level = 0; 2472 struct inode *inode = in->f_path.dentry->d_inode; 2473 2474 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe, 2475 (unsigned int)len, 2476 in->f_path.dentry->d_name.len, 2477 in->f_path.dentry->d_name.name); 2478 2479 /* 2480 * See the comment in ocfs2_file_aio_read() 2481 */ 2482 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level); 2483 if (ret < 0) { 2484 mlog_errno(ret); 2485 goto bail; 2486 } 2487 ocfs2_inode_unlock(inode, lock_level); 2488 2489 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2490 2491 bail: 2492 mlog_exit(ret); 2493 return ret; 2494 } 2495 2496 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, 2497 const struct iovec *iov, 2498 unsigned long nr_segs, 2499 loff_t pos) 2500 { 2501 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; 2502 struct file *filp = iocb->ki_filp; 2503 struct inode *inode = filp->f_path.dentry->d_inode; 2504 2505 mlog_entry("(0x%p, %u, '%.*s')\n", filp, 2506 (unsigned int)nr_segs, 2507 filp->f_path.dentry->d_name.len, 2508 filp->f_path.dentry->d_name.name); 2509 2510 if (!inode) { 2511 ret = -EINVAL; 2512 mlog_errno(ret); 2513 goto bail; 2514 } 2515 2516 /* 2517 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2518 * need locks to protect pending reads from racing with truncate. 2519 */ 2520 if (filp->f_flags & O_DIRECT) { 2521 down_read(&inode->i_alloc_sem); 2522 have_alloc_sem = 1; 2523 2524 ret = ocfs2_rw_lock(inode, 0); 2525 if (ret < 0) { 2526 mlog_errno(ret); 2527 goto bail; 2528 } 2529 rw_level = 0; 2530 /* communicate with ocfs2_dio_end_io */ 2531 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2532 } 2533 2534 /* 2535 * We're fine letting folks race truncates and extending 2536 * writes with read across the cluster, just like they can 2537 * locally. Hence no rw_lock during read. 2538 * 2539 * Take and drop the meta data lock to update inode fields 2540 * like i_size. This allows the checks down below 2541 * generic_file_aio_read() a chance of actually working. 2542 */ 2543 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level); 2544 if (ret < 0) { 2545 mlog_errno(ret); 2546 goto bail; 2547 } 2548 ocfs2_inode_unlock(inode, lock_level); 2549 2550 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); 2551 if (ret == -EINVAL) 2552 mlog(0, "generic_file_aio_read returned -EINVAL\n"); 2553 2554 /* buffered aio wouldn't have proper lock coverage today */ 2555 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); 2556 2557 /* see ocfs2_file_aio_write */ 2558 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2559 rw_level = -1; 2560 have_alloc_sem = 0; 2561 } 2562 2563 bail: 2564 if (have_alloc_sem) 2565 up_read(&inode->i_alloc_sem); 2566 if (rw_level != -1) 2567 ocfs2_rw_unlock(inode, rw_level); 2568 mlog_exit(ret); 2569 2570 return ret; 2571 } 2572 2573 const struct inode_operations ocfs2_file_iops = { 2574 .setattr = ocfs2_setattr, 2575 .getattr = ocfs2_getattr, 2576 .permission = ocfs2_permission, 2577 .setxattr = generic_setxattr, 2578 .getxattr = generic_getxattr, 2579 .listxattr = ocfs2_listxattr, 2580 .removexattr = generic_removexattr, 2581 .fallocate = ocfs2_fallocate, 2582 .fiemap = ocfs2_fiemap, 2583 }; 2584 2585 const struct inode_operations ocfs2_special_file_iops = { 2586 .setattr = ocfs2_setattr, 2587 .getattr = ocfs2_getattr, 2588 .permission = ocfs2_permission, 2589 }; 2590 2591 /* 2592 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2593 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2594 */ 2595 const struct file_operations ocfs2_fops = { 2596 .llseek = generic_file_llseek, 2597 .read = do_sync_read, 2598 .write = do_sync_write, 2599 .mmap = ocfs2_mmap, 2600 .fsync = ocfs2_sync_file, 2601 .release = ocfs2_file_release, 2602 .open = ocfs2_file_open, 2603 .aio_read = ocfs2_file_aio_read, 2604 .aio_write = ocfs2_file_aio_write, 2605 .unlocked_ioctl = ocfs2_ioctl, 2606 #ifdef CONFIG_COMPAT 2607 .compat_ioctl = ocfs2_compat_ioctl, 2608 #endif 2609 .lock = ocfs2_lock, 2610 .flock = ocfs2_flock, 2611 .splice_read = ocfs2_file_splice_read, 2612 .splice_write = ocfs2_file_splice_write, 2613 }; 2614 2615 const struct file_operations ocfs2_dops = { 2616 .llseek = generic_file_llseek, 2617 .read = generic_read_dir, 2618 .readdir = ocfs2_readdir, 2619 .fsync = ocfs2_sync_file, 2620 .release = ocfs2_dir_release, 2621 .open = ocfs2_dir_open, 2622 .unlocked_ioctl = ocfs2_ioctl, 2623 #ifdef CONFIG_COMPAT 2624 .compat_ioctl = ocfs2_compat_ioctl, 2625 #endif 2626 .lock = ocfs2_lock, 2627 .flock = ocfs2_flock, 2628 }; 2629 2630 /* 2631 * POSIX-lockless variants of our file_operations. 2632 * 2633 * These will be used if the underlying cluster stack does not support 2634 * posix file locking, if the user passes the "localflocks" mount 2635 * option, or if we have a local-only fs. 2636 * 2637 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2638 * so we still want it in the case of no stack support for 2639 * plocks. Internally, it will do the right thing when asked to ignore 2640 * the cluster. 2641 */ 2642 const struct file_operations ocfs2_fops_no_plocks = { 2643 .llseek = generic_file_llseek, 2644 .read = do_sync_read, 2645 .write = do_sync_write, 2646 .mmap = ocfs2_mmap, 2647 .fsync = ocfs2_sync_file, 2648 .release = ocfs2_file_release, 2649 .open = ocfs2_file_open, 2650 .aio_read = ocfs2_file_aio_read, 2651 .aio_write = ocfs2_file_aio_write, 2652 .unlocked_ioctl = ocfs2_ioctl, 2653 #ifdef CONFIG_COMPAT 2654 .compat_ioctl = ocfs2_compat_ioctl, 2655 #endif 2656 .flock = ocfs2_flock, 2657 .splice_read = ocfs2_file_splice_read, 2658 .splice_write = ocfs2_file_splice_write, 2659 }; 2660 2661 const struct file_operations ocfs2_dops_no_plocks = { 2662 .llseek = generic_file_llseek, 2663 .read = generic_read_dir, 2664 .readdir = ocfs2_readdir, 2665 .fsync = ocfs2_sync_file, 2666 .release = ocfs2_dir_release, 2667 .open = ocfs2_dir_open, 2668 .unlocked_ioctl = ocfs2_ioctl, 2669 #ifdef CONFIG_COMPAT 2670 .compat_ioctl = ocfs2_compat_ioctl, 2671 #endif 2672 .flock = ocfs2_flock, 2673 }; 2674