xref: /linux/fs/ocfs2/file.c (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	journal_t *journal;
179 	struct inode *inode = file->f_mapping->host;
180 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181 
182 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 			      OCFS2_I(inode)->ip_blkno,
184 			      file->f_path.dentry->d_name.len,
185 			      file->f_path.dentry->d_name.name,
186 			      (unsigned long long)datasync);
187 
188 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
189 		return -EROFS;
190 
191 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
192 	if (err)
193 		return err;
194 
195 	/*
196 	 * Probably don't need the i_mutex at all in here, just putting it here
197 	 * to be consistent with how fsync used to be called, someone more
198 	 * familiar with the fs could possibly remove it.
199 	 */
200 	mutex_lock(&inode->i_mutex);
201 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
202 		/*
203 		 * We still have to flush drive's caches to get data to the
204 		 * platter
205 		 */
206 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
207 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
208 		goto bail;
209 	}
210 
211 	journal = osb->journal->j_journal;
212 	err = jbd2_journal_force_commit(journal);
213 
214 bail:
215 	if (err)
216 		mlog_errno(err);
217 	mutex_unlock(&inode->i_mutex);
218 
219 	return (err < 0) ? -EIO : 0;
220 }
221 
222 int ocfs2_should_update_atime(struct inode *inode,
223 			      struct vfsmount *vfsmnt)
224 {
225 	struct timespec now;
226 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
227 
228 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 		return 0;
230 
231 	if ((inode->i_flags & S_NOATIME) ||
232 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 		return 0;
234 
235 	/*
236 	 * We can be called with no vfsmnt structure - NFSD will
237 	 * sometimes do this.
238 	 *
239 	 * Note that our action here is different than touch_atime() -
240 	 * if we can't tell whether this is a noatime mount, then we
241 	 * don't know whether to trust the value of s_atime_quantum.
242 	 */
243 	if (vfsmnt == NULL)
244 		return 0;
245 
246 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
247 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 		return 0;
249 
250 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
251 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
252 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 			return 1;
254 
255 		return 0;
256 	}
257 
258 	now = CURRENT_TIME;
259 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
260 		return 0;
261 	else
262 		return 1;
263 }
264 
265 int ocfs2_update_inode_atime(struct inode *inode,
266 			     struct buffer_head *bh)
267 {
268 	int ret;
269 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
270 	handle_t *handle;
271 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
272 
273 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 	if (IS_ERR(handle)) {
275 		ret = PTR_ERR(handle);
276 		mlog_errno(ret);
277 		goto out;
278 	}
279 
280 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
281 				      OCFS2_JOURNAL_ACCESS_WRITE);
282 	if (ret) {
283 		mlog_errno(ret);
284 		goto out_commit;
285 	}
286 
287 	/*
288 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 	 * have i_mutex to guard against concurrent changes to other
290 	 * inode fields.
291 	 */
292 	inode->i_atime = CURRENT_TIME;
293 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
294 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
295 	ocfs2_journal_dirty(handle, bh);
296 
297 out_commit:
298 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
299 out:
300 	return ret;
301 }
302 
303 static int ocfs2_set_inode_size(handle_t *handle,
304 				struct inode *inode,
305 				struct buffer_head *fe_bh,
306 				u64 new_i_size)
307 {
308 	int status;
309 
310 	i_size_write(inode, new_i_size);
311 	inode->i_blocks = ocfs2_inode_sector_count(inode);
312 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
313 
314 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
315 	if (status < 0) {
316 		mlog_errno(status);
317 		goto bail;
318 	}
319 
320 bail:
321 	return status;
322 }
323 
324 int ocfs2_simple_size_update(struct inode *inode,
325 			     struct buffer_head *di_bh,
326 			     u64 new_i_size)
327 {
328 	int ret;
329 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
330 	handle_t *handle = NULL;
331 
332 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
333 	if (IS_ERR(handle)) {
334 		ret = PTR_ERR(handle);
335 		mlog_errno(ret);
336 		goto out;
337 	}
338 
339 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
340 				   new_i_size);
341 	if (ret < 0)
342 		mlog_errno(ret);
343 
344 	ocfs2_commit_trans(osb, handle);
345 out:
346 	return ret;
347 }
348 
349 static int ocfs2_cow_file_pos(struct inode *inode,
350 			      struct buffer_head *fe_bh,
351 			      u64 offset)
352 {
353 	int status;
354 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 	unsigned int num_clusters = 0;
356 	unsigned int ext_flags = 0;
357 
358 	/*
359 	 * If the new offset is aligned to the range of the cluster, there is
360 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 	 * CoW either.
362 	 */
363 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 		return 0;
365 
366 	status = ocfs2_get_clusters(inode, cpos, &phys,
367 				    &num_clusters, &ext_flags);
368 	if (status) {
369 		mlog_errno(status);
370 		goto out;
371 	}
372 
373 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 		goto out;
375 
376 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377 
378 out:
379 	return status;
380 }
381 
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 				     struct inode *inode,
384 				     struct buffer_head *fe_bh,
385 				     u64 new_i_size)
386 {
387 	int status;
388 	handle_t *handle;
389 	struct ocfs2_dinode *di;
390 	u64 cluster_bytes;
391 
392 	/*
393 	 * We need to CoW the cluster contains the offset if it is reflinked
394 	 * since we will call ocfs2_zero_range_for_truncate later which will
395 	 * write "0" from offset to the end of the cluster.
396 	 */
397 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 	if (status) {
399 		mlog_errno(status);
400 		return status;
401 	}
402 
403 	/* TODO: This needs to actually orphan the inode in this
404 	 * transaction. */
405 
406 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 	if (IS_ERR(handle)) {
408 		status = PTR_ERR(handle);
409 		mlog_errno(status);
410 		goto out;
411 	}
412 
413 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 					 OCFS2_JOURNAL_ACCESS_WRITE);
415 	if (status < 0) {
416 		mlog_errno(status);
417 		goto out_commit;
418 	}
419 
420 	/*
421 	 * Do this before setting i_size.
422 	 */
423 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 					       cluster_bytes);
426 	if (status) {
427 		mlog_errno(status);
428 		goto out_commit;
429 	}
430 
431 	i_size_write(inode, new_i_size);
432 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
433 
434 	di = (struct ocfs2_dinode *) fe_bh->b_data;
435 	di->i_size = cpu_to_le64(new_i_size);
436 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 
439 	ocfs2_journal_dirty(handle, fe_bh);
440 
441 out_commit:
442 	ocfs2_commit_trans(osb, handle);
443 out:
444 	return status;
445 }
446 
447 static int ocfs2_truncate_file(struct inode *inode,
448 			       struct buffer_head *di_bh,
449 			       u64 new_i_size)
450 {
451 	int status = 0;
452 	struct ocfs2_dinode *fe = NULL;
453 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
454 
455 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
456 	 * already validated it */
457 	fe = (struct ocfs2_dinode *) di_bh->b_data;
458 
459 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 				  (unsigned long long)le64_to_cpu(fe->i_size),
461 				  (unsigned long long)new_i_size);
462 
463 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
464 			"Inode %llu, inode i_size = %lld != di "
465 			"i_size = %llu, i_flags = 0x%x\n",
466 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
467 			i_size_read(inode),
468 			(unsigned long long)le64_to_cpu(fe->i_size),
469 			le32_to_cpu(fe->i_flags));
470 
471 	if (new_i_size > le64_to_cpu(fe->i_size)) {
472 		trace_ocfs2_truncate_file_error(
473 			(unsigned long long)le64_to_cpu(fe->i_size),
474 			(unsigned long long)new_i_size);
475 		status = -EINVAL;
476 		mlog_errno(status);
477 		goto bail;
478 	}
479 
480 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
481 
482 	ocfs2_resv_discard(&osb->osb_la_resmap,
483 			   &OCFS2_I(inode)->ip_la_data_resv);
484 
485 	/*
486 	 * The inode lock forced other nodes to sync and drop their
487 	 * pages, which (correctly) happens even if we have a truncate
488 	 * without allocation change - ocfs2 cluster sizes can be much
489 	 * greater than page size, so we have to truncate them
490 	 * anyway.
491 	 */
492 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
493 	truncate_inode_pages(inode->i_mapping, new_i_size);
494 
495 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
496 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
497 					       i_size_read(inode), 1);
498 		if (status)
499 			mlog_errno(status);
500 
501 		goto bail_unlock_sem;
502 	}
503 
504 	/* alright, we're going to need to do a full blown alloc size
505 	 * change. Orphan the inode so that recovery can complete the
506 	 * truncate if necessary. This does the task of marking
507 	 * i_size. */
508 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
509 	if (status < 0) {
510 		mlog_errno(status);
511 		goto bail_unlock_sem;
512 	}
513 
514 	status = ocfs2_commit_truncate(osb, inode, di_bh);
515 	if (status < 0) {
516 		mlog_errno(status);
517 		goto bail_unlock_sem;
518 	}
519 
520 	/* TODO: orphan dir cleanup here. */
521 bail_unlock_sem:
522 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
523 
524 bail:
525 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
526 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
527 
528 	return status;
529 }
530 
531 /*
532  * extend file allocation only here.
533  * we'll update all the disk stuff, and oip->alloc_size
534  *
535  * expect stuff to be locked, a transaction started and enough data /
536  * metadata reservations in the contexts.
537  *
538  * Will return -EAGAIN, and a reason if a restart is needed.
539  * If passed in, *reason will always be set, even in error.
540  */
541 int ocfs2_add_inode_data(struct ocfs2_super *osb,
542 			 struct inode *inode,
543 			 u32 *logical_offset,
544 			 u32 clusters_to_add,
545 			 int mark_unwritten,
546 			 struct buffer_head *fe_bh,
547 			 handle_t *handle,
548 			 struct ocfs2_alloc_context *data_ac,
549 			 struct ocfs2_alloc_context *meta_ac,
550 			 enum ocfs2_alloc_restarted *reason_ret)
551 {
552 	int ret;
553 	struct ocfs2_extent_tree et;
554 
555 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
556 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
557 					  clusters_to_add, mark_unwritten,
558 					  data_ac, meta_ac, reason_ret);
559 
560 	return ret;
561 }
562 
563 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
564 				     u32 clusters_to_add, int mark_unwritten)
565 {
566 	int status = 0;
567 	int restart_func = 0;
568 	int credits;
569 	u32 prev_clusters;
570 	struct buffer_head *bh = NULL;
571 	struct ocfs2_dinode *fe = NULL;
572 	handle_t *handle = NULL;
573 	struct ocfs2_alloc_context *data_ac = NULL;
574 	struct ocfs2_alloc_context *meta_ac = NULL;
575 	enum ocfs2_alloc_restarted why;
576 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
577 	struct ocfs2_extent_tree et;
578 	int did_quota = 0;
579 
580 	/*
581 	 * Unwritten extent only exists for file systems which
582 	 * support holes.
583 	 */
584 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
585 
586 	status = ocfs2_read_inode_block(inode, &bh);
587 	if (status < 0) {
588 		mlog_errno(status);
589 		goto leave;
590 	}
591 	fe = (struct ocfs2_dinode *) bh->b_data;
592 
593 restart_all:
594 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
595 
596 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
597 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
598 				       &data_ac, &meta_ac);
599 	if (status) {
600 		mlog_errno(status);
601 		goto leave;
602 	}
603 
604 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
605 	handle = ocfs2_start_trans(osb, credits);
606 	if (IS_ERR(handle)) {
607 		status = PTR_ERR(handle);
608 		handle = NULL;
609 		mlog_errno(status);
610 		goto leave;
611 	}
612 
613 restarted_transaction:
614 	trace_ocfs2_extend_allocation(
615 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
616 		(unsigned long long)i_size_read(inode),
617 		le32_to_cpu(fe->i_clusters), clusters_to_add,
618 		why, restart_func);
619 
620 	status = dquot_alloc_space_nodirty(inode,
621 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
622 	if (status)
623 		goto leave;
624 	did_quota = 1;
625 
626 	/* reserve a write to the file entry early on - that we if we
627 	 * run out of credits in the allocation path, we can still
628 	 * update i_size. */
629 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
630 					 OCFS2_JOURNAL_ACCESS_WRITE);
631 	if (status < 0) {
632 		mlog_errno(status);
633 		goto leave;
634 	}
635 
636 	prev_clusters = OCFS2_I(inode)->ip_clusters;
637 
638 	status = ocfs2_add_inode_data(osb,
639 				      inode,
640 				      &logical_start,
641 				      clusters_to_add,
642 				      mark_unwritten,
643 				      bh,
644 				      handle,
645 				      data_ac,
646 				      meta_ac,
647 				      &why);
648 	if ((status < 0) && (status != -EAGAIN)) {
649 		if (status != -ENOSPC)
650 			mlog_errno(status);
651 		goto leave;
652 	}
653 
654 	ocfs2_journal_dirty(handle, bh);
655 
656 	spin_lock(&OCFS2_I(inode)->ip_lock);
657 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
658 	spin_unlock(&OCFS2_I(inode)->ip_lock);
659 	/* Release unused quota reservation */
660 	dquot_free_space(inode,
661 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
662 	did_quota = 0;
663 
664 	if (why != RESTART_NONE && clusters_to_add) {
665 		if (why == RESTART_META) {
666 			restart_func = 1;
667 			status = 0;
668 		} else {
669 			BUG_ON(why != RESTART_TRANS);
670 
671 			status = ocfs2_allocate_extend_trans(handle, 1);
672 			if (status < 0) {
673 				/* handle still has to be committed at
674 				 * this point. */
675 				status = -ENOMEM;
676 				mlog_errno(status);
677 				goto leave;
678 			}
679 			goto restarted_transaction;
680 		}
681 	}
682 
683 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
684 	     le32_to_cpu(fe->i_clusters),
685 	     (unsigned long long)le64_to_cpu(fe->i_size),
686 	     OCFS2_I(inode)->ip_clusters,
687 	     (unsigned long long)i_size_read(inode));
688 
689 leave:
690 	if (status < 0 && did_quota)
691 		dquot_free_space(inode,
692 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
693 	if (handle) {
694 		ocfs2_commit_trans(osb, handle);
695 		handle = NULL;
696 	}
697 	if (data_ac) {
698 		ocfs2_free_alloc_context(data_ac);
699 		data_ac = NULL;
700 	}
701 	if (meta_ac) {
702 		ocfs2_free_alloc_context(meta_ac);
703 		meta_ac = NULL;
704 	}
705 	if ((!status) && restart_func) {
706 		restart_func = 0;
707 		goto restart_all;
708 	}
709 	brelse(bh);
710 	bh = NULL;
711 
712 	return status;
713 }
714 
715 /*
716  * While a write will already be ordering the data, a truncate will not.
717  * Thus, we need to explicitly order the zeroed pages.
718  */
719 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
720 						struct buffer_head *di_bh)
721 {
722 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
723 	handle_t *handle = NULL;
724 	int ret = 0;
725 
726 	if (!ocfs2_should_order_data(inode))
727 		goto out;
728 
729 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
730 	if (IS_ERR(handle)) {
731 		ret = -ENOMEM;
732 		mlog_errno(ret);
733 		goto out;
734 	}
735 
736 	ret = ocfs2_jbd2_file_inode(handle, inode);
737 	if (ret < 0) {
738 		mlog_errno(ret);
739 		goto out;
740 	}
741 
742 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
743 				      OCFS2_JOURNAL_ACCESS_WRITE);
744 	if (ret)
745 		mlog_errno(ret);
746 
747 out:
748 	if (ret) {
749 		if (!IS_ERR(handle))
750 			ocfs2_commit_trans(osb, handle);
751 		handle = ERR_PTR(ret);
752 	}
753 	return handle;
754 }
755 
756 /* Some parts of this taken from generic_cont_expand, which turned out
757  * to be too fragile to do exactly what we need without us having to
758  * worry about recursive locking in ->write_begin() and ->write_end(). */
759 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
760 				 u64 abs_to, struct buffer_head *di_bh)
761 {
762 	struct address_space *mapping = inode->i_mapping;
763 	struct page *page;
764 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
765 	handle_t *handle = NULL;
766 	int ret = 0;
767 	unsigned zero_from, zero_to, block_start, block_end;
768 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
769 
770 	BUG_ON(abs_from >= abs_to);
771 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
772 	BUG_ON(abs_from & (inode->i_blkbits - 1));
773 
774 	page = find_or_create_page(mapping, index, GFP_NOFS);
775 	if (!page) {
776 		ret = -ENOMEM;
777 		mlog_errno(ret);
778 		goto out;
779 	}
780 
781 	/* Get the offsets within the page that we want to zero */
782 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
783 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
784 	if (!zero_to)
785 		zero_to = PAGE_CACHE_SIZE;
786 
787 	trace_ocfs2_write_zero_page(
788 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
789 			(unsigned long long)abs_from,
790 			(unsigned long long)abs_to,
791 			index, zero_from, zero_to);
792 
793 	/* We know that zero_from is block aligned */
794 	for (block_start = zero_from; block_start < zero_to;
795 	     block_start = block_end) {
796 		block_end = block_start + (1 << inode->i_blkbits);
797 
798 		/*
799 		 * block_start is block-aligned.  Bump it by one to force
800 		 * __block_write_begin and block_commit_write to zero the
801 		 * whole block.
802 		 */
803 		ret = __block_write_begin(page, block_start + 1, 0,
804 					  ocfs2_get_block);
805 		if (ret < 0) {
806 			mlog_errno(ret);
807 			goto out_unlock;
808 		}
809 
810 		if (!handle) {
811 			handle = ocfs2_zero_start_ordered_transaction(inode,
812 								      di_bh);
813 			if (IS_ERR(handle)) {
814 				ret = PTR_ERR(handle);
815 				handle = NULL;
816 				break;
817 			}
818 		}
819 
820 		/* must not update i_size! */
821 		ret = block_commit_write(page, block_start + 1,
822 					 block_start + 1);
823 		if (ret < 0)
824 			mlog_errno(ret);
825 		else
826 			ret = 0;
827 	}
828 
829 	if (handle) {
830 		/*
831 		 * fs-writeback will release the dirty pages without page lock
832 		 * whose offset are over inode size, the release happens at
833 		 * block_write_full_page_endio().
834 		 */
835 		i_size_write(inode, abs_to);
836 		inode->i_blocks = ocfs2_inode_sector_count(inode);
837 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
838 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
839 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
840 		di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
841 		di->i_mtime_nsec = di->i_ctime_nsec;
842 		ocfs2_journal_dirty(handle, di_bh);
843 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
844 	}
845 
846 out_unlock:
847 	unlock_page(page);
848 	page_cache_release(page);
849 out:
850 	return ret;
851 }
852 
853 /*
854  * Find the next range to zero.  We do this in terms of bytes because
855  * that's what ocfs2_zero_extend() wants, and it is dealing with the
856  * pagecache.  We may return multiple extents.
857  *
858  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
859  * needs to be zeroed.  range_start and range_end return the next zeroing
860  * range.  A subsequent call should pass the previous range_end as its
861  * zero_start.  If range_end is 0, there's nothing to do.
862  *
863  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
864  */
865 static int ocfs2_zero_extend_get_range(struct inode *inode,
866 				       struct buffer_head *di_bh,
867 				       u64 zero_start, u64 zero_end,
868 				       u64 *range_start, u64 *range_end)
869 {
870 	int rc = 0, needs_cow = 0;
871 	u32 p_cpos, zero_clusters = 0;
872 	u32 zero_cpos =
873 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
874 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
875 	unsigned int num_clusters = 0;
876 	unsigned int ext_flags = 0;
877 
878 	while (zero_cpos < last_cpos) {
879 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
880 					&num_clusters, &ext_flags);
881 		if (rc) {
882 			mlog_errno(rc);
883 			goto out;
884 		}
885 
886 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
887 			zero_clusters = num_clusters;
888 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
889 				needs_cow = 1;
890 			break;
891 		}
892 
893 		zero_cpos += num_clusters;
894 	}
895 	if (!zero_clusters) {
896 		*range_end = 0;
897 		goto out;
898 	}
899 
900 	while ((zero_cpos + zero_clusters) < last_cpos) {
901 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
902 					&p_cpos, &num_clusters,
903 					&ext_flags);
904 		if (rc) {
905 			mlog_errno(rc);
906 			goto out;
907 		}
908 
909 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
910 			break;
911 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
912 			needs_cow = 1;
913 		zero_clusters += num_clusters;
914 	}
915 	if ((zero_cpos + zero_clusters) > last_cpos)
916 		zero_clusters = last_cpos - zero_cpos;
917 
918 	if (needs_cow) {
919 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
920 					zero_clusters, UINT_MAX);
921 		if (rc) {
922 			mlog_errno(rc);
923 			goto out;
924 		}
925 	}
926 
927 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
928 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
929 					     zero_cpos + zero_clusters);
930 
931 out:
932 	return rc;
933 }
934 
935 /*
936  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
937  * has made sure that the entire range needs zeroing.
938  */
939 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
940 				   u64 range_end, struct buffer_head *di_bh)
941 {
942 	int rc = 0;
943 	u64 next_pos;
944 	u64 zero_pos = range_start;
945 
946 	trace_ocfs2_zero_extend_range(
947 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
948 			(unsigned long long)range_start,
949 			(unsigned long long)range_end);
950 	BUG_ON(range_start >= range_end);
951 
952 	while (zero_pos < range_end) {
953 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
954 		if (next_pos > range_end)
955 			next_pos = range_end;
956 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
957 		if (rc < 0) {
958 			mlog_errno(rc);
959 			break;
960 		}
961 		zero_pos = next_pos;
962 
963 		/*
964 		 * Very large extends have the potential to lock up
965 		 * the cpu for extended periods of time.
966 		 */
967 		cond_resched();
968 	}
969 
970 	return rc;
971 }
972 
973 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
974 		      loff_t zero_to_size)
975 {
976 	int ret = 0;
977 	u64 zero_start, range_start = 0, range_end = 0;
978 	struct super_block *sb = inode->i_sb;
979 
980 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
981 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
982 				(unsigned long long)zero_start,
983 				(unsigned long long)i_size_read(inode));
984 	while (zero_start < zero_to_size) {
985 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
986 						  zero_to_size,
987 						  &range_start,
988 						  &range_end);
989 		if (ret) {
990 			mlog_errno(ret);
991 			break;
992 		}
993 		if (!range_end)
994 			break;
995 		/* Trim the ends */
996 		if (range_start < zero_start)
997 			range_start = zero_start;
998 		if (range_end > zero_to_size)
999 			range_end = zero_to_size;
1000 
1001 		ret = ocfs2_zero_extend_range(inode, range_start,
1002 					      range_end, di_bh);
1003 		if (ret) {
1004 			mlog_errno(ret);
1005 			break;
1006 		}
1007 		zero_start = range_end;
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1014 			  u64 new_i_size, u64 zero_to)
1015 {
1016 	int ret;
1017 	u32 clusters_to_add;
1018 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1019 
1020 	/*
1021 	 * Only quota files call this without a bh, and they can't be
1022 	 * refcounted.
1023 	 */
1024 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1025 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1026 
1027 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1028 	if (clusters_to_add < oi->ip_clusters)
1029 		clusters_to_add = 0;
1030 	else
1031 		clusters_to_add -= oi->ip_clusters;
1032 
1033 	if (clusters_to_add) {
1034 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1035 						clusters_to_add, 0);
1036 		if (ret) {
1037 			mlog_errno(ret);
1038 			goto out;
1039 		}
1040 	}
1041 
1042 	/*
1043 	 * Call this even if we don't add any clusters to the tree. We
1044 	 * still need to zero the area between the old i_size and the
1045 	 * new i_size.
1046 	 */
1047 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1048 	if (ret < 0)
1049 		mlog_errno(ret);
1050 
1051 out:
1052 	return ret;
1053 }
1054 
1055 static int ocfs2_extend_file(struct inode *inode,
1056 			     struct buffer_head *di_bh,
1057 			     u64 new_i_size)
1058 {
1059 	int ret = 0;
1060 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1061 
1062 	BUG_ON(!di_bh);
1063 
1064 	/* setattr sometimes calls us like this. */
1065 	if (new_i_size == 0)
1066 		goto out;
1067 
1068 	if (i_size_read(inode) == new_i_size)
1069 		goto out;
1070 	BUG_ON(new_i_size < i_size_read(inode));
1071 
1072 	/*
1073 	 * The alloc sem blocks people in read/write from reading our
1074 	 * allocation until we're done changing it. We depend on
1075 	 * i_mutex to block other extend/truncate calls while we're
1076 	 * here.  We even have to hold it for sparse files because there
1077 	 * might be some tail zeroing.
1078 	 */
1079 	down_write(&oi->ip_alloc_sem);
1080 
1081 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1082 		/*
1083 		 * We can optimize small extends by keeping the inodes
1084 		 * inline data.
1085 		 */
1086 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1087 			up_write(&oi->ip_alloc_sem);
1088 			goto out_update_size;
1089 		}
1090 
1091 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1092 		if (ret) {
1093 			up_write(&oi->ip_alloc_sem);
1094 			mlog_errno(ret);
1095 			goto out;
1096 		}
1097 	}
1098 
1099 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1100 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1101 	else
1102 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1103 					    new_i_size);
1104 
1105 	up_write(&oi->ip_alloc_sem);
1106 
1107 	if (ret < 0) {
1108 		mlog_errno(ret);
1109 		goto out;
1110 	}
1111 
1112 out_update_size:
1113 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1114 	if (ret < 0)
1115 		mlog_errno(ret);
1116 
1117 out:
1118 	return ret;
1119 }
1120 
1121 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1122 {
1123 	int status = 0, size_change;
1124 	struct inode *inode = dentry->d_inode;
1125 	struct super_block *sb = inode->i_sb;
1126 	struct ocfs2_super *osb = OCFS2_SB(sb);
1127 	struct buffer_head *bh = NULL;
1128 	handle_t *handle = NULL;
1129 	struct dquot *transfer_to[MAXQUOTAS] = { };
1130 	int qtype;
1131 
1132 	trace_ocfs2_setattr(inode, dentry,
1133 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1134 			    dentry->d_name.len, dentry->d_name.name,
1135 			    attr->ia_valid, attr->ia_mode,
1136 			    from_kuid(&init_user_ns, attr->ia_uid),
1137 			    from_kgid(&init_user_ns, attr->ia_gid));
1138 
1139 	/* ensuring we don't even attempt to truncate a symlink */
1140 	if (S_ISLNK(inode->i_mode))
1141 		attr->ia_valid &= ~ATTR_SIZE;
1142 
1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1144 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1145 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1146 		return 0;
1147 
1148 	status = inode_change_ok(inode, attr);
1149 	if (status)
1150 		return status;
1151 
1152 	if (is_quota_modification(inode, attr))
1153 		dquot_initialize(inode);
1154 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 	if (size_change) {
1156 		status = ocfs2_rw_lock(inode, 1);
1157 		if (status < 0) {
1158 			mlog_errno(status);
1159 			goto bail;
1160 		}
1161 	}
1162 
1163 	status = ocfs2_inode_lock(inode, &bh, 1);
1164 	if (status < 0) {
1165 		if (status != -ENOENT)
1166 			mlog_errno(status);
1167 		goto bail_unlock_rw;
1168 	}
1169 
1170 	if (size_change) {
1171 		status = inode_newsize_ok(inode, attr->ia_size);
1172 		if (status)
1173 			goto bail_unlock;
1174 
1175 		inode_dio_wait(inode);
1176 
1177 		if (i_size_read(inode) >= attr->ia_size) {
1178 			if (ocfs2_should_order_data(inode)) {
1179 				status = ocfs2_begin_ordered_truncate(inode,
1180 								      attr->ia_size);
1181 				if (status)
1182 					goto bail_unlock;
1183 			}
1184 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1185 		} else
1186 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1187 		if (status < 0) {
1188 			if (status != -ENOSPC)
1189 				mlog_errno(status);
1190 			status = -ENOSPC;
1191 			goto bail_unlock;
1192 		}
1193 	}
1194 
1195 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1196 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1197 		/*
1198 		 * Gather pointers to quota structures so that allocation /
1199 		 * freeing of quota structures happens here and not inside
1200 		 * dquot_transfer() where we have problems with lock ordering
1201 		 */
1202 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1203 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1204 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1205 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1206 			if (!transfer_to[USRQUOTA]) {
1207 				status = -ESRCH;
1208 				goto bail_unlock;
1209 			}
1210 		}
1211 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1212 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1213 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1214 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1215 			if (!transfer_to[GRPQUOTA]) {
1216 				status = -ESRCH;
1217 				goto bail_unlock;
1218 			}
1219 		}
1220 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1221 					   2 * ocfs2_quota_trans_credits(sb));
1222 		if (IS_ERR(handle)) {
1223 			status = PTR_ERR(handle);
1224 			mlog_errno(status);
1225 			goto bail_unlock;
1226 		}
1227 		status = __dquot_transfer(inode, transfer_to);
1228 		if (status < 0)
1229 			goto bail_commit;
1230 	} else {
1231 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1232 		if (IS_ERR(handle)) {
1233 			status = PTR_ERR(handle);
1234 			mlog_errno(status);
1235 			goto bail_unlock;
1236 		}
1237 	}
1238 
1239 	setattr_copy(inode, attr);
1240 	mark_inode_dirty(inode);
1241 
1242 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1243 	if (status < 0)
1244 		mlog_errno(status);
1245 
1246 bail_commit:
1247 	ocfs2_commit_trans(osb, handle);
1248 bail_unlock:
1249 	ocfs2_inode_unlock(inode, 1);
1250 bail_unlock_rw:
1251 	if (size_change)
1252 		ocfs2_rw_unlock(inode, 1);
1253 bail:
1254 	brelse(bh);
1255 
1256 	/* Release quota pointers in case we acquired them */
1257 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1258 		dqput(transfer_to[qtype]);
1259 
1260 	if (!status && attr->ia_valid & ATTR_MODE) {
1261 		status = posix_acl_chmod(inode, inode->i_mode);
1262 		if (status < 0)
1263 			mlog_errno(status);
1264 	}
1265 
1266 	return status;
1267 }
1268 
1269 int ocfs2_getattr(struct vfsmount *mnt,
1270 		  struct dentry *dentry,
1271 		  struct kstat *stat)
1272 {
1273 	struct inode *inode = dentry->d_inode;
1274 	struct super_block *sb = dentry->d_inode->i_sb;
1275 	struct ocfs2_super *osb = sb->s_fs_info;
1276 	int err;
1277 
1278 	err = ocfs2_inode_revalidate(dentry);
1279 	if (err) {
1280 		if (err != -ENOENT)
1281 			mlog_errno(err);
1282 		goto bail;
1283 	}
1284 
1285 	generic_fillattr(inode, stat);
1286 
1287 	/* We set the blksize from the cluster size for performance */
1288 	stat->blksize = osb->s_clustersize;
1289 
1290 bail:
1291 	return err;
1292 }
1293 
1294 int ocfs2_permission(struct inode *inode, int mask)
1295 {
1296 	int ret;
1297 
1298 	if (mask & MAY_NOT_BLOCK)
1299 		return -ECHILD;
1300 
1301 	ret = ocfs2_inode_lock(inode, NULL, 0);
1302 	if (ret) {
1303 		if (ret != -ENOENT)
1304 			mlog_errno(ret);
1305 		goto out;
1306 	}
1307 
1308 	ret = generic_permission(inode, mask);
1309 
1310 	ocfs2_inode_unlock(inode, 0);
1311 out:
1312 	return ret;
1313 }
1314 
1315 static int __ocfs2_write_remove_suid(struct inode *inode,
1316 				     struct buffer_head *bh)
1317 {
1318 	int ret;
1319 	handle_t *handle;
1320 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1321 	struct ocfs2_dinode *di;
1322 
1323 	trace_ocfs2_write_remove_suid(
1324 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1325 			inode->i_mode);
1326 
1327 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1328 	if (IS_ERR(handle)) {
1329 		ret = PTR_ERR(handle);
1330 		mlog_errno(ret);
1331 		goto out;
1332 	}
1333 
1334 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1335 				      OCFS2_JOURNAL_ACCESS_WRITE);
1336 	if (ret < 0) {
1337 		mlog_errno(ret);
1338 		goto out_trans;
1339 	}
1340 
1341 	inode->i_mode &= ~S_ISUID;
1342 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1343 		inode->i_mode &= ~S_ISGID;
1344 
1345 	di = (struct ocfs2_dinode *) bh->b_data;
1346 	di->i_mode = cpu_to_le16(inode->i_mode);
1347 
1348 	ocfs2_journal_dirty(handle, bh);
1349 
1350 out_trans:
1351 	ocfs2_commit_trans(osb, handle);
1352 out:
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Will look for holes and unwritten extents in the range starting at
1358  * pos for count bytes (inclusive).
1359  */
1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1361 				       size_t count)
1362 {
1363 	int ret = 0;
1364 	unsigned int extent_flags;
1365 	u32 cpos, clusters, extent_len, phys_cpos;
1366 	struct super_block *sb = inode->i_sb;
1367 
1368 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1369 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1370 
1371 	while (clusters) {
1372 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1373 					 &extent_flags);
1374 		if (ret < 0) {
1375 			mlog_errno(ret);
1376 			goto out;
1377 		}
1378 
1379 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1380 			ret = 1;
1381 			break;
1382 		}
1383 
1384 		if (extent_len > clusters)
1385 			extent_len = clusters;
1386 
1387 		clusters -= extent_len;
1388 		cpos += extent_len;
1389 	}
1390 out:
1391 	return ret;
1392 }
1393 
1394 static int ocfs2_write_remove_suid(struct inode *inode)
1395 {
1396 	int ret;
1397 	struct buffer_head *bh = NULL;
1398 
1399 	ret = ocfs2_read_inode_block(inode, &bh);
1400 	if (ret < 0) {
1401 		mlog_errno(ret);
1402 		goto out;
1403 	}
1404 
1405 	ret =  __ocfs2_write_remove_suid(inode, bh);
1406 out:
1407 	brelse(bh);
1408 	return ret;
1409 }
1410 
1411 /*
1412  * Allocate enough extents to cover the region starting at byte offset
1413  * start for len bytes. Existing extents are skipped, any extents
1414  * added are marked as "unwritten".
1415  */
1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1417 					    u64 start, u64 len)
1418 {
1419 	int ret;
1420 	u32 cpos, phys_cpos, clusters, alloc_size;
1421 	u64 end = start + len;
1422 	struct buffer_head *di_bh = NULL;
1423 
1424 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1425 		ret = ocfs2_read_inode_block(inode, &di_bh);
1426 		if (ret) {
1427 			mlog_errno(ret);
1428 			goto out;
1429 		}
1430 
1431 		/*
1432 		 * Nothing to do if the requested reservation range
1433 		 * fits within the inode.
1434 		 */
1435 		if (ocfs2_size_fits_inline_data(di_bh, end))
1436 			goto out;
1437 
1438 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1439 		if (ret) {
1440 			mlog_errno(ret);
1441 			goto out;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * We consider both start and len to be inclusive.
1447 	 */
1448 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1449 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1450 	clusters -= cpos;
1451 
1452 	while (clusters) {
1453 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1454 					 &alloc_size, NULL);
1455 		if (ret) {
1456 			mlog_errno(ret);
1457 			goto out;
1458 		}
1459 
1460 		/*
1461 		 * Hole or existing extent len can be arbitrary, so
1462 		 * cap it to our own allocation request.
1463 		 */
1464 		if (alloc_size > clusters)
1465 			alloc_size = clusters;
1466 
1467 		if (phys_cpos) {
1468 			/*
1469 			 * We already have an allocation at this
1470 			 * region so we can safely skip it.
1471 			 */
1472 			goto next;
1473 		}
1474 
1475 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1476 		if (ret) {
1477 			if (ret != -ENOSPC)
1478 				mlog_errno(ret);
1479 			goto out;
1480 		}
1481 
1482 next:
1483 		cpos += alloc_size;
1484 		clusters -= alloc_size;
1485 	}
1486 
1487 	ret = 0;
1488 out:
1489 
1490 	brelse(di_bh);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * Truncate a byte range, avoiding pages within partial clusters. This
1496  * preserves those pages for the zeroing code to write to.
1497  */
1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1499 					 u64 byte_len)
1500 {
1501 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 	loff_t start, end;
1503 	struct address_space *mapping = inode->i_mapping;
1504 
1505 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1506 	end = byte_start + byte_len;
1507 	end = end & ~(osb->s_clustersize - 1);
1508 
1509 	if (start < end) {
1510 		unmap_mapping_range(mapping, start, end - start, 0);
1511 		truncate_inode_pages_range(mapping, start, end - 1);
1512 	}
1513 }
1514 
1515 static int ocfs2_zero_partial_clusters(struct inode *inode,
1516 				       u64 start, u64 len)
1517 {
1518 	int ret = 0;
1519 	u64 tmpend, end = start + len;
1520 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 	unsigned int csize = osb->s_clustersize;
1522 	handle_t *handle;
1523 
1524 	/*
1525 	 * The "start" and "end" values are NOT necessarily part of
1526 	 * the range whose allocation is being deleted. Rather, this
1527 	 * is what the user passed in with the request. We must zero
1528 	 * partial clusters here. There's no need to worry about
1529 	 * physical allocation - the zeroing code knows to skip holes.
1530 	 */
1531 	trace_ocfs2_zero_partial_clusters(
1532 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1533 		(unsigned long long)start, (unsigned long long)end);
1534 
1535 	/*
1536 	 * If both edges are on a cluster boundary then there's no
1537 	 * zeroing required as the region is part of the allocation to
1538 	 * be truncated.
1539 	 */
1540 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1541 		goto out;
1542 
1543 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1544 	if (IS_ERR(handle)) {
1545 		ret = PTR_ERR(handle);
1546 		mlog_errno(ret);
1547 		goto out;
1548 	}
1549 
1550 	/*
1551 	 * We want to get the byte offset of the end of the 1st cluster.
1552 	 */
1553 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1554 	if (tmpend > end)
1555 		tmpend = end;
1556 
1557 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1558 						 (unsigned long long)tmpend);
1559 
1560 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1561 	if (ret)
1562 		mlog_errno(ret);
1563 
1564 	if (tmpend < end) {
1565 		/*
1566 		 * This may make start and end equal, but the zeroing
1567 		 * code will skip any work in that case so there's no
1568 		 * need to catch it up here.
1569 		 */
1570 		start = end & ~(osb->s_clustersize - 1);
1571 
1572 		trace_ocfs2_zero_partial_clusters_range2(
1573 			(unsigned long long)start, (unsigned long long)end);
1574 
1575 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1576 		if (ret)
1577 			mlog_errno(ret);
1578 	}
1579 
1580 	ocfs2_commit_trans(osb, handle);
1581 out:
1582 	return ret;
1583 }
1584 
1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1586 {
1587 	int i;
1588 	struct ocfs2_extent_rec *rec = NULL;
1589 
1590 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1591 
1592 		rec = &el->l_recs[i];
1593 
1594 		if (le32_to_cpu(rec->e_cpos) < pos)
1595 			break;
1596 	}
1597 
1598 	return i;
1599 }
1600 
1601 /*
1602  * Helper to calculate the punching pos and length in one run, we handle the
1603  * following three cases in order:
1604  *
1605  * - remove the entire record
1606  * - remove a partial record
1607  * - no record needs to be removed (hole-punching completed)
1608 */
1609 static void ocfs2_calc_trunc_pos(struct inode *inode,
1610 				 struct ocfs2_extent_list *el,
1611 				 struct ocfs2_extent_rec *rec,
1612 				 u32 trunc_start, u32 *trunc_cpos,
1613 				 u32 *trunc_len, u32 *trunc_end,
1614 				 u64 *blkno, int *done)
1615 {
1616 	int ret = 0;
1617 	u32 coff, range;
1618 
1619 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1620 
1621 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1622 		/*
1623 		 * remove an entire extent record.
1624 		 */
1625 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1626 		/*
1627 		 * Skip holes if any.
1628 		 */
1629 		if (range < *trunc_end)
1630 			*trunc_end = range;
1631 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1632 		*blkno = le64_to_cpu(rec->e_blkno);
1633 		*trunc_end = le32_to_cpu(rec->e_cpos);
1634 	} else if (range > trunc_start) {
1635 		/*
1636 		 * remove a partial extent record, which means we're
1637 		 * removing the last extent record.
1638 		 */
1639 		*trunc_cpos = trunc_start;
1640 		/*
1641 		 * skip hole if any.
1642 		 */
1643 		if (range < *trunc_end)
1644 			*trunc_end = range;
1645 		*trunc_len = *trunc_end - trunc_start;
1646 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1647 		*blkno = le64_to_cpu(rec->e_blkno) +
1648 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1649 		*trunc_end = trunc_start;
1650 	} else {
1651 		/*
1652 		 * It may have two following possibilities:
1653 		 *
1654 		 * - last record has been removed
1655 		 * - trunc_start was within a hole
1656 		 *
1657 		 * both two cases mean the completion of hole punching.
1658 		 */
1659 		ret = 1;
1660 	}
1661 
1662 	*done = ret;
1663 }
1664 
1665 static int ocfs2_remove_inode_range(struct inode *inode,
1666 				    struct buffer_head *di_bh, u64 byte_start,
1667 				    u64 byte_len)
1668 {
1669 	int ret = 0, flags = 0, done = 0, i;
1670 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1671 	u32 cluster_in_el;
1672 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 	struct ocfs2_cached_dealloc_ctxt dealloc;
1674 	struct address_space *mapping = inode->i_mapping;
1675 	struct ocfs2_extent_tree et;
1676 	struct ocfs2_path *path = NULL;
1677 	struct ocfs2_extent_list *el = NULL;
1678 	struct ocfs2_extent_rec *rec = NULL;
1679 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1680 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1681 
1682 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1683 	ocfs2_init_dealloc_ctxt(&dealloc);
1684 
1685 	trace_ocfs2_remove_inode_range(
1686 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1687 			(unsigned long long)byte_start,
1688 			(unsigned long long)byte_len);
1689 
1690 	if (byte_len == 0)
1691 		return 0;
1692 
1693 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695 					    byte_start + byte_len, 0);
1696 		if (ret) {
1697 			mlog_errno(ret);
1698 			goto out;
1699 		}
1700 		/*
1701 		 * There's no need to get fancy with the page cache
1702 		 * truncate of an inline-data inode. We're talking
1703 		 * about less than a page here, which will be cached
1704 		 * in the dinode buffer anyway.
1705 		 */
1706 		unmap_mapping_range(mapping, 0, 0, 0);
1707 		truncate_inode_pages(mapping, 0);
1708 		goto out;
1709 	}
1710 
1711 	/*
1712 	 * For reflinks, we may need to CoW 2 clusters which might be
1713 	 * partially zero'd later, if hole's start and end offset were
1714 	 * within one cluster(means is not exactly aligned to clustersize).
1715 	 */
1716 
1717 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718 
1719 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720 		if (ret) {
1721 			mlog_errno(ret);
1722 			goto out;
1723 		}
1724 
1725 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726 		if (ret) {
1727 			mlog_errno(ret);
1728 			goto out;
1729 		}
1730 	}
1731 
1732 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734 	cluster_in_el = trunc_end;
1735 
1736 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1737 	if (ret) {
1738 		mlog_errno(ret);
1739 		goto out;
1740 	}
1741 
1742 	path = ocfs2_new_path_from_et(&et);
1743 	if (!path) {
1744 		ret = -ENOMEM;
1745 		mlog_errno(ret);
1746 		goto out;
1747 	}
1748 
1749 	while (trunc_end > trunc_start) {
1750 
1751 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1752 				      cluster_in_el);
1753 		if (ret) {
1754 			mlog_errno(ret);
1755 			goto out;
1756 		}
1757 
1758 		el = path_leaf_el(path);
1759 
1760 		i = ocfs2_find_rec(el, trunc_end);
1761 		/*
1762 		 * Need to go to previous extent block.
1763 		 */
1764 		if (i < 0) {
1765 			if (path->p_tree_depth == 0)
1766 				break;
1767 
1768 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1769 							    path,
1770 							    &cluster_in_el);
1771 			if (ret) {
1772 				mlog_errno(ret);
1773 				goto out;
1774 			}
1775 
1776 			/*
1777 			 * We've reached the leftmost extent block,
1778 			 * it's safe to leave.
1779 			 */
1780 			if (cluster_in_el == 0)
1781 				break;
1782 
1783 			/*
1784 			 * The 'pos' searched for previous extent block is
1785 			 * always one cluster less than actual trunc_end.
1786 			 */
1787 			trunc_end = cluster_in_el + 1;
1788 
1789 			ocfs2_reinit_path(path, 1);
1790 
1791 			continue;
1792 
1793 		} else
1794 			rec = &el->l_recs[i];
1795 
1796 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1797 				     &trunc_len, &trunc_end, &blkno, &done);
1798 		if (done)
1799 			break;
1800 
1801 		flags = rec->e_flags;
1802 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1803 
1804 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1805 					       phys_cpos, trunc_len, flags,
1806 					       &dealloc, refcount_loc);
1807 		if (ret < 0) {
1808 			mlog_errno(ret);
1809 			goto out;
1810 		}
1811 
1812 		cluster_in_el = trunc_end;
1813 
1814 		ocfs2_reinit_path(path, 1);
1815 	}
1816 
1817 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1818 
1819 out:
1820 	ocfs2_free_path(path);
1821 	ocfs2_schedule_truncate_log_flush(osb, 1);
1822 	ocfs2_run_deallocs(osb, &dealloc);
1823 
1824 	return ret;
1825 }
1826 
1827 /*
1828  * Parts of this function taken from xfs_change_file_space()
1829  */
1830 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1831 				     loff_t f_pos, unsigned int cmd,
1832 				     struct ocfs2_space_resv *sr,
1833 				     int change_size)
1834 {
1835 	int ret;
1836 	s64 llen;
1837 	loff_t size;
1838 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1839 	struct buffer_head *di_bh = NULL;
1840 	handle_t *handle;
1841 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1842 
1843 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1844 		return -EROFS;
1845 
1846 	mutex_lock(&inode->i_mutex);
1847 
1848 	/*
1849 	 * This prevents concurrent writes on other nodes
1850 	 */
1851 	ret = ocfs2_rw_lock(inode, 1);
1852 	if (ret) {
1853 		mlog_errno(ret);
1854 		goto out;
1855 	}
1856 
1857 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858 	if (ret) {
1859 		mlog_errno(ret);
1860 		goto out_rw_unlock;
1861 	}
1862 
1863 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1864 		ret = -EPERM;
1865 		goto out_inode_unlock;
1866 	}
1867 
1868 	switch (sr->l_whence) {
1869 	case 0: /*SEEK_SET*/
1870 		break;
1871 	case 1: /*SEEK_CUR*/
1872 		sr->l_start += f_pos;
1873 		break;
1874 	case 2: /*SEEK_END*/
1875 		sr->l_start += i_size_read(inode);
1876 		break;
1877 	default:
1878 		ret = -EINVAL;
1879 		goto out_inode_unlock;
1880 	}
1881 	sr->l_whence = 0;
1882 
1883 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1884 
1885 	if (sr->l_start < 0
1886 	    || sr->l_start > max_off
1887 	    || (sr->l_start + llen) < 0
1888 	    || (sr->l_start + llen) > max_off) {
1889 		ret = -EINVAL;
1890 		goto out_inode_unlock;
1891 	}
1892 	size = sr->l_start + sr->l_len;
1893 
1894 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1895 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1896 		if (sr->l_len <= 0) {
1897 			ret = -EINVAL;
1898 			goto out_inode_unlock;
1899 		}
1900 	}
1901 
1902 	if (file && should_remove_suid(file->f_path.dentry)) {
1903 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1904 		if (ret) {
1905 			mlog_errno(ret);
1906 			goto out_inode_unlock;
1907 		}
1908 	}
1909 
1910 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911 	switch (cmd) {
1912 	case OCFS2_IOC_RESVSP:
1913 	case OCFS2_IOC_RESVSP64:
1914 		/*
1915 		 * This takes unsigned offsets, but the signed ones we
1916 		 * pass have been checked against overflow above.
1917 		 */
1918 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919 						       sr->l_len);
1920 		break;
1921 	case OCFS2_IOC_UNRESVSP:
1922 	case OCFS2_IOC_UNRESVSP64:
1923 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924 					       sr->l_len);
1925 		break;
1926 	default:
1927 		ret = -EINVAL;
1928 	}
1929 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930 	if (ret) {
1931 		mlog_errno(ret);
1932 		goto out_inode_unlock;
1933 	}
1934 
1935 	/*
1936 	 * We update c/mtime for these changes
1937 	 */
1938 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939 	if (IS_ERR(handle)) {
1940 		ret = PTR_ERR(handle);
1941 		mlog_errno(ret);
1942 		goto out_inode_unlock;
1943 	}
1944 
1945 	if (change_size && i_size_read(inode) < size)
1946 		i_size_write(inode, size);
1947 
1948 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950 	if (ret < 0)
1951 		mlog_errno(ret);
1952 
1953 	if (file && (file->f_flags & O_SYNC))
1954 		handle->h_sync = 1;
1955 
1956 	ocfs2_commit_trans(osb, handle);
1957 
1958 out_inode_unlock:
1959 	brelse(di_bh);
1960 	ocfs2_inode_unlock(inode, 1);
1961 out_rw_unlock:
1962 	ocfs2_rw_unlock(inode, 1);
1963 
1964 out:
1965 	mutex_unlock(&inode->i_mutex);
1966 	return ret;
1967 }
1968 
1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1970 			    struct ocfs2_space_resv *sr)
1971 {
1972 	struct inode *inode = file_inode(file);
1973 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1974 	int ret;
1975 
1976 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977 	    !ocfs2_writes_unwritten_extents(osb))
1978 		return -ENOTTY;
1979 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980 		 !ocfs2_sparse_alloc(osb))
1981 		return -ENOTTY;
1982 
1983 	if (!S_ISREG(inode->i_mode))
1984 		return -EINVAL;
1985 
1986 	if (!(file->f_mode & FMODE_WRITE))
1987 		return -EBADF;
1988 
1989 	ret = mnt_want_write_file(file);
1990 	if (ret)
1991 		return ret;
1992 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1993 	mnt_drop_write_file(file);
1994 	return ret;
1995 }
1996 
1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1998 			    loff_t len)
1999 {
2000 	struct inode *inode = file_inode(file);
2001 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2002 	struct ocfs2_space_resv sr;
2003 	int change_size = 1;
2004 	int cmd = OCFS2_IOC_RESVSP64;
2005 
2006 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2007 		return -EOPNOTSUPP;
2008 	if (!ocfs2_writes_unwritten_extents(osb))
2009 		return -EOPNOTSUPP;
2010 
2011 	if (mode & FALLOC_FL_KEEP_SIZE)
2012 		change_size = 0;
2013 
2014 	if (mode & FALLOC_FL_PUNCH_HOLE)
2015 		cmd = OCFS2_IOC_UNRESVSP64;
2016 
2017 	sr.l_whence = 0;
2018 	sr.l_start = (s64)offset;
2019 	sr.l_len = (s64)len;
2020 
2021 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2022 					 change_size);
2023 }
2024 
2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2026 				   size_t count)
2027 {
2028 	int ret = 0;
2029 	unsigned int extent_flags;
2030 	u32 cpos, clusters, extent_len, phys_cpos;
2031 	struct super_block *sb = inode->i_sb;
2032 
2033 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2034 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2035 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2036 		return 0;
2037 
2038 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2039 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2040 
2041 	while (clusters) {
2042 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2043 					 &extent_flags);
2044 		if (ret < 0) {
2045 			mlog_errno(ret);
2046 			goto out;
2047 		}
2048 
2049 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2050 			ret = 1;
2051 			break;
2052 		}
2053 
2054 		if (extent_len > clusters)
2055 			extent_len = clusters;
2056 
2057 		clusters -= extent_len;
2058 		cpos += extent_len;
2059 	}
2060 out:
2061 	return ret;
2062 }
2063 
2064 static void ocfs2_aiodio_wait(struct inode *inode)
2065 {
2066 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2067 
2068 	wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2069 }
2070 
2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2072 {
2073 	int blockmask = inode->i_sb->s_blocksize - 1;
2074 	loff_t final_size = pos + count;
2075 
2076 	if ((pos & blockmask) || (final_size & blockmask))
2077 		return 1;
2078 	return 0;
2079 }
2080 
2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2082 					    struct file *file,
2083 					    loff_t pos, size_t count,
2084 					    int *meta_level)
2085 {
2086 	int ret;
2087 	struct buffer_head *di_bh = NULL;
2088 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2089 	u32 clusters =
2090 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2091 
2092 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2093 	if (ret) {
2094 		mlog_errno(ret);
2095 		goto out;
2096 	}
2097 
2098 	*meta_level = 1;
2099 
2100 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2101 	if (ret)
2102 		mlog_errno(ret);
2103 out:
2104 	brelse(di_bh);
2105 	return ret;
2106 }
2107 
2108 static int ocfs2_prepare_inode_for_write(struct file *file,
2109 					 loff_t *ppos,
2110 					 size_t count,
2111 					 int appending,
2112 					 int *direct_io,
2113 					 int *has_refcount)
2114 {
2115 	int ret = 0, meta_level = 0;
2116 	struct dentry *dentry = file->f_path.dentry;
2117 	struct inode *inode = dentry->d_inode;
2118 	loff_t saved_pos = 0, end;
2119 
2120 	/*
2121 	 * We start with a read level meta lock and only jump to an ex
2122 	 * if we need to make modifications here.
2123 	 */
2124 	for(;;) {
2125 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2126 		if (ret < 0) {
2127 			meta_level = -1;
2128 			mlog_errno(ret);
2129 			goto out;
2130 		}
2131 
2132 		/* Clear suid / sgid if necessary. We do this here
2133 		 * instead of later in the write path because
2134 		 * remove_suid() calls ->setattr without any hint that
2135 		 * we may have already done our cluster locking. Since
2136 		 * ocfs2_setattr() *must* take cluster locks to
2137 		 * proceed, this will lead us to recursively lock the
2138 		 * inode. There's also the dinode i_size state which
2139 		 * can be lost via setattr during extending writes (we
2140 		 * set inode->i_size at the end of a write. */
2141 		if (should_remove_suid(dentry)) {
2142 			if (meta_level == 0) {
2143 				ocfs2_inode_unlock(inode, meta_level);
2144 				meta_level = 1;
2145 				continue;
2146 			}
2147 
2148 			ret = ocfs2_write_remove_suid(inode);
2149 			if (ret < 0) {
2150 				mlog_errno(ret);
2151 				goto out_unlock;
2152 			}
2153 		}
2154 
2155 		/* work on a copy of ppos until we're sure that we won't have
2156 		 * to recalculate it due to relocking. */
2157 		if (appending)
2158 			saved_pos = i_size_read(inode);
2159 		else
2160 			saved_pos = *ppos;
2161 
2162 		end = saved_pos + count;
2163 
2164 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2165 		if (ret == 1) {
2166 			ocfs2_inode_unlock(inode, meta_level);
2167 			meta_level = -1;
2168 
2169 			ret = ocfs2_prepare_inode_for_refcount(inode,
2170 							       file,
2171 							       saved_pos,
2172 							       count,
2173 							       &meta_level);
2174 			if (has_refcount)
2175 				*has_refcount = 1;
2176 			if (direct_io)
2177 				*direct_io = 0;
2178 		}
2179 
2180 		if (ret < 0) {
2181 			mlog_errno(ret);
2182 			goto out_unlock;
2183 		}
2184 
2185 		/*
2186 		 * Skip the O_DIRECT checks if we don't need
2187 		 * them.
2188 		 */
2189 		if (!direct_io || !(*direct_io))
2190 			break;
2191 
2192 		/*
2193 		 * There's no sane way to do direct writes to an inode
2194 		 * with inline data.
2195 		 */
2196 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2197 			*direct_io = 0;
2198 			break;
2199 		}
2200 
2201 		/*
2202 		 * Allowing concurrent direct writes means
2203 		 * i_size changes wouldn't be synchronized, so
2204 		 * one node could wind up truncating another
2205 		 * nodes writes.
2206 		 */
2207 		if (end > i_size_read(inode)) {
2208 			*direct_io = 0;
2209 			break;
2210 		}
2211 
2212 		/*
2213 		 * We don't fill holes during direct io, so
2214 		 * check for them here. If any are found, the
2215 		 * caller will have to retake some cluster
2216 		 * locks and initiate the io as buffered.
2217 		 */
2218 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2219 		if (ret == 1) {
2220 			*direct_io = 0;
2221 			ret = 0;
2222 		} else if (ret < 0)
2223 			mlog_errno(ret);
2224 		break;
2225 	}
2226 
2227 	if (appending)
2228 		*ppos = saved_pos;
2229 
2230 out_unlock:
2231 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2232 					    saved_pos, appending, count,
2233 					    direct_io, has_refcount);
2234 
2235 	if (meta_level >= 0)
2236 		ocfs2_inode_unlock(inode, meta_level);
2237 
2238 out:
2239 	return ret;
2240 }
2241 
2242 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2243 				    const struct iovec *iov,
2244 				    unsigned long nr_segs,
2245 				    loff_t pos)
2246 {
2247 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2248 	int can_do_direct, has_refcount = 0;
2249 	ssize_t written = 0;
2250 	size_t ocount;		/* original count */
2251 	size_t count;		/* after file limit checks */
2252 	loff_t old_size, *ppos = &iocb->ki_pos;
2253 	u32 old_clusters;
2254 	struct file *file = iocb->ki_filp;
2255 	struct inode *inode = file_inode(file);
2256 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2257 	int full_coherency = !(osb->s_mount_opt &
2258 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2259 	int unaligned_dio = 0;
2260 
2261 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2262 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2263 		file->f_path.dentry->d_name.len,
2264 		file->f_path.dentry->d_name.name,
2265 		(unsigned int)nr_segs);
2266 
2267 	if (iocb->ki_nbytes == 0)
2268 		return 0;
2269 
2270 	appending = file->f_flags & O_APPEND ? 1 : 0;
2271 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2272 
2273 	mutex_lock(&inode->i_mutex);
2274 
2275 	ocfs2_iocb_clear_sem_locked(iocb);
2276 
2277 relock:
2278 	/* to match setattr's i_mutex -> rw_lock ordering */
2279 	if (direct_io) {
2280 		have_alloc_sem = 1;
2281 		/* communicate with ocfs2_dio_end_io */
2282 		ocfs2_iocb_set_sem_locked(iocb);
2283 	}
2284 
2285 	/*
2286 	 * Concurrent O_DIRECT writes are allowed with
2287 	 * mount_option "coherency=buffered".
2288 	 */
2289 	rw_level = (!direct_io || full_coherency);
2290 
2291 	ret = ocfs2_rw_lock(inode, rw_level);
2292 	if (ret < 0) {
2293 		mlog_errno(ret);
2294 		goto out_sems;
2295 	}
2296 
2297 	/*
2298 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2299 	 * inode_lock to guarantee coherency.
2300 	 */
2301 	if (direct_io && full_coherency) {
2302 		/*
2303 		 * We need to take and drop the inode lock to force
2304 		 * other nodes to drop their caches.  Buffered I/O
2305 		 * already does this in write_begin().
2306 		 */
2307 		ret = ocfs2_inode_lock(inode, NULL, 1);
2308 		if (ret < 0) {
2309 			mlog_errno(ret);
2310 			goto out;
2311 		}
2312 
2313 		ocfs2_inode_unlock(inode, 1);
2314 	}
2315 
2316 	can_do_direct = direct_io;
2317 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2318 					    iocb->ki_nbytes, appending,
2319 					    &can_do_direct, &has_refcount);
2320 	if (ret < 0) {
2321 		mlog_errno(ret);
2322 		goto out;
2323 	}
2324 
2325 	if (direct_io && !is_sync_kiocb(iocb))
2326 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2327 						      *ppos);
2328 
2329 	/*
2330 	 * We can't complete the direct I/O as requested, fall back to
2331 	 * buffered I/O.
2332 	 */
2333 	if (direct_io && !can_do_direct) {
2334 		ocfs2_rw_unlock(inode, rw_level);
2335 
2336 		have_alloc_sem = 0;
2337 		rw_level = -1;
2338 
2339 		direct_io = 0;
2340 		goto relock;
2341 	}
2342 
2343 	if (unaligned_dio) {
2344 		/*
2345 		 * Wait on previous unaligned aio to complete before
2346 		 * proceeding.
2347 		 */
2348 		ocfs2_aiodio_wait(inode);
2349 
2350 		/* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2351 		atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2352 		ocfs2_iocb_set_unaligned_aio(iocb);
2353 	}
2354 
2355 	/*
2356 	 * To later detect whether a journal commit for sync writes is
2357 	 * necessary, we sample i_size, and cluster count here.
2358 	 */
2359 	old_size = i_size_read(inode);
2360 	old_clusters = OCFS2_I(inode)->ip_clusters;
2361 
2362 	/* communicate with ocfs2_dio_end_io */
2363 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2364 
2365 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2366 				     VERIFY_READ);
2367 	if (ret)
2368 		goto out_dio;
2369 
2370 	count = ocount;
2371 	ret = generic_write_checks(file, ppos, &count,
2372 				   S_ISBLK(inode->i_mode));
2373 	if (ret)
2374 		goto out_dio;
2375 
2376 	if (direct_io) {
2377 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2378 						    ppos, count, ocount);
2379 		if (written < 0) {
2380 			ret = written;
2381 			goto out_dio;
2382 		}
2383 	} else {
2384 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2385 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2386 						      ppos, count, 0);
2387 		current->backing_dev_info = NULL;
2388 	}
2389 
2390 out_dio:
2391 	/* buffered aio wouldn't have proper lock coverage today */
2392 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2393 
2394 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2395 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2396 		ret = filemap_fdatawrite_range(file->f_mapping, *ppos,
2397 					       *ppos + count - 1);
2398 		if (ret < 0)
2399 			written = ret;
2400 
2401 		if (!ret && ((old_size != i_size_read(inode)) ||
2402 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2403 			     has_refcount)) {
2404 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2405 			if (ret < 0)
2406 				written = ret;
2407 		}
2408 
2409 		if (!ret)
2410 			ret = filemap_fdatawait_range(file->f_mapping, *ppos,
2411 						      *ppos + count - 1);
2412 	}
2413 
2414 	/*
2415 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2416 	 * function pointer which is called when o_direct io completes so that
2417 	 * it can unlock our rw lock.
2418 	 * Unfortunately there are error cases which call end_io and others
2419 	 * that don't.  so we don't have to unlock the rw_lock if either an
2420 	 * async dio is going to do it in the future or an end_io after an
2421 	 * error has already done it.
2422 	 */
2423 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2424 		rw_level = -1;
2425 		have_alloc_sem = 0;
2426 		unaligned_dio = 0;
2427 	}
2428 
2429 	if (unaligned_dio) {
2430 		ocfs2_iocb_clear_unaligned_aio(iocb);
2431 		atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2432 	}
2433 
2434 out:
2435 	if (rw_level != -1)
2436 		ocfs2_rw_unlock(inode, rw_level);
2437 
2438 out_sems:
2439 	if (have_alloc_sem)
2440 		ocfs2_iocb_clear_sem_locked(iocb);
2441 
2442 	mutex_unlock(&inode->i_mutex);
2443 
2444 	if (written)
2445 		ret = written;
2446 	return ret;
2447 }
2448 
2449 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2450 				struct file *out,
2451 				struct splice_desc *sd)
2452 {
2453 	int ret;
2454 
2455 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2456 					    sd->total_len, 0, NULL, NULL);
2457 	if (ret < 0) {
2458 		mlog_errno(ret);
2459 		return ret;
2460 	}
2461 
2462 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2463 }
2464 
2465 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2466 				       struct file *out,
2467 				       loff_t *ppos,
2468 				       size_t len,
2469 				       unsigned int flags)
2470 {
2471 	int ret;
2472 	struct address_space *mapping = out->f_mapping;
2473 	struct inode *inode = mapping->host;
2474 	struct splice_desc sd = {
2475 		.total_len = len,
2476 		.flags = flags,
2477 		.pos = *ppos,
2478 		.u.file = out,
2479 	};
2480 
2481 
2482 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2483 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2484 			out->f_path.dentry->d_name.len,
2485 			out->f_path.dentry->d_name.name, len);
2486 
2487 	pipe_lock(pipe);
2488 
2489 	splice_from_pipe_begin(&sd);
2490 	do {
2491 		ret = splice_from_pipe_next(pipe, &sd);
2492 		if (ret <= 0)
2493 			break;
2494 
2495 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2496 		ret = ocfs2_rw_lock(inode, 1);
2497 		if (ret < 0)
2498 			mlog_errno(ret);
2499 		else {
2500 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2501 			ocfs2_rw_unlock(inode, 1);
2502 		}
2503 		mutex_unlock(&inode->i_mutex);
2504 	} while (ret > 0);
2505 	splice_from_pipe_end(pipe, &sd);
2506 
2507 	pipe_unlock(pipe);
2508 
2509 	if (sd.num_spliced)
2510 		ret = sd.num_spliced;
2511 
2512 	if (ret > 0) {
2513 		int err;
2514 
2515 		err = generic_write_sync(out, *ppos, ret);
2516 		if (err)
2517 			ret = err;
2518 		else
2519 			*ppos += ret;
2520 
2521 		balance_dirty_pages_ratelimited(mapping);
2522 	}
2523 
2524 	return ret;
2525 }
2526 
2527 static ssize_t ocfs2_file_splice_read(struct file *in,
2528 				      loff_t *ppos,
2529 				      struct pipe_inode_info *pipe,
2530 				      size_t len,
2531 				      unsigned int flags)
2532 {
2533 	int ret = 0, lock_level = 0;
2534 	struct inode *inode = file_inode(in);
2535 
2536 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2537 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2538 			in->f_path.dentry->d_name.len,
2539 			in->f_path.dentry->d_name.name, len);
2540 
2541 	/*
2542 	 * See the comment in ocfs2_file_aio_read()
2543 	 */
2544 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2545 	if (ret < 0) {
2546 		mlog_errno(ret);
2547 		goto bail;
2548 	}
2549 	ocfs2_inode_unlock(inode, lock_level);
2550 
2551 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2552 
2553 bail:
2554 	return ret;
2555 }
2556 
2557 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2558 				   const struct iovec *iov,
2559 				   unsigned long nr_segs,
2560 				   loff_t pos)
2561 {
2562 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2563 	struct file *filp = iocb->ki_filp;
2564 	struct inode *inode = file_inode(filp);
2565 
2566 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2567 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2568 			filp->f_path.dentry->d_name.len,
2569 			filp->f_path.dentry->d_name.name, nr_segs);
2570 
2571 
2572 	if (!inode) {
2573 		ret = -EINVAL;
2574 		mlog_errno(ret);
2575 		goto bail;
2576 	}
2577 
2578 	ocfs2_iocb_clear_sem_locked(iocb);
2579 
2580 	/*
2581 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2582 	 * need locks to protect pending reads from racing with truncate.
2583 	 */
2584 	if (filp->f_flags & O_DIRECT) {
2585 		have_alloc_sem = 1;
2586 		ocfs2_iocb_set_sem_locked(iocb);
2587 
2588 		ret = ocfs2_rw_lock(inode, 0);
2589 		if (ret < 0) {
2590 			mlog_errno(ret);
2591 			goto bail;
2592 		}
2593 		rw_level = 0;
2594 		/* communicate with ocfs2_dio_end_io */
2595 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2596 	}
2597 
2598 	/*
2599 	 * We're fine letting folks race truncates and extending
2600 	 * writes with read across the cluster, just like they can
2601 	 * locally. Hence no rw_lock during read.
2602 	 *
2603 	 * Take and drop the meta data lock to update inode fields
2604 	 * like i_size. This allows the checks down below
2605 	 * generic_file_aio_read() a chance of actually working.
2606 	 */
2607 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2608 	if (ret < 0) {
2609 		mlog_errno(ret);
2610 		goto bail;
2611 	}
2612 	ocfs2_inode_unlock(inode, lock_level);
2613 
2614 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2615 	trace_generic_file_aio_read_ret(ret);
2616 
2617 	/* buffered aio wouldn't have proper lock coverage today */
2618 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2619 
2620 	/* see ocfs2_file_aio_write */
2621 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2622 		rw_level = -1;
2623 		have_alloc_sem = 0;
2624 	}
2625 
2626 bail:
2627 	if (have_alloc_sem)
2628 		ocfs2_iocb_clear_sem_locked(iocb);
2629 
2630 	if (rw_level != -1)
2631 		ocfs2_rw_unlock(inode, rw_level);
2632 
2633 	return ret;
2634 }
2635 
2636 /* Refer generic_file_llseek_unlocked() */
2637 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2638 {
2639 	struct inode *inode = file->f_mapping->host;
2640 	int ret = 0;
2641 
2642 	mutex_lock(&inode->i_mutex);
2643 
2644 	switch (whence) {
2645 	case SEEK_SET:
2646 		break;
2647 	case SEEK_END:
2648 		offset += inode->i_size;
2649 		break;
2650 	case SEEK_CUR:
2651 		if (offset == 0) {
2652 			offset = file->f_pos;
2653 			goto out;
2654 		}
2655 		offset += file->f_pos;
2656 		break;
2657 	case SEEK_DATA:
2658 	case SEEK_HOLE:
2659 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2660 		if (ret)
2661 			goto out;
2662 		break;
2663 	default:
2664 		ret = -EINVAL;
2665 		goto out;
2666 	}
2667 
2668 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2669 
2670 out:
2671 	mutex_unlock(&inode->i_mutex);
2672 	if (ret)
2673 		return ret;
2674 	return offset;
2675 }
2676 
2677 const struct inode_operations ocfs2_file_iops = {
2678 	.setattr	= ocfs2_setattr,
2679 	.getattr	= ocfs2_getattr,
2680 	.permission	= ocfs2_permission,
2681 	.setxattr	= generic_setxattr,
2682 	.getxattr	= generic_getxattr,
2683 	.listxattr	= ocfs2_listxattr,
2684 	.removexattr	= generic_removexattr,
2685 	.fiemap		= ocfs2_fiemap,
2686 	.get_acl	= ocfs2_iop_get_acl,
2687 	.set_acl	= ocfs2_iop_set_acl,
2688 };
2689 
2690 const struct inode_operations ocfs2_special_file_iops = {
2691 	.setattr	= ocfs2_setattr,
2692 	.getattr	= ocfs2_getattr,
2693 	.permission	= ocfs2_permission,
2694 	.get_acl	= ocfs2_iop_get_acl,
2695 	.set_acl	= ocfs2_iop_set_acl,
2696 };
2697 
2698 /*
2699  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2700  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2701  */
2702 const struct file_operations ocfs2_fops = {
2703 	.llseek		= ocfs2_file_llseek,
2704 	.read		= do_sync_read,
2705 	.write		= do_sync_write,
2706 	.mmap		= ocfs2_mmap,
2707 	.fsync		= ocfs2_sync_file,
2708 	.release	= ocfs2_file_release,
2709 	.open		= ocfs2_file_open,
2710 	.aio_read	= ocfs2_file_aio_read,
2711 	.aio_write	= ocfs2_file_aio_write,
2712 	.unlocked_ioctl	= ocfs2_ioctl,
2713 #ifdef CONFIG_COMPAT
2714 	.compat_ioctl   = ocfs2_compat_ioctl,
2715 #endif
2716 	.lock		= ocfs2_lock,
2717 	.flock		= ocfs2_flock,
2718 	.splice_read	= ocfs2_file_splice_read,
2719 	.splice_write	= ocfs2_file_splice_write,
2720 	.fallocate	= ocfs2_fallocate,
2721 };
2722 
2723 const struct file_operations ocfs2_dops = {
2724 	.llseek		= generic_file_llseek,
2725 	.read		= generic_read_dir,
2726 	.iterate	= ocfs2_readdir,
2727 	.fsync		= ocfs2_sync_file,
2728 	.release	= ocfs2_dir_release,
2729 	.open		= ocfs2_dir_open,
2730 	.unlocked_ioctl	= ocfs2_ioctl,
2731 #ifdef CONFIG_COMPAT
2732 	.compat_ioctl   = ocfs2_compat_ioctl,
2733 #endif
2734 	.lock		= ocfs2_lock,
2735 	.flock		= ocfs2_flock,
2736 };
2737 
2738 /*
2739  * POSIX-lockless variants of our file_operations.
2740  *
2741  * These will be used if the underlying cluster stack does not support
2742  * posix file locking, if the user passes the "localflocks" mount
2743  * option, or if we have a local-only fs.
2744  *
2745  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2746  * so we still want it in the case of no stack support for
2747  * plocks. Internally, it will do the right thing when asked to ignore
2748  * the cluster.
2749  */
2750 const struct file_operations ocfs2_fops_no_plocks = {
2751 	.llseek		= ocfs2_file_llseek,
2752 	.read		= do_sync_read,
2753 	.write		= do_sync_write,
2754 	.mmap		= ocfs2_mmap,
2755 	.fsync		= ocfs2_sync_file,
2756 	.release	= ocfs2_file_release,
2757 	.open		= ocfs2_file_open,
2758 	.aio_read	= ocfs2_file_aio_read,
2759 	.aio_write	= ocfs2_file_aio_write,
2760 	.unlocked_ioctl	= ocfs2_ioctl,
2761 #ifdef CONFIG_COMPAT
2762 	.compat_ioctl   = ocfs2_compat_ioctl,
2763 #endif
2764 	.flock		= ocfs2_flock,
2765 	.splice_read	= ocfs2_file_splice_read,
2766 	.splice_write	= ocfs2_file_splice_write,
2767 	.fallocate	= ocfs2_fallocate,
2768 };
2769 
2770 const struct file_operations ocfs2_dops_no_plocks = {
2771 	.llseek		= generic_file_llseek,
2772 	.read		= generic_read_dir,
2773 	.iterate	= ocfs2_readdir,
2774 	.fsync		= ocfs2_sync_file,
2775 	.release	= ocfs2_dir_release,
2776 	.open		= ocfs2_dir_open,
2777 	.unlocked_ioctl	= ocfs2_ioctl,
2778 #ifdef CONFIG_COMPAT
2779 	.compat_ioctl   = ocfs2_compat_ioctl,
2780 #endif
2781 	.flock		= ocfs2_flock,
2782 };
2783