xref: /linux/fs/ocfs2/file.c (revision a06835227280436c1aae021a3f43d3abfcba3835)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		struct timespec64 ctime = inode_get_ctime(inode);
236 
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_rwsem to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_mtime = inode_set_ctime_current(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_mtime = inode_set_ctime_current(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(inode).tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 
482 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 		unmap_mapping_range(inode->i_mapping,
484 				    new_i_size + PAGE_SIZE - 1, 0, 1);
485 		truncate_inode_pages(inode->i_mapping, new_i_size);
486 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
487 					       i_size_read(inode), 1);
488 		if (status)
489 			mlog_errno(status);
490 
491 		goto bail_unlock_sem;
492 	}
493 
494 	/* alright, we're going to need to do a full blown alloc size
495 	 * change. Orphan the inode so that recovery can complete the
496 	 * truncate if necessary. This does the task of marking
497 	 * i_size. */
498 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
499 	if (status < 0) {
500 		mlog_errno(status);
501 		goto bail_unlock_sem;
502 	}
503 
504 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
505 	truncate_inode_pages(inode->i_mapping, new_i_size);
506 
507 	status = ocfs2_commit_truncate(osb, inode, di_bh);
508 	if (status < 0) {
509 		mlog_errno(status);
510 		goto bail_unlock_sem;
511 	}
512 
513 	/* TODO: orphan dir cleanup here. */
514 bail_unlock_sem:
515 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
516 
517 bail:
518 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
519 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
520 
521 	return status;
522 }
523 
524 /*
525  * extend file allocation only here.
526  * we'll update all the disk stuff, and oip->alloc_size
527  *
528  * expect stuff to be locked, a transaction started and enough data /
529  * metadata reservations in the contexts.
530  *
531  * Will return -EAGAIN, and a reason if a restart is needed.
532  * If passed in, *reason will always be set, even in error.
533  */
534 int ocfs2_add_inode_data(struct ocfs2_super *osb,
535 			 struct inode *inode,
536 			 u32 *logical_offset,
537 			 u32 clusters_to_add,
538 			 int mark_unwritten,
539 			 struct buffer_head *fe_bh,
540 			 handle_t *handle,
541 			 struct ocfs2_alloc_context *data_ac,
542 			 struct ocfs2_alloc_context *meta_ac,
543 			 enum ocfs2_alloc_restarted *reason_ret)
544 {
545 	struct ocfs2_extent_tree et;
546 
547 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
548 	return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
549 					   clusters_to_add, mark_unwritten,
550 					   data_ac, meta_ac, reason_ret);
551 }
552 
553 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
554 				   u32 clusters_to_add, int mark_unwritten)
555 {
556 	int status = 0;
557 	int restart_func = 0;
558 	int credits;
559 	u32 prev_clusters;
560 	struct buffer_head *bh = NULL;
561 	struct ocfs2_dinode *fe = NULL;
562 	handle_t *handle = NULL;
563 	struct ocfs2_alloc_context *data_ac = NULL;
564 	struct ocfs2_alloc_context *meta_ac = NULL;
565 	enum ocfs2_alloc_restarted why = RESTART_NONE;
566 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
567 	struct ocfs2_extent_tree et;
568 	int did_quota = 0;
569 
570 	/*
571 	 * Unwritten extent only exists for file systems which
572 	 * support holes.
573 	 */
574 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
575 
576 	status = ocfs2_read_inode_block(inode, &bh);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto leave;
580 	}
581 	fe = (struct ocfs2_dinode *) bh->b_data;
582 
583 restart_all:
584 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
585 
586 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
587 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
588 				       &data_ac, &meta_ac);
589 	if (status) {
590 		mlog_errno(status);
591 		goto leave;
592 	}
593 
594 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
595 	handle = ocfs2_start_trans(osb, credits);
596 	if (IS_ERR(handle)) {
597 		status = PTR_ERR(handle);
598 		handle = NULL;
599 		mlog_errno(status);
600 		goto leave;
601 	}
602 
603 restarted_transaction:
604 	trace_ocfs2_extend_allocation(
605 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
606 		(unsigned long long)i_size_read(inode),
607 		le32_to_cpu(fe->i_clusters), clusters_to_add,
608 		why, restart_func);
609 
610 	status = dquot_alloc_space_nodirty(inode,
611 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
612 	if (status)
613 		goto leave;
614 	did_quota = 1;
615 
616 	/* reserve a write to the file entry early on - that we if we
617 	 * run out of credits in the allocation path, we can still
618 	 * update i_size. */
619 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
620 					 OCFS2_JOURNAL_ACCESS_WRITE);
621 	if (status < 0) {
622 		mlog_errno(status);
623 		goto leave;
624 	}
625 
626 	prev_clusters = OCFS2_I(inode)->ip_clusters;
627 
628 	status = ocfs2_add_inode_data(osb,
629 				      inode,
630 				      &logical_start,
631 				      clusters_to_add,
632 				      mark_unwritten,
633 				      bh,
634 				      handle,
635 				      data_ac,
636 				      meta_ac,
637 				      &why);
638 	if ((status < 0) && (status != -EAGAIN)) {
639 		if (status != -ENOSPC)
640 			mlog_errno(status);
641 		goto leave;
642 	}
643 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
644 	ocfs2_journal_dirty(handle, bh);
645 
646 	spin_lock(&OCFS2_I(inode)->ip_lock);
647 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
648 	spin_unlock(&OCFS2_I(inode)->ip_lock);
649 	/* Release unused quota reservation */
650 	dquot_free_space(inode,
651 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
652 	did_quota = 0;
653 
654 	if (why != RESTART_NONE && clusters_to_add) {
655 		if (why == RESTART_META) {
656 			restart_func = 1;
657 			status = 0;
658 		} else {
659 			BUG_ON(why != RESTART_TRANS);
660 
661 			status = ocfs2_allocate_extend_trans(handle, 1);
662 			if (status < 0) {
663 				/* handle still has to be committed at
664 				 * this point. */
665 				status = -ENOMEM;
666 				mlog_errno(status);
667 				goto leave;
668 			}
669 			goto restarted_transaction;
670 		}
671 	}
672 
673 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
674 	     le32_to_cpu(fe->i_clusters),
675 	     (unsigned long long)le64_to_cpu(fe->i_size),
676 	     OCFS2_I(inode)->ip_clusters,
677 	     (unsigned long long)i_size_read(inode));
678 
679 leave:
680 	if (status < 0 && did_quota)
681 		dquot_free_space(inode,
682 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
683 	if (handle) {
684 		ocfs2_commit_trans(osb, handle);
685 		handle = NULL;
686 	}
687 	if (data_ac) {
688 		ocfs2_free_alloc_context(data_ac);
689 		data_ac = NULL;
690 	}
691 	if (meta_ac) {
692 		ocfs2_free_alloc_context(meta_ac);
693 		meta_ac = NULL;
694 	}
695 	if ((!status) && restart_func) {
696 		restart_func = 0;
697 		goto restart_all;
698 	}
699 	brelse(bh);
700 	bh = NULL;
701 
702 	return status;
703 }
704 
705 /*
706  * While a write will already be ordering the data, a truncate will not.
707  * Thus, we need to explicitly order the zeroed pages.
708  */
709 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
710 						      struct buffer_head *di_bh,
711 						      loff_t start_byte,
712 						      loff_t length)
713 {
714 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
715 	handle_t *handle = NULL;
716 	int ret = 0;
717 
718 	if (!ocfs2_should_order_data(inode))
719 		goto out;
720 
721 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
722 	if (IS_ERR(handle)) {
723 		ret = -ENOMEM;
724 		mlog_errno(ret);
725 		goto out;
726 	}
727 
728 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
729 	if (ret < 0) {
730 		mlog_errno(ret);
731 		goto out;
732 	}
733 
734 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
735 				      OCFS2_JOURNAL_ACCESS_WRITE);
736 	if (ret)
737 		mlog_errno(ret);
738 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
739 
740 out:
741 	if (ret) {
742 		if (!IS_ERR(handle))
743 			ocfs2_commit_trans(osb, handle);
744 		handle = ERR_PTR(ret);
745 	}
746 	return handle;
747 }
748 
749 /* Some parts of this taken from generic_cont_expand, which turned out
750  * to be too fragile to do exactly what we need without us having to
751  * worry about recursive locking in ->write_begin() and ->write_end(). */
752 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
753 				 u64 abs_to, struct buffer_head *di_bh)
754 {
755 	struct address_space *mapping = inode->i_mapping;
756 	struct page *page;
757 	unsigned long index = abs_from >> PAGE_SHIFT;
758 	handle_t *handle;
759 	int ret = 0;
760 	unsigned zero_from, zero_to, block_start, block_end;
761 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
762 
763 	BUG_ON(abs_from >= abs_to);
764 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
765 	BUG_ON(abs_from & (inode->i_blkbits - 1));
766 
767 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
768 						      abs_from,
769 						      abs_to - abs_from);
770 	if (IS_ERR(handle)) {
771 		ret = PTR_ERR(handle);
772 		goto out;
773 	}
774 
775 	page = find_or_create_page(mapping, index, GFP_NOFS);
776 	if (!page) {
777 		ret = -ENOMEM;
778 		mlog_errno(ret);
779 		goto out_commit_trans;
780 	}
781 
782 	/* Get the offsets within the page that we want to zero */
783 	zero_from = abs_from & (PAGE_SIZE - 1);
784 	zero_to = abs_to & (PAGE_SIZE - 1);
785 	if (!zero_to)
786 		zero_to = PAGE_SIZE;
787 
788 	trace_ocfs2_write_zero_page(
789 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
790 			(unsigned long long)abs_from,
791 			(unsigned long long)abs_to,
792 			index, zero_from, zero_to);
793 
794 	/* We know that zero_from is block aligned */
795 	for (block_start = zero_from; block_start < zero_to;
796 	     block_start = block_end) {
797 		block_end = block_start + i_blocksize(inode);
798 
799 		/*
800 		 * block_start is block-aligned.  Bump it by one to force
801 		 * __block_write_begin and block_commit_write to zero the
802 		 * whole block.
803 		 */
804 		ret = __block_write_begin(page, block_start + 1, 0,
805 					  ocfs2_get_block);
806 		if (ret < 0) {
807 			mlog_errno(ret);
808 			goto out_unlock;
809 		}
810 
811 
812 		/* must not update i_size! */
813 		block_commit_write(page, block_start + 1, block_start + 1);
814 	}
815 
816 	/*
817 	 * fs-writeback will release the dirty pages without page lock
818 	 * whose offset are over inode size, the release happens at
819 	 * block_write_full_page().
820 	 */
821 	i_size_write(inode, abs_to);
822 	inode->i_blocks = ocfs2_inode_sector_count(inode);
823 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
824 	inode->i_mtime = inode_set_ctime_current(inode);
825 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
826 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
827 	di->i_mtime_nsec = di->i_ctime_nsec;
828 	if (handle) {
829 		ocfs2_journal_dirty(handle, di_bh);
830 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
831 	}
832 
833 out_unlock:
834 	unlock_page(page);
835 	put_page(page);
836 out_commit_trans:
837 	if (handle)
838 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
839 out:
840 	return ret;
841 }
842 
843 /*
844  * Find the next range to zero.  We do this in terms of bytes because
845  * that's what ocfs2_zero_extend() wants, and it is dealing with the
846  * pagecache.  We may return multiple extents.
847  *
848  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
849  * needs to be zeroed.  range_start and range_end return the next zeroing
850  * range.  A subsequent call should pass the previous range_end as its
851  * zero_start.  If range_end is 0, there's nothing to do.
852  *
853  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
854  */
855 static int ocfs2_zero_extend_get_range(struct inode *inode,
856 				       struct buffer_head *di_bh,
857 				       u64 zero_start, u64 zero_end,
858 				       u64 *range_start, u64 *range_end)
859 {
860 	int rc = 0, needs_cow = 0;
861 	u32 p_cpos, zero_clusters = 0;
862 	u32 zero_cpos =
863 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
864 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
865 	unsigned int num_clusters = 0;
866 	unsigned int ext_flags = 0;
867 
868 	while (zero_cpos < last_cpos) {
869 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
870 					&num_clusters, &ext_flags);
871 		if (rc) {
872 			mlog_errno(rc);
873 			goto out;
874 		}
875 
876 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
877 			zero_clusters = num_clusters;
878 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
879 				needs_cow = 1;
880 			break;
881 		}
882 
883 		zero_cpos += num_clusters;
884 	}
885 	if (!zero_clusters) {
886 		*range_end = 0;
887 		goto out;
888 	}
889 
890 	while ((zero_cpos + zero_clusters) < last_cpos) {
891 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
892 					&p_cpos, &num_clusters,
893 					&ext_flags);
894 		if (rc) {
895 			mlog_errno(rc);
896 			goto out;
897 		}
898 
899 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
900 			break;
901 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
902 			needs_cow = 1;
903 		zero_clusters += num_clusters;
904 	}
905 	if ((zero_cpos + zero_clusters) > last_cpos)
906 		zero_clusters = last_cpos - zero_cpos;
907 
908 	if (needs_cow) {
909 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
910 					zero_clusters, UINT_MAX);
911 		if (rc) {
912 			mlog_errno(rc);
913 			goto out;
914 		}
915 	}
916 
917 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
918 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
919 					     zero_cpos + zero_clusters);
920 
921 out:
922 	return rc;
923 }
924 
925 /*
926  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
927  * has made sure that the entire range needs zeroing.
928  */
929 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
930 				   u64 range_end, struct buffer_head *di_bh)
931 {
932 	int rc = 0;
933 	u64 next_pos;
934 	u64 zero_pos = range_start;
935 
936 	trace_ocfs2_zero_extend_range(
937 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
938 			(unsigned long long)range_start,
939 			(unsigned long long)range_end);
940 	BUG_ON(range_start >= range_end);
941 
942 	while (zero_pos < range_end) {
943 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
944 		if (next_pos > range_end)
945 			next_pos = range_end;
946 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
947 		if (rc < 0) {
948 			mlog_errno(rc);
949 			break;
950 		}
951 		zero_pos = next_pos;
952 
953 		/*
954 		 * Very large extends have the potential to lock up
955 		 * the cpu for extended periods of time.
956 		 */
957 		cond_resched();
958 	}
959 
960 	return rc;
961 }
962 
963 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
964 		      loff_t zero_to_size)
965 {
966 	int ret = 0;
967 	u64 zero_start, range_start = 0, range_end = 0;
968 	struct super_block *sb = inode->i_sb;
969 
970 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
971 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
972 				(unsigned long long)zero_start,
973 				(unsigned long long)i_size_read(inode));
974 	while (zero_start < zero_to_size) {
975 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
976 						  zero_to_size,
977 						  &range_start,
978 						  &range_end);
979 		if (ret) {
980 			mlog_errno(ret);
981 			break;
982 		}
983 		if (!range_end)
984 			break;
985 		/* Trim the ends */
986 		if (range_start < zero_start)
987 			range_start = zero_start;
988 		if (range_end > zero_to_size)
989 			range_end = zero_to_size;
990 
991 		ret = ocfs2_zero_extend_range(inode, range_start,
992 					      range_end, di_bh);
993 		if (ret) {
994 			mlog_errno(ret);
995 			break;
996 		}
997 		zero_start = range_end;
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1004 			  u64 new_i_size, u64 zero_to)
1005 {
1006 	int ret;
1007 	u32 clusters_to_add;
1008 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1009 
1010 	/*
1011 	 * Only quota files call this without a bh, and they can't be
1012 	 * refcounted.
1013 	 */
1014 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1015 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1016 
1017 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1018 	if (clusters_to_add < oi->ip_clusters)
1019 		clusters_to_add = 0;
1020 	else
1021 		clusters_to_add -= oi->ip_clusters;
1022 
1023 	if (clusters_to_add) {
1024 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1025 					      clusters_to_add, 0);
1026 		if (ret) {
1027 			mlog_errno(ret);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Call this even if we don't add any clusters to the tree. We
1034 	 * still need to zero the area between the old i_size and the
1035 	 * new i_size.
1036 	 */
1037 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1038 	if (ret < 0)
1039 		mlog_errno(ret);
1040 
1041 out:
1042 	return ret;
1043 }
1044 
1045 static int ocfs2_extend_file(struct inode *inode,
1046 			     struct buffer_head *di_bh,
1047 			     u64 new_i_size)
1048 {
1049 	int ret = 0;
1050 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1051 
1052 	BUG_ON(!di_bh);
1053 
1054 	/* setattr sometimes calls us like this. */
1055 	if (new_i_size == 0)
1056 		goto out;
1057 
1058 	if (i_size_read(inode) == new_i_size)
1059 		goto out;
1060 	BUG_ON(new_i_size < i_size_read(inode));
1061 
1062 	/*
1063 	 * The alloc sem blocks people in read/write from reading our
1064 	 * allocation until we're done changing it. We depend on
1065 	 * i_rwsem to block other extend/truncate calls while we're
1066 	 * here.  We even have to hold it for sparse files because there
1067 	 * might be some tail zeroing.
1068 	 */
1069 	down_write(&oi->ip_alloc_sem);
1070 
1071 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1072 		/*
1073 		 * We can optimize small extends by keeping the inodes
1074 		 * inline data.
1075 		 */
1076 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1077 			up_write(&oi->ip_alloc_sem);
1078 			goto out_update_size;
1079 		}
1080 
1081 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1082 		if (ret) {
1083 			up_write(&oi->ip_alloc_sem);
1084 			mlog_errno(ret);
1085 			goto out;
1086 		}
1087 	}
1088 
1089 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1090 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1091 	else
1092 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1093 					    new_i_size);
1094 
1095 	up_write(&oi->ip_alloc_sem);
1096 
1097 	if (ret < 0) {
1098 		mlog_errno(ret);
1099 		goto out;
1100 	}
1101 
1102 out_update_size:
1103 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1104 	if (ret < 0)
1105 		mlog_errno(ret);
1106 
1107 out:
1108 	return ret;
1109 }
1110 
1111 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1112 		  struct iattr *attr)
1113 {
1114 	int status = 0, size_change;
1115 	int inode_locked = 0;
1116 	struct inode *inode = d_inode(dentry);
1117 	struct super_block *sb = inode->i_sb;
1118 	struct ocfs2_super *osb = OCFS2_SB(sb);
1119 	struct buffer_head *bh = NULL;
1120 	handle_t *handle = NULL;
1121 	struct dquot *transfer_to[MAXQUOTAS] = { };
1122 	int qtype;
1123 	int had_lock;
1124 	struct ocfs2_lock_holder oh;
1125 
1126 	trace_ocfs2_setattr(inode, dentry,
1127 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1128 			    dentry->d_name.len, dentry->d_name.name,
1129 			    attr->ia_valid, attr->ia_mode,
1130 			    from_kuid(&init_user_ns, attr->ia_uid),
1131 			    from_kgid(&init_user_ns, attr->ia_gid));
1132 
1133 	/* ensuring we don't even attempt to truncate a symlink */
1134 	if (S_ISLNK(inode->i_mode))
1135 		attr->ia_valid &= ~ATTR_SIZE;
1136 
1137 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1138 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1139 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1140 		return 0;
1141 
1142 	status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1143 	if (status)
1144 		return status;
1145 
1146 	if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1147 		status = dquot_initialize(inode);
1148 		if (status)
1149 			return status;
1150 	}
1151 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1152 	if (size_change) {
1153 		/*
1154 		 * Here we should wait dio to finish before inode lock
1155 		 * to avoid a deadlock between ocfs2_setattr() and
1156 		 * ocfs2_dio_end_io_write()
1157 		 */
1158 		inode_dio_wait(inode);
1159 
1160 		status = ocfs2_rw_lock(inode, 1);
1161 		if (status < 0) {
1162 			mlog_errno(status);
1163 			goto bail;
1164 		}
1165 	}
1166 
1167 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1168 	if (had_lock < 0) {
1169 		status = had_lock;
1170 		goto bail_unlock_rw;
1171 	} else if (had_lock) {
1172 		/*
1173 		 * As far as we know, ocfs2_setattr() could only be the first
1174 		 * VFS entry point in the call chain of recursive cluster
1175 		 * locking issue.
1176 		 *
1177 		 * For instance:
1178 		 * chmod_common()
1179 		 *  notify_change()
1180 		 *   ocfs2_setattr()
1181 		 *    posix_acl_chmod()
1182 		 *     ocfs2_iop_get_acl()
1183 		 *
1184 		 * But, we're not 100% sure if it's always true, because the
1185 		 * ordering of the VFS entry points in the call chain is out
1186 		 * of our control. So, we'd better dump the stack here to
1187 		 * catch the other cases of recursive locking.
1188 		 */
1189 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1190 		dump_stack();
1191 	}
1192 	inode_locked = 1;
1193 
1194 	if (size_change) {
1195 		status = inode_newsize_ok(inode, attr->ia_size);
1196 		if (status)
1197 			goto bail_unlock;
1198 
1199 		if (i_size_read(inode) >= attr->ia_size) {
1200 			if (ocfs2_should_order_data(inode)) {
1201 				status = ocfs2_begin_ordered_truncate(inode,
1202 								      attr->ia_size);
1203 				if (status)
1204 					goto bail_unlock;
1205 			}
1206 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1207 		} else
1208 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1209 		if (status < 0) {
1210 			if (status != -ENOSPC)
1211 				mlog_errno(status);
1212 			status = -ENOSPC;
1213 			goto bail_unlock;
1214 		}
1215 	}
1216 
1217 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1218 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1219 		/*
1220 		 * Gather pointers to quota structures so that allocation /
1221 		 * freeing of quota structures happens here and not inside
1222 		 * dquot_transfer() where we have problems with lock ordering
1223 		 */
1224 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1225 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1226 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1227 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1228 			if (IS_ERR(transfer_to[USRQUOTA])) {
1229 				status = PTR_ERR(transfer_to[USRQUOTA]);
1230 				transfer_to[USRQUOTA] = NULL;
1231 				goto bail_unlock;
1232 			}
1233 		}
1234 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1235 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1236 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1237 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1238 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1239 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1240 				transfer_to[GRPQUOTA] = NULL;
1241 				goto bail_unlock;
1242 			}
1243 		}
1244 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1245 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1246 					   2 * ocfs2_quota_trans_credits(sb));
1247 		if (IS_ERR(handle)) {
1248 			status = PTR_ERR(handle);
1249 			mlog_errno(status);
1250 			goto bail_unlock_alloc;
1251 		}
1252 		status = __dquot_transfer(inode, transfer_to);
1253 		if (status < 0)
1254 			goto bail_commit;
1255 	} else {
1256 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1257 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1258 		if (IS_ERR(handle)) {
1259 			status = PTR_ERR(handle);
1260 			mlog_errno(status);
1261 			goto bail_unlock_alloc;
1262 		}
1263 	}
1264 
1265 	setattr_copy(&nop_mnt_idmap, inode, attr);
1266 	mark_inode_dirty(inode);
1267 
1268 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1269 	if (status < 0)
1270 		mlog_errno(status);
1271 
1272 bail_commit:
1273 	ocfs2_commit_trans(osb, handle);
1274 bail_unlock_alloc:
1275 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1276 bail_unlock:
1277 	if (status && inode_locked) {
1278 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1279 		inode_locked = 0;
1280 	}
1281 bail_unlock_rw:
1282 	if (size_change)
1283 		ocfs2_rw_unlock(inode, 1);
1284 bail:
1285 
1286 	/* Release quota pointers in case we acquired them */
1287 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1288 		dqput(transfer_to[qtype]);
1289 
1290 	if (!status && attr->ia_valid & ATTR_MODE) {
1291 		status = ocfs2_acl_chmod(inode, bh);
1292 		if (status < 0)
1293 			mlog_errno(status);
1294 	}
1295 	if (inode_locked)
1296 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1297 
1298 	brelse(bh);
1299 	return status;
1300 }
1301 
1302 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1303 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1304 {
1305 	struct inode *inode = d_inode(path->dentry);
1306 	struct super_block *sb = path->dentry->d_sb;
1307 	struct ocfs2_super *osb = sb->s_fs_info;
1308 	int err;
1309 
1310 	err = ocfs2_inode_revalidate(path->dentry);
1311 	if (err) {
1312 		if (err != -ENOENT)
1313 			mlog_errno(err);
1314 		goto bail;
1315 	}
1316 
1317 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1318 	/*
1319 	 * If there is inline data in the inode, the inode will normally not
1320 	 * have data blocks allocated (it may have an external xattr block).
1321 	 * Report at least one sector for such files, so tools like tar, rsync,
1322 	 * others don't incorrectly think the file is completely sparse.
1323 	 */
1324 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325 		stat->blocks += (stat->size + 511)>>9;
1326 
1327 	/* We set the blksize from the cluster size for performance */
1328 	stat->blksize = osb->s_clustersize;
1329 
1330 bail:
1331 	return err;
1332 }
1333 
1334 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1335 		     int mask)
1336 {
1337 	int ret, had_lock;
1338 	struct ocfs2_lock_holder oh;
1339 
1340 	if (mask & MAY_NOT_BLOCK)
1341 		return -ECHILD;
1342 
1343 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1344 	if (had_lock < 0) {
1345 		ret = had_lock;
1346 		goto out;
1347 	} else if (had_lock) {
1348 		/* See comments in ocfs2_setattr() for details.
1349 		 * The call chain of this case could be:
1350 		 * do_sys_open()
1351 		 *  may_open()
1352 		 *   inode_permission()
1353 		 *    ocfs2_permission()
1354 		 *     ocfs2_iop_get_acl()
1355 		 */
1356 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1357 		dump_stack();
1358 	}
1359 
1360 	ret = generic_permission(&nop_mnt_idmap, inode, mask);
1361 
1362 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1363 out:
1364 	return ret;
1365 }
1366 
1367 static int __ocfs2_write_remove_suid(struct inode *inode,
1368 				     struct buffer_head *bh)
1369 {
1370 	int ret;
1371 	handle_t *handle;
1372 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373 	struct ocfs2_dinode *di;
1374 
1375 	trace_ocfs2_write_remove_suid(
1376 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1377 			inode->i_mode);
1378 
1379 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1380 	if (IS_ERR(handle)) {
1381 		ret = PTR_ERR(handle);
1382 		mlog_errno(ret);
1383 		goto out;
1384 	}
1385 
1386 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1387 				      OCFS2_JOURNAL_ACCESS_WRITE);
1388 	if (ret < 0) {
1389 		mlog_errno(ret);
1390 		goto out_trans;
1391 	}
1392 
1393 	inode->i_mode &= ~S_ISUID;
1394 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1395 		inode->i_mode &= ~S_ISGID;
1396 
1397 	di = (struct ocfs2_dinode *) bh->b_data;
1398 	di->i_mode = cpu_to_le16(inode->i_mode);
1399 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1400 
1401 	ocfs2_journal_dirty(handle, bh);
1402 
1403 out_trans:
1404 	ocfs2_commit_trans(osb, handle);
1405 out:
1406 	return ret;
1407 }
1408 
1409 static int ocfs2_write_remove_suid(struct inode *inode)
1410 {
1411 	int ret;
1412 	struct buffer_head *bh = NULL;
1413 
1414 	ret = ocfs2_read_inode_block(inode, &bh);
1415 	if (ret < 0) {
1416 		mlog_errno(ret);
1417 		goto out;
1418 	}
1419 
1420 	ret =  __ocfs2_write_remove_suid(inode, bh);
1421 out:
1422 	brelse(bh);
1423 	return ret;
1424 }
1425 
1426 /*
1427  * Allocate enough extents to cover the region starting at byte offset
1428  * start for len bytes. Existing extents are skipped, any extents
1429  * added are marked as "unwritten".
1430  */
1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1432 					    u64 start, u64 len)
1433 {
1434 	int ret;
1435 	u32 cpos, phys_cpos, clusters, alloc_size;
1436 	u64 end = start + len;
1437 	struct buffer_head *di_bh = NULL;
1438 
1439 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1440 		ret = ocfs2_read_inode_block(inode, &di_bh);
1441 		if (ret) {
1442 			mlog_errno(ret);
1443 			goto out;
1444 		}
1445 
1446 		/*
1447 		 * Nothing to do if the requested reservation range
1448 		 * fits within the inode.
1449 		 */
1450 		if (ocfs2_size_fits_inline_data(di_bh, end))
1451 			goto out;
1452 
1453 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1454 		if (ret) {
1455 			mlog_errno(ret);
1456 			goto out;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * We consider both start and len to be inclusive.
1462 	 */
1463 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1464 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1465 	clusters -= cpos;
1466 
1467 	while (clusters) {
1468 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1469 					 &alloc_size, NULL);
1470 		if (ret) {
1471 			mlog_errno(ret);
1472 			goto out;
1473 		}
1474 
1475 		/*
1476 		 * Hole or existing extent len can be arbitrary, so
1477 		 * cap it to our own allocation request.
1478 		 */
1479 		if (alloc_size > clusters)
1480 			alloc_size = clusters;
1481 
1482 		if (phys_cpos) {
1483 			/*
1484 			 * We already have an allocation at this
1485 			 * region so we can safely skip it.
1486 			 */
1487 			goto next;
1488 		}
1489 
1490 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1491 		if (ret) {
1492 			if (ret != -ENOSPC)
1493 				mlog_errno(ret);
1494 			goto out;
1495 		}
1496 
1497 next:
1498 		cpos += alloc_size;
1499 		clusters -= alloc_size;
1500 	}
1501 
1502 	ret = 0;
1503 out:
1504 
1505 	brelse(di_bh);
1506 	return ret;
1507 }
1508 
1509 /*
1510  * Truncate a byte range, avoiding pages within partial clusters. This
1511  * preserves those pages for the zeroing code to write to.
1512  */
1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1514 					 u64 byte_len)
1515 {
1516 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1517 	loff_t start, end;
1518 	struct address_space *mapping = inode->i_mapping;
1519 
1520 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1521 	end = byte_start + byte_len;
1522 	end = end & ~(osb->s_clustersize - 1);
1523 
1524 	if (start < end) {
1525 		unmap_mapping_range(mapping, start, end - start, 0);
1526 		truncate_inode_pages_range(mapping, start, end - 1);
1527 	}
1528 }
1529 
1530 /*
1531  * zero out partial blocks of one cluster.
1532  *
1533  * start: file offset where zero starts, will be made upper block aligned.
1534  * len: it will be trimmed to the end of current cluster if "start + len"
1535  *      is bigger than it.
1536  */
1537 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1538 					u64 start, u64 len)
1539 {
1540 	int ret;
1541 	u64 start_block, end_block, nr_blocks;
1542 	u64 p_block, offset;
1543 	u32 cluster, p_cluster, nr_clusters;
1544 	struct super_block *sb = inode->i_sb;
1545 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1546 
1547 	if (start + len < end)
1548 		end = start + len;
1549 
1550 	start_block = ocfs2_blocks_for_bytes(sb, start);
1551 	end_block = ocfs2_blocks_for_bytes(sb, end);
1552 	nr_blocks = end_block - start_block;
1553 	if (!nr_blocks)
1554 		return 0;
1555 
1556 	cluster = ocfs2_bytes_to_clusters(sb, start);
1557 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1558 				&nr_clusters, NULL);
1559 	if (ret)
1560 		return ret;
1561 	if (!p_cluster)
1562 		return 0;
1563 
1564 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1565 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1566 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1567 }
1568 
1569 static int ocfs2_zero_partial_clusters(struct inode *inode,
1570 				       u64 start, u64 len)
1571 {
1572 	int ret = 0;
1573 	u64 tmpend = 0;
1574 	u64 end = start + len;
1575 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1576 	unsigned int csize = osb->s_clustersize;
1577 	handle_t *handle;
1578 	loff_t isize = i_size_read(inode);
1579 
1580 	/*
1581 	 * The "start" and "end" values are NOT necessarily part of
1582 	 * the range whose allocation is being deleted. Rather, this
1583 	 * is what the user passed in with the request. We must zero
1584 	 * partial clusters here. There's no need to worry about
1585 	 * physical allocation - the zeroing code knows to skip holes.
1586 	 */
1587 	trace_ocfs2_zero_partial_clusters(
1588 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1589 		(unsigned long long)start, (unsigned long long)end);
1590 
1591 	/*
1592 	 * If both edges are on a cluster boundary then there's no
1593 	 * zeroing required as the region is part of the allocation to
1594 	 * be truncated.
1595 	 */
1596 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1597 		goto out;
1598 
1599 	/* No page cache for EOF blocks, issue zero out to disk. */
1600 	if (end > isize) {
1601 		/*
1602 		 * zeroout eof blocks in last cluster starting from
1603 		 * "isize" even "start" > "isize" because it is
1604 		 * complicated to zeroout just at "start" as "start"
1605 		 * may be not aligned with block size, buffer write
1606 		 * would be required to do that, but out of eof buffer
1607 		 * write is not supported.
1608 		 */
1609 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1610 					end - isize);
1611 		if (ret) {
1612 			mlog_errno(ret);
1613 			goto out;
1614 		}
1615 		if (start >= isize)
1616 			goto out;
1617 		end = isize;
1618 	}
1619 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1620 	if (IS_ERR(handle)) {
1621 		ret = PTR_ERR(handle);
1622 		mlog_errno(ret);
1623 		goto out;
1624 	}
1625 
1626 	/*
1627 	 * If start is on a cluster boundary and end is somewhere in another
1628 	 * cluster, we have not COWed the cluster starting at start, unless
1629 	 * end is also within the same cluster. So, in this case, we skip this
1630 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1631 	 * to the next one.
1632 	 */
1633 	if ((start & (csize - 1)) != 0) {
1634 		/*
1635 		 * We want to get the byte offset of the end of the 1st
1636 		 * cluster.
1637 		 */
1638 		tmpend = (u64)osb->s_clustersize +
1639 			(start & ~(osb->s_clustersize - 1));
1640 		if (tmpend > end)
1641 			tmpend = end;
1642 
1643 		trace_ocfs2_zero_partial_clusters_range1(
1644 			(unsigned long long)start,
1645 			(unsigned long long)tmpend);
1646 
1647 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1648 						    tmpend);
1649 		if (ret)
1650 			mlog_errno(ret);
1651 	}
1652 
1653 	if (tmpend < end) {
1654 		/*
1655 		 * This may make start and end equal, but the zeroing
1656 		 * code will skip any work in that case so there's no
1657 		 * need to catch it up here.
1658 		 */
1659 		start = end & ~(osb->s_clustersize - 1);
1660 
1661 		trace_ocfs2_zero_partial_clusters_range2(
1662 			(unsigned long long)start, (unsigned long long)end);
1663 
1664 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1665 		if (ret)
1666 			mlog_errno(ret);
1667 	}
1668 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1669 
1670 	ocfs2_commit_trans(osb, handle);
1671 out:
1672 	return ret;
1673 }
1674 
1675 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1676 {
1677 	int i;
1678 	struct ocfs2_extent_rec *rec = NULL;
1679 
1680 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1681 
1682 		rec = &el->l_recs[i];
1683 
1684 		if (le32_to_cpu(rec->e_cpos) < pos)
1685 			break;
1686 	}
1687 
1688 	return i;
1689 }
1690 
1691 /*
1692  * Helper to calculate the punching pos and length in one run, we handle the
1693  * following three cases in order:
1694  *
1695  * - remove the entire record
1696  * - remove a partial record
1697  * - no record needs to be removed (hole-punching completed)
1698 */
1699 static void ocfs2_calc_trunc_pos(struct inode *inode,
1700 				 struct ocfs2_extent_list *el,
1701 				 struct ocfs2_extent_rec *rec,
1702 				 u32 trunc_start, u32 *trunc_cpos,
1703 				 u32 *trunc_len, u32 *trunc_end,
1704 				 u64 *blkno, int *done)
1705 {
1706 	int ret = 0;
1707 	u32 coff, range;
1708 
1709 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1710 
1711 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1712 		/*
1713 		 * remove an entire extent record.
1714 		 */
1715 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1716 		/*
1717 		 * Skip holes if any.
1718 		 */
1719 		if (range < *trunc_end)
1720 			*trunc_end = range;
1721 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1722 		*blkno = le64_to_cpu(rec->e_blkno);
1723 		*trunc_end = le32_to_cpu(rec->e_cpos);
1724 	} else if (range > trunc_start) {
1725 		/*
1726 		 * remove a partial extent record, which means we're
1727 		 * removing the last extent record.
1728 		 */
1729 		*trunc_cpos = trunc_start;
1730 		/*
1731 		 * skip hole if any.
1732 		 */
1733 		if (range < *trunc_end)
1734 			*trunc_end = range;
1735 		*trunc_len = *trunc_end - trunc_start;
1736 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1737 		*blkno = le64_to_cpu(rec->e_blkno) +
1738 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1739 		*trunc_end = trunc_start;
1740 	} else {
1741 		/*
1742 		 * It may have two following possibilities:
1743 		 *
1744 		 * - last record has been removed
1745 		 * - trunc_start was within a hole
1746 		 *
1747 		 * both two cases mean the completion of hole punching.
1748 		 */
1749 		ret = 1;
1750 	}
1751 
1752 	*done = ret;
1753 }
1754 
1755 int ocfs2_remove_inode_range(struct inode *inode,
1756 			     struct buffer_head *di_bh, u64 byte_start,
1757 			     u64 byte_len)
1758 {
1759 	int ret = 0, flags = 0, done = 0, i;
1760 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1761 	u32 cluster_in_el;
1762 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1763 	struct ocfs2_cached_dealloc_ctxt dealloc;
1764 	struct address_space *mapping = inode->i_mapping;
1765 	struct ocfs2_extent_tree et;
1766 	struct ocfs2_path *path = NULL;
1767 	struct ocfs2_extent_list *el = NULL;
1768 	struct ocfs2_extent_rec *rec = NULL;
1769 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1770 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1771 
1772 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1773 	ocfs2_init_dealloc_ctxt(&dealloc);
1774 
1775 	trace_ocfs2_remove_inode_range(
1776 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1777 			(unsigned long long)byte_start,
1778 			(unsigned long long)byte_len);
1779 
1780 	if (byte_len == 0)
1781 		return 0;
1782 
1783 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1784 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1785 					    byte_start + byte_len, 0);
1786 		if (ret) {
1787 			mlog_errno(ret);
1788 			goto out;
1789 		}
1790 		/*
1791 		 * There's no need to get fancy with the page cache
1792 		 * truncate of an inline-data inode. We're talking
1793 		 * about less than a page here, which will be cached
1794 		 * in the dinode buffer anyway.
1795 		 */
1796 		unmap_mapping_range(mapping, 0, 0, 0);
1797 		truncate_inode_pages(mapping, 0);
1798 		goto out;
1799 	}
1800 
1801 	/*
1802 	 * For reflinks, we may need to CoW 2 clusters which might be
1803 	 * partially zero'd later, if hole's start and end offset were
1804 	 * within one cluster(means is not exactly aligned to clustersize).
1805 	 */
1806 
1807 	if (ocfs2_is_refcount_inode(inode)) {
1808 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1809 		if (ret) {
1810 			mlog_errno(ret);
1811 			goto out;
1812 		}
1813 
1814 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1815 		if (ret) {
1816 			mlog_errno(ret);
1817 			goto out;
1818 		}
1819 	}
1820 
1821 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1822 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1823 	cluster_in_el = trunc_end;
1824 
1825 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1826 	if (ret) {
1827 		mlog_errno(ret);
1828 		goto out;
1829 	}
1830 
1831 	path = ocfs2_new_path_from_et(&et);
1832 	if (!path) {
1833 		ret = -ENOMEM;
1834 		mlog_errno(ret);
1835 		goto out;
1836 	}
1837 
1838 	while (trunc_end > trunc_start) {
1839 
1840 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1841 				      cluster_in_el);
1842 		if (ret) {
1843 			mlog_errno(ret);
1844 			goto out;
1845 		}
1846 
1847 		el = path_leaf_el(path);
1848 
1849 		i = ocfs2_find_rec(el, trunc_end);
1850 		/*
1851 		 * Need to go to previous extent block.
1852 		 */
1853 		if (i < 0) {
1854 			if (path->p_tree_depth == 0)
1855 				break;
1856 
1857 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1858 							    path,
1859 							    &cluster_in_el);
1860 			if (ret) {
1861 				mlog_errno(ret);
1862 				goto out;
1863 			}
1864 
1865 			/*
1866 			 * We've reached the leftmost extent block,
1867 			 * it's safe to leave.
1868 			 */
1869 			if (cluster_in_el == 0)
1870 				break;
1871 
1872 			/*
1873 			 * The 'pos' searched for previous extent block is
1874 			 * always one cluster less than actual trunc_end.
1875 			 */
1876 			trunc_end = cluster_in_el + 1;
1877 
1878 			ocfs2_reinit_path(path, 1);
1879 
1880 			continue;
1881 
1882 		} else
1883 			rec = &el->l_recs[i];
1884 
1885 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1886 				     &trunc_len, &trunc_end, &blkno, &done);
1887 		if (done)
1888 			break;
1889 
1890 		flags = rec->e_flags;
1891 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1892 
1893 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1894 					       phys_cpos, trunc_len, flags,
1895 					       &dealloc, refcount_loc, false);
1896 		if (ret < 0) {
1897 			mlog_errno(ret);
1898 			goto out;
1899 		}
1900 
1901 		cluster_in_el = trunc_end;
1902 
1903 		ocfs2_reinit_path(path, 1);
1904 	}
1905 
1906 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1907 
1908 out:
1909 	ocfs2_free_path(path);
1910 	ocfs2_schedule_truncate_log_flush(osb, 1);
1911 	ocfs2_run_deallocs(osb, &dealloc);
1912 
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Parts of this function taken from xfs_change_file_space()
1918  */
1919 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1920 				     loff_t f_pos, unsigned int cmd,
1921 				     struct ocfs2_space_resv *sr,
1922 				     int change_size)
1923 {
1924 	int ret;
1925 	s64 llen;
1926 	loff_t size, orig_isize;
1927 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1928 	struct buffer_head *di_bh = NULL;
1929 	handle_t *handle;
1930 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1931 
1932 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1933 		return -EROFS;
1934 
1935 	inode_lock(inode);
1936 
1937 	/*
1938 	 * This prevents concurrent writes on other nodes
1939 	 */
1940 	ret = ocfs2_rw_lock(inode, 1);
1941 	if (ret) {
1942 		mlog_errno(ret);
1943 		goto out;
1944 	}
1945 
1946 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1947 	if (ret) {
1948 		mlog_errno(ret);
1949 		goto out_rw_unlock;
1950 	}
1951 
1952 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1953 		ret = -EPERM;
1954 		goto out_inode_unlock;
1955 	}
1956 
1957 	switch (sr->l_whence) {
1958 	case 0: /*SEEK_SET*/
1959 		break;
1960 	case 1: /*SEEK_CUR*/
1961 		sr->l_start += f_pos;
1962 		break;
1963 	case 2: /*SEEK_END*/
1964 		sr->l_start += i_size_read(inode);
1965 		break;
1966 	default:
1967 		ret = -EINVAL;
1968 		goto out_inode_unlock;
1969 	}
1970 	sr->l_whence = 0;
1971 
1972 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1973 
1974 	if (sr->l_start < 0
1975 	    || sr->l_start > max_off
1976 	    || (sr->l_start + llen) < 0
1977 	    || (sr->l_start + llen) > max_off) {
1978 		ret = -EINVAL;
1979 		goto out_inode_unlock;
1980 	}
1981 	size = sr->l_start + sr->l_len;
1982 
1983 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1984 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1985 		if (sr->l_len <= 0) {
1986 			ret = -EINVAL;
1987 			goto out_inode_unlock;
1988 		}
1989 	}
1990 
1991 	if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
1992 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1993 		if (ret) {
1994 			mlog_errno(ret);
1995 			goto out_inode_unlock;
1996 		}
1997 	}
1998 
1999 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2000 	switch (cmd) {
2001 	case OCFS2_IOC_RESVSP:
2002 	case OCFS2_IOC_RESVSP64:
2003 		/*
2004 		 * This takes unsigned offsets, but the signed ones we
2005 		 * pass have been checked against overflow above.
2006 		 */
2007 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2008 						       sr->l_len);
2009 		break;
2010 	case OCFS2_IOC_UNRESVSP:
2011 	case OCFS2_IOC_UNRESVSP64:
2012 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2013 					       sr->l_len);
2014 		break;
2015 	default:
2016 		ret = -EINVAL;
2017 	}
2018 
2019 	orig_isize = i_size_read(inode);
2020 	/* zeroout eof blocks in the cluster. */
2021 	if (!ret && change_size && orig_isize < size) {
2022 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2023 					size - orig_isize);
2024 		if (!ret)
2025 			i_size_write(inode, size);
2026 	}
2027 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2028 	if (ret) {
2029 		mlog_errno(ret);
2030 		goto out_inode_unlock;
2031 	}
2032 
2033 	/*
2034 	 * We update c/mtime for these changes
2035 	 */
2036 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2037 	if (IS_ERR(handle)) {
2038 		ret = PTR_ERR(handle);
2039 		mlog_errno(ret);
2040 		goto out_inode_unlock;
2041 	}
2042 
2043 	inode->i_mtime = inode_set_ctime_current(inode);
2044 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2045 	if (ret < 0)
2046 		mlog_errno(ret);
2047 
2048 	if (file && (file->f_flags & O_SYNC))
2049 		handle->h_sync = 1;
2050 
2051 	ocfs2_commit_trans(osb, handle);
2052 
2053 out_inode_unlock:
2054 	brelse(di_bh);
2055 	ocfs2_inode_unlock(inode, 1);
2056 out_rw_unlock:
2057 	ocfs2_rw_unlock(inode, 1);
2058 
2059 out:
2060 	inode_unlock(inode);
2061 	return ret;
2062 }
2063 
2064 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2065 			    struct ocfs2_space_resv *sr)
2066 {
2067 	struct inode *inode = file_inode(file);
2068 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2069 	int ret;
2070 
2071 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2072 	    !ocfs2_writes_unwritten_extents(osb))
2073 		return -ENOTTY;
2074 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2075 		 !ocfs2_sparse_alloc(osb))
2076 		return -ENOTTY;
2077 
2078 	if (!S_ISREG(inode->i_mode))
2079 		return -EINVAL;
2080 
2081 	if (!(file->f_mode & FMODE_WRITE))
2082 		return -EBADF;
2083 
2084 	ret = mnt_want_write_file(file);
2085 	if (ret)
2086 		return ret;
2087 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2088 	mnt_drop_write_file(file);
2089 	return ret;
2090 }
2091 
2092 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2093 			    loff_t len)
2094 {
2095 	struct inode *inode = file_inode(file);
2096 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2097 	struct ocfs2_space_resv sr;
2098 	int change_size = 1;
2099 	int cmd = OCFS2_IOC_RESVSP64;
2100 	int ret = 0;
2101 
2102 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2103 		return -EOPNOTSUPP;
2104 	if (!ocfs2_writes_unwritten_extents(osb))
2105 		return -EOPNOTSUPP;
2106 
2107 	if (mode & FALLOC_FL_KEEP_SIZE) {
2108 		change_size = 0;
2109 	} else {
2110 		ret = inode_newsize_ok(inode, offset + len);
2111 		if (ret)
2112 			return ret;
2113 	}
2114 
2115 	if (mode & FALLOC_FL_PUNCH_HOLE)
2116 		cmd = OCFS2_IOC_UNRESVSP64;
2117 
2118 	sr.l_whence = 0;
2119 	sr.l_start = (s64)offset;
2120 	sr.l_len = (s64)len;
2121 
2122 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2123 					 change_size);
2124 }
2125 
2126 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2127 				   size_t count)
2128 {
2129 	int ret = 0;
2130 	unsigned int extent_flags;
2131 	u32 cpos, clusters, extent_len, phys_cpos;
2132 	struct super_block *sb = inode->i_sb;
2133 
2134 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2135 	    !ocfs2_is_refcount_inode(inode) ||
2136 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2137 		return 0;
2138 
2139 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2140 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2141 
2142 	while (clusters) {
2143 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2144 					 &extent_flags);
2145 		if (ret < 0) {
2146 			mlog_errno(ret);
2147 			goto out;
2148 		}
2149 
2150 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2151 			ret = 1;
2152 			break;
2153 		}
2154 
2155 		if (extent_len > clusters)
2156 			extent_len = clusters;
2157 
2158 		clusters -= extent_len;
2159 		cpos += extent_len;
2160 	}
2161 out:
2162 	return ret;
2163 }
2164 
2165 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2166 {
2167 	int blockmask = inode->i_sb->s_blocksize - 1;
2168 	loff_t final_size = pos + count;
2169 
2170 	if ((pos & blockmask) || (final_size & blockmask))
2171 		return 1;
2172 	return 0;
2173 }
2174 
2175 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2176 					    struct buffer_head **di_bh,
2177 					    int meta_level,
2178 					    int write_sem,
2179 					    int wait)
2180 {
2181 	int ret = 0;
2182 
2183 	if (wait)
2184 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2185 	else
2186 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2187 	if (ret < 0)
2188 		goto out;
2189 
2190 	if (wait) {
2191 		if (write_sem)
2192 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2193 		else
2194 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2195 	} else {
2196 		if (write_sem)
2197 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2198 		else
2199 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2200 
2201 		if (!ret) {
2202 			ret = -EAGAIN;
2203 			goto out_unlock;
2204 		}
2205 	}
2206 
2207 	return ret;
2208 
2209 out_unlock:
2210 	brelse(*di_bh);
2211 	*di_bh = NULL;
2212 	ocfs2_inode_unlock(inode, meta_level);
2213 out:
2214 	return ret;
2215 }
2216 
2217 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2218 					       struct buffer_head **di_bh,
2219 					       int meta_level,
2220 					       int write_sem)
2221 {
2222 	if (write_sem)
2223 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2224 	else
2225 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2226 
2227 	brelse(*di_bh);
2228 	*di_bh = NULL;
2229 
2230 	if (meta_level >= 0)
2231 		ocfs2_inode_unlock(inode, meta_level);
2232 }
2233 
2234 static int ocfs2_prepare_inode_for_write(struct file *file,
2235 					 loff_t pos, size_t count, int wait)
2236 {
2237 	int ret = 0, meta_level = 0, overwrite_io = 0;
2238 	int write_sem = 0;
2239 	struct dentry *dentry = file->f_path.dentry;
2240 	struct inode *inode = d_inode(dentry);
2241 	struct buffer_head *di_bh = NULL;
2242 	u32 cpos;
2243 	u32 clusters;
2244 
2245 	/*
2246 	 * We start with a read level meta lock and only jump to an ex
2247 	 * if we need to make modifications here.
2248 	 */
2249 	for(;;) {
2250 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2251 						       &di_bh,
2252 						       meta_level,
2253 						       write_sem,
2254 						       wait);
2255 		if (ret < 0) {
2256 			if (ret != -EAGAIN)
2257 				mlog_errno(ret);
2258 			goto out;
2259 		}
2260 
2261 		/*
2262 		 * Check if IO will overwrite allocated blocks in case
2263 		 * IOCB_NOWAIT flag is set.
2264 		 */
2265 		if (!wait && !overwrite_io) {
2266 			overwrite_io = 1;
2267 
2268 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2269 			if (ret < 0) {
2270 				if (ret != -EAGAIN)
2271 					mlog_errno(ret);
2272 				goto out_unlock;
2273 			}
2274 		}
2275 
2276 		/* Clear suid / sgid if necessary. We do this here
2277 		 * instead of later in the write path because
2278 		 * remove_suid() calls ->setattr without any hint that
2279 		 * we may have already done our cluster locking. Since
2280 		 * ocfs2_setattr() *must* take cluster locks to
2281 		 * proceed, this will lead us to recursively lock the
2282 		 * inode. There's also the dinode i_size state which
2283 		 * can be lost via setattr during extending writes (we
2284 		 * set inode->i_size at the end of a write. */
2285 		if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2286 			if (meta_level == 0) {
2287 				ocfs2_inode_unlock_for_extent_tree(inode,
2288 								   &di_bh,
2289 								   meta_level,
2290 								   write_sem);
2291 				meta_level = 1;
2292 				continue;
2293 			}
2294 
2295 			ret = ocfs2_write_remove_suid(inode);
2296 			if (ret < 0) {
2297 				mlog_errno(ret);
2298 				goto out_unlock;
2299 			}
2300 		}
2301 
2302 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2303 		if (ret == 1) {
2304 			ocfs2_inode_unlock_for_extent_tree(inode,
2305 							   &di_bh,
2306 							   meta_level,
2307 							   write_sem);
2308 			meta_level = 1;
2309 			write_sem = 1;
2310 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2311 							       &di_bh,
2312 							       meta_level,
2313 							       write_sem,
2314 							       wait);
2315 			if (ret < 0) {
2316 				if (ret != -EAGAIN)
2317 					mlog_errno(ret);
2318 				goto out;
2319 			}
2320 
2321 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2322 			clusters =
2323 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2324 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2325 		}
2326 
2327 		if (ret < 0) {
2328 			if (ret != -EAGAIN)
2329 				mlog_errno(ret);
2330 			goto out_unlock;
2331 		}
2332 
2333 		break;
2334 	}
2335 
2336 out_unlock:
2337 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2338 					    pos, count, wait);
2339 
2340 	ocfs2_inode_unlock_for_extent_tree(inode,
2341 					   &di_bh,
2342 					   meta_level,
2343 					   write_sem);
2344 
2345 out:
2346 	return ret;
2347 }
2348 
2349 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2350 				    struct iov_iter *from)
2351 {
2352 	int rw_level;
2353 	ssize_t written = 0;
2354 	ssize_t ret;
2355 	size_t count = iov_iter_count(from);
2356 	struct file *file = iocb->ki_filp;
2357 	struct inode *inode = file_inode(file);
2358 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2359 	int full_coherency = !(osb->s_mount_opt &
2360 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2361 	void *saved_ki_complete = NULL;
2362 	int append_write = ((iocb->ki_pos + count) >=
2363 			i_size_read(inode) ? 1 : 0);
2364 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2365 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2366 
2367 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2368 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2369 		file->f_path.dentry->d_name.len,
2370 		file->f_path.dentry->d_name.name,
2371 		(unsigned int)from->nr_segs);	/* GRRRRR */
2372 
2373 	if (!direct_io && nowait)
2374 		return -EOPNOTSUPP;
2375 
2376 	if (count == 0)
2377 		return 0;
2378 
2379 	if (nowait) {
2380 		if (!inode_trylock(inode))
2381 			return -EAGAIN;
2382 	} else
2383 		inode_lock(inode);
2384 
2385 	/*
2386 	 * Concurrent O_DIRECT writes are allowed with
2387 	 * mount_option "coherency=buffered".
2388 	 * For append write, we must take rw EX.
2389 	 */
2390 	rw_level = (!direct_io || full_coherency || append_write);
2391 
2392 	if (nowait)
2393 		ret = ocfs2_try_rw_lock(inode, rw_level);
2394 	else
2395 		ret = ocfs2_rw_lock(inode, rw_level);
2396 	if (ret < 0) {
2397 		if (ret != -EAGAIN)
2398 			mlog_errno(ret);
2399 		goto out_mutex;
2400 	}
2401 
2402 	/*
2403 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2404 	 * inode_lock to guarantee coherency.
2405 	 */
2406 	if (direct_io && full_coherency) {
2407 		/*
2408 		 * We need to take and drop the inode lock to force
2409 		 * other nodes to drop their caches.  Buffered I/O
2410 		 * already does this in write_begin().
2411 		 */
2412 		if (nowait)
2413 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2414 		else
2415 			ret = ocfs2_inode_lock(inode, NULL, 1);
2416 		if (ret < 0) {
2417 			if (ret != -EAGAIN)
2418 				mlog_errno(ret);
2419 			goto out;
2420 		}
2421 
2422 		ocfs2_inode_unlock(inode, 1);
2423 	}
2424 
2425 	ret = generic_write_checks(iocb, from);
2426 	if (ret <= 0) {
2427 		if (ret)
2428 			mlog_errno(ret);
2429 		goto out;
2430 	}
2431 	count = ret;
2432 
2433 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2434 	if (ret < 0) {
2435 		if (ret != -EAGAIN)
2436 			mlog_errno(ret);
2437 		goto out;
2438 	}
2439 
2440 	if (direct_io && !is_sync_kiocb(iocb) &&
2441 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2442 		/*
2443 		 * Make it a sync io if it's an unaligned aio.
2444 		 */
2445 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2446 	}
2447 
2448 	/* communicate with ocfs2_dio_end_io */
2449 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2450 
2451 	written = __generic_file_write_iter(iocb, from);
2452 	/* buffered aio wouldn't have proper lock coverage today */
2453 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2454 
2455 	/*
2456 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2457 	 * function pointer which is called when o_direct io completes so that
2458 	 * it can unlock our rw lock.
2459 	 * Unfortunately there are error cases which call end_io and others
2460 	 * that don't.  so we don't have to unlock the rw_lock if either an
2461 	 * async dio is going to do it in the future or an end_io after an
2462 	 * error has already done it.
2463 	 */
2464 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2465 		rw_level = -1;
2466 	}
2467 
2468 	if (unlikely(written <= 0))
2469 		goto out;
2470 
2471 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2472 	    IS_SYNC(inode)) {
2473 		ret = filemap_fdatawrite_range(file->f_mapping,
2474 					       iocb->ki_pos - written,
2475 					       iocb->ki_pos - 1);
2476 		if (ret < 0)
2477 			written = ret;
2478 
2479 		if (!ret) {
2480 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2481 			if (ret < 0)
2482 				written = ret;
2483 		}
2484 
2485 		if (!ret)
2486 			ret = filemap_fdatawait_range(file->f_mapping,
2487 						      iocb->ki_pos - written,
2488 						      iocb->ki_pos - 1);
2489 	}
2490 
2491 out:
2492 	if (saved_ki_complete)
2493 		xchg(&iocb->ki_complete, saved_ki_complete);
2494 
2495 	if (rw_level != -1)
2496 		ocfs2_rw_unlock(inode, rw_level);
2497 
2498 out_mutex:
2499 	inode_unlock(inode);
2500 
2501 	if (written)
2502 		ret = written;
2503 	return ret;
2504 }
2505 
2506 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2507 				   struct iov_iter *to)
2508 {
2509 	int ret = 0, rw_level = -1, lock_level = 0;
2510 	struct file *filp = iocb->ki_filp;
2511 	struct inode *inode = file_inode(filp);
2512 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2513 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2514 
2515 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2516 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2517 			filp->f_path.dentry->d_name.len,
2518 			filp->f_path.dentry->d_name.name,
2519 			to->nr_segs);	/* GRRRRR */
2520 
2521 
2522 	if (!inode) {
2523 		ret = -EINVAL;
2524 		mlog_errno(ret);
2525 		goto bail;
2526 	}
2527 
2528 	if (!direct_io && nowait)
2529 		return -EOPNOTSUPP;
2530 
2531 	/*
2532 	 * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2533 	 * need locks to protect pending reads from racing with truncate.
2534 	 */
2535 	if (direct_io) {
2536 		if (nowait)
2537 			ret = ocfs2_try_rw_lock(inode, 0);
2538 		else
2539 			ret = ocfs2_rw_lock(inode, 0);
2540 
2541 		if (ret < 0) {
2542 			if (ret != -EAGAIN)
2543 				mlog_errno(ret);
2544 			goto bail;
2545 		}
2546 		rw_level = 0;
2547 		/* communicate with ocfs2_dio_end_io */
2548 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2549 	}
2550 
2551 	/*
2552 	 * We're fine letting folks race truncates and extending
2553 	 * writes with read across the cluster, just like they can
2554 	 * locally. Hence no rw_lock during read.
2555 	 *
2556 	 * Take and drop the meta data lock to update inode fields
2557 	 * like i_size. This allows the checks down below
2558 	 * copy_splice_read() a chance of actually working.
2559 	 */
2560 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2561 				     !nowait);
2562 	if (ret < 0) {
2563 		if (ret != -EAGAIN)
2564 			mlog_errno(ret);
2565 		goto bail;
2566 	}
2567 	ocfs2_inode_unlock(inode, lock_level);
2568 
2569 	ret = generic_file_read_iter(iocb, to);
2570 	trace_generic_file_read_iter_ret(ret);
2571 
2572 	/* buffered aio wouldn't have proper lock coverage today */
2573 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2574 
2575 	/* see ocfs2_file_write_iter */
2576 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2577 		rw_level = -1;
2578 	}
2579 
2580 bail:
2581 	if (rw_level != -1)
2582 		ocfs2_rw_unlock(inode, rw_level);
2583 
2584 	return ret;
2585 }
2586 
2587 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2588 				      struct pipe_inode_info *pipe,
2589 				      size_t len, unsigned int flags)
2590 {
2591 	struct inode *inode = file_inode(in);
2592 	ssize_t ret = 0;
2593 	int lock_level = 0;
2594 
2595 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2596 				     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2597 				     in->f_path.dentry->d_name.len,
2598 				     in->f_path.dentry->d_name.name,
2599 				     flags);
2600 
2601 	/*
2602 	 * We're fine letting folks race truncates and extending writes with
2603 	 * read across the cluster, just like they can locally.  Hence no
2604 	 * rw_lock during read.
2605 	 *
2606 	 * Take and drop the meta data lock to update inode fields like i_size.
2607 	 * This allows the checks down below filemap_splice_read() a chance of
2608 	 * actually working.
2609 	 */
2610 	ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2611 	if (ret < 0) {
2612 		if (ret != -EAGAIN)
2613 			mlog_errno(ret);
2614 		goto bail;
2615 	}
2616 	ocfs2_inode_unlock(inode, lock_level);
2617 
2618 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
2619 	trace_filemap_splice_read_ret(ret);
2620 bail:
2621 	return ret;
2622 }
2623 
2624 /* Refer generic_file_llseek_unlocked() */
2625 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2626 {
2627 	struct inode *inode = file->f_mapping->host;
2628 	int ret = 0;
2629 
2630 	inode_lock(inode);
2631 
2632 	switch (whence) {
2633 	case SEEK_SET:
2634 		break;
2635 	case SEEK_END:
2636 		/* SEEK_END requires the OCFS2 inode lock for the file
2637 		 * because it references the file's size.
2638 		 */
2639 		ret = ocfs2_inode_lock(inode, NULL, 0);
2640 		if (ret < 0) {
2641 			mlog_errno(ret);
2642 			goto out;
2643 		}
2644 		offset += i_size_read(inode);
2645 		ocfs2_inode_unlock(inode, 0);
2646 		break;
2647 	case SEEK_CUR:
2648 		if (offset == 0) {
2649 			offset = file->f_pos;
2650 			goto out;
2651 		}
2652 		offset += file->f_pos;
2653 		break;
2654 	case SEEK_DATA:
2655 	case SEEK_HOLE:
2656 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2657 		if (ret)
2658 			goto out;
2659 		break;
2660 	default:
2661 		ret = -EINVAL;
2662 		goto out;
2663 	}
2664 
2665 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2666 
2667 out:
2668 	inode_unlock(inode);
2669 	if (ret)
2670 		return ret;
2671 	return offset;
2672 }
2673 
2674 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2675 				     struct file *file_out, loff_t pos_out,
2676 				     loff_t len, unsigned int remap_flags)
2677 {
2678 	struct inode *inode_in = file_inode(file_in);
2679 	struct inode *inode_out = file_inode(file_out);
2680 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2681 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2682 	bool same_inode = (inode_in == inode_out);
2683 	loff_t remapped = 0;
2684 	ssize_t ret;
2685 
2686 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2687 		return -EINVAL;
2688 	if (!ocfs2_refcount_tree(osb))
2689 		return -EOPNOTSUPP;
2690 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2691 		return -EROFS;
2692 
2693 	/* Lock both files against IO */
2694 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2695 	if (ret)
2696 		return ret;
2697 
2698 	/* Check file eligibility and prepare for block sharing. */
2699 	ret = -EINVAL;
2700 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2701 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2702 		goto out_unlock;
2703 
2704 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2705 			&len, remap_flags);
2706 	if (ret < 0 || len == 0)
2707 		goto out_unlock;
2708 
2709 	/* Lock out changes to the allocation maps and remap. */
2710 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2711 	if (!same_inode)
2712 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2713 				  SINGLE_DEPTH_NESTING);
2714 
2715 	/* Zap any page cache for the destination file's range. */
2716 	truncate_inode_pages_range(&inode_out->i_data,
2717 				   round_down(pos_out, PAGE_SIZE),
2718 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2719 
2720 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2721 			inode_out, out_bh, pos_out, len);
2722 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2723 	if (!same_inode)
2724 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2725 	if (remapped < 0) {
2726 		ret = remapped;
2727 		mlog_errno(ret);
2728 		goto out_unlock;
2729 	}
2730 
2731 	/*
2732 	 * Empty the extent map so that we may get the right extent
2733 	 * record from the disk.
2734 	 */
2735 	ocfs2_extent_map_trunc(inode_in, 0);
2736 	ocfs2_extent_map_trunc(inode_out, 0);
2737 
2738 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2739 	if (ret) {
2740 		mlog_errno(ret);
2741 		goto out_unlock;
2742 	}
2743 
2744 out_unlock:
2745 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2746 	return remapped > 0 ? remapped : ret;
2747 }
2748 
2749 const struct inode_operations ocfs2_file_iops = {
2750 	.setattr	= ocfs2_setattr,
2751 	.getattr	= ocfs2_getattr,
2752 	.permission	= ocfs2_permission,
2753 	.listxattr	= ocfs2_listxattr,
2754 	.fiemap		= ocfs2_fiemap,
2755 	.get_inode_acl	= ocfs2_iop_get_acl,
2756 	.set_acl	= ocfs2_iop_set_acl,
2757 	.fileattr_get	= ocfs2_fileattr_get,
2758 	.fileattr_set	= ocfs2_fileattr_set,
2759 };
2760 
2761 const struct inode_operations ocfs2_special_file_iops = {
2762 	.setattr	= ocfs2_setattr,
2763 	.getattr	= ocfs2_getattr,
2764 	.permission	= ocfs2_permission,
2765 	.get_inode_acl	= ocfs2_iop_get_acl,
2766 	.set_acl	= ocfs2_iop_set_acl,
2767 };
2768 
2769 /*
2770  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2771  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2772  */
2773 const struct file_operations ocfs2_fops = {
2774 	.llseek		= ocfs2_file_llseek,
2775 	.mmap		= ocfs2_mmap,
2776 	.fsync		= ocfs2_sync_file,
2777 	.release	= ocfs2_file_release,
2778 	.open		= ocfs2_file_open,
2779 	.read_iter	= ocfs2_file_read_iter,
2780 	.write_iter	= ocfs2_file_write_iter,
2781 	.unlocked_ioctl	= ocfs2_ioctl,
2782 #ifdef CONFIG_COMPAT
2783 	.compat_ioctl   = ocfs2_compat_ioctl,
2784 #endif
2785 	.lock		= ocfs2_lock,
2786 	.flock		= ocfs2_flock,
2787 	.splice_read	= ocfs2_file_splice_read,
2788 	.splice_write	= iter_file_splice_write,
2789 	.fallocate	= ocfs2_fallocate,
2790 	.remap_file_range = ocfs2_remap_file_range,
2791 };
2792 
2793 WRAP_DIR_ITER(ocfs2_readdir) // FIXME!
2794 const struct file_operations ocfs2_dops = {
2795 	.llseek		= generic_file_llseek,
2796 	.read		= generic_read_dir,
2797 	.iterate_shared	= shared_ocfs2_readdir,
2798 	.fsync		= ocfs2_sync_file,
2799 	.release	= ocfs2_dir_release,
2800 	.open		= ocfs2_dir_open,
2801 	.unlocked_ioctl	= ocfs2_ioctl,
2802 #ifdef CONFIG_COMPAT
2803 	.compat_ioctl   = ocfs2_compat_ioctl,
2804 #endif
2805 	.lock		= ocfs2_lock,
2806 	.flock		= ocfs2_flock,
2807 };
2808 
2809 /*
2810  * POSIX-lockless variants of our file_operations.
2811  *
2812  * These will be used if the underlying cluster stack does not support
2813  * posix file locking, if the user passes the "localflocks" mount
2814  * option, or if we have a local-only fs.
2815  *
2816  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2817  * so we still want it in the case of no stack support for
2818  * plocks. Internally, it will do the right thing when asked to ignore
2819  * the cluster.
2820  */
2821 const struct file_operations ocfs2_fops_no_plocks = {
2822 	.llseek		= ocfs2_file_llseek,
2823 	.mmap		= ocfs2_mmap,
2824 	.fsync		= ocfs2_sync_file,
2825 	.release	= ocfs2_file_release,
2826 	.open		= ocfs2_file_open,
2827 	.read_iter	= ocfs2_file_read_iter,
2828 	.write_iter	= ocfs2_file_write_iter,
2829 	.unlocked_ioctl	= ocfs2_ioctl,
2830 #ifdef CONFIG_COMPAT
2831 	.compat_ioctl   = ocfs2_compat_ioctl,
2832 #endif
2833 	.flock		= ocfs2_flock,
2834 	.splice_read	= filemap_splice_read,
2835 	.splice_write	= iter_file_splice_write,
2836 	.fallocate	= ocfs2_fallocate,
2837 	.remap_file_range = ocfs2_remap_file_range,
2838 };
2839 
2840 const struct file_operations ocfs2_dops_no_plocks = {
2841 	.llseek		= generic_file_llseek,
2842 	.read		= generic_read_dir,
2843 	.iterate_shared	= shared_ocfs2_readdir,
2844 	.fsync		= ocfs2_sync_file,
2845 	.release	= ocfs2_dir_release,
2846 	.open		= ocfs2_dir_open,
2847 	.unlocked_ioctl	= ocfs2_ioctl,
2848 #ifdef CONFIG_COMPAT
2849 	.compat_ioctl   = ocfs2_compat_ioctl,
2850 #endif
2851 	.flock		= ocfs2_flock,
2852 };
2853