xref: /linux/fs/ocfs2/file.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 
28 #include <cluster/masklog.h>
29 
30 #include "ocfs2.h"
31 
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51 
52 #include "buffer_head_io.h"
53 
54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 	struct ocfs2_file_private *fp;
57 
58 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 	if (!fp)
60 		return -ENOMEM;
61 
62 	fp->fp_file = file;
63 	mutex_init(&fp->fp_mutex);
64 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 	file->private_data = fp;
66 
67 	return 0;
68 }
69 
70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 	struct ocfs2_file_private *fp = file->private_data;
73 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 
75 	if (fp) {
76 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 		ocfs2_lock_res_free(&fp->fp_flock);
78 		kfree(fp);
79 		file->private_data = NULL;
80 	}
81 }
82 
83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 	int status;
86 	int mode = file->f_flags;
87 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
88 
89 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 			      (unsigned long long)oi->ip_blkno,
91 			      file->f_path.dentry->d_name.len,
92 			      file->f_path.dentry->d_name.name, mode);
93 
94 	if (file->f_mode & FMODE_WRITE) {
95 		status = dquot_initialize(inode);
96 		if (status)
97 			goto leave;
98 	}
99 
100 	spin_lock(&oi->ip_lock);
101 
102 	/* Check that the inode hasn't been wiped from disk by another
103 	 * node. If it hasn't then we're safe as long as we hold the
104 	 * spin lock until our increment of open count. */
105 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 		spin_unlock(&oi->ip_lock);
107 
108 		status = -ENOENT;
109 		goto leave;
110 	}
111 
112 	if (mode & O_DIRECT)
113 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115 	oi->ip_open_count++;
116 	spin_unlock(&oi->ip_lock);
117 
118 	status = ocfs2_init_file_private(inode, file);
119 	if (status) {
120 		/*
121 		 * We want to set open count back if we're failing the
122 		 * open.
123 		 */
124 		spin_lock(&oi->ip_lock);
125 		oi->ip_open_count--;
126 		spin_unlock(&oi->ip_lock);
127 	}
128 
129 	file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132 	return status;
133 }
134 
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139 	spin_lock(&oi->ip_lock);
140 	if (!--oi->ip_open_count)
141 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 				 oi->ip_blkno,
145 				 file->f_path.dentry->d_name.len,
146 				 file->f_path.dentry->d_name.name,
147 				 oi->ip_open_count);
148 	spin_unlock(&oi->ip_lock);
149 
150 	ocfs2_free_file_private(inode, file);
151 
152 	return 0;
153 }
154 
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 	return ocfs2_init_file_private(inode, file);
158 }
159 
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 	ocfs2_free_file_private(inode, file);
163 	return 0;
164 }
165 
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 			   int datasync)
168 {
169 	int err = 0;
170 	struct inode *inode = file->f_mapping->host;
171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 	journal_t *journal = osb->journal->j_journal;
174 	int ret;
175 	tid_t commit_tid;
176 	bool needs_barrier = false;
177 
178 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 			      oi->ip_blkno,
180 			      file->f_path.dentry->d_name.len,
181 			      file->f_path.dentry->d_name.name,
182 			      (unsigned long long)datasync);
183 
184 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 		return -EROFS;
186 
187 	err = file_write_and_wait_range(file, start, end);
188 	if (err)
189 		return err;
190 
191 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 	if (journal->j_flags & JBD2_BARRIER &&
193 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 		needs_barrier = true;
195 	err = jbd2_complete_transaction(journal, commit_tid);
196 	if (needs_barrier) {
197 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
198 		if (!err)
199 			err = ret;
200 	}
201 
202 	if (err)
203 		mlog_errno(err);
204 
205 	return (err < 0) ? -EIO : 0;
206 }
207 
208 int ocfs2_should_update_atime(struct inode *inode,
209 			      struct vfsmount *vfsmnt)
210 {
211 	struct timespec64 now;
212 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 		return 0;
216 
217 	if ((inode->i_flags & S_NOATIME) ||
218 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 		return 0;
220 
221 	/*
222 	 * We can be called with no vfsmnt structure - NFSD will
223 	 * sometimes do this.
224 	 *
225 	 * Note that our action here is different than touch_atime() -
226 	 * if we can't tell whether this is a noatime mount, then we
227 	 * don't know whether to trust the value of s_atime_quantum.
228 	 */
229 	if (vfsmnt == NULL)
230 		return 0;
231 
232 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 		return 0;
235 
236 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_mutex to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 	truncate_inode_pages(inode->i_mapping, new_i_size);
483 
484 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 					       i_size_read(inode), 1);
487 		if (status)
488 			mlog_errno(status);
489 
490 		goto bail_unlock_sem;
491 	}
492 
493 	/* alright, we're going to need to do a full blown alloc size
494 	 * change. Orphan the inode so that recovery can complete the
495 	 * truncate if necessary. This does the task of marking
496 	 * i_size. */
497 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 	if (status < 0) {
499 		mlog_errno(status);
500 		goto bail_unlock_sem;
501 	}
502 
503 	status = ocfs2_commit_truncate(osb, inode, di_bh);
504 	if (status < 0) {
505 		mlog_errno(status);
506 		goto bail_unlock_sem;
507 	}
508 
509 	/* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
512 
513 bail:
514 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516 
517 	return status;
518 }
519 
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 			 struct inode *inode,
532 			 u32 *logical_offset,
533 			 u32 clusters_to_add,
534 			 int mark_unwritten,
535 			 struct buffer_head *fe_bh,
536 			 handle_t *handle,
537 			 struct ocfs2_alloc_context *data_ac,
538 			 struct ocfs2_alloc_context *meta_ac,
539 			 enum ocfs2_alloc_restarted *reason_ret)
540 {
541 	int ret;
542 	struct ocfs2_extent_tree et;
543 
544 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 					  clusters_to_add, mark_unwritten,
547 					  data_ac, meta_ac, reason_ret);
548 
549 	return ret;
550 }
551 
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 				   u32 clusters_to_add, int mark_unwritten)
554 {
555 	int status = 0;
556 	int restart_func = 0;
557 	int credits;
558 	u32 prev_clusters;
559 	struct buffer_head *bh = NULL;
560 	struct ocfs2_dinode *fe = NULL;
561 	handle_t *handle = NULL;
562 	struct ocfs2_alloc_context *data_ac = NULL;
563 	struct ocfs2_alloc_context *meta_ac = NULL;
564 	enum ocfs2_alloc_restarted why = RESTART_NONE;
565 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 	struct ocfs2_extent_tree et;
567 	int did_quota = 0;
568 
569 	/*
570 	 * Unwritten extent only exists for file systems which
571 	 * support holes.
572 	 */
573 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574 
575 	status = ocfs2_read_inode_block(inode, &bh);
576 	if (status < 0) {
577 		mlog_errno(status);
578 		goto leave;
579 	}
580 	fe = (struct ocfs2_dinode *) bh->b_data;
581 
582 restart_all:
583 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584 
585 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 				       &data_ac, &meta_ac);
588 	if (status) {
589 		mlog_errno(status);
590 		goto leave;
591 	}
592 
593 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 	handle = ocfs2_start_trans(osb, credits);
595 	if (IS_ERR(handle)) {
596 		status = PTR_ERR(handle);
597 		handle = NULL;
598 		mlog_errno(status);
599 		goto leave;
600 	}
601 
602 restarted_transaction:
603 	trace_ocfs2_extend_allocation(
604 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
605 		(unsigned long long)i_size_read(inode),
606 		le32_to_cpu(fe->i_clusters), clusters_to_add,
607 		why, restart_func);
608 
609 	status = dquot_alloc_space_nodirty(inode,
610 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 	if (status)
612 		goto leave;
613 	did_quota = 1;
614 
615 	/* reserve a write to the file entry early on - that we if we
616 	 * run out of credits in the allocation path, we can still
617 	 * update i_size. */
618 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 					 OCFS2_JOURNAL_ACCESS_WRITE);
620 	if (status < 0) {
621 		mlog_errno(status);
622 		goto leave;
623 	}
624 
625 	prev_clusters = OCFS2_I(inode)->ip_clusters;
626 
627 	status = ocfs2_add_inode_data(osb,
628 				      inode,
629 				      &logical_start,
630 				      clusters_to_add,
631 				      mark_unwritten,
632 				      bh,
633 				      handle,
634 				      data_ac,
635 				      meta_ac,
636 				      &why);
637 	if ((status < 0) && (status != -EAGAIN)) {
638 		if (status != -ENOSPC)
639 			mlog_errno(status);
640 		goto leave;
641 	}
642 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 	ocfs2_journal_dirty(handle, bh);
644 
645 	spin_lock(&OCFS2_I(inode)->ip_lock);
646 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 	spin_unlock(&OCFS2_I(inode)->ip_lock);
648 	/* Release unused quota reservation */
649 	dquot_free_space(inode,
650 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 	did_quota = 0;
652 
653 	if (why != RESTART_NONE && clusters_to_add) {
654 		if (why == RESTART_META) {
655 			restart_func = 1;
656 			status = 0;
657 		} else {
658 			BUG_ON(why != RESTART_TRANS);
659 
660 			status = ocfs2_allocate_extend_trans(handle, 1);
661 			if (status < 0) {
662 				/* handle still has to be committed at
663 				 * this point. */
664 				status = -ENOMEM;
665 				mlog_errno(status);
666 				goto leave;
667 			}
668 			goto restarted_transaction;
669 		}
670 	}
671 
672 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 	     le32_to_cpu(fe->i_clusters),
674 	     (unsigned long long)le64_to_cpu(fe->i_size),
675 	     OCFS2_I(inode)->ip_clusters,
676 	     (unsigned long long)i_size_read(inode));
677 
678 leave:
679 	if (status < 0 && did_quota)
680 		dquot_free_space(inode,
681 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 	if (handle) {
683 		ocfs2_commit_trans(osb, handle);
684 		handle = NULL;
685 	}
686 	if (data_ac) {
687 		ocfs2_free_alloc_context(data_ac);
688 		data_ac = NULL;
689 	}
690 	if (meta_ac) {
691 		ocfs2_free_alloc_context(meta_ac);
692 		meta_ac = NULL;
693 	}
694 	if ((!status) && restart_func) {
695 		restart_func = 0;
696 		goto restart_all;
697 	}
698 	brelse(bh);
699 	bh = NULL;
700 
701 	return status;
702 }
703 
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 						      struct buffer_head *di_bh,
710 						      loff_t start_byte,
711 						      loff_t length)
712 {
713 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714 	handle_t *handle = NULL;
715 	int ret = 0;
716 
717 	if (!ocfs2_should_order_data(inode))
718 		goto out;
719 
720 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721 	if (IS_ERR(handle)) {
722 		ret = -ENOMEM;
723 		mlog_errno(ret);
724 		goto out;
725 	}
726 
727 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728 	if (ret < 0) {
729 		mlog_errno(ret);
730 		goto out;
731 	}
732 
733 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734 				      OCFS2_JOURNAL_ACCESS_WRITE);
735 	if (ret)
736 		mlog_errno(ret);
737 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
738 
739 out:
740 	if (ret) {
741 		if (!IS_ERR(handle))
742 			ocfs2_commit_trans(osb, handle);
743 		handle = ERR_PTR(ret);
744 	}
745 	return handle;
746 }
747 
748 /* Some parts of this taken from generic_cont_expand, which turned out
749  * to be too fragile to do exactly what we need without us having to
750  * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752 				 u64 abs_to, struct buffer_head *di_bh)
753 {
754 	struct address_space *mapping = inode->i_mapping;
755 	struct page *page;
756 	unsigned long index = abs_from >> PAGE_SHIFT;
757 	handle_t *handle;
758 	int ret = 0;
759 	unsigned zero_from, zero_to, block_start, block_end;
760 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761 
762 	BUG_ON(abs_from >= abs_to);
763 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764 	BUG_ON(abs_from & (inode->i_blkbits - 1));
765 
766 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767 						      abs_from,
768 						      abs_to - abs_from);
769 	if (IS_ERR(handle)) {
770 		ret = PTR_ERR(handle);
771 		goto out;
772 	}
773 
774 	page = find_or_create_page(mapping, index, GFP_NOFS);
775 	if (!page) {
776 		ret = -ENOMEM;
777 		mlog_errno(ret);
778 		goto out_commit_trans;
779 	}
780 
781 	/* Get the offsets within the page that we want to zero */
782 	zero_from = abs_from & (PAGE_SIZE - 1);
783 	zero_to = abs_to & (PAGE_SIZE - 1);
784 	if (!zero_to)
785 		zero_to = PAGE_SIZE;
786 
787 	trace_ocfs2_write_zero_page(
788 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
789 			(unsigned long long)abs_from,
790 			(unsigned long long)abs_to,
791 			index, zero_from, zero_to);
792 
793 	/* We know that zero_from is block aligned */
794 	for (block_start = zero_from; block_start < zero_to;
795 	     block_start = block_end) {
796 		block_end = block_start + i_blocksize(inode);
797 
798 		/*
799 		 * block_start is block-aligned.  Bump it by one to force
800 		 * __block_write_begin and block_commit_write to zero the
801 		 * whole block.
802 		 */
803 		ret = __block_write_begin(page, block_start + 1, 0,
804 					  ocfs2_get_block);
805 		if (ret < 0) {
806 			mlog_errno(ret);
807 			goto out_unlock;
808 		}
809 
810 
811 		/* must not update i_size! */
812 		ret = block_commit_write(page, block_start + 1,
813 					 block_start + 1);
814 		if (ret < 0)
815 			mlog_errno(ret);
816 		else
817 			ret = 0;
818 	}
819 
820 	/*
821 	 * fs-writeback will release the dirty pages without page lock
822 	 * whose offset are over inode size, the release happens at
823 	 * block_write_full_page().
824 	 */
825 	i_size_write(inode, abs_to);
826 	inode->i_blocks = ocfs2_inode_sector_count(inode);
827 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
828 	inode->i_mtime = inode->i_ctime = current_time(inode);
829 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831 	di->i_mtime_nsec = di->i_ctime_nsec;
832 	if (handle) {
833 		ocfs2_journal_dirty(handle, di_bh);
834 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
835 	}
836 
837 out_unlock:
838 	unlock_page(page);
839 	put_page(page);
840 out_commit_trans:
841 	if (handle)
842 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844 	return ret;
845 }
846 
847 /*
848  * Find the next range to zero.  We do this in terms of bytes because
849  * that's what ocfs2_zero_extend() wants, and it is dealing with the
850  * pagecache.  We may return multiple extents.
851  *
852  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853  * needs to be zeroed.  range_start and range_end return the next zeroing
854  * range.  A subsequent call should pass the previous range_end as its
855  * zero_start.  If range_end is 0, there's nothing to do.
856  *
857  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
858  */
859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860 				       struct buffer_head *di_bh,
861 				       u64 zero_start, u64 zero_end,
862 				       u64 *range_start, u64 *range_end)
863 {
864 	int rc = 0, needs_cow = 0;
865 	u32 p_cpos, zero_clusters = 0;
866 	u32 zero_cpos =
867 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869 	unsigned int num_clusters = 0;
870 	unsigned int ext_flags = 0;
871 
872 	while (zero_cpos < last_cpos) {
873 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874 					&num_clusters, &ext_flags);
875 		if (rc) {
876 			mlog_errno(rc);
877 			goto out;
878 		}
879 
880 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881 			zero_clusters = num_clusters;
882 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 				needs_cow = 1;
884 			break;
885 		}
886 
887 		zero_cpos += num_clusters;
888 	}
889 	if (!zero_clusters) {
890 		*range_end = 0;
891 		goto out;
892 	}
893 
894 	while ((zero_cpos + zero_clusters) < last_cpos) {
895 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896 					&p_cpos, &num_clusters,
897 					&ext_flags);
898 		if (rc) {
899 			mlog_errno(rc);
900 			goto out;
901 		}
902 
903 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904 			break;
905 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 			needs_cow = 1;
907 		zero_clusters += num_clusters;
908 	}
909 	if ((zero_cpos + zero_clusters) > last_cpos)
910 		zero_clusters = last_cpos - zero_cpos;
911 
912 	if (needs_cow) {
913 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914 					zero_clusters, UINT_MAX);
915 		if (rc) {
916 			mlog_errno(rc);
917 			goto out;
918 		}
919 	}
920 
921 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923 					     zero_cpos + zero_clusters);
924 
925 out:
926 	return rc;
927 }
928 
929 /*
930  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
931  * has made sure that the entire range needs zeroing.
932  */
933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934 				   u64 range_end, struct buffer_head *di_bh)
935 {
936 	int rc = 0;
937 	u64 next_pos;
938 	u64 zero_pos = range_start;
939 
940 	trace_ocfs2_zero_extend_range(
941 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
942 			(unsigned long long)range_start,
943 			(unsigned long long)range_end);
944 	BUG_ON(range_start >= range_end);
945 
946 	while (zero_pos < range_end) {
947 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948 		if (next_pos > range_end)
949 			next_pos = range_end;
950 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951 		if (rc < 0) {
952 			mlog_errno(rc);
953 			break;
954 		}
955 		zero_pos = next_pos;
956 
957 		/*
958 		 * Very large extends have the potential to lock up
959 		 * the cpu for extended periods of time.
960 		 */
961 		cond_resched();
962 	}
963 
964 	return rc;
965 }
966 
967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968 		      loff_t zero_to_size)
969 {
970 	int ret = 0;
971 	u64 zero_start, range_start = 0, range_end = 0;
972 	struct super_block *sb = inode->i_sb;
973 
974 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976 				(unsigned long long)zero_start,
977 				(unsigned long long)i_size_read(inode));
978 	while (zero_start < zero_to_size) {
979 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980 						  zero_to_size,
981 						  &range_start,
982 						  &range_end);
983 		if (ret) {
984 			mlog_errno(ret);
985 			break;
986 		}
987 		if (!range_end)
988 			break;
989 		/* Trim the ends */
990 		if (range_start < zero_start)
991 			range_start = zero_start;
992 		if (range_end > zero_to_size)
993 			range_end = zero_to_size;
994 
995 		ret = ocfs2_zero_extend_range(inode, range_start,
996 					      range_end, di_bh);
997 		if (ret) {
998 			mlog_errno(ret);
999 			break;
1000 		}
1001 		zero_start = range_end;
1002 	}
1003 
1004 	return ret;
1005 }
1006 
1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008 			  u64 new_i_size, u64 zero_to)
1009 {
1010 	int ret;
1011 	u32 clusters_to_add;
1012 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013 
1014 	/*
1015 	 * Only quota files call this without a bh, and they can't be
1016 	 * refcounted.
1017 	 */
1018 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020 
1021 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022 	if (clusters_to_add < oi->ip_clusters)
1023 		clusters_to_add = 0;
1024 	else
1025 		clusters_to_add -= oi->ip_clusters;
1026 
1027 	if (clusters_to_add) {
1028 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029 					      clusters_to_add, 0);
1030 		if (ret) {
1031 			mlog_errno(ret);
1032 			goto out;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Call this even if we don't add any clusters to the tree. We
1038 	 * still need to zero the area between the old i_size and the
1039 	 * new i_size.
1040 	 */
1041 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 	if (ret < 0)
1043 		mlog_errno(ret);
1044 
1045 out:
1046 	return ret;
1047 }
1048 
1049 static int ocfs2_extend_file(struct inode *inode,
1050 			     struct buffer_head *di_bh,
1051 			     u64 new_i_size)
1052 {
1053 	int ret = 0;
1054 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055 
1056 	BUG_ON(!di_bh);
1057 
1058 	/* setattr sometimes calls us like this. */
1059 	if (new_i_size == 0)
1060 		goto out;
1061 
1062 	if (i_size_read(inode) == new_i_size)
1063 		goto out;
1064 	BUG_ON(new_i_size < i_size_read(inode));
1065 
1066 	/*
1067 	 * The alloc sem blocks people in read/write from reading our
1068 	 * allocation until we're done changing it. We depend on
1069 	 * i_mutex to block other extend/truncate calls while we're
1070 	 * here.  We even have to hold it for sparse files because there
1071 	 * might be some tail zeroing.
1072 	 */
1073 	down_write(&oi->ip_alloc_sem);
1074 
1075 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076 		/*
1077 		 * We can optimize small extends by keeping the inodes
1078 		 * inline data.
1079 		 */
1080 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081 			up_write(&oi->ip_alloc_sem);
1082 			goto out_update_size;
1083 		}
1084 
1085 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086 		if (ret) {
1087 			up_write(&oi->ip_alloc_sem);
1088 			mlog_errno(ret);
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095 	else
1096 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097 					    new_i_size);
1098 
1099 	up_write(&oi->ip_alloc_sem);
1100 
1101 	if (ret < 0) {
1102 		mlog_errno(ret);
1103 		goto out;
1104 	}
1105 
1106 out_update_size:
1107 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 	if (ret < 0)
1109 		mlog_errno(ret);
1110 
1111 out:
1112 	return ret;
1113 }
1114 
1115 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1116 		  struct iattr *attr)
1117 {
1118 	int status = 0, size_change;
1119 	int inode_locked = 0;
1120 	struct inode *inode = d_inode(dentry);
1121 	struct super_block *sb = inode->i_sb;
1122 	struct ocfs2_super *osb = OCFS2_SB(sb);
1123 	struct buffer_head *bh = NULL;
1124 	handle_t *handle = NULL;
1125 	struct dquot *transfer_to[MAXQUOTAS] = { };
1126 	int qtype;
1127 	int had_lock;
1128 	struct ocfs2_lock_holder oh;
1129 
1130 	trace_ocfs2_setattr(inode, dentry,
1131 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1132 			    dentry->d_name.len, dentry->d_name.name,
1133 			    attr->ia_valid, attr->ia_mode,
1134 			    from_kuid(&init_user_ns, attr->ia_uid),
1135 			    from_kgid(&init_user_ns, attr->ia_gid));
1136 
1137 	/* ensuring we don't even attempt to truncate a symlink */
1138 	if (S_ISLNK(inode->i_mode))
1139 		attr->ia_valid &= ~ATTR_SIZE;
1140 
1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1142 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1143 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1144 		return 0;
1145 
1146 	status = setattr_prepare(&init_user_ns, dentry, attr);
1147 	if (status)
1148 		return status;
1149 
1150 	if (is_quota_modification(inode, attr)) {
1151 		status = dquot_initialize(inode);
1152 		if (status)
1153 			return status;
1154 	}
1155 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1156 	if (size_change) {
1157 		/*
1158 		 * Here we should wait dio to finish before inode lock
1159 		 * to avoid a deadlock between ocfs2_setattr() and
1160 		 * ocfs2_dio_end_io_write()
1161 		 */
1162 		inode_dio_wait(inode);
1163 
1164 		status = ocfs2_rw_lock(inode, 1);
1165 		if (status < 0) {
1166 			mlog_errno(status);
1167 			goto bail;
1168 		}
1169 	}
1170 
1171 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1172 	if (had_lock < 0) {
1173 		status = had_lock;
1174 		goto bail_unlock_rw;
1175 	} else if (had_lock) {
1176 		/*
1177 		 * As far as we know, ocfs2_setattr() could only be the first
1178 		 * VFS entry point in the call chain of recursive cluster
1179 		 * locking issue.
1180 		 *
1181 		 * For instance:
1182 		 * chmod_common()
1183 		 *  notify_change()
1184 		 *   ocfs2_setattr()
1185 		 *    posix_acl_chmod()
1186 		 *     ocfs2_iop_get_acl()
1187 		 *
1188 		 * But, we're not 100% sure if it's always true, because the
1189 		 * ordering of the VFS entry points in the call chain is out
1190 		 * of our control. So, we'd better dump the stack here to
1191 		 * catch the other cases of recursive locking.
1192 		 */
1193 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1194 		dump_stack();
1195 	}
1196 	inode_locked = 1;
1197 
1198 	if (size_change) {
1199 		status = inode_newsize_ok(inode, attr->ia_size);
1200 		if (status)
1201 			goto bail_unlock;
1202 
1203 		if (i_size_read(inode) >= attr->ia_size) {
1204 			if (ocfs2_should_order_data(inode)) {
1205 				status = ocfs2_begin_ordered_truncate(inode,
1206 								      attr->ia_size);
1207 				if (status)
1208 					goto bail_unlock;
1209 			}
1210 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1211 		} else
1212 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1213 		if (status < 0) {
1214 			if (status != -ENOSPC)
1215 				mlog_errno(status);
1216 			status = -ENOSPC;
1217 			goto bail_unlock;
1218 		}
1219 	}
1220 
1221 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1222 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1223 		/*
1224 		 * Gather pointers to quota structures so that allocation /
1225 		 * freeing of quota structures happens here and not inside
1226 		 * dquot_transfer() where we have problems with lock ordering
1227 		 */
1228 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1229 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1230 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1231 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1232 			if (IS_ERR(transfer_to[USRQUOTA])) {
1233 				status = PTR_ERR(transfer_to[USRQUOTA]);
1234 				transfer_to[USRQUOTA] = NULL;
1235 				goto bail_unlock;
1236 			}
1237 		}
1238 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1239 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1240 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1241 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1242 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1243 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1244 				transfer_to[GRPQUOTA] = NULL;
1245 				goto bail_unlock;
1246 			}
1247 		}
1248 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1249 					   2 * ocfs2_quota_trans_credits(sb));
1250 		if (IS_ERR(handle)) {
1251 			status = PTR_ERR(handle);
1252 			mlog_errno(status);
1253 			goto bail_unlock;
1254 		}
1255 		status = __dquot_transfer(inode, transfer_to);
1256 		if (status < 0)
1257 			goto bail_commit;
1258 	} else {
1259 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1260 		if (IS_ERR(handle)) {
1261 			status = PTR_ERR(handle);
1262 			mlog_errno(status);
1263 			goto bail_unlock;
1264 		}
1265 	}
1266 
1267 	setattr_copy(&init_user_ns, inode, attr);
1268 	mark_inode_dirty(inode);
1269 
1270 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1271 	if (status < 0)
1272 		mlog_errno(status);
1273 
1274 bail_commit:
1275 	ocfs2_commit_trans(osb, handle);
1276 bail_unlock:
1277 	if (status && inode_locked) {
1278 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1279 		inode_locked = 0;
1280 	}
1281 bail_unlock_rw:
1282 	if (size_change)
1283 		ocfs2_rw_unlock(inode, 1);
1284 bail:
1285 
1286 	/* Release quota pointers in case we acquired them */
1287 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1288 		dqput(transfer_to[qtype]);
1289 
1290 	if (!status && attr->ia_valid & ATTR_MODE) {
1291 		status = ocfs2_acl_chmod(inode, bh);
1292 		if (status < 0)
1293 			mlog_errno(status);
1294 	}
1295 	if (inode_locked)
1296 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1297 
1298 	brelse(bh);
1299 	return status;
1300 }
1301 
1302 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1303 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1304 {
1305 	struct inode *inode = d_inode(path->dentry);
1306 	struct super_block *sb = path->dentry->d_sb;
1307 	struct ocfs2_super *osb = sb->s_fs_info;
1308 	int err;
1309 
1310 	err = ocfs2_inode_revalidate(path->dentry);
1311 	if (err) {
1312 		if (err != -ENOENT)
1313 			mlog_errno(err);
1314 		goto bail;
1315 	}
1316 
1317 	generic_fillattr(&init_user_ns, inode, stat);
1318 	/*
1319 	 * If there is inline data in the inode, the inode will normally not
1320 	 * have data blocks allocated (it may have an external xattr block).
1321 	 * Report at least one sector for such files, so tools like tar, rsync,
1322 	 * others don't incorrectly think the file is completely sparse.
1323 	 */
1324 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325 		stat->blocks += (stat->size + 511)>>9;
1326 
1327 	/* We set the blksize from the cluster size for performance */
1328 	stat->blksize = osb->s_clustersize;
1329 
1330 bail:
1331 	return err;
1332 }
1333 
1334 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1335 		     int mask)
1336 {
1337 	int ret, had_lock;
1338 	struct ocfs2_lock_holder oh;
1339 
1340 	if (mask & MAY_NOT_BLOCK)
1341 		return -ECHILD;
1342 
1343 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1344 	if (had_lock < 0) {
1345 		ret = had_lock;
1346 		goto out;
1347 	} else if (had_lock) {
1348 		/* See comments in ocfs2_setattr() for details.
1349 		 * The call chain of this case could be:
1350 		 * do_sys_open()
1351 		 *  may_open()
1352 		 *   inode_permission()
1353 		 *    ocfs2_permission()
1354 		 *     ocfs2_iop_get_acl()
1355 		 */
1356 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1357 		dump_stack();
1358 	}
1359 
1360 	ret = generic_permission(&init_user_ns, inode, mask);
1361 
1362 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1363 out:
1364 	return ret;
1365 }
1366 
1367 static int __ocfs2_write_remove_suid(struct inode *inode,
1368 				     struct buffer_head *bh)
1369 {
1370 	int ret;
1371 	handle_t *handle;
1372 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373 	struct ocfs2_dinode *di;
1374 
1375 	trace_ocfs2_write_remove_suid(
1376 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1377 			inode->i_mode);
1378 
1379 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1380 	if (IS_ERR(handle)) {
1381 		ret = PTR_ERR(handle);
1382 		mlog_errno(ret);
1383 		goto out;
1384 	}
1385 
1386 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1387 				      OCFS2_JOURNAL_ACCESS_WRITE);
1388 	if (ret < 0) {
1389 		mlog_errno(ret);
1390 		goto out_trans;
1391 	}
1392 
1393 	inode->i_mode &= ~S_ISUID;
1394 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1395 		inode->i_mode &= ~S_ISGID;
1396 
1397 	di = (struct ocfs2_dinode *) bh->b_data;
1398 	di->i_mode = cpu_to_le16(inode->i_mode);
1399 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1400 
1401 	ocfs2_journal_dirty(handle, bh);
1402 
1403 out_trans:
1404 	ocfs2_commit_trans(osb, handle);
1405 out:
1406 	return ret;
1407 }
1408 
1409 static int ocfs2_write_remove_suid(struct inode *inode)
1410 {
1411 	int ret;
1412 	struct buffer_head *bh = NULL;
1413 
1414 	ret = ocfs2_read_inode_block(inode, &bh);
1415 	if (ret < 0) {
1416 		mlog_errno(ret);
1417 		goto out;
1418 	}
1419 
1420 	ret =  __ocfs2_write_remove_suid(inode, bh);
1421 out:
1422 	brelse(bh);
1423 	return ret;
1424 }
1425 
1426 /*
1427  * Allocate enough extents to cover the region starting at byte offset
1428  * start for len bytes. Existing extents are skipped, any extents
1429  * added are marked as "unwritten".
1430  */
1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1432 					    u64 start, u64 len)
1433 {
1434 	int ret;
1435 	u32 cpos, phys_cpos, clusters, alloc_size;
1436 	u64 end = start + len;
1437 	struct buffer_head *di_bh = NULL;
1438 
1439 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1440 		ret = ocfs2_read_inode_block(inode, &di_bh);
1441 		if (ret) {
1442 			mlog_errno(ret);
1443 			goto out;
1444 		}
1445 
1446 		/*
1447 		 * Nothing to do if the requested reservation range
1448 		 * fits within the inode.
1449 		 */
1450 		if (ocfs2_size_fits_inline_data(di_bh, end))
1451 			goto out;
1452 
1453 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1454 		if (ret) {
1455 			mlog_errno(ret);
1456 			goto out;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * We consider both start and len to be inclusive.
1462 	 */
1463 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1464 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1465 	clusters -= cpos;
1466 
1467 	while (clusters) {
1468 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1469 					 &alloc_size, NULL);
1470 		if (ret) {
1471 			mlog_errno(ret);
1472 			goto out;
1473 		}
1474 
1475 		/*
1476 		 * Hole or existing extent len can be arbitrary, so
1477 		 * cap it to our own allocation request.
1478 		 */
1479 		if (alloc_size > clusters)
1480 			alloc_size = clusters;
1481 
1482 		if (phys_cpos) {
1483 			/*
1484 			 * We already have an allocation at this
1485 			 * region so we can safely skip it.
1486 			 */
1487 			goto next;
1488 		}
1489 
1490 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1491 		if (ret) {
1492 			if (ret != -ENOSPC)
1493 				mlog_errno(ret);
1494 			goto out;
1495 		}
1496 
1497 next:
1498 		cpos += alloc_size;
1499 		clusters -= alloc_size;
1500 	}
1501 
1502 	ret = 0;
1503 out:
1504 
1505 	brelse(di_bh);
1506 	return ret;
1507 }
1508 
1509 /*
1510  * Truncate a byte range, avoiding pages within partial clusters. This
1511  * preserves those pages for the zeroing code to write to.
1512  */
1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1514 					 u64 byte_len)
1515 {
1516 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1517 	loff_t start, end;
1518 	struct address_space *mapping = inode->i_mapping;
1519 
1520 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1521 	end = byte_start + byte_len;
1522 	end = end & ~(osb->s_clustersize - 1);
1523 
1524 	if (start < end) {
1525 		unmap_mapping_range(mapping, start, end - start, 0);
1526 		truncate_inode_pages_range(mapping, start, end - 1);
1527 	}
1528 }
1529 
1530 static int ocfs2_zero_partial_clusters(struct inode *inode,
1531 				       u64 start, u64 len)
1532 {
1533 	int ret = 0;
1534 	u64 tmpend = 0;
1535 	u64 end = start + len;
1536 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1537 	unsigned int csize = osb->s_clustersize;
1538 	handle_t *handle;
1539 
1540 	/*
1541 	 * The "start" and "end" values are NOT necessarily part of
1542 	 * the range whose allocation is being deleted. Rather, this
1543 	 * is what the user passed in with the request. We must zero
1544 	 * partial clusters here. There's no need to worry about
1545 	 * physical allocation - the zeroing code knows to skip holes.
1546 	 */
1547 	trace_ocfs2_zero_partial_clusters(
1548 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1549 		(unsigned long long)start, (unsigned long long)end);
1550 
1551 	/*
1552 	 * If both edges are on a cluster boundary then there's no
1553 	 * zeroing required as the region is part of the allocation to
1554 	 * be truncated.
1555 	 */
1556 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1557 		goto out;
1558 
1559 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1560 	if (IS_ERR(handle)) {
1561 		ret = PTR_ERR(handle);
1562 		mlog_errno(ret);
1563 		goto out;
1564 	}
1565 
1566 	/*
1567 	 * If start is on a cluster boundary and end is somewhere in another
1568 	 * cluster, we have not COWed the cluster starting at start, unless
1569 	 * end is also within the same cluster. So, in this case, we skip this
1570 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1571 	 * to the next one.
1572 	 */
1573 	if ((start & (csize - 1)) != 0) {
1574 		/*
1575 		 * We want to get the byte offset of the end of the 1st
1576 		 * cluster.
1577 		 */
1578 		tmpend = (u64)osb->s_clustersize +
1579 			(start & ~(osb->s_clustersize - 1));
1580 		if (tmpend > end)
1581 			tmpend = end;
1582 
1583 		trace_ocfs2_zero_partial_clusters_range1(
1584 			(unsigned long long)start,
1585 			(unsigned long long)tmpend);
1586 
1587 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1588 						    tmpend);
1589 		if (ret)
1590 			mlog_errno(ret);
1591 	}
1592 
1593 	if (tmpend < end) {
1594 		/*
1595 		 * This may make start and end equal, but the zeroing
1596 		 * code will skip any work in that case so there's no
1597 		 * need to catch it up here.
1598 		 */
1599 		start = end & ~(osb->s_clustersize - 1);
1600 
1601 		trace_ocfs2_zero_partial_clusters_range2(
1602 			(unsigned long long)start, (unsigned long long)end);
1603 
1604 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1605 		if (ret)
1606 			mlog_errno(ret);
1607 	}
1608 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1609 
1610 	ocfs2_commit_trans(osb, handle);
1611 out:
1612 	return ret;
1613 }
1614 
1615 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1616 {
1617 	int i;
1618 	struct ocfs2_extent_rec *rec = NULL;
1619 
1620 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1621 
1622 		rec = &el->l_recs[i];
1623 
1624 		if (le32_to_cpu(rec->e_cpos) < pos)
1625 			break;
1626 	}
1627 
1628 	return i;
1629 }
1630 
1631 /*
1632  * Helper to calculate the punching pos and length in one run, we handle the
1633  * following three cases in order:
1634  *
1635  * - remove the entire record
1636  * - remove a partial record
1637  * - no record needs to be removed (hole-punching completed)
1638 */
1639 static void ocfs2_calc_trunc_pos(struct inode *inode,
1640 				 struct ocfs2_extent_list *el,
1641 				 struct ocfs2_extent_rec *rec,
1642 				 u32 trunc_start, u32 *trunc_cpos,
1643 				 u32 *trunc_len, u32 *trunc_end,
1644 				 u64 *blkno, int *done)
1645 {
1646 	int ret = 0;
1647 	u32 coff, range;
1648 
1649 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1650 
1651 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1652 		/*
1653 		 * remove an entire extent record.
1654 		 */
1655 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1656 		/*
1657 		 * Skip holes if any.
1658 		 */
1659 		if (range < *trunc_end)
1660 			*trunc_end = range;
1661 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1662 		*blkno = le64_to_cpu(rec->e_blkno);
1663 		*trunc_end = le32_to_cpu(rec->e_cpos);
1664 	} else if (range > trunc_start) {
1665 		/*
1666 		 * remove a partial extent record, which means we're
1667 		 * removing the last extent record.
1668 		 */
1669 		*trunc_cpos = trunc_start;
1670 		/*
1671 		 * skip hole if any.
1672 		 */
1673 		if (range < *trunc_end)
1674 			*trunc_end = range;
1675 		*trunc_len = *trunc_end - trunc_start;
1676 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1677 		*blkno = le64_to_cpu(rec->e_blkno) +
1678 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1679 		*trunc_end = trunc_start;
1680 	} else {
1681 		/*
1682 		 * It may have two following possibilities:
1683 		 *
1684 		 * - last record has been removed
1685 		 * - trunc_start was within a hole
1686 		 *
1687 		 * both two cases mean the completion of hole punching.
1688 		 */
1689 		ret = 1;
1690 	}
1691 
1692 	*done = ret;
1693 }
1694 
1695 int ocfs2_remove_inode_range(struct inode *inode,
1696 			     struct buffer_head *di_bh, u64 byte_start,
1697 			     u64 byte_len)
1698 {
1699 	int ret = 0, flags = 0, done = 0, i;
1700 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1701 	u32 cluster_in_el;
1702 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1703 	struct ocfs2_cached_dealloc_ctxt dealloc;
1704 	struct address_space *mapping = inode->i_mapping;
1705 	struct ocfs2_extent_tree et;
1706 	struct ocfs2_path *path = NULL;
1707 	struct ocfs2_extent_list *el = NULL;
1708 	struct ocfs2_extent_rec *rec = NULL;
1709 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1710 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1711 
1712 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1713 	ocfs2_init_dealloc_ctxt(&dealloc);
1714 
1715 	trace_ocfs2_remove_inode_range(
1716 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1717 			(unsigned long long)byte_start,
1718 			(unsigned long long)byte_len);
1719 
1720 	if (byte_len == 0)
1721 		return 0;
1722 
1723 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1724 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1725 					    byte_start + byte_len, 0);
1726 		if (ret) {
1727 			mlog_errno(ret);
1728 			goto out;
1729 		}
1730 		/*
1731 		 * There's no need to get fancy with the page cache
1732 		 * truncate of an inline-data inode. We're talking
1733 		 * about less than a page here, which will be cached
1734 		 * in the dinode buffer anyway.
1735 		 */
1736 		unmap_mapping_range(mapping, 0, 0, 0);
1737 		truncate_inode_pages(mapping, 0);
1738 		goto out;
1739 	}
1740 
1741 	/*
1742 	 * For reflinks, we may need to CoW 2 clusters which might be
1743 	 * partially zero'd later, if hole's start and end offset were
1744 	 * within one cluster(means is not exactly aligned to clustersize).
1745 	 */
1746 
1747 	if (ocfs2_is_refcount_inode(inode)) {
1748 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1749 		if (ret) {
1750 			mlog_errno(ret);
1751 			goto out;
1752 		}
1753 
1754 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1755 		if (ret) {
1756 			mlog_errno(ret);
1757 			goto out;
1758 		}
1759 	}
1760 
1761 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1762 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1763 	cluster_in_el = trunc_end;
1764 
1765 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1766 	if (ret) {
1767 		mlog_errno(ret);
1768 		goto out;
1769 	}
1770 
1771 	path = ocfs2_new_path_from_et(&et);
1772 	if (!path) {
1773 		ret = -ENOMEM;
1774 		mlog_errno(ret);
1775 		goto out;
1776 	}
1777 
1778 	while (trunc_end > trunc_start) {
1779 
1780 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1781 				      cluster_in_el);
1782 		if (ret) {
1783 			mlog_errno(ret);
1784 			goto out;
1785 		}
1786 
1787 		el = path_leaf_el(path);
1788 
1789 		i = ocfs2_find_rec(el, trunc_end);
1790 		/*
1791 		 * Need to go to previous extent block.
1792 		 */
1793 		if (i < 0) {
1794 			if (path->p_tree_depth == 0)
1795 				break;
1796 
1797 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1798 							    path,
1799 							    &cluster_in_el);
1800 			if (ret) {
1801 				mlog_errno(ret);
1802 				goto out;
1803 			}
1804 
1805 			/*
1806 			 * We've reached the leftmost extent block,
1807 			 * it's safe to leave.
1808 			 */
1809 			if (cluster_in_el == 0)
1810 				break;
1811 
1812 			/*
1813 			 * The 'pos' searched for previous extent block is
1814 			 * always one cluster less than actual trunc_end.
1815 			 */
1816 			trunc_end = cluster_in_el + 1;
1817 
1818 			ocfs2_reinit_path(path, 1);
1819 
1820 			continue;
1821 
1822 		} else
1823 			rec = &el->l_recs[i];
1824 
1825 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1826 				     &trunc_len, &trunc_end, &blkno, &done);
1827 		if (done)
1828 			break;
1829 
1830 		flags = rec->e_flags;
1831 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1832 
1833 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1834 					       phys_cpos, trunc_len, flags,
1835 					       &dealloc, refcount_loc, false);
1836 		if (ret < 0) {
1837 			mlog_errno(ret);
1838 			goto out;
1839 		}
1840 
1841 		cluster_in_el = trunc_end;
1842 
1843 		ocfs2_reinit_path(path, 1);
1844 	}
1845 
1846 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1847 
1848 out:
1849 	ocfs2_free_path(path);
1850 	ocfs2_schedule_truncate_log_flush(osb, 1);
1851 	ocfs2_run_deallocs(osb, &dealloc);
1852 
1853 	return ret;
1854 }
1855 
1856 /*
1857  * Parts of this function taken from xfs_change_file_space()
1858  */
1859 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1860 				     loff_t f_pos, unsigned int cmd,
1861 				     struct ocfs2_space_resv *sr,
1862 				     int change_size)
1863 {
1864 	int ret;
1865 	s64 llen;
1866 	loff_t size;
1867 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1868 	struct buffer_head *di_bh = NULL;
1869 	handle_t *handle;
1870 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1871 
1872 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1873 		return -EROFS;
1874 
1875 	inode_lock(inode);
1876 
1877 	/*
1878 	 * This prevents concurrent writes on other nodes
1879 	 */
1880 	ret = ocfs2_rw_lock(inode, 1);
1881 	if (ret) {
1882 		mlog_errno(ret);
1883 		goto out;
1884 	}
1885 
1886 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1887 	if (ret) {
1888 		mlog_errno(ret);
1889 		goto out_rw_unlock;
1890 	}
1891 
1892 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1893 		ret = -EPERM;
1894 		goto out_inode_unlock;
1895 	}
1896 
1897 	switch (sr->l_whence) {
1898 	case 0: /*SEEK_SET*/
1899 		break;
1900 	case 1: /*SEEK_CUR*/
1901 		sr->l_start += f_pos;
1902 		break;
1903 	case 2: /*SEEK_END*/
1904 		sr->l_start += i_size_read(inode);
1905 		break;
1906 	default:
1907 		ret = -EINVAL;
1908 		goto out_inode_unlock;
1909 	}
1910 	sr->l_whence = 0;
1911 
1912 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1913 
1914 	if (sr->l_start < 0
1915 	    || sr->l_start > max_off
1916 	    || (sr->l_start + llen) < 0
1917 	    || (sr->l_start + llen) > max_off) {
1918 		ret = -EINVAL;
1919 		goto out_inode_unlock;
1920 	}
1921 	size = sr->l_start + sr->l_len;
1922 
1923 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1924 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1925 		if (sr->l_len <= 0) {
1926 			ret = -EINVAL;
1927 			goto out_inode_unlock;
1928 		}
1929 	}
1930 
1931 	if (file && should_remove_suid(file->f_path.dentry)) {
1932 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1933 		if (ret) {
1934 			mlog_errno(ret);
1935 			goto out_inode_unlock;
1936 		}
1937 	}
1938 
1939 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1940 	switch (cmd) {
1941 	case OCFS2_IOC_RESVSP:
1942 	case OCFS2_IOC_RESVSP64:
1943 		/*
1944 		 * This takes unsigned offsets, but the signed ones we
1945 		 * pass have been checked against overflow above.
1946 		 */
1947 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1948 						       sr->l_len);
1949 		break;
1950 	case OCFS2_IOC_UNRESVSP:
1951 	case OCFS2_IOC_UNRESVSP64:
1952 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1953 					       sr->l_len);
1954 		break;
1955 	default:
1956 		ret = -EINVAL;
1957 	}
1958 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959 	if (ret) {
1960 		mlog_errno(ret);
1961 		goto out_inode_unlock;
1962 	}
1963 
1964 	/*
1965 	 * We update c/mtime for these changes
1966 	 */
1967 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1968 	if (IS_ERR(handle)) {
1969 		ret = PTR_ERR(handle);
1970 		mlog_errno(ret);
1971 		goto out_inode_unlock;
1972 	}
1973 
1974 	if (change_size && i_size_read(inode) < size)
1975 		i_size_write(inode, size);
1976 
1977 	inode->i_ctime = inode->i_mtime = current_time(inode);
1978 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1979 	if (ret < 0)
1980 		mlog_errno(ret);
1981 
1982 	if (file && (file->f_flags & O_SYNC))
1983 		handle->h_sync = 1;
1984 
1985 	ocfs2_commit_trans(osb, handle);
1986 
1987 out_inode_unlock:
1988 	brelse(di_bh);
1989 	ocfs2_inode_unlock(inode, 1);
1990 out_rw_unlock:
1991 	ocfs2_rw_unlock(inode, 1);
1992 
1993 out:
1994 	inode_unlock(inode);
1995 	return ret;
1996 }
1997 
1998 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1999 			    struct ocfs2_space_resv *sr)
2000 {
2001 	struct inode *inode = file_inode(file);
2002 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003 	int ret;
2004 
2005 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2006 	    !ocfs2_writes_unwritten_extents(osb))
2007 		return -ENOTTY;
2008 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2009 		 !ocfs2_sparse_alloc(osb))
2010 		return -ENOTTY;
2011 
2012 	if (!S_ISREG(inode->i_mode))
2013 		return -EINVAL;
2014 
2015 	if (!(file->f_mode & FMODE_WRITE))
2016 		return -EBADF;
2017 
2018 	ret = mnt_want_write_file(file);
2019 	if (ret)
2020 		return ret;
2021 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2022 	mnt_drop_write_file(file);
2023 	return ret;
2024 }
2025 
2026 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2027 			    loff_t len)
2028 {
2029 	struct inode *inode = file_inode(file);
2030 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2031 	struct ocfs2_space_resv sr;
2032 	int change_size = 1;
2033 	int cmd = OCFS2_IOC_RESVSP64;
2034 
2035 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2036 		return -EOPNOTSUPP;
2037 	if (!ocfs2_writes_unwritten_extents(osb))
2038 		return -EOPNOTSUPP;
2039 
2040 	if (mode & FALLOC_FL_KEEP_SIZE)
2041 		change_size = 0;
2042 
2043 	if (mode & FALLOC_FL_PUNCH_HOLE)
2044 		cmd = OCFS2_IOC_UNRESVSP64;
2045 
2046 	sr.l_whence = 0;
2047 	sr.l_start = (s64)offset;
2048 	sr.l_len = (s64)len;
2049 
2050 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2051 					 change_size);
2052 }
2053 
2054 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2055 				   size_t count)
2056 {
2057 	int ret = 0;
2058 	unsigned int extent_flags;
2059 	u32 cpos, clusters, extent_len, phys_cpos;
2060 	struct super_block *sb = inode->i_sb;
2061 
2062 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2063 	    !ocfs2_is_refcount_inode(inode) ||
2064 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2065 		return 0;
2066 
2067 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2068 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2069 
2070 	while (clusters) {
2071 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2072 					 &extent_flags);
2073 		if (ret < 0) {
2074 			mlog_errno(ret);
2075 			goto out;
2076 		}
2077 
2078 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2079 			ret = 1;
2080 			break;
2081 		}
2082 
2083 		if (extent_len > clusters)
2084 			extent_len = clusters;
2085 
2086 		clusters -= extent_len;
2087 		cpos += extent_len;
2088 	}
2089 out:
2090 	return ret;
2091 }
2092 
2093 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2094 {
2095 	int blockmask = inode->i_sb->s_blocksize - 1;
2096 	loff_t final_size = pos + count;
2097 
2098 	if ((pos & blockmask) || (final_size & blockmask))
2099 		return 1;
2100 	return 0;
2101 }
2102 
2103 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2104 					    struct buffer_head **di_bh,
2105 					    int meta_level,
2106 					    int write_sem,
2107 					    int wait)
2108 {
2109 	int ret = 0;
2110 
2111 	if (wait)
2112 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2113 	else
2114 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2115 	if (ret < 0)
2116 		goto out;
2117 
2118 	if (wait) {
2119 		if (write_sem)
2120 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2121 		else
2122 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2123 	} else {
2124 		if (write_sem)
2125 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126 		else
2127 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2128 
2129 		if (!ret) {
2130 			ret = -EAGAIN;
2131 			goto out_unlock;
2132 		}
2133 	}
2134 
2135 	return ret;
2136 
2137 out_unlock:
2138 	brelse(*di_bh);
2139 	*di_bh = NULL;
2140 	ocfs2_inode_unlock(inode, meta_level);
2141 out:
2142 	return ret;
2143 }
2144 
2145 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2146 					       struct buffer_head **di_bh,
2147 					       int meta_level,
2148 					       int write_sem)
2149 {
2150 	if (write_sem)
2151 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2152 	else
2153 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2154 
2155 	brelse(*di_bh);
2156 	*di_bh = NULL;
2157 
2158 	if (meta_level >= 0)
2159 		ocfs2_inode_unlock(inode, meta_level);
2160 }
2161 
2162 static int ocfs2_prepare_inode_for_write(struct file *file,
2163 					 loff_t pos, size_t count, int wait)
2164 {
2165 	int ret = 0, meta_level = 0, overwrite_io = 0;
2166 	int write_sem = 0;
2167 	struct dentry *dentry = file->f_path.dentry;
2168 	struct inode *inode = d_inode(dentry);
2169 	struct buffer_head *di_bh = NULL;
2170 	u32 cpos;
2171 	u32 clusters;
2172 
2173 	/*
2174 	 * We start with a read level meta lock and only jump to an ex
2175 	 * if we need to make modifications here.
2176 	 */
2177 	for(;;) {
2178 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2179 						       &di_bh,
2180 						       meta_level,
2181 						       write_sem,
2182 						       wait);
2183 		if (ret < 0) {
2184 			if (ret != -EAGAIN)
2185 				mlog_errno(ret);
2186 			goto out;
2187 		}
2188 
2189 		/*
2190 		 * Check if IO will overwrite allocated blocks in case
2191 		 * IOCB_NOWAIT flag is set.
2192 		 */
2193 		if (!wait && !overwrite_io) {
2194 			overwrite_io = 1;
2195 
2196 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2197 			if (ret < 0) {
2198 				if (ret != -EAGAIN)
2199 					mlog_errno(ret);
2200 				goto out_unlock;
2201 			}
2202 		}
2203 
2204 		/* Clear suid / sgid if necessary. We do this here
2205 		 * instead of later in the write path because
2206 		 * remove_suid() calls ->setattr without any hint that
2207 		 * we may have already done our cluster locking. Since
2208 		 * ocfs2_setattr() *must* take cluster locks to
2209 		 * proceed, this will lead us to recursively lock the
2210 		 * inode. There's also the dinode i_size state which
2211 		 * can be lost via setattr during extending writes (we
2212 		 * set inode->i_size at the end of a write. */
2213 		if (should_remove_suid(dentry)) {
2214 			if (meta_level == 0) {
2215 				ocfs2_inode_unlock_for_extent_tree(inode,
2216 								   &di_bh,
2217 								   meta_level,
2218 								   write_sem);
2219 				meta_level = 1;
2220 				continue;
2221 			}
2222 
2223 			ret = ocfs2_write_remove_suid(inode);
2224 			if (ret < 0) {
2225 				mlog_errno(ret);
2226 				goto out_unlock;
2227 			}
2228 		}
2229 
2230 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2231 		if (ret == 1) {
2232 			ocfs2_inode_unlock_for_extent_tree(inode,
2233 							   &di_bh,
2234 							   meta_level,
2235 							   write_sem);
2236 			meta_level = 1;
2237 			write_sem = 1;
2238 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2239 							       &di_bh,
2240 							       meta_level,
2241 							       write_sem,
2242 							       wait);
2243 			if (ret < 0) {
2244 				if (ret != -EAGAIN)
2245 					mlog_errno(ret);
2246 				goto out;
2247 			}
2248 
2249 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2250 			clusters =
2251 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2252 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2253 		}
2254 
2255 		if (ret < 0) {
2256 			if (ret != -EAGAIN)
2257 				mlog_errno(ret);
2258 			goto out_unlock;
2259 		}
2260 
2261 		break;
2262 	}
2263 
2264 out_unlock:
2265 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2266 					    pos, count, wait);
2267 
2268 	ocfs2_inode_unlock_for_extent_tree(inode,
2269 					   &di_bh,
2270 					   meta_level,
2271 					   write_sem);
2272 
2273 out:
2274 	return ret;
2275 }
2276 
2277 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2278 				    struct iov_iter *from)
2279 {
2280 	int rw_level;
2281 	ssize_t written = 0;
2282 	ssize_t ret;
2283 	size_t count = iov_iter_count(from);
2284 	struct file *file = iocb->ki_filp;
2285 	struct inode *inode = file_inode(file);
2286 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287 	int full_coherency = !(osb->s_mount_opt &
2288 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2289 	void *saved_ki_complete = NULL;
2290 	int append_write = ((iocb->ki_pos + count) >=
2291 			i_size_read(inode) ? 1 : 0);
2292 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2293 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2294 
2295 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2296 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2297 		file->f_path.dentry->d_name.len,
2298 		file->f_path.dentry->d_name.name,
2299 		(unsigned int)from->nr_segs);	/* GRRRRR */
2300 
2301 	if (!direct_io && nowait)
2302 		return -EOPNOTSUPP;
2303 
2304 	if (count == 0)
2305 		return 0;
2306 
2307 	if (nowait) {
2308 		if (!inode_trylock(inode))
2309 			return -EAGAIN;
2310 	} else
2311 		inode_lock(inode);
2312 
2313 	/*
2314 	 * Concurrent O_DIRECT writes are allowed with
2315 	 * mount_option "coherency=buffered".
2316 	 * For append write, we must take rw EX.
2317 	 */
2318 	rw_level = (!direct_io || full_coherency || append_write);
2319 
2320 	if (nowait)
2321 		ret = ocfs2_try_rw_lock(inode, rw_level);
2322 	else
2323 		ret = ocfs2_rw_lock(inode, rw_level);
2324 	if (ret < 0) {
2325 		if (ret != -EAGAIN)
2326 			mlog_errno(ret);
2327 		goto out_mutex;
2328 	}
2329 
2330 	/*
2331 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2332 	 * inode_lock to guarantee coherency.
2333 	 */
2334 	if (direct_io && full_coherency) {
2335 		/*
2336 		 * We need to take and drop the inode lock to force
2337 		 * other nodes to drop their caches.  Buffered I/O
2338 		 * already does this in write_begin().
2339 		 */
2340 		if (nowait)
2341 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2342 		else
2343 			ret = ocfs2_inode_lock(inode, NULL, 1);
2344 		if (ret < 0) {
2345 			if (ret != -EAGAIN)
2346 				mlog_errno(ret);
2347 			goto out;
2348 		}
2349 
2350 		ocfs2_inode_unlock(inode, 1);
2351 	}
2352 
2353 	ret = generic_write_checks(iocb, from);
2354 	if (ret <= 0) {
2355 		if (ret)
2356 			mlog_errno(ret);
2357 		goto out;
2358 	}
2359 	count = ret;
2360 
2361 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2362 	if (ret < 0) {
2363 		if (ret != -EAGAIN)
2364 			mlog_errno(ret);
2365 		goto out;
2366 	}
2367 
2368 	if (direct_io && !is_sync_kiocb(iocb) &&
2369 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2370 		/*
2371 		 * Make it a sync io if it's an unaligned aio.
2372 		 */
2373 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2374 	}
2375 
2376 	/* communicate with ocfs2_dio_end_io */
2377 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2378 
2379 	written = __generic_file_write_iter(iocb, from);
2380 	/* buffered aio wouldn't have proper lock coverage today */
2381 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2382 
2383 	/*
2384 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2385 	 * function pointer which is called when o_direct io completes so that
2386 	 * it can unlock our rw lock.
2387 	 * Unfortunately there are error cases which call end_io and others
2388 	 * that don't.  so we don't have to unlock the rw_lock if either an
2389 	 * async dio is going to do it in the future or an end_io after an
2390 	 * error has already done it.
2391 	 */
2392 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2393 		rw_level = -1;
2394 	}
2395 
2396 	if (unlikely(written <= 0))
2397 		goto out;
2398 
2399 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2400 	    IS_SYNC(inode)) {
2401 		ret = filemap_fdatawrite_range(file->f_mapping,
2402 					       iocb->ki_pos - written,
2403 					       iocb->ki_pos - 1);
2404 		if (ret < 0)
2405 			written = ret;
2406 
2407 		if (!ret) {
2408 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2409 			if (ret < 0)
2410 				written = ret;
2411 		}
2412 
2413 		if (!ret)
2414 			ret = filemap_fdatawait_range(file->f_mapping,
2415 						      iocb->ki_pos - written,
2416 						      iocb->ki_pos - 1);
2417 	}
2418 
2419 out:
2420 	if (saved_ki_complete)
2421 		xchg(&iocb->ki_complete, saved_ki_complete);
2422 
2423 	if (rw_level != -1)
2424 		ocfs2_rw_unlock(inode, rw_level);
2425 
2426 out_mutex:
2427 	inode_unlock(inode);
2428 
2429 	if (written)
2430 		ret = written;
2431 	return ret;
2432 }
2433 
2434 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2435 				   struct iov_iter *to)
2436 {
2437 	int ret = 0, rw_level = -1, lock_level = 0;
2438 	struct file *filp = iocb->ki_filp;
2439 	struct inode *inode = file_inode(filp);
2440 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2441 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2442 
2443 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2444 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2445 			filp->f_path.dentry->d_name.len,
2446 			filp->f_path.dentry->d_name.name,
2447 			to->nr_segs);	/* GRRRRR */
2448 
2449 
2450 	if (!inode) {
2451 		ret = -EINVAL;
2452 		mlog_errno(ret);
2453 		goto bail;
2454 	}
2455 
2456 	if (!direct_io && nowait)
2457 		return -EOPNOTSUPP;
2458 
2459 	/*
2460 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2461 	 * need locks to protect pending reads from racing with truncate.
2462 	 */
2463 	if (direct_io) {
2464 		if (nowait)
2465 			ret = ocfs2_try_rw_lock(inode, 0);
2466 		else
2467 			ret = ocfs2_rw_lock(inode, 0);
2468 
2469 		if (ret < 0) {
2470 			if (ret != -EAGAIN)
2471 				mlog_errno(ret);
2472 			goto bail;
2473 		}
2474 		rw_level = 0;
2475 		/* communicate with ocfs2_dio_end_io */
2476 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2477 	}
2478 
2479 	/*
2480 	 * We're fine letting folks race truncates and extending
2481 	 * writes with read across the cluster, just like they can
2482 	 * locally. Hence no rw_lock during read.
2483 	 *
2484 	 * Take and drop the meta data lock to update inode fields
2485 	 * like i_size. This allows the checks down below
2486 	 * generic_file_read_iter() a chance of actually working.
2487 	 */
2488 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2489 				     !nowait);
2490 	if (ret < 0) {
2491 		if (ret != -EAGAIN)
2492 			mlog_errno(ret);
2493 		goto bail;
2494 	}
2495 	ocfs2_inode_unlock(inode, lock_level);
2496 
2497 	ret = generic_file_read_iter(iocb, to);
2498 	trace_generic_file_read_iter_ret(ret);
2499 
2500 	/* buffered aio wouldn't have proper lock coverage today */
2501 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2502 
2503 	/* see ocfs2_file_write_iter */
2504 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2505 		rw_level = -1;
2506 	}
2507 
2508 bail:
2509 	if (rw_level != -1)
2510 		ocfs2_rw_unlock(inode, rw_level);
2511 
2512 	return ret;
2513 }
2514 
2515 /* Refer generic_file_llseek_unlocked() */
2516 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2517 {
2518 	struct inode *inode = file->f_mapping->host;
2519 	int ret = 0;
2520 
2521 	inode_lock(inode);
2522 
2523 	switch (whence) {
2524 	case SEEK_SET:
2525 		break;
2526 	case SEEK_END:
2527 		/* SEEK_END requires the OCFS2 inode lock for the file
2528 		 * because it references the file's size.
2529 		 */
2530 		ret = ocfs2_inode_lock(inode, NULL, 0);
2531 		if (ret < 0) {
2532 			mlog_errno(ret);
2533 			goto out;
2534 		}
2535 		offset += i_size_read(inode);
2536 		ocfs2_inode_unlock(inode, 0);
2537 		break;
2538 	case SEEK_CUR:
2539 		if (offset == 0) {
2540 			offset = file->f_pos;
2541 			goto out;
2542 		}
2543 		offset += file->f_pos;
2544 		break;
2545 	case SEEK_DATA:
2546 	case SEEK_HOLE:
2547 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2548 		if (ret)
2549 			goto out;
2550 		break;
2551 	default:
2552 		ret = -EINVAL;
2553 		goto out;
2554 	}
2555 
2556 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2557 
2558 out:
2559 	inode_unlock(inode);
2560 	if (ret)
2561 		return ret;
2562 	return offset;
2563 }
2564 
2565 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2566 				     struct file *file_out, loff_t pos_out,
2567 				     loff_t len, unsigned int remap_flags)
2568 {
2569 	struct inode *inode_in = file_inode(file_in);
2570 	struct inode *inode_out = file_inode(file_out);
2571 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2572 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2573 	bool same_inode = (inode_in == inode_out);
2574 	loff_t remapped = 0;
2575 	ssize_t ret;
2576 
2577 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2578 		return -EINVAL;
2579 	if (!ocfs2_refcount_tree(osb))
2580 		return -EOPNOTSUPP;
2581 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2582 		return -EROFS;
2583 
2584 	/* Lock both files against IO */
2585 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2586 	if (ret)
2587 		return ret;
2588 
2589 	/* Check file eligibility and prepare for block sharing. */
2590 	ret = -EINVAL;
2591 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2592 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2593 		goto out_unlock;
2594 
2595 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2596 			&len, remap_flags);
2597 	if (ret < 0 || len == 0)
2598 		goto out_unlock;
2599 
2600 	/* Lock out changes to the allocation maps and remap. */
2601 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2602 	if (!same_inode)
2603 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2604 				  SINGLE_DEPTH_NESTING);
2605 
2606 	/* Zap any page cache for the destination file's range. */
2607 	truncate_inode_pages_range(&inode_out->i_data,
2608 				   round_down(pos_out, PAGE_SIZE),
2609 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2610 
2611 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2612 			inode_out, out_bh, pos_out, len);
2613 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2614 	if (!same_inode)
2615 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2616 	if (remapped < 0) {
2617 		ret = remapped;
2618 		mlog_errno(ret);
2619 		goto out_unlock;
2620 	}
2621 
2622 	/*
2623 	 * Empty the extent map so that we may get the right extent
2624 	 * record from the disk.
2625 	 */
2626 	ocfs2_extent_map_trunc(inode_in, 0);
2627 	ocfs2_extent_map_trunc(inode_out, 0);
2628 
2629 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2630 	if (ret) {
2631 		mlog_errno(ret);
2632 		goto out_unlock;
2633 	}
2634 
2635 out_unlock:
2636 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2637 	return remapped > 0 ? remapped : ret;
2638 }
2639 
2640 const struct inode_operations ocfs2_file_iops = {
2641 	.setattr	= ocfs2_setattr,
2642 	.getattr	= ocfs2_getattr,
2643 	.permission	= ocfs2_permission,
2644 	.listxattr	= ocfs2_listxattr,
2645 	.fiemap		= ocfs2_fiemap,
2646 	.get_acl	= ocfs2_iop_get_acl,
2647 	.set_acl	= ocfs2_iop_set_acl,
2648 };
2649 
2650 const struct inode_operations ocfs2_special_file_iops = {
2651 	.setattr	= ocfs2_setattr,
2652 	.getattr	= ocfs2_getattr,
2653 	.permission	= ocfs2_permission,
2654 	.get_acl	= ocfs2_iop_get_acl,
2655 	.set_acl	= ocfs2_iop_set_acl,
2656 };
2657 
2658 /*
2659  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2660  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2661  */
2662 const struct file_operations ocfs2_fops = {
2663 	.llseek		= ocfs2_file_llseek,
2664 	.mmap		= ocfs2_mmap,
2665 	.fsync		= ocfs2_sync_file,
2666 	.release	= ocfs2_file_release,
2667 	.open		= ocfs2_file_open,
2668 	.read_iter	= ocfs2_file_read_iter,
2669 	.write_iter	= ocfs2_file_write_iter,
2670 	.unlocked_ioctl	= ocfs2_ioctl,
2671 #ifdef CONFIG_COMPAT
2672 	.compat_ioctl   = ocfs2_compat_ioctl,
2673 #endif
2674 	.lock		= ocfs2_lock,
2675 	.flock		= ocfs2_flock,
2676 	.splice_read	= generic_file_splice_read,
2677 	.splice_write	= iter_file_splice_write,
2678 	.fallocate	= ocfs2_fallocate,
2679 	.remap_file_range = ocfs2_remap_file_range,
2680 };
2681 
2682 const struct file_operations ocfs2_dops = {
2683 	.llseek		= generic_file_llseek,
2684 	.read		= generic_read_dir,
2685 	.iterate	= ocfs2_readdir,
2686 	.fsync		= ocfs2_sync_file,
2687 	.release	= ocfs2_dir_release,
2688 	.open		= ocfs2_dir_open,
2689 	.unlocked_ioctl	= ocfs2_ioctl,
2690 #ifdef CONFIG_COMPAT
2691 	.compat_ioctl   = ocfs2_compat_ioctl,
2692 #endif
2693 	.lock		= ocfs2_lock,
2694 	.flock		= ocfs2_flock,
2695 };
2696 
2697 /*
2698  * POSIX-lockless variants of our file_operations.
2699  *
2700  * These will be used if the underlying cluster stack does not support
2701  * posix file locking, if the user passes the "localflocks" mount
2702  * option, or if we have a local-only fs.
2703  *
2704  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2705  * so we still want it in the case of no stack support for
2706  * plocks. Internally, it will do the right thing when asked to ignore
2707  * the cluster.
2708  */
2709 const struct file_operations ocfs2_fops_no_plocks = {
2710 	.llseek		= ocfs2_file_llseek,
2711 	.mmap		= ocfs2_mmap,
2712 	.fsync		= ocfs2_sync_file,
2713 	.release	= ocfs2_file_release,
2714 	.open		= ocfs2_file_open,
2715 	.read_iter	= ocfs2_file_read_iter,
2716 	.write_iter	= ocfs2_file_write_iter,
2717 	.unlocked_ioctl	= ocfs2_ioctl,
2718 #ifdef CONFIG_COMPAT
2719 	.compat_ioctl   = ocfs2_compat_ioctl,
2720 #endif
2721 	.flock		= ocfs2_flock,
2722 	.splice_read	= generic_file_splice_read,
2723 	.splice_write	= iter_file_splice_write,
2724 	.fallocate	= ocfs2_fallocate,
2725 	.remap_file_range = ocfs2_remap_file_range,
2726 };
2727 
2728 const struct file_operations ocfs2_dops_no_plocks = {
2729 	.llseek		= generic_file_llseek,
2730 	.read		= generic_read_dir,
2731 	.iterate	= ocfs2_readdir,
2732 	.fsync		= ocfs2_sync_file,
2733 	.release	= ocfs2_dir_release,
2734 	.open		= ocfs2_dir_open,
2735 	.unlocked_ioctl	= ocfs2_ioctl,
2736 #ifdef CONFIG_COMPAT
2737 	.compat_ioctl   = ocfs2_compat_ioctl,
2738 #endif
2739 	.flock		= ocfs2_flock,
2740 };
2741