xref: /linux/fs/ocfs2/file.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 
28 #include <cluster/masklog.h>
29 
30 #include "ocfs2.h"
31 
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51 
52 #include "buffer_head_io.h"
53 
54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 	struct ocfs2_file_private *fp;
57 
58 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 	if (!fp)
60 		return -ENOMEM;
61 
62 	fp->fp_file = file;
63 	mutex_init(&fp->fp_mutex);
64 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 	file->private_data = fp;
66 
67 	return 0;
68 }
69 
70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 	struct ocfs2_file_private *fp = file->private_data;
73 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 
75 	if (fp) {
76 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 		ocfs2_lock_res_free(&fp->fp_flock);
78 		kfree(fp);
79 		file->private_data = NULL;
80 	}
81 }
82 
83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 	int status;
86 	int mode = file->f_flags;
87 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
88 
89 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 			      (unsigned long long)oi->ip_blkno,
91 			      file->f_path.dentry->d_name.len,
92 			      file->f_path.dentry->d_name.name, mode);
93 
94 	if (file->f_mode & FMODE_WRITE) {
95 		status = dquot_initialize(inode);
96 		if (status)
97 			goto leave;
98 	}
99 
100 	spin_lock(&oi->ip_lock);
101 
102 	/* Check that the inode hasn't been wiped from disk by another
103 	 * node. If it hasn't then we're safe as long as we hold the
104 	 * spin lock until our increment of open count. */
105 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 		spin_unlock(&oi->ip_lock);
107 
108 		status = -ENOENT;
109 		goto leave;
110 	}
111 
112 	if (mode & O_DIRECT)
113 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115 	oi->ip_open_count++;
116 	spin_unlock(&oi->ip_lock);
117 
118 	status = ocfs2_init_file_private(inode, file);
119 	if (status) {
120 		/*
121 		 * We want to set open count back if we're failing the
122 		 * open.
123 		 */
124 		spin_lock(&oi->ip_lock);
125 		oi->ip_open_count--;
126 		spin_unlock(&oi->ip_lock);
127 	}
128 
129 	file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132 	return status;
133 }
134 
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139 	spin_lock(&oi->ip_lock);
140 	if (!--oi->ip_open_count)
141 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 				 oi->ip_blkno,
145 				 file->f_path.dentry->d_name.len,
146 				 file->f_path.dentry->d_name.name,
147 				 oi->ip_open_count);
148 	spin_unlock(&oi->ip_lock);
149 
150 	ocfs2_free_file_private(inode, file);
151 
152 	return 0;
153 }
154 
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 	return ocfs2_init_file_private(inode, file);
158 }
159 
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 	ocfs2_free_file_private(inode, file);
163 	return 0;
164 }
165 
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 			   int datasync)
168 {
169 	int err = 0;
170 	struct inode *inode = file->f_mapping->host;
171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 	journal_t *journal = osb->journal->j_journal;
174 	int ret;
175 	tid_t commit_tid;
176 	bool needs_barrier = false;
177 
178 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 			      oi->ip_blkno,
180 			      file->f_path.dentry->d_name.len,
181 			      file->f_path.dentry->d_name.name,
182 			      (unsigned long long)datasync);
183 
184 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 		return -EROFS;
186 
187 	err = file_write_and_wait_range(file, start, end);
188 	if (err)
189 		return err;
190 
191 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 	if (journal->j_flags & JBD2_BARRIER &&
193 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 		needs_barrier = true;
195 	err = jbd2_complete_transaction(journal, commit_tid);
196 	if (needs_barrier) {
197 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
198 		if (!err)
199 			err = ret;
200 	}
201 
202 	if (err)
203 		mlog_errno(err);
204 
205 	return (err < 0) ? -EIO : 0;
206 }
207 
208 int ocfs2_should_update_atime(struct inode *inode,
209 			      struct vfsmount *vfsmnt)
210 {
211 	struct timespec64 now;
212 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 		return 0;
216 
217 	if ((inode->i_flags & S_NOATIME) ||
218 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 		return 0;
220 
221 	/*
222 	 * We can be called with no vfsmnt structure - NFSD will
223 	 * sometimes do this.
224 	 *
225 	 * Note that our action here is different than touch_atime() -
226 	 * if we can't tell whether this is a noatime mount, then we
227 	 * don't know whether to trust the value of s_atime_quantum.
228 	 */
229 	if (vfsmnt == NULL)
230 		return 0;
231 
232 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 		return 0;
235 
236 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_mutex to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 	truncate_inode_pages(inode->i_mapping, new_i_size);
483 
484 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 					       i_size_read(inode), 1);
487 		if (status)
488 			mlog_errno(status);
489 
490 		goto bail_unlock_sem;
491 	}
492 
493 	/* alright, we're going to need to do a full blown alloc size
494 	 * change. Orphan the inode so that recovery can complete the
495 	 * truncate if necessary. This does the task of marking
496 	 * i_size. */
497 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 	if (status < 0) {
499 		mlog_errno(status);
500 		goto bail_unlock_sem;
501 	}
502 
503 	status = ocfs2_commit_truncate(osb, inode, di_bh);
504 	if (status < 0) {
505 		mlog_errno(status);
506 		goto bail_unlock_sem;
507 	}
508 
509 	/* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
512 
513 bail:
514 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516 
517 	return status;
518 }
519 
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 			 struct inode *inode,
532 			 u32 *logical_offset,
533 			 u32 clusters_to_add,
534 			 int mark_unwritten,
535 			 struct buffer_head *fe_bh,
536 			 handle_t *handle,
537 			 struct ocfs2_alloc_context *data_ac,
538 			 struct ocfs2_alloc_context *meta_ac,
539 			 enum ocfs2_alloc_restarted *reason_ret)
540 {
541 	int ret;
542 	struct ocfs2_extent_tree et;
543 
544 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 					  clusters_to_add, mark_unwritten,
547 					  data_ac, meta_ac, reason_ret);
548 
549 	return ret;
550 }
551 
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 				   u32 clusters_to_add, int mark_unwritten)
554 {
555 	int status = 0;
556 	int restart_func = 0;
557 	int credits;
558 	u32 prev_clusters;
559 	struct buffer_head *bh = NULL;
560 	struct ocfs2_dinode *fe = NULL;
561 	handle_t *handle = NULL;
562 	struct ocfs2_alloc_context *data_ac = NULL;
563 	struct ocfs2_alloc_context *meta_ac = NULL;
564 	enum ocfs2_alloc_restarted why = RESTART_NONE;
565 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 	struct ocfs2_extent_tree et;
567 	int did_quota = 0;
568 
569 	/*
570 	 * Unwritten extent only exists for file systems which
571 	 * support holes.
572 	 */
573 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574 
575 	status = ocfs2_read_inode_block(inode, &bh);
576 	if (status < 0) {
577 		mlog_errno(status);
578 		goto leave;
579 	}
580 	fe = (struct ocfs2_dinode *) bh->b_data;
581 
582 restart_all:
583 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584 
585 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 				       &data_ac, &meta_ac);
588 	if (status) {
589 		mlog_errno(status);
590 		goto leave;
591 	}
592 
593 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 	handle = ocfs2_start_trans(osb, credits);
595 	if (IS_ERR(handle)) {
596 		status = PTR_ERR(handle);
597 		handle = NULL;
598 		mlog_errno(status);
599 		goto leave;
600 	}
601 
602 restarted_transaction:
603 	trace_ocfs2_extend_allocation(
604 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
605 		(unsigned long long)i_size_read(inode),
606 		le32_to_cpu(fe->i_clusters), clusters_to_add,
607 		why, restart_func);
608 
609 	status = dquot_alloc_space_nodirty(inode,
610 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 	if (status)
612 		goto leave;
613 	did_quota = 1;
614 
615 	/* reserve a write to the file entry early on - that we if we
616 	 * run out of credits in the allocation path, we can still
617 	 * update i_size. */
618 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 					 OCFS2_JOURNAL_ACCESS_WRITE);
620 	if (status < 0) {
621 		mlog_errno(status);
622 		goto leave;
623 	}
624 
625 	prev_clusters = OCFS2_I(inode)->ip_clusters;
626 
627 	status = ocfs2_add_inode_data(osb,
628 				      inode,
629 				      &logical_start,
630 				      clusters_to_add,
631 				      mark_unwritten,
632 				      bh,
633 				      handle,
634 				      data_ac,
635 				      meta_ac,
636 				      &why);
637 	if ((status < 0) && (status != -EAGAIN)) {
638 		if (status != -ENOSPC)
639 			mlog_errno(status);
640 		goto leave;
641 	}
642 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 	ocfs2_journal_dirty(handle, bh);
644 
645 	spin_lock(&OCFS2_I(inode)->ip_lock);
646 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 	spin_unlock(&OCFS2_I(inode)->ip_lock);
648 	/* Release unused quota reservation */
649 	dquot_free_space(inode,
650 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 	did_quota = 0;
652 
653 	if (why != RESTART_NONE && clusters_to_add) {
654 		if (why == RESTART_META) {
655 			restart_func = 1;
656 			status = 0;
657 		} else {
658 			BUG_ON(why != RESTART_TRANS);
659 
660 			status = ocfs2_allocate_extend_trans(handle, 1);
661 			if (status < 0) {
662 				/* handle still has to be committed at
663 				 * this point. */
664 				status = -ENOMEM;
665 				mlog_errno(status);
666 				goto leave;
667 			}
668 			goto restarted_transaction;
669 		}
670 	}
671 
672 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 	     le32_to_cpu(fe->i_clusters),
674 	     (unsigned long long)le64_to_cpu(fe->i_size),
675 	     OCFS2_I(inode)->ip_clusters,
676 	     (unsigned long long)i_size_read(inode));
677 
678 leave:
679 	if (status < 0 && did_quota)
680 		dquot_free_space(inode,
681 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 	if (handle) {
683 		ocfs2_commit_trans(osb, handle);
684 		handle = NULL;
685 	}
686 	if (data_ac) {
687 		ocfs2_free_alloc_context(data_ac);
688 		data_ac = NULL;
689 	}
690 	if (meta_ac) {
691 		ocfs2_free_alloc_context(meta_ac);
692 		meta_ac = NULL;
693 	}
694 	if ((!status) && restart_func) {
695 		restart_func = 0;
696 		goto restart_all;
697 	}
698 	brelse(bh);
699 	bh = NULL;
700 
701 	return status;
702 }
703 
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 						      struct buffer_head *di_bh,
710 						      loff_t start_byte,
711 						      loff_t length)
712 {
713 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714 	handle_t *handle = NULL;
715 	int ret = 0;
716 
717 	if (!ocfs2_should_order_data(inode))
718 		goto out;
719 
720 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721 	if (IS_ERR(handle)) {
722 		ret = -ENOMEM;
723 		mlog_errno(ret);
724 		goto out;
725 	}
726 
727 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728 	if (ret < 0) {
729 		mlog_errno(ret);
730 		goto out;
731 	}
732 
733 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734 				      OCFS2_JOURNAL_ACCESS_WRITE);
735 	if (ret)
736 		mlog_errno(ret);
737 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
738 
739 out:
740 	if (ret) {
741 		if (!IS_ERR(handle))
742 			ocfs2_commit_trans(osb, handle);
743 		handle = ERR_PTR(ret);
744 	}
745 	return handle;
746 }
747 
748 /* Some parts of this taken from generic_cont_expand, which turned out
749  * to be too fragile to do exactly what we need without us having to
750  * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752 				 u64 abs_to, struct buffer_head *di_bh)
753 {
754 	struct address_space *mapping = inode->i_mapping;
755 	struct page *page;
756 	unsigned long index = abs_from >> PAGE_SHIFT;
757 	handle_t *handle;
758 	int ret = 0;
759 	unsigned zero_from, zero_to, block_start, block_end;
760 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761 
762 	BUG_ON(abs_from >= abs_to);
763 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764 	BUG_ON(abs_from & (inode->i_blkbits - 1));
765 
766 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767 						      abs_from,
768 						      abs_to - abs_from);
769 	if (IS_ERR(handle)) {
770 		ret = PTR_ERR(handle);
771 		goto out;
772 	}
773 
774 	page = find_or_create_page(mapping, index, GFP_NOFS);
775 	if (!page) {
776 		ret = -ENOMEM;
777 		mlog_errno(ret);
778 		goto out_commit_trans;
779 	}
780 
781 	/* Get the offsets within the page that we want to zero */
782 	zero_from = abs_from & (PAGE_SIZE - 1);
783 	zero_to = abs_to & (PAGE_SIZE - 1);
784 	if (!zero_to)
785 		zero_to = PAGE_SIZE;
786 
787 	trace_ocfs2_write_zero_page(
788 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
789 			(unsigned long long)abs_from,
790 			(unsigned long long)abs_to,
791 			index, zero_from, zero_to);
792 
793 	/* We know that zero_from is block aligned */
794 	for (block_start = zero_from; block_start < zero_to;
795 	     block_start = block_end) {
796 		block_end = block_start + i_blocksize(inode);
797 
798 		/*
799 		 * block_start is block-aligned.  Bump it by one to force
800 		 * __block_write_begin and block_commit_write to zero the
801 		 * whole block.
802 		 */
803 		ret = __block_write_begin(page, block_start + 1, 0,
804 					  ocfs2_get_block);
805 		if (ret < 0) {
806 			mlog_errno(ret);
807 			goto out_unlock;
808 		}
809 
810 
811 		/* must not update i_size! */
812 		ret = block_commit_write(page, block_start + 1,
813 					 block_start + 1);
814 		if (ret < 0)
815 			mlog_errno(ret);
816 		else
817 			ret = 0;
818 	}
819 
820 	/*
821 	 * fs-writeback will release the dirty pages without page lock
822 	 * whose offset are over inode size, the release happens at
823 	 * block_write_full_page().
824 	 */
825 	i_size_write(inode, abs_to);
826 	inode->i_blocks = ocfs2_inode_sector_count(inode);
827 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
828 	inode->i_mtime = inode->i_ctime = current_time(inode);
829 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831 	di->i_mtime_nsec = di->i_ctime_nsec;
832 	if (handle) {
833 		ocfs2_journal_dirty(handle, di_bh);
834 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
835 	}
836 
837 out_unlock:
838 	unlock_page(page);
839 	put_page(page);
840 out_commit_trans:
841 	if (handle)
842 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844 	return ret;
845 }
846 
847 /*
848  * Find the next range to zero.  We do this in terms of bytes because
849  * that's what ocfs2_zero_extend() wants, and it is dealing with the
850  * pagecache.  We may return multiple extents.
851  *
852  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853  * needs to be zeroed.  range_start and range_end return the next zeroing
854  * range.  A subsequent call should pass the previous range_end as its
855  * zero_start.  If range_end is 0, there's nothing to do.
856  *
857  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
858  */
859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860 				       struct buffer_head *di_bh,
861 				       u64 zero_start, u64 zero_end,
862 				       u64 *range_start, u64 *range_end)
863 {
864 	int rc = 0, needs_cow = 0;
865 	u32 p_cpos, zero_clusters = 0;
866 	u32 zero_cpos =
867 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869 	unsigned int num_clusters = 0;
870 	unsigned int ext_flags = 0;
871 
872 	while (zero_cpos < last_cpos) {
873 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874 					&num_clusters, &ext_flags);
875 		if (rc) {
876 			mlog_errno(rc);
877 			goto out;
878 		}
879 
880 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881 			zero_clusters = num_clusters;
882 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 				needs_cow = 1;
884 			break;
885 		}
886 
887 		zero_cpos += num_clusters;
888 	}
889 	if (!zero_clusters) {
890 		*range_end = 0;
891 		goto out;
892 	}
893 
894 	while ((zero_cpos + zero_clusters) < last_cpos) {
895 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896 					&p_cpos, &num_clusters,
897 					&ext_flags);
898 		if (rc) {
899 			mlog_errno(rc);
900 			goto out;
901 		}
902 
903 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904 			break;
905 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 			needs_cow = 1;
907 		zero_clusters += num_clusters;
908 	}
909 	if ((zero_cpos + zero_clusters) > last_cpos)
910 		zero_clusters = last_cpos - zero_cpos;
911 
912 	if (needs_cow) {
913 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914 					zero_clusters, UINT_MAX);
915 		if (rc) {
916 			mlog_errno(rc);
917 			goto out;
918 		}
919 	}
920 
921 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923 					     zero_cpos + zero_clusters);
924 
925 out:
926 	return rc;
927 }
928 
929 /*
930  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
931  * has made sure that the entire range needs zeroing.
932  */
933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934 				   u64 range_end, struct buffer_head *di_bh)
935 {
936 	int rc = 0;
937 	u64 next_pos;
938 	u64 zero_pos = range_start;
939 
940 	trace_ocfs2_zero_extend_range(
941 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
942 			(unsigned long long)range_start,
943 			(unsigned long long)range_end);
944 	BUG_ON(range_start >= range_end);
945 
946 	while (zero_pos < range_end) {
947 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948 		if (next_pos > range_end)
949 			next_pos = range_end;
950 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951 		if (rc < 0) {
952 			mlog_errno(rc);
953 			break;
954 		}
955 		zero_pos = next_pos;
956 
957 		/*
958 		 * Very large extends have the potential to lock up
959 		 * the cpu for extended periods of time.
960 		 */
961 		cond_resched();
962 	}
963 
964 	return rc;
965 }
966 
967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968 		      loff_t zero_to_size)
969 {
970 	int ret = 0;
971 	u64 zero_start, range_start = 0, range_end = 0;
972 	struct super_block *sb = inode->i_sb;
973 
974 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976 				(unsigned long long)zero_start,
977 				(unsigned long long)i_size_read(inode));
978 	while (zero_start < zero_to_size) {
979 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980 						  zero_to_size,
981 						  &range_start,
982 						  &range_end);
983 		if (ret) {
984 			mlog_errno(ret);
985 			break;
986 		}
987 		if (!range_end)
988 			break;
989 		/* Trim the ends */
990 		if (range_start < zero_start)
991 			range_start = zero_start;
992 		if (range_end > zero_to_size)
993 			range_end = zero_to_size;
994 
995 		ret = ocfs2_zero_extend_range(inode, range_start,
996 					      range_end, di_bh);
997 		if (ret) {
998 			mlog_errno(ret);
999 			break;
1000 		}
1001 		zero_start = range_end;
1002 	}
1003 
1004 	return ret;
1005 }
1006 
1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008 			  u64 new_i_size, u64 zero_to)
1009 {
1010 	int ret;
1011 	u32 clusters_to_add;
1012 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013 
1014 	/*
1015 	 * Only quota files call this without a bh, and they can't be
1016 	 * refcounted.
1017 	 */
1018 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020 
1021 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022 	if (clusters_to_add < oi->ip_clusters)
1023 		clusters_to_add = 0;
1024 	else
1025 		clusters_to_add -= oi->ip_clusters;
1026 
1027 	if (clusters_to_add) {
1028 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029 					      clusters_to_add, 0);
1030 		if (ret) {
1031 			mlog_errno(ret);
1032 			goto out;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Call this even if we don't add any clusters to the tree. We
1038 	 * still need to zero the area between the old i_size and the
1039 	 * new i_size.
1040 	 */
1041 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 	if (ret < 0)
1043 		mlog_errno(ret);
1044 
1045 out:
1046 	return ret;
1047 }
1048 
1049 static int ocfs2_extend_file(struct inode *inode,
1050 			     struct buffer_head *di_bh,
1051 			     u64 new_i_size)
1052 {
1053 	int ret = 0;
1054 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055 
1056 	BUG_ON(!di_bh);
1057 
1058 	/* setattr sometimes calls us like this. */
1059 	if (new_i_size == 0)
1060 		goto out;
1061 
1062 	if (i_size_read(inode) == new_i_size)
1063 		goto out;
1064 	BUG_ON(new_i_size < i_size_read(inode));
1065 
1066 	/*
1067 	 * The alloc sem blocks people in read/write from reading our
1068 	 * allocation until we're done changing it. We depend on
1069 	 * i_mutex to block other extend/truncate calls while we're
1070 	 * here.  We even have to hold it for sparse files because there
1071 	 * might be some tail zeroing.
1072 	 */
1073 	down_write(&oi->ip_alloc_sem);
1074 
1075 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076 		/*
1077 		 * We can optimize small extends by keeping the inodes
1078 		 * inline data.
1079 		 */
1080 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081 			up_write(&oi->ip_alloc_sem);
1082 			goto out_update_size;
1083 		}
1084 
1085 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086 		if (ret) {
1087 			up_write(&oi->ip_alloc_sem);
1088 			mlog_errno(ret);
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095 	else
1096 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097 					    new_i_size);
1098 
1099 	up_write(&oi->ip_alloc_sem);
1100 
1101 	if (ret < 0) {
1102 		mlog_errno(ret);
1103 		goto out;
1104 	}
1105 
1106 out_update_size:
1107 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 	if (ret < 0)
1109 		mlog_errno(ret);
1110 
1111 out:
1112 	return ret;
1113 }
1114 
1115 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1116 {
1117 	int status = 0, size_change;
1118 	int inode_locked = 0;
1119 	struct inode *inode = d_inode(dentry);
1120 	struct super_block *sb = inode->i_sb;
1121 	struct ocfs2_super *osb = OCFS2_SB(sb);
1122 	struct buffer_head *bh = NULL;
1123 	handle_t *handle = NULL;
1124 	struct dquot *transfer_to[MAXQUOTAS] = { };
1125 	int qtype;
1126 	int had_lock;
1127 	struct ocfs2_lock_holder oh;
1128 
1129 	trace_ocfs2_setattr(inode, dentry,
1130 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 			    dentry->d_name.len, dentry->d_name.name,
1132 			    attr->ia_valid, attr->ia_mode,
1133 			    from_kuid(&init_user_ns, attr->ia_uid),
1134 			    from_kgid(&init_user_ns, attr->ia_gid));
1135 
1136 	/* ensuring we don't even attempt to truncate a symlink */
1137 	if (S_ISLNK(inode->i_mode))
1138 		attr->ia_valid &= ~ATTR_SIZE;
1139 
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143 		return 0;
1144 
1145 	status = setattr_prepare(dentry, attr);
1146 	if (status)
1147 		return status;
1148 
1149 	if (is_quota_modification(inode, attr)) {
1150 		status = dquot_initialize(inode);
1151 		if (status)
1152 			return status;
1153 	}
1154 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 	if (size_change) {
1156 		/*
1157 		 * Here we should wait dio to finish before inode lock
1158 		 * to avoid a deadlock between ocfs2_setattr() and
1159 		 * ocfs2_dio_end_io_write()
1160 		 */
1161 		inode_dio_wait(inode);
1162 
1163 		status = ocfs2_rw_lock(inode, 1);
1164 		if (status < 0) {
1165 			mlog_errno(status);
1166 			goto bail;
1167 		}
1168 	}
1169 
1170 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171 	if (had_lock < 0) {
1172 		status = had_lock;
1173 		goto bail_unlock_rw;
1174 	} else if (had_lock) {
1175 		/*
1176 		 * As far as we know, ocfs2_setattr() could only be the first
1177 		 * VFS entry point in the call chain of recursive cluster
1178 		 * locking issue.
1179 		 *
1180 		 * For instance:
1181 		 * chmod_common()
1182 		 *  notify_change()
1183 		 *   ocfs2_setattr()
1184 		 *    posix_acl_chmod()
1185 		 *     ocfs2_iop_get_acl()
1186 		 *
1187 		 * But, we're not 100% sure if it's always true, because the
1188 		 * ordering of the VFS entry points in the call chain is out
1189 		 * of our control. So, we'd better dump the stack here to
1190 		 * catch the other cases of recursive locking.
1191 		 */
1192 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1193 		dump_stack();
1194 	}
1195 	inode_locked = 1;
1196 
1197 	if (size_change) {
1198 		status = inode_newsize_ok(inode, attr->ia_size);
1199 		if (status)
1200 			goto bail_unlock;
1201 
1202 		if (i_size_read(inode) >= attr->ia_size) {
1203 			if (ocfs2_should_order_data(inode)) {
1204 				status = ocfs2_begin_ordered_truncate(inode,
1205 								      attr->ia_size);
1206 				if (status)
1207 					goto bail_unlock;
1208 			}
1209 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210 		} else
1211 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212 		if (status < 0) {
1213 			if (status != -ENOSPC)
1214 				mlog_errno(status);
1215 			status = -ENOSPC;
1216 			goto bail_unlock;
1217 		}
1218 	}
1219 
1220 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222 		/*
1223 		 * Gather pointers to quota structures so that allocation /
1224 		 * freeing of quota structures happens here and not inside
1225 		 * dquot_transfer() where we have problems with lock ordering
1226 		 */
1227 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231 			if (IS_ERR(transfer_to[USRQUOTA])) {
1232 				status = PTR_ERR(transfer_to[USRQUOTA]);
1233 				transfer_to[USRQUOTA] = NULL;
1234 				goto bail_unlock;
1235 			}
1236 		}
1237 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1242 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1243 				transfer_to[GRPQUOTA] = NULL;
1244 				goto bail_unlock;
1245 			}
1246 		}
1247 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 					   2 * ocfs2_quota_trans_credits(sb));
1249 		if (IS_ERR(handle)) {
1250 			status = PTR_ERR(handle);
1251 			mlog_errno(status);
1252 			goto bail_unlock;
1253 		}
1254 		status = __dquot_transfer(inode, transfer_to);
1255 		if (status < 0)
1256 			goto bail_commit;
1257 	} else {
1258 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1259 		if (IS_ERR(handle)) {
1260 			status = PTR_ERR(handle);
1261 			mlog_errno(status);
1262 			goto bail_unlock;
1263 		}
1264 	}
1265 
1266 	setattr_copy(inode, attr);
1267 	mark_inode_dirty(inode);
1268 
1269 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1270 	if (status < 0)
1271 		mlog_errno(status);
1272 
1273 bail_commit:
1274 	ocfs2_commit_trans(osb, handle);
1275 bail_unlock:
1276 	if (status && inode_locked) {
1277 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1278 		inode_locked = 0;
1279 	}
1280 bail_unlock_rw:
1281 	if (size_change)
1282 		ocfs2_rw_unlock(inode, 1);
1283 bail:
1284 
1285 	/* Release quota pointers in case we acquired them */
1286 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1287 		dqput(transfer_to[qtype]);
1288 
1289 	if (!status && attr->ia_valid & ATTR_MODE) {
1290 		status = ocfs2_acl_chmod(inode, bh);
1291 		if (status < 0)
1292 			mlog_errno(status);
1293 	}
1294 	if (inode_locked)
1295 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1296 
1297 	brelse(bh);
1298 	return status;
1299 }
1300 
1301 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1302 		  u32 request_mask, unsigned int flags)
1303 {
1304 	struct inode *inode = d_inode(path->dentry);
1305 	struct super_block *sb = path->dentry->d_sb;
1306 	struct ocfs2_super *osb = sb->s_fs_info;
1307 	int err;
1308 
1309 	err = ocfs2_inode_revalidate(path->dentry);
1310 	if (err) {
1311 		if (err != -ENOENT)
1312 			mlog_errno(err);
1313 		goto bail;
1314 	}
1315 
1316 	generic_fillattr(inode, stat);
1317 	/*
1318 	 * If there is inline data in the inode, the inode will normally not
1319 	 * have data blocks allocated (it may have an external xattr block).
1320 	 * Report at least one sector for such files, so tools like tar, rsync,
1321 	 * others don't incorrectly think the file is completely sparse.
1322 	 */
1323 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1324 		stat->blocks += (stat->size + 511)>>9;
1325 
1326 	/* We set the blksize from the cluster size for performance */
1327 	stat->blksize = osb->s_clustersize;
1328 
1329 bail:
1330 	return err;
1331 }
1332 
1333 int ocfs2_permission(struct inode *inode, int mask)
1334 {
1335 	int ret, had_lock;
1336 	struct ocfs2_lock_holder oh;
1337 
1338 	if (mask & MAY_NOT_BLOCK)
1339 		return -ECHILD;
1340 
1341 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1342 	if (had_lock < 0) {
1343 		ret = had_lock;
1344 		goto out;
1345 	} else if (had_lock) {
1346 		/* See comments in ocfs2_setattr() for details.
1347 		 * The call chain of this case could be:
1348 		 * do_sys_open()
1349 		 *  may_open()
1350 		 *   inode_permission()
1351 		 *    ocfs2_permission()
1352 		 *     ocfs2_iop_get_acl()
1353 		 */
1354 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1355 		dump_stack();
1356 	}
1357 
1358 	ret = generic_permission(inode, mask);
1359 
1360 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1361 out:
1362 	return ret;
1363 }
1364 
1365 static int __ocfs2_write_remove_suid(struct inode *inode,
1366 				     struct buffer_head *bh)
1367 {
1368 	int ret;
1369 	handle_t *handle;
1370 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1371 	struct ocfs2_dinode *di;
1372 
1373 	trace_ocfs2_write_remove_suid(
1374 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1375 			inode->i_mode);
1376 
1377 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1378 	if (IS_ERR(handle)) {
1379 		ret = PTR_ERR(handle);
1380 		mlog_errno(ret);
1381 		goto out;
1382 	}
1383 
1384 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1385 				      OCFS2_JOURNAL_ACCESS_WRITE);
1386 	if (ret < 0) {
1387 		mlog_errno(ret);
1388 		goto out_trans;
1389 	}
1390 
1391 	inode->i_mode &= ~S_ISUID;
1392 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1393 		inode->i_mode &= ~S_ISGID;
1394 
1395 	di = (struct ocfs2_dinode *) bh->b_data;
1396 	di->i_mode = cpu_to_le16(inode->i_mode);
1397 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1398 
1399 	ocfs2_journal_dirty(handle, bh);
1400 
1401 out_trans:
1402 	ocfs2_commit_trans(osb, handle);
1403 out:
1404 	return ret;
1405 }
1406 
1407 static int ocfs2_write_remove_suid(struct inode *inode)
1408 {
1409 	int ret;
1410 	struct buffer_head *bh = NULL;
1411 
1412 	ret = ocfs2_read_inode_block(inode, &bh);
1413 	if (ret < 0) {
1414 		mlog_errno(ret);
1415 		goto out;
1416 	}
1417 
1418 	ret =  __ocfs2_write_remove_suid(inode, bh);
1419 out:
1420 	brelse(bh);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Allocate enough extents to cover the region starting at byte offset
1426  * start for len bytes. Existing extents are skipped, any extents
1427  * added are marked as "unwritten".
1428  */
1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1430 					    u64 start, u64 len)
1431 {
1432 	int ret;
1433 	u32 cpos, phys_cpos, clusters, alloc_size;
1434 	u64 end = start + len;
1435 	struct buffer_head *di_bh = NULL;
1436 
1437 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1438 		ret = ocfs2_read_inode_block(inode, &di_bh);
1439 		if (ret) {
1440 			mlog_errno(ret);
1441 			goto out;
1442 		}
1443 
1444 		/*
1445 		 * Nothing to do if the requested reservation range
1446 		 * fits within the inode.
1447 		 */
1448 		if (ocfs2_size_fits_inline_data(di_bh, end))
1449 			goto out;
1450 
1451 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452 		if (ret) {
1453 			mlog_errno(ret);
1454 			goto out;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * We consider both start and len to be inclusive.
1460 	 */
1461 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1462 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1463 	clusters -= cpos;
1464 
1465 	while (clusters) {
1466 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467 					 &alloc_size, NULL);
1468 		if (ret) {
1469 			mlog_errno(ret);
1470 			goto out;
1471 		}
1472 
1473 		/*
1474 		 * Hole or existing extent len can be arbitrary, so
1475 		 * cap it to our own allocation request.
1476 		 */
1477 		if (alloc_size > clusters)
1478 			alloc_size = clusters;
1479 
1480 		if (phys_cpos) {
1481 			/*
1482 			 * We already have an allocation at this
1483 			 * region so we can safely skip it.
1484 			 */
1485 			goto next;
1486 		}
1487 
1488 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1489 		if (ret) {
1490 			if (ret != -ENOSPC)
1491 				mlog_errno(ret);
1492 			goto out;
1493 		}
1494 
1495 next:
1496 		cpos += alloc_size;
1497 		clusters -= alloc_size;
1498 	}
1499 
1500 	ret = 0;
1501 out:
1502 
1503 	brelse(di_bh);
1504 	return ret;
1505 }
1506 
1507 /*
1508  * Truncate a byte range, avoiding pages within partial clusters. This
1509  * preserves those pages for the zeroing code to write to.
1510  */
1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1512 					 u64 byte_len)
1513 {
1514 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515 	loff_t start, end;
1516 	struct address_space *mapping = inode->i_mapping;
1517 
1518 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1519 	end = byte_start + byte_len;
1520 	end = end & ~(osb->s_clustersize - 1);
1521 
1522 	if (start < end) {
1523 		unmap_mapping_range(mapping, start, end - start, 0);
1524 		truncate_inode_pages_range(mapping, start, end - 1);
1525 	}
1526 }
1527 
1528 static int ocfs2_zero_partial_clusters(struct inode *inode,
1529 				       u64 start, u64 len)
1530 {
1531 	int ret = 0;
1532 	u64 tmpend = 0;
1533 	u64 end = start + len;
1534 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1535 	unsigned int csize = osb->s_clustersize;
1536 	handle_t *handle;
1537 
1538 	/*
1539 	 * The "start" and "end" values are NOT necessarily part of
1540 	 * the range whose allocation is being deleted. Rather, this
1541 	 * is what the user passed in with the request. We must zero
1542 	 * partial clusters here. There's no need to worry about
1543 	 * physical allocation - the zeroing code knows to skip holes.
1544 	 */
1545 	trace_ocfs2_zero_partial_clusters(
1546 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1547 		(unsigned long long)start, (unsigned long long)end);
1548 
1549 	/*
1550 	 * If both edges are on a cluster boundary then there's no
1551 	 * zeroing required as the region is part of the allocation to
1552 	 * be truncated.
1553 	 */
1554 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1555 		goto out;
1556 
1557 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1558 	if (IS_ERR(handle)) {
1559 		ret = PTR_ERR(handle);
1560 		mlog_errno(ret);
1561 		goto out;
1562 	}
1563 
1564 	/*
1565 	 * If start is on a cluster boundary and end is somewhere in another
1566 	 * cluster, we have not COWed the cluster starting at start, unless
1567 	 * end is also within the same cluster. So, in this case, we skip this
1568 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1569 	 * to the next one.
1570 	 */
1571 	if ((start & (csize - 1)) != 0) {
1572 		/*
1573 		 * We want to get the byte offset of the end of the 1st
1574 		 * cluster.
1575 		 */
1576 		tmpend = (u64)osb->s_clustersize +
1577 			(start & ~(osb->s_clustersize - 1));
1578 		if (tmpend > end)
1579 			tmpend = end;
1580 
1581 		trace_ocfs2_zero_partial_clusters_range1(
1582 			(unsigned long long)start,
1583 			(unsigned long long)tmpend);
1584 
1585 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1586 						    tmpend);
1587 		if (ret)
1588 			mlog_errno(ret);
1589 	}
1590 
1591 	if (tmpend < end) {
1592 		/*
1593 		 * This may make start and end equal, but the zeroing
1594 		 * code will skip any work in that case so there's no
1595 		 * need to catch it up here.
1596 		 */
1597 		start = end & ~(osb->s_clustersize - 1);
1598 
1599 		trace_ocfs2_zero_partial_clusters_range2(
1600 			(unsigned long long)start, (unsigned long long)end);
1601 
1602 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1603 		if (ret)
1604 			mlog_errno(ret);
1605 	}
1606 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1607 
1608 	ocfs2_commit_trans(osb, handle);
1609 out:
1610 	return ret;
1611 }
1612 
1613 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1614 {
1615 	int i;
1616 	struct ocfs2_extent_rec *rec = NULL;
1617 
1618 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1619 
1620 		rec = &el->l_recs[i];
1621 
1622 		if (le32_to_cpu(rec->e_cpos) < pos)
1623 			break;
1624 	}
1625 
1626 	return i;
1627 }
1628 
1629 /*
1630  * Helper to calculate the punching pos and length in one run, we handle the
1631  * following three cases in order:
1632  *
1633  * - remove the entire record
1634  * - remove a partial record
1635  * - no record needs to be removed (hole-punching completed)
1636 */
1637 static void ocfs2_calc_trunc_pos(struct inode *inode,
1638 				 struct ocfs2_extent_list *el,
1639 				 struct ocfs2_extent_rec *rec,
1640 				 u32 trunc_start, u32 *trunc_cpos,
1641 				 u32 *trunc_len, u32 *trunc_end,
1642 				 u64 *blkno, int *done)
1643 {
1644 	int ret = 0;
1645 	u32 coff, range;
1646 
1647 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1648 
1649 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1650 		/*
1651 		 * remove an entire extent record.
1652 		 */
1653 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1654 		/*
1655 		 * Skip holes if any.
1656 		 */
1657 		if (range < *trunc_end)
1658 			*trunc_end = range;
1659 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1660 		*blkno = le64_to_cpu(rec->e_blkno);
1661 		*trunc_end = le32_to_cpu(rec->e_cpos);
1662 	} else if (range > trunc_start) {
1663 		/*
1664 		 * remove a partial extent record, which means we're
1665 		 * removing the last extent record.
1666 		 */
1667 		*trunc_cpos = trunc_start;
1668 		/*
1669 		 * skip hole if any.
1670 		 */
1671 		if (range < *trunc_end)
1672 			*trunc_end = range;
1673 		*trunc_len = *trunc_end - trunc_start;
1674 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1675 		*blkno = le64_to_cpu(rec->e_blkno) +
1676 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1677 		*trunc_end = trunc_start;
1678 	} else {
1679 		/*
1680 		 * It may have two following possibilities:
1681 		 *
1682 		 * - last record has been removed
1683 		 * - trunc_start was within a hole
1684 		 *
1685 		 * both two cases mean the completion of hole punching.
1686 		 */
1687 		ret = 1;
1688 	}
1689 
1690 	*done = ret;
1691 }
1692 
1693 int ocfs2_remove_inode_range(struct inode *inode,
1694 			     struct buffer_head *di_bh, u64 byte_start,
1695 			     u64 byte_len)
1696 {
1697 	int ret = 0, flags = 0, done = 0, i;
1698 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1699 	u32 cluster_in_el;
1700 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1701 	struct ocfs2_cached_dealloc_ctxt dealloc;
1702 	struct address_space *mapping = inode->i_mapping;
1703 	struct ocfs2_extent_tree et;
1704 	struct ocfs2_path *path = NULL;
1705 	struct ocfs2_extent_list *el = NULL;
1706 	struct ocfs2_extent_rec *rec = NULL;
1707 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1708 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1709 
1710 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1711 	ocfs2_init_dealloc_ctxt(&dealloc);
1712 
1713 	trace_ocfs2_remove_inode_range(
1714 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1715 			(unsigned long long)byte_start,
1716 			(unsigned long long)byte_len);
1717 
1718 	if (byte_len == 0)
1719 		return 0;
1720 
1721 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1722 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1723 					    byte_start + byte_len, 0);
1724 		if (ret) {
1725 			mlog_errno(ret);
1726 			goto out;
1727 		}
1728 		/*
1729 		 * There's no need to get fancy with the page cache
1730 		 * truncate of an inline-data inode. We're talking
1731 		 * about less than a page here, which will be cached
1732 		 * in the dinode buffer anyway.
1733 		 */
1734 		unmap_mapping_range(mapping, 0, 0, 0);
1735 		truncate_inode_pages(mapping, 0);
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * For reflinks, we may need to CoW 2 clusters which might be
1741 	 * partially zero'd later, if hole's start and end offset were
1742 	 * within one cluster(means is not exactly aligned to clustersize).
1743 	 */
1744 
1745 	if (ocfs2_is_refcount_inode(inode)) {
1746 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1747 		if (ret) {
1748 			mlog_errno(ret);
1749 			goto out;
1750 		}
1751 
1752 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1753 		if (ret) {
1754 			mlog_errno(ret);
1755 			goto out;
1756 		}
1757 	}
1758 
1759 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1760 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1761 	cluster_in_el = trunc_end;
1762 
1763 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1764 	if (ret) {
1765 		mlog_errno(ret);
1766 		goto out;
1767 	}
1768 
1769 	path = ocfs2_new_path_from_et(&et);
1770 	if (!path) {
1771 		ret = -ENOMEM;
1772 		mlog_errno(ret);
1773 		goto out;
1774 	}
1775 
1776 	while (trunc_end > trunc_start) {
1777 
1778 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1779 				      cluster_in_el);
1780 		if (ret) {
1781 			mlog_errno(ret);
1782 			goto out;
1783 		}
1784 
1785 		el = path_leaf_el(path);
1786 
1787 		i = ocfs2_find_rec(el, trunc_end);
1788 		/*
1789 		 * Need to go to previous extent block.
1790 		 */
1791 		if (i < 0) {
1792 			if (path->p_tree_depth == 0)
1793 				break;
1794 
1795 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1796 							    path,
1797 							    &cluster_in_el);
1798 			if (ret) {
1799 				mlog_errno(ret);
1800 				goto out;
1801 			}
1802 
1803 			/*
1804 			 * We've reached the leftmost extent block,
1805 			 * it's safe to leave.
1806 			 */
1807 			if (cluster_in_el == 0)
1808 				break;
1809 
1810 			/*
1811 			 * The 'pos' searched for previous extent block is
1812 			 * always one cluster less than actual trunc_end.
1813 			 */
1814 			trunc_end = cluster_in_el + 1;
1815 
1816 			ocfs2_reinit_path(path, 1);
1817 
1818 			continue;
1819 
1820 		} else
1821 			rec = &el->l_recs[i];
1822 
1823 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1824 				     &trunc_len, &trunc_end, &blkno, &done);
1825 		if (done)
1826 			break;
1827 
1828 		flags = rec->e_flags;
1829 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1830 
1831 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1832 					       phys_cpos, trunc_len, flags,
1833 					       &dealloc, refcount_loc, false);
1834 		if (ret < 0) {
1835 			mlog_errno(ret);
1836 			goto out;
1837 		}
1838 
1839 		cluster_in_el = trunc_end;
1840 
1841 		ocfs2_reinit_path(path, 1);
1842 	}
1843 
1844 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1845 
1846 out:
1847 	ocfs2_free_path(path);
1848 	ocfs2_schedule_truncate_log_flush(osb, 1);
1849 	ocfs2_run_deallocs(osb, &dealloc);
1850 
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Parts of this function taken from xfs_change_file_space()
1856  */
1857 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1858 				     loff_t f_pos, unsigned int cmd,
1859 				     struct ocfs2_space_resv *sr,
1860 				     int change_size)
1861 {
1862 	int ret;
1863 	s64 llen;
1864 	loff_t size;
1865 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1866 	struct buffer_head *di_bh = NULL;
1867 	handle_t *handle;
1868 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1869 
1870 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1871 		return -EROFS;
1872 
1873 	inode_lock(inode);
1874 
1875 	/*
1876 	 * This prevents concurrent writes on other nodes
1877 	 */
1878 	ret = ocfs2_rw_lock(inode, 1);
1879 	if (ret) {
1880 		mlog_errno(ret);
1881 		goto out;
1882 	}
1883 
1884 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885 	if (ret) {
1886 		mlog_errno(ret);
1887 		goto out_rw_unlock;
1888 	}
1889 
1890 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1891 		ret = -EPERM;
1892 		goto out_inode_unlock;
1893 	}
1894 
1895 	switch (sr->l_whence) {
1896 	case 0: /*SEEK_SET*/
1897 		break;
1898 	case 1: /*SEEK_CUR*/
1899 		sr->l_start += f_pos;
1900 		break;
1901 	case 2: /*SEEK_END*/
1902 		sr->l_start += i_size_read(inode);
1903 		break;
1904 	default:
1905 		ret = -EINVAL;
1906 		goto out_inode_unlock;
1907 	}
1908 	sr->l_whence = 0;
1909 
1910 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1911 
1912 	if (sr->l_start < 0
1913 	    || sr->l_start > max_off
1914 	    || (sr->l_start + llen) < 0
1915 	    || (sr->l_start + llen) > max_off) {
1916 		ret = -EINVAL;
1917 		goto out_inode_unlock;
1918 	}
1919 	size = sr->l_start + sr->l_len;
1920 
1921 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1922 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1923 		if (sr->l_len <= 0) {
1924 			ret = -EINVAL;
1925 			goto out_inode_unlock;
1926 		}
1927 	}
1928 
1929 	if (file && should_remove_suid(file->f_path.dentry)) {
1930 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1931 		if (ret) {
1932 			mlog_errno(ret);
1933 			goto out_inode_unlock;
1934 		}
1935 	}
1936 
1937 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1938 	switch (cmd) {
1939 	case OCFS2_IOC_RESVSP:
1940 	case OCFS2_IOC_RESVSP64:
1941 		/*
1942 		 * This takes unsigned offsets, but the signed ones we
1943 		 * pass have been checked against overflow above.
1944 		 */
1945 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1946 						       sr->l_len);
1947 		break;
1948 	case OCFS2_IOC_UNRESVSP:
1949 	case OCFS2_IOC_UNRESVSP64:
1950 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1951 					       sr->l_len);
1952 		break;
1953 	default:
1954 		ret = -EINVAL;
1955 	}
1956 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1957 	if (ret) {
1958 		mlog_errno(ret);
1959 		goto out_inode_unlock;
1960 	}
1961 
1962 	/*
1963 	 * We update c/mtime for these changes
1964 	 */
1965 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1966 	if (IS_ERR(handle)) {
1967 		ret = PTR_ERR(handle);
1968 		mlog_errno(ret);
1969 		goto out_inode_unlock;
1970 	}
1971 
1972 	if (change_size && i_size_read(inode) < size)
1973 		i_size_write(inode, size);
1974 
1975 	inode->i_ctime = inode->i_mtime = current_time(inode);
1976 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1977 	if (ret < 0)
1978 		mlog_errno(ret);
1979 
1980 	if (file && (file->f_flags & O_SYNC))
1981 		handle->h_sync = 1;
1982 
1983 	ocfs2_commit_trans(osb, handle);
1984 
1985 out_inode_unlock:
1986 	brelse(di_bh);
1987 	ocfs2_inode_unlock(inode, 1);
1988 out_rw_unlock:
1989 	ocfs2_rw_unlock(inode, 1);
1990 
1991 out:
1992 	inode_unlock(inode);
1993 	return ret;
1994 }
1995 
1996 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1997 			    struct ocfs2_space_resv *sr)
1998 {
1999 	struct inode *inode = file_inode(file);
2000 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2001 	int ret;
2002 
2003 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2004 	    !ocfs2_writes_unwritten_extents(osb))
2005 		return -ENOTTY;
2006 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2007 		 !ocfs2_sparse_alloc(osb))
2008 		return -ENOTTY;
2009 
2010 	if (!S_ISREG(inode->i_mode))
2011 		return -EINVAL;
2012 
2013 	if (!(file->f_mode & FMODE_WRITE))
2014 		return -EBADF;
2015 
2016 	ret = mnt_want_write_file(file);
2017 	if (ret)
2018 		return ret;
2019 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2020 	mnt_drop_write_file(file);
2021 	return ret;
2022 }
2023 
2024 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2025 			    loff_t len)
2026 {
2027 	struct inode *inode = file_inode(file);
2028 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2029 	struct ocfs2_space_resv sr;
2030 	int change_size = 1;
2031 	int cmd = OCFS2_IOC_RESVSP64;
2032 
2033 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2034 		return -EOPNOTSUPP;
2035 	if (!ocfs2_writes_unwritten_extents(osb))
2036 		return -EOPNOTSUPP;
2037 
2038 	if (mode & FALLOC_FL_KEEP_SIZE)
2039 		change_size = 0;
2040 
2041 	if (mode & FALLOC_FL_PUNCH_HOLE)
2042 		cmd = OCFS2_IOC_UNRESVSP64;
2043 
2044 	sr.l_whence = 0;
2045 	sr.l_start = (s64)offset;
2046 	sr.l_len = (s64)len;
2047 
2048 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2049 					 change_size);
2050 }
2051 
2052 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2053 				   size_t count)
2054 {
2055 	int ret = 0;
2056 	unsigned int extent_flags;
2057 	u32 cpos, clusters, extent_len, phys_cpos;
2058 	struct super_block *sb = inode->i_sb;
2059 
2060 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2061 	    !ocfs2_is_refcount_inode(inode) ||
2062 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2063 		return 0;
2064 
2065 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2066 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2067 
2068 	while (clusters) {
2069 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2070 					 &extent_flags);
2071 		if (ret < 0) {
2072 			mlog_errno(ret);
2073 			goto out;
2074 		}
2075 
2076 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2077 			ret = 1;
2078 			break;
2079 		}
2080 
2081 		if (extent_len > clusters)
2082 			extent_len = clusters;
2083 
2084 		clusters -= extent_len;
2085 		cpos += extent_len;
2086 	}
2087 out:
2088 	return ret;
2089 }
2090 
2091 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2092 {
2093 	int blockmask = inode->i_sb->s_blocksize - 1;
2094 	loff_t final_size = pos + count;
2095 
2096 	if ((pos & blockmask) || (final_size & blockmask))
2097 		return 1;
2098 	return 0;
2099 }
2100 
2101 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2102 					    struct buffer_head **di_bh,
2103 					    int meta_level,
2104 					    int write_sem,
2105 					    int wait)
2106 {
2107 	int ret = 0;
2108 
2109 	if (wait)
2110 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2111 	else
2112 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2113 	if (ret < 0)
2114 		goto out;
2115 
2116 	if (wait) {
2117 		if (write_sem)
2118 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2119 		else
2120 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2121 	} else {
2122 		if (write_sem)
2123 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2124 		else
2125 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126 
2127 		if (!ret) {
2128 			ret = -EAGAIN;
2129 			goto out_unlock;
2130 		}
2131 	}
2132 
2133 	return ret;
2134 
2135 out_unlock:
2136 	brelse(*di_bh);
2137 	*di_bh = NULL;
2138 	ocfs2_inode_unlock(inode, meta_level);
2139 out:
2140 	return ret;
2141 }
2142 
2143 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2144 					       struct buffer_head **di_bh,
2145 					       int meta_level,
2146 					       int write_sem)
2147 {
2148 	if (write_sem)
2149 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2150 	else
2151 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2152 
2153 	brelse(*di_bh);
2154 	*di_bh = NULL;
2155 
2156 	if (meta_level >= 0)
2157 		ocfs2_inode_unlock(inode, meta_level);
2158 }
2159 
2160 static int ocfs2_prepare_inode_for_write(struct file *file,
2161 					 loff_t pos, size_t count, int wait)
2162 {
2163 	int ret = 0, meta_level = 0, overwrite_io = 0;
2164 	int write_sem = 0;
2165 	struct dentry *dentry = file->f_path.dentry;
2166 	struct inode *inode = d_inode(dentry);
2167 	struct buffer_head *di_bh = NULL;
2168 	u32 cpos;
2169 	u32 clusters;
2170 
2171 	/*
2172 	 * We start with a read level meta lock and only jump to an ex
2173 	 * if we need to make modifications here.
2174 	 */
2175 	for(;;) {
2176 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2177 						       &di_bh,
2178 						       meta_level,
2179 						       write_sem,
2180 						       wait);
2181 		if (ret < 0) {
2182 			if (ret != -EAGAIN)
2183 				mlog_errno(ret);
2184 			goto out;
2185 		}
2186 
2187 		/*
2188 		 * Check if IO will overwrite allocated blocks in case
2189 		 * IOCB_NOWAIT flag is set.
2190 		 */
2191 		if (!wait && !overwrite_io) {
2192 			overwrite_io = 1;
2193 
2194 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2195 			if (ret < 0) {
2196 				if (ret != -EAGAIN)
2197 					mlog_errno(ret);
2198 				goto out_unlock;
2199 			}
2200 		}
2201 
2202 		/* Clear suid / sgid if necessary. We do this here
2203 		 * instead of later in the write path because
2204 		 * remove_suid() calls ->setattr without any hint that
2205 		 * we may have already done our cluster locking. Since
2206 		 * ocfs2_setattr() *must* take cluster locks to
2207 		 * proceed, this will lead us to recursively lock the
2208 		 * inode. There's also the dinode i_size state which
2209 		 * can be lost via setattr during extending writes (we
2210 		 * set inode->i_size at the end of a write. */
2211 		if (should_remove_suid(dentry)) {
2212 			if (meta_level == 0) {
2213 				ocfs2_inode_unlock_for_extent_tree(inode,
2214 								   &di_bh,
2215 								   meta_level,
2216 								   write_sem);
2217 				meta_level = 1;
2218 				continue;
2219 			}
2220 
2221 			ret = ocfs2_write_remove_suid(inode);
2222 			if (ret < 0) {
2223 				mlog_errno(ret);
2224 				goto out_unlock;
2225 			}
2226 		}
2227 
2228 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2229 		if (ret == 1) {
2230 			ocfs2_inode_unlock_for_extent_tree(inode,
2231 							   &di_bh,
2232 							   meta_level,
2233 							   write_sem);
2234 			meta_level = 1;
2235 			write_sem = 1;
2236 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2237 							       &di_bh,
2238 							       meta_level,
2239 							       write_sem,
2240 							       wait);
2241 			if (ret < 0) {
2242 				if (ret != -EAGAIN)
2243 					mlog_errno(ret);
2244 				goto out;
2245 			}
2246 
2247 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2248 			clusters =
2249 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2250 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2251 		}
2252 
2253 		if (ret < 0) {
2254 			if (ret != -EAGAIN)
2255 				mlog_errno(ret);
2256 			goto out_unlock;
2257 		}
2258 
2259 		break;
2260 	}
2261 
2262 out_unlock:
2263 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2264 					    pos, count, wait);
2265 
2266 	ocfs2_inode_unlock_for_extent_tree(inode,
2267 					   &di_bh,
2268 					   meta_level,
2269 					   write_sem);
2270 
2271 out:
2272 	return ret;
2273 }
2274 
2275 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2276 				    struct iov_iter *from)
2277 {
2278 	int rw_level;
2279 	ssize_t written = 0;
2280 	ssize_t ret;
2281 	size_t count = iov_iter_count(from);
2282 	struct file *file = iocb->ki_filp;
2283 	struct inode *inode = file_inode(file);
2284 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285 	int full_coherency = !(osb->s_mount_opt &
2286 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2287 	void *saved_ki_complete = NULL;
2288 	int append_write = ((iocb->ki_pos + count) >=
2289 			i_size_read(inode) ? 1 : 0);
2290 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2291 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2292 
2293 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2294 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2295 		file->f_path.dentry->d_name.len,
2296 		file->f_path.dentry->d_name.name,
2297 		(unsigned int)from->nr_segs);	/* GRRRRR */
2298 
2299 	if (!direct_io && nowait)
2300 		return -EOPNOTSUPP;
2301 
2302 	if (count == 0)
2303 		return 0;
2304 
2305 	if (nowait) {
2306 		if (!inode_trylock(inode))
2307 			return -EAGAIN;
2308 	} else
2309 		inode_lock(inode);
2310 
2311 	/*
2312 	 * Concurrent O_DIRECT writes are allowed with
2313 	 * mount_option "coherency=buffered".
2314 	 * For append write, we must take rw EX.
2315 	 */
2316 	rw_level = (!direct_io || full_coherency || append_write);
2317 
2318 	if (nowait)
2319 		ret = ocfs2_try_rw_lock(inode, rw_level);
2320 	else
2321 		ret = ocfs2_rw_lock(inode, rw_level);
2322 	if (ret < 0) {
2323 		if (ret != -EAGAIN)
2324 			mlog_errno(ret);
2325 		goto out_mutex;
2326 	}
2327 
2328 	/*
2329 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2330 	 * inode_lock to guarantee coherency.
2331 	 */
2332 	if (direct_io && full_coherency) {
2333 		/*
2334 		 * We need to take and drop the inode lock to force
2335 		 * other nodes to drop their caches.  Buffered I/O
2336 		 * already does this in write_begin().
2337 		 */
2338 		if (nowait)
2339 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2340 		else
2341 			ret = ocfs2_inode_lock(inode, NULL, 1);
2342 		if (ret < 0) {
2343 			if (ret != -EAGAIN)
2344 				mlog_errno(ret);
2345 			goto out;
2346 		}
2347 
2348 		ocfs2_inode_unlock(inode, 1);
2349 	}
2350 
2351 	ret = generic_write_checks(iocb, from);
2352 	if (ret <= 0) {
2353 		if (ret)
2354 			mlog_errno(ret);
2355 		goto out;
2356 	}
2357 	count = ret;
2358 
2359 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2360 	if (ret < 0) {
2361 		if (ret != -EAGAIN)
2362 			mlog_errno(ret);
2363 		goto out;
2364 	}
2365 
2366 	if (direct_io && !is_sync_kiocb(iocb) &&
2367 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2368 		/*
2369 		 * Make it a sync io if it's an unaligned aio.
2370 		 */
2371 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2372 	}
2373 
2374 	/* communicate with ocfs2_dio_end_io */
2375 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2376 
2377 	written = __generic_file_write_iter(iocb, from);
2378 	/* buffered aio wouldn't have proper lock coverage today */
2379 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2380 
2381 	/*
2382 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2383 	 * function pointer which is called when o_direct io completes so that
2384 	 * it can unlock our rw lock.
2385 	 * Unfortunately there are error cases which call end_io and others
2386 	 * that don't.  so we don't have to unlock the rw_lock if either an
2387 	 * async dio is going to do it in the future or an end_io after an
2388 	 * error has already done it.
2389 	 */
2390 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2391 		rw_level = -1;
2392 	}
2393 
2394 	if (unlikely(written <= 0))
2395 		goto out;
2396 
2397 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2398 	    IS_SYNC(inode)) {
2399 		ret = filemap_fdatawrite_range(file->f_mapping,
2400 					       iocb->ki_pos - written,
2401 					       iocb->ki_pos - 1);
2402 		if (ret < 0)
2403 			written = ret;
2404 
2405 		if (!ret) {
2406 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2407 			if (ret < 0)
2408 				written = ret;
2409 		}
2410 
2411 		if (!ret)
2412 			ret = filemap_fdatawait_range(file->f_mapping,
2413 						      iocb->ki_pos - written,
2414 						      iocb->ki_pos - 1);
2415 	}
2416 
2417 out:
2418 	if (saved_ki_complete)
2419 		xchg(&iocb->ki_complete, saved_ki_complete);
2420 
2421 	if (rw_level != -1)
2422 		ocfs2_rw_unlock(inode, rw_level);
2423 
2424 out_mutex:
2425 	inode_unlock(inode);
2426 
2427 	if (written)
2428 		ret = written;
2429 	return ret;
2430 }
2431 
2432 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2433 				   struct iov_iter *to)
2434 {
2435 	int ret = 0, rw_level = -1, lock_level = 0;
2436 	struct file *filp = iocb->ki_filp;
2437 	struct inode *inode = file_inode(filp);
2438 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2439 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2440 
2441 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2442 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2443 			filp->f_path.dentry->d_name.len,
2444 			filp->f_path.dentry->d_name.name,
2445 			to->nr_segs);	/* GRRRRR */
2446 
2447 
2448 	if (!inode) {
2449 		ret = -EINVAL;
2450 		mlog_errno(ret);
2451 		goto bail;
2452 	}
2453 
2454 	if (!direct_io && nowait)
2455 		return -EOPNOTSUPP;
2456 
2457 	/*
2458 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2459 	 * need locks to protect pending reads from racing with truncate.
2460 	 */
2461 	if (direct_io) {
2462 		if (nowait)
2463 			ret = ocfs2_try_rw_lock(inode, 0);
2464 		else
2465 			ret = ocfs2_rw_lock(inode, 0);
2466 
2467 		if (ret < 0) {
2468 			if (ret != -EAGAIN)
2469 				mlog_errno(ret);
2470 			goto bail;
2471 		}
2472 		rw_level = 0;
2473 		/* communicate with ocfs2_dio_end_io */
2474 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2475 	}
2476 
2477 	/*
2478 	 * We're fine letting folks race truncates and extending
2479 	 * writes with read across the cluster, just like they can
2480 	 * locally. Hence no rw_lock during read.
2481 	 *
2482 	 * Take and drop the meta data lock to update inode fields
2483 	 * like i_size. This allows the checks down below
2484 	 * generic_file_read_iter() a chance of actually working.
2485 	 */
2486 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2487 				     !nowait);
2488 	if (ret < 0) {
2489 		if (ret != -EAGAIN)
2490 			mlog_errno(ret);
2491 		goto bail;
2492 	}
2493 	ocfs2_inode_unlock(inode, lock_level);
2494 
2495 	ret = generic_file_read_iter(iocb, to);
2496 	trace_generic_file_read_iter_ret(ret);
2497 
2498 	/* buffered aio wouldn't have proper lock coverage today */
2499 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2500 
2501 	/* see ocfs2_file_write_iter */
2502 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2503 		rw_level = -1;
2504 	}
2505 
2506 bail:
2507 	if (rw_level != -1)
2508 		ocfs2_rw_unlock(inode, rw_level);
2509 
2510 	return ret;
2511 }
2512 
2513 /* Refer generic_file_llseek_unlocked() */
2514 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2515 {
2516 	struct inode *inode = file->f_mapping->host;
2517 	int ret = 0;
2518 
2519 	inode_lock(inode);
2520 
2521 	switch (whence) {
2522 	case SEEK_SET:
2523 		break;
2524 	case SEEK_END:
2525 		/* SEEK_END requires the OCFS2 inode lock for the file
2526 		 * because it references the file's size.
2527 		 */
2528 		ret = ocfs2_inode_lock(inode, NULL, 0);
2529 		if (ret < 0) {
2530 			mlog_errno(ret);
2531 			goto out;
2532 		}
2533 		offset += i_size_read(inode);
2534 		ocfs2_inode_unlock(inode, 0);
2535 		break;
2536 	case SEEK_CUR:
2537 		if (offset == 0) {
2538 			offset = file->f_pos;
2539 			goto out;
2540 		}
2541 		offset += file->f_pos;
2542 		break;
2543 	case SEEK_DATA:
2544 	case SEEK_HOLE:
2545 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2546 		if (ret)
2547 			goto out;
2548 		break;
2549 	default:
2550 		ret = -EINVAL;
2551 		goto out;
2552 	}
2553 
2554 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555 
2556 out:
2557 	inode_unlock(inode);
2558 	if (ret)
2559 		return ret;
2560 	return offset;
2561 }
2562 
2563 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2564 				     struct file *file_out, loff_t pos_out,
2565 				     loff_t len, unsigned int remap_flags)
2566 {
2567 	struct inode *inode_in = file_inode(file_in);
2568 	struct inode *inode_out = file_inode(file_out);
2569 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2570 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2571 	bool same_inode = (inode_in == inode_out);
2572 	loff_t remapped = 0;
2573 	ssize_t ret;
2574 
2575 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2576 		return -EINVAL;
2577 	if (!ocfs2_refcount_tree(osb))
2578 		return -EOPNOTSUPP;
2579 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2580 		return -EROFS;
2581 
2582 	/* Lock both files against IO */
2583 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2584 	if (ret)
2585 		return ret;
2586 
2587 	/* Check file eligibility and prepare for block sharing. */
2588 	ret = -EINVAL;
2589 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2590 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2591 		goto out_unlock;
2592 
2593 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2594 			&len, remap_flags);
2595 	if (ret < 0 || len == 0)
2596 		goto out_unlock;
2597 
2598 	/* Lock out changes to the allocation maps and remap. */
2599 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2600 	if (!same_inode)
2601 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2602 				  SINGLE_DEPTH_NESTING);
2603 
2604 	/* Zap any page cache for the destination file's range. */
2605 	truncate_inode_pages_range(&inode_out->i_data,
2606 				   round_down(pos_out, PAGE_SIZE),
2607 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2608 
2609 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2610 			inode_out, out_bh, pos_out, len);
2611 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2612 	if (!same_inode)
2613 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2614 	if (remapped < 0) {
2615 		ret = remapped;
2616 		mlog_errno(ret);
2617 		goto out_unlock;
2618 	}
2619 
2620 	/*
2621 	 * Empty the extent map so that we may get the right extent
2622 	 * record from the disk.
2623 	 */
2624 	ocfs2_extent_map_trunc(inode_in, 0);
2625 	ocfs2_extent_map_trunc(inode_out, 0);
2626 
2627 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2628 	if (ret) {
2629 		mlog_errno(ret);
2630 		goto out_unlock;
2631 	}
2632 
2633 out_unlock:
2634 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2635 	return remapped > 0 ? remapped : ret;
2636 }
2637 
2638 const struct inode_operations ocfs2_file_iops = {
2639 	.setattr	= ocfs2_setattr,
2640 	.getattr	= ocfs2_getattr,
2641 	.permission	= ocfs2_permission,
2642 	.listxattr	= ocfs2_listxattr,
2643 	.fiemap		= ocfs2_fiemap,
2644 	.get_acl	= ocfs2_iop_get_acl,
2645 	.set_acl	= ocfs2_iop_set_acl,
2646 };
2647 
2648 const struct inode_operations ocfs2_special_file_iops = {
2649 	.setattr	= ocfs2_setattr,
2650 	.getattr	= ocfs2_getattr,
2651 	.permission	= ocfs2_permission,
2652 	.get_acl	= ocfs2_iop_get_acl,
2653 	.set_acl	= ocfs2_iop_set_acl,
2654 };
2655 
2656 /*
2657  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2658  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2659  */
2660 const struct file_operations ocfs2_fops = {
2661 	.llseek		= ocfs2_file_llseek,
2662 	.mmap		= ocfs2_mmap,
2663 	.fsync		= ocfs2_sync_file,
2664 	.release	= ocfs2_file_release,
2665 	.open		= ocfs2_file_open,
2666 	.read_iter	= ocfs2_file_read_iter,
2667 	.write_iter	= ocfs2_file_write_iter,
2668 	.unlocked_ioctl	= ocfs2_ioctl,
2669 #ifdef CONFIG_COMPAT
2670 	.compat_ioctl   = ocfs2_compat_ioctl,
2671 #endif
2672 	.lock		= ocfs2_lock,
2673 	.flock		= ocfs2_flock,
2674 	.splice_read	= generic_file_splice_read,
2675 	.splice_write	= iter_file_splice_write,
2676 	.fallocate	= ocfs2_fallocate,
2677 	.remap_file_range = ocfs2_remap_file_range,
2678 };
2679 
2680 const struct file_operations ocfs2_dops = {
2681 	.llseek		= generic_file_llseek,
2682 	.read		= generic_read_dir,
2683 	.iterate	= ocfs2_readdir,
2684 	.fsync		= ocfs2_sync_file,
2685 	.release	= ocfs2_dir_release,
2686 	.open		= ocfs2_dir_open,
2687 	.unlocked_ioctl	= ocfs2_ioctl,
2688 #ifdef CONFIG_COMPAT
2689 	.compat_ioctl   = ocfs2_compat_ioctl,
2690 #endif
2691 	.lock		= ocfs2_lock,
2692 	.flock		= ocfs2_flock,
2693 };
2694 
2695 /*
2696  * POSIX-lockless variants of our file_operations.
2697  *
2698  * These will be used if the underlying cluster stack does not support
2699  * posix file locking, if the user passes the "localflocks" mount
2700  * option, or if we have a local-only fs.
2701  *
2702  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2703  * so we still want it in the case of no stack support for
2704  * plocks. Internally, it will do the right thing when asked to ignore
2705  * the cluster.
2706  */
2707 const struct file_operations ocfs2_fops_no_plocks = {
2708 	.llseek		= ocfs2_file_llseek,
2709 	.mmap		= ocfs2_mmap,
2710 	.fsync		= ocfs2_sync_file,
2711 	.release	= ocfs2_file_release,
2712 	.open		= ocfs2_file_open,
2713 	.read_iter	= ocfs2_file_read_iter,
2714 	.write_iter	= ocfs2_file_write_iter,
2715 	.unlocked_ioctl	= ocfs2_ioctl,
2716 #ifdef CONFIG_COMPAT
2717 	.compat_ioctl   = ocfs2_compat_ioctl,
2718 #endif
2719 	.flock		= ocfs2_flock,
2720 	.splice_read	= generic_file_splice_read,
2721 	.splice_write	= iter_file_splice_write,
2722 	.fallocate	= ocfs2_fallocate,
2723 	.remap_file_range = ocfs2_remap_file_range,
2724 };
2725 
2726 const struct file_operations ocfs2_dops_no_plocks = {
2727 	.llseek		= generic_file_llseek,
2728 	.read		= generic_read_dir,
2729 	.iterate	= ocfs2_readdir,
2730 	.fsync		= ocfs2_sync_file,
2731 	.release	= ocfs2_dir_release,
2732 	.open		= ocfs2_dir_open,
2733 	.unlocked_ioctl	= ocfs2_ioctl,
2734 #ifdef CONFIG_COMPAT
2735 	.compat_ioctl   = ocfs2_compat_ioctl,
2736 #endif
2737 	.flock		= ocfs2_flock,
2738 };
2739