1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * file.c 4 * 5 * File open, close, extend, truncate 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/fs.h> 12 #include <linux/types.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/pagemap.h> 16 #include <linux/uio.h> 17 #include <linux/sched.h> 18 #include <linux/splice.h> 19 #include <linux/mount.h> 20 #include <linux/writeback.h> 21 #include <linux/falloc.h> 22 #include <linux/quotaops.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 26 #include <cluster/masklog.h> 27 28 #include "ocfs2.h" 29 30 #include "alloc.h" 31 #include "aops.h" 32 #include "dir.h" 33 #include "dlmglue.h" 34 #include "extent_map.h" 35 #include "file.h" 36 #include "sysfile.h" 37 #include "inode.h" 38 #include "ioctl.h" 39 #include "journal.h" 40 #include "locks.h" 41 #include "mmap.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "quota.h" 47 #include "refcounttree.h" 48 #include "ocfs2_trace.h" 49 50 #include "buffer_head_io.h" 51 52 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 53 { 54 struct ocfs2_file_private *fp; 55 56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 57 if (!fp) 58 return -ENOMEM; 59 60 fp->fp_file = file; 61 mutex_init(&fp->fp_mutex); 62 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 63 file->private_data = fp; 64 65 return 0; 66 } 67 68 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp = file->private_data; 71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 72 73 if (fp) { 74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 75 ocfs2_lock_res_free(&fp->fp_flock); 76 kfree(fp); 77 file->private_data = NULL; 78 } 79 } 80 81 static int ocfs2_file_open(struct inode *inode, struct file *file) 82 { 83 int status; 84 int mode = file->f_flags; 85 struct ocfs2_inode_info *oi = OCFS2_I(inode); 86 87 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 88 (unsigned long long)oi->ip_blkno, 89 file->f_path.dentry->d_name.len, 90 file->f_path.dentry->d_name.name, mode); 91 92 if (file->f_mode & FMODE_WRITE) { 93 status = dquot_initialize(inode); 94 if (status) 95 goto leave; 96 } 97 98 spin_lock(&oi->ip_lock); 99 100 /* Check that the inode hasn't been wiped from disk by another 101 * node. If it hasn't then we're safe as long as we hold the 102 * spin lock until our increment of open count. */ 103 if (oi->ip_flags & OCFS2_INODE_DELETED) { 104 spin_unlock(&oi->ip_lock); 105 106 status = -ENOENT; 107 goto leave; 108 } 109 110 if (mode & O_DIRECT) 111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 112 113 oi->ip_open_count++; 114 spin_unlock(&oi->ip_lock); 115 116 status = ocfs2_init_file_private(inode, file); 117 if (status) { 118 /* 119 * We want to set open count back if we're failing the 120 * open. 121 */ 122 spin_lock(&oi->ip_lock); 123 oi->ip_open_count--; 124 spin_unlock(&oi->ip_lock); 125 } 126 127 file->f_mode |= FMODE_NOWAIT; 128 129 leave: 130 return status; 131 } 132 133 static int ocfs2_file_release(struct inode *inode, struct file *file) 134 { 135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 136 137 spin_lock(&oi->ip_lock); 138 if (!--oi->ip_open_count) 139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 140 141 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 142 oi->ip_blkno, 143 file->f_path.dentry->d_name.len, 144 file->f_path.dentry->d_name.name, 145 oi->ip_open_count); 146 spin_unlock(&oi->ip_lock); 147 148 ocfs2_free_file_private(inode, file); 149 150 return 0; 151 } 152 153 static int ocfs2_dir_open(struct inode *inode, struct file *file) 154 { 155 return ocfs2_init_file_private(inode, file); 156 } 157 158 static int ocfs2_dir_release(struct inode *inode, struct file *file) 159 { 160 ocfs2_free_file_private(inode, file); 161 return 0; 162 } 163 164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 165 int datasync) 166 { 167 int err = 0; 168 struct inode *inode = file->f_mapping->host; 169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 170 struct ocfs2_inode_info *oi = OCFS2_I(inode); 171 journal_t *journal = osb->journal->j_journal; 172 int ret; 173 tid_t commit_tid; 174 bool needs_barrier = false; 175 176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 177 oi->ip_blkno, 178 file->f_path.dentry->d_name.len, 179 file->f_path.dentry->d_name.name, 180 (unsigned long long)datasync); 181 182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 183 return -EROFS; 184 185 err = file_write_and_wait_range(file, start, end); 186 if (err) 187 return err; 188 189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 190 if (journal->j_flags & JBD2_BARRIER && 191 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 192 needs_barrier = true; 193 err = jbd2_complete_transaction(journal, commit_tid); 194 if (needs_barrier) { 195 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 196 if (!err) 197 err = ret; 198 } 199 200 if (err) 201 mlog_errno(err); 202 203 return (err < 0) ? -EIO : 0; 204 } 205 206 int ocfs2_should_update_atime(struct inode *inode, 207 struct vfsmount *vfsmnt) 208 { 209 struct timespec64 now; 210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 211 212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 213 return 0; 214 215 if ((inode->i_flags & S_NOATIME) || 216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 217 return 0; 218 219 /* 220 * We can be called with no vfsmnt structure - NFSD will 221 * sometimes do this. 222 * 223 * Note that our action here is different than touch_atime() - 224 * if we can't tell whether this is a noatime mount, then we 225 * don't know whether to trust the value of s_atime_quantum. 226 */ 227 if (vfsmnt == NULL) 228 return 0; 229 230 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 232 return 0; 233 234 if (vfsmnt->mnt_flags & MNT_RELATIME) { 235 struct timespec64 ctime = inode_get_ctime(inode); 236 237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 238 (timespec64_compare(&inode->i_atime, &ctime) <= 0)) 239 return 1; 240 241 return 0; 242 } 243 244 now = current_time(inode); 245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 246 return 0; 247 else 248 return 1; 249 } 250 251 int ocfs2_update_inode_atime(struct inode *inode, 252 struct buffer_head *bh) 253 { 254 int ret; 255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 256 handle_t *handle; 257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 258 259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 260 if (IS_ERR(handle)) { 261 ret = PTR_ERR(handle); 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 267 OCFS2_JOURNAL_ACCESS_WRITE); 268 if (ret) { 269 mlog_errno(ret); 270 goto out_commit; 271 } 272 273 /* 274 * Don't use ocfs2_mark_inode_dirty() here as we don't always 275 * have i_rwsem to guard against concurrent changes to other 276 * inode fields. 277 */ 278 inode->i_atime = current_time(inode); 279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 281 ocfs2_update_inode_fsync_trans(handle, inode, 0); 282 ocfs2_journal_dirty(handle, bh); 283 284 out_commit: 285 ocfs2_commit_trans(osb, handle); 286 out: 287 return ret; 288 } 289 290 int ocfs2_set_inode_size(handle_t *handle, 291 struct inode *inode, 292 struct buffer_head *fe_bh, 293 u64 new_i_size) 294 { 295 int status; 296 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_mtime = inode_set_ctime_current(inode); 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307 bail: 308 return status; 309 } 310 311 int ocfs2_simple_size_update(struct inode *inode, 312 struct buffer_head *di_bh, 313 u64 new_i_size) 314 { 315 int ret; 316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 317 handle_t *handle = NULL; 318 319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 320 if (IS_ERR(handle)) { 321 ret = PTR_ERR(handle); 322 mlog_errno(ret); 323 goto out; 324 } 325 326 ret = ocfs2_set_inode_size(handle, inode, di_bh, 327 new_i_size); 328 if (ret < 0) 329 mlog_errno(ret); 330 331 ocfs2_update_inode_fsync_trans(handle, inode, 0); 332 ocfs2_commit_trans(osb, handle); 333 out: 334 return ret; 335 } 336 337 static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340 { 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366 out: 367 return status; 368 } 369 370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374 { 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 /* 381 * We need to CoW the cluster contains the offset if it is reflinked 382 * since we will call ocfs2_zero_range_for_truncate later which will 383 * write "0" from offset to the end of the cluster. 384 */ 385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 386 if (status) { 387 mlog_errno(status); 388 return status; 389 } 390 391 /* TODO: This needs to actually orphan the inode in this 392 * transaction. */ 393 394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 395 if (IS_ERR(handle)) { 396 status = PTR_ERR(handle); 397 mlog_errno(status); 398 goto out; 399 } 400 401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 402 OCFS2_JOURNAL_ACCESS_WRITE); 403 if (status < 0) { 404 mlog_errno(status); 405 goto out_commit; 406 } 407 408 /* 409 * Do this before setting i_size. 410 */ 411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 413 cluster_bytes); 414 if (status) { 415 mlog_errno(status); 416 goto out_commit; 417 } 418 419 i_size_write(inode, new_i_size); 420 inode->i_mtime = inode_set_ctime_current(inode); 421 422 di = (struct ocfs2_dinode *) fe_bh->b_data; 423 di->i_size = cpu_to_le64(new_i_size); 424 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(inode).tv_sec); 425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); 426 ocfs2_update_inode_fsync_trans(handle, inode, 0); 427 428 ocfs2_journal_dirty(handle, fe_bh); 429 430 out_commit: 431 ocfs2_commit_trans(osb, handle); 432 out: 433 return status; 434 } 435 436 int ocfs2_truncate_file(struct inode *inode, 437 struct buffer_head *di_bh, 438 u64 new_i_size) 439 { 440 int status = 0; 441 struct ocfs2_dinode *fe = NULL; 442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 443 444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 445 * already validated it */ 446 fe = (struct ocfs2_dinode *) di_bh->b_data; 447 448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)le64_to_cpu(fe->i_size), 450 (unsigned long long)new_i_size); 451 452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 453 "Inode %llu, inode i_size = %lld != di " 454 "i_size = %llu, i_flags = 0x%x\n", 455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 456 i_size_read(inode), 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 le32_to_cpu(fe->i_flags)); 459 460 if (new_i_size > le64_to_cpu(fe->i_size)) { 461 trace_ocfs2_truncate_file_error( 462 (unsigned long long)le64_to_cpu(fe->i_size), 463 (unsigned long long)new_i_size); 464 status = -EINVAL; 465 mlog_errno(status); 466 goto bail; 467 } 468 469 down_write(&OCFS2_I(inode)->ip_alloc_sem); 470 471 ocfs2_resv_discard(&osb->osb_la_resmap, 472 &OCFS2_I(inode)->ip_la_data_resv); 473 474 /* 475 * The inode lock forced other nodes to sync and drop their 476 * pages, which (correctly) happens even if we have a truncate 477 * without allocation change - ocfs2 cluster sizes can be much 478 * greater than page size, so we have to truncate them 479 * anyway. 480 */ 481 482 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 483 unmap_mapping_range(inode->i_mapping, 484 new_i_size + PAGE_SIZE - 1, 0, 1); 485 truncate_inode_pages(inode->i_mapping, new_i_size); 486 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 487 i_size_read(inode), 1); 488 if (status) 489 mlog_errno(status); 490 491 goto bail_unlock_sem; 492 } 493 494 /* alright, we're going to need to do a full blown alloc size 495 * change. Orphan the inode so that recovery can complete the 496 * truncate if necessary. This does the task of marking 497 * i_size. */ 498 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 499 if (status < 0) { 500 mlog_errno(status); 501 goto bail_unlock_sem; 502 } 503 504 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 505 truncate_inode_pages(inode->i_mapping, new_i_size); 506 507 status = ocfs2_commit_truncate(osb, inode, di_bh); 508 if (status < 0) { 509 mlog_errno(status); 510 goto bail_unlock_sem; 511 } 512 513 /* TODO: orphan dir cleanup here. */ 514 bail_unlock_sem: 515 up_write(&OCFS2_I(inode)->ip_alloc_sem); 516 517 bail: 518 if (!status && OCFS2_I(inode)->ip_clusters == 0) 519 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 520 521 return status; 522 } 523 524 /* 525 * extend file allocation only here. 526 * we'll update all the disk stuff, and oip->alloc_size 527 * 528 * expect stuff to be locked, a transaction started and enough data / 529 * metadata reservations in the contexts. 530 * 531 * Will return -EAGAIN, and a reason if a restart is needed. 532 * If passed in, *reason will always be set, even in error. 533 */ 534 int ocfs2_add_inode_data(struct ocfs2_super *osb, 535 struct inode *inode, 536 u32 *logical_offset, 537 u32 clusters_to_add, 538 int mark_unwritten, 539 struct buffer_head *fe_bh, 540 handle_t *handle, 541 struct ocfs2_alloc_context *data_ac, 542 struct ocfs2_alloc_context *meta_ac, 543 enum ocfs2_alloc_restarted *reason_ret) 544 { 545 struct ocfs2_extent_tree et; 546 547 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 548 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 549 clusters_to_add, mark_unwritten, 550 data_ac, meta_ac, reason_ret); 551 } 552 553 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 554 u32 clusters_to_add, int mark_unwritten) 555 { 556 int status = 0; 557 int restart_func = 0; 558 int credits; 559 u32 prev_clusters; 560 struct buffer_head *bh = NULL; 561 struct ocfs2_dinode *fe = NULL; 562 handle_t *handle = NULL; 563 struct ocfs2_alloc_context *data_ac = NULL; 564 struct ocfs2_alloc_context *meta_ac = NULL; 565 enum ocfs2_alloc_restarted why = RESTART_NONE; 566 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 567 struct ocfs2_extent_tree et; 568 int did_quota = 0; 569 570 /* 571 * Unwritten extent only exists for file systems which 572 * support holes. 573 */ 574 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 575 576 status = ocfs2_read_inode_block(inode, &bh); 577 if (status < 0) { 578 mlog_errno(status); 579 goto leave; 580 } 581 fe = (struct ocfs2_dinode *) bh->b_data; 582 583 restart_all: 584 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 585 586 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 587 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 588 &data_ac, &meta_ac); 589 if (status) { 590 mlog_errno(status); 591 goto leave; 592 } 593 594 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 595 handle = ocfs2_start_trans(osb, credits); 596 if (IS_ERR(handle)) { 597 status = PTR_ERR(handle); 598 handle = NULL; 599 mlog_errno(status); 600 goto leave; 601 } 602 603 restarted_transaction: 604 trace_ocfs2_extend_allocation( 605 (unsigned long long)OCFS2_I(inode)->ip_blkno, 606 (unsigned long long)i_size_read(inode), 607 le32_to_cpu(fe->i_clusters), clusters_to_add, 608 why, restart_func); 609 610 status = dquot_alloc_space_nodirty(inode, 611 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 612 if (status) 613 goto leave; 614 did_quota = 1; 615 616 /* reserve a write to the file entry early on - that we if we 617 * run out of credits in the allocation path, we can still 618 * update i_size. */ 619 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 620 OCFS2_JOURNAL_ACCESS_WRITE); 621 if (status < 0) { 622 mlog_errno(status); 623 goto leave; 624 } 625 626 prev_clusters = OCFS2_I(inode)->ip_clusters; 627 628 status = ocfs2_add_inode_data(osb, 629 inode, 630 &logical_start, 631 clusters_to_add, 632 mark_unwritten, 633 bh, 634 handle, 635 data_ac, 636 meta_ac, 637 &why); 638 if ((status < 0) && (status != -EAGAIN)) { 639 if (status != -ENOSPC) 640 mlog_errno(status); 641 goto leave; 642 } 643 ocfs2_update_inode_fsync_trans(handle, inode, 1); 644 ocfs2_journal_dirty(handle, bh); 645 646 spin_lock(&OCFS2_I(inode)->ip_lock); 647 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 648 spin_unlock(&OCFS2_I(inode)->ip_lock); 649 /* Release unused quota reservation */ 650 dquot_free_space(inode, 651 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 652 did_quota = 0; 653 654 if (why != RESTART_NONE && clusters_to_add) { 655 if (why == RESTART_META) { 656 restart_func = 1; 657 status = 0; 658 } else { 659 BUG_ON(why != RESTART_TRANS); 660 661 status = ocfs2_allocate_extend_trans(handle, 1); 662 if (status < 0) { 663 /* handle still has to be committed at 664 * this point. */ 665 status = -ENOMEM; 666 mlog_errno(status); 667 goto leave; 668 } 669 goto restarted_transaction; 670 } 671 } 672 673 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 674 le32_to_cpu(fe->i_clusters), 675 (unsigned long long)le64_to_cpu(fe->i_size), 676 OCFS2_I(inode)->ip_clusters, 677 (unsigned long long)i_size_read(inode)); 678 679 leave: 680 if (status < 0 && did_quota) 681 dquot_free_space(inode, 682 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 683 if (handle) { 684 ocfs2_commit_trans(osb, handle); 685 handle = NULL; 686 } 687 if (data_ac) { 688 ocfs2_free_alloc_context(data_ac); 689 data_ac = NULL; 690 } 691 if (meta_ac) { 692 ocfs2_free_alloc_context(meta_ac); 693 meta_ac = NULL; 694 } 695 if ((!status) && restart_func) { 696 restart_func = 0; 697 goto restart_all; 698 } 699 brelse(bh); 700 bh = NULL; 701 702 return status; 703 } 704 705 /* 706 * While a write will already be ordering the data, a truncate will not. 707 * Thus, we need to explicitly order the zeroed pages. 708 */ 709 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 710 struct buffer_head *di_bh, 711 loff_t start_byte, 712 loff_t length) 713 { 714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 715 handle_t *handle = NULL; 716 int ret = 0; 717 718 if (!ocfs2_should_order_data(inode)) 719 goto out; 720 721 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 722 if (IS_ERR(handle)) { 723 ret = -ENOMEM; 724 mlog_errno(ret); 725 goto out; 726 } 727 728 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 729 if (ret < 0) { 730 mlog_errno(ret); 731 goto out; 732 } 733 734 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 735 OCFS2_JOURNAL_ACCESS_WRITE); 736 if (ret) 737 mlog_errno(ret); 738 ocfs2_update_inode_fsync_trans(handle, inode, 1); 739 740 out: 741 if (ret) { 742 if (!IS_ERR(handle)) 743 ocfs2_commit_trans(osb, handle); 744 handle = ERR_PTR(ret); 745 } 746 return handle; 747 } 748 749 /* Some parts of this taken from generic_cont_expand, which turned out 750 * to be too fragile to do exactly what we need without us having to 751 * worry about recursive locking in ->write_begin() and ->write_end(). */ 752 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 753 u64 abs_to, struct buffer_head *di_bh) 754 { 755 struct address_space *mapping = inode->i_mapping; 756 struct page *page; 757 unsigned long index = abs_from >> PAGE_SHIFT; 758 handle_t *handle; 759 int ret = 0; 760 unsigned zero_from, zero_to, block_start, block_end; 761 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 762 763 BUG_ON(abs_from >= abs_to); 764 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 765 BUG_ON(abs_from & (inode->i_blkbits - 1)); 766 767 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 768 abs_from, 769 abs_to - abs_from); 770 if (IS_ERR(handle)) { 771 ret = PTR_ERR(handle); 772 goto out; 773 } 774 775 page = find_or_create_page(mapping, index, GFP_NOFS); 776 if (!page) { 777 ret = -ENOMEM; 778 mlog_errno(ret); 779 goto out_commit_trans; 780 } 781 782 /* Get the offsets within the page that we want to zero */ 783 zero_from = abs_from & (PAGE_SIZE - 1); 784 zero_to = abs_to & (PAGE_SIZE - 1); 785 if (!zero_to) 786 zero_to = PAGE_SIZE; 787 788 trace_ocfs2_write_zero_page( 789 (unsigned long long)OCFS2_I(inode)->ip_blkno, 790 (unsigned long long)abs_from, 791 (unsigned long long)abs_to, 792 index, zero_from, zero_to); 793 794 /* We know that zero_from is block aligned */ 795 for (block_start = zero_from; block_start < zero_to; 796 block_start = block_end) { 797 block_end = block_start + i_blocksize(inode); 798 799 /* 800 * block_start is block-aligned. Bump it by one to force 801 * __block_write_begin and block_commit_write to zero the 802 * whole block. 803 */ 804 ret = __block_write_begin(page, block_start + 1, 0, 805 ocfs2_get_block); 806 if (ret < 0) { 807 mlog_errno(ret); 808 goto out_unlock; 809 } 810 811 812 /* must not update i_size! */ 813 block_commit_write(page, block_start + 1, block_start + 1); 814 } 815 816 /* 817 * fs-writeback will release the dirty pages without page lock 818 * whose offset are over inode size, the release happens at 819 * block_write_full_page(). 820 */ 821 i_size_write(inode, abs_to); 822 inode->i_blocks = ocfs2_inode_sector_count(inode); 823 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 824 inode->i_mtime = inode_set_ctime_current(inode); 825 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 826 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 827 di->i_mtime_nsec = di->i_ctime_nsec; 828 if (handle) { 829 ocfs2_journal_dirty(handle, di_bh); 830 ocfs2_update_inode_fsync_trans(handle, inode, 1); 831 } 832 833 out_unlock: 834 unlock_page(page); 835 put_page(page); 836 out_commit_trans: 837 if (handle) 838 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 839 out: 840 return ret; 841 } 842 843 /* 844 * Find the next range to zero. We do this in terms of bytes because 845 * that's what ocfs2_zero_extend() wants, and it is dealing with the 846 * pagecache. We may return multiple extents. 847 * 848 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 849 * needs to be zeroed. range_start and range_end return the next zeroing 850 * range. A subsequent call should pass the previous range_end as its 851 * zero_start. If range_end is 0, there's nothing to do. 852 * 853 * Unwritten extents are skipped over. Refcounted extents are CoWd. 854 */ 855 static int ocfs2_zero_extend_get_range(struct inode *inode, 856 struct buffer_head *di_bh, 857 u64 zero_start, u64 zero_end, 858 u64 *range_start, u64 *range_end) 859 { 860 int rc = 0, needs_cow = 0; 861 u32 p_cpos, zero_clusters = 0; 862 u32 zero_cpos = 863 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 864 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 865 unsigned int num_clusters = 0; 866 unsigned int ext_flags = 0; 867 868 while (zero_cpos < last_cpos) { 869 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 870 &num_clusters, &ext_flags); 871 if (rc) { 872 mlog_errno(rc); 873 goto out; 874 } 875 876 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 877 zero_clusters = num_clusters; 878 if (ext_flags & OCFS2_EXT_REFCOUNTED) 879 needs_cow = 1; 880 break; 881 } 882 883 zero_cpos += num_clusters; 884 } 885 if (!zero_clusters) { 886 *range_end = 0; 887 goto out; 888 } 889 890 while ((zero_cpos + zero_clusters) < last_cpos) { 891 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 892 &p_cpos, &num_clusters, 893 &ext_flags); 894 if (rc) { 895 mlog_errno(rc); 896 goto out; 897 } 898 899 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 900 break; 901 if (ext_flags & OCFS2_EXT_REFCOUNTED) 902 needs_cow = 1; 903 zero_clusters += num_clusters; 904 } 905 if ((zero_cpos + zero_clusters) > last_cpos) 906 zero_clusters = last_cpos - zero_cpos; 907 908 if (needs_cow) { 909 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 910 zero_clusters, UINT_MAX); 911 if (rc) { 912 mlog_errno(rc); 913 goto out; 914 } 915 } 916 917 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 918 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 919 zero_cpos + zero_clusters); 920 921 out: 922 return rc; 923 } 924 925 /* 926 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 927 * has made sure that the entire range needs zeroing. 928 */ 929 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 930 u64 range_end, struct buffer_head *di_bh) 931 { 932 int rc = 0; 933 u64 next_pos; 934 u64 zero_pos = range_start; 935 936 trace_ocfs2_zero_extend_range( 937 (unsigned long long)OCFS2_I(inode)->ip_blkno, 938 (unsigned long long)range_start, 939 (unsigned long long)range_end); 940 BUG_ON(range_start >= range_end); 941 942 while (zero_pos < range_end) { 943 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 944 if (next_pos > range_end) 945 next_pos = range_end; 946 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 947 if (rc < 0) { 948 mlog_errno(rc); 949 break; 950 } 951 zero_pos = next_pos; 952 953 /* 954 * Very large extends have the potential to lock up 955 * the cpu for extended periods of time. 956 */ 957 cond_resched(); 958 } 959 960 return rc; 961 } 962 963 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 964 loff_t zero_to_size) 965 { 966 int ret = 0; 967 u64 zero_start, range_start = 0, range_end = 0; 968 struct super_block *sb = inode->i_sb; 969 970 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 971 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 972 (unsigned long long)zero_start, 973 (unsigned long long)i_size_read(inode)); 974 while (zero_start < zero_to_size) { 975 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 976 zero_to_size, 977 &range_start, 978 &range_end); 979 if (ret) { 980 mlog_errno(ret); 981 break; 982 } 983 if (!range_end) 984 break; 985 /* Trim the ends */ 986 if (range_start < zero_start) 987 range_start = zero_start; 988 if (range_end > zero_to_size) 989 range_end = zero_to_size; 990 991 ret = ocfs2_zero_extend_range(inode, range_start, 992 range_end, di_bh); 993 if (ret) { 994 mlog_errno(ret); 995 break; 996 } 997 zero_start = range_end; 998 } 999 1000 return ret; 1001 } 1002 1003 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1004 u64 new_i_size, u64 zero_to) 1005 { 1006 int ret; 1007 u32 clusters_to_add; 1008 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1009 1010 /* 1011 * Only quota files call this without a bh, and they can't be 1012 * refcounted. 1013 */ 1014 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1015 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1016 1017 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1018 if (clusters_to_add < oi->ip_clusters) 1019 clusters_to_add = 0; 1020 else 1021 clusters_to_add -= oi->ip_clusters; 1022 1023 if (clusters_to_add) { 1024 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1025 clusters_to_add, 0); 1026 if (ret) { 1027 mlog_errno(ret); 1028 goto out; 1029 } 1030 } 1031 1032 /* 1033 * Call this even if we don't add any clusters to the tree. We 1034 * still need to zero the area between the old i_size and the 1035 * new i_size. 1036 */ 1037 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1038 if (ret < 0) 1039 mlog_errno(ret); 1040 1041 out: 1042 return ret; 1043 } 1044 1045 static int ocfs2_extend_file(struct inode *inode, 1046 struct buffer_head *di_bh, 1047 u64 new_i_size) 1048 { 1049 int ret = 0; 1050 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1051 1052 BUG_ON(!di_bh); 1053 1054 /* setattr sometimes calls us like this. */ 1055 if (new_i_size == 0) 1056 goto out; 1057 1058 if (i_size_read(inode) == new_i_size) 1059 goto out; 1060 BUG_ON(new_i_size < i_size_read(inode)); 1061 1062 /* 1063 * The alloc sem blocks people in read/write from reading our 1064 * allocation until we're done changing it. We depend on 1065 * i_rwsem to block other extend/truncate calls while we're 1066 * here. We even have to hold it for sparse files because there 1067 * might be some tail zeroing. 1068 */ 1069 down_write(&oi->ip_alloc_sem); 1070 1071 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1072 /* 1073 * We can optimize small extends by keeping the inodes 1074 * inline data. 1075 */ 1076 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1077 up_write(&oi->ip_alloc_sem); 1078 goto out_update_size; 1079 } 1080 1081 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1082 if (ret) { 1083 up_write(&oi->ip_alloc_sem); 1084 mlog_errno(ret); 1085 goto out; 1086 } 1087 } 1088 1089 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1090 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1091 else 1092 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1093 new_i_size); 1094 1095 up_write(&oi->ip_alloc_sem); 1096 1097 if (ret < 0) { 1098 mlog_errno(ret); 1099 goto out; 1100 } 1101 1102 out_update_size: 1103 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1104 if (ret < 0) 1105 mlog_errno(ret); 1106 1107 out: 1108 return ret; 1109 } 1110 1111 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1112 struct iattr *attr) 1113 { 1114 int status = 0, size_change; 1115 int inode_locked = 0; 1116 struct inode *inode = d_inode(dentry); 1117 struct super_block *sb = inode->i_sb; 1118 struct ocfs2_super *osb = OCFS2_SB(sb); 1119 struct buffer_head *bh = NULL; 1120 handle_t *handle = NULL; 1121 struct dquot *transfer_to[MAXQUOTAS] = { }; 1122 int qtype; 1123 int had_lock; 1124 struct ocfs2_lock_holder oh; 1125 1126 trace_ocfs2_setattr(inode, dentry, 1127 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1128 dentry->d_name.len, dentry->d_name.name, 1129 attr->ia_valid, attr->ia_mode, 1130 from_kuid(&init_user_ns, attr->ia_uid), 1131 from_kgid(&init_user_ns, attr->ia_gid)); 1132 1133 /* ensuring we don't even attempt to truncate a symlink */ 1134 if (S_ISLNK(inode->i_mode)) 1135 attr->ia_valid &= ~ATTR_SIZE; 1136 1137 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1138 | ATTR_GID | ATTR_UID | ATTR_MODE) 1139 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1140 return 0; 1141 1142 status = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1143 if (status) 1144 return status; 1145 1146 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) { 1147 status = dquot_initialize(inode); 1148 if (status) 1149 return status; 1150 } 1151 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1152 if (size_change) { 1153 /* 1154 * Here we should wait dio to finish before inode lock 1155 * to avoid a deadlock between ocfs2_setattr() and 1156 * ocfs2_dio_end_io_write() 1157 */ 1158 inode_dio_wait(inode); 1159 1160 status = ocfs2_rw_lock(inode, 1); 1161 if (status < 0) { 1162 mlog_errno(status); 1163 goto bail; 1164 } 1165 } 1166 1167 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1168 if (had_lock < 0) { 1169 status = had_lock; 1170 goto bail_unlock_rw; 1171 } else if (had_lock) { 1172 /* 1173 * As far as we know, ocfs2_setattr() could only be the first 1174 * VFS entry point in the call chain of recursive cluster 1175 * locking issue. 1176 * 1177 * For instance: 1178 * chmod_common() 1179 * notify_change() 1180 * ocfs2_setattr() 1181 * posix_acl_chmod() 1182 * ocfs2_iop_get_acl() 1183 * 1184 * But, we're not 100% sure if it's always true, because the 1185 * ordering of the VFS entry points in the call chain is out 1186 * of our control. So, we'd better dump the stack here to 1187 * catch the other cases of recursive locking. 1188 */ 1189 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1190 dump_stack(); 1191 } 1192 inode_locked = 1; 1193 1194 if (size_change) { 1195 status = inode_newsize_ok(inode, attr->ia_size); 1196 if (status) 1197 goto bail_unlock; 1198 1199 if (i_size_read(inode) >= attr->ia_size) { 1200 if (ocfs2_should_order_data(inode)) { 1201 status = ocfs2_begin_ordered_truncate(inode, 1202 attr->ia_size); 1203 if (status) 1204 goto bail_unlock; 1205 } 1206 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1207 } else 1208 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1209 if (status < 0) { 1210 if (status != -ENOSPC) 1211 mlog_errno(status); 1212 status = -ENOSPC; 1213 goto bail_unlock; 1214 } 1215 } 1216 1217 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1218 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1219 /* 1220 * Gather pointers to quota structures so that allocation / 1221 * freeing of quota structures happens here and not inside 1222 * dquot_transfer() where we have problems with lock ordering 1223 */ 1224 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1225 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1226 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1227 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1228 if (IS_ERR(transfer_to[USRQUOTA])) { 1229 status = PTR_ERR(transfer_to[USRQUOTA]); 1230 transfer_to[USRQUOTA] = NULL; 1231 goto bail_unlock; 1232 } 1233 } 1234 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1235 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1236 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1237 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1238 if (IS_ERR(transfer_to[GRPQUOTA])) { 1239 status = PTR_ERR(transfer_to[GRPQUOTA]); 1240 transfer_to[GRPQUOTA] = NULL; 1241 goto bail_unlock; 1242 } 1243 } 1244 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1245 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1246 2 * ocfs2_quota_trans_credits(sb)); 1247 if (IS_ERR(handle)) { 1248 status = PTR_ERR(handle); 1249 mlog_errno(status); 1250 goto bail_unlock_alloc; 1251 } 1252 status = __dquot_transfer(inode, transfer_to); 1253 if (status < 0) 1254 goto bail_commit; 1255 } else { 1256 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1258 if (IS_ERR(handle)) { 1259 status = PTR_ERR(handle); 1260 mlog_errno(status); 1261 goto bail_unlock_alloc; 1262 } 1263 } 1264 1265 setattr_copy(&nop_mnt_idmap, inode, attr); 1266 mark_inode_dirty(inode); 1267 1268 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1269 if (status < 0) 1270 mlog_errno(status); 1271 1272 bail_commit: 1273 ocfs2_commit_trans(osb, handle); 1274 bail_unlock_alloc: 1275 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1276 bail_unlock: 1277 if (status && inode_locked) { 1278 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1279 inode_locked = 0; 1280 } 1281 bail_unlock_rw: 1282 if (size_change) 1283 ocfs2_rw_unlock(inode, 1); 1284 bail: 1285 1286 /* Release quota pointers in case we acquired them */ 1287 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1288 dqput(transfer_to[qtype]); 1289 1290 if (!status && attr->ia_valid & ATTR_MODE) { 1291 status = ocfs2_acl_chmod(inode, bh); 1292 if (status < 0) 1293 mlog_errno(status); 1294 } 1295 if (inode_locked) 1296 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1297 1298 brelse(bh); 1299 return status; 1300 } 1301 1302 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path, 1303 struct kstat *stat, u32 request_mask, unsigned int flags) 1304 { 1305 struct inode *inode = d_inode(path->dentry); 1306 struct super_block *sb = path->dentry->d_sb; 1307 struct ocfs2_super *osb = sb->s_fs_info; 1308 int err; 1309 1310 err = ocfs2_inode_revalidate(path->dentry); 1311 if (err) { 1312 if (err != -ENOENT) 1313 mlog_errno(err); 1314 goto bail; 1315 } 1316 1317 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1318 /* 1319 * If there is inline data in the inode, the inode will normally not 1320 * have data blocks allocated (it may have an external xattr block). 1321 * Report at least one sector for such files, so tools like tar, rsync, 1322 * others don't incorrectly think the file is completely sparse. 1323 */ 1324 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1325 stat->blocks += (stat->size + 511)>>9; 1326 1327 /* We set the blksize from the cluster size for performance */ 1328 stat->blksize = osb->s_clustersize; 1329 1330 bail: 1331 return err; 1332 } 1333 1334 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode, 1335 int mask) 1336 { 1337 int ret, had_lock; 1338 struct ocfs2_lock_holder oh; 1339 1340 if (mask & MAY_NOT_BLOCK) 1341 return -ECHILD; 1342 1343 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1344 if (had_lock < 0) { 1345 ret = had_lock; 1346 goto out; 1347 } else if (had_lock) { 1348 /* See comments in ocfs2_setattr() for details. 1349 * The call chain of this case could be: 1350 * do_sys_open() 1351 * may_open() 1352 * inode_permission() 1353 * ocfs2_permission() 1354 * ocfs2_iop_get_acl() 1355 */ 1356 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1357 dump_stack(); 1358 } 1359 1360 ret = generic_permission(&nop_mnt_idmap, inode, mask); 1361 1362 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1363 out: 1364 return ret; 1365 } 1366 1367 static int __ocfs2_write_remove_suid(struct inode *inode, 1368 struct buffer_head *bh) 1369 { 1370 int ret; 1371 handle_t *handle; 1372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1373 struct ocfs2_dinode *di; 1374 1375 trace_ocfs2_write_remove_suid( 1376 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1377 inode->i_mode); 1378 1379 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1380 if (IS_ERR(handle)) { 1381 ret = PTR_ERR(handle); 1382 mlog_errno(ret); 1383 goto out; 1384 } 1385 1386 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1387 OCFS2_JOURNAL_ACCESS_WRITE); 1388 if (ret < 0) { 1389 mlog_errno(ret); 1390 goto out_trans; 1391 } 1392 1393 inode->i_mode &= ~S_ISUID; 1394 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1395 inode->i_mode &= ~S_ISGID; 1396 1397 di = (struct ocfs2_dinode *) bh->b_data; 1398 di->i_mode = cpu_to_le16(inode->i_mode); 1399 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1400 1401 ocfs2_journal_dirty(handle, bh); 1402 1403 out_trans: 1404 ocfs2_commit_trans(osb, handle); 1405 out: 1406 return ret; 1407 } 1408 1409 static int ocfs2_write_remove_suid(struct inode *inode) 1410 { 1411 int ret; 1412 struct buffer_head *bh = NULL; 1413 1414 ret = ocfs2_read_inode_block(inode, &bh); 1415 if (ret < 0) { 1416 mlog_errno(ret); 1417 goto out; 1418 } 1419 1420 ret = __ocfs2_write_remove_suid(inode, bh); 1421 out: 1422 brelse(bh); 1423 return ret; 1424 } 1425 1426 /* 1427 * Allocate enough extents to cover the region starting at byte offset 1428 * start for len bytes. Existing extents are skipped, any extents 1429 * added are marked as "unwritten". 1430 */ 1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1432 u64 start, u64 len) 1433 { 1434 int ret; 1435 u32 cpos, phys_cpos, clusters, alloc_size; 1436 u64 end = start + len; 1437 struct buffer_head *di_bh = NULL; 1438 1439 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1440 ret = ocfs2_read_inode_block(inode, &di_bh); 1441 if (ret) { 1442 mlog_errno(ret); 1443 goto out; 1444 } 1445 1446 /* 1447 * Nothing to do if the requested reservation range 1448 * fits within the inode. 1449 */ 1450 if (ocfs2_size_fits_inline_data(di_bh, end)) 1451 goto out; 1452 1453 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1454 if (ret) { 1455 mlog_errno(ret); 1456 goto out; 1457 } 1458 } 1459 1460 /* 1461 * We consider both start and len to be inclusive. 1462 */ 1463 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1464 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1465 clusters -= cpos; 1466 1467 while (clusters) { 1468 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1469 &alloc_size, NULL); 1470 if (ret) { 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 1475 /* 1476 * Hole or existing extent len can be arbitrary, so 1477 * cap it to our own allocation request. 1478 */ 1479 if (alloc_size > clusters) 1480 alloc_size = clusters; 1481 1482 if (phys_cpos) { 1483 /* 1484 * We already have an allocation at this 1485 * region so we can safely skip it. 1486 */ 1487 goto next; 1488 } 1489 1490 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1491 if (ret) { 1492 if (ret != -ENOSPC) 1493 mlog_errno(ret); 1494 goto out; 1495 } 1496 1497 next: 1498 cpos += alloc_size; 1499 clusters -= alloc_size; 1500 } 1501 1502 ret = 0; 1503 out: 1504 1505 brelse(di_bh); 1506 return ret; 1507 } 1508 1509 /* 1510 * Truncate a byte range, avoiding pages within partial clusters. This 1511 * preserves those pages for the zeroing code to write to. 1512 */ 1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1514 u64 byte_len) 1515 { 1516 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1517 loff_t start, end; 1518 struct address_space *mapping = inode->i_mapping; 1519 1520 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1521 end = byte_start + byte_len; 1522 end = end & ~(osb->s_clustersize - 1); 1523 1524 if (start < end) { 1525 unmap_mapping_range(mapping, start, end - start, 0); 1526 truncate_inode_pages_range(mapping, start, end - 1); 1527 } 1528 } 1529 1530 /* 1531 * zero out partial blocks of one cluster. 1532 * 1533 * start: file offset where zero starts, will be made upper block aligned. 1534 * len: it will be trimmed to the end of current cluster if "start + len" 1535 * is bigger than it. 1536 */ 1537 static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1538 u64 start, u64 len) 1539 { 1540 int ret; 1541 u64 start_block, end_block, nr_blocks; 1542 u64 p_block, offset; 1543 u32 cluster, p_cluster, nr_clusters; 1544 struct super_block *sb = inode->i_sb; 1545 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1546 1547 if (start + len < end) 1548 end = start + len; 1549 1550 start_block = ocfs2_blocks_for_bytes(sb, start); 1551 end_block = ocfs2_blocks_for_bytes(sb, end); 1552 nr_blocks = end_block - start_block; 1553 if (!nr_blocks) 1554 return 0; 1555 1556 cluster = ocfs2_bytes_to_clusters(sb, start); 1557 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1558 &nr_clusters, NULL); 1559 if (ret) 1560 return ret; 1561 if (!p_cluster) 1562 return 0; 1563 1564 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1565 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1566 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1567 } 1568 1569 static int ocfs2_zero_partial_clusters(struct inode *inode, 1570 u64 start, u64 len) 1571 { 1572 int ret = 0; 1573 u64 tmpend = 0; 1574 u64 end = start + len; 1575 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1576 unsigned int csize = osb->s_clustersize; 1577 handle_t *handle; 1578 loff_t isize = i_size_read(inode); 1579 1580 /* 1581 * The "start" and "end" values are NOT necessarily part of 1582 * the range whose allocation is being deleted. Rather, this 1583 * is what the user passed in with the request. We must zero 1584 * partial clusters here. There's no need to worry about 1585 * physical allocation - the zeroing code knows to skip holes. 1586 */ 1587 trace_ocfs2_zero_partial_clusters( 1588 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1589 (unsigned long long)start, (unsigned long long)end); 1590 1591 /* 1592 * If both edges are on a cluster boundary then there's no 1593 * zeroing required as the region is part of the allocation to 1594 * be truncated. 1595 */ 1596 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1597 goto out; 1598 1599 /* No page cache for EOF blocks, issue zero out to disk. */ 1600 if (end > isize) { 1601 /* 1602 * zeroout eof blocks in last cluster starting from 1603 * "isize" even "start" > "isize" because it is 1604 * complicated to zeroout just at "start" as "start" 1605 * may be not aligned with block size, buffer write 1606 * would be required to do that, but out of eof buffer 1607 * write is not supported. 1608 */ 1609 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1610 end - isize); 1611 if (ret) { 1612 mlog_errno(ret); 1613 goto out; 1614 } 1615 if (start >= isize) 1616 goto out; 1617 end = isize; 1618 } 1619 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1620 if (IS_ERR(handle)) { 1621 ret = PTR_ERR(handle); 1622 mlog_errno(ret); 1623 goto out; 1624 } 1625 1626 /* 1627 * If start is on a cluster boundary and end is somewhere in another 1628 * cluster, we have not COWed the cluster starting at start, unless 1629 * end is also within the same cluster. So, in this case, we skip this 1630 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1631 * to the next one. 1632 */ 1633 if ((start & (csize - 1)) != 0) { 1634 /* 1635 * We want to get the byte offset of the end of the 1st 1636 * cluster. 1637 */ 1638 tmpend = (u64)osb->s_clustersize + 1639 (start & ~(osb->s_clustersize - 1)); 1640 if (tmpend > end) 1641 tmpend = end; 1642 1643 trace_ocfs2_zero_partial_clusters_range1( 1644 (unsigned long long)start, 1645 (unsigned long long)tmpend); 1646 1647 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1648 tmpend); 1649 if (ret) 1650 mlog_errno(ret); 1651 } 1652 1653 if (tmpend < end) { 1654 /* 1655 * This may make start and end equal, but the zeroing 1656 * code will skip any work in that case so there's no 1657 * need to catch it up here. 1658 */ 1659 start = end & ~(osb->s_clustersize - 1); 1660 1661 trace_ocfs2_zero_partial_clusters_range2( 1662 (unsigned long long)start, (unsigned long long)end); 1663 1664 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1665 if (ret) 1666 mlog_errno(ret); 1667 } 1668 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1669 1670 ocfs2_commit_trans(osb, handle); 1671 out: 1672 return ret; 1673 } 1674 1675 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1676 { 1677 int i; 1678 struct ocfs2_extent_rec *rec = NULL; 1679 1680 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1681 1682 rec = &el->l_recs[i]; 1683 1684 if (le32_to_cpu(rec->e_cpos) < pos) 1685 break; 1686 } 1687 1688 return i; 1689 } 1690 1691 /* 1692 * Helper to calculate the punching pos and length in one run, we handle the 1693 * following three cases in order: 1694 * 1695 * - remove the entire record 1696 * - remove a partial record 1697 * - no record needs to be removed (hole-punching completed) 1698 */ 1699 static void ocfs2_calc_trunc_pos(struct inode *inode, 1700 struct ocfs2_extent_list *el, 1701 struct ocfs2_extent_rec *rec, 1702 u32 trunc_start, u32 *trunc_cpos, 1703 u32 *trunc_len, u32 *trunc_end, 1704 u64 *blkno, int *done) 1705 { 1706 int ret = 0; 1707 u32 coff, range; 1708 1709 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1710 1711 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1712 /* 1713 * remove an entire extent record. 1714 */ 1715 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1716 /* 1717 * Skip holes if any. 1718 */ 1719 if (range < *trunc_end) 1720 *trunc_end = range; 1721 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1722 *blkno = le64_to_cpu(rec->e_blkno); 1723 *trunc_end = le32_to_cpu(rec->e_cpos); 1724 } else if (range > trunc_start) { 1725 /* 1726 * remove a partial extent record, which means we're 1727 * removing the last extent record. 1728 */ 1729 *trunc_cpos = trunc_start; 1730 /* 1731 * skip hole if any. 1732 */ 1733 if (range < *trunc_end) 1734 *trunc_end = range; 1735 *trunc_len = *trunc_end - trunc_start; 1736 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1737 *blkno = le64_to_cpu(rec->e_blkno) + 1738 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1739 *trunc_end = trunc_start; 1740 } else { 1741 /* 1742 * It may have two following possibilities: 1743 * 1744 * - last record has been removed 1745 * - trunc_start was within a hole 1746 * 1747 * both two cases mean the completion of hole punching. 1748 */ 1749 ret = 1; 1750 } 1751 1752 *done = ret; 1753 } 1754 1755 int ocfs2_remove_inode_range(struct inode *inode, 1756 struct buffer_head *di_bh, u64 byte_start, 1757 u64 byte_len) 1758 { 1759 int ret = 0, flags = 0, done = 0, i; 1760 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1761 u32 cluster_in_el; 1762 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1763 struct ocfs2_cached_dealloc_ctxt dealloc; 1764 struct address_space *mapping = inode->i_mapping; 1765 struct ocfs2_extent_tree et; 1766 struct ocfs2_path *path = NULL; 1767 struct ocfs2_extent_list *el = NULL; 1768 struct ocfs2_extent_rec *rec = NULL; 1769 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1770 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1771 1772 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1773 ocfs2_init_dealloc_ctxt(&dealloc); 1774 1775 trace_ocfs2_remove_inode_range( 1776 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1777 (unsigned long long)byte_start, 1778 (unsigned long long)byte_len); 1779 1780 if (byte_len == 0) 1781 return 0; 1782 1783 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1784 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1785 byte_start + byte_len, 0); 1786 if (ret) { 1787 mlog_errno(ret); 1788 goto out; 1789 } 1790 /* 1791 * There's no need to get fancy with the page cache 1792 * truncate of an inline-data inode. We're talking 1793 * about less than a page here, which will be cached 1794 * in the dinode buffer anyway. 1795 */ 1796 unmap_mapping_range(mapping, 0, 0, 0); 1797 truncate_inode_pages(mapping, 0); 1798 goto out; 1799 } 1800 1801 /* 1802 * For reflinks, we may need to CoW 2 clusters which might be 1803 * partially zero'd later, if hole's start and end offset were 1804 * within one cluster(means is not exactly aligned to clustersize). 1805 */ 1806 1807 if (ocfs2_is_refcount_inode(inode)) { 1808 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1809 if (ret) { 1810 mlog_errno(ret); 1811 goto out; 1812 } 1813 1814 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1815 if (ret) { 1816 mlog_errno(ret); 1817 goto out; 1818 } 1819 } 1820 1821 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1822 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1823 cluster_in_el = trunc_end; 1824 1825 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1826 if (ret) { 1827 mlog_errno(ret); 1828 goto out; 1829 } 1830 1831 path = ocfs2_new_path_from_et(&et); 1832 if (!path) { 1833 ret = -ENOMEM; 1834 mlog_errno(ret); 1835 goto out; 1836 } 1837 1838 while (trunc_end > trunc_start) { 1839 1840 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1841 cluster_in_el); 1842 if (ret) { 1843 mlog_errno(ret); 1844 goto out; 1845 } 1846 1847 el = path_leaf_el(path); 1848 1849 i = ocfs2_find_rec(el, trunc_end); 1850 /* 1851 * Need to go to previous extent block. 1852 */ 1853 if (i < 0) { 1854 if (path->p_tree_depth == 0) 1855 break; 1856 1857 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1858 path, 1859 &cluster_in_el); 1860 if (ret) { 1861 mlog_errno(ret); 1862 goto out; 1863 } 1864 1865 /* 1866 * We've reached the leftmost extent block, 1867 * it's safe to leave. 1868 */ 1869 if (cluster_in_el == 0) 1870 break; 1871 1872 /* 1873 * The 'pos' searched for previous extent block is 1874 * always one cluster less than actual trunc_end. 1875 */ 1876 trunc_end = cluster_in_el + 1; 1877 1878 ocfs2_reinit_path(path, 1); 1879 1880 continue; 1881 1882 } else 1883 rec = &el->l_recs[i]; 1884 1885 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1886 &trunc_len, &trunc_end, &blkno, &done); 1887 if (done) 1888 break; 1889 1890 flags = rec->e_flags; 1891 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1892 1893 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1894 phys_cpos, trunc_len, flags, 1895 &dealloc, refcount_loc, false); 1896 if (ret < 0) { 1897 mlog_errno(ret); 1898 goto out; 1899 } 1900 1901 cluster_in_el = trunc_end; 1902 1903 ocfs2_reinit_path(path, 1); 1904 } 1905 1906 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1907 1908 out: 1909 ocfs2_free_path(path); 1910 ocfs2_schedule_truncate_log_flush(osb, 1); 1911 ocfs2_run_deallocs(osb, &dealloc); 1912 1913 return ret; 1914 } 1915 1916 /* 1917 * Parts of this function taken from xfs_change_file_space() 1918 */ 1919 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1920 loff_t f_pos, unsigned int cmd, 1921 struct ocfs2_space_resv *sr, 1922 int change_size) 1923 { 1924 int ret; 1925 s64 llen; 1926 loff_t size, orig_isize; 1927 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1928 struct buffer_head *di_bh = NULL; 1929 handle_t *handle; 1930 unsigned long long max_off = inode->i_sb->s_maxbytes; 1931 1932 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1933 return -EROFS; 1934 1935 inode_lock(inode); 1936 1937 /* 1938 * This prevents concurrent writes on other nodes 1939 */ 1940 ret = ocfs2_rw_lock(inode, 1); 1941 if (ret) { 1942 mlog_errno(ret); 1943 goto out; 1944 } 1945 1946 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1947 if (ret) { 1948 mlog_errno(ret); 1949 goto out_rw_unlock; 1950 } 1951 1952 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1953 ret = -EPERM; 1954 goto out_inode_unlock; 1955 } 1956 1957 switch (sr->l_whence) { 1958 case 0: /*SEEK_SET*/ 1959 break; 1960 case 1: /*SEEK_CUR*/ 1961 sr->l_start += f_pos; 1962 break; 1963 case 2: /*SEEK_END*/ 1964 sr->l_start += i_size_read(inode); 1965 break; 1966 default: 1967 ret = -EINVAL; 1968 goto out_inode_unlock; 1969 } 1970 sr->l_whence = 0; 1971 1972 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1973 1974 if (sr->l_start < 0 1975 || sr->l_start > max_off 1976 || (sr->l_start + llen) < 0 1977 || (sr->l_start + llen) > max_off) { 1978 ret = -EINVAL; 1979 goto out_inode_unlock; 1980 } 1981 size = sr->l_start + sr->l_len; 1982 1983 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1984 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1985 if (sr->l_len <= 0) { 1986 ret = -EINVAL; 1987 goto out_inode_unlock; 1988 } 1989 } 1990 1991 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) { 1992 ret = __ocfs2_write_remove_suid(inode, di_bh); 1993 if (ret) { 1994 mlog_errno(ret); 1995 goto out_inode_unlock; 1996 } 1997 } 1998 1999 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2000 switch (cmd) { 2001 case OCFS2_IOC_RESVSP: 2002 case OCFS2_IOC_RESVSP64: 2003 /* 2004 * This takes unsigned offsets, but the signed ones we 2005 * pass have been checked against overflow above. 2006 */ 2007 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2008 sr->l_len); 2009 break; 2010 case OCFS2_IOC_UNRESVSP: 2011 case OCFS2_IOC_UNRESVSP64: 2012 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2013 sr->l_len); 2014 break; 2015 default: 2016 ret = -EINVAL; 2017 } 2018 2019 orig_isize = i_size_read(inode); 2020 /* zeroout eof blocks in the cluster. */ 2021 if (!ret && change_size && orig_isize < size) { 2022 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2023 size - orig_isize); 2024 if (!ret) 2025 i_size_write(inode, size); 2026 } 2027 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2028 if (ret) { 2029 mlog_errno(ret); 2030 goto out_inode_unlock; 2031 } 2032 2033 /* 2034 * We update c/mtime for these changes 2035 */ 2036 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2037 if (IS_ERR(handle)) { 2038 ret = PTR_ERR(handle); 2039 mlog_errno(ret); 2040 goto out_inode_unlock; 2041 } 2042 2043 inode->i_mtime = inode_set_ctime_current(inode); 2044 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2045 if (ret < 0) 2046 mlog_errno(ret); 2047 2048 if (file && (file->f_flags & O_SYNC)) 2049 handle->h_sync = 1; 2050 2051 ocfs2_commit_trans(osb, handle); 2052 2053 out_inode_unlock: 2054 brelse(di_bh); 2055 ocfs2_inode_unlock(inode, 1); 2056 out_rw_unlock: 2057 ocfs2_rw_unlock(inode, 1); 2058 2059 out: 2060 inode_unlock(inode); 2061 return ret; 2062 } 2063 2064 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2065 struct ocfs2_space_resv *sr) 2066 { 2067 struct inode *inode = file_inode(file); 2068 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2069 int ret; 2070 2071 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2072 !ocfs2_writes_unwritten_extents(osb)) 2073 return -ENOTTY; 2074 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2075 !ocfs2_sparse_alloc(osb)) 2076 return -ENOTTY; 2077 2078 if (!S_ISREG(inode->i_mode)) 2079 return -EINVAL; 2080 2081 if (!(file->f_mode & FMODE_WRITE)) 2082 return -EBADF; 2083 2084 ret = mnt_want_write_file(file); 2085 if (ret) 2086 return ret; 2087 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2088 mnt_drop_write_file(file); 2089 return ret; 2090 } 2091 2092 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2093 loff_t len) 2094 { 2095 struct inode *inode = file_inode(file); 2096 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2097 struct ocfs2_space_resv sr; 2098 int change_size = 1; 2099 int cmd = OCFS2_IOC_RESVSP64; 2100 int ret = 0; 2101 2102 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2103 return -EOPNOTSUPP; 2104 if (!ocfs2_writes_unwritten_extents(osb)) 2105 return -EOPNOTSUPP; 2106 2107 if (mode & FALLOC_FL_KEEP_SIZE) { 2108 change_size = 0; 2109 } else { 2110 ret = inode_newsize_ok(inode, offset + len); 2111 if (ret) 2112 return ret; 2113 } 2114 2115 if (mode & FALLOC_FL_PUNCH_HOLE) 2116 cmd = OCFS2_IOC_UNRESVSP64; 2117 2118 sr.l_whence = 0; 2119 sr.l_start = (s64)offset; 2120 sr.l_len = (s64)len; 2121 2122 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2123 change_size); 2124 } 2125 2126 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2127 size_t count) 2128 { 2129 int ret = 0; 2130 unsigned int extent_flags; 2131 u32 cpos, clusters, extent_len, phys_cpos; 2132 struct super_block *sb = inode->i_sb; 2133 2134 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2135 !ocfs2_is_refcount_inode(inode) || 2136 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2137 return 0; 2138 2139 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2140 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2141 2142 while (clusters) { 2143 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2144 &extent_flags); 2145 if (ret < 0) { 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 2150 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2151 ret = 1; 2152 break; 2153 } 2154 2155 if (extent_len > clusters) 2156 extent_len = clusters; 2157 2158 clusters -= extent_len; 2159 cpos += extent_len; 2160 } 2161 out: 2162 return ret; 2163 } 2164 2165 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2166 { 2167 int blockmask = inode->i_sb->s_blocksize - 1; 2168 loff_t final_size = pos + count; 2169 2170 if ((pos & blockmask) || (final_size & blockmask)) 2171 return 1; 2172 return 0; 2173 } 2174 2175 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2176 struct buffer_head **di_bh, 2177 int meta_level, 2178 int write_sem, 2179 int wait) 2180 { 2181 int ret = 0; 2182 2183 if (wait) 2184 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2185 else 2186 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2187 if (ret < 0) 2188 goto out; 2189 2190 if (wait) { 2191 if (write_sem) 2192 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2193 else 2194 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2195 } else { 2196 if (write_sem) 2197 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2198 else 2199 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2200 2201 if (!ret) { 2202 ret = -EAGAIN; 2203 goto out_unlock; 2204 } 2205 } 2206 2207 return ret; 2208 2209 out_unlock: 2210 brelse(*di_bh); 2211 *di_bh = NULL; 2212 ocfs2_inode_unlock(inode, meta_level); 2213 out: 2214 return ret; 2215 } 2216 2217 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2218 struct buffer_head **di_bh, 2219 int meta_level, 2220 int write_sem) 2221 { 2222 if (write_sem) 2223 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2224 else 2225 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2226 2227 brelse(*di_bh); 2228 *di_bh = NULL; 2229 2230 if (meta_level >= 0) 2231 ocfs2_inode_unlock(inode, meta_level); 2232 } 2233 2234 static int ocfs2_prepare_inode_for_write(struct file *file, 2235 loff_t pos, size_t count, int wait) 2236 { 2237 int ret = 0, meta_level = 0, overwrite_io = 0; 2238 int write_sem = 0; 2239 struct dentry *dentry = file->f_path.dentry; 2240 struct inode *inode = d_inode(dentry); 2241 struct buffer_head *di_bh = NULL; 2242 u32 cpos; 2243 u32 clusters; 2244 2245 /* 2246 * We start with a read level meta lock and only jump to an ex 2247 * if we need to make modifications here. 2248 */ 2249 for(;;) { 2250 ret = ocfs2_inode_lock_for_extent_tree(inode, 2251 &di_bh, 2252 meta_level, 2253 write_sem, 2254 wait); 2255 if (ret < 0) { 2256 if (ret != -EAGAIN) 2257 mlog_errno(ret); 2258 goto out; 2259 } 2260 2261 /* 2262 * Check if IO will overwrite allocated blocks in case 2263 * IOCB_NOWAIT flag is set. 2264 */ 2265 if (!wait && !overwrite_io) { 2266 overwrite_io = 1; 2267 2268 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2269 if (ret < 0) { 2270 if (ret != -EAGAIN) 2271 mlog_errno(ret); 2272 goto out_unlock; 2273 } 2274 } 2275 2276 /* Clear suid / sgid if necessary. We do this here 2277 * instead of later in the write path because 2278 * remove_suid() calls ->setattr without any hint that 2279 * we may have already done our cluster locking. Since 2280 * ocfs2_setattr() *must* take cluster locks to 2281 * proceed, this will lead us to recursively lock the 2282 * inode. There's also the dinode i_size state which 2283 * can be lost via setattr during extending writes (we 2284 * set inode->i_size at the end of a write. */ 2285 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) { 2286 if (meta_level == 0) { 2287 ocfs2_inode_unlock_for_extent_tree(inode, 2288 &di_bh, 2289 meta_level, 2290 write_sem); 2291 meta_level = 1; 2292 continue; 2293 } 2294 2295 ret = ocfs2_write_remove_suid(inode); 2296 if (ret < 0) { 2297 mlog_errno(ret); 2298 goto out_unlock; 2299 } 2300 } 2301 2302 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2303 if (ret == 1) { 2304 ocfs2_inode_unlock_for_extent_tree(inode, 2305 &di_bh, 2306 meta_level, 2307 write_sem); 2308 meta_level = 1; 2309 write_sem = 1; 2310 ret = ocfs2_inode_lock_for_extent_tree(inode, 2311 &di_bh, 2312 meta_level, 2313 write_sem, 2314 wait); 2315 if (ret < 0) { 2316 if (ret != -EAGAIN) 2317 mlog_errno(ret); 2318 goto out; 2319 } 2320 2321 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2322 clusters = 2323 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2324 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2325 } 2326 2327 if (ret < 0) { 2328 if (ret != -EAGAIN) 2329 mlog_errno(ret); 2330 goto out_unlock; 2331 } 2332 2333 break; 2334 } 2335 2336 out_unlock: 2337 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2338 pos, count, wait); 2339 2340 ocfs2_inode_unlock_for_extent_tree(inode, 2341 &di_bh, 2342 meta_level, 2343 write_sem); 2344 2345 out: 2346 return ret; 2347 } 2348 2349 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2350 struct iov_iter *from) 2351 { 2352 int rw_level; 2353 ssize_t written = 0; 2354 ssize_t ret; 2355 size_t count = iov_iter_count(from); 2356 struct file *file = iocb->ki_filp; 2357 struct inode *inode = file_inode(file); 2358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2359 int full_coherency = !(osb->s_mount_opt & 2360 OCFS2_MOUNT_COHERENCY_BUFFERED); 2361 void *saved_ki_complete = NULL; 2362 int append_write = ((iocb->ki_pos + count) >= 2363 i_size_read(inode) ? 1 : 0); 2364 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2365 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2366 2367 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2368 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2369 file->f_path.dentry->d_name.len, 2370 file->f_path.dentry->d_name.name, 2371 (unsigned int)from->nr_segs); /* GRRRRR */ 2372 2373 if (!direct_io && nowait) 2374 return -EOPNOTSUPP; 2375 2376 if (count == 0) 2377 return 0; 2378 2379 if (nowait) { 2380 if (!inode_trylock(inode)) 2381 return -EAGAIN; 2382 } else 2383 inode_lock(inode); 2384 2385 /* 2386 * Concurrent O_DIRECT writes are allowed with 2387 * mount_option "coherency=buffered". 2388 * For append write, we must take rw EX. 2389 */ 2390 rw_level = (!direct_io || full_coherency || append_write); 2391 2392 if (nowait) 2393 ret = ocfs2_try_rw_lock(inode, rw_level); 2394 else 2395 ret = ocfs2_rw_lock(inode, rw_level); 2396 if (ret < 0) { 2397 if (ret != -EAGAIN) 2398 mlog_errno(ret); 2399 goto out_mutex; 2400 } 2401 2402 /* 2403 * O_DIRECT writes with "coherency=full" need to take EX cluster 2404 * inode_lock to guarantee coherency. 2405 */ 2406 if (direct_io && full_coherency) { 2407 /* 2408 * We need to take and drop the inode lock to force 2409 * other nodes to drop their caches. Buffered I/O 2410 * already does this in write_begin(). 2411 */ 2412 if (nowait) 2413 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2414 else 2415 ret = ocfs2_inode_lock(inode, NULL, 1); 2416 if (ret < 0) { 2417 if (ret != -EAGAIN) 2418 mlog_errno(ret); 2419 goto out; 2420 } 2421 2422 ocfs2_inode_unlock(inode, 1); 2423 } 2424 2425 ret = generic_write_checks(iocb, from); 2426 if (ret <= 0) { 2427 if (ret) 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 count = ret; 2432 2433 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2434 if (ret < 0) { 2435 if (ret != -EAGAIN) 2436 mlog_errno(ret); 2437 goto out; 2438 } 2439 2440 if (direct_io && !is_sync_kiocb(iocb) && 2441 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2442 /* 2443 * Make it a sync io if it's an unaligned aio. 2444 */ 2445 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2446 } 2447 2448 /* communicate with ocfs2_dio_end_io */ 2449 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2450 2451 written = __generic_file_write_iter(iocb, from); 2452 /* buffered aio wouldn't have proper lock coverage today */ 2453 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2454 2455 /* 2456 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2457 * function pointer which is called when o_direct io completes so that 2458 * it can unlock our rw lock. 2459 * Unfortunately there are error cases which call end_io and others 2460 * that don't. so we don't have to unlock the rw_lock if either an 2461 * async dio is going to do it in the future or an end_io after an 2462 * error has already done it. 2463 */ 2464 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2465 rw_level = -1; 2466 } 2467 2468 if (unlikely(written <= 0)) 2469 goto out; 2470 2471 if (((file->f_flags & O_DSYNC) && !direct_io) || 2472 IS_SYNC(inode)) { 2473 ret = filemap_fdatawrite_range(file->f_mapping, 2474 iocb->ki_pos - written, 2475 iocb->ki_pos - 1); 2476 if (ret < 0) 2477 written = ret; 2478 2479 if (!ret) { 2480 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2481 if (ret < 0) 2482 written = ret; 2483 } 2484 2485 if (!ret) 2486 ret = filemap_fdatawait_range(file->f_mapping, 2487 iocb->ki_pos - written, 2488 iocb->ki_pos - 1); 2489 } 2490 2491 out: 2492 if (saved_ki_complete) 2493 xchg(&iocb->ki_complete, saved_ki_complete); 2494 2495 if (rw_level != -1) 2496 ocfs2_rw_unlock(inode, rw_level); 2497 2498 out_mutex: 2499 inode_unlock(inode); 2500 2501 if (written) 2502 ret = written; 2503 return ret; 2504 } 2505 2506 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2507 struct iov_iter *to) 2508 { 2509 int ret = 0, rw_level = -1, lock_level = 0; 2510 struct file *filp = iocb->ki_filp; 2511 struct inode *inode = file_inode(filp); 2512 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2513 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2514 2515 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2516 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2517 filp->f_path.dentry->d_name.len, 2518 filp->f_path.dentry->d_name.name, 2519 to->nr_segs); /* GRRRRR */ 2520 2521 2522 if (!inode) { 2523 ret = -EINVAL; 2524 mlog_errno(ret); 2525 goto bail; 2526 } 2527 2528 if (!direct_io && nowait) 2529 return -EOPNOTSUPP; 2530 2531 /* 2532 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads 2533 * need locks to protect pending reads from racing with truncate. 2534 */ 2535 if (direct_io) { 2536 if (nowait) 2537 ret = ocfs2_try_rw_lock(inode, 0); 2538 else 2539 ret = ocfs2_rw_lock(inode, 0); 2540 2541 if (ret < 0) { 2542 if (ret != -EAGAIN) 2543 mlog_errno(ret); 2544 goto bail; 2545 } 2546 rw_level = 0; 2547 /* communicate with ocfs2_dio_end_io */ 2548 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2549 } 2550 2551 /* 2552 * We're fine letting folks race truncates and extending 2553 * writes with read across the cluster, just like they can 2554 * locally. Hence no rw_lock during read. 2555 * 2556 * Take and drop the meta data lock to update inode fields 2557 * like i_size. This allows the checks down below 2558 * copy_splice_read() a chance of actually working. 2559 */ 2560 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2561 !nowait); 2562 if (ret < 0) { 2563 if (ret != -EAGAIN) 2564 mlog_errno(ret); 2565 goto bail; 2566 } 2567 ocfs2_inode_unlock(inode, lock_level); 2568 2569 ret = generic_file_read_iter(iocb, to); 2570 trace_generic_file_read_iter_ret(ret); 2571 2572 /* buffered aio wouldn't have proper lock coverage today */ 2573 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2574 2575 /* see ocfs2_file_write_iter */ 2576 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2577 rw_level = -1; 2578 } 2579 2580 bail: 2581 if (rw_level != -1) 2582 ocfs2_rw_unlock(inode, rw_level); 2583 2584 return ret; 2585 } 2586 2587 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, 2588 struct pipe_inode_info *pipe, 2589 size_t len, unsigned int flags) 2590 { 2591 struct inode *inode = file_inode(in); 2592 ssize_t ret = 0; 2593 int lock_level = 0; 2594 2595 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2596 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2597 in->f_path.dentry->d_name.len, 2598 in->f_path.dentry->d_name.name, 2599 flags); 2600 2601 /* 2602 * We're fine letting folks race truncates and extending writes with 2603 * read across the cluster, just like they can locally. Hence no 2604 * rw_lock during read. 2605 * 2606 * Take and drop the meta data lock to update inode fields like i_size. 2607 * This allows the checks down below filemap_splice_read() a chance of 2608 * actually working. 2609 */ 2610 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1); 2611 if (ret < 0) { 2612 if (ret != -EAGAIN) 2613 mlog_errno(ret); 2614 goto bail; 2615 } 2616 ocfs2_inode_unlock(inode, lock_level); 2617 2618 ret = filemap_splice_read(in, ppos, pipe, len, flags); 2619 trace_filemap_splice_read_ret(ret); 2620 bail: 2621 return ret; 2622 } 2623 2624 /* Refer generic_file_llseek_unlocked() */ 2625 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2626 { 2627 struct inode *inode = file->f_mapping->host; 2628 int ret = 0; 2629 2630 inode_lock(inode); 2631 2632 switch (whence) { 2633 case SEEK_SET: 2634 break; 2635 case SEEK_END: 2636 /* SEEK_END requires the OCFS2 inode lock for the file 2637 * because it references the file's size. 2638 */ 2639 ret = ocfs2_inode_lock(inode, NULL, 0); 2640 if (ret < 0) { 2641 mlog_errno(ret); 2642 goto out; 2643 } 2644 offset += i_size_read(inode); 2645 ocfs2_inode_unlock(inode, 0); 2646 break; 2647 case SEEK_CUR: 2648 if (offset == 0) { 2649 offset = file->f_pos; 2650 goto out; 2651 } 2652 offset += file->f_pos; 2653 break; 2654 case SEEK_DATA: 2655 case SEEK_HOLE: 2656 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2657 if (ret) 2658 goto out; 2659 break; 2660 default: 2661 ret = -EINVAL; 2662 goto out; 2663 } 2664 2665 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2666 2667 out: 2668 inode_unlock(inode); 2669 if (ret) 2670 return ret; 2671 return offset; 2672 } 2673 2674 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2675 struct file *file_out, loff_t pos_out, 2676 loff_t len, unsigned int remap_flags) 2677 { 2678 struct inode *inode_in = file_inode(file_in); 2679 struct inode *inode_out = file_inode(file_out); 2680 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2681 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2682 bool same_inode = (inode_in == inode_out); 2683 loff_t remapped = 0; 2684 ssize_t ret; 2685 2686 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2687 return -EINVAL; 2688 if (!ocfs2_refcount_tree(osb)) 2689 return -EOPNOTSUPP; 2690 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2691 return -EROFS; 2692 2693 /* Lock both files against IO */ 2694 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2695 if (ret) 2696 return ret; 2697 2698 /* Check file eligibility and prepare for block sharing. */ 2699 ret = -EINVAL; 2700 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2701 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2702 goto out_unlock; 2703 2704 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2705 &len, remap_flags); 2706 if (ret < 0 || len == 0) 2707 goto out_unlock; 2708 2709 /* Lock out changes to the allocation maps and remap. */ 2710 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2711 if (!same_inode) 2712 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2713 SINGLE_DEPTH_NESTING); 2714 2715 /* Zap any page cache for the destination file's range. */ 2716 truncate_inode_pages_range(&inode_out->i_data, 2717 round_down(pos_out, PAGE_SIZE), 2718 round_up(pos_out + len, PAGE_SIZE) - 1); 2719 2720 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2721 inode_out, out_bh, pos_out, len); 2722 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2723 if (!same_inode) 2724 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2725 if (remapped < 0) { 2726 ret = remapped; 2727 mlog_errno(ret); 2728 goto out_unlock; 2729 } 2730 2731 /* 2732 * Empty the extent map so that we may get the right extent 2733 * record from the disk. 2734 */ 2735 ocfs2_extent_map_trunc(inode_in, 0); 2736 ocfs2_extent_map_trunc(inode_out, 0); 2737 2738 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2739 if (ret) { 2740 mlog_errno(ret); 2741 goto out_unlock; 2742 } 2743 2744 out_unlock: 2745 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2746 return remapped > 0 ? remapped : ret; 2747 } 2748 2749 const struct inode_operations ocfs2_file_iops = { 2750 .setattr = ocfs2_setattr, 2751 .getattr = ocfs2_getattr, 2752 .permission = ocfs2_permission, 2753 .listxattr = ocfs2_listxattr, 2754 .fiemap = ocfs2_fiemap, 2755 .get_inode_acl = ocfs2_iop_get_acl, 2756 .set_acl = ocfs2_iop_set_acl, 2757 .fileattr_get = ocfs2_fileattr_get, 2758 .fileattr_set = ocfs2_fileattr_set, 2759 }; 2760 2761 const struct inode_operations ocfs2_special_file_iops = { 2762 .setattr = ocfs2_setattr, 2763 .getattr = ocfs2_getattr, 2764 .permission = ocfs2_permission, 2765 .get_inode_acl = ocfs2_iop_get_acl, 2766 .set_acl = ocfs2_iop_set_acl, 2767 }; 2768 2769 /* 2770 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2771 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2772 */ 2773 const struct file_operations ocfs2_fops = { 2774 .llseek = ocfs2_file_llseek, 2775 .mmap = ocfs2_mmap, 2776 .fsync = ocfs2_sync_file, 2777 .release = ocfs2_file_release, 2778 .open = ocfs2_file_open, 2779 .read_iter = ocfs2_file_read_iter, 2780 .write_iter = ocfs2_file_write_iter, 2781 .unlocked_ioctl = ocfs2_ioctl, 2782 #ifdef CONFIG_COMPAT 2783 .compat_ioctl = ocfs2_compat_ioctl, 2784 #endif 2785 .lock = ocfs2_lock, 2786 .flock = ocfs2_flock, 2787 .splice_read = ocfs2_file_splice_read, 2788 .splice_write = iter_file_splice_write, 2789 .fallocate = ocfs2_fallocate, 2790 .remap_file_range = ocfs2_remap_file_range, 2791 }; 2792 2793 WRAP_DIR_ITER(ocfs2_readdir) // FIXME! 2794 const struct file_operations ocfs2_dops = { 2795 .llseek = generic_file_llseek, 2796 .read = generic_read_dir, 2797 .iterate_shared = shared_ocfs2_readdir, 2798 .fsync = ocfs2_sync_file, 2799 .release = ocfs2_dir_release, 2800 .open = ocfs2_dir_open, 2801 .unlocked_ioctl = ocfs2_ioctl, 2802 #ifdef CONFIG_COMPAT 2803 .compat_ioctl = ocfs2_compat_ioctl, 2804 #endif 2805 .lock = ocfs2_lock, 2806 .flock = ocfs2_flock, 2807 }; 2808 2809 /* 2810 * POSIX-lockless variants of our file_operations. 2811 * 2812 * These will be used if the underlying cluster stack does not support 2813 * posix file locking, if the user passes the "localflocks" mount 2814 * option, or if we have a local-only fs. 2815 * 2816 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2817 * so we still want it in the case of no stack support for 2818 * plocks. Internally, it will do the right thing when asked to ignore 2819 * the cluster. 2820 */ 2821 const struct file_operations ocfs2_fops_no_plocks = { 2822 .llseek = ocfs2_file_llseek, 2823 .mmap = ocfs2_mmap, 2824 .fsync = ocfs2_sync_file, 2825 .release = ocfs2_file_release, 2826 .open = ocfs2_file_open, 2827 .read_iter = ocfs2_file_read_iter, 2828 .write_iter = ocfs2_file_write_iter, 2829 .unlocked_ioctl = ocfs2_ioctl, 2830 #ifdef CONFIG_COMPAT 2831 .compat_ioctl = ocfs2_compat_ioctl, 2832 #endif 2833 .flock = ocfs2_flock, 2834 .splice_read = filemap_splice_read, 2835 .splice_write = iter_file_splice_write, 2836 .fallocate = ocfs2_fallocate, 2837 .remap_file_range = ocfs2_remap_file_range, 2838 }; 2839 2840 const struct file_operations ocfs2_dops_no_plocks = { 2841 .llseek = generic_file_llseek, 2842 .read = generic_read_dir, 2843 .iterate_shared = shared_ocfs2_readdir, 2844 .fsync = ocfs2_sync_file, 2845 .release = ocfs2_dir_release, 2846 .open = ocfs2_dir_open, 2847 .unlocked_ioctl = ocfs2_ioctl, 2848 #ifdef CONFIG_COMPAT 2849 .compat_ioctl = ocfs2_compat_ioctl, 2850 #endif 2851 .flock = ocfs2_flock, 2852 }; 2853