1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 #include <linux/backing-dev.h> 41 42 #include <cluster/masklog.h> 43 44 #include "ocfs2.h" 45 46 #include "alloc.h" 47 #include "aops.h" 48 #include "dir.h" 49 #include "dlmglue.h" 50 #include "extent_map.h" 51 #include "file.h" 52 #include "sysfile.h" 53 #include "inode.h" 54 #include "ioctl.h" 55 #include "journal.h" 56 #include "locks.h" 57 #include "mmap.h" 58 #include "suballoc.h" 59 #include "super.h" 60 #include "xattr.h" 61 #include "acl.h" 62 #include "quota.h" 63 #include "refcounttree.h" 64 #include "ocfs2_trace.h" 65 66 #include "buffer_head_io.h" 67 68 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp; 71 72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 73 if (!fp) 74 return -ENOMEM; 75 76 fp->fp_file = file; 77 mutex_init(&fp->fp_mutex); 78 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 79 file->private_data = fp; 80 81 return 0; 82 } 83 84 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 85 { 86 struct ocfs2_file_private *fp = file->private_data; 87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 88 89 if (fp) { 90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 91 ocfs2_lock_res_free(&fp->fp_flock); 92 kfree(fp); 93 file->private_data = NULL; 94 } 95 } 96 97 static int ocfs2_file_open(struct inode *inode, struct file *file) 98 { 99 int status; 100 int mode = file->f_flags; 101 struct ocfs2_inode_info *oi = OCFS2_I(inode); 102 103 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 104 (unsigned long long)OCFS2_I(inode)->ip_blkno, 105 file->f_path.dentry->d_name.len, 106 file->f_path.dentry->d_name.name, mode); 107 108 if (file->f_mode & FMODE_WRITE) { 109 status = dquot_initialize(inode); 110 if (status) 111 goto leave; 112 } 113 114 spin_lock(&oi->ip_lock); 115 116 /* Check that the inode hasn't been wiped from disk by another 117 * node. If it hasn't then we're safe as long as we hold the 118 * spin lock until our increment of open count. */ 119 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 120 spin_unlock(&oi->ip_lock); 121 122 status = -ENOENT; 123 goto leave; 124 } 125 126 if (mode & O_DIRECT) 127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 128 129 oi->ip_open_count++; 130 spin_unlock(&oi->ip_lock); 131 132 status = ocfs2_init_file_private(inode, file); 133 if (status) { 134 /* 135 * We want to set open count back if we're failing the 136 * open. 137 */ 138 spin_lock(&oi->ip_lock); 139 oi->ip_open_count--; 140 spin_unlock(&oi->ip_lock); 141 } 142 143 leave: 144 return status; 145 } 146 147 static int ocfs2_file_release(struct inode *inode, struct file *file) 148 { 149 struct ocfs2_inode_info *oi = OCFS2_I(inode); 150 151 spin_lock(&oi->ip_lock); 152 if (!--oi->ip_open_count) 153 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 154 155 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 156 oi->ip_blkno, 157 file->f_path.dentry->d_name.len, 158 file->f_path.dentry->d_name.name, 159 oi->ip_open_count); 160 spin_unlock(&oi->ip_lock); 161 162 ocfs2_free_file_private(inode, file); 163 164 return 0; 165 } 166 167 static int ocfs2_dir_open(struct inode *inode, struct file *file) 168 { 169 return ocfs2_init_file_private(inode, file); 170 } 171 172 static int ocfs2_dir_release(struct inode *inode, struct file *file) 173 { 174 ocfs2_free_file_private(inode, file); 175 return 0; 176 } 177 178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 179 int datasync) 180 { 181 int err = 0; 182 struct inode *inode = file->f_mapping->host; 183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 184 struct ocfs2_inode_info *oi = OCFS2_I(inode); 185 journal_t *journal = osb->journal->j_journal; 186 int ret; 187 tid_t commit_tid; 188 bool needs_barrier = false; 189 190 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 191 OCFS2_I(inode)->ip_blkno, 192 file->f_path.dentry->d_name.len, 193 file->f_path.dentry->d_name.name, 194 (unsigned long long)datasync); 195 196 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 197 return -EROFS; 198 199 err = file_write_and_wait_range(file, start, end); 200 if (err) 201 return err; 202 203 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 204 if (journal->j_flags & JBD2_BARRIER && 205 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 206 needs_barrier = true; 207 err = jbd2_complete_transaction(journal, commit_tid); 208 if (needs_barrier) { 209 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 210 if (!err) 211 err = ret; 212 } 213 214 if (err) 215 mlog_errno(err); 216 217 return (err < 0) ? -EIO : 0; 218 } 219 220 int ocfs2_should_update_atime(struct inode *inode, 221 struct vfsmount *vfsmnt) 222 { 223 struct timespec now; 224 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 225 226 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 227 return 0; 228 229 if ((inode->i_flags & S_NOATIME) || 230 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 231 return 0; 232 233 /* 234 * We can be called with no vfsmnt structure - NFSD will 235 * sometimes do this. 236 * 237 * Note that our action here is different than touch_atime() - 238 * if we can't tell whether this is a noatime mount, then we 239 * don't know whether to trust the value of s_atime_quantum. 240 */ 241 if (vfsmnt == NULL) 242 return 0; 243 244 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 245 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 246 return 0; 247 248 if (vfsmnt->mnt_flags & MNT_RELATIME) { 249 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 250 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 251 return 1; 252 253 return 0; 254 } 255 256 now = current_time(inode); 257 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 258 return 0; 259 else 260 return 1; 261 } 262 263 int ocfs2_update_inode_atime(struct inode *inode, 264 struct buffer_head *bh) 265 { 266 int ret; 267 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 268 handle_t *handle; 269 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 270 271 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 272 if (IS_ERR(handle)) { 273 ret = PTR_ERR(handle); 274 mlog_errno(ret); 275 goto out; 276 } 277 278 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 279 OCFS2_JOURNAL_ACCESS_WRITE); 280 if (ret) { 281 mlog_errno(ret); 282 goto out_commit; 283 } 284 285 /* 286 * Don't use ocfs2_mark_inode_dirty() here as we don't always 287 * have i_mutex to guard against concurrent changes to other 288 * inode fields. 289 */ 290 inode->i_atime = current_time(inode); 291 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 292 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 293 ocfs2_update_inode_fsync_trans(handle, inode, 0); 294 ocfs2_journal_dirty(handle, bh); 295 296 out_commit: 297 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 298 out: 299 return ret; 300 } 301 302 int ocfs2_set_inode_size(handle_t *handle, 303 struct inode *inode, 304 struct buffer_head *fe_bh, 305 u64 new_i_size) 306 { 307 int status; 308 309 i_size_write(inode, new_i_size); 310 inode->i_blocks = ocfs2_inode_sector_count(inode); 311 inode->i_ctime = inode->i_mtime = current_time(inode); 312 313 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 314 if (status < 0) { 315 mlog_errno(status); 316 goto bail; 317 } 318 319 bail: 320 return status; 321 } 322 323 int ocfs2_simple_size_update(struct inode *inode, 324 struct buffer_head *di_bh, 325 u64 new_i_size) 326 { 327 int ret; 328 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 329 handle_t *handle = NULL; 330 331 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 332 if (IS_ERR(handle)) { 333 ret = PTR_ERR(handle); 334 mlog_errno(ret); 335 goto out; 336 } 337 338 ret = ocfs2_set_inode_size(handle, inode, di_bh, 339 new_i_size); 340 if (ret < 0) 341 mlog_errno(ret); 342 343 ocfs2_update_inode_fsync_trans(handle, inode, 0); 344 ocfs2_commit_trans(osb, handle); 345 out: 346 return ret; 347 } 348 349 static int ocfs2_cow_file_pos(struct inode *inode, 350 struct buffer_head *fe_bh, 351 u64 offset) 352 { 353 int status; 354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 355 unsigned int num_clusters = 0; 356 unsigned int ext_flags = 0; 357 358 /* 359 * If the new offset is aligned to the range of the cluster, there is 360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 361 * CoW either. 362 */ 363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 364 return 0; 365 366 status = ocfs2_get_clusters(inode, cpos, &phys, 367 &num_clusters, &ext_flags); 368 if (status) { 369 mlog_errno(status); 370 goto out; 371 } 372 373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 374 goto out; 375 376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 377 378 out: 379 return status; 380 } 381 382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 383 struct inode *inode, 384 struct buffer_head *fe_bh, 385 u64 new_i_size) 386 { 387 int status; 388 handle_t *handle; 389 struct ocfs2_dinode *di; 390 u64 cluster_bytes; 391 392 /* 393 * We need to CoW the cluster contains the offset if it is reflinked 394 * since we will call ocfs2_zero_range_for_truncate later which will 395 * write "0" from offset to the end of the cluster. 396 */ 397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 398 if (status) { 399 mlog_errno(status); 400 return status; 401 } 402 403 /* TODO: This needs to actually orphan the inode in this 404 * transaction. */ 405 406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 407 if (IS_ERR(handle)) { 408 status = PTR_ERR(handle); 409 mlog_errno(status); 410 goto out; 411 } 412 413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 414 OCFS2_JOURNAL_ACCESS_WRITE); 415 if (status < 0) { 416 mlog_errno(status); 417 goto out_commit; 418 } 419 420 /* 421 * Do this before setting i_size. 422 */ 423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 425 cluster_bytes); 426 if (status) { 427 mlog_errno(status); 428 goto out_commit; 429 } 430 431 i_size_write(inode, new_i_size); 432 inode->i_ctime = inode->i_mtime = current_time(inode); 433 434 di = (struct ocfs2_dinode *) fe_bh->b_data; 435 di->i_size = cpu_to_le64(new_i_size); 436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 438 ocfs2_update_inode_fsync_trans(handle, inode, 0); 439 440 ocfs2_journal_dirty(handle, fe_bh); 441 442 out_commit: 443 ocfs2_commit_trans(osb, handle); 444 out: 445 return status; 446 } 447 448 int ocfs2_truncate_file(struct inode *inode, 449 struct buffer_head *di_bh, 450 u64 new_i_size) 451 { 452 int status = 0; 453 struct ocfs2_dinode *fe = NULL; 454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 455 456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 457 * already validated it */ 458 fe = (struct ocfs2_dinode *) di_bh->b_data; 459 460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 461 (unsigned long long)le64_to_cpu(fe->i_size), 462 (unsigned long long)new_i_size); 463 464 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 465 "Inode %llu, inode i_size = %lld != di " 466 "i_size = %llu, i_flags = 0x%x\n", 467 (unsigned long long)OCFS2_I(inode)->ip_blkno, 468 i_size_read(inode), 469 (unsigned long long)le64_to_cpu(fe->i_size), 470 le32_to_cpu(fe->i_flags)); 471 472 if (new_i_size > le64_to_cpu(fe->i_size)) { 473 trace_ocfs2_truncate_file_error( 474 (unsigned long long)le64_to_cpu(fe->i_size), 475 (unsigned long long)new_i_size); 476 status = -EINVAL; 477 mlog_errno(status); 478 goto bail; 479 } 480 481 down_write(&OCFS2_I(inode)->ip_alloc_sem); 482 483 ocfs2_resv_discard(&osb->osb_la_resmap, 484 &OCFS2_I(inode)->ip_la_data_resv); 485 486 /* 487 * The inode lock forced other nodes to sync and drop their 488 * pages, which (correctly) happens even if we have a truncate 489 * without allocation change - ocfs2 cluster sizes can be much 490 * greater than page size, so we have to truncate them 491 * anyway. 492 */ 493 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 494 truncate_inode_pages(inode->i_mapping, new_i_size); 495 496 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 497 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 498 i_size_read(inode), 1); 499 if (status) 500 mlog_errno(status); 501 502 goto bail_unlock_sem; 503 } 504 505 /* alright, we're going to need to do a full blown alloc size 506 * change. Orphan the inode so that recovery can complete the 507 * truncate if necessary. This does the task of marking 508 * i_size. */ 509 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 510 if (status < 0) { 511 mlog_errno(status); 512 goto bail_unlock_sem; 513 } 514 515 status = ocfs2_commit_truncate(osb, inode, di_bh); 516 if (status < 0) { 517 mlog_errno(status); 518 goto bail_unlock_sem; 519 } 520 521 /* TODO: orphan dir cleanup here. */ 522 bail_unlock_sem: 523 up_write(&OCFS2_I(inode)->ip_alloc_sem); 524 525 bail: 526 if (!status && OCFS2_I(inode)->ip_clusters == 0) 527 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 528 529 return status; 530 } 531 532 /* 533 * extend file allocation only here. 534 * we'll update all the disk stuff, and oip->alloc_size 535 * 536 * expect stuff to be locked, a transaction started and enough data / 537 * metadata reservations in the contexts. 538 * 539 * Will return -EAGAIN, and a reason if a restart is needed. 540 * If passed in, *reason will always be set, even in error. 541 */ 542 int ocfs2_add_inode_data(struct ocfs2_super *osb, 543 struct inode *inode, 544 u32 *logical_offset, 545 u32 clusters_to_add, 546 int mark_unwritten, 547 struct buffer_head *fe_bh, 548 handle_t *handle, 549 struct ocfs2_alloc_context *data_ac, 550 struct ocfs2_alloc_context *meta_ac, 551 enum ocfs2_alloc_restarted *reason_ret) 552 { 553 int ret; 554 struct ocfs2_extent_tree et; 555 556 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 557 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 558 clusters_to_add, mark_unwritten, 559 data_ac, meta_ac, reason_ret); 560 561 return ret; 562 } 563 564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 565 u32 clusters_to_add, int mark_unwritten) 566 { 567 int status = 0; 568 int restart_func = 0; 569 int credits; 570 u32 prev_clusters; 571 struct buffer_head *bh = NULL; 572 struct ocfs2_dinode *fe = NULL; 573 handle_t *handle = NULL; 574 struct ocfs2_alloc_context *data_ac = NULL; 575 struct ocfs2_alloc_context *meta_ac = NULL; 576 enum ocfs2_alloc_restarted why = RESTART_NONE; 577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 578 struct ocfs2_extent_tree et; 579 int did_quota = 0; 580 581 /* 582 * Unwritten extent only exists for file systems which 583 * support holes. 584 */ 585 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 586 587 status = ocfs2_read_inode_block(inode, &bh); 588 if (status < 0) { 589 mlog_errno(status); 590 goto leave; 591 } 592 fe = (struct ocfs2_dinode *) bh->b_data; 593 594 restart_all: 595 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 596 597 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 598 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 599 &data_ac, &meta_ac); 600 if (status) { 601 mlog_errno(status); 602 goto leave; 603 } 604 605 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 606 handle = ocfs2_start_trans(osb, credits); 607 if (IS_ERR(handle)) { 608 status = PTR_ERR(handle); 609 handle = NULL; 610 mlog_errno(status); 611 goto leave; 612 } 613 614 restarted_transaction: 615 trace_ocfs2_extend_allocation( 616 (unsigned long long)OCFS2_I(inode)->ip_blkno, 617 (unsigned long long)i_size_read(inode), 618 le32_to_cpu(fe->i_clusters), clusters_to_add, 619 why, restart_func); 620 621 status = dquot_alloc_space_nodirty(inode, 622 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 623 if (status) 624 goto leave; 625 did_quota = 1; 626 627 /* reserve a write to the file entry early on - that we if we 628 * run out of credits in the allocation path, we can still 629 * update i_size. */ 630 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 631 OCFS2_JOURNAL_ACCESS_WRITE); 632 if (status < 0) { 633 mlog_errno(status); 634 goto leave; 635 } 636 637 prev_clusters = OCFS2_I(inode)->ip_clusters; 638 639 status = ocfs2_add_inode_data(osb, 640 inode, 641 &logical_start, 642 clusters_to_add, 643 mark_unwritten, 644 bh, 645 handle, 646 data_ac, 647 meta_ac, 648 &why); 649 if ((status < 0) && (status != -EAGAIN)) { 650 if (status != -ENOSPC) 651 mlog_errno(status); 652 goto leave; 653 } 654 ocfs2_update_inode_fsync_trans(handle, inode, 1); 655 ocfs2_journal_dirty(handle, bh); 656 657 spin_lock(&OCFS2_I(inode)->ip_lock); 658 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 659 spin_unlock(&OCFS2_I(inode)->ip_lock); 660 /* Release unused quota reservation */ 661 dquot_free_space(inode, 662 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 663 did_quota = 0; 664 665 if (why != RESTART_NONE && clusters_to_add) { 666 if (why == RESTART_META) { 667 restart_func = 1; 668 status = 0; 669 } else { 670 BUG_ON(why != RESTART_TRANS); 671 672 status = ocfs2_allocate_extend_trans(handle, 1); 673 if (status < 0) { 674 /* handle still has to be committed at 675 * this point. */ 676 status = -ENOMEM; 677 mlog_errno(status); 678 goto leave; 679 } 680 goto restarted_transaction; 681 } 682 } 683 684 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 685 le32_to_cpu(fe->i_clusters), 686 (unsigned long long)le64_to_cpu(fe->i_size), 687 OCFS2_I(inode)->ip_clusters, 688 (unsigned long long)i_size_read(inode)); 689 690 leave: 691 if (status < 0 && did_quota) 692 dquot_free_space(inode, 693 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 694 if (handle) { 695 ocfs2_commit_trans(osb, handle); 696 handle = NULL; 697 } 698 if (data_ac) { 699 ocfs2_free_alloc_context(data_ac); 700 data_ac = NULL; 701 } 702 if (meta_ac) { 703 ocfs2_free_alloc_context(meta_ac); 704 meta_ac = NULL; 705 } 706 if ((!status) && restart_func) { 707 restart_func = 0; 708 goto restart_all; 709 } 710 brelse(bh); 711 bh = NULL; 712 713 return status; 714 } 715 716 /* 717 * While a write will already be ordering the data, a truncate will not. 718 * Thus, we need to explicitly order the zeroed pages. 719 */ 720 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 721 struct buffer_head *di_bh) 722 { 723 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 724 handle_t *handle = NULL; 725 int ret = 0; 726 727 if (!ocfs2_should_order_data(inode)) 728 goto out; 729 730 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 731 if (IS_ERR(handle)) { 732 ret = -ENOMEM; 733 mlog_errno(ret); 734 goto out; 735 } 736 737 ret = ocfs2_jbd2_file_inode(handle, inode); 738 if (ret < 0) { 739 mlog_errno(ret); 740 goto out; 741 } 742 743 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 744 OCFS2_JOURNAL_ACCESS_WRITE); 745 if (ret) 746 mlog_errno(ret); 747 ocfs2_update_inode_fsync_trans(handle, inode, 1); 748 749 out: 750 if (ret) { 751 if (!IS_ERR(handle)) 752 ocfs2_commit_trans(osb, handle); 753 handle = ERR_PTR(ret); 754 } 755 return handle; 756 } 757 758 /* Some parts of this taken from generic_cont_expand, which turned out 759 * to be too fragile to do exactly what we need without us having to 760 * worry about recursive locking in ->write_begin() and ->write_end(). */ 761 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 762 u64 abs_to, struct buffer_head *di_bh) 763 { 764 struct address_space *mapping = inode->i_mapping; 765 struct page *page; 766 unsigned long index = abs_from >> PAGE_SHIFT; 767 handle_t *handle; 768 int ret = 0; 769 unsigned zero_from, zero_to, block_start, block_end; 770 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 771 772 BUG_ON(abs_from >= abs_to); 773 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 774 BUG_ON(abs_from & (inode->i_blkbits - 1)); 775 776 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh); 777 if (IS_ERR(handle)) { 778 ret = PTR_ERR(handle); 779 goto out; 780 } 781 782 page = find_or_create_page(mapping, index, GFP_NOFS); 783 if (!page) { 784 ret = -ENOMEM; 785 mlog_errno(ret); 786 goto out_commit_trans; 787 } 788 789 /* Get the offsets within the page that we want to zero */ 790 zero_from = abs_from & (PAGE_SIZE - 1); 791 zero_to = abs_to & (PAGE_SIZE - 1); 792 if (!zero_to) 793 zero_to = PAGE_SIZE; 794 795 trace_ocfs2_write_zero_page( 796 (unsigned long long)OCFS2_I(inode)->ip_blkno, 797 (unsigned long long)abs_from, 798 (unsigned long long)abs_to, 799 index, zero_from, zero_to); 800 801 /* We know that zero_from is block aligned */ 802 for (block_start = zero_from; block_start < zero_to; 803 block_start = block_end) { 804 block_end = block_start + i_blocksize(inode); 805 806 /* 807 * block_start is block-aligned. Bump it by one to force 808 * __block_write_begin and block_commit_write to zero the 809 * whole block. 810 */ 811 ret = __block_write_begin(page, block_start + 1, 0, 812 ocfs2_get_block); 813 if (ret < 0) { 814 mlog_errno(ret); 815 goto out_unlock; 816 } 817 818 819 /* must not update i_size! */ 820 ret = block_commit_write(page, block_start + 1, 821 block_start + 1); 822 if (ret < 0) 823 mlog_errno(ret); 824 else 825 ret = 0; 826 } 827 828 /* 829 * fs-writeback will release the dirty pages without page lock 830 * whose offset are over inode size, the release happens at 831 * block_write_full_page(). 832 */ 833 i_size_write(inode, abs_to); 834 inode->i_blocks = ocfs2_inode_sector_count(inode); 835 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 836 inode->i_mtime = inode->i_ctime = current_time(inode); 837 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 838 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 839 di->i_mtime_nsec = di->i_ctime_nsec; 840 if (handle) { 841 ocfs2_journal_dirty(handle, di_bh); 842 ocfs2_update_inode_fsync_trans(handle, inode, 1); 843 } 844 845 out_unlock: 846 unlock_page(page); 847 put_page(page); 848 out_commit_trans: 849 if (handle) 850 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 851 out: 852 return ret; 853 } 854 855 /* 856 * Find the next range to zero. We do this in terms of bytes because 857 * that's what ocfs2_zero_extend() wants, and it is dealing with the 858 * pagecache. We may return multiple extents. 859 * 860 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 861 * needs to be zeroed. range_start and range_end return the next zeroing 862 * range. A subsequent call should pass the previous range_end as its 863 * zero_start. If range_end is 0, there's nothing to do. 864 * 865 * Unwritten extents are skipped over. Refcounted extents are CoWd. 866 */ 867 static int ocfs2_zero_extend_get_range(struct inode *inode, 868 struct buffer_head *di_bh, 869 u64 zero_start, u64 zero_end, 870 u64 *range_start, u64 *range_end) 871 { 872 int rc = 0, needs_cow = 0; 873 u32 p_cpos, zero_clusters = 0; 874 u32 zero_cpos = 875 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 876 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 877 unsigned int num_clusters = 0; 878 unsigned int ext_flags = 0; 879 880 while (zero_cpos < last_cpos) { 881 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 882 &num_clusters, &ext_flags); 883 if (rc) { 884 mlog_errno(rc); 885 goto out; 886 } 887 888 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 889 zero_clusters = num_clusters; 890 if (ext_flags & OCFS2_EXT_REFCOUNTED) 891 needs_cow = 1; 892 break; 893 } 894 895 zero_cpos += num_clusters; 896 } 897 if (!zero_clusters) { 898 *range_end = 0; 899 goto out; 900 } 901 902 while ((zero_cpos + zero_clusters) < last_cpos) { 903 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 904 &p_cpos, &num_clusters, 905 &ext_flags); 906 if (rc) { 907 mlog_errno(rc); 908 goto out; 909 } 910 911 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 912 break; 913 if (ext_flags & OCFS2_EXT_REFCOUNTED) 914 needs_cow = 1; 915 zero_clusters += num_clusters; 916 } 917 if ((zero_cpos + zero_clusters) > last_cpos) 918 zero_clusters = last_cpos - zero_cpos; 919 920 if (needs_cow) { 921 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 922 zero_clusters, UINT_MAX); 923 if (rc) { 924 mlog_errno(rc); 925 goto out; 926 } 927 } 928 929 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 930 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 931 zero_cpos + zero_clusters); 932 933 out: 934 return rc; 935 } 936 937 /* 938 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 939 * has made sure that the entire range needs zeroing. 940 */ 941 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 942 u64 range_end, struct buffer_head *di_bh) 943 { 944 int rc = 0; 945 u64 next_pos; 946 u64 zero_pos = range_start; 947 948 trace_ocfs2_zero_extend_range( 949 (unsigned long long)OCFS2_I(inode)->ip_blkno, 950 (unsigned long long)range_start, 951 (unsigned long long)range_end); 952 BUG_ON(range_start >= range_end); 953 954 while (zero_pos < range_end) { 955 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 956 if (next_pos > range_end) 957 next_pos = range_end; 958 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 959 if (rc < 0) { 960 mlog_errno(rc); 961 break; 962 } 963 zero_pos = next_pos; 964 965 /* 966 * Very large extends have the potential to lock up 967 * the cpu for extended periods of time. 968 */ 969 cond_resched(); 970 } 971 972 return rc; 973 } 974 975 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 976 loff_t zero_to_size) 977 { 978 int ret = 0; 979 u64 zero_start, range_start = 0, range_end = 0; 980 struct super_block *sb = inode->i_sb; 981 982 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 983 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 984 (unsigned long long)zero_start, 985 (unsigned long long)i_size_read(inode)); 986 while (zero_start < zero_to_size) { 987 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 988 zero_to_size, 989 &range_start, 990 &range_end); 991 if (ret) { 992 mlog_errno(ret); 993 break; 994 } 995 if (!range_end) 996 break; 997 /* Trim the ends */ 998 if (range_start < zero_start) 999 range_start = zero_start; 1000 if (range_end > zero_to_size) 1001 range_end = zero_to_size; 1002 1003 ret = ocfs2_zero_extend_range(inode, range_start, 1004 range_end, di_bh); 1005 if (ret) { 1006 mlog_errno(ret); 1007 break; 1008 } 1009 zero_start = range_end; 1010 } 1011 1012 return ret; 1013 } 1014 1015 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1016 u64 new_i_size, u64 zero_to) 1017 { 1018 int ret; 1019 u32 clusters_to_add; 1020 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1021 1022 /* 1023 * Only quota files call this without a bh, and they can't be 1024 * refcounted. 1025 */ 1026 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1027 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1028 1029 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1030 if (clusters_to_add < oi->ip_clusters) 1031 clusters_to_add = 0; 1032 else 1033 clusters_to_add -= oi->ip_clusters; 1034 1035 if (clusters_to_add) { 1036 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1037 clusters_to_add, 0); 1038 if (ret) { 1039 mlog_errno(ret); 1040 goto out; 1041 } 1042 } 1043 1044 /* 1045 * Call this even if we don't add any clusters to the tree. We 1046 * still need to zero the area between the old i_size and the 1047 * new i_size. 1048 */ 1049 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1050 if (ret < 0) 1051 mlog_errno(ret); 1052 1053 out: 1054 return ret; 1055 } 1056 1057 static int ocfs2_extend_file(struct inode *inode, 1058 struct buffer_head *di_bh, 1059 u64 new_i_size) 1060 { 1061 int ret = 0; 1062 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1063 1064 BUG_ON(!di_bh); 1065 1066 /* setattr sometimes calls us like this. */ 1067 if (new_i_size == 0) 1068 goto out; 1069 1070 if (i_size_read(inode) == new_i_size) 1071 goto out; 1072 BUG_ON(new_i_size < i_size_read(inode)); 1073 1074 /* 1075 * The alloc sem blocks people in read/write from reading our 1076 * allocation until we're done changing it. We depend on 1077 * i_mutex to block other extend/truncate calls while we're 1078 * here. We even have to hold it for sparse files because there 1079 * might be some tail zeroing. 1080 */ 1081 down_write(&oi->ip_alloc_sem); 1082 1083 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1084 /* 1085 * We can optimize small extends by keeping the inodes 1086 * inline data. 1087 */ 1088 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1089 up_write(&oi->ip_alloc_sem); 1090 goto out_update_size; 1091 } 1092 1093 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1094 if (ret) { 1095 up_write(&oi->ip_alloc_sem); 1096 mlog_errno(ret); 1097 goto out; 1098 } 1099 } 1100 1101 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1102 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1103 else 1104 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1105 new_i_size); 1106 1107 up_write(&oi->ip_alloc_sem); 1108 1109 if (ret < 0) { 1110 mlog_errno(ret); 1111 goto out; 1112 } 1113 1114 out_update_size: 1115 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1116 if (ret < 0) 1117 mlog_errno(ret); 1118 1119 out: 1120 return ret; 1121 } 1122 1123 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1124 { 1125 int status = 0, size_change; 1126 int inode_locked = 0; 1127 struct inode *inode = d_inode(dentry); 1128 struct super_block *sb = inode->i_sb; 1129 struct ocfs2_super *osb = OCFS2_SB(sb); 1130 struct buffer_head *bh = NULL; 1131 handle_t *handle = NULL; 1132 struct dquot *transfer_to[MAXQUOTAS] = { }; 1133 int qtype; 1134 int had_lock; 1135 struct ocfs2_lock_holder oh; 1136 1137 trace_ocfs2_setattr(inode, dentry, 1138 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1139 dentry->d_name.len, dentry->d_name.name, 1140 attr->ia_valid, attr->ia_mode, 1141 from_kuid(&init_user_ns, attr->ia_uid), 1142 from_kgid(&init_user_ns, attr->ia_gid)); 1143 1144 /* ensuring we don't even attempt to truncate a symlink */ 1145 if (S_ISLNK(inode->i_mode)) 1146 attr->ia_valid &= ~ATTR_SIZE; 1147 1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1149 | ATTR_GID | ATTR_UID | ATTR_MODE) 1150 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1151 return 0; 1152 1153 status = setattr_prepare(dentry, attr); 1154 if (status) 1155 return status; 1156 1157 if (is_quota_modification(inode, attr)) { 1158 status = dquot_initialize(inode); 1159 if (status) 1160 return status; 1161 } 1162 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1163 if (size_change) { 1164 status = ocfs2_rw_lock(inode, 1); 1165 if (status < 0) { 1166 mlog_errno(status); 1167 goto bail; 1168 } 1169 } 1170 1171 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1172 if (had_lock < 0) { 1173 status = had_lock; 1174 goto bail_unlock_rw; 1175 } else if (had_lock) { 1176 /* 1177 * As far as we know, ocfs2_setattr() could only be the first 1178 * VFS entry point in the call chain of recursive cluster 1179 * locking issue. 1180 * 1181 * For instance: 1182 * chmod_common() 1183 * notify_change() 1184 * ocfs2_setattr() 1185 * posix_acl_chmod() 1186 * ocfs2_iop_get_acl() 1187 * 1188 * But, we're not 100% sure if it's always true, because the 1189 * ordering of the VFS entry points in the call chain is out 1190 * of our control. So, we'd better dump the stack here to 1191 * catch the other cases of recursive locking. 1192 */ 1193 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1194 dump_stack(); 1195 } 1196 inode_locked = 1; 1197 1198 if (size_change) { 1199 status = inode_newsize_ok(inode, attr->ia_size); 1200 if (status) 1201 goto bail_unlock; 1202 1203 inode_dio_wait(inode); 1204 1205 if (i_size_read(inode) >= attr->ia_size) { 1206 if (ocfs2_should_order_data(inode)) { 1207 status = ocfs2_begin_ordered_truncate(inode, 1208 attr->ia_size); 1209 if (status) 1210 goto bail_unlock; 1211 } 1212 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1213 } else 1214 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1215 if (status < 0) { 1216 if (status != -ENOSPC) 1217 mlog_errno(status); 1218 status = -ENOSPC; 1219 goto bail_unlock; 1220 } 1221 } 1222 1223 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1224 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1225 /* 1226 * Gather pointers to quota structures so that allocation / 1227 * freeing of quota structures happens here and not inside 1228 * dquot_transfer() where we have problems with lock ordering 1229 */ 1230 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1231 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1232 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1233 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1234 if (IS_ERR(transfer_to[USRQUOTA])) { 1235 status = PTR_ERR(transfer_to[USRQUOTA]); 1236 goto bail_unlock; 1237 } 1238 } 1239 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1240 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1241 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1242 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1243 if (IS_ERR(transfer_to[GRPQUOTA])) { 1244 status = PTR_ERR(transfer_to[GRPQUOTA]); 1245 goto bail_unlock; 1246 } 1247 } 1248 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1249 2 * ocfs2_quota_trans_credits(sb)); 1250 if (IS_ERR(handle)) { 1251 status = PTR_ERR(handle); 1252 mlog_errno(status); 1253 goto bail_unlock; 1254 } 1255 status = __dquot_transfer(inode, transfer_to); 1256 if (status < 0) 1257 goto bail_commit; 1258 } else { 1259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1260 if (IS_ERR(handle)) { 1261 status = PTR_ERR(handle); 1262 mlog_errno(status); 1263 goto bail_unlock; 1264 } 1265 } 1266 1267 setattr_copy(inode, attr); 1268 mark_inode_dirty(inode); 1269 1270 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1271 if (status < 0) 1272 mlog_errno(status); 1273 1274 bail_commit: 1275 ocfs2_commit_trans(osb, handle); 1276 bail_unlock: 1277 if (status && inode_locked) { 1278 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1279 inode_locked = 0; 1280 } 1281 bail_unlock_rw: 1282 if (size_change) 1283 ocfs2_rw_unlock(inode, 1); 1284 bail: 1285 1286 /* Release quota pointers in case we acquired them */ 1287 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1288 dqput(transfer_to[qtype]); 1289 1290 if (!status && attr->ia_valid & ATTR_MODE) { 1291 status = ocfs2_acl_chmod(inode, bh); 1292 if (status < 0) 1293 mlog_errno(status); 1294 } 1295 if (inode_locked) 1296 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1297 1298 brelse(bh); 1299 return status; 1300 } 1301 1302 int ocfs2_getattr(const struct path *path, struct kstat *stat, 1303 u32 request_mask, unsigned int flags) 1304 { 1305 struct inode *inode = d_inode(path->dentry); 1306 struct super_block *sb = path->dentry->d_sb; 1307 struct ocfs2_super *osb = sb->s_fs_info; 1308 int err; 1309 1310 err = ocfs2_inode_revalidate(path->dentry); 1311 if (err) { 1312 if (err != -ENOENT) 1313 mlog_errno(err); 1314 goto bail; 1315 } 1316 1317 generic_fillattr(inode, stat); 1318 /* 1319 * If there is inline data in the inode, the inode will normally not 1320 * have data blocks allocated (it may have an external xattr block). 1321 * Report at least one sector for such files, so tools like tar, rsync, 1322 * others don't incorrectly think the file is completely sparse. 1323 */ 1324 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1325 stat->blocks += (stat->size + 511)>>9; 1326 1327 /* We set the blksize from the cluster size for performance */ 1328 stat->blksize = osb->s_clustersize; 1329 1330 bail: 1331 return err; 1332 } 1333 1334 int ocfs2_permission(struct inode *inode, int mask) 1335 { 1336 int ret, had_lock; 1337 struct ocfs2_lock_holder oh; 1338 1339 if (mask & MAY_NOT_BLOCK) 1340 return -ECHILD; 1341 1342 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1343 if (had_lock < 0) { 1344 ret = had_lock; 1345 goto out; 1346 } else if (had_lock) { 1347 /* See comments in ocfs2_setattr() for details. 1348 * The call chain of this case could be: 1349 * do_sys_open() 1350 * may_open() 1351 * inode_permission() 1352 * ocfs2_permission() 1353 * ocfs2_iop_get_acl() 1354 */ 1355 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1356 dump_stack(); 1357 } 1358 1359 ret = generic_permission(inode, mask); 1360 1361 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1362 out: 1363 return ret; 1364 } 1365 1366 static int __ocfs2_write_remove_suid(struct inode *inode, 1367 struct buffer_head *bh) 1368 { 1369 int ret; 1370 handle_t *handle; 1371 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1372 struct ocfs2_dinode *di; 1373 1374 trace_ocfs2_write_remove_suid( 1375 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1376 inode->i_mode); 1377 1378 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1379 if (IS_ERR(handle)) { 1380 ret = PTR_ERR(handle); 1381 mlog_errno(ret); 1382 goto out; 1383 } 1384 1385 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1386 OCFS2_JOURNAL_ACCESS_WRITE); 1387 if (ret < 0) { 1388 mlog_errno(ret); 1389 goto out_trans; 1390 } 1391 1392 inode->i_mode &= ~S_ISUID; 1393 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1394 inode->i_mode &= ~S_ISGID; 1395 1396 di = (struct ocfs2_dinode *) bh->b_data; 1397 di->i_mode = cpu_to_le16(inode->i_mode); 1398 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1399 1400 ocfs2_journal_dirty(handle, bh); 1401 1402 out_trans: 1403 ocfs2_commit_trans(osb, handle); 1404 out: 1405 return ret; 1406 } 1407 1408 static int ocfs2_write_remove_suid(struct inode *inode) 1409 { 1410 int ret; 1411 struct buffer_head *bh = NULL; 1412 1413 ret = ocfs2_read_inode_block(inode, &bh); 1414 if (ret < 0) { 1415 mlog_errno(ret); 1416 goto out; 1417 } 1418 1419 ret = __ocfs2_write_remove_suid(inode, bh); 1420 out: 1421 brelse(bh); 1422 return ret; 1423 } 1424 1425 /* 1426 * Allocate enough extents to cover the region starting at byte offset 1427 * start for len bytes. Existing extents are skipped, any extents 1428 * added are marked as "unwritten". 1429 */ 1430 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1431 u64 start, u64 len) 1432 { 1433 int ret; 1434 u32 cpos, phys_cpos, clusters, alloc_size; 1435 u64 end = start + len; 1436 struct buffer_head *di_bh = NULL; 1437 1438 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1439 ret = ocfs2_read_inode_block(inode, &di_bh); 1440 if (ret) { 1441 mlog_errno(ret); 1442 goto out; 1443 } 1444 1445 /* 1446 * Nothing to do if the requested reservation range 1447 * fits within the inode. 1448 */ 1449 if (ocfs2_size_fits_inline_data(di_bh, end)) 1450 goto out; 1451 1452 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1453 if (ret) { 1454 mlog_errno(ret); 1455 goto out; 1456 } 1457 } 1458 1459 /* 1460 * We consider both start and len to be inclusive. 1461 */ 1462 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1463 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1464 clusters -= cpos; 1465 1466 while (clusters) { 1467 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1468 &alloc_size, NULL); 1469 if (ret) { 1470 mlog_errno(ret); 1471 goto out; 1472 } 1473 1474 /* 1475 * Hole or existing extent len can be arbitrary, so 1476 * cap it to our own allocation request. 1477 */ 1478 if (alloc_size > clusters) 1479 alloc_size = clusters; 1480 1481 if (phys_cpos) { 1482 /* 1483 * We already have an allocation at this 1484 * region so we can safely skip it. 1485 */ 1486 goto next; 1487 } 1488 1489 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1490 if (ret) { 1491 if (ret != -ENOSPC) 1492 mlog_errno(ret); 1493 goto out; 1494 } 1495 1496 next: 1497 cpos += alloc_size; 1498 clusters -= alloc_size; 1499 } 1500 1501 ret = 0; 1502 out: 1503 1504 brelse(di_bh); 1505 return ret; 1506 } 1507 1508 /* 1509 * Truncate a byte range, avoiding pages within partial clusters. This 1510 * preserves those pages for the zeroing code to write to. 1511 */ 1512 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1513 u64 byte_len) 1514 { 1515 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1516 loff_t start, end; 1517 struct address_space *mapping = inode->i_mapping; 1518 1519 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1520 end = byte_start + byte_len; 1521 end = end & ~(osb->s_clustersize - 1); 1522 1523 if (start < end) { 1524 unmap_mapping_range(mapping, start, end - start, 0); 1525 truncate_inode_pages_range(mapping, start, end - 1); 1526 } 1527 } 1528 1529 static int ocfs2_zero_partial_clusters(struct inode *inode, 1530 u64 start, u64 len) 1531 { 1532 int ret = 0; 1533 u64 tmpend = 0; 1534 u64 end = start + len; 1535 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1536 unsigned int csize = osb->s_clustersize; 1537 handle_t *handle; 1538 1539 /* 1540 * The "start" and "end" values are NOT necessarily part of 1541 * the range whose allocation is being deleted. Rather, this 1542 * is what the user passed in with the request. We must zero 1543 * partial clusters here. There's no need to worry about 1544 * physical allocation - the zeroing code knows to skip holes. 1545 */ 1546 trace_ocfs2_zero_partial_clusters( 1547 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1548 (unsigned long long)start, (unsigned long long)end); 1549 1550 /* 1551 * If both edges are on a cluster boundary then there's no 1552 * zeroing required as the region is part of the allocation to 1553 * be truncated. 1554 */ 1555 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1556 goto out; 1557 1558 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1559 if (IS_ERR(handle)) { 1560 ret = PTR_ERR(handle); 1561 mlog_errno(ret); 1562 goto out; 1563 } 1564 1565 /* 1566 * If start is on a cluster boundary and end is somewhere in another 1567 * cluster, we have not COWed the cluster starting at start, unless 1568 * end is also within the same cluster. So, in this case, we skip this 1569 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1570 * to the next one. 1571 */ 1572 if ((start & (csize - 1)) != 0) { 1573 /* 1574 * We want to get the byte offset of the end of the 1st 1575 * cluster. 1576 */ 1577 tmpend = (u64)osb->s_clustersize + 1578 (start & ~(osb->s_clustersize - 1)); 1579 if (tmpend > end) 1580 tmpend = end; 1581 1582 trace_ocfs2_zero_partial_clusters_range1( 1583 (unsigned long long)start, 1584 (unsigned long long)tmpend); 1585 1586 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1587 tmpend); 1588 if (ret) 1589 mlog_errno(ret); 1590 } 1591 1592 if (tmpend < end) { 1593 /* 1594 * This may make start and end equal, but the zeroing 1595 * code will skip any work in that case so there's no 1596 * need to catch it up here. 1597 */ 1598 start = end & ~(osb->s_clustersize - 1); 1599 1600 trace_ocfs2_zero_partial_clusters_range2( 1601 (unsigned long long)start, (unsigned long long)end); 1602 1603 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1604 if (ret) 1605 mlog_errno(ret); 1606 } 1607 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1608 1609 ocfs2_commit_trans(osb, handle); 1610 out: 1611 return ret; 1612 } 1613 1614 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1615 { 1616 int i; 1617 struct ocfs2_extent_rec *rec = NULL; 1618 1619 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1620 1621 rec = &el->l_recs[i]; 1622 1623 if (le32_to_cpu(rec->e_cpos) < pos) 1624 break; 1625 } 1626 1627 return i; 1628 } 1629 1630 /* 1631 * Helper to calculate the punching pos and length in one run, we handle the 1632 * following three cases in order: 1633 * 1634 * - remove the entire record 1635 * - remove a partial record 1636 * - no record needs to be removed (hole-punching completed) 1637 */ 1638 static void ocfs2_calc_trunc_pos(struct inode *inode, 1639 struct ocfs2_extent_list *el, 1640 struct ocfs2_extent_rec *rec, 1641 u32 trunc_start, u32 *trunc_cpos, 1642 u32 *trunc_len, u32 *trunc_end, 1643 u64 *blkno, int *done) 1644 { 1645 int ret = 0; 1646 u32 coff, range; 1647 1648 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1649 1650 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1651 /* 1652 * remove an entire extent record. 1653 */ 1654 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1655 /* 1656 * Skip holes if any. 1657 */ 1658 if (range < *trunc_end) 1659 *trunc_end = range; 1660 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1661 *blkno = le64_to_cpu(rec->e_blkno); 1662 *trunc_end = le32_to_cpu(rec->e_cpos); 1663 } else if (range > trunc_start) { 1664 /* 1665 * remove a partial extent record, which means we're 1666 * removing the last extent record. 1667 */ 1668 *trunc_cpos = trunc_start; 1669 /* 1670 * skip hole if any. 1671 */ 1672 if (range < *trunc_end) 1673 *trunc_end = range; 1674 *trunc_len = *trunc_end - trunc_start; 1675 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1676 *blkno = le64_to_cpu(rec->e_blkno) + 1677 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1678 *trunc_end = trunc_start; 1679 } else { 1680 /* 1681 * It may have two following possibilities: 1682 * 1683 * - last record has been removed 1684 * - trunc_start was within a hole 1685 * 1686 * both two cases mean the completion of hole punching. 1687 */ 1688 ret = 1; 1689 } 1690 1691 *done = ret; 1692 } 1693 1694 int ocfs2_remove_inode_range(struct inode *inode, 1695 struct buffer_head *di_bh, u64 byte_start, 1696 u64 byte_len) 1697 { 1698 int ret = 0, flags = 0, done = 0, i; 1699 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1700 u32 cluster_in_el; 1701 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1702 struct ocfs2_cached_dealloc_ctxt dealloc; 1703 struct address_space *mapping = inode->i_mapping; 1704 struct ocfs2_extent_tree et; 1705 struct ocfs2_path *path = NULL; 1706 struct ocfs2_extent_list *el = NULL; 1707 struct ocfs2_extent_rec *rec = NULL; 1708 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1709 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1710 1711 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1712 ocfs2_init_dealloc_ctxt(&dealloc); 1713 1714 trace_ocfs2_remove_inode_range( 1715 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1716 (unsigned long long)byte_start, 1717 (unsigned long long)byte_len); 1718 1719 if (byte_len == 0) 1720 return 0; 1721 1722 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1723 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1724 byte_start + byte_len, 0); 1725 if (ret) { 1726 mlog_errno(ret); 1727 goto out; 1728 } 1729 /* 1730 * There's no need to get fancy with the page cache 1731 * truncate of an inline-data inode. We're talking 1732 * about less than a page here, which will be cached 1733 * in the dinode buffer anyway. 1734 */ 1735 unmap_mapping_range(mapping, 0, 0, 0); 1736 truncate_inode_pages(mapping, 0); 1737 goto out; 1738 } 1739 1740 /* 1741 * For reflinks, we may need to CoW 2 clusters which might be 1742 * partially zero'd later, if hole's start and end offset were 1743 * within one cluster(means is not exactly aligned to clustersize). 1744 */ 1745 1746 if (ocfs2_is_refcount_inode(inode)) { 1747 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1748 if (ret) { 1749 mlog_errno(ret); 1750 goto out; 1751 } 1752 1753 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1754 if (ret) { 1755 mlog_errno(ret); 1756 goto out; 1757 } 1758 } 1759 1760 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1761 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1762 cluster_in_el = trunc_end; 1763 1764 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1765 if (ret) { 1766 mlog_errno(ret); 1767 goto out; 1768 } 1769 1770 path = ocfs2_new_path_from_et(&et); 1771 if (!path) { 1772 ret = -ENOMEM; 1773 mlog_errno(ret); 1774 goto out; 1775 } 1776 1777 while (trunc_end > trunc_start) { 1778 1779 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1780 cluster_in_el); 1781 if (ret) { 1782 mlog_errno(ret); 1783 goto out; 1784 } 1785 1786 el = path_leaf_el(path); 1787 1788 i = ocfs2_find_rec(el, trunc_end); 1789 /* 1790 * Need to go to previous extent block. 1791 */ 1792 if (i < 0) { 1793 if (path->p_tree_depth == 0) 1794 break; 1795 1796 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1797 path, 1798 &cluster_in_el); 1799 if (ret) { 1800 mlog_errno(ret); 1801 goto out; 1802 } 1803 1804 /* 1805 * We've reached the leftmost extent block, 1806 * it's safe to leave. 1807 */ 1808 if (cluster_in_el == 0) 1809 break; 1810 1811 /* 1812 * The 'pos' searched for previous extent block is 1813 * always one cluster less than actual trunc_end. 1814 */ 1815 trunc_end = cluster_in_el + 1; 1816 1817 ocfs2_reinit_path(path, 1); 1818 1819 continue; 1820 1821 } else 1822 rec = &el->l_recs[i]; 1823 1824 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1825 &trunc_len, &trunc_end, &blkno, &done); 1826 if (done) 1827 break; 1828 1829 flags = rec->e_flags; 1830 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1831 1832 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1833 phys_cpos, trunc_len, flags, 1834 &dealloc, refcount_loc, false); 1835 if (ret < 0) { 1836 mlog_errno(ret); 1837 goto out; 1838 } 1839 1840 cluster_in_el = trunc_end; 1841 1842 ocfs2_reinit_path(path, 1); 1843 } 1844 1845 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1846 1847 out: 1848 ocfs2_free_path(path); 1849 ocfs2_schedule_truncate_log_flush(osb, 1); 1850 ocfs2_run_deallocs(osb, &dealloc); 1851 1852 return ret; 1853 } 1854 1855 /* 1856 * Parts of this function taken from xfs_change_file_space() 1857 */ 1858 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1859 loff_t f_pos, unsigned int cmd, 1860 struct ocfs2_space_resv *sr, 1861 int change_size) 1862 { 1863 int ret; 1864 s64 llen; 1865 loff_t size; 1866 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1867 struct buffer_head *di_bh = NULL; 1868 handle_t *handle; 1869 unsigned long long max_off = inode->i_sb->s_maxbytes; 1870 1871 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1872 return -EROFS; 1873 1874 inode_lock(inode); 1875 1876 /* 1877 * This prevents concurrent writes on other nodes 1878 */ 1879 ret = ocfs2_rw_lock(inode, 1); 1880 if (ret) { 1881 mlog_errno(ret); 1882 goto out; 1883 } 1884 1885 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1886 if (ret) { 1887 mlog_errno(ret); 1888 goto out_rw_unlock; 1889 } 1890 1891 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1892 ret = -EPERM; 1893 goto out_inode_unlock; 1894 } 1895 1896 switch (sr->l_whence) { 1897 case 0: /*SEEK_SET*/ 1898 break; 1899 case 1: /*SEEK_CUR*/ 1900 sr->l_start += f_pos; 1901 break; 1902 case 2: /*SEEK_END*/ 1903 sr->l_start += i_size_read(inode); 1904 break; 1905 default: 1906 ret = -EINVAL; 1907 goto out_inode_unlock; 1908 } 1909 sr->l_whence = 0; 1910 1911 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1912 1913 if (sr->l_start < 0 1914 || sr->l_start > max_off 1915 || (sr->l_start + llen) < 0 1916 || (sr->l_start + llen) > max_off) { 1917 ret = -EINVAL; 1918 goto out_inode_unlock; 1919 } 1920 size = sr->l_start + sr->l_len; 1921 1922 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1923 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1924 if (sr->l_len <= 0) { 1925 ret = -EINVAL; 1926 goto out_inode_unlock; 1927 } 1928 } 1929 1930 if (file && should_remove_suid(file->f_path.dentry)) { 1931 ret = __ocfs2_write_remove_suid(inode, di_bh); 1932 if (ret) { 1933 mlog_errno(ret); 1934 goto out_inode_unlock; 1935 } 1936 } 1937 1938 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1939 switch (cmd) { 1940 case OCFS2_IOC_RESVSP: 1941 case OCFS2_IOC_RESVSP64: 1942 /* 1943 * This takes unsigned offsets, but the signed ones we 1944 * pass have been checked against overflow above. 1945 */ 1946 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1947 sr->l_len); 1948 break; 1949 case OCFS2_IOC_UNRESVSP: 1950 case OCFS2_IOC_UNRESVSP64: 1951 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1952 sr->l_len); 1953 break; 1954 default: 1955 ret = -EINVAL; 1956 } 1957 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1958 if (ret) { 1959 mlog_errno(ret); 1960 goto out_inode_unlock; 1961 } 1962 1963 /* 1964 * We update c/mtime for these changes 1965 */ 1966 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1967 if (IS_ERR(handle)) { 1968 ret = PTR_ERR(handle); 1969 mlog_errno(ret); 1970 goto out_inode_unlock; 1971 } 1972 1973 if (change_size && i_size_read(inode) < size) 1974 i_size_write(inode, size); 1975 1976 inode->i_ctime = inode->i_mtime = current_time(inode); 1977 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1978 if (ret < 0) 1979 mlog_errno(ret); 1980 1981 if (file && (file->f_flags & O_SYNC)) 1982 handle->h_sync = 1; 1983 1984 ocfs2_commit_trans(osb, handle); 1985 1986 out_inode_unlock: 1987 brelse(di_bh); 1988 ocfs2_inode_unlock(inode, 1); 1989 out_rw_unlock: 1990 ocfs2_rw_unlock(inode, 1); 1991 1992 out: 1993 inode_unlock(inode); 1994 return ret; 1995 } 1996 1997 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1998 struct ocfs2_space_resv *sr) 1999 { 2000 struct inode *inode = file_inode(file); 2001 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2002 int ret; 2003 2004 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2005 !ocfs2_writes_unwritten_extents(osb)) 2006 return -ENOTTY; 2007 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2008 !ocfs2_sparse_alloc(osb)) 2009 return -ENOTTY; 2010 2011 if (!S_ISREG(inode->i_mode)) 2012 return -EINVAL; 2013 2014 if (!(file->f_mode & FMODE_WRITE)) 2015 return -EBADF; 2016 2017 ret = mnt_want_write_file(file); 2018 if (ret) 2019 return ret; 2020 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2021 mnt_drop_write_file(file); 2022 return ret; 2023 } 2024 2025 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2026 loff_t len) 2027 { 2028 struct inode *inode = file_inode(file); 2029 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2030 struct ocfs2_space_resv sr; 2031 int change_size = 1; 2032 int cmd = OCFS2_IOC_RESVSP64; 2033 2034 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2035 return -EOPNOTSUPP; 2036 if (!ocfs2_writes_unwritten_extents(osb)) 2037 return -EOPNOTSUPP; 2038 2039 if (mode & FALLOC_FL_KEEP_SIZE) 2040 change_size = 0; 2041 2042 if (mode & FALLOC_FL_PUNCH_HOLE) 2043 cmd = OCFS2_IOC_UNRESVSP64; 2044 2045 sr.l_whence = 0; 2046 sr.l_start = (s64)offset; 2047 sr.l_len = (s64)len; 2048 2049 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2050 change_size); 2051 } 2052 2053 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2054 size_t count) 2055 { 2056 int ret = 0; 2057 unsigned int extent_flags; 2058 u32 cpos, clusters, extent_len, phys_cpos; 2059 struct super_block *sb = inode->i_sb; 2060 2061 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2062 !ocfs2_is_refcount_inode(inode) || 2063 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2064 return 0; 2065 2066 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2067 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2068 2069 while (clusters) { 2070 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2071 &extent_flags); 2072 if (ret < 0) { 2073 mlog_errno(ret); 2074 goto out; 2075 } 2076 2077 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2078 ret = 1; 2079 break; 2080 } 2081 2082 if (extent_len > clusters) 2083 extent_len = clusters; 2084 2085 clusters -= extent_len; 2086 cpos += extent_len; 2087 } 2088 out: 2089 return ret; 2090 } 2091 2092 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2093 { 2094 int blockmask = inode->i_sb->s_blocksize - 1; 2095 loff_t final_size = pos + count; 2096 2097 if ((pos & blockmask) || (final_size & blockmask)) 2098 return 1; 2099 return 0; 2100 } 2101 2102 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2103 struct file *file, 2104 loff_t pos, size_t count, 2105 int *meta_level) 2106 { 2107 int ret; 2108 struct buffer_head *di_bh = NULL; 2109 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2110 u32 clusters = 2111 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2112 2113 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2114 if (ret) { 2115 mlog_errno(ret); 2116 goto out; 2117 } 2118 2119 *meta_level = 1; 2120 2121 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2122 if (ret) 2123 mlog_errno(ret); 2124 out: 2125 brelse(di_bh); 2126 return ret; 2127 } 2128 2129 static int ocfs2_prepare_inode_for_write(struct file *file, 2130 loff_t pos, 2131 size_t count) 2132 { 2133 int ret = 0, meta_level = 0; 2134 struct dentry *dentry = file->f_path.dentry; 2135 struct inode *inode = d_inode(dentry); 2136 loff_t end; 2137 2138 /* 2139 * We start with a read level meta lock and only jump to an ex 2140 * if we need to make modifications here. 2141 */ 2142 for(;;) { 2143 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2144 if (ret < 0) { 2145 meta_level = -1; 2146 mlog_errno(ret); 2147 goto out; 2148 } 2149 2150 /* Clear suid / sgid if necessary. We do this here 2151 * instead of later in the write path because 2152 * remove_suid() calls ->setattr without any hint that 2153 * we may have already done our cluster locking. Since 2154 * ocfs2_setattr() *must* take cluster locks to 2155 * proceed, this will lead us to recursively lock the 2156 * inode. There's also the dinode i_size state which 2157 * can be lost via setattr during extending writes (we 2158 * set inode->i_size at the end of a write. */ 2159 if (should_remove_suid(dentry)) { 2160 if (meta_level == 0) { 2161 ocfs2_inode_unlock(inode, meta_level); 2162 meta_level = 1; 2163 continue; 2164 } 2165 2166 ret = ocfs2_write_remove_suid(inode); 2167 if (ret < 0) { 2168 mlog_errno(ret); 2169 goto out_unlock; 2170 } 2171 } 2172 2173 end = pos + count; 2174 2175 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2176 if (ret == 1) { 2177 ocfs2_inode_unlock(inode, meta_level); 2178 meta_level = -1; 2179 2180 ret = ocfs2_prepare_inode_for_refcount(inode, 2181 file, 2182 pos, 2183 count, 2184 &meta_level); 2185 } 2186 2187 if (ret < 0) { 2188 mlog_errno(ret); 2189 goto out_unlock; 2190 } 2191 2192 break; 2193 } 2194 2195 out_unlock: 2196 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2197 pos, count); 2198 2199 if (meta_level >= 0) 2200 ocfs2_inode_unlock(inode, meta_level); 2201 2202 out: 2203 return ret; 2204 } 2205 2206 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2207 struct iov_iter *from) 2208 { 2209 int direct_io, rw_level; 2210 ssize_t written = 0; 2211 ssize_t ret; 2212 size_t count = iov_iter_count(from); 2213 struct file *file = iocb->ki_filp; 2214 struct inode *inode = file_inode(file); 2215 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2216 int full_coherency = !(osb->s_mount_opt & 2217 OCFS2_MOUNT_COHERENCY_BUFFERED); 2218 void *saved_ki_complete = NULL; 2219 int append_write = ((iocb->ki_pos + count) >= 2220 i_size_read(inode) ? 1 : 0); 2221 2222 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2223 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2224 file->f_path.dentry->d_name.len, 2225 file->f_path.dentry->d_name.name, 2226 (unsigned int)from->nr_segs); /* GRRRRR */ 2227 2228 if (count == 0) 2229 return 0; 2230 2231 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2232 2233 inode_lock(inode); 2234 2235 /* 2236 * Concurrent O_DIRECT writes are allowed with 2237 * mount_option "coherency=buffered". 2238 * For append write, we must take rw EX. 2239 */ 2240 rw_level = (!direct_io || full_coherency || append_write); 2241 2242 ret = ocfs2_rw_lock(inode, rw_level); 2243 if (ret < 0) { 2244 mlog_errno(ret); 2245 goto out_mutex; 2246 } 2247 2248 /* 2249 * O_DIRECT writes with "coherency=full" need to take EX cluster 2250 * inode_lock to guarantee coherency. 2251 */ 2252 if (direct_io && full_coherency) { 2253 /* 2254 * We need to take and drop the inode lock to force 2255 * other nodes to drop their caches. Buffered I/O 2256 * already does this in write_begin(). 2257 */ 2258 ret = ocfs2_inode_lock(inode, NULL, 1); 2259 if (ret < 0) { 2260 mlog_errno(ret); 2261 goto out; 2262 } 2263 2264 ocfs2_inode_unlock(inode, 1); 2265 } 2266 2267 ret = generic_write_checks(iocb, from); 2268 if (ret <= 0) { 2269 if (ret) 2270 mlog_errno(ret); 2271 goto out; 2272 } 2273 count = ret; 2274 2275 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count); 2276 if (ret < 0) { 2277 mlog_errno(ret); 2278 goto out; 2279 } 2280 2281 if (direct_io && !is_sync_kiocb(iocb) && 2282 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2283 /* 2284 * Make it a sync io if it's an unaligned aio. 2285 */ 2286 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2287 } 2288 2289 /* communicate with ocfs2_dio_end_io */ 2290 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2291 2292 written = __generic_file_write_iter(iocb, from); 2293 /* buffered aio wouldn't have proper lock coverage today */ 2294 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT)); 2295 2296 /* 2297 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2298 * function pointer which is called when o_direct io completes so that 2299 * it can unlock our rw lock. 2300 * Unfortunately there are error cases which call end_io and others 2301 * that don't. so we don't have to unlock the rw_lock if either an 2302 * async dio is going to do it in the future or an end_io after an 2303 * error has already done it. 2304 */ 2305 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2306 rw_level = -1; 2307 } 2308 2309 if (unlikely(written <= 0)) 2310 goto out; 2311 2312 if (((file->f_flags & O_DSYNC) && !direct_io) || 2313 IS_SYNC(inode)) { 2314 ret = filemap_fdatawrite_range(file->f_mapping, 2315 iocb->ki_pos - written, 2316 iocb->ki_pos - 1); 2317 if (ret < 0) 2318 written = ret; 2319 2320 if (!ret) { 2321 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2322 if (ret < 0) 2323 written = ret; 2324 } 2325 2326 if (!ret) 2327 ret = filemap_fdatawait_range(file->f_mapping, 2328 iocb->ki_pos - written, 2329 iocb->ki_pos - 1); 2330 } 2331 2332 out: 2333 if (saved_ki_complete) 2334 xchg(&iocb->ki_complete, saved_ki_complete); 2335 2336 if (rw_level != -1) 2337 ocfs2_rw_unlock(inode, rw_level); 2338 2339 out_mutex: 2340 inode_unlock(inode); 2341 2342 if (written) 2343 ret = written; 2344 return ret; 2345 } 2346 2347 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2348 struct iov_iter *to) 2349 { 2350 int ret = 0, rw_level = -1, lock_level = 0; 2351 struct file *filp = iocb->ki_filp; 2352 struct inode *inode = file_inode(filp); 2353 2354 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2355 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2356 filp->f_path.dentry->d_name.len, 2357 filp->f_path.dentry->d_name.name, 2358 to->nr_segs); /* GRRRRR */ 2359 2360 2361 if (!inode) { 2362 ret = -EINVAL; 2363 mlog_errno(ret); 2364 goto bail; 2365 } 2366 2367 /* 2368 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2369 * need locks to protect pending reads from racing with truncate. 2370 */ 2371 if (iocb->ki_flags & IOCB_DIRECT) { 2372 ret = ocfs2_rw_lock(inode, 0); 2373 if (ret < 0) { 2374 mlog_errno(ret); 2375 goto bail; 2376 } 2377 rw_level = 0; 2378 /* communicate with ocfs2_dio_end_io */ 2379 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2380 } 2381 2382 /* 2383 * We're fine letting folks race truncates and extending 2384 * writes with read across the cluster, just like they can 2385 * locally. Hence no rw_lock during read. 2386 * 2387 * Take and drop the meta data lock to update inode fields 2388 * like i_size. This allows the checks down below 2389 * generic_file_aio_read() a chance of actually working. 2390 */ 2391 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2392 if (ret < 0) { 2393 mlog_errno(ret); 2394 goto bail; 2395 } 2396 ocfs2_inode_unlock(inode, lock_level); 2397 2398 ret = generic_file_read_iter(iocb, to); 2399 trace_generic_file_aio_read_ret(ret); 2400 2401 /* buffered aio wouldn't have proper lock coverage today */ 2402 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT)); 2403 2404 /* see ocfs2_file_write_iter */ 2405 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2406 rw_level = -1; 2407 } 2408 2409 bail: 2410 if (rw_level != -1) 2411 ocfs2_rw_unlock(inode, rw_level); 2412 2413 return ret; 2414 } 2415 2416 /* Refer generic_file_llseek_unlocked() */ 2417 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2418 { 2419 struct inode *inode = file->f_mapping->host; 2420 int ret = 0; 2421 2422 inode_lock(inode); 2423 2424 switch (whence) { 2425 case SEEK_SET: 2426 break; 2427 case SEEK_END: 2428 /* SEEK_END requires the OCFS2 inode lock for the file 2429 * because it references the file's size. 2430 */ 2431 ret = ocfs2_inode_lock(inode, NULL, 0); 2432 if (ret < 0) { 2433 mlog_errno(ret); 2434 goto out; 2435 } 2436 offset += i_size_read(inode); 2437 ocfs2_inode_unlock(inode, 0); 2438 break; 2439 case SEEK_CUR: 2440 if (offset == 0) { 2441 offset = file->f_pos; 2442 goto out; 2443 } 2444 offset += file->f_pos; 2445 break; 2446 case SEEK_DATA: 2447 case SEEK_HOLE: 2448 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2449 if (ret) 2450 goto out; 2451 break; 2452 default: 2453 ret = -EINVAL; 2454 goto out; 2455 } 2456 2457 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2458 2459 out: 2460 inode_unlock(inode); 2461 if (ret) 2462 return ret; 2463 return offset; 2464 } 2465 2466 static int ocfs2_file_clone_range(struct file *file_in, 2467 loff_t pos_in, 2468 struct file *file_out, 2469 loff_t pos_out, 2470 u64 len) 2471 { 2472 return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out, 2473 len, false); 2474 } 2475 2476 static ssize_t ocfs2_file_dedupe_range(struct file *src_file, 2477 u64 loff, 2478 u64 len, 2479 struct file *dst_file, 2480 u64 dst_loff) 2481 { 2482 int error; 2483 2484 error = ocfs2_reflink_remap_range(src_file, loff, dst_file, dst_loff, 2485 len, true); 2486 if (error) 2487 return error; 2488 return len; 2489 } 2490 2491 const struct inode_operations ocfs2_file_iops = { 2492 .setattr = ocfs2_setattr, 2493 .getattr = ocfs2_getattr, 2494 .permission = ocfs2_permission, 2495 .listxattr = ocfs2_listxattr, 2496 .fiemap = ocfs2_fiemap, 2497 .get_acl = ocfs2_iop_get_acl, 2498 .set_acl = ocfs2_iop_set_acl, 2499 }; 2500 2501 const struct inode_operations ocfs2_special_file_iops = { 2502 .setattr = ocfs2_setattr, 2503 .getattr = ocfs2_getattr, 2504 .permission = ocfs2_permission, 2505 .get_acl = ocfs2_iop_get_acl, 2506 .set_acl = ocfs2_iop_set_acl, 2507 }; 2508 2509 /* 2510 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2511 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2512 */ 2513 const struct file_operations ocfs2_fops = { 2514 .llseek = ocfs2_file_llseek, 2515 .mmap = ocfs2_mmap, 2516 .fsync = ocfs2_sync_file, 2517 .release = ocfs2_file_release, 2518 .open = ocfs2_file_open, 2519 .read_iter = ocfs2_file_read_iter, 2520 .write_iter = ocfs2_file_write_iter, 2521 .unlocked_ioctl = ocfs2_ioctl, 2522 #ifdef CONFIG_COMPAT 2523 .compat_ioctl = ocfs2_compat_ioctl, 2524 #endif 2525 .lock = ocfs2_lock, 2526 .flock = ocfs2_flock, 2527 .splice_read = generic_file_splice_read, 2528 .splice_write = iter_file_splice_write, 2529 .fallocate = ocfs2_fallocate, 2530 .clone_file_range = ocfs2_file_clone_range, 2531 .dedupe_file_range = ocfs2_file_dedupe_range, 2532 }; 2533 2534 const struct file_operations ocfs2_dops = { 2535 .llseek = generic_file_llseek, 2536 .read = generic_read_dir, 2537 .iterate = ocfs2_readdir, 2538 .fsync = ocfs2_sync_file, 2539 .release = ocfs2_dir_release, 2540 .open = ocfs2_dir_open, 2541 .unlocked_ioctl = ocfs2_ioctl, 2542 #ifdef CONFIG_COMPAT 2543 .compat_ioctl = ocfs2_compat_ioctl, 2544 #endif 2545 .lock = ocfs2_lock, 2546 .flock = ocfs2_flock, 2547 }; 2548 2549 /* 2550 * POSIX-lockless variants of our file_operations. 2551 * 2552 * These will be used if the underlying cluster stack does not support 2553 * posix file locking, if the user passes the "localflocks" mount 2554 * option, or if we have a local-only fs. 2555 * 2556 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2557 * so we still want it in the case of no stack support for 2558 * plocks. Internally, it will do the right thing when asked to ignore 2559 * the cluster. 2560 */ 2561 const struct file_operations ocfs2_fops_no_plocks = { 2562 .llseek = ocfs2_file_llseek, 2563 .mmap = ocfs2_mmap, 2564 .fsync = ocfs2_sync_file, 2565 .release = ocfs2_file_release, 2566 .open = ocfs2_file_open, 2567 .read_iter = ocfs2_file_read_iter, 2568 .write_iter = ocfs2_file_write_iter, 2569 .unlocked_ioctl = ocfs2_ioctl, 2570 #ifdef CONFIG_COMPAT 2571 .compat_ioctl = ocfs2_compat_ioctl, 2572 #endif 2573 .flock = ocfs2_flock, 2574 .splice_read = generic_file_splice_read, 2575 .splice_write = iter_file_splice_write, 2576 .fallocate = ocfs2_fallocate, 2577 .clone_file_range = ocfs2_file_clone_range, 2578 .dedupe_file_range = ocfs2_file_dedupe_range, 2579 }; 2580 2581 const struct file_operations ocfs2_dops_no_plocks = { 2582 .llseek = generic_file_llseek, 2583 .read = generic_read_dir, 2584 .iterate = ocfs2_readdir, 2585 .fsync = ocfs2_sync_file, 2586 .release = ocfs2_dir_release, 2587 .open = ocfs2_dir_open, 2588 .unlocked_ioctl = ocfs2_ioctl, 2589 #ifdef CONFIG_COMPAT 2590 .compat_ioctl = ocfs2_compat_ioctl, 2591 #endif 2592 .flock = ocfs2_flock, 2593 }; 2594