1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * file.c 5 * 6 * File open, close, extend, truncate 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/capability.h> 27 #include <linux/fs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/highmem.h> 31 #include <linux/pagemap.h> 32 #include <linux/uio.h> 33 #include <linux/sched.h> 34 #include <linux/splice.h> 35 #include <linux/mount.h> 36 #include <linux/writeback.h> 37 #include <linux/falloc.h> 38 #include <linux/quotaops.h> 39 #include <linux/blkdev.h> 40 #include <linux/backing-dev.h> 41 42 #include <cluster/masklog.h> 43 44 #include "ocfs2.h" 45 46 #include "alloc.h" 47 #include "aops.h" 48 #include "dir.h" 49 #include "dlmglue.h" 50 #include "extent_map.h" 51 #include "file.h" 52 #include "sysfile.h" 53 #include "inode.h" 54 #include "ioctl.h" 55 #include "journal.h" 56 #include "locks.h" 57 #include "mmap.h" 58 #include "suballoc.h" 59 #include "super.h" 60 #include "xattr.h" 61 #include "acl.h" 62 #include "quota.h" 63 #include "refcounttree.h" 64 #include "ocfs2_trace.h" 65 66 #include "buffer_head_io.h" 67 68 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 69 { 70 struct ocfs2_file_private *fp; 71 72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 73 if (!fp) 74 return -ENOMEM; 75 76 fp->fp_file = file; 77 mutex_init(&fp->fp_mutex); 78 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 79 file->private_data = fp; 80 81 return 0; 82 } 83 84 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 85 { 86 struct ocfs2_file_private *fp = file->private_data; 87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 88 89 if (fp) { 90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 91 ocfs2_lock_res_free(&fp->fp_flock); 92 kfree(fp); 93 file->private_data = NULL; 94 } 95 } 96 97 static int ocfs2_file_open(struct inode *inode, struct file *file) 98 { 99 int status; 100 int mode = file->f_flags; 101 struct ocfs2_inode_info *oi = OCFS2_I(inode); 102 103 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 104 (unsigned long long)OCFS2_I(inode)->ip_blkno, 105 file->f_path.dentry->d_name.len, 106 file->f_path.dentry->d_name.name, mode); 107 108 if (file->f_mode & FMODE_WRITE) 109 dquot_initialize(inode); 110 111 spin_lock(&oi->ip_lock); 112 113 /* Check that the inode hasn't been wiped from disk by another 114 * node. If it hasn't then we're safe as long as we hold the 115 * spin lock until our increment of open count. */ 116 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { 117 spin_unlock(&oi->ip_lock); 118 119 status = -ENOENT; 120 goto leave; 121 } 122 123 if (mode & O_DIRECT) 124 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 125 126 oi->ip_open_count++; 127 spin_unlock(&oi->ip_lock); 128 129 status = ocfs2_init_file_private(inode, file); 130 if (status) { 131 /* 132 * We want to set open count back if we're failing the 133 * open. 134 */ 135 spin_lock(&oi->ip_lock); 136 oi->ip_open_count--; 137 spin_unlock(&oi->ip_lock); 138 } 139 140 leave: 141 return status; 142 } 143 144 static int ocfs2_file_release(struct inode *inode, struct file *file) 145 { 146 struct ocfs2_inode_info *oi = OCFS2_I(inode); 147 148 spin_lock(&oi->ip_lock); 149 if (!--oi->ip_open_count) 150 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 151 152 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 153 oi->ip_blkno, 154 file->f_path.dentry->d_name.len, 155 file->f_path.dentry->d_name.name, 156 oi->ip_open_count); 157 spin_unlock(&oi->ip_lock); 158 159 ocfs2_free_file_private(inode, file); 160 161 return 0; 162 } 163 164 static int ocfs2_dir_open(struct inode *inode, struct file *file) 165 { 166 return ocfs2_init_file_private(inode, file); 167 } 168 169 static int ocfs2_dir_release(struct inode *inode, struct file *file) 170 { 171 ocfs2_free_file_private(inode, file); 172 return 0; 173 } 174 175 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 176 int datasync) 177 { 178 int err = 0; 179 struct inode *inode = file->f_mapping->host; 180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 181 struct ocfs2_inode_info *oi = OCFS2_I(inode); 182 journal_t *journal = osb->journal->j_journal; 183 int ret; 184 tid_t commit_tid; 185 bool needs_barrier = false; 186 187 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 188 OCFS2_I(inode)->ip_blkno, 189 file->f_path.dentry->d_name.len, 190 file->f_path.dentry->d_name.name, 191 (unsigned long long)datasync); 192 193 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 194 return -EROFS; 195 196 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 197 if (err) 198 return err; 199 200 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 201 if (journal->j_flags & JBD2_BARRIER && 202 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 203 needs_barrier = true; 204 err = jbd2_complete_transaction(journal, commit_tid); 205 if (needs_barrier) { 206 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 207 if (!err) 208 err = ret; 209 } 210 211 if (err) 212 mlog_errno(err); 213 214 return (err < 0) ? -EIO : 0; 215 } 216 217 int ocfs2_should_update_atime(struct inode *inode, 218 struct vfsmount *vfsmnt) 219 { 220 struct timespec now; 221 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 222 223 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 224 return 0; 225 226 if ((inode->i_flags & S_NOATIME) || 227 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) 228 return 0; 229 230 /* 231 * We can be called with no vfsmnt structure - NFSD will 232 * sometimes do this. 233 * 234 * Note that our action here is different than touch_atime() - 235 * if we can't tell whether this is a noatime mount, then we 236 * don't know whether to trust the value of s_atime_quantum. 237 */ 238 if (vfsmnt == NULL) 239 return 0; 240 241 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 242 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 243 return 0; 244 245 if (vfsmnt->mnt_flags & MNT_RELATIME) { 246 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 247 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 248 return 1; 249 250 return 0; 251 } 252 253 now = CURRENT_TIME; 254 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 255 return 0; 256 else 257 return 1; 258 } 259 260 int ocfs2_update_inode_atime(struct inode *inode, 261 struct buffer_head *bh) 262 { 263 int ret; 264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 265 handle_t *handle; 266 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 267 268 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 269 if (IS_ERR(handle)) { 270 ret = PTR_ERR(handle); 271 mlog_errno(ret); 272 goto out; 273 } 274 275 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 276 OCFS2_JOURNAL_ACCESS_WRITE); 277 if (ret) { 278 mlog_errno(ret); 279 goto out_commit; 280 } 281 282 /* 283 * Don't use ocfs2_mark_inode_dirty() here as we don't always 284 * have i_mutex to guard against concurrent changes to other 285 * inode fields. 286 */ 287 inode->i_atime = CURRENT_TIME; 288 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 289 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 290 ocfs2_update_inode_fsync_trans(handle, inode, 0); 291 ocfs2_journal_dirty(handle, bh); 292 293 out_commit: 294 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 295 out: 296 return ret; 297 } 298 299 int ocfs2_set_inode_size(handle_t *handle, 300 struct inode *inode, 301 struct buffer_head *fe_bh, 302 u64 new_i_size) 303 { 304 int status; 305 306 i_size_write(inode, new_i_size); 307 inode->i_blocks = ocfs2_inode_sector_count(inode); 308 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 309 310 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 311 if (status < 0) { 312 mlog_errno(status); 313 goto bail; 314 } 315 316 bail: 317 return status; 318 } 319 320 int ocfs2_simple_size_update(struct inode *inode, 321 struct buffer_head *di_bh, 322 u64 new_i_size) 323 { 324 int ret; 325 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 326 handle_t *handle = NULL; 327 328 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 329 if (IS_ERR(handle)) { 330 ret = PTR_ERR(handle); 331 mlog_errno(ret); 332 goto out; 333 } 334 335 ret = ocfs2_set_inode_size(handle, inode, di_bh, 336 new_i_size); 337 if (ret < 0) 338 mlog_errno(ret); 339 340 ocfs2_update_inode_fsync_trans(handle, inode, 0); 341 ocfs2_commit_trans(osb, handle); 342 out: 343 return ret; 344 } 345 346 static int ocfs2_cow_file_pos(struct inode *inode, 347 struct buffer_head *fe_bh, 348 u64 offset) 349 { 350 int status; 351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 352 unsigned int num_clusters = 0; 353 unsigned int ext_flags = 0; 354 355 /* 356 * If the new offset is aligned to the range of the cluster, there is 357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 358 * CoW either. 359 */ 360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 361 return 0; 362 363 status = ocfs2_get_clusters(inode, cpos, &phys, 364 &num_clusters, &ext_flags); 365 if (status) { 366 mlog_errno(status); 367 goto out; 368 } 369 370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 371 goto out; 372 373 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 374 375 out: 376 return status; 377 } 378 379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 380 struct inode *inode, 381 struct buffer_head *fe_bh, 382 u64 new_i_size) 383 { 384 int status; 385 handle_t *handle; 386 struct ocfs2_dinode *di; 387 u64 cluster_bytes; 388 389 /* 390 * We need to CoW the cluster contains the offset if it is reflinked 391 * since we will call ocfs2_zero_range_for_truncate later which will 392 * write "0" from offset to the end of the cluster. 393 */ 394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 395 if (status) { 396 mlog_errno(status); 397 return status; 398 } 399 400 /* TODO: This needs to actually orphan the inode in this 401 * transaction. */ 402 403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 404 if (IS_ERR(handle)) { 405 status = PTR_ERR(handle); 406 mlog_errno(status); 407 goto out; 408 } 409 410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 411 OCFS2_JOURNAL_ACCESS_WRITE); 412 if (status < 0) { 413 mlog_errno(status); 414 goto out_commit; 415 } 416 417 /* 418 * Do this before setting i_size. 419 */ 420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 422 cluster_bytes); 423 if (status) { 424 mlog_errno(status); 425 goto out_commit; 426 } 427 428 i_size_write(inode, new_i_size); 429 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 430 431 di = (struct ocfs2_dinode *) fe_bh->b_data; 432 di->i_size = cpu_to_le64(new_i_size); 433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 435 ocfs2_update_inode_fsync_trans(handle, inode, 0); 436 437 ocfs2_journal_dirty(handle, fe_bh); 438 439 out_commit: 440 ocfs2_commit_trans(osb, handle); 441 out: 442 return status; 443 } 444 445 int ocfs2_truncate_file(struct inode *inode, 446 struct buffer_head *di_bh, 447 u64 new_i_size) 448 { 449 int status = 0; 450 struct ocfs2_dinode *fe = NULL; 451 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 452 453 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 454 * already validated it */ 455 fe = (struct ocfs2_dinode *) di_bh->b_data; 456 457 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 458 (unsigned long long)le64_to_cpu(fe->i_size), 459 (unsigned long long)new_i_size); 460 461 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 462 "Inode %llu, inode i_size = %lld != di " 463 "i_size = %llu, i_flags = 0x%x\n", 464 (unsigned long long)OCFS2_I(inode)->ip_blkno, 465 i_size_read(inode), 466 (unsigned long long)le64_to_cpu(fe->i_size), 467 le32_to_cpu(fe->i_flags)); 468 469 if (new_i_size > le64_to_cpu(fe->i_size)) { 470 trace_ocfs2_truncate_file_error( 471 (unsigned long long)le64_to_cpu(fe->i_size), 472 (unsigned long long)new_i_size); 473 status = -EINVAL; 474 mlog_errno(status); 475 goto bail; 476 } 477 478 down_write(&OCFS2_I(inode)->ip_alloc_sem); 479 480 ocfs2_resv_discard(&osb->osb_la_resmap, 481 &OCFS2_I(inode)->ip_la_data_resv); 482 483 /* 484 * The inode lock forced other nodes to sync and drop their 485 * pages, which (correctly) happens even if we have a truncate 486 * without allocation change - ocfs2 cluster sizes can be much 487 * greater than page size, so we have to truncate them 488 * anyway. 489 */ 490 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 491 truncate_inode_pages(inode->i_mapping, new_i_size); 492 493 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 494 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 495 i_size_read(inode), 1); 496 if (status) 497 mlog_errno(status); 498 499 goto bail_unlock_sem; 500 } 501 502 /* alright, we're going to need to do a full blown alloc size 503 * change. Orphan the inode so that recovery can complete the 504 * truncate if necessary. This does the task of marking 505 * i_size. */ 506 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 507 if (status < 0) { 508 mlog_errno(status); 509 goto bail_unlock_sem; 510 } 511 512 status = ocfs2_commit_truncate(osb, inode, di_bh); 513 if (status < 0) { 514 mlog_errno(status); 515 goto bail_unlock_sem; 516 } 517 518 /* TODO: orphan dir cleanup here. */ 519 bail_unlock_sem: 520 up_write(&OCFS2_I(inode)->ip_alloc_sem); 521 522 bail: 523 if (!status && OCFS2_I(inode)->ip_clusters == 0) 524 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 525 526 return status; 527 } 528 529 /* 530 * extend file allocation only here. 531 * we'll update all the disk stuff, and oip->alloc_size 532 * 533 * expect stuff to be locked, a transaction started and enough data / 534 * metadata reservations in the contexts. 535 * 536 * Will return -EAGAIN, and a reason if a restart is needed. 537 * If passed in, *reason will always be set, even in error. 538 */ 539 int ocfs2_add_inode_data(struct ocfs2_super *osb, 540 struct inode *inode, 541 u32 *logical_offset, 542 u32 clusters_to_add, 543 int mark_unwritten, 544 struct buffer_head *fe_bh, 545 handle_t *handle, 546 struct ocfs2_alloc_context *data_ac, 547 struct ocfs2_alloc_context *meta_ac, 548 enum ocfs2_alloc_restarted *reason_ret) 549 { 550 int ret; 551 struct ocfs2_extent_tree et; 552 553 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 554 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 555 clusters_to_add, mark_unwritten, 556 data_ac, meta_ac, reason_ret); 557 558 return ret; 559 } 560 561 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 562 u32 clusters_to_add, int mark_unwritten) 563 { 564 int status = 0; 565 int restart_func = 0; 566 int credits; 567 u32 prev_clusters; 568 struct buffer_head *bh = NULL; 569 struct ocfs2_dinode *fe = NULL; 570 handle_t *handle = NULL; 571 struct ocfs2_alloc_context *data_ac = NULL; 572 struct ocfs2_alloc_context *meta_ac = NULL; 573 enum ocfs2_alloc_restarted why = RESTART_NONE; 574 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 575 struct ocfs2_extent_tree et; 576 int did_quota = 0; 577 578 /* 579 * Unwritten extent only exists for file systems which 580 * support holes. 581 */ 582 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 583 584 status = ocfs2_read_inode_block(inode, &bh); 585 if (status < 0) { 586 mlog_errno(status); 587 goto leave; 588 } 589 fe = (struct ocfs2_dinode *) bh->b_data; 590 591 restart_all: 592 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 593 594 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 595 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 596 &data_ac, &meta_ac); 597 if (status) { 598 mlog_errno(status); 599 goto leave; 600 } 601 602 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 603 handle = ocfs2_start_trans(osb, credits); 604 if (IS_ERR(handle)) { 605 status = PTR_ERR(handle); 606 handle = NULL; 607 mlog_errno(status); 608 goto leave; 609 } 610 611 restarted_transaction: 612 trace_ocfs2_extend_allocation( 613 (unsigned long long)OCFS2_I(inode)->ip_blkno, 614 (unsigned long long)i_size_read(inode), 615 le32_to_cpu(fe->i_clusters), clusters_to_add, 616 why, restart_func); 617 618 status = dquot_alloc_space_nodirty(inode, 619 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 620 if (status) 621 goto leave; 622 did_quota = 1; 623 624 /* reserve a write to the file entry early on - that we if we 625 * run out of credits in the allocation path, we can still 626 * update i_size. */ 627 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 628 OCFS2_JOURNAL_ACCESS_WRITE); 629 if (status < 0) { 630 mlog_errno(status); 631 goto leave; 632 } 633 634 prev_clusters = OCFS2_I(inode)->ip_clusters; 635 636 status = ocfs2_add_inode_data(osb, 637 inode, 638 &logical_start, 639 clusters_to_add, 640 mark_unwritten, 641 bh, 642 handle, 643 data_ac, 644 meta_ac, 645 &why); 646 if ((status < 0) && (status != -EAGAIN)) { 647 if (status != -ENOSPC) 648 mlog_errno(status); 649 goto leave; 650 } 651 ocfs2_update_inode_fsync_trans(handle, inode, 1); 652 ocfs2_journal_dirty(handle, bh); 653 654 spin_lock(&OCFS2_I(inode)->ip_lock); 655 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 656 spin_unlock(&OCFS2_I(inode)->ip_lock); 657 /* Release unused quota reservation */ 658 dquot_free_space(inode, 659 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 660 did_quota = 0; 661 662 if (why != RESTART_NONE && clusters_to_add) { 663 if (why == RESTART_META) { 664 restart_func = 1; 665 status = 0; 666 } else { 667 BUG_ON(why != RESTART_TRANS); 668 669 status = ocfs2_allocate_extend_trans(handle, 1); 670 if (status < 0) { 671 /* handle still has to be committed at 672 * this point. */ 673 status = -ENOMEM; 674 mlog_errno(status); 675 goto leave; 676 } 677 goto restarted_transaction; 678 } 679 } 680 681 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 682 le32_to_cpu(fe->i_clusters), 683 (unsigned long long)le64_to_cpu(fe->i_size), 684 OCFS2_I(inode)->ip_clusters, 685 (unsigned long long)i_size_read(inode)); 686 687 leave: 688 if (status < 0 && did_quota) 689 dquot_free_space(inode, 690 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 691 if (handle) { 692 ocfs2_commit_trans(osb, handle); 693 handle = NULL; 694 } 695 if (data_ac) { 696 ocfs2_free_alloc_context(data_ac); 697 data_ac = NULL; 698 } 699 if (meta_ac) { 700 ocfs2_free_alloc_context(meta_ac); 701 meta_ac = NULL; 702 } 703 if ((!status) && restart_func) { 704 restart_func = 0; 705 goto restart_all; 706 } 707 brelse(bh); 708 bh = NULL; 709 710 return status; 711 } 712 713 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 714 u32 clusters_to_add, int mark_unwritten) 715 { 716 return __ocfs2_extend_allocation(inode, logical_start, 717 clusters_to_add, mark_unwritten); 718 } 719 720 /* 721 * While a write will already be ordering the data, a truncate will not. 722 * Thus, we need to explicitly order the zeroed pages. 723 */ 724 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 725 struct buffer_head *di_bh) 726 { 727 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 728 handle_t *handle = NULL; 729 int ret = 0; 730 731 if (!ocfs2_should_order_data(inode)) 732 goto out; 733 734 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 735 if (IS_ERR(handle)) { 736 ret = -ENOMEM; 737 mlog_errno(ret); 738 goto out; 739 } 740 741 ret = ocfs2_jbd2_file_inode(handle, inode); 742 if (ret < 0) { 743 mlog_errno(ret); 744 goto out; 745 } 746 747 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 748 OCFS2_JOURNAL_ACCESS_WRITE); 749 if (ret) 750 mlog_errno(ret); 751 ocfs2_update_inode_fsync_trans(handle, inode, 1); 752 753 out: 754 if (ret) { 755 if (!IS_ERR(handle)) 756 ocfs2_commit_trans(osb, handle); 757 handle = ERR_PTR(ret); 758 } 759 return handle; 760 } 761 762 /* Some parts of this taken from generic_cont_expand, which turned out 763 * to be too fragile to do exactly what we need without us having to 764 * worry about recursive locking in ->write_begin() and ->write_end(). */ 765 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 766 u64 abs_to, struct buffer_head *di_bh) 767 { 768 struct address_space *mapping = inode->i_mapping; 769 struct page *page; 770 unsigned long index = abs_from >> PAGE_CACHE_SHIFT; 771 handle_t *handle; 772 int ret = 0; 773 unsigned zero_from, zero_to, block_start, block_end; 774 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 775 776 BUG_ON(abs_from >= abs_to); 777 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); 778 BUG_ON(abs_from & (inode->i_blkbits - 1)); 779 780 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh); 781 if (IS_ERR(handle)) { 782 ret = PTR_ERR(handle); 783 goto out; 784 } 785 786 page = find_or_create_page(mapping, index, GFP_NOFS); 787 if (!page) { 788 ret = -ENOMEM; 789 mlog_errno(ret); 790 goto out_commit_trans; 791 } 792 793 /* Get the offsets within the page that we want to zero */ 794 zero_from = abs_from & (PAGE_CACHE_SIZE - 1); 795 zero_to = abs_to & (PAGE_CACHE_SIZE - 1); 796 if (!zero_to) 797 zero_to = PAGE_CACHE_SIZE; 798 799 trace_ocfs2_write_zero_page( 800 (unsigned long long)OCFS2_I(inode)->ip_blkno, 801 (unsigned long long)abs_from, 802 (unsigned long long)abs_to, 803 index, zero_from, zero_to); 804 805 /* We know that zero_from is block aligned */ 806 for (block_start = zero_from; block_start < zero_to; 807 block_start = block_end) { 808 block_end = block_start + (1 << inode->i_blkbits); 809 810 /* 811 * block_start is block-aligned. Bump it by one to force 812 * __block_write_begin and block_commit_write to zero the 813 * whole block. 814 */ 815 ret = __block_write_begin(page, block_start + 1, 0, 816 ocfs2_get_block); 817 if (ret < 0) { 818 mlog_errno(ret); 819 goto out_unlock; 820 } 821 822 823 /* must not update i_size! */ 824 ret = block_commit_write(page, block_start + 1, 825 block_start + 1); 826 if (ret < 0) 827 mlog_errno(ret); 828 else 829 ret = 0; 830 } 831 832 /* 833 * fs-writeback will release the dirty pages without page lock 834 * whose offset are over inode size, the release happens at 835 * block_write_full_page(). 836 */ 837 i_size_write(inode, abs_to); 838 inode->i_blocks = ocfs2_inode_sector_count(inode); 839 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 840 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 841 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 842 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 843 di->i_mtime_nsec = di->i_ctime_nsec; 844 if (handle) { 845 ocfs2_journal_dirty(handle, di_bh); 846 ocfs2_update_inode_fsync_trans(handle, inode, 1); 847 } 848 849 out_unlock: 850 unlock_page(page); 851 page_cache_release(page); 852 out_commit_trans: 853 if (handle) 854 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 855 out: 856 return ret; 857 } 858 859 /* 860 * Find the next range to zero. We do this in terms of bytes because 861 * that's what ocfs2_zero_extend() wants, and it is dealing with the 862 * pagecache. We may return multiple extents. 863 * 864 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 865 * needs to be zeroed. range_start and range_end return the next zeroing 866 * range. A subsequent call should pass the previous range_end as its 867 * zero_start. If range_end is 0, there's nothing to do. 868 * 869 * Unwritten extents are skipped over. Refcounted extents are CoWd. 870 */ 871 static int ocfs2_zero_extend_get_range(struct inode *inode, 872 struct buffer_head *di_bh, 873 u64 zero_start, u64 zero_end, 874 u64 *range_start, u64 *range_end) 875 { 876 int rc = 0, needs_cow = 0; 877 u32 p_cpos, zero_clusters = 0; 878 u32 zero_cpos = 879 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 880 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 881 unsigned int num_clusters = 0; 882 unsigned int ext_flags = 0; 883 884 while (zero_cpos < last_cpos) { 885 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 886 &num_clusters, &ext_flags); 887 if (rc) { 888 mlog_errno(rc); 889 goto out; 890 } 891 892 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 893 zero_clusters = num_clusters; 894 if (ext_flags & OCFS2_EXT_REFCOUNTED) 895 needs_cow = 1; 896 break; 897 } 898 899 zero_cpos += num_clusters; 900 } 901 if (!zero_clusters) { 902 *range_end = 0; 903 goto out; 904 } 905 906 while ((zero_cpos + zero_clusters) < last_cpos) { 907 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 908 &p_cpos, &num_clusters, 909 &ext_flags); 910 if (rc) { 911 mlog_errno(rc); 912 goto out; 913 } 914 915 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 916 break; 917 if (ext_flags & OCFS2_EXT_REFCOUNTED) 918 needs_cow = 1; 919 zero_clusters += num_clusters; 920 } 921 if ((zero_cpos + zero_clusters) > last_cpos) 922 zero_clusters = last_cpos - zero_cpos; 923 924 if (needs_cow) { 925 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 926 zero_clusters, UINT_MAX); 927 if (rc) { 928 mlog_errno(rc); 929 goto out; 930 } 931 } 932 933 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 934 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 935 zero_cpos + zero_clusters); 936 937 out: 938 return rc; 939 } 940 941 /* 942 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 943 * has made sure that the entire range needs zeroing. 944 */ 945 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 946 u64 range_end, struct buffer_head *di_bh) 947 { 948 int rc = 0; 949 u64 next_pos; 950 u64 zero_pos = range_start; 951 952 trace_ocfs2_zero_extend_range( 953 (unsigned long long)OCFS2_I(inode)->ip_blkno, 954 (unsigned long long)range_start, 955 (unsigned long long)range_end); 956 BUG_ON(range_start >= range_end); 957 958 while (zero_pos < range_end) { 959 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; 960 if (next_pos > range_end) 961 next_pos = range_end; 962 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 963 if (rc < 0) { 964 mlog_errno(rc); 965 break; 966 } 967 zero_pos = next_pos; 968 969 /* 970 * Very large extends have the potential to lock up 971 * the cpu for extended periods of time. 972 */ 973 cond_resched(); 974 } 975 976 return rc; 977 } 978 979 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 980 loff_t zero_to_size) 981 { 982 int ret = 0; 983 u64 zero_start, range_start = 0, range_end = 0; 984 struct super_block *sb = inode->i_sb; 985 986 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 987 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 988 (unsigned long long)zero_start, 989 (unsigned long long)i_size_read(inode)); 990 while (zero_start < zero_to_size) { 991 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 992 zero_to_size, 993 &range_start, 994 &range_end); 995 if (ret) { 996 mlog_errno(ret); 997 break; 998 } 999 if (!range_end) 1000 break; 1001 /* Trim the ends */ 1002 if (range_start < zero_start) 1003 range_start = zero_start; 1004 if (range_end > zero_to_size) 1005 range_end = zero_to_size; 1006 1007 ret = ocfs2_zero_extend_range(inode, range_start, 1008 range_end, di_bh); 1009 if (ret) { 1010 mlog_errno(ret); 1011 break; 1012 } 1013 zero_start = range_end; 1014 } 1015 1016 return ret; 1017 } 1018 1019 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1020 u64 new_i_size, u64 zero_to) 1021 { 1022 int ret; 1023 u32 clusters_to_add; 1024 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1025 1026 /* 1027 * Only quota files call this without a bh, and they can't be 1028 * refcounted. 1029 */ 1030 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); 1031 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1032 1033 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1034 if (clusters_to_add < oi->ip_clusters) 1035 clusters_to_add = 0; 1036 else 1037 clusters_to_add -= oi->ip_clusters; 1038 1039 if (clusters_to_add) { 1040 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, 1041 clusters_to_add, 0); 1042 if (ret) { 1043 mlog_errno(ret); 1044 goto out; 1045 } 1046 } 1047 1048 /* 1049 * Call this even if we don't add any clusters to the tree. We 1050 * still need to zero the area between the old i_size and the 1051 * new i_size. 1052 */ 1053 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1054 if (ret < 0) 1055 mlog_errno(ret); 1056 1057 out: 1058 return ret; 1059 } 1060 1061 static int ocfs2_extend_file(struct inode *inode, 1062 struct buffer_head *di_bh, 1063 u64 new_i_size) 1064 { 1065 int ret = 0; 1066 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1067 1068 BUG_ON(!di_bh); 1069 1070 /* setattr sometimes calls us like this. */ 1071 if (new_i_size == 0) 1072 goto out; 1073 1074 if (i_size_read(inode) == new_i_size) 1075 goto out; 1076 BUG_ON(new_i_size < i_size_read(inode)); 1077 1078 /* 1079 * The alloc sem blocks people in read/write from reading our 1080 * allocation until we're done changing it. We depend on 1081 * i_mutex to block other extend/truncate calls while we're 1082 * here. We even have to hold it for sparse files because there 1083 * might be some tail zeroing. 1084 */ 1085 down_write(&oi->ip_alloc_sem); 1086 1087 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1088 /* 1089 * We can optimize small extends by keeping the inodes 1090 * inline data. 1091 */ 1092 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1093 up_write(&oi->ip_alloc_sem); 1094 goto out_update_size; 1095 } 1096 1097 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1098 if (ret) { 1099 up_write(&oi->ip_alloc_sem); 1100 mlog_errno(ret); 1101 goto out; 1102 } 1103 } 1104 1105 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1106 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1107 else 1108 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1109 new_i_size); 1110 1111 up_write(&oi->ip_alloc_sem); 1112 1113 if (ret < 0) { 1114 mlog_errno(ret); 1115 goto out; 1116 } 1117 1118 out_update_size: 1119 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1120 if (ret < 0) 1121 mlog_errno(ret); 1122 1123 out: 1124 return ret; 1125 } 1126 1127 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1128 { 1129 int status = 0, size_change; 1130 struct inode *inode = d_inode(dentry); 1131 struct super_block *sb = inode->i_sb; 1132 struct ocfs2_super *osb = OCFS2_SB(sb); 1133 struct buffer_head *bh = NULL; 1134 handle_t *handle = NULL; 1135 struct dquot *transfer_to[MAXQUOTAS] = { }; 1136 int qtype; 1137 1138 trace_ocfs2_setattr(inode, dentry, 1139 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1140 dentry->d_name.len, dentry->d_name.name, 1141 attr->ia_valid, attr->ia_mode, 1142 from_kuid(&init_user_ns, attr->ia_uid), 1143 from_kgid(&init_user_ns, attr->ia_gid)); 1144 1145 /* ensuring we don't even attempt to truncate a symlink */ 1146 if (S_ISLNK(inode->i_mode)) 1147 attr->ia_valid &= ~ATTR_SIZE; 1148 1149 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1150 | ATTR_GID | ATTR_UID | ATTR_MODE) 1151 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1152 return 0; 1153 1154 status = inode_change_ok(inode, attr); 1155 if (status) 1156 return status; 1157 1158 if (is_quota_modification(inode, attr)) 1159 dquot_initialize(inode); 1160 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1161 if (size_change) { 1162 status = ocfs2_rw_lock(inode, 1); 1163 if (status < 0) { 1164 mlog_errno(status); 1165 goto bail; 1166 } 1167 } 1168 1169 status = ocfs2_inode_lock(inode, &bh, 1); 1170 if (status < 0) { 1171 if (status != -ENOENT) 1172 mlog_errno(status); 1173 goto bail_unlock_rw; 1174 } 1175 1176 if (size_change) { 1177 status = inode_newsize_ok(inode, attr->ia_size); 1178 if (status) 1179 goto bail_unlock; 1180 1181 inode_dio_wait(inode); 1182 1183 if (i_size_read(inode) >= attr->ia_size) { 1184 if (ocfs2_should_order_data(inode)) { 1185 status = ocfs2_begin_ordered_truncate(inode, 1186 attr->ia_size); 1187 if (status) 1188 goto bail_unlock; 1189 } 1190 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1191 } else 1192 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1193 if (status < 0) { 1194 if (status != -ENOSPC) 1195 mlog_errno(status); 1196 status = -ENOSPC; 1197 goto bail_unlock; 1198 } 1199 } 1200 1201 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1202 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1203 /* 1204 * Gather pointers to quota structures so that allocation / 1205 * freeing of quota structures happens here and not inside 1206 * dquot_transfer() where we have problems with lock ordering 1207 */ 1208 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1209 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1210 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1211 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1212 if (!transfer_to[USRQUOTA]) { 1213 status = -ESRCH; 1214 goto bail_unlock; 1215 } 1216 } 1217 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1218 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1219 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1220 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1221 if (!transfer_to[GRPQUOTA]) { 1222 status = -ESRCH; 1223 goto bail_unlock; 1224 } 1225 } 1226 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1227 2 * ocfs2_quota_trans_credits(sb)); 1228 if (IS_ERR(handle)) { 1229 status = PTR_ERR(handle); 1230 mlog_errno(status); 1231 goto bail_unlock; 1232 } 1233 status = __dquot_transfer(inode, transfer_to); 1234 if (status < 0) 1235 goto bail_commit; 1236 } else { 1237 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1238 if (IS_ERR(handle)) { 1239 status = PTR_ERR(handle); 1240 mlog_errno(status); 1241 goto bail_unlock; 1242 } 1243 } 1244 1245 setattr_copy(inode, attr); 1246 mark_inode_dirty(inode); 1247 1248 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1249 if (status < 0) 1250 mlog_errno(status); 1251 1252 bail_commit: 1253 ocfs2_commit_trans(osb, handle); 1254 bail_unlock: 1255 ocfs2_inode_unlock(inode, 1); 1256 bail_unlock_rw: 1257 if (size_change) 1258 ocfs2_rw_unlock(inode, 1); 1259 bail: 1260 brelse(bh); 1261 1262 /* Release quota pointers in case we acquired them */ 1263 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1264 dqput(transfer_to[qtype]); 1265 1266 if (!status && attr->ia_valid & ATTR_MODE) { 1267 status = posix_acl_chmod(inode, inode->i_mode); 1268 if (status < 0) 1269 mlog_errno(status); 1270 } 1271 1272 return status; 1273 } 1274 1275 int ocfs2_getattr(struct vfsmount *mnt, 1276 struct dentry *dentry, 1277 struct kstat *stat) 1278 { 1279 struct inode *inode = d_inode(dentry); 1280 struct super_block *sb = d_inode(dentry)->i_sb; 1281 struct ocfs2_super *osb = sb->s_fs_info; 1282 int err; 1283 1284 err = ocfs2_inode_revalidate(dentry); 1285 if (err) { 1286 if (err != -ENOENT) 1287 mlog_errno(err); 1288 goto bail; 1289 } 1290 1291 generic_fillattr(inode, stat); 1292 1293 /* We set the blksize from the cluster size for performance */ 1294 stat->blksize = osb->s_clustersize; 1295 1296 bail: 1297 return err; 1298 } 1299 1300 int ocfs2_permission(struct inode *inode, int mask) 1301 { 1302 int ret; 1303 1304 if (mask & MAY_NOT_BLOCK) 1305 return -ECHILD; 1306 1307 ret = ocfs2_inode_lock(inode, NULL, 0); 1308 if (ret) { 1309 if (ret != -ENOENT) 1310 mlog_errno(ret); 1311 goto out; 1312 } 1313 1314 ret = generic_permission(inode, mask); 1315 1316 ocfs2_inode_unlock(inode, 0); 1317 out: 1318 return ret; 1319 } 1320 1321 static int __ocfs2_write_remove_suid(struct inode *inode, 1322 struct buffer_head *bh) 1323 { 1324 int ret; 1325 handle_t *handle; 1326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1327 struct ocfs2_dinode *di; 1328 1329 trace_ocfs2_write_remove_suid( 1330 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1331 inode->i_mode); 1332 1333 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1334 if (IS_ERR(handle)) { 1335 ret = PTR_ERR(handle); 1336 mlog_errno(ret); 1337 goto out; 1338 } 1339 1340 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1341 OCFS2_JOURNAL_ACCESS_WRITE); 1342 if (ret < 0) { 1343 mlog_errno(ret); 1344 goto out_trans; 1345 } 1346 1347 inode->i_mode &= ~S_ISUID; 1348 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1349 inode->i_mode &= ~S_ISGID; 1350 1351 di = (struct ocfs2_dinode *) bh->b_data; 1352 di->i_mode = cpu_to_le16(inode->i_mode); 1353 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1354 1355 ocfs2_journal_dirty(handle, bh); 1356 1357 out_trans: 1358 ocfs2_commit_trans(osb, handle); 1359 out: 1360 return ret; 1361 } 1362 1363 /* 1364 * Will look for holes and unwritten extents in the range starting at 1365 * pos for count bytes (inclusive). 1366 */ 1367 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, 1368 size_t count) 1369 { 1370 int ret = 0; 1371 unsigned int extent_flags; 1372 u32 cpos, clusters, extent_len, phys_cpos; 1373 struct super_block *sb = inode->i_sb; 1374 1375 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 1376 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 1377 1378 while (clusters) { 1379 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 1380 &extent_flags); 1381 if (ret < 0) { 1382 mlog_errno(ret); 1383 goto out; 1384 } 1385 1386 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { 1387 ret = 1; 1388 break; 1389 } 1390 1391 if (extent_len > clusters) 1392 extent_len = clusters; 1393 1394 clusters -= extent_len; 1395 cpos += extent_len; 1396 } 1397 out: 1398 return ret; 1399 } 1400 1401 static int ocfs2_write_remove_suid(struct inode *inode) 1402 { 1403 int ret; 1404 struct buffer_head *bh = NULL; 1405 1406 ret = ocfs2_read_inode_block(inode, &bh); 1407 if (ret < 0) { 1408 mlog_errno(ret); 1409 goto out; 1410 } 1411 1412 ret = __ocfs2_write_remove_suid(inode, bh); 1413 out: 1414 brelse(bh); 1415 return ret; 1416 } 1417 1418 /* 1419 * Allocate enough extents to cover the region starting at byte offset 1420 * start for len bytes. Existing extents are skipped, any extents 1421 * added are marked as "unwritten". 1422 */ 1423 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1424 u64 start, u64 len) 1425 { 1426 int ret; 1427 u32 cpos, phys_cpos, clusters, alloc_size; 1428 u64 end = start + len; 1429 struct buffer_head *di_bh = NULL; 1430 1431 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1432 ret = ocfs2_read_inode_block(inode, &di_bh); 1433 if (ret) { 1434 mlog_errno(ret); 1435 goto out; 1436 } 1437 1438 /* 1439 * Nothing to do if the requested reservation range 1440 * fits within the inode. 1441 */ 1442 if (ocfs2_size_fits_inline_data(di_bh, end)) 1443 goto out; 1444 1445 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1446 if (ret) { 1447 mlog_errno(ret); 1448 goto out; 1449 } 1450 } 1451 1452 /* 1453 * We consider both start and len to be inclusive. 1454 */ 1455 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1456 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1457 clusters -= cpos; 1458 1459 while (clusters) { 1460 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1461 &alloc_size, NULL); 1462 if (ret) { 1463 mlog_errno(ret); 1464 goto out; 1465 } 1466 1467 /* 1468 * Hole or existing extent len can be arbitrary, so 1469 * cap it to our own allocation request. 1470 */ 1471 if (alloc_size > clusters) 1472 alloc_size = clusters; 1473 1474 if (phys_cpos) { 1475 /* 1476 * We already have an allocation at this 1477 * region so we can safely skip it. 1478 */ 1479 goto next; 1480 } 1481 1482 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1483 if (ret) { 1484 if (ret != -ENOSPC) 1485 mlog_errno(ret); 1486 goto out; 1487 } 1488 1489 next: 1490 cpos += alloc_size; 1491 clusters -= alloc_size; 1492 } 1493 1494 ret = 0; 1495 out: 1496 1497 brelse(di_bh); 1498 return ret; 1499 } 1500 1501 /* 1502 * Truncate a byte range, avoiding pages within partial clusters. This 1503 * preserves those pages for the zeroing code to write to. 1504 */ 1505 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1506 u64 byte_len) 1507 { 1508 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1509 loff_t start, end; 1510 struct address_space *mapping = inode->i_mapping; 1511 1512 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1513 end = byte_start + byte_len; 1514 end = end & ~(osb->s_clustersize - 1); 1515 1516 if (start < end) { 1517 unmap_mapping_range(mapping, start, end - start, 0); 1518 truncate_inode_pages_range(mapping, start, end - 1); 1519 } 1520 } 1521 1522 static int ocfs2_zero_partial_clusters(struct inode *inode, 1523 u64 start, u64 len) 1524 { 1525 int ret = 0; 1526 u64 tmpend, end = start + len; 1527 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1528 unsigned int csize = osb->s_clustersize; 1529 handle_t *handle; 1530 1531 /* 1532 * The "start" and "end" values are NOT necessarily part of 1533 * the range whose allocation is being deleted. Rather, this 1534 * is what the user passed in with the request. We must zero 1535 * partial clusters here. There's no need to worry about 1536 * physical allocation - the zeroing code knows to skip holes. 1537 */ 1538 trace_ocfs2_zero_partial_clusters( 1539 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1540 (unsigned long long)start, (unsigned long long)end); 1541 1542 /* 1543 * If both edges are on a cluster boundary then there's no 1544 * zeroing required as the region is part of the allocation to 1545 * be truncated. 1546 */ 1547 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1548 goto out; 1549 1550 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1551 if (IS_ERR(handle)) { 1552 ret = PTR_ERR(handle); 1553 mlog_errno(ret); 1554 goto out; 1555 } 1556 1557 /* 1558 * We want to get the byte offset of the end of the 1st cluster. 1559 */ 1560 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); 1561 if (tmpend > end) 1562 tmpend = end; 1563 1564 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start, 1565 (unsigned long long)tmpend); 1566 1567 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); 1568 if (ret) 1569 mlog_errno(ret); 1570 1571 if (tmpend < end) { 1572 /* 1573 * This may make start and end equal, but the zeroing 1574 * code will skip any work in that case so there's no 1575 * need to catch it up here. 1576 */ 1577 start = end & ~(osb->s_clustersize - 1); 1578 1579 trace_ocfs2_zero_partial_clusters_range2( 1580 (unsigned long long)start, (unsigned long long)end); 1581 1582 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1583 if (ret) 1584 mlog_errno(ret); 1585 } 1586 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1587 1588 ocfs2_commit_trans(osb, handle); 1589 out: 1590 return ret; 1591 } 1592 1593 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1594 { 1595 int i; 1596 struct ocfs2_extent_rec *rec = NULL; 1597 1598 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1599 1600 rec = &el->l_recs[i]; 1601 1602 if (le32_to_cpu(rec->e_cpos) < pos) 1603 break; 1604 } 1605 1606 return i; 1607 } 1608 1609 /* 1610 * Helper to calculate the punching pos and length in one run, we handle the 1611 * following three cases in order: 1612 * 1613 * - remove the entire record 1614 * - remove a partial record 1615 * - no record needs to be removed (hole-punching completed) 1616 */ 1617 static void ocfs2_calc_trunc_pos(struct inode *inode, 1618 struct ocfs2_extent_list *el, 1619 struct ocfs2_extent_rec *rec, 1620 u32 trunc_start, u32 *trunc_cpos, 1621 u32 *trunc_len, u32 *trunc_end, 1622 u64 *blkno, int *done) 1623 { 1624 int ret = 0; 1625 u32 coff, range; 1626 1627 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1628 1629 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1630 /* 1631 * remove an entire extent record. 1632 */ 1633 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1634 /* 1635 * Skip holes if any. 1636 */ 1637 if (range < *trunc_end) 1638 *trunc_end = range; 1639 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1640 *blkno = le64_to_cpu(rec->e_blkno); 1641 *trunc_end = le32_to_cpu(rec->e_cpos); 1642 } else if (range > trunc_start) { 1643 /* 1644 * remove a partial extent record, which means we're 1645 * removing the last extent record. 1646 */ 1647 *trunc_cpos = trunc_start; 1648 /* 1649 * skip hole if any. 1650 */ 1651 if (range < *trunc_end) 1652 *trunc_end = range; 1653 *trunc_len = *trunc_end - trunc_start; 1654 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1655 *blkno = le64_to_cpu(rec->e_blkno) + 1656 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1657 *trunc_end = trunc_start; 1658 } else { 1659 /* 1660 * It may have two following possibilities: 1661 * 1662 * - last record has been removed 1663 * - trunc_start was within a hole 1664 * 1665 * both two cases mean the completion of hole punching. 1666 */ 1667 ret = 1; 1668 } 1669 1670 *done = ret; 1671 } 1672 1673 static int ocfs2_remove_inode_range(struct inode *inode, 1674 struct buffer_head *di_bh, u64 byte_start, 1675 u64 byte_len) 1676 { 1677 int ret = 0, flags = 0, done = 0, i; 1678 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1679 u32 cluster_in_el; 1680 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1681 struct ocfs2_cached_dealloc_ctxt dealloc; 1682 struct address_space *mapping = inode->i_mapping; 1683 struct ocfs2_extent_tree et; 1684 struct ocfs2_path *path = NULL; 1685 struct ocfs2_extent_list *el = NULL; 1686 struct ocfs2_extent_rec *rec = NULL; 1687 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1688 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1689 1690 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1691 ocfs2_init_dealloc_ctxt(&dealloc); 1692 1693 trace_ocfs2_remove_inode_range( 1694 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1695 (unsigned long long)byte_start, 1696 (unsigned long long)byte_len); 1697 1698 if (byte_len == 0) 1699 return 0; 1700 1701 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1702 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1703 byte_start + byte_len, 0); 1704 if (ret) { 1705 mlog_errno(ret); 1706 goto out; 1707 } 1708 /* 1709 * There's no need to get fancy with the page cache 1710 * truncate of an inline-data inode. We're talking 1711 * about less than a page here, which will be cached 1712 * in the dinode buffer anyway. 1713 */ 1714 unmap_mapping_range(mapping, 0, 0, 0); 1715 truncate_inode_pages(mapping, 0); 1716 goto out; 1717 } 1718 1719 /* 1720 * For reflinks, we may need to CoW 2 clusters which might be 1721 * partially zero'd later, if hole's start and end offset were 1722 * within one cluster(means is not exactly aligned to clustersize). 1723 */ 1724 1725 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { 1726 1727 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1728 if (ret) { 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 1733 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1734 if (ret) { 1735 mlog_errno(ret); 1736 goto out; 1737 } 1738 } 1739 1740 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1741 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1742 cluster_in_el = trunc_end; 1743 1744 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1745 if (ret) { 1746 mlog_errno(ret); 1747 goto out; 1748 } 1749 1750 path = ocfs2_new_path_from_et(&et); 1751 if (!path) { 1752 ret = -ENOMEM; 1753 mlog_errno(ret); 1754 goto out; 1755 } 1756 1757 while (trunc_end > trunc_start) { 1758 1759 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1760 cluster_in_el); 1761 if (ret) { 1762 mlog_errno(ret); 1763 goto out; 1764 } 1765 1766 el = path_leaf_el(path); 1767 1768 i = ocfs2_find_rec(el, trunc_end); 1769 /* 1770 * Need to go to previous extent block. 1771 */ 1772 if (i < 0) { 1773 if (path->p_tree_depth == 0) 1774 break; 1775 1776 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1777 path, 1778 &cluster_in_el); 1779 if (ret) { 1780 mlog_errno(ret); 1781 goto out; 1782 } 1783 1784 /* 1785 * We've reached the leftmost extent block, 1786 * it's safe to leave. 1787 */ 1788 if (cluster_in_el == 0) 1789 break; 1790 1791 /* 1792 * The 'pos' searched for previous extent block is 1793 * always one cluster less than actual trunc_end. 1794 */ 1795 trunc_end = cluster_in_el + 1; 1796 1797 ocfs2_reinit_path(path, 1); 1798 1799 continue; 1800 1801 } else 1802 rec = &el->l_recs[i]; 1803 1804 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1805 &trunc_len, &trunc_end, &blkno, &done); 1806 if (done) 1807 break; 1808 1809 flags = rec->e_flags; 1810 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1811 1812 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1813 phys_cpos, trunc_len, flags, 1814 &dealloc, refcount_loc, false); 1815 if (ret < 0) { 1816 mlog_errno(ret); 1817 goto out; 1818 } 1819 1820 cluster_in_el = trunc_end; 1821 1822 ocfs2_reinit_path(path, 1); 1823 } 1824 1825 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1826 1827 out: 1828 ocfs2_free_path(path); 1829 ocfs2_schedule_truncate_log_flush(osb, 1); 1830 ocfs2_run_deallocs(osb, &dealloc); 1831 1832 return ret; 1833 } 1834 1835 /* 1836 * Parts of this function taken from xfs_change_file_space() 1837 */ 1838 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1839 loff_t f_pos, unsigned int cmd, 1840 struct ocfs2_space_resv *sr, 1841 int change_size) 1842 { 1843 int ret; 1844 s64 llen; 1845 loff_t size; 1846 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1847 struct buffer_head *di_bh = NULL; 1848 handle_t *handle; 1849 unsigned long long max_off = inode->i_sb->s_maxbytes; 1850 1851 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1852 return -EROFS; 1853 1854 mutex_lock(&inode->i_mutex); 1855 1856 /* 1857 * This prevents concurrent writes on other nodes 1858 */ 1859 ret = ocfs2_rw_lock(inode, 1); 1860 if (ret) { 1861 mlog_errno(ret); 1862 goto out; 1863 } 1864 1865 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1866 if (ret) { 1867 mlog_errno(ret); 1868 goto out_rw_unlock; 1869 } 1870 1871 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1872 ret = -EPERM; 1873 goto out_inode_unlock; 1874 } 1875 1876 switch (sr->l_whence) { 1877 case 0: /*SEEK_SET*/ 1878 break; 1879 case 1: /*SEEK_CUR*/ 1880 sr->l_start += f_pos; 1881 break; 1882 case 2: /*SEEK_END*/ 1883 sr->l_start += i_size_read(inode); 1884 break; 1885 default: 1886 ret = -EINVAL; 1887 goto out_inode_unlock; 1888 } 1889 sr->l_whence = 0; 1890 1891 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1892 1893 if (sr->l_start < 0 1894 || sr->l_start > max_off 1895 || (sr->l_start + llen) < 0 1896 || (sr->l_start + llen) > max_off) { 1897 ret = -EINVAL; 1898 goto out_inode_unlock; 1899 } 1900 size = sr->l_start + sr->l_len; 1901 1902 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1903 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1904 if (sr->l_len <= 0) { 1905 ret = -EINVAL; 1906 goto out_inode_unlock; 1907 } 1908 } 1909 1910 if (file && should_remove_suid(file->f_path.dentry)) { 1911 ret = __ocfs2_write_remove_suid(inode, di_bh); 1912 if (ret) { 1913 mlog_errno(ret); 1914 goto out_inode_unlock; 1915 } 1916 } 1917 1918 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1919 switch (cmd) { 1920 case OCFS2_IOC_RESVSP: 1921 case OCFS2_IOC_RESVSP64: 1922 /* 1923 * This takes unsigned offsets, but the signed ones we 1924 * pass have been checked against overflow above. 1925 */ 1926 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1927 sr->l_len); 1928 break; 1929 case OCFS2_IOC_UNRESVSP: 1930 case OCFS2_IOC_UNRESVSP64: 1931 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1932 sr->l_len); 1933 break; 1934 default: 1935 ret = -EINVAL; 1936 } 1937 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1938 if (ret) { 1939 mlog_errno(ret); 1940 goto out_inode_unlock; 1941 } 1942 1943 /* 1944 * We update c/mtime for these changes 1945 */ 1946 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1947 if (IS_ERR(handle)) { 1948 ret = PTR_ERR(handle); 1949 mlog_errno(ret); 1950 goto out_inode_unlock; 1951 } 1952 1953 if (change_size && i_size_read(inode) < size) 1954 i_size_write(inode, size); 1955 1956 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1957 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1958 if (ret < 0) 1959 mlog_errno(ret); 1960 1961 if (file && (file->f_flags & O_SYNC)) 1962 handle->h_sync = 1; 1963 1964 ocfs2_commit_trans(osb, handle); 1965 1966 out_inode_unlock: 1967 brelse(di_bh); 1968 ocfs2_inode_unlock(inode, 1); 1969 out_rw_unlock: 1970 ocfs2_rw_unlock(inode, 1); 1971 1972 out: 1973 mutex_unlock(&inode->i_mutex); 1974 return ret; 1975 } 1976 1977 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1978 struct ocfs2_space_resv *sr) 1979 { 1980 struct inode *inode = file_inode(file); 1981 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1982 int ret; 1983 1984 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 1985 !ocfs2_writes_unwritten_extents(osb)) 1986 return -ENOTTY; 1987 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 1988 !ocfs2_sparse_alloc(osb)) 1989 return -ENOTTY; 1990 1991 if (!S_ISREG(inode->i_mode)) 1992 return -EINVAL; 1993 1994 if (!(file->f_mode & FMODE_WRITE)) 1995 return -EBADF; 1996 1997 ret = mnt_want_write_file(file); 1998 if (ret) 1999 return ret; 2000 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2001 mnt_drop_write_file(file); 2002 return ret; 2003 } 2004 2005 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2006 loff_t len) 2007 { 2008 struct inode *inode = file_inode(file); 2009 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2010 struct ocfs2_space_resv sr; 2011 int change_size = 1; 2012 int cmd = OCFS2_IOC_RESVSP64; 2013 2014 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2015 return -EOPNOTSUPP; 2016 if (!ocfs2_writes_unwritten_extents(osb)) 2017 return -EOPNOTSUPP; 2018 2019 if (mode & FALLOC_FL_KEEP_SIZE) 2020 change_size = 0; 2021 2022 if (mode & FALLOC_FL_PUNCH_HOLE) 2023 cmd = OCFS2_IOC_UNRESVSP64; 2024 2025 sr.l_whence = 0; 2026 sr.l_start = (s64)offset; 2027 sr.l_len = (s64)len; 2028 2029 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2030 change_size); 2031 } 2032 2033 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2034 size_t count) 2035 { 2036 int ret = 0; 2037 unsigned int extent_flags; 2038 u32 cpos, clusters, extent_len, phys_cpos; 2039 struct super_block *sb = inode->i_sb; 2040 2041 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2042 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || 2043 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2044 return 0; 2045 2046 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2047 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2048 2049 while (clusters) { 2050 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2051 &extent_flags); 2052 if (ret < 0) { 2053 mlog_errno(ret); 2054 goto out; 2055 } 2056 2057 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2058 ret = 1; 2059 break; 2060 } 2061 2062 if (extent_len > clusters) 2063 extent_len = clusters; 2064 2065 clusters -= extent_len; 2066 cpos += extent_len; 2067 } 2068 out: 2069 return ret; 2070 } 2071 2072 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2073 { 2074 int blockmask = inode->i_sb->s_blocksize - 1; 2075 loff_t final_size = pos + count; 2076 2077 if ((pos & blockmask) || (final_size & blockmask)) 2078 return 1; 2079 return 0; 2080 } 2081 2082 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2083 struct file *file, 2084 loff_t pos, size_t count, 2085 int *meta_level) 2086 { 2087 int ret; 2088 struct buffer_head *di_bh = NULL; 2089 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2090 u32 clusters = 2091 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2092 2093 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2094 if (ret) { 2095 mlog_errno(ret); 2096 goto out; 2097 } 2098 2099 *meta_level = 1; 2100 2101 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2102 if (ret) 2103 mlog_errno(ret); 2104 out: 2105 brelse(di_bh); 2106 return ret; 2107 } 2108 2109 static int ocfs2_prepare_inode_for_write(struct file *file, 2110 loff_t pos, 2111 size_t count, 2112 int appending, 2113 int *direct_io, 2114 int *has_refcount) 2115 { 2116 int ret = 0, meta_level = 0; 2117 struct dentry *dentry = file->f_path.dentry; 2118 struct inode *inode = d_inode(dentry); 2119 loff_t end; 2120 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2121 int full_coherency = !(osb->s_mount_opt & 2122 OCFS2_MOUNT_COHERENCY_BUFFERED); 2123 2124 /* 2125 * We start with a read level meta lock and only jump to an ex 2126 * if we need to make modifications here. 2127 */ 2128 for(;;) { 2129 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2130 if (ret < 0) { 2131 meta_level = -1; 2132 mlog_errno(ret); 2133 goto out; 2134 } 2135 2136 /* Clear suid / sgid if necessary. We do this here 2137 * instead of later in the write path because 2138 * remove_suid() calls ->setattr without any hint that 2139 * we may have already done our cluster locking. Since 2140 * ocfs2_setattr() *must* take cluster locks to 2141 * proceed, this will lead us to recursively lock the 2142 * inode. There's also the dinode i_size state which 2143 * can be lost via setattr during extending writes (we 2144 * set inode->i_size at the end of a write. */ 2145 if (should_remove_suid(dentry)) { 2146 if (meta_level == 0) { 2147 ocfs2_inode_unlock(inode, meta_level); 2148 meta_level = 1; 2149 continue; 2150 } 2151 2152 ret = ocfs2_write_remove_suid(inode); 2153 if (ret < 0) { 2154 mlog_errno(ret); 2155 goto out_unlock; 2156 } 2157 } 2158 2159 end = pos + count; 2160 2161 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2162 if (ret == 1) { 2163 ocfs2_inode_unlock(inode, meta_level); 2164 meta_level = -1; 2165 2166 ret = ocfs2_prepare_inode_for_refcount(inode, 2167 file, 2168 pos, 2169 count, 2170 &meta_level); 2171 if (has_refcount) 2172 *has_refcount = 1; 2173 if (direct_io) 2174 *direct_io = 0; 2175 } 2176 2177 if (ret < 0) { 2178 mlog_errno(ret); 2179 goto out_unlock; 2180 } 2181 2182 /* 2183 * Skip the O_DIRECT checks if we don't need 2184 * them. 2185 */ 2186 if (!direct_io || !(*direct_io)) 2187 break; 2188 2189 /* 2190 * There's no sane way to do direct writes to an inode 2191 * with inline data. 2192 */ 2193 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2194 *direct_io = 0; 2195 break; 2196 } 2197 2198 /* 2199 * Allowing concurrent direct writes means 2200 * i_size changes wouldn't be synchronized, so 2201 * one node could wind up truncating another 2202 * nodes writes. 2203 */ 2204 if (end > i_size_read(inode) && !full_coherency) { 2205 *direct_io = 0; 2206 break; 2207 } 2208 2209 /* 2210 * Fallback to old way if the feature bit is not set. 2211 */ 2212 if (end > i_size_read(inode) && 2213 !ocfs2_supports_append_dio(osb)) { 2214 *direct_io = 0; 2215 break; 2216 } 2217 2218 /* 2219 * We don't fill holes during direct io, so 2220 * check for them here. If any are found, the 2221 * caller will have to retake some cluster 2222 * locks and initiate the io as buffered. 2223 */ 2224 ret = ocfs2_check_range_for_holes(inode, pos, count); 2225 if (ret == 1) { 2226 /* 2227 * Fallback to old way if the feature bit is not set. 2228 * Otherwise try dio first and then complete the rest 2229 * request through buffer io. 2230 */ 2231 if (!ocfs2_supports_append_dio(osb)) 2232 *direct_io = 0; 2233 ret = 0; 2234 } else if (ret < 0) 2235 mlog_errno(ret); 2236 break; 2237 } 2238 2239 out_unlock: 2240 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2241 pos, appending, count, 2242 direct_io, has_refcount); 2243 2244 if (meta_level >= 0) 2245 ocfs2_inode_unlock(inode, meta_level); 2246 2247 out: 2248 return ret; 2249 } 2250 2251 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2252 struct iov_iter *from) 2253 { 2254 int direct_io, appending, rw_level; 2255 int can_do_direct, has_refcount = 0; 2256 ssize_t written = 0; 2257 ssize_t ret; 2258 size_t count = iov_iter_count(from), orig_count; 2259 loff_t old_size; 2260 u32 old_clusters; 2261 struct file *file = iocb->ki_filp; 2262 struct inode *inode = file_inode(file); 2263 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2264 int full_coherency = !(osb->s_mount_opt & 2265 OCFS2_MOUNT_COHERENCY_BUFFERED); 2266 int unaligned_dio = 0; 2267 int dropped_dio = 0; 2268 2269 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry, 2270 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2271 file->f_path.dentry->d_name.len, 2272 file->f_path.dentry->d_name.name, 2273 (unsigned int)from->nr_segs); /* GRRRRR */ 2274 2275 if (count == 0) 2276 return 0; 2277 2278 appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0; 2279 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2280 2281 mutex_lock(&inode->i_mutex); 2282 2283 relock: 2284 /* 2285 * Concurrent O_DIRECT writes are allowed with 2286 * mount_option "coherency=buffered". 2287 */ 2288 rw_level = (!direct_io || full_coherency); 2289 2290 ret = ocfs2_rw_lock(inode, rw_level); 2291 if (ret < 0) { 2292 mlog_errno(ret); 2293 goto out_mutex; 2294 } 2295 2296 /* 2297 * O_DIRECT writes with "coherency=full" need to take EX cluster 2298 * inode_lock to guarantee coherency. 2299 */ 2300 if (direct_io && full_coherency) { 2301 /* 2302 * We need to take and drop the inode lock to force 2303 * other nodes to drop their caches. Buffered I/O 2304 * already does this in write_begin(). 2305 */ 2306 ret = ocfs2_inode_lock(inode, NULL, 1); 2307 if (ret < 0) { 2308 mlog_errno(ret); 2309 goto out; 2310 } 2311 2312 ocfs2_inode_unlock(inode, 1); 2313 } 2314 2315 orig_count = iov_iter_count(from); 2316 ret = generic_write_checks(iocb, from); 2317 if (ret <= 0) { 2318 if (ret) 2319 mlog_errno(ret); 2320 goto out; 2321 } 2322 count = ret; 2323 2324 can_do_direct = direct_io; 2325 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending, 2326 &can_do_direct, &has_refcount); 2327 if (ret < 0) { 2328 mlog_errno(ret); 2329 goto out; 2330 } 2331 2332 if (direct_io && !is_sync_kiocb(iocb)) 2333 unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos); 2334 2335 /* 2336 * We can't complete the direct I/O as requested, fall back to 2337 * buffered I/O. 2338 */ 2339 if (direct_io && !can_do_direct) { 2340 ocfs2_rw_unlock(inode, rw_level); 2341 2342 rw_level = -1; 2343 2344 direct_io = 0; 2345 iocb->ki_flags &= ~IOCB_DIRECT; 2346 iov_iter_reexpand(from, orig_count); 2347 dropped_dio = 1; 2348 goto relock; 2349 } 2350 2351 if (unaligned_dio) { 2352 /* 2353 * Wait on previous unaligned aio to complete before 2354 * proceeding. 2355 */ 2356 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio); 2357 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */ 2358 ocfs2_iocb_set_unaligned_aio(iocb); 2359 } 2360 2361 /* 2362 * To later detect whether a journal commit for sync writes is 2363 * necessary, we sample i_size, and cluster count here. 2364 */ 2365 old_size = i_size_read(inode); 2366 old_clusters = OCFS2_I(inode)->ip_clusters; 2367 2368 /* communicate with ocfs2_dio_end_io */ 2369 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2370 2371 written = __generic_file_write_iter(iocb, from); 2372 /* buffered aio wouldn't have proper lock coverage today */ 2373 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT)); 2374 2375 if (unlikely(written <= 0)) 2376 goto no_sync; 2377 2378 if (((file->f_flags & O_DSYNC) && !direct_io) || 2379 IS_SYNC(inode) || dropped_dio) { 2380 ret = filemap_fdatawrite_range(file->f_mapping, 2381 iocb->ki_pos - written, 2382 iocb->ki_pos - 1); 2383 if (ret < 0) 2384 written = ret; 2385 2386 if (!ret) { 2387 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2388 if (ret < 0) 2389 written = ret; 2390 } 2391 2392 if (!ret) 2393 ret = filemap_fdatawait_range(file->f_mapping, 2394 iocb->ki_pos - written, 2395 iocb->ki_pos - 1); 2396 } 2397 2398 no_sync: 2399 /* 2400 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2401 * function pointer which is called when o_direct io completes so that 2402 * it can unlock our rw lock. 2403 * Unfortunately there are error cases which call end_io and others 2404 * that don't. so we don't have to unlock the rw_lock if either an 2405 * async dio is going to do it in the future or an end_io after an 2406 * error has already done it. 2407 */ 2408 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2409 rw_level = -1; 2410 unaligned_dio = 0; 2411 } 2412 2413 if (unaligned_dio) { 2414 ocfs2_iocb_clear_unaligned_aio(iocb); 2415 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 2416 } 2417 2418 out: 2419 if (rw_level != -1) 2420 ocfs2_rw_unlock(inode, rw_level); 2421 2422 out_mutex: 2423 mutex_unlock(&inode->i_mutex); 2424 2425 if (written) 2426 ret = written; 2427 return ret; 2428 } 2429 2430 static ssize_t ocfs2_file_splice_read(struct file *in, 2431 loff_t *ppos, 2432 struct pipe_inode_info *pipe, 2433 size_t len, 2434 unsigned int flags) 2435 { 2436 int ret = 0, lock_level = 0; 2437 struct inode *inode = file_inode(in); 2438 2439 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry, 2440 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2441 in->f_path.dentry->d_name.len, 2442 in->f_path.dentry->d_name.name, len); 2443 2444 /* 2445 * See the comment in ocfs2_file_read_iter() 2446 */ 2447 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level); 2448 if (ret < 0) { 2449 mlog_errno(ret); 2450 goto bail; 2451 } 2452 ocfs2_inode_unlock(inode, lock_level); 2453 2454 ret = generic_file_splice_read(in, ppos, pipe, len, flags); 2455 2456 bail: 2457 return ret; 2458 } 2459 2460 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2461 struct iov_iter *to) 2462 { 2463 int ret = 0, rw_level = -1, lock_level = 0; 2464 struct file *filp = iocb->ki_filp; 2465 struct inode *inode = file_inode(filp); 2466 2467 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry, 2468 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2469 filp->f_path.dentry->d_name.len, 2470 filp->f_path.dentry->d_name.name, 2471 to->nr_segs); /* GRRRRR */ 2472 2473 2474 if (!inode) { 2475 ret = -EINVAL; 2476 mlog_errno(ret); 2477 goto bail; 2478 } 2479 2480 /* 2481 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2482 * need locks to protect pending reads from racing with truncate. 2483 */ 2484 if (iocb->ki_flags & IOCB_DIRECT) { 2485 ret = ocfs2_rw_lock(inode, 0); 2486 if (ret < 0) { 2487 mlog_errno(ret); 2488 goto bail; 2489 } 2490 rw_level = 0; 2491 /* communicate with ocfs2_dio_end_io */ 2492 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2493 } 2494 2495 /* 2496 * We're fine letting folks race truncates and extending 2497 * writes with read across the cluster, just like they can 2498 * locally. Hence no rw_lock during read. 2499 * 2500 * Take and drop the meta data lock to update inode fields 2501 * like i_size. This allows the checks down below 2502 * generic_file_aio_read() a chance of actually working. 2503 */ 2504 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level); 2505 if (ret < 0) { 2506 mlog_errno(ret); 2507 goto bail; 2508 } 2509 ocfs2_inode_unlock(inode, lock_level); 2510 2511 ret = generic_file_read_iter(iocb, to); 2512 trace_generic_file_aio_read_ret(ret); 2513 2514 /* buffered aio wouldn't have proper lock coverage today */ 2515 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT)); 2516 2517 /* see ocfs2_file_write_iter */ 2518 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2519 rw_level = -1; 2520 } 2521 2522 bail: 2523 if (rw_level != -1) 2524 ocfs2_rw_unlock(inode, rw_level); 2525 2526 return ret; 2527 } 2528 2529 /* Refer generic_file_llseek_unlocked() */ 2530 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2531 { 2532 struct inode *inode = file->f_mapping->host; 2533 int ret = 0; 2534 2535 mutex_lock(&inode->i_mutex); 2536 2537 switch (whence) { 2538 case SEEK_SET: 2539 break; 2540 case SEEK_END: 2541 /* SEEK_END requires the OCFS2 inode lock for the file 2542 * because it references the file's size. 2543 */ 2544 ret = ocfs2_inode_lock(inode, NULL, 0); 2545 if (ret < 0) { 2546 mlog_errno(ret); 2547 goto out; 2548 } 2549 offset += i_size_read(inode); 2550 ocfs2_inode_unlock(inode, 0); 2551 break; 2552 case SEEK_CUR: 2553 if (offset == 0) { 2554 offset = file->f_pos; 2555 goto out; 2556 } 2557 offset += file->f_pos; 2558 break; 2559 case SEEK_DATA: 2560 case SEEK_HOLE: 2561 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2562 if (ret) 2563 goto out; 2564 break; 2565 default: 2566 ret = -EINVAL; 2567 goto out; 2568 } 2569 2570 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2571 2572 out: 2573 mutex_unlock(&inode->i_mutex); 2574 if (ret) 2575 return ret; 2576 return offset; 2577 } 2578 2579 const struct inode_operations ocfs2_file_iops = { 2580 .setattr = ocfs2_setattr, 2581 .getattr = ocfs2_getattr, 2582 .permission = ocfs2_permission, 2583 .setxattr = generic_setxattr, 2584 .getxattr = generic_getxattr, 2585 .listxattr = ocfs2_listxattr, 2586 .removexattr = generic_removexattr, 2587 .fiemap = ocfs2_fiemap, 2588 .get_acl = ocfs2_iop_get_acl, 2589 .set_acl = ocfs2_iop_set_acl, 2590 }; 2591 2592 const struct inode_operations ocfs2_special_file_iops = { 2593 .setattr = ocfs2_setattr, 2594 .getattr = ocfs2_getattr, 2595 .permission = ocfs2_permission, 2596 .get_acl = ocfs2_iop_get_acl, 2597 .set_acl = ocfs2_iop_set_acl, 2598 }; 2599 2600 /* 2601 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2602 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2603 */ 2604 const struct file_operations ocfs2_fops = { 2605 .llseek = ocfs2_file_llseek, 2606 .mmap = ocfs2_mmap, 2607 .fsync = ocfs2_sync_file, 2608 .release = ocfs2_file_release, 2609 .open = ocfs2_file_open, 2610 .read_iter = ocfs2_file_read_iter, 2611 .write_iter = ocfs2_file_write_iter, 2612 .unlocked_ioctl = ocfs2_ioctl, 2613 #ifdef CONFIG_COMPAT 2614 .compat_ioctl = ocfs2_compat_ioctl, 2615 #endif 2616 .lock = ocfs2_lock, 2617 .flock = ocfs2_flock, 2618 .splice_read = ocfs2_file_splice_read, 2619 .splice_write = iter_file_splice_write, 2620 .fallocate = ocfs2_fallocate, 2621 }; 2622 2623 const struct file_operations ocfs2_dops = { 2624 .llseek = generic_file_llseek, 2625 .read = generic_read_dir, 2626 .iterate = ocfs2_readdir, 2627 .fsync = ocfs2_sync_file, 2628 .release = ocfs2_dir_release, 2629 .open = ocfs2_dir_open, 2630 .unlocked_ioctl = ocfs2_ioctl, 2631 #ifdef CONFIG_COMPAT 2632 .compat_ioctl = ocfs2_compat_ioctl, 2633 #endif 2634 .lock = ocfs2_lock, 2635 .flock = ocfs2_flock, 2636 }; 2637 2638 /* 2639 * POSIX-lockless variants of our file_operations. 2640 * 2641 * These will be used if the underlying cluster stack does not support 2642 * posix file locking, if the user passes the "localflocks" mount 2643 * option, or if we have a local-only fs. 2644 * 2645 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2646 * so we still want it in the case of no stack support for 2647 * plocks. Internally, it will do the right thing when asked to ignore 2648 * the cluster. 2649 */ 2650 const struct file_operations ocfs2_fops_no_plocks = { 2651 .llseek = ocfs2_file_llseek, 2652 .mmap = ocfs2_mmap, 2653 .fsync = ocfs2_sync_file, 2654 .release = ocfs2_file_release, 2655 .open = ocfs2_file_open, 2656 .read_iter = ocfs2_file_read_iter, 2657 .write_iter = ocfs2_file_write_iter, 2658 .unlocked_ioctl = ocfs2_ioctl, 2659 #ifdef CONFIG_COMPAT 2660 .compat_ioctl = ocfs2_compat_ioctl, 2661 #endif 2662 .flock = ocfs2_flock, 2663 .splice_read = ocfs2_file_splice_read, 2664 .splice_write = iter_file_splice_write, 2665 .fallocate = ocfs2_fallocate, 2666 }; 2667 2668 const struct file_operations ocfs2_dops_no_plocks = { 2669 .llseek = generic_file_llseek, 2670 .read = generic_read_dir, 2671 .iterate = ocfs2_readdir, 2672 .fsync = ocfs2_sync_file, 2673 .release = ocfs2_dir_release, 2674 .open = ocfs2_dir_open, 2675 .unlocked_ioctl = ocfs2_ioctl, 2676 #ifdef CONFIG_COMPAT 2677 .compat_ioctl = ocfs2_compat_ioctl, 2678 #endif 2679 .flock = ocfs2_flock, 2680 }; 2681