xref: /linux/fs/ocfs2/file.c (revision 320fefa9e2edc67011e235ea1d50f0d00ddfe004)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 
26 #include <cluster/masklog.h>
27 
28 #include "ocfs2.h"
29 
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49 
50 #include "buffer_head_io.h"
51 
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 	struct ocfs2_file_private *fp;
55 
56 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 	if (!fp)
58 		return -ENOMEM;
59 
60 	fp->fp_file = file;
61 	mutex_init(&fp->fp_mutex);
62 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 	file->private_data = fp;
64 
65 	return 0;
66 }
67 
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 	struct ocfs2_file_private *fp = file->private_data;
71 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72 
73 	if (fp) {
74 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 		ocfs2_lock_res_free(&fp->fp_flock);
76 		kfree(fp);
77 		file->private_data = NULL;
78 	}
79 }
80 
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 	int status;
84 	int mode = file->f_flags;
85 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
86 
87 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 			      (unsigned long long)oi->ip_blkno,
89 			      file->f_path.dentry->d_name.len,
90 			      file->f_path.dentry->d_name.name, mode);
91 
92 	if (file->f_mode & FMODE_WRITE) {
93 		status = dquot_initialize(inode);
94 		if (status)
95 			goto leave;
96 	}
97 
98 	spin_lock(&oi->ip_lock);
99 
100 	/* Check that the inode hasn't been wiped from disk by another
101 	 * node. If it hasn't then we're safe as long as we hold the
102 	 * spin lock until our increment of open count. */
103 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 		spin_unlock(&oi->ip_lock);
105 
106 		status = -ENOENT;
107 		goto leave;
108 	}
109 
110 	if (mode & O_DIRECT)
111 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112 
113 	oi->ip_open_count++;
114 	spin_unlock(&oi->ip_lock);
115 
116 	status = ocfs2_init_file_private(inode, file);
117 	if (status) {
118 		/*
119 		 * We want to set open count back if we're failing the
120 		 * open.
121 		 */
122 		spin_lock(&oi->ip_lock);
123 		oi->ip_open_count--;
124 		spin_unlock(&oi->ip_lock);
125 	}
126 
127 	file->f_mode |= FMODE_NOWAIT;
128 
129 leave:
130 	return status;
131 }
132 
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
136 
137 	spin_lock(&oi->ip_lock);
138 	if (!--oi->ip_open_count)
139 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140 
141 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 				 oi->ip_blkno,
143 				 file->f_path.dentry->d_name.len,
144 				 file->f_path.dentry->d_name.name,
145 				 oi->ip_open_count);
146 	spin_unlock(&oi->ip_lock);
147 
148 	ocfs2_free_file_private(inode, file);
149 
150 	return 0;
151 }
152 
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 	return ocfs2_init_file_private(inode, file);
156 }
157 
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 	ocfs2_free_file_private(inode, file);
161 	return 0;
162 }
163 
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 			   int datasync)
166 {
167 	int err = 0;
168 	struct inode *inode = file->f_mapping->host;
169 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 	journal_t *journal = osb->journal->j_journal;
172 	int ret;
173 	tid_t commit_tid;
174 	bool needs_barrier = false;
175 
176 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 			      oi->ip_blkno,
178 			      file->f_path.dentry->d_name.len,
179 			      file->f_path.dentry->d_name.name,
180 			      (unsigned long long)datasync);
181 
182 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 		return -EROFS;
184 
185 	err = file_write_and_wait_range(file, start, end);
186 	if (err)
187 		return err;
188 
189 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 	if (journal->j_flags & JBD2_BARRIER &&
191 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 		needs_barrier = true;
193 	err = jbd2_complete_transaction(journal, commit_tid);
194 	if (needs_barrier) {
195 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 		if (!err)
197 			err = ret;
198 	}
199 
200 	if (err)
201 		mlog_errno(err);
202 
203 	return (err < 0) ? -EIO : 0;
204 }
205 
206 int ocfs2_should_update_atime(struct inode *inode,
207 			      struct vfsmount *vfsmnt)
208 {
209 	struct timespec64 now;
210 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 
212 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 		return 0;
214 
215 	if ((inode->i_flags & S_NOATIME) ||
216 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 		return 0;
218 
219 	/*
220 	 * We can be called with no vfsmnt structure - NFSD will
221 	 * sometimes do this.
222 	 *
223 	 * Note that our action here is different than touch_atime() -
224 	 * if we can't tell whether this is a noatime mount, then we
225 	 * don't know whether to trust the value of s_atime_quantum.
226 	 */
227 	if (vfsmnt == NULL)
228 		return 0;
229 
230 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 		return 0;
233 
234 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237 			return 1;
238 
239 		return 0;
240 	}
241 
242 	now = current_time(inode);
243 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244 		return 0;
245 	else
246 		return 1;
247 }
248 
249 int ocfs2_update_inode_atime(struct inode *inode,
250 			     struct buffer_head *bh)
251 {
252 	int ret;
253 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 	handle_t *handle;
255 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_rwsem to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = current_time(inode);
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
280 	ocfs2_journal_dirty(handle, bh);
281 
282 out_commit:
283 	ocfs2_commit_trans(osb, handle);
284 out:
285 	return ret;
286 }
287 
288 int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	i_size_write(inode, new_i_size);
296 	inode->i_blocks = ocfs2_inode_sector_count(inode);
297 	inode->i_ctime = inode->i_mtime = current_time(inode);
298 
299 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300 	if (status < 0) {
301 		mlog_errno(status);
302 		goto bail;
303 	}
304 
305 bail:
306 	return status;
307 }
308 
309 int ocfs2_simple_size_update(struct inode *inode,
310 			     struct buffer_head *di_bh,
311 			     u64 new_i_size)
312 {
313 	int ret;
314 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315 	handle_t *handle = NULL;
316 
317 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318 	if (IS_ERR(handle)) {
319 		ret = PTR_ERR(handle);
320 		mlog_errno(ret);
321 		goto out;
322 	}
323 
324 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
325 				   new_i_size);
326 	if (ret < 0)
327 		mlog_errno(ret);
328 
329 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
330 	ocfs2_commit_trans(osb, handle);
331 out:
332 	return ret;
333 }
334 
335 static int ocfs2_cow_file_pos(struct inode *inode,
336 			      struct buffer_head *fe_bh,
337 			      u64 offset)
338 {
339 	int status;
340 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341 	unsigned int num_clusters = 0;
342 	unsigned int ext_flags = 0;
343 
344 	/*
345 	 * If the new offset is aligned to the range of the cluster, there is
346 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347 	 * CoW either.
348 	 */
349 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350 		return 0;
351 
352 	status = ocfs2_get_clusters(inode, cpos, &phys,
353 				    &num_clusters, &ext_flags);
354 	if (status) {
355 		mlog_errno(status);
356 		goto out;
357 	}
358 
359 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360 		goto out;
361 
362 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363 
364 out:
365 	return status;
366 }
367 
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369 				     struct inode *inode,
370 				     struct buffer_head *fe_bh,
371 				     u64 new_i_size)
372 {
373 	int status;
374 	handle_t *handle;
375 	struct ocfs2_dinode *di;
376 	u64 cluster_bytes;
377 
378 	/*
379 	 * We need to CoW the cluster contains the offset if it is reflinked
380 	 * since we will call ocfs2_zero_range_for_truncate later which will
381 	 * write "0" from offset to the end of the cluster.
382 	 */
383 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384 	if (status) {
385 		mlog_errno(status);
386 		return status;
387 	}
388 
389 	/* TODO: This needs to actually orphan the inode in this
390 	 * transaction. */
391 
392 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393 	if (IS_ERR(handle)) {
394 		status = PTR_ERR(handle);
395 		mlog_errno(status);
396 		goto out;
397 	}
398 
399 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400 					 OCFS2_JOURNAL_ACCESS_WRITE);
401 	if (status < 0) {
402 		mlog_errno(status);
403 		goto out_commit;
404 	}
405 
406 	/*
407 	 * Do this before setting i_size.
408 	 */
409 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411 					       cluster_bytes);
412 	if (status) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	i_size_write(inode, new_i_size);
418 	inode->i_ctime = inode->i_mtime = current_time(inode);
419 
420 	di = (struct ocfs2_dinode *) fe_bh->b_data;
421 	di->i_size = cpu_to_le64(new_i_size);
422 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
425 
426 	ocfs2_journal_dirty(handle, fe_bh);
427 
428 out_commit:
429 	ocfs2_commit_trans(osb, handle);
430 out:
431 	return status;
432 }
433 
434 int ocfs2_truncate_file(struct inode *inode,
435 			       struct buffer_head *di_bh,
436 			       u64 new_i_size)
437 {
438 	int status = 0;
439 	struct ocfs2_dinode *fe = NULL;
440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441 
442 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
443 	 * already validated it */
444 	fe = (struct ocfs2_dinode *) di_bh->b_data;
445 
446 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447 				  (unsigned long long)le64_to_cpu(fe->i_size),
448 				  (unsigned long long)new_i_size);
449 
450 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451 			"Inode %llu, inode i_size = %lld != di "
452 			"i_size = %llu, i_flags = 0x%x\n",
453 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
454 			i_size_read(inode),
455 			(unsigned long long)le64_to_cpu(fe->i_size),
456 			le32_to_cpu(fe->i_flags));
457 
458 	if (new_i_size > le64_to_cpu(fe->i_size)) {
459 		trace_ocfs2_truncate_file_error(
460 			(unsigned long long)le64_to_cpu(fe->i_size),
461 			(unsigned long long)new_i_size);
462 		status = -EINVAL;
463 		mlog_errno(status);
464 		goto bail;
465 	}
466 
467 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
468 
469 	ocfs2_resv_discard(&osb->osb_la_resmap,
470 			   &OCFS2_I(inode)->ip_la_data_resv);
471 
472 	/*
473 	 * The inode lock forced other nodes to sync and drop their
474 	 * pages, which (correctly) happens even if we have a truncate
475 	 * without allocation change - ocfs2 cluster sizes can be much
476 	 * greater than page size, so we have to truncate them
477 	 * anyway.
478 	 */
479 
480 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
481 		unmap_mapping_range(inode->i_mapping,
482 				    new_i_size + PAGE_SIZE - 1, 0, 1);
483 		truncate_inode_pages(inode->i_mapping, new_i_size);
484 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
485 					       i_size_read(inode), 1);
486 		if (status)
487 			mlog_errno(status);
488 
489 		goto bail_unlock_sem;
490 	}
491 
492 	/* alright, we're going to need to do a full blown alloc size
493 	 * change. Orphan the inode so that recovery can complete the
494 	 * truncate if necessary. This does the task of marking
495 	 * i_size. */
496 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
497 	if (status < 0) {
498 		mlog_errno(status);
499 		goto bail_unlock_sem;
500 	}
501 
502 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
503 	truncate_inode_pages(inode->i_mapping, new_i_size);
504 
505 	status = ocfs2_commit_truncate(osb, inode, di_bh);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail_unlock_sem;
509 	}
510 
511 	/* TODO: orphan dir cleanup here. */
512 bail_unlock_sem:
513 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
514 
515 bail:
516 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
517 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
518 
519 	return status;
520 }
521 
522 /*
523  * extend file allocation only here.
524  * we'll update all the disk stuff, and oip->alloc_size
525  *
526  * expect stuff to be locked, a transaction started and enough data /
527  * metadata reservations in the contexts.
528  *
529  * Will return -EAGAIN, and a reason if a restart is needed.
530  * If passed in, *reason will always be set, even in error.
531  */
532 int ocfs2_add_inode_data(struct ocfs2_super *osb,
533 			 struct inode *inode,
534 			 u32 *logical_offset,
535 			 u32 clusters_to_add,
536 			 int mark_unwritten,
537 			 struct buffer_head *fe_bh,
538 			 handle_t *handle,
539 			 struct ocfs2_alloc_context *data_ac,
540 			 struct ocfs2_alloc_context *meta_ac,
541 			 enum ocfs2_alloc_restarted *reason_ret)
542 {
543 	struct ocfs2_extent_tree et;
544 
545 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
546 	return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
547 					   clusters_to_add, mark_unwritten,
548 					   data_ac, meta_ac, reason_ret);
549 }
550 
551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
552 				   u32 clusters_to_add, int mark_unwritten)
553 {
554 	int status = 0;
555 	int restart_func = 0;
556 	int credits;
557 	u32 prev_clusters;
558 	struct buffer_head *bh = NULL;
559 	struct ocfs2_dinode *fe = NULL;
560 	handle_t *handle = NULL;
561 	struct ocfs2_alloc_context *data_ac = NULL;
562 	struct ocfs2_alloc_context *meta_ac = NULL;
563 	enum ocfs2_alloc_restarted why = RESTART_NONE;
564 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
565 	struct ocfs2_extent_tree et;
566 	int did_quota = 0;
567 
568 	/*
569 	 * Unwritten extent only exists for file systems which
570 	 * support holes.
571 	 */
572 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
573 
574 	status = ocfs2_read_inode_block(inode, &bh);
575 	if (status < 0) {
576 		mlog_errno(status);
577 		goto leave;
578 	}
579 	fe = (struct ocfs2_dinode *) bh->b_data;
580 
581 restart_all:
582 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
583 
584 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
585 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
586 				       &data_ac, &meta_ac);
587 	if (status) {
588 		mlog_errno(status);
589 		goto leave;
590 	}
591 
592 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
593 	handle = ocfs2_start_trans(osb, credits);
594 	if (IS_ERR(handle)) {
595 		status = PTR_ERR(handle);
596 		handle = NULL;
597 		mlog_errno(status);
598 		goto leave;
599 	}
600 
601 restarted_transaction:
602 	trace_ocfs2_extend_allocation(
603 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
604 		(unsigned long long)i_size_read(inode),
605 		le32_to_cpu(fe->i_clusters), clusters_to_add,
606 		why, restart_func);
607 
608 	status = dquot_alloc_space_nodirty(inode,
609 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
610 	if (status)
611 		goto leave;
612 	did_quota = 1;
613 
614 	/* reserve a write to the file entry early on - that we if we
615 	 * run out of credits in the allocation path, we can still
616 	 * update i_size. */
617 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
618 					 OCFS2_JOURNAL_ACCESS_WRITE);
619 	if (status < 0) {
620 		mlog_errno(status);
621 		goto leave;
622 	}
623 
624 	prev_clusters = OCFS2_I(inode)->ip_clusters;
625 
626 	status = ocfs2_add_inode_data(osb,
627 				      inode,
628 				      &logical_start,
629 				      clusters_to_add,
630 				      mark_unwritten,
631 				      bh,
632 				      handle,
633 				      data_ac,
634 				      meta_ac,
635 				      &why);
636 	if ((status < 0) && (status != -EAGAIN)) {
637 		if (status != -ENOSPC)
638 			mlog_errno(status);
639 		goto leave;
640 	}
641 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
642 	ocfs2_journal_dirty(handle, bh);
643 
644 	spin_lock(&OCFS2_I(inode)->ip_lock);
645 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
646 	spin_unlock(&OCFS2_I(inode)->ip_lock);
647 	/* Release unused quota reservation */
648 	dquot_free_space(inode,
649 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
650 	did_quota = 0;
651 
652 	if (why != RESTART_NONE && clusters_to_add) {
653 		if (why == RESTART_META) {
654 			restart_func = 1;
655 			status = 0;
656 		} else {
657 			BUG_ON(why != RESTART_TRANS);
658 
659 			status = ocfs2_allocate_extend_trans(handle, 1);
660 			if (status < 0) {
661 				/* handle still has to be committed at
662 				 * this point. */
663 				status = -ENOMEM;
664 				mlog_errno(status);
665 				goto leave;
666 			}
667 			goto restarted_transaction;
668 		}
669 	}
670 
671 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
672 	     le32_to_cpu(fe->i_clusters),
673 	     (unsigned long long)le64_to_cpu(fe->i_size),
674 	     OCFS2_I(inode)->ip_clusters,
675 	     (unsigned long long)i_size_read(inode));
676 
677 leave:
678 	if (status < 0 && did_quota)
679 		dquot_free_space(inode,
680 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
681 	if (handle) {
682 		ocfs2_commit_trans(osb, handle);
683 		handle = NULL;
684 	}
685 	if (data_ac) {
686 		ocfs2_free_alloc_context(data_ac);
687 		data_ac = NULL;
688 	}
689 	if (meta_ac) {
690 		ocfs2_free_alloc_context(meta_ac);
691 		meta_ac = NULL;
692 	}
693 	if ((!status) && restart_func) {
694 		restart_func = 0;
695 		goto restart_all;
696 	}
697 	brelse(bh);
698 	bh = NULL;
699 
700 	return status;
701 }
702 
703 /*
704  * While a write will already be ordering the data, a truncate will not.
705  * Thus, we need to explicitly order the zeroed pages.
706  */
707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
708 						      struct buffer_head *di_bh,
709 						      loff_t start_byte,
710 						      loff_t length)
711 {
712 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
713 	handle_t *handle = NULL;
714 	int ret = 0;
715 
716 	if (!ocfs2_should_order_data(inode))
717 		goto out;
718 
719 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
720 	if (IS_ERR(handle)) {
721 		ret = -ENOMEM;
722 		mlog_errno(ret);
723 		goto out;
724 	}
725 
726 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
727 	if (ret < 0) {
728 		mlog_errno(ret);
729 		goto out;
730 	}
731 
732 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
733 				      OCFS2_JOURNAL_ACCESS_WRITE);
734 	if (ret)
735 		mlog_errno(ret);
736 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
737 
738 out:
739 	if (ret) {
740 		if (!IS_ERR(handle))
741 			ocfs2_commit_trans(osb, handle);
742 		handle = ERR_PTR(ret);
743 	}
744 	return handle;
745 }
746 
747 /* Some parts of this taken from generic_cont_expand, which turned out
748  * to be too fragile to do exactly what we need without us having to
749  * worry about recursive locking in ->write_begin() and ->write_end(). */
750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
751 				 u64 abs_to, struct buffer_head *di_bh)
752 {
753 	struct address_space *mapping = inode->i_mapping;
754 	struct page *page;
755 	unsigned long index = abs_from >> PAGE_SHIFT;
756 	handle_t *handle;
757 	int ret = 0;
758 	unsigned zero_from, zero_to, block_start, block_end;
759 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
760 
761 	BUG_ON(abs_from >= abs_to);
762 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
763 	BUG_ON(abs_from & (inode->i_blkbits - 1));
764 
765 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
766 						      abs_from,
767 						      abs_to - abs_from);
768 	if (IS_ERR(handle)) {
769 		ret = PTR_ERR(handle);
770 		goto out;
771 	}
772 
773 	page = find_or_create_page(mapping, index, GFP_NOFS);
774 	if (!page) {
775 		ret = -ENOMEM;
776 		mlog_errno(ret);
777 		goto out_commit_trans;
778 	}
779 
780 	/* Get the offsets within the page that we want to zero */
781 	zero_from = abs_from & (PAGE_SIZE - 1);
782 	zero_to = abs_to & (PAGE_SIZE - 1);
783 	if (!zero_to)
784 		zero_to = PAGE_SIZE;
785 
786 	trace_ocfs2_write_zero_page(
787 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
788 			(unsigned long long)abs_from,
789 			(unsigned long long)abs_to,
790 			index, zero_from, zero_to);
791 
792 	/* We know that zero_from is block aligned */
793 	for (block_start = zero_from; block_start < zero_to;
794 	     block_start = block_end) {
795 		block_end = block_start + i_blocksize(inode);
796 
797 		/*
798 		 * block_start is block-aligned.  Bump it by one to force
799 		 * __block_write_begin and block_commit_write to zero the
800 		 * whole block.
801 		 */
802 		ret = __block_write_begin(page, block_start + 1, 0,
803 					  ocfs2_get_block);
804 		if (ret < 0) {
805 			mlog_errno(ret);
806 			goto out_unlock;
807 		}
808 
809 
810 		/* must not update i_size! */
811 		ret = block_commit_write(page, block_start + 1,
812 					 block_start + 1);
813 		if (ret < 0)
814 			mlog_errno(ret);
815 		else
816 			ret = 0;
817 	}
818 
819 	/*
820 	 * fs-writeback will release the dirty pages without page lock
821 	 * whose offset are over inode size, the release happens at
822 	 * block_write_full_page().
823 	 */
824 	i_size_write(inode, abs_to);
825 	inode->i_blocks = ocfs2_inode_sector_count(inode);
826 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
827 	inode->i_mtime = inode->i_ctime = current_time(inode);
828 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
829 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
830 	di->i_mtime_nsec = di->i_ctime_nsec;
831 	if (handle) {
832 		ocfs2_journal_dirty(handle, di_bh);
833 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
834 	}
835 
836 out_unlock:
837 	unlock_page(page);
838 	put_page(page);
839 out_commit_trans:
840 	if (handle)
841 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
842 out:
843 	return ret;
844 }
845 
846 /*
847  * Find the next range to zero.  We do this in terms of bytes because
848  * that's what ocfs2_zero_extend() wants, and it is dealing with the
849  * pagecache.  We may return multiple extents.
850  *
851  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
852  * needs to be zeroed.  range_start and range_end return the next zeroing
853  * range.  A subsequent call should pass the previous range_end as its
854  * zero_start.  If range_end is 0, there's nothing to do.
855  *
856  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
857  */
858 static int ocfs2_zero_extend_get_range(struct inode *inode,
859 				       struct buffer_head *di_bh,
860 				       u64 zero_start, u64 zero_end,
861 				       u64 *range_start, u64 *range_end)
862 {
863 	int rc = 0, needs_cow = 0;
864 	u32 p_cpos, zero_clusters = 0;
865 	u32 zero_cpos =
866 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
867 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
868 	unsigned int num_clusters = 0;
869 	unsigned int ext_flags = 0;
870 
871 	while (zero_cpos < last_cpos) {
872 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
873 					&num_clusters, &ext_flags);
874 		if (rc) {
875 			mlog_errno(rc);
876 			goto out;
877 		}
878 
879 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
880 			zero_clusters = num_clusters;
881 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
882 				needs_cow = 1;
883 			break;
884 		}
885 
886 		zero_cpos += num_clusters;
887 	}
888 	if (!zero_clusters) {
889 		*range_end = 0;
890 		goto out;
891 	}
892 
893 	while ((zero_cpos + zero_clusters) < last_cpos) {
894 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
895 					&p_cpos, &num_clusters,
896 					&ext_flags);
897 		if (rc) {
898 			mlog_errno(rc);
899 			goto out;
900 		}
901 
902 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
903 			break;
904 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
905 			needs_cow = 1;
906 		zero_clusters += num_clusters;
907 	}
908 	if ((zero_cpos + zero_clusters) > last_cpos)
909 		zero_clusters = last_cpos - zero_cpos;
910 
911 	if (needs_cow) {
912 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
913 					zero_clusters, UINT_MAX);
914 		if (rc) {
915 			mlog_errno(rc);
916 			goto out;
917 		}
918 	}
919 
920 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
921 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
922 					     zero_cpos + zero_clusters);
923 
924 out:
925 	return rc;
926 }
927 
928 /*
929  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
930  * has made sure that the entire range needs zeroing.
931  */
932 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
933 				   u64 range_end, struct buffer_head *di_bh)
934 {
935 	int rc = 0;
936 	u64 next_pos;
937 	u64 zero_pos = range_start;
938 
939 	trace_ocfs2_zero_extend_range(
940 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
941 			(unsigned long long)range_start,
942 			(unsigned long long)range_end);
943 	BUG_ON(range_start >= range_end);
944 
945 	while (zero_pos < range_end) {
946 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
947 		if (next_pos > range_end)
948 			next_pos = range_end;
949 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
950 		if (rc < 0) {
951 			mlog_errno(rc);
952 			break;
953 		}
954 		zero_pos = next_pos;
955 
956 		/*
957 		 * Very large extends have the potential to lock up
958 		 * the cpu for extended periods of time.
959 		 */
960 		cond_resched();
961 	}
962 
963 	return rc;
964 }
965 
966 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
967 		      loff_t zero_to_size)
968 {
969 	int ret = 0;
970 	u64 zero_start, range_start = 0, range_end = 0;
971 	struct super_block *sb = inode->i_sb;
972 
973 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
974 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
975 				(unsigned long long)zero_start,
976 				(unsigned long long)i_size_read(inode));
977 	while (zero_start < zero_to_size) {
978 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
979 						  zero_to_size,
980 						  &range_start,
981 						  &range_end);
982 		if (ret) {
983 			mlog_errno(ret);
984 			break;
985 		}
986 		if (!range_end)
987 			break;
988 		/* Trim the ends */
989 		if (range_start < zero_start)
990 			range_start = zero_start;
991 		if (range_end > zero_to_size)
992 			range_end = zero_to_size;
993 
994 		ret = ocfs2_zero_extend_range(inode, range_start,
995 					      range_end, di_bh);
996 		if (ret) {
997 			mlog_errno(ret);
998 			break;
999 		}
1000 		zero_start = range_end;
1001 	}
1002 
1003 	return ret;
1004 }
1005 
1006 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1007 			  u64 new_i_size, u64 zero_to)
1008 {
1009 	int ret;
1010 	u32 clusters_to_add;
1011 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1012 
1013 	/*
1014 	 * Only quota files call this without a bh, and they can't be
1015 	 * refcounted.
1016 	 */
1017 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1018 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1019 
1020 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1021 	if (clusters_to_add < oi->ip_clusters)
1022 		clusters_to_add = 0;
1023 	else
1024 		clusters_to_add -= oi->ip_clusters;
1025 
1026 	if (clusters_to_add) {
1027 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1028 					      clusters_to_add, 0);
1029 		if (ret) {
1030 			mlog_errno(ret);
1031 			goto out;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * Call this even if we don't add any clusters to the tree. We
1037 	 * still need to zero the area between the old i_size and the
1038 	 * new i_size.
1039 	 */
1040 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1041 	if (ret < 0)
1042 		mlog_errno(ret);
1043 
1044 out:
1045 	return ret;
1046 }
1047 
1048 static int ocfs2_extend_file(struct inode *inode,
1049 			     struct buffer_head *di_bh,
1050 			     u64 new_i_size)
1051 {
1052 	int ret = 0;
1053 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1054 
1055 	BUG_ON(!di_bh);
1056 
1057 	/* setattr sometimes calls us like this. */
1058 	if (new_i_size == 0)
1059 		goto out;
1060 
1061 	if (i_size_read(inode) == new_i_size)
1062 		goto out;
1063 	BUG_ON(new_i_size < i_size_read(inode));
1064 
1065 	/*
1066 	 * The alloc sem blocks people in read/write from reading our
1067 	 * allocation until we're done changing it. We depend on
1068 	 * i_rwsem to block other extend/truncate calls while we're
1069 	 * here.  We even have to hold it for sparse files because there
1070 	 * might be some tail zeroing.
1071 	 */
1072 	down_write(&oi->ip_alloc_sem);
1073 
1074 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1075 		/*
1076 		 * We can optimize small extends by keeping the inodes
1077 		 * inline data.
1078 		 */
1079 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1080 			up_write(&oi->ip_alloc_sem);
1081 			goto out_update_size;
1082 		}
1083 
1084 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1085 		if (ret) {
1086 			up_write(&oi->ip_alloc_sem);
1087 			mlog_errno(ret);
1088 			goto out;
1089 		}
1090 	}
1091 
1092 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1093 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1094 	else
1095 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1096 					    new_i_size);
1097 
1098 	up_write(&oi->ip_alloc_sem);
1099 
1100 	if (ret < 0) {
1101 		mlog_errno(ret);
1102 		goto out;
1103 	}
1104 
1105 out_update_size:
1106 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1107 	if (ret < 0)
1108 		mlog_errno(ret);
1109 
1110 out:
1111 	return ret;
1112 }
1113 
1114 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1115 		  struct iattr *attr)
1116 {
1117 	int status = 0, size_change;
1118 	int inode_locked = 0;
1119 	struct inode *inode = d_inode(dentry);
1120 	struct super_block *sb = inode->i_sb;
1121 	struct ocfs2_super *osb = OCFS2_SB(sb);
1122 	struct buffer_head *bh = NULL;
1123 	handle_t *handle = NULL;
1124 	struct dquot *transfer_to[MAXQUOTAS] = { };
1125 	int qtype;
1126 	int had_lock;
1127 	struct ocfs2_lock_holder oh;
1128 
1129 	trace_ocfs2_setattr(inode, dentry,
1130 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 			    dentry->d_name.len, dentry->d_name.name,
1132 			    attr->ia_valid, attr->ia_mode,
1133 			    from_kuid(&init_user_ns, attr->ia_uid),
1134 			    from_kgid(&init_user_ns, attr->ia_gid));
1135 
1136 	/* ensuring we don't even attempt to truncate a symlink */
1137 	if (S_ISLNK(inode->i_mode))
1138 		attr->ia_valid &= ~ATTR_SIZE;
1139 
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143 		return 0;
1144 
1145 	status = setattr_prepare(&init_user_ns, dentry, attr);
1146 	if (status)
1147 		return status;
1148 
1149 	if (is_quota_modification(mnt_userns, inode, attr)) {
1150 		status = dquot_initialize(inode);
1151 		if (status)
1152 			return status;
1153 	}
1154 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 	if (size_change) {
1156 		/*
1157 		 * Here we should wait dio to finish before inode lock
1158 		 * to avoid a deadlock between ocfs2_setattr() and
1159 		 * ocfs2_dio_end_io_write()
1160 		 */
1161 		inode_dio_wait(inode);
1162 
1163 		status = ocfs2_rw_lock(inode, 1);
1164 		if (status < 0) {
1165 			mlog_errno(status);
1166 			goto bail;
1167 		}
1168 	}
1169 
1170 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171 	if (had_lock < 0) {
1172 		status = had_lock;
1173 		goto bail_unlock_rw;
1174 	} else if (had_lock) {
1175 		/*
1176 		 * As far as we know, ocfs2_setattr() could only be the first
1177 		 * VFS entry point in the call chain of recursive cluster
1178 		 * locking issue.
1179 		 *
1180 		 * For instance:
1181 		 * chmod_common()
1182 		 *  notify_change()
1183 		 *   ocfs2_setattr()
1184 		 *    posix_acl_chmod()
1185 		 *     ocfs2_iop_get_acl()
1186 		 *
1187 		 * But, we're not 100% sure if it's always true, because the
1188 		 * ordering of the VFS entry points in the call chain is out
1189 		 * of our control. So, we'd better dump the stack here to
1190 		 * catch the other cases of recursive locking.
1191 		 */
1192 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1193 		dump_stack();
1194 	}
1195 	inode_locked = 1;
1196 
1197 	if (size_change) {
1198 		status = inode_newsize_ok(inode, attr->ia_size);
1199 		if (status)
1200 			goto bail_unlock;
1201 
1202 		if (i_size_read(inode) >= attr->ia_size) {
1203 			if (ocfs2_should_order_data(inode)) {
1204 				status = ocfs2_begin_ordered_truncate(inode,
1205 								      attr->ia_size);
1206 				if (status)
1207 					goto bail_unlock;
1208 			}
1209 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210 		} else
1211 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212 		if (status < 0) {
1213 			if (status != -ENOSPC)
1214 				mlog_errno(status);
1215 			status = -ENOSPC;
1216 			goto bail_unlock;
1217 		}
1218 	}
1219 
1220 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222 		/*
1223 		 * Gather pointers to quota structures so that allocation /
1224 		 * freeing of quota structures happens here and not inside
1225 		 * dquot_transfer() where we have problems with lock ordering
1226 		 */
1227 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231 			if (IS_ERR(transfer_to[USRQUOTA])) {
1232 				status = PTR_ERR(transfer_to[USRQUOTA]);
1233 				transfer_to[USRQUOTA] = NULL;
1234 				goto bail_unlock;
1235 			}
1236 		}
1237 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1242 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1243 				transfer_to[GRPQUOTA] = NULL;
1244 				goto bail_unlock;
1245 			}
1246 		}
1247 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1248 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1249 					   2 * ocfs2_quota_trans_credits(sb));
1250 		if (IS_ERR(handle)) {
1251 			status = PTR_ERR(handle);
1252 			mlog_errno(status);
1253 			goto bail_unlock_alloc;
1254 		}
1255 		status = __dquot_transfer(inode, transfer_to);
1256 		if (status < 0)
1257 			goto bail_commit;
1258 	} else {
1259 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1260 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1261 		if (IS_ERR(handle)) {
1262 			status = PTR_ERR(handle);
1263 			mlog_errno(status);
1264 			goto bail_unlock_alloc;
1265 		}
1266 	}
1267 
1268 	setattr_copy(&init_user_ns, inode, attr);
1269 	mark_inode_dirty(inode);
1270 
1271 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1272 	if (status < 0)
1273 		mlog_errno(status);
1274 
1275 bail_commit:
1276 	ocfs2_commit_trans(osb, handle);
1277 bail_unlock_alloc:
1278 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1279 bail_unlock:
1280 	if (status && inode_locked) {
1281 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1282 		inode_locked = 0;
1283 	}
1284 bail_unlock_rw:
1285 	if (size_change)
1286 		ocfs2_rw_unlock(inode, 1);
1287 bail:
1288 
1289 	/* Release quota pointers in case we acquired them */
1290 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1291 		dqput(transfer_to[qtype]);
1292 
1293 	if (!status && attr->ia_valid & ATTR_MODE) {
1294 		status = ocfs2_acl_chmod(inode, bh);
1295 		if (status < 0)
1296 			mlog_errno(status);
1297 	}
1298 	if (inode_locked)
1299 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1300 
1301 	brelse(bh);
1302 	return status;
1303 }
1304 
1305 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1306 		  struct kstat *stat, u32 request_mask, unsigned int flags)
1307 {
1308 	struct inode *inode = d_inode(path->dentry);
1309 	struct super_block *sb = path->dentry->d_sb;
1310 	struct ocfs2_super *osb = sb->s_fs_info;
1311 	int err;
1312 
1313 	err = ocfs2_inode_revalidate(path->dentry);
1314 	if (err) {
1315 		if (err != -ENOENT)
1316 			mlog_errno(err);
1317 		goto bail;
1318 	}
1319 
1320 	generic_fillattr(&init_user_ns, inode, stat);
1321 	/*
1322 	 * If there is inline data in the inode, the inode will normally not
1323 	 * have data blocks allocated (it may have an external xattr block).
1324 	 * Report at least one sector for such files, so tools like tar, rsync,
1325 	 * others don't incorrectly think the file is completely sparse.
1326 	 */
1327 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1328 		stat->blocks += (stat->size + 511)>>9;
1329 
1330 	/* We set the blksize from the cluster size for performance */
1331 	stat->blksize = osb->s_clustersize;
1332 
1333 bail:
1334 	return err;
1335 }
1336 
1337 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1338 		     int mask)
1339 {
1340 	int ret, had_lock;
1341 	struct ocfs2_lock_holder oh;
1342 
1343 	if (mask & MAY_NOT_BLOCK)
1344 		return -ECHILD;
1345 
1346 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1347 	if (had_lock < 0) {
1348 		ret = had_lock;
1349 		goto out;
1350 	} else if (had_lock) {
1351 		/* See comments in ocfs2_setattr() for details.
1352 		 * The call chain of this case could be:
1353 		 * do_sys_open()
1354 		 *  may_open()
1355 		 *   inode_permission()
1356 		 *    ocfs2_permission()
1357 		 *     ocfs2_iop_get_acl()
1358 		 */
1359 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1360 		dump_stack();
1361 	}
1362 
1363 	ret = generic_permission(&init_user_ns, inode, mask);
1364 
1365 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1366 out:
1367 	return ret;
1368 }
1369 
1370 static int __ocfs2_write_remove_suid(struct inode *inode,
1371 				     struct buffer_head *bh)
1372 {
1373 	int ret;
1374 	handle_t *handle;
1375 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1376 	struct ocfs2_dinode *di;
1377 
1378 	trace_ocfs2_write_remove_suid(
1379 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1380 			inode->i_mode);
1381 
1382 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1383 	if (IS_ERR(handle)) {
1384 		ret = PTR_ERR(handle);
1385 		mlog_errno(ret);
1386 		goto out;
1387 	}
1388 
1389 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1390 				      OCFS2_JOURNAL_ACCESS_WRITE);
1391 	if (ret < 0) {
1392 		mlog_errno(ret);
1393 		goto out_trans;
1394 	}
1395 
1396 	inode->i_mode &= ~S_ISUID;
1397 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1398 		inode->i_mode &= ~S_ISGID;
1399 
1400 	di = (struct ocfs2_dinode *) bh->b_data;
1401 	di->i_mode = cpu_to_le16(inode->i_mode);
1402 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1403 
1404 	ocfs2_journal_dirty(handle, bh);
1405 
1406 out_trans:
1407 	ocfs2_commit_trans(osb, handle);
1408 out:
1409 	return ret;
1410 }
1411 
1412 static int ocfs2_write_remove_suid(struct inode *inode)
1413 {
1414 	int ret;
1415 	struct buffer_head *bh = NULL;
1416 
1417 	ret = ocfs2_read_inode_block(inode, &bh);
1418 	if (ret < 0) {
1419 		mlog_errno(ret);
1420 		goto out;
1421 	}
1422 
1423 	ret =  __ocfs2_write_remove_suid(inode, bh);
1424 out:
1425 	brelse(bh);
1426 	return ret;
1427 }
1428 
1429 /*
1430  * Allocate enough extents to cover the region starting at byte offset
1431  * start for len bytes. Existing extents are skipped, any extents
1432  * added are marked as "unwritten".
1433  */
1434 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1435 					    u64 start, u64 len)
1436 {
1437 	int ret;
1438 	u32 cpos, phys_cpos, clusters, alloc_size;
1439 	u64 end = start + len;
1440 	struct buffer_head *di_bh = NULL;
1441 
1442 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1443 		ret = ocfs2_read_inode_block(inode, &di_bh);
1444 		if (ret) {
1445 			mlog_errno(ret);
1446 			goto out;
1447 		}
1448 
1449 		/*
1450 		 * Nothing to do if the requested reservation range
1451 		 * fits within the inode.
1452 		 */
1453 		if (ocfs2_size_fits_inline_data(di_bh, end))
1454 			goto out;
1455 
1456 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1457 		if (ret) {
1458 			mlog_errno(ret);
1459 			goto out;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * We consider both start and len to be inclusive.
1465 	 */
1466 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1467 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1468 	clusters -= cpos;
1469 
1470 	while (clusters) {
1471 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1472 					 &alloc_size, NULL);
1473 		if (ret) {
1474 			mlog_errno(ret);
1475 			goto out;
1476 		}
1477 
1478 		/*
1479 		 * Hole or existing extent len can be arbitrary, so
1480 		 * cap it to our own allocation request.
1481 		 */
1482 		if (alloc_size > clusters)
1483 			alloc_size = clusters;
1484 
1485 		if (phys_cpos) {
1486 			/*
1487 			 * We already have an allocation at this
1488 			 * region so we can safely skip it.
1489 			 */
1490 			goto next;
1491 		}
1492 
1493 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1494 		if (ret) {
1495 			if (ret != -ENOSPC)
1496 				mlog_errno(ret);
1497 			goto out;
1498 		}
1499 
1500 next:
1501 		cpos += alloc_size;
1502 		clusters -= alloc_size;
1503 	}
1504 
1505 	ret = 0;
1506 out:
1507 
1508 	brelse(di_bh);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * Truncate a byte range, avoiding pages within partial clusters. This
1514  * preserves those pages for the zeroing code to write to.
1515  */
1516 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1517 					 u64 byte_len)
1518 {
1519 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1520 	loff_t start, end;
1521 	struct address_space *mapping = inode->i_mapping;
1522 
1523 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1524 	end = byte_start + byte_len;
1525 	end = end & ~(osb->s_clustersize - 1);
1526 
1527 	if (start < end) {
1528 		unmap_mapping_range(mapping, start, end - start, 0);
1529 		truncate_inode_pages_range(mapping, start, end - 1);
1530 	}
1531 }
1532 
1533 /*
1534  * zero out partial blocks of one cluster.
1535  *
1536  * start: file offset where zero starts, will be made upper block aligned.
1537  * len: it will be trimmed to the end of current cluster if "start + len"
1538  *      is bigger than it.
1539  */
1540 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1541 					u64 start, u64 len)
1542 {
1543 	int ret;
1544 	u64 start_block, end_block, nr_blocks;
1545 	u64 p_block, offset;
1546 	u32 cluster, p_cluster, nr_clusters;
1547 	struct super_block *sb = inode->i_sb;
1548 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1549 
1550 	if (start + len < end)
1551 		end = start + len;
1552 
1553 	start_block = ocfs2_blocks_for_bytes(sb, start);
1554 	end_block = ocfs2_blocks_for_bytes(sb, end);
1555 	nr_blocks = end_block - start_block;
1556 	if (!nr_blocks)
1557 		return 0;
1558 
1559 	cluster = ocfs2_bytes_to_clusters(sb, start);
1560 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1561 				&nr_clusters, NULL);
1562 	if (ret)
1563 		return ret;
1564 	if (!p_cluster)
1565 		return 0;
1566 
1567 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1568 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1569 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1570 }
1571 
1572 static int ocfs2_zero_partial_clusters(struct inode *inode,
1573 				       u64 start, u64 len)
1574 {
1575 	int ret = 0;
1576 	u64 tmpend = 0;
1577 	u64 end = start + len;
1578 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1579 	unsigned int csize = osb->s_clustersize;
1580 	handle_t *handle;
1581 	loff_t isize = i_size_read(inode);
1582 
1583 	/*
1584 	 * The "start" and "end" values are NOT necessarily part of
1585 	 * the range whose allocation is being deleted. Rather, this
1586 	 * is what the user passed in with the request. We must zero
1587 	 * partial clusters here. There's no need to worry about
1588 	 * physical allocation - the zeroing code knows to skip holes.
1589 	 */
1590 	trace_ocfs2_zero_partial_clusters(
1591 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1592 		(unsigned long long)start, (unsigned long long)end);
1593 
1594 	/*
1595 	 * If both edges are on a cluster boundary then there's no
1596 	 * zeroing required as the region is part of the allocation to
1597 	 * be truncated.
1598 	 */
1599 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1600 		goto out;
1601 
1602 	/* No page cache for EOF blocks, issue zero out to disk. */
1603 	if (end > isize) {
1604 		/*
1605 		 * zeroout eof blocks in last cluster starting from
1606 		 * "isize" even "start" > "isize" because it is
1607 		 * complicated to zeroout just at "start" as "start"
1608 		 * may be not aligned with block size, buffer write
1609 		 * would be required to do that, but out of eof buffer
1610 		 * write is not supported.
1611 		 */
1612 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1613 					end - isize);
1614 		if (ret) {
1615 			mlog_errno(ret);
1616 			goto out;
1617 		}
1618 		if (start >= isize)
1619 			goto out;
1620 		end = isize;
1621 	}
1622 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1623 	if (IS_ERR(handle)) {
1624 		ret = PTR_ERR(handle);
1625 		mlog_errno(ret);
1626 		goto out;
1627 	}
1628 
1629 	/*
1630 	 * If start is on a cluster boundary and end is somewhere in another
1631 	 * cluster, we have not COWed the cluster starting at start, unless
1632 	 * end is also within the same cluster. So, in this case, we skip this
1633 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1634 	 * to the next one.
1635 	 */
1636 	if ((start & (csize - 1)) != 0) {
1637 		/*
1638 		 * We want to get the byte offset of the end of the 1st
1639 		 * cluster.
1640 		 */
1641 		tmpend = (u64)osb->s_clustersize +
1642 			(start & ~(osb->s_clustersize - 1));
1643 		if (tmpend > end)
1644 			tmpend = end;
1645 
1646 		trace_ocfs2_zero_partial_clusters_range1(
1647 			(unsigned long long)start,
1648 			(unsigned long long)tmpend);
1649 
1650 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1651 						    tmpend);
1652 		if (ret)
1653 			mlog_errno(ret);
1654 	}
1655 
1656 	if (tmpend < end) {
1657 		/*
1658 		 * This may make start and end equal, but the zeroing
1659 		 * code will skip any work in that case so there's no
1660 		 * need to catch it up here.
1661 		 */
1662 		start = end & ~(osb->s_clustersize - 1);
1663 
1664 		trace_ocfs2_zero_partial_clusters_range2(
1665 			(unsigned long long)start, (unsigned long long)end);
1666 
1667 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1668 		if (ret)
1669 			mlog_errno(ret);
1670 	}
1671 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1672 
1673 	ocfs2_commit_trans(osb, handle);
1674 out:
1675 	return ret;
1676 }
1677 
1678 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1679 {
1680 	int i;
1681 	struct ocfs2_extent_rec *rec = NULL;
1682 
1683 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1684 
1685 		rec = &el->l_recs[i];
1686 
1687 		if (le32_to_cpu(rec->e_cpos) < pos)
1688 			break;
1689 	}
1690 
1691 	return i;
1692 }
1693 
1694 /*
1695  * Helper to calculate the punching pos and length in one run, we handle the
1696  * following three cases in order:
1697  *
1698  * - remove the entire record
1699  * - remove a partial record
1700  * - no record needs to be removed (hole-punching completed)
1701 */
1702 static void ocfs2_calc_trunc_pos(struct inode *inode,
1703 				 struct ocfs2_extent_list *el,
1704 				 struct ocfs2_extent_rec *rec,
1705 				 u32 trunc_start, u32 *trunc_cpos,
1706 				 u32 *trunc_len, u32 *trunc_end,
1707 				 u64 *blkno, int *done)
1708 {
1709 	int ret = 0;
1710 	u32 coff, range;
1711 
1712 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1713 
1714 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1715 		/*
1716 		 * remove an entire extent record.
1717 		 */
1718 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1719 		/*
1720 		 * Skip holes if any.
1721 		 */
1722 		if (range < *trunc_end)
1723 			*trunc_end = range;
1724 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1725 		*blkno = le64_to_cpu(rec->e_blkno);
1726 		*trunc_end = le32_to_cpu(rec->e_cpos);
1727 	} else if (range > trunc_start) {
1728 		/*
1729 		 * remove a partial extent record, which means we're
1730 		 * removing the last extent record.
1731 		 */
1732 		*trunc_cpos = trunc_start;
1733 		/*
1734 		 * skip hole if any.
1735 		 */
1736 		if (range < *trunc_end)
1737 			*trunc_end = range;
1738 		*trunc_len = *trunc_end - trunc_start;
1739 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1740 		*blkno = le64_to_cpu(rec->e_blkno) +
1741 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1742 		*trunc_end = trunc_start;
1743 	} else {
1744 		/*
1745 		 * It may have two following possibilities:
1746 		 *
1747 		 * - last record has been removed
1748 		 * - trunc_start was within a hole
1749 		 *
1750 		 * both two cases mean the completion of hole punching.
1751 		 */
1752 		ret = 1;
1753 	}
1754 
1755 	*done = ret;
1756 }
1757 
1758 int ocfs2_remove_inode_range(struct inode *inode,
1759 			     struct buffer_head *di_bh, u64 byte_start,
1760 			     u64 byte_len)
1761 {
1762 	int ret = 0, flags = 0, done = 0, i;
1763 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1764 	u32 cluster_in_el;
1765 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1766 	struct ocfs2_cached_dealloc_ctxt dealloc;
1767 	struct address_space *mapping = inode->i_mapping;
1768 	struct ocfs2_extent_tree et;
1769 	struct ocfs2_path *path = NULL;
1770 	struct ocfs2_extent_list *el = NULL;
1771 	struct ocfs2_extent_rec *rec = NULL;
1772 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1773 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1774 
1775 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1776 	ocfs2_init_dealloc_ctxt(&dealloc);
1777 
1778 	trace_ocfs2_remove_inode_range(
1779 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1780 			(unsigned long long)byte_start,
1781 			(unsigned long long)byte_len);
1782 
1783 	if (byte_len == 0)
1784 		return 0;
1785 
1786 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1787 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1788 					    byte_start + byte_len, 0);
1789 		if (ret) {
1790 			mlog_errno(ret);
1791 			goto out;
1792 		}
1793 		/*
1794 		 * There's no need to get fancy with the page cache
1795 		 * truncate of an inline-data inode. We're talking
1796 		 * about less than a page here, which will be cached
1797 		 * in the dinode buffer anyway.
1798 		 */
1799 		unmap_mapping_range(mapping, 0, 0, 0);
1800 		truncate_inode_pages(mapping, 0);
1801 		goto out;
1802 	}
1803 
1804 	/*
1805 	 * For reflinks, we may need to CoW 2 clusters which might be
1806 	 * partially zero'd later, if hole's start and end offset were
1807 	 * within one cluster(means is not exactly aligned to clustersize).
1808 	 */
1809 
1810 	if (ocfs2_is_refcount_inode(inode)) {
1811 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1812 		if (ret) {
1813 			mlog_errno(ret);
1814 			goto out;
1815 		}
1816 
1817 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1818 		if (ret) {
1819 			mlog_errno(ret);
1820 			goto out;
1821 		}
1822 	}
1823 
1824 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1825 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1826 	cluster_in_el = trunc_end;
1827 
1828 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1829 	if (ret) {
1830 		mlog_errno(ret);
1831 		goto out;
1832 	}
1833 
1834 	path = ocfs2_new_path_from_et(&et);
1835 	if (!path) {
1836 		ret = -ENOMEM;
1837 		mlog_errno(ret);
1838 		goto out;
1839 	}
1840 
1841 	while (trunc_end > trunc_start) {
1842 
1843 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1844 				      cluster_in_el);
1845 		if (ret) {
1846 			mlog_errno(ret);
1847 			goto out;
1848 		}
1849 
1850 		el = path_leaf_el(path);
1851 
1852 		i = ocfs2_find_rec(el, trunc_end);
1853 		/*
1854 		 * Need to go to previous extent block.
1855 		 */
1856 		if (i < 0) {
1857 			if (path->p_tree_depth == 0)
1858 				break;
1859 
1860 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1861 							    path,
1862 							    &cluster_in_el);
1863 			if (ret) {
1864 				mlog_errno(ret);
1865 				goto out;
1866 			}
1867 
1868 			/*
1869 			 * We've reached the leftmost extent block,
1870 			 * it's safe to leave.
1871 			 */
1872 			if (cluster_in_el == 0)
1873 				break;
1874 
1875 			/*
1876 			 * The 'pos' searched for previous extent block is
1877 			 * always one cluster less than actual trunc_end.
1878 			 */
1879 			trunc_end = cluster_in_el + 1;
1880 
1881 			ocfs2_reinit_path(path, 1);
1882 
1883 			continue;
1884 
1885 		} else
1886 			rec = &el->l_recs[i];
1887 
1888 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1889 				     &trunc_len, &trunc_end, &blkno, &done);
1890 		if (done)
1891 			break;
1892 
1893 		flags = rec->e_flags;
1894 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1895 
1896 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1897 					       phys_cpos, trunc_len, flags,
1898 					       &dealloc, refcount_loc, false);
1899 		if (ret < 0) {
1900 			mlog_errno(ret);
1901 			goto out;
1902 		}
1903 
1904 		cluster_in_el = trunc_end;
1905 
1906 		ocfs2_reinit_path(path, 1);
1907 	}
1908 
1909 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1910 
1911 out:
1912 	ocfs2_free_path(path);
1913 	ocfs2_schedule_truncate_log_flush(osb, 1);
1914 	ocfs2_run_deallocs(osb, &dealloc);
1915 
1916 	return ret;
1917 }
1918 
1919 /*
1920  * Parts of this function taken from xfs_change_file_space()
1921  */
1922 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1923 				     loff_t f_pos, unsigned int cmd,
1924 				     struct ocfs2_space_resv *sr,
1925 				     int change_size)
1926 {
1927 	int ret;
1928 	s64 llen;
1929 	loff_t size, orig_isize;
1930 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1931 	struct buffer_head *di_bh = NULL;
1932 	handle_t *handle;
1933 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1934 
1935 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1936 		return -EROFS;
1937 
1938 	inode_lock(inode);
1939 
1940 	/*
1941 	 * This prevents concurrent writes on other nodes
1942 	 */
1943 	ret = ocfs2_rw_lock(inode, 1);
1944 	if (ret) {
1945 		mlog_errno(ret);
1946 		goto out;
1947 	}
1948 
1949 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1950 	if (ret) {
1951 		mlog_errno(ret);
1952 		goto out_rw_unlock;
1953 	}
1954 
1955 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1956 		ret = -EPERM;
1957 		goto out_inode_unlock;
1958 	}
1959 
1960 	switch (sr->l_whence) {
1961 	case 0: /*SEEK_SET*/
1962 		break;
1963 	case 1: /*SEEK_CUR*/
1964 		sr->l_start += f_pos;
1965 		break;
1966 	case 2: /*SEEK_END*/
1967 		sr->l_start += i_size_read(inode);
1968 		break;
1969 	default:
1970 		ret = -EINVAL;
1971 		goto out_inode_unlock;
1972 	}
1973 	sr->l_whence = 0;
1974 
1975 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1976 
1977 	if (sr->l_start < 0
1978 	    || sr->l_start > max_off
1979 	    || (sr->l_start + llen) < 0
1980 	    || (sr->l_start + llen) > max_off) {
1981 		ret = -EINVAL;
1982 		goto out_inode_unlock;
1983 	}
1984 	size = sr->l_start + sr->l_len;
1985 
1986 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1987 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1988 		if (sr->l_len <= 0) {
1989 			ret = -EINVAL;
1990 			goto out_inode_unlock;
1991 		}
1992 	}
1993 
1994 	if (file && should_remove_suid(file->f_path.dentry)) {
1995 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1996 		if (ret) {
1997 			mlog_errno(ret);
1998 			goto out_inode_unlock;
1999 		}
2000 	}
2001 
2002 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2003 	switch (cmd) {
2004 	case OCFS2_IOC_RESVSP:
2005 	case OCFS2_IOC_RESVSP64:
2006 		/*
2007 		 * This takes unsigned offsets, but the signed ones we
2008 		 * pass have been checked against overflow above.
2009 		 */
2010 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2011 						       sr->l_len);
2012 		break;
2013 	case OCFS2_IOC_UNRESVSP:
2014 	case OCFS2_IOC_UNRESVSP64:
2015 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2016 					       sr->l_len);
2017 		break;
2018 	default:
2019 		ret = -EINVAL;
2020 	}
2021 
2022 	orig_isize = i_size_read(inode);
2023 	/* zeroout eof blocks in the cluster. */
2024 	if (!ret && change_size && orig_isize < size) {
2025 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2026 					size - orig_isize);
2027 		if (!ret)
2028 			i_size_write(inode, size);
2029 	}
2030 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2031 	if (ret) {
2032 		mlog_errno(ret);
2033 		goto out_inode_unlock;
2034 	}
2035 
2036 	/*
2037 	 * We update c/mtime for these changes
2038 	 */
2039 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2040 	if (IS_ERR(handle)) {
2041 		ret = PTR_ERR(handle);
2042 		mlog_errno(ret);
2043 		goto out_inode_unlock;
2044 	}
2045 
2046 	inode->i_ctime = inode->i_mtime = current_time(inode);
2047 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2048 	if (ret < 0)
2049 		mlog_errno(ret);
2050 
2051 	if (file && (file->f_flags & O_SYNC))
2052 		handle->h_sync = 1;
2053 
2054 	ocfs2_commit_trans(osb, handle);
2055 
2056 out_inode_unlock:
2057 	brelse(di_bh);
2058 	ocfs2_inode_unlock(inode, 1);
2059 out_rw_unlock:
2060 	ocfs2_rw_unlock(inode, 1);
2061 
2062 out:
2063 	inode_unlock(inode);
2064 	return ret;
2065 }
2066 
2067 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2068 			    struct ocfs2_space_resv *sr)
2069 {
2070 	struct inode *inode = file_inode(file);
2071 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2072 	int ret;
2073 
2074 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2075 	    !ocfs2_writes_unwritten_extents(osb))
2076 		return -ENOTTY;
2077 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2078 		 !ocfs2_sparse_alloc(osb))
2079 		return -ENOTTY;
2080 
2081 	if (!S_ISREG(inode->i_mode))
2082 		return -EINVAL;
2083 
2084 	if (!(file->f_mode & FMODE_WRITE))
2085 		return -EBADF;
2086 
2087 	ret = mnt_want_write_file(file);
2088 	if (ret)
2089 		return ret;
2090 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2091 	mnt_drop_write_file(file);
2092 	return ret;
2093 }
2094 
2095 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2096 			    loff_t len)
2097 {
2098 	struct inode *inode = file_inode(file);
2099 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2100 	struct ocfs2_space_resv sr;
2101 	int change_size = 1;
2102 	int cmd = OCFS2_IOC_RESVSP64;
2103 
2104 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2105 		return -EOPNOTSUPP;
2106 	if (!ocfs2_writes_unwritten_extents(osb))
2107 		return -EOPNOTSUPP;
2108 
2109 	if (mode & FALLOC_FL_KEEP_SIZE)
2110 		change_size = 0;
2111 
2112 	if (mode & FALLOC_FL_PUNCH_HOLE)
2113 		cmd = OCFS2_IOC_UNRESVSP64;
2114 
2115 	sr.l_whence = 0;
2116 	sr.l_start = (s64)offset;
2117 	sr.l_len = (s64)len;
2118 
2119 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2120 					 change_size);
2121 }
2122 
2123 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2124 				   size_t count)
2125 {
2126 	int ret = 0;
2127 	unsigned int extent_flags;
2128 	u32 cpos, clusters, extent_len, phys_cpos;
2129 	struct super_block *sb = inode->i_sb;
2130 
2131 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2132 	    !ocfs2_is_refcount_inode(inode) ||
2133 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2134 		return 0;
2135 
2136 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2137 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2138 
2139 	while (clusters) {
2140 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2141 					 &extent_flags);
2142 		if (ret < 0) {
2143 			mlog_errno(ret);
2144 			goto out;
2145 		}
2146 
2147 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2148 			ret = 1;
2149 			break;
2150 		}
2151 
2152 		if (extent_len > clusters)
2153 			extent_len = clusters;
2154 
2155 		clusters -= extent_len;
2156 		cpos += extent_len;
2157 	}
2158 out:
2159 	return ret;
2160 }
2161 
2162 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2163 {
2164 	int blockmask = inode->i_sb->s_blocksize - 1;
2165 	loff_t final_size = pos + count;
2166 
2167 	if ((pos & blockmask) || (final_size & blockmask))
2168 		return 1;
2169 	return 0;
2170 }
2171 
2172 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2173 					    struct buffer_head **di_bh,
2174 					    int meta_level,
2175 					    int write_sem,
2176 					    int wait)
2177 {
2178 	int ret = 0;
2179 
2180 	if (wait)
2181 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2182 	else
2183 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2184 	if (ret < 0)
2185 		goto out;
2186 
2187 	if (wait) {
2188 		if (write_sem)
2189 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2190 		else
2191 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2192 	} else {
2193 		if (write_sem)
2194 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2195 		else
2196 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2197 
2198 		if (!ret) {
2199 			ret = -EAGAIN;
2200 			goto out_unlock;
2201 		}
2202 	}
2203 
2204 	return ret;
2205 
2206 out_unlock:
2207 	brelse(*di_bh);
2208 	*di_bh = NULL;
2209 	ocfs2_inode_unlock(inode, meta_level);
2210 out:
2211 	return ret;
2212 }
2213 
2214 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2215 					       struct buffer_head **di_bh,
2216 					       int meta_level,
2217 					       int write_sem)
2218 {
2219 	if (write_sem)
2220 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2221 	else
2222 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2223 
2224 	brelse(*di_bh);
2225 	*di_bh = NULL;
2226 
2227 	if (meta_level >= 0)
2228 		ocfs2_inode_unlock(inode, meta_level);
2229 }
2230 
2231 static int ocfs2_prepare_inode_for_write(struct file *file,
2232 					 loff_t pos, size_t count, int wait)
2233 {
2234 	int ret = 0, meta_level = 0, overwrite_io = 0;
2235 	int write_sem = 0;
2236 	struct dentry *dentry = file->f_path.dentry;
2237 	struct inode *inode = d_inode(dentry);
2238 	struct buffer_head *di_bh = NULL;
2239 	u32 cpos;
2240 	u32 clusters;
2241 
2242 	/*
2243 	 * We start with a read level meta lock and only jump to an ex
2244 	 * if we need to make modifications here.
2245 	 */
2246 	for(;;) {
2247 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2248 						       &di_bh,
2249 						       meta_level,
2250 						       write_sem,
2251 						       wait);
2252 		if (ret < 0) {
2253 			if (ret != -EAGAIN)
2254 				mlog_errno(ret);
2255 			goto out;
2256 		}
2257 
2258 		/*
2259 		 * Check if IO will overwrite allocated blocks in case
2260 		 * IOCB_NOWAIT flag is set.
2261 		 */
2262 		if (!wait && !overwrite_io) {
2263 			overwrite_io = 1;
2264 
2265 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2266 			if (ret < 0) {
2267 				if (ret != -EAGAIN)
2268 					mlog_errno(ret);
2269 				goto out_unlock;
2270 			}
2271 		}
2272 
2273 		/* Clear suid / sgid if necessary. We do this here
2274 		 * instead of later in the write path because
2275 		 * remove_suid() calls ->setattr without any hint that
2276 		 * we may have already done our cluster locking. Since
2277 		 * ocfs2_setattr() *must* take cluster locks to
2278 		 * proceed, this will lead us to recursively lock the
2279 		 * inode. There's also the dinode i_size state which
2280 		 * can be lost via setattr during extending writes (we
2281 		 * set inode->i_size at the end of a write. */
2282 		if (should_remove_suid(dentry)) {
2283 			if (meta_level == 0) {
2284 				ocfs2_inode_unlock_for_extent_tree(inode,
2285 								   &di_bh,
2286 								   meta_level,
2287 								   write_sem);
2288 				meta_level = 1;
2289 				continue;
2290 			}
2291 
2292 			ret = ocfs2_write_remove_suid(inode);
2293 			if (ret < 0) {
2294 				mlog_errno(ret);
2295 				goto out_unlock;
2296 			}
2297 		}
2298 
2299 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2300 		if (ret == 1) {
2301 			ocfs2_inode_unlock_for_extent_tree(inode,
2302 							   &di_bh,
2303 							   meta_level,
2304 							   write_sem);
2305 			meta_level = 1;
2306 			write_sem = 1;
2307 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2308 							       &di_bh,
2309 							       meta_level,
2310 							       write_sem,
2311 							       wait);
2312 			if (ret < 0) {
2313 				if (ret != -EAGAIN)
2314 					mlog_errno(ret);
2315 				goto out;
2316 			}
2317 
2318 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2319 			clusters =
2320 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2321 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2322 		}
2323 
2324 		if (ret < 0) {
2325 			if (ret != -EAGAIN)
2326 				mlog_errno(ret);
2327 			goto out_unlock;
2328 		}
2329 
2330 		break;
2331 	}
2332 
2333 out_unlock:
2334 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2335 					    pos, count, wait);
2336 
2337 	ocfs2_inode_unlock_for_extent_tree(inode,
2338 					   &di_bh,
2339 					   meta_level,
2340 					   write_sem);
2341 
2342 out:
2343 	return ret;
2344 }
2345 
2346 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2347 				    struct iov_iter *from)
2348 {
2349 	int rw_level;
2350 	ssize_t written = 0;
2351 	ssize_t ret;
2352 	size_t count = iov_iter_count(from);
2353 	struct file *file = iocb->ki_filp;
2354 	struct inode *inode = file_inode(file);
2355 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2356 	int full_coherency = !(osb->s_mount_opt &
2357 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2358 	void *saved_ki_complete = NULL;
2359 	int append_write = ((iocb->ki_pos + count) >=
2360 			i_size_read(inode) ? 1 : 0);
2361 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2362 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2363 
2364 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2365 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2366 		file->f_path.dentry->d_name.len,
2367 		file->f_path.dentry->d_name.name,
2368 		(unsigned int)from->nr_segs);	/* GRRRRR */
2369 
2370 	if (!direct_io && nowait)
2371 		return -EOPNOTSUPP;
2372 
2373 	if (count == 0)
2374 		return 0;
2375 
2376 	if (nowait) {
2377 		if (!inode_trylock(inode))
2378 			return -EAGAIN;
2379 	} else
2380 		inode_lock(inode);
2381 
2382 	/*
2383 	 * Concurrent O_DIRECT writes are allowed with
2384 	 * mount_option "coherency=buffered".
2385 	 * For append write, we must take rw EX.
2386 	 */
2387 	rw_level = (!direct_io || full_coherency || append_write);
2388 
2389 	if (nowait)
2390 		ret = ocfs2_try_rw_lock(inode, rw_level);
2391 	else
2392 		ret = ocfs2_rw_lock(inode, rw_level);
2393 	if (ret < 0) {
2394 		if (ret != -EAGAIN)
2395 			mlog_errno(ret);
2396 		goto out_mutex;
2397 	}
2398 
2399 	/*
2400 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2401 	 * inode_lock to guarantee coherency.
2402 	 */
2403 	if (direct_io && full_coherency) {
2404 		/*
2405 		 * We need to take and drop the inode lock to force
2406 		 * other nodes to drop their caches.  Buffered I/O
2407 		 * already does this in write_begin().
2408 		 */
2409 		if (nowait)
2410 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2411 		else
2412 			ret = ocfs2_inode_lock(inode, NULL, 1);
2413 		if (ret < 0) {
2414 			if (ret != -EAGAIN)
2415 				mlog_errno(ret);
2416 			goto out;
2417 		}
2418 
2419 		ocfs2_inode_unlock(inode, 1);
2420 	}
2421 
2422 	ret = generic_write_checks(iocb, from);
2423 	if (ret <= 0) {
2424 		if (ret)
2425 			mlog_errno(ret);
2426 		goto out;
2427 	}
2428 	count = ret;
2429 
2430 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2431 	if (ret < 0) {
2432 		if (ret != -EAGAIN)
2433 			mlog_errno(ret);
2434 		goto out;
2435 	}
2436 
2437 	if (direct_io && !is_sync_kiocb(iocb) &&
2438 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2439 		/*
2440 		 * Make it a sync io if it's an unaligned aio.
2441 		 */
2442 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2443 	}
2444 
2445 	/* communicate with ocfs2_dio_end_io */
2446 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2447 
2448 	written = __generic_file_write_iter(iocb, from);
2449 	/* buffered aio wouldn't have proper lock coverage today */
2450 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2451 
2452 	/*
2453 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2454 	 * function pointer which is called when o_direct io completes so that
2455 	 * it can unlock our rw lock.
2456 	 * Unfortunately there are error cases which call end_io and others
2457 	 * that don't.  so we don't have to unlock the rw_lock if either an
2458 	 * async dio is going to do it in the future or an end_io after an
2459 	 * error has already done it.
2460 	 */
2461 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2462 		rw_level = -1;
2463 	}
2464 
2465 	if (unlikely(written <= 0))
2466 		goto out;
2467 
2468 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2469 	    IS_SYNC(inode)) {
2470 		ret = filemap_fdatawrite_range(file->f_mapping,
2471 					       iocb->ki_pos - written,
2472 					       iocb->ki_pos - 1);
2473 		if (ret < 0)
2474 			written = ret;
2475 
2476 		if (!ret) {
2477 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2478 			if (ret < 0)
2479 				written = ret;
2480 		}
2481 
2482 		if (!ret)
2483 			ret = filemap_fdatawait_range(file->f_mapping,
2484 						      iocb->ki_pos - written,
2485 						      iocb->ki_pos - 1);
2486 	}
2487 
2488 out:
2489 	if (saved_ki_complete)
2490 		xchg(&iocb->ki_complete, saved_ki_complete);
2491 
2492 	if (rw_level != -1)
2493 		ocfs2_rw_unlock(inode, rw_level);
2494 
2495 out_mutex:
2496 	inode_unlock(inode);
2497 
2498 	if (written)
2499 		ret = written;
2500 	return ret;
2501 }
2502 
2503 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2504 				   struct iov_iter *to)
2505 {
2506 	int ret = 0, rw_level = -1, lock_level = 0;
2507 	struct file *filp = iocb->ki_filp;
2508 	struct inode *inode = file_inode(filp);
2509 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2510 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2511 
2512 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2513 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2514 			filp->f_path.dentry->d_name.len,
2515 			filp->f_path.dentry->d_name.name,
2516 			to->nr_segs);	/* GRRRRR */
2517 
2518 
2519 	if (!inode) {
2520 		ret = -EINVAL;
2521 		mlog_errno(ret);
2522 		goto bail;
2523 	}
2524 
2525 	if (!direct_io && nowait)
2526 		return -EOPNOTSUPP;
2527 
2528 	/*
2529 	 * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2530 	 * need locks to protect pending reads from racing with truncate.
2531 	 */
2532 	if (direct_io) {
2533 		if (nowait)
2534 			ret = ocfs2_try_rw_lock(inode, 0);
2535 		else
2536 			ret = ocfs2_rw_lock(inode, 0);
2537 
2538 		if (ret < 0) {
2539 			if (ret != -EAGAIN)
2540 				mlog_errno(ret);
2541 			goto bail;
2542 		}
2543 		rw_level = 0;
2544 		/* communicate with ocfs2_dio_end_io */
2545 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2546 	}
2547 
2548 	/*
2549 	 * We're fine letting folks race truncates and extending
2550 	 * writes with read across the cluster, just like they can
2551 	 * locally. Hence no rw_lock during read.
2552 	 *
2553 	 * Take and drop the meta data lock to update inode fields
2554 	 * like i_size. This allows the checks down below
2555 	 * generic_file_read_iter() a chance of actually working.
2556 	 */
2557 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2558 				     !nowait);
2559 	if (ret < 0) {
2560 		if (ret != -EAGAIN)
2561 			mlog_errno(ret);
2562 		goto bail;
2563 	}
2564 	ocfs2_inode_unlock(inode, lock_level);
2565 
2566 	ret = generic_file_read_iter(iocb, to);
2567 	trace_generic_file_read_iter_ret(ret);
2568 
2569 	/* buffered aio wouldn't have proper lock coverage today */
2570 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2571 
2572 	/* see ocfs2_file_write_iter */
2573 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2574 		rw_level = -1;
2575 	}
2576 
2577 bail:
2578 	if (rw_level != -1)
2579 		ocfs2_rw_unlock(inode, rw_level);
2580 
2581 	return ret;
2582 }
2583 
2584 /* Refer generic_file_llseek_unlocked() */
2585 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2586 {
2587 	struct inode *inode = file->f_mapping->host;
2588 	int ret = 0;
2589 
2590 	inode_lock(inode);
2591 
2592 	switch (whence) {
2593 	case SEEK_SET:
2594 		break;
2595 	case SEEK_END:
2596 		/* SEEK_END requires the OCFS2 inode lock for the file
2597 		 * because it references the file's size.
2598 		 */
2599 		ret = ocfs2_inode_lock(inode, NULL, 0);
2600 		if (ret < 0) {
2601 			mlog_errno(ret);
2602 			goto out;
2603 		}
2604 		offset += i_size_read(inode);
2605 		ocfs2_inode_unlock(inode, 0);
2606 		break;
2607 	case SEEK_CUR:
2608 		if (offset == 0) {
2609 			offset = file->f_pos;
2610 			goto out;
2611 		}
2612 		offset += file->f_pos;
2613 		break;
2614 	case SEEK_DATA:
2615 	case SEEK_HOLE:
2616 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2617 		if (ret)
2618 			goto out;
2619 		break;
2620 	default:
2621 		ret = -EINVAL;
2622 		goto out;
2623 	}
2624 
2625 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2626 
2627 out:
2628 	inode_unlock(inode);
2629 	if (ret)
2630 		return ret;
2631 	return offset;
2632 }
2633 
2634 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2635 				     struct file *file_out, loff_t pos_out,
2636 				     loff_t len, unsigned int remap_flags)
2637 {
2638 	struct inode *inode_in = file_inode(file_in);
2639 	struct inode *inode_out = file_inode(file_out);
2640 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2641 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2642 	bool same_inode = (inode_in == inode_out);
2643 	loff_t remapped = 0;
2644 	ssize_t ret;
2645 
2646 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2647 		return -EINVAL;
2648 	if (!ocfs2_refcount_tree(osb))
2649 		return -EOPNOTSUPP;
2650 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2651 		return -EROFS;
2652 
2653 	/* Lock both files against IO */
2654 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2655 	if (ret)
2656 		return ret;
2657 
2658 	/* Check file eligibility and prepare for block sharing. */
2659 	ret = -EINVAL;
2660 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2661 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2662 		goto out_unlock;
2663 
2664 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2665 			&len, remap_flags);
2666 	if (ret < 0 || len == 0)
2667 		goto out_unlock;
2668 
2669 	/* Lock out changes to the allocation maps and remap. */
2670 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2671 	if (!same_inode)
2672 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2673 				  SINGLE_DEPTH_NESTING);
2674 
2675 	/* Zap any page cache for the destination file's range. */
2676 	truncate_inode_pages_range(&inode_out->i_data,
2677 				   round_down(pos_out, PAGE_SIZE),
2678 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2679 
2680 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2681 			inode_out, out_bh, pos_out, len);
2682 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2683 	if (!same_inode)
2684 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2685 	if (remapped < 0) {
2686 		ret = remapped;
2687 		mlog_errno(ret);
2688 		goto out_unlock;
2689 	}
2690 
2691 	/*
2692 	 * Empty the extent map so that we may get the right extent
2693 	 * record from the disk.
2694 	 */
2695 	ocfs2_extent_map_trunc(inode_in, 0);
2696 	ocfs2_extent_map_trunc(inode_out, 0);
2697 
2698 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2699 	if (ret) {
2700 		mlog_errno(ret);
2701 		goto out_unlock;
2702 	}
2703 
2704 out_unlock:
2705 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2706 	return remapped > 0 ? remapped : ret;
2707 }
2708 
2709 const struct inode_operations ocfs2_file_iops = {
2710 	.setattr	= ocfs2_setattr,
2711 	.getattr	= ocfs2_getattr,
2712 	.permission	= ocfs2_permission,
2713 	.listxattr	= ocfs2_listxattr,
2714 	.fiemap		= ocfs2_fiemap,
2715 	.get_acl	= ocfs2_iop_get_acl,
2716 	.set_acl	= ocfs2_iop_set_acl,
2717 	.fileattr_get	= ocfs2_fileattr_get,
2718 	.fileattr_set	= ocfs2_fileattr_set,
2719 };
2720 
2721 const struct inode_operations ocfs2_special_file_iops = {
2722 	.setattr	= ocfs2_setattr,
2723 	.getattr	= ocfs2_getattr,
2724 	.permission	= ocfs2_permission,
2725 	.get_acl	= ocfs2_iop_get_acl,
2726 	.set_acl	= ocfs2_iop_set_acl,
2727 };
2728 
2729 /*
2730  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2731  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2732  */
2733 const struct file_operations ocfs2_fops = {
2734 	.llseek		= ocfs2_file_llseek,
2735 	.mmap		= ocfs2_mmap,
2736 	.fsync		= ocfs2_sync_file,
2737 	.release	= ocfs2_file_release,
2738 	.open		= ocfs2_file_open,
2739 	.read_iter	= ocfs2_file_read_iter,
2740 	.write_iter	= ocfs2_file_write_iter,
2741 	.unlocked_ioctl	= ocfs2_ioctl,
2742 #ifdef CONFIG_COMPAT
2743 	.compat_ioctl   = ocfs2_compat_ioctl,
2744 #endif
2745 	.lock		= ocfs2_lock,
2746 	.flock		= ocfs2_flock,
2747 	.splice_read	= generic_file_splice_read,
2748 	.splice_write	= iter_file_splice_write,
2749 	.fallocate	= ocfs2_fallocate,
2750 	.remap_file_range = ocfs2_remap_file_range,
2751 };
2752 
2753 const struct file_operations ocfs2_dops = {
2754 	.llseek		= generic_file_llseek,
2755 	.read		= generic_read_dir,
2756 	.iterate	= ocfs2_readdir,
2757 	.fsync		= ocfs2_sync_file,
2758 	.release	= ocfs2_dir_release,
2759 	.open		= ocfs2_dir_open,
2760 	.unlocked_ioctl	= ocfs2_ioctl,
2761 #ifdef CONFIG_COMPAT
2762 	.compat_ioctl   = ocfs2_compat_ioctl,
2763 #endif
2764 	.lock		= ocfs2_lock,
2765 	.flock		= ocfs2_flock,
2766 };
2767 
2768 /*
2769  * POSIX-lockless variants of our file_operations.
2770  *
2771  * These will be used if the underlying cluster stack does not support
2772  * posix file locking, if the user passes the "localflocks" mount
2773  * option, or if we have a local-only fs.
2774  *
2775  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2776  * so we still want it in the case of no stack support for
2777  * plocks. Internally, it will do the right thing when asked to ignore
2778  * the cluster.
2779  */
2780 const struct file_operations ocfs2_fops_no_plocks = {
2781 	.llseek		= ocfs2_file_llseek,
2782 	.mmap		= ocfs2_mmap,
2783 	.fsync		= ocfs2_sync_file,
2784 	.release	= ocfs2_file_release,
2785 	.open		= ocfs2_file_open,
2786 	.read_iter	= ocfs2_file_read_iter,
2787 	.write_iter	= ocfs2_file_write_iter,
2788 	.unlocked_ioctl	= ocfs2_ioctl,
2789 #ifdef CONFIG_COMPAT
2790 	.compat_ioctl   = ocfs2_compat_ioctl,
2791 #endif
2792 	.flock		= ocfs2_flock,
2793 	.splice_read	= generic_file_splice_read,
2794 	.splice_write	= iter_file_splice_write,
2795 	.fallocate	= ocfs2_fallocate,
2796 	.remap_file_range = ocfs2_remap_file_range,
2797 };
2798 
2799 const struct file_operations ocfs2_dops_no_plocks = {
2800 	.llseek		= generic_file_llseek,
2801 	.read		= generic_read_dir,
2802 	.iterate	= ocfs2_readdir,
2803 	.fsync		= ocfs2_sync_file,
2804 	.release	= ocfs2_dir_release,
2805 	.open		= ocfs2_dir_open,
2806 	.unlocked_ioctl	= ocfs2_ioctl,
2807 #ifdef CONFIG_COMPAT
2808 	.compat_ioctl   = ocfs2_compat_ioctl,
2809 #endif
2810 	.flock		= ocfs2_flock,
2811 };
2812