xref: /linux/fs/ocfs2/file.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 
28 #include <cluster/masklog.h>
29 
30 #include "ocfs2.h"
31 
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51 
52 #include "buffer_head_io.h"
53 
54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 	struct ocfs2_file_private *fp;
57 
58 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 	if (!fp)
60 		return -ENOMEM;
61 
62 	fp->fp_file = file;
63 	mutex_init(&fp->fp_mutex);
64 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 	file->private_data = fp;
66 
67 	return 0;
68 }
69 
70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 	struct ocfs2_file_private *fp = file->private_data;
73 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 
75 	if (fp) {
76 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 		ocfs2_lock_res_free(&fp->fp_flock);
78 		kfree(fp);
79 		file->private_data = NULL;
80 	}
81 }
82 
83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 	int status;
86 	int mode = file->f_flags;
87 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
88 
89 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 			      (unsigned long long)oi->ip_blkno,
91 			      file->f_path.dentry->d_name.len,
92 			      file->f_path.dentry->d_name.name, mode);
93 
94 	if (file->f_mode & FMODE_WRITE) {
95 		status = dquot_initialize(inode);
96 		if (status)
97 			goto leave;
98 	}
99 
100 	spin_lock(&oi->ip_lock);
101 
102 	/* Check that the inode hasn't been wiped from disk by another
103 	 * node. If it hasn't then we're safe as long as we hold the
104 	 * spin lock until our increment of open count. */
105 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 		spin_unlock(&oi->ip_lock);
107 
108 		status = -ENOENT;
109 		goto leave;
110 	}
111 
112 	if (mode & O_DIRECT)
113 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115 	oi->ip_open_count++;
116 	spin_unlock(&oi->ip_lock);
117 
118 	status = ocfs2_init_file_private(inode, file);
119 	if (status) {
120 		/*
121 		 * We want to set open count back if we're failing the
122 		 * open.
123 		 */
124 		spin_lock(&oi->ip_lock);
125 		oi->ip_open_count--;
126 		spin_unlock(&oi->ip_lock);
127 	}
128 
129 	file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132 	return status;
133 }
134 
135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139 	spin_lock(&oi->ip_lock);
140 	if (!--oi->ip_open_count)
141 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 				 oi->ip_blkno,
145 				 file->f_path.dentry->d_name.len,
146 				 file->f_path.dentry->d_name.name,
147 				 oi->ip_open_count);
148 	spin_unlock(&oi->ip_lock);
149 
150 	ocfs2_free_file_private(inode, file);
151 
152 	return 0;
153 }
154 
155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 	return ocfs2_init_file_private(inode, file);
158 }
159 
160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 	ocfs2_free_file_private(inode, file);
163 	return 0;
164 }
165 
166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 			   int datasync)
168 {
169 	int err = 0;
170 	struct inode *inode = file->f_mapping->host;
171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 	journal_t *journal = osb->journal->j_journal;
174 	int ret;
175 	tid_t commit_tid;
176 	bool needs_barrier = false;
177 
178 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 			      oi->ip_blkno,
180 			      file->f_path.dentry->d_name.len,
181 			      file->f_path.dentry->d_name.name,
182 			      (unsigned long long)datasync);
183 
184 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 		return -EROFS;
186 
187 	err = file_write_and_wait_range(file, start, end);
188 	if (err)
189 		return err;
190 
191 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 	if (journal->j_flags & JBD2_BARRIER &&
193 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 		needs_barrier = true;
195 	err = jbd2_complete_transaction(journal, commit_tid);
196 	if (needs_barrier) {
197 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
198 		if (!err)
199 			err = ret;
200 	}
201 
202 	if (err)
203 		mlog_errno(err);
204 
205 	return (err < 0) ? -EIO : 0;
206 }
207 
208 int ocfs2_should_update_atime(struct inode *inode,
209 			      struct vfsmount *vfsmnt)
210 {
211 	struct timespec64 now;
212 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 		return 0;
216 
217 	if ((inode->i_flags & S_NOATIME) ||
218 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 		return 0;
220 
221 	/*
222 	 * We can be called with no vfsmnt structure - NFSD will
223 	 * sometimes do this.
224 	 *
225 	 * Note that our action here is different than touch_atime() -
226 	 * if we can't tell whether this is a noatime mount, then we
227 	 * don't know whether to trust the value of s_atime_quantum.
228 	 */
229 	if (vfsmnt == NULL)
230 		return 0;
231 
232 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 		return 0;
235 
236 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_mutex to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 	truncate_inode_pages(inode->i_mapping, new_i_size);
483 
484 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 					       i_size_read(inode), 1);
487 		if (status)
488 			mlog_errno(status);
489 
490 		goto bail_unlock_sem;
491 	}
492 
493 	/* alright, we're going to need to do a full blown alloc size
494 	 * change. Orphan the inode so that recovery can complete the
495 	 * truncate if necessary. This does the task of marking
496 	 * i_size. */
497 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 	if (status < 0) {
499 		mlog_errno(status);
500 		goto bail_unlock_sem;
501 	}
502 
503 	status = ocfs2_commit_truncate(osb, inode, di_bh);
504 	if (status < 0) {
505 		mlog_errno(status);
506 		goto bail_unlock_sem;
507 	}
508 
509 	/* TODO: orphan dir cleanup here. */
510 bail_unlock_sem:
511 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
512 
513 bail:
514 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516 
517 	return status;
518 }
519 
520 /*
521  * extend file allocation only here.
522  * we'll update all the disk stuff, and oip->alloc_size
523  *
524  * expect stuff to be locked, a transaction started and enough data /
525  * metadata reservations in the contexts.
526  *
527  * Will return -EAGAIN, and a reason if a restart is needed.
528  * If passed in, *reason will always be set, even in error.
529  */
530 int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 			 struct inode *inode,
532 			 u32 *logical_offset,
533 			 u32 clusters_to_add,
534 			 int mark_unwritten,
535 			 struct buffer_head *fe_bh,
536 			 handle_t *handle,
537 			 struct ocfs2_alloc_context *data_ac,
538 			 struct ocfs2_alloc_context *meta_ac,
539 			 enum ocfs2_alloc_restarted *reason_ret)
540 {
541 	int ret;
542 	struct ocfs2_extent_tree et;
543 
544 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 					  clusters_to_add, mark_unwritten,
547 					  data_ac, meta_ac, reason_ret);
548 
549 	return ret;
550 }
551 
552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 				   u32 clusters_to_add, int mark_unwritten)
554 {
555 	int status = 0;
556 	int restart_func = 0;
557 	int credits;
558 	u32 prev_clusters;
559 	struct buffer_head *bh = NULL;
560 	struct ocfs2_dinode *fe = NULL;
561 	handle_t *handle = NULL;
562 	struct ocfs2_alloc_context *data_ac = NULL;
563 	struct ocfs2_alloc_context *meta_ac = NULL;
564 	enum ocfs2_alloc_restarted why = RESTART_NONE;
565 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 	struct ocfs2_extent_tree et;
567 	int did_quota = 0;
568 
569 	/*
570 	 * Unwritten extent only exists for file systems which
571 	 * support holes.
572 	 */
573 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574 
575 	status = ocfs2_read_inode_block(inode, &bh);
576 	if (status < 0) {
577 		mlog_errno(status);
578 		goto leave;
579 	}
580 	fe = (struct ocfs2_dinode *) bh->b_data;
581 
582 restart_all:
583 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584 
585 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 				       &data_ac, &meta_ac);
588 	if (status) {
589 		mlog_errno(status);
590 		goto leave;
591 	}
592 
593 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 	handle = ocfs2_start_trans(osb, credits);
595 	if (IS_ERR(handle)) {
596 		status = PTR_ERR(handle);
597 		handle = NULL;
598 		mlog_errno(status);
599 		goto leave;
600 	}
601 
602 restarted_transaction:
603 	trace_ocfs2_extend_allocation(
604 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
605 		(unsigned long long)i_size_read(inode),
606 		le32_to_cpu(fe->i_clusters), clusters_to_add,
607 		why, restart_func);
608 
609 	status = dquot_alloc_space_nodirty(inode,
610 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 	if (status)
612 		goto leave;
613 	did_quota = 1;
614 
615 	/* reserve a write to the file entry early on - that we if we
616 	 * run out of credits in the allocation path, we can still
617 	 * update i_size. */
618 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 					 OCFS2_JOURNAL_ACCESS_WRITE);
620 	if (status < 0) {
621 		mlog_errno(status);
622 		goto leave;
623 	}
624 
625 	prev_clusters = OCFS2_I(inode)->ip_clusters;
626 
627 	status = ocfs2_add_inode_data(osb,
628 				      inode,
629 				      &logical_start,
630 				      clusters_to_add,
631 				      mark_unwritten,
632 				      bh,
633 				      handle,
634 				      data_ac,
635 				      meta_ac,
636 				      &why);
637 	if ((status < 0) && (status != -EAGAIN)) {
638 		if (status != -ENOSPC)
639 			mlog_errno(status);
640 		goto leave;
641 	}
642 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 	ocfs2_journal_dirty(handle, bh);
644 
645 	spin_lock(&OCFS2_I(inode)->ip_lock);
646 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 	spin_unlock(&OCFS2_I(inode)->ip_lock);
648 	/* Release unused quota reservation */
649 	dquot_free_space(inode,
650 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 	did_quota = 0;
652 
653 	if (why != RESTART_NONE && clusters_to_add) {
654 		if (why == RESTART_META) {
655 			restart_func = 1;
656 			status = 0;
657 		} else {
658 			BUG_ON(why != RESTART_TRANS);
659 
660 			status = ocfs2_allocate_extend_trans(handle, 1);
661 			if (status < 0) {
662 				/* handle still has to be committed at
663 				 * this point. */
664 				status = -ENOMEM;
665 				mlog_errno(status);
666 				goto leave;
667 			}
668 			goto restarted_transaction;
669 		}
670 	}
671 
672 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 	     le32_to_cpu(fe->i_clusters),
674 	     (unsigned long long)le64_to_cpu(fe->i_size),
675 	     OCFS2_I(inode)->ip_clusters,
676 	     (unsigned long long)i_size_read(inode));
677 
678 leave:
679 	if (status < 0 && did_quota)
680 		dquot_free_space(inode,
681 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 	if (handle) {
683 		ocfs2_commit_trans(osb, handle);
684 		handle = NULL;
685 	}
686 	if (data_ac) {
687 		ocfs2_free_alloc_context(data_ac);
688 		data_ac = NULL;
689 	}
690 	if (meta_ac) {
691 		ocfs2_free_alloc_context(meta_ac);
692 		meta_ac = NULL;
693 	}
694 	if ((!status) && restart_func) {
695 		restart_func = 0;
696 		goto restart_all;
697 	}
698 	brelse(bh);
699 	bh = NULL;
700 
701 	return status;
702 }
703 
704 /*
705  * While a write will already be ordering the data, a truncate will not.
706  * Thus, we need to explicitly order the zeroed pages.
707  */
708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 						      struct buffer_head *di_bh,
710 						      loff_t start_byte,
711 						      loff_t length)
712 {
713 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714 	handle_t *handle = NULL;
715 	int ret = 0;
716 
717 	if (!ocfs2_should_order_data(inode))
718 		goto out;
719 
720 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721 	if (IS_ERR(handle)) {
722 		ret = -ENOMEM;
723 		mlog_errno(ret);
724 		goto out;
725 	}
726 
727 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728 	if (ret < 0) {
729 		mlog_errno(ret);
730 		goto out;
731 	}
732 
733 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734 				      OCFS2_JOURNAL_ACCESS_WRITE);
735 	if (ret)
736 		mlog_errno(ret);
737 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
738 
739 out:
740 	if (ret) {
741 		if (!IS_ERR(handle))
742 			ocfs2_commit_trans(osb, handle);
743 		handle = ERR_PTR(ret);
744 	}
745 	return handle;
746 }
747 
748 /* Some parts of this taken from generic_cont_expand, which turned out
749  * to be too fragile to do exactly what we need without us having to
750  * worry about recursive locking in ->write_begin() and ->write_end(). */
751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752 				 u64 abs_to, struct buffer_head *di_bh)
753 {
754 	struct address_space *mapping = inode->i_mapping;
755 	struct page *page;
756 	unsigned long index = abs_from >> PAGE_SHIFT;
757 	handle_t *handle;
758 	int ret = 0;
759 	unsigned zero_from, zero_to, block_start, block_end;
760 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761 
762 	BUG_ON(abs_from >= abs_to);
763 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764 	BUG_ON(abs_from & (inode->i_blkbits - 1));
765 
766 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767 						      abs_from,
768 						      abs_to - abs_from);
769 	if (IS_ERR(handle)) {
770 		ret = PTR_ERR(handle);
771 		goto out;
772 	}
773 
774 	page = find_or_create_page(mapping, index, GFP_NOFS);
775 	if (!page) {
776 		ret = -ENOMEM;
777 		mlog_errno(ret);
778 		goto out_commit_trans;
779 	}
780 
781 	/* Get the offsets within the page that we want to zero */
782 	zero_from = abs_from & (PAGE_SIZE - 1);
783 	zero_to = abs_to & (PAGE_SIZE - 1);
784 	if (!zero_to)
785 		zero_to = PAGE_SIZE;
786 
787 	trace_ocfs2_write_zero_page(
788 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
789 			(unsigned long long)abs_from,
790 			(unsigned long long)abs_to,
791 			index, zero_from, zero_to);
792 
793 	/* We know that zero_from is block aligned */
794 	for (block_start = zero_from; block_start < zero_to;
795 	     block_start = block_end) {
796 		block_end = block_start + i_blocksize(inode);
797 
798 		/*
799 		 * block_start is block-aligned.  Bump it by one to force
800 		 * __block_write_begin and block_commit_write to zero the
801 		 * whole block.
802 		 */
803 		ret = __block_write_begin(page, block_start + 1, 0,
804 					  ocfs2_get_block);
805 		if (ret < 0) {
806 			mlog_errno(ret);
807 			goto out_unlock;
808 		}
809 
810 
811 		/* must not update i_size! */
812 		ret = block_commit_write(page, block_start + 1,
813 					 block_start + 1);
814 		if (ret < 0)
815 			mlog_errno(ret);
816 		else
817 			ret = 0;
818 	}
819 
820 	/*
821 	 * fs-writeback will release the dirty pages without page lock
822 	 * whose offset are over inode size, the release happens at
823 	 * block_write_full_page().
824 	 */
825 	i_size_write(inode, abs_to);
826 	inode->i_blocks = ocfs2_inode_sector_count(inode);
827 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
828 	inode->i_mtime = inode->i_ctime = current_time(inode);
829 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831 	di->i_mtime_nsec = di->i_ctime_nsec;
832 	if (handle) {
833 		ocfs2_journal_dirty(handle, di_bh);
834 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
835 	}
836 
837 out_unlock:
838 	unlock_page(page);
839 	put_page(page);
840 out_commit_trans:
841 	if (handle)
842 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843 out:
844 	return ret;
845 }
846 
847 /*
848  * Find the next range to zero.  We do this in terms of bytes because
849  * that's what ocfs2_zero_extend() wants, and it is dealing with the
850  * pagecache.  We may return multiple extents.
851  *
852  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853  * needs to be zeroed.  range_start and range_end return the next zeroing
854  * range.  A subsequent call should pass the previous range_end as its
855  * zero_start.  If range_end is 0, there's nothing to do.
856  *
857  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
858  */
859 static int ocfs2_zero_extend_get_range(struct inode *inode,
860 				       struct buffer_head *di_bh,
861 				       u64 zero_start, u64 zero_end,
862 				       u64 *range_start, u64 *range_end)
863 {
864 	int rc = 0, needs_cow = 0;
865 	u32 p_cpos, zero_clusters = 0;
866 	u32 zero_cpos =
867 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869 	unsigned int num_clusters = 0;
870 	unsigned int ext_flags = 0;
871 
872 	while (zero_cpos < last_cpos) {
873 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874 					&num_clusters, &ext_flags);
875 		if (rc) {
876 			mlog_errno(rc);
877 			goto out;
878 		}
879 
880 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881 			zero_clusters = num_clusters;
882 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 				needs_cow = 1;
884 			break;
885 		}
886 
887 		zero_cpos += num_clusters;
888 	}
889 	if (!zero_clusters) {
890 		*range_end = 0;
891 		goto out;
892 	}
893 
894 	while ((zero_cpos + zero_clusters) < last_cpos) {
895 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896 					&p_cpos, &num_clusters,
897 					&ext_flags);
898 		if (rc) {
899 			mlog_errno(rc);
900 			goto out;
901 		}
902 
903 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904 			break;
905 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 			needs_cow = 1;
907 		zero_clusters += num_clusters;
908 	}
909 	if ((zero_cpos + zero_clusters) > last_cpos)
910 		zero_clusters = last_cpos - zero_cpos;
911 
912 	if (needs_cow) {
913 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914 					zero_clusters, UINT_MAX);
915 		if (rc) {
916 			mlog_errno(rc);
917 			goto out;
918 		}
919 	}
920 
921 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923 					     zero_cpos + zero_clusters);
924 
925 out:
926 	return rc;
927 }
928 
929 /*
930  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
931  * has made sure that the entire range needs zeroing.
932  */
933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934 				   u64 range_end, struct buffer_head *di_bh)
935 {
936 	int rc = 0;
937 	u64 next_pos;
938 	u64 zero_pos = range_start;
939 
940 	trace_ocfs2_zero_extend_range(
941 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
942 			(unsigned long long)range_start,
943 			(unsigned long long)range_end);
944 	BUG_ON(range_start >= range_end);
945 
946 	while (zero_pos < range_end) {
947 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948 		if (next_pos > range_end)
949 			next_pos = range_end;
950 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951 		if (rc < 0) {
952 			mlog_errno(rc);
953 			break;
954 		}
955 		zero_pos = next_pos;
956 
957 		/*
958 		 * Very large extends have the potential to lock up
959 		 * the cpu for extended periods of time.
960 		 */
961 		cond_resched();
962 	}
963 
964 	return rc;
965 }
966 
967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968 		      loff_t zero_to_size)
969 {
970 	int ret = 0;
971 	u64 zero_start, range_start = 0, range_end = 0;
972 	struct super_block *sb = inode->i_sb;
973 
974 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976 				(unsigned long long)zero_start,
977 				(unsigned long long)i_size_read(inode));
978 	while (zero_start < zero_to_size) {
979 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980 						  zero_to_size,
981 						  &range_start,
982 						  &range_end);
983 		if (ret) {
984 			mlog_errno(ret);
985 			break;
986 		}
987 		if (!range_end)
988 			break;
989 		/* Trim the ends */
990 		if (range_start < zero_start)
991 			range_start = zero_start;
992 		if (range_end > zero_to_size)
993 			range_end = zero_to_size;
994 
995 		ret = ocfs2_zero_extend_range(inode, range_start,
996 					      range_end, di_bh);
997 		if (ret) {
998 			mlog_errno(ret);
999 			break;
1000 		}
1001 		zero_start = range_end;
1002 	}
1003 
1004 	return ret;
1005 }
1006 
1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008 			  u64 new_i_size, u64 zero_to)
1009 {
1010 	int ret;
1011 	u32 clusters_to_add;
1012 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013 
1014 	/*
1015 	 * Only quota files call this without a bh, and they can't be
1016 	 * refcounted.
1017 	 */
1018 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020 
1021 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022 	if (clusters_to_add < oi->ip_clusters)
1023 		clusters_to_add = 0;
1024 	else
1025 		clusters_to_add -= oi->ip_clusters;
1026 
1027 	if (clusters_to_add) {
1028 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029 					      clusters_to_add, 0);
1030 		if (ret) {
1031 			mlog_errno(ret);
1032 			goto out;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Call this even if we don't add any clusters to the tree. We
1038 	 * still need to zero the area between the old i_size and the
1039 	 * new i_size.
1040 	 */
1041 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 	if (ret < 0)
1043 		mlog_errno(ret);
1044 
1045 out:
1046 	return ret;
1047 }
1048 
1049 static int ocfs2_extend_file(struct inode *inode,
1050 			     struct buffer_head *di_bh,
1051 			     u64 new_i_size)
1052 {
1053 	int ret = 0;
1054 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055 
1056 	BUG_ON(!di_bh);
1057 
1058 	/* setattr sometimes calls us like this. */
1059 	if (new_i_size == 0)
1060 		goto out;
1061 
1062 	if (i_size_read(inode) == new_i_size)
1063 		goto out;
1064 	BUG_ON(new_i_size < i_size_read(inode));
1065 
1066 	/*
1067 	 * The alloc sem blocks people in read/write from reading our
1068 	 * allocation until we're done changing it. We depend on
1069 	 * i_mutex to block other extend/truncate calls while we're
1070 	 * here.  We even have to hold it for sparse files because there
1071 	 * might be some tail zeroing.
1072 	 */
1073 	down_write(&oi->ip_alloc_sem);
1074 
1075 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076 		/*
1077 		 * We can optimize small extends by keeping the inodes
1078 		 * inline data.
1079 		 */
1080 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081 			up_write(&oi->ip_alloc_sem);
1082 			goto out_update_size;
1083 		}
1084 
1085 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086 		if (ret) {
1087 			up_write(&oi->ip_alloc_sem);
1088 			mlog_errno(ret);
1089 			goto out;
1090 		}
1091 	}
1092 
1093 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095 	else
1096 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097 					    new_i_size);
1098 
1099 	up_write(&oi->ip_alloc_sem);
1100 
1101 	if (ret < 0) {
1102 		mlog_errno(ret);
1103 		goto out;
1104 	}
1105 
1106 out_update_size:
1107 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 	if (ret < 0)
1109 		mlog_errno(ret);
1110 
1111 out:
1112 	return ret;
1113 }
1114 
1115 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1116 {
1117 	int status = 0, size_change;
1118 	int inode_locked = 0;
1119 	struct inode *inode = d_inode(dentry);
1120 	struct super_block *sb = inode->i_sb;
1121 	struct ocfs2_super *osb = OCFS2_SB(sb);
1122 	struct buffer_head *bh = NULL;
1123 	handle_t *handle = NULL;
1124 	struct dquot *transfer_to[MAXQUOTAS] = { };
1125 	int qtype;
1126 	int had_lock;
1127 	struct ocfs2_lock_holder oh;
1128 
1129 	trace_ocfs2_setattr(inode, dentry,
1130 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 			    dentry->d_name.len, dentry->d_name.name,
1132 			    attr->ia_valid, attr->ia_mode,
1133 			    from_kuid(&init_user_ns, attr->ia_uid),
1134 			    from_kgid(&init_user_ns, attr->ia_gid));
1135 
1136 	/* ensuring we don't even attempt to truncate a symlink */
1137 	if (S_ISLNK(inode->i_mode))
1138 		attr->ia_valid &= ~ATTR_SIZE;
1139 
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143 		return 0;
1144 
1145 	status = setattr_prepare(dentry, attr);
1146 	if (status)
1147 		return status;
1148 
1149 	if (is_quota_modification(inode, attr)) {
1150 		status = dquot_initialize(inode);
1151 		if (status)
1152 			return status;
1153 	}
1154 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 	if (size_change) {
1156 		/*
1157 		 * Here we should wait dio to finish before inode lock
1158 		 * to avoid a deadlock between ocfs2_setattr() and
1159 		 * ocfs2_dio_end_io_write()
1160 		 */
1161 		inode_dio_wait(inode);
1162 
1163 		status = ocfs2_rw_lock(inode, 1);
1164 		if (status < 0) {
1165 			mlog_errno(status);
1166 			goto bail;
1167 		}
1168 	}
1169 
1170 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171 	if (had_lock < 0) {
1172 		status = had_lock;
1173 		goto bail_unlock_rw;
1174 	} else if (had_lock) {
1175 		/*
1176 		 * As far as we know, ocfs2_setattr() could only be the first
1177 		 * VFS entry point in the call chain of recursive cluster
1178 		 * locking issue.
1179 		 *
1180 		 * For instance:
1181 		 * chmod_common()
1182 		 *  notify_change()
1183 		 *   ocfs2_setattr()
1184 		 *    posix_acl_chmod()
1185 		 *     ocfs2_iop_get_acl()
1186 		 *
1187 		 * But, we're not 100% sure if it's always true, because the
1188 		 * ordering of the VFS entry points in the call chain is out
1189 		 * of our control. So, we'd better dump the stack here to
1190 		 * catch the other cases of recursive locking.
1191 		 */
1192 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1193 		dump_stack();
1194 	}
1195 	inode_locked = 1;
1196 
1197 	if (size_change) {
1198 		status = inode_newsize_ok(inode, attr->ia_size);
1199 		if (status)
1200 			goto bail_unlock;
1201 
1202 		if (i_size_read(inode) >= attr->ia_size) {
1203 			if (ocfs2_should_order_data(inode)) {
1204 				status = ocfs2_begin_ordered_truncate(inode,
1205 								      attr->ia_size);
1206 				if (status)
1207 					goto bail_unlock;
1208 			}
1209 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210 		} else
1211 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212 		if (status < 0) {
1213 			if (status != -ENOSPC)
1214 				mlog_errno(status);
1215 			status = -ENOSPC;
1216 			goto bail_unlock;
1217 		}
1218 	}
1219 
1220 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222 		/*
1223 		 * Gather pointers to quota structures so that allocation /
1224 		 * freeing of quota structures happens here and not inside
1225 		 * dquot_transfer() where we have problems with lock ordering
1226 		 */
1227 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231 			if (IS_ERR(transfer_to[USRQUOTA])) {
1232 				status = PTR_ERR(transfer_to[USRQUOTA]);
1233 				goto bail_unlock;
1234 			}
1235 		}
1236 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1237 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1238 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1239 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1240 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1241 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1242 				goto bail_unlock;
1243 			}
1244 		}
1245 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1246 					   2 * ocfs2_quota_trans_credits(sb));
1247 		if (IS_ERR(handle)) {
1248 			status = PTR_ERR(handle);
1249 			mlog_errno(status);
1250 			goto bail_unlock;
1251 		}
1252 		status = __dquot_transfer(inode, transfer_to);
1253 		if (status < 0)
1254 			goto bail_commit;
1255 	} else {
1256 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1257 		if (IS_ERR(handle)) {
1258 			status = PTR_ERR(handle);
1259 			mlog_errno(status);
1260 			goto bail_unlock;
1261 		}
1262 	}
1263 
1264 	setattr_copy(inode, attr);
1265 	mark_inode_dirty(inode);
1266 
1267 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1268 	if (status < 0)
1269 		mlog_errno(status);
1270 
1271 bail_commit:
1272 	ocfs2_commit_trans(osb, handle);
1273 bail_unlock:
1274 	if (status && inode_locked) {
1275 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1276 		inode_locked = 0;
1277 	}
1278 bail_unlock_rw:
1279 	if (size_change)
1280 		ocfs2_rw_unlock(inode, 1);
1281 bail:
1282 
1283 	/* Release quota pointers in case we acquired them */
1284 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1285 		dqput(transfer_to[qtype]);
1286 
1287 	if (!status && attr->ia_valid & ATTR_MODE) {
1288 		status = ocfs2_acl_chmod(inode, bh);
1289 		if (status < 0)
1290 			mlog_errno(status);
1291 	}
1292 	if (inode_locked)
1293 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1294 
1295 	brelse(bh);
1296 	return status;
1297 }
1298 
1299 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1300 		  u32 request_mask, unsigned int flags)
1301 {
1302 	struct inode *inode = d_inode(path->dentry);
1303 	struct super_block *sb = path->dentry->d_sb;
1304 	struct ocfs2_super *osb = sb->s_fs_info;
1305 	int err;
1306 
1307 	err = ocfs2_inode_revalidate(path->dentry);
1308 	if (err) {
1309 		if (err != -ENOENT)
1310 			mlog_errno(err);
1311 		goto bail;
1312 	}
1313 
1314 	generic_fillattr(inode, stat);
1315 	/*
1316 	 * If there is inline data in the inode, the inode will normally not
1317 	 * have data blocks allocated (it may have an external xattr block).
1318 	 * Report at least one sector for such files, so tools like tar, rsync,
1319 	 * others don't incorrectly think the file is completely sparse.
1320 	 */
1321 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1322 		stat->blocks += (stat->size + 511)>>9;
1323 
1324 	/* We set the blksize from the cluster size for performance */
1325 	stat->blksize = osb->s_clustersize;
1326 
1327 bail:
1328 	return err;
1329 }
1330 
1331 int ocfs2_permission(struct inode *inode, int mask)
1332 {
1333 	int ret, had_lock;
1334 	struct ocfs2_lock_holder oh;
1335 
1336 	if (mask & MAY_NOT_BLOCK)
1337 		return -ECHILD;
1338 
1339 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1340 	if (had_lock < 0) {
1341 		ret = had_lock;
1342 		goto out;
1343 	} else if (had_lock) {
1344 		/* See comments in ocfs2_setattr() for details.
1345 		 * The call chain of this case could be:
1346 		 * do_sys_open()
1347 		 *  may_open()
1348 		 *   inode_permission()
1349 		 *    ocfs2_permission()
1350 		 *     ocfs2_iop_get_acl()
1351 		 */
1352 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1353 		dump_stack();
1354 	}
1355 
1356 	ret = generic_permission(inode, mask);
1357 
1358 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1359 out:
1360 	return ret;
1361 }
1362 
1363 static int __ocfs2_write_remove_suid(struct inode *inode,
1364 				     struct buffer_head *bh)
1365 {
1366 	int ret;
1367 	handle_t *handle;
1368 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1369 	struct ocfs2_dinode *di;
1370 
1371 	trace_ocfs2_write_remove_suid(
1372 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1373 			inode->i_mode);
1374 
1375 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1376 	if (IS_ERR(handle)) {
1377 		ret = PTR_ERR(handle);
1378 		mlog_errno(ret);
1379 		goto out;
1380 	}
1381 
1382 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1383 				      OCFS2_JOURNAL_ACCESS_WRITE);
1384 	if (ret < 0) {
1385 		mlog_errno(ret);
1386 		goto out_trans;
1387 	}
1388 
1389 	inode->i_mode &= ~S_ISUID;
1390 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1391 		inode->i_mode &= ~S_ISGID;
1392 
1393 	di = (struct ocfs2_dinode *) bh->b_data;
1394 	di->i_mode = cpu_to_le16(inode->i_mode);
1395 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1396 
1397 	ocfs2_journal_dirty(handle, bh);
1398 
1399 out_trans:
1400 	ocfs2_commit_trans(osb, handle);
1401 out:
1402 	return ret;
1403 }
1404 
1405 static int ocfs2_write_remove_suid(struct inode *inode)
1406 {
1407 	int ret;
1408 	struct buffer_head *bh = NULL;
1409 
1410 	ret = ocfs2_read_inode_block(inode, &bh);
1411 	if (ret < 0) {
1412 		mlog_errno(ret);
1413 		goto out;
1414 	}
1415 
1416 	ret =  __ocfs2_write_remove_suid(inode, bh);
1417 out:
1418 	brelse(bh);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Allocate enough extents to cover the region starting at byte offset
1424  * start for len bytes. Existing extents are skipped, any extents
1425  * added are marked as "unwritten".
1426  */
1427 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1428 					    u64 start, u64 len)
1429 {
1430 	int ret;
1431 	u32 cpos, phys_cpos, clusters, alloc_size;
1432 	u64 end = start + len;
1433 	struct buffer_head *di_bh = NULL;
1434 
1435 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1436 		ret = ocfs2_read_inode_block(inode, &di_bh);
1437 		if (ret) {
1438 			mlog_errno(ret);
1439 			goto out;
1440 		}
1441 
1442 		/*
1443 		 * Nothing to do if the requested reservation range
1444 		 * fits within the inode.
1445 		 */
1446 		if (ocfs2_size_fits_inline_data(di_bh, end))
1447 			goto out;
1448 
1449 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1450 		if (ret) {
1451 			mlog_errno(ret);
1452 			goto out;
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * We consider both start and len to be inclusive.
1458 	 */
1459 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1460 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1461 	clusters -= cpos;
1462 
1463 	while (clusters) {
1464 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1465 					 &alloc_size, NULL);
1466 		if (ret) {
1467 			mlog_errno(ret);
1468 			goto out;
1469 		}
1470 
1471 		/*
1472 		 * Hole or existing extent len can be arbitrary, so
1473 		 * cap it to our own allocation request.
1474 		 */
1475 		if (alloc_size > clusters)
1476 			alloc_size = clusters;
1477 
1478 		if (phys_cpos) {
1479 			/*
1480 			 * We already have an allocation at this
1481 			 * region so we can safely skip it.
1482 			 */
1483 			goto next;
1484 		}
1485 
1486 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1487 		if (ret) {
1488 			if (ret != -ENOSPC)
1489 				mlog_errno(ret);
1490 			goto out;
1491 		}
1492 
1493 next:
1494 		cpos += alloc_size;
1495 		clusters -= alloc_size;
1496 	}
1497 
1498 	ret = 0;
1499 out:
1500 
1501 	brelse(di_bh);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * Truncate a byte range, avoiding pages within partial clusters. This
1507  * preserves those pages for the zeroing code to write to.
1508  */
1509 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1510 					 u64 byte_len)
1511 {
1512 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1513 	loff_t start, end;
1514 	struct address_space *mapping = inode->i_mapping;
1515 
1516 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1517 	end = byte_start + byte_len;
1518 	end = end & ~(osb->s_clustersize - 1);
1519 
1520 	if (start < end) {
1521 		unmap_mapping_range(mapping, start, end - start, 0);
1522 		truncate_inode_pages_range(mapping, start, end - 1);
1523 	}
1524 }
1525 
1526 static int ocfs2_zero_partial_clusters(struct inode *inode,
1527 				       u64 start, u64 len)
1528 {
1529 	int ret = 0;
1530 	u64 tmpend = 0;
1531 	u64 end = start + len;
1532 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1533 	unsigned int csize = osb->s_clustersize;
1534 	handle_t *handle;
1535 
1536 	/*
1537 	 * The "start" and "end" values are NOT necessarily part of
1538 	 * the range whose allocation is being deleted. Rather, this
1539 	 * is what the user passed in with the request. We must zero
1540 	 * partial clusters here. There's no need to worry about
1541 	 * physical allocation - the zeroing code knows to skip holes.
1542 	 */
1543 	trace_ocfs2_zero_partial_clusters(
1544 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1545 		(unsigned long long)start, (unsigned long long)end);
1546 
1547 	/*
1548 	 * If both edges are on a cluster boundary then there's no
1549 	 * zeroing required as the region is part of the allocation to
1550 	 * be truncated.
1551 	 */
1552 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1553 		goto out;
1554 
1555 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1556 	if (IS_ERR(handle)) {
1557 		ret = PTR_ERR(handle);
1558 		mlog_errno(ret);
1559 		goto out;
1560 	}
1561 
1562 	/*
1563 	 * If start is on a cluster boundary and end is somewhere in another
1564 	 * cluster, we have not COWed the cluster starting at start, unless
1565 	 * end is also within the same cluster. So, in this case, we skip this
1566 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1567 	 * to the next one.
1568 	 */
1569 	if ((start & (csize - 1)) != 0) {
1570 		/*
1571 		 * We want to get the byte offset of the end of the 1st
1572 		 * cluster.
1573 		 */
1574 		tmpend = (u64)osb->s_clustersize +
1575 			(start & ~(osb->s_clustersize - 1));
1576 		if (tmpend > end)
1577 			tmpend = end;
1578 
1579 		trace_ocfs2_zero_partial_clusters_range1(
1580 			(unsigned long long)start,
1581 			(unsigned long long)tmpend);
1582 
1583 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1584 						    tmpend);
1585 		if (ret)
1586 			mlog_errno(ret);
1587 	}
1588 
1589 	if (tmpend < end) {
1590 		/*
1591 		 * This may make start and end equal, but the zeroing
1592 		 * code will skip any work in that case so there's no
1593 		 * need to catch it up here.
1594 		 */
1595 		start = end & ~(osb->s_clustersize - 1);
1596 
1597 		trace_ocfs2_zero_partial_clusters_range2(
1598 			(unsigned long long)start, (unsigned long long)end);
1599 
1600 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1601 		if (ret)
1602 			mlog_errno(ret);
1603 	}
1604 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1605 
1606 	ocfs2_commit_trans(osb, handle);
1607 out:
1608 	return ret;
1609 }
1610 
1611 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1612 {
1613 	int i;
1614 	struct ocfs2_extent_rec *rec = NULL;
1615 
1616 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1617 
1618 		rec = &el->l_recs[i];
1619 
1620 		if (le32_to_cpu(rec->e_cpos) < pos)
1621 			break;
1622 	}
1623 
1624 	return i;
1625 }
1626 
1627 /*
1628  * Helper to calculate the punching pos and length in one run, we handle the
1629  * following three cases in order:
1630  *
1631  * - remove the entire record
1632  * - remove a partial record
1633  * - no record needs to be removed (hole-punching completed)
1634 */
1635 static void ocfs2_calc_trunc_pos(struct inode *inode,
1636 				 struct ocfs2_extent_list *el,
1637 				 struct ocfs2_extent_rec *rec,
1638 				 u32 trunc_start, u32 *trunc_cpos,
1639 				 u32 *trunc_len, u32 *trunc_end,
1640 				 u64 *blkno, int *done)
1641 {
1642 	int ret = 0;
1643 	u32 coff, range;
1644 
1645 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1646 
1647 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1648 		/*
1649 		 * remove an entire extent record.
1650 		 */
1651 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1652 		/*
1653 		 * Skip holes if any.
1654 		 */
1655 		if (range < *trunc_end)
1656 			*trunc_end = range;
1657 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1658 		*blkno = le64_to_cpu(rec->e_blkno);
1659 		*trunc_end = le32_to_cpu(rec->e_cpos);
1660 	} else if (range > trunc_start) {
1661 		/*
1662 		 * remove a partial extent record, which means we're
1663 		 * removing the last extent record.
1664 		 */
1665 		*trunc_cpos = trunc_start;
1666 		/*
1667 		 * skip hole if any.
1668 		 */
1669 		if (range < *trunc_end)
1670 			*trunc_end = range;
1671 		*trunc_len = *trunc_end - trunc_start;
1672 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1673 		*blkno = le64_to_cpu(rec->e_blkno) +
1674 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1675 		*trunc_end = trunc_start;
1676 	} else {
1677 		/*
1678 		 * It may have two following possibilities:
1679 		 *
1680 		 * - last record has been removed
1681 		 * - trunc_start was within a hole
1682 		 *
1683 		 * both two cases mean the completion of hole punching.
1684 		 */
1685 		ret = 1;
1686 	}
1687 
1688 	*done = ret;
1689 }
1690 
1691 int ocfs2_remove_inode_range(struct inode *inode,
1692 			     struct buffer_head *di_bh, u64 byte_start,
1693 			     u64 byte_len)
1694 {
1695 	int ret = 0, flags = 0, done = 0, i;
1696 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1697 	u32 cluster_in_el;
1698 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1699 	struct ocfs2_cached_dealloc_ctxt dealloc;
1700 	struct address_space *mapping = inode->i_mapping;
1701 	struct ocfs2_extent_tree et;
1702 	struct ocfs2_path *path = NULL;
1703 	struct ocfs2_extent_list *el = NULL;
1704 	struct ocfs2_extent_rec *rec = NULL;
1705 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1706 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1707 
1708 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1709 	ocfs2_init_dealloc_ctxt(&dealloc);
1710 
1711 	trace_ocfs2_remove_inode_range(
1712 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1713 			(unsigned long long)byte_start,
1714 			(unsigned long long)byte_len);
1715 
1716 	if (byte_len == 0)
1717 		return 0;
1718 
1719 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1720 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1721 					    byte_start + byte_len, 0);
1722 		if (ret) {
1723 			mlog_errno(ret);
1724 			goto out;
1725 		}
1726 		/*
1727 		 * There's no need to get fancy with the page cache
1728 		 * truncate of an inline-data inode. We're talking
1729 		 * about less than a page here, which will be cached
1730 		 * in the dinode buffer anyway.
1731 		 */
1732 		unmap_mapping_range(mapping, 0, 0, 0);
1733 		truncate_inode_pages(mapping, 0);
1734 		goto out;
1735 	}
1736 
1737 	/*
1738 	 * For reflinks, we may need to CoW 2 clusters which might be
1739 	 * partially zero'd later, if hole's start and end offset were
1740 	 * within one cluster(means is not exactly aligned to clustersize).
1741 	 */
1742 
1743 	if (ocfs2_is_refcount_inode(inode)) {
1744 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1745 		if (ret) {
1746 			mlog_errno(ret);
1747 			goto out;
1748 		}
1749 
1750 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1751 		if (ret) {
1752 			mlog_errno(ret);
1753 			goto out;
1754 		}
1755 	}
1756 
1757 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1758 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1759 	cluster_in_el = trunc_end;
1760 
1761 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1762 	if (ret) {
1763 		mlog_errno(ret);
1764 		goto out;
1765 	}
1766 
1767 	path = ocfs2_new_path_from_et(&et);
1768 	if (!path) {
1769 		ret = -ENOMEM;
1770 		mlog_errno(ret);
1771 		goto out;
1772 	}
1773 
1774 	while (trunc_end > trunc_start) {
1775 
1776 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1777 				      cluster_in_el);
1778 		if (ret) {
1779 			mlog_errno(ret);
1780 			goto out;
1781 		}
1782 
1783 		el = path_leaf_el(path);
1784 
1785 		i = ocfs2_find_rec(el, trunc_end);
1786 		/*
1787 		 * Need to go to previous extent block.
1788 		 */
1789 		if (i < 0) {
1790 			if (path->p_tree_depth == 0)
1791 				break;
1792 
1793 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1794 							    path,
1795 							    &cluster_in_el);
1796 			if (ret) {
1797 				mlog_errno(ret);
1798 				goto out;
1799 			}
1800 
1801 			/*
1802 			 * We've reached the leftmost extent block,
1803 			 * it's safe to leave.
1804 			 */
1805 			if (cluster_in_el == 0)
1806 				break;
1807 
1808 			/*
1809 			 * The 'pos' searched for previous extent block is
1810 			 * always one cluster less than actual trunc_end.
1811 			 */
1812 			trunc_end = cluster_in_el + 1;
1813 
1814 			ocfs2_reinit_path(path, 1);
1815 
1816 			continue;
1817 
1818 		} else
1819 			rec = &el->l_recs[i];
1820 
1821 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1822 				     &trunc_len, &trunc_end, &blkno, &done);
1823 		if (done)
1824 			break;
1825 
1826 		flags = rec->e_flags;
1827 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1828 
1829 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1830 					       phys_cpos, trunc_len, flags,
1831 					       &dealloc, refcount_loc, false);
1832 		if (ret < 0) {
1833 			mlog_errno(ret);
1834 			goto out;
1835 		}
1836 
1837 		cluster_in_el = trunc_end;
1838 
1839 		ocfs2_reinit_path(path, 1);
1840 	}
1841 
1842 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1843 
1844 out:
1845 	ocfs2_free_path(path);
1846 	ocfs2_schedule_truncate_log_flush(osb, 1);
1847 	ocfs2_run_deallocs(osb, &dealloc);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * Parts of this function taken from xfs_change_file_space()
1854  */
1855 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1856 				     loff_t f_pos, unsigned int cmd,
1857 				     struct ocfs2_space_resv *sr,
1858 				     int change_size)
1859 {
1860 	int ret;
1861 	s64 llen;
1862 	loff_t size;
1863 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1864 	struct buffer_head *di_bh = NULL;
1865 	handle_t *handle;
1866 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1867 
1868 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1869 		return -EROFS;
1870 
1871 	inode_lock(inode);
1872 
1873 	/*
1874 	 * This prevents concurrent writes on other nodes
1875 	 */
1876 	ret = ocfs2_rw_lock(inode, 1);
1877 	if (ret) {
1878 		mlog_errno(ret);
1879 		goto out;
1880 	}
1881 
1882 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1883 	if (ret) {
1884 		mlog_errno(ret);
1885 		goto out_rw_unlock;
1886 	}
1887 
1888 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1889 		ret = -EPERM;
1890 		goto out_inode_unlock;
1891 	}
1892 
1893 	switch (sr->l_whence) {
1894 	case 0: /*SEEK_SET*/
1895 		break;
1896 	case 1: /*SEEK_CUR*/
1897 		sr->l_start += f_pos;
1898 		break;
1899 	case 2: /*SEEK_END*/
1900 		sr->l_start += i_size_read(inode);
1901 		break;
1902 	default:
1903 		ret = -EINVAL;
1904 		goto out_inode_unlock;
1905 	}
1906 	sr->l_whence = 0;
1907 
1908 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1909 
1910 	if (sr->l_start < 0
1911 	    || sr->l_start > max_off
1912 	    || (sr->l_start + llen) < 0
1913 	    || (sr->l_start + llen) > max_off) {
1914 		ret = -EINVAL;
1915 		goto out_inode_unlock;
1916 	}
1917 	size = sr->l_start + sr->l_len;
1918 
1919 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1920 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1921 		if (sr->l_len <= 0) {
1922 			ret = -EINVAL;
1923 			goto out_inode_unlock;
1924 		}
1925 	}
1926 
1927 	if (file && should_remove_suid(file->f_path.dentry)) {
1928 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1929 		if (ret) {
1930 			mlog_errno(ret);
1931 			goto out_inode_unlock;
1932 		}
1933 	}
1934 
1935 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1936 	switch (cmd) {
1937 	case OCFS2_IOC_RESVSP:
1938 	case OCFS2_IOC_RESVSP64:
1939 		/*
1940 		 * This takes unsigned offsets, but the signed ones we
1941 		 * pass have been checked against overflow above.
1942 		 */
1943 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1944 						       sr->l_len);
1945 		break;
1946 	case OCFS2_IOC_UNRESVSP:
1947 	case OCFS2_IOC_UNRESVSP64:
1948 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1949 					       sr->l_len);
1950 		break;
1951 	default:
1952 		ret = -EINVAL;
1953 	}
1954 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1955 	if (ret) {
1956 		mlog_errno(ret);
1957 		goto out_inode_unlock;
1958 	}
1959 
1960 	/*
1961 	 * We update c/mtime for these changes
1962 	 */
1963 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1964 	if (IS_ERR(handle)) {
1965 		ret = PTR_ERR(handle);
1966 		mlog_errno(ret);
1967 		goto out_inode_unlock;
1968 	}
1969 
1970 	if (change_size && i_size_read(inode) < size)
1971 		i_size_write(inode, size);
1972 
1973 	inode->i_ctime = inode->i_mtime = current_time(inode);
1974 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1975 	if (ret < 0)
1976 		mlog_errno(ret);
1977 
1978 	if (file && (file->f_flags & O_SYNC))
1979 		handle->h_sync = 1;
1980 
1981 	ocfs2_commit_trans(osb, handle);
1982 
1983 out_inode_unlock:
1984 	brelse(di_bh);
1985 	ocfs2_inode_unlock(inode, 1);
1986 out_rw_unlock:
1987 	ocfs2_rw_unlock(inode, 1);
1988 
1989 out:
1990 	inode_unlock(inode);
1991 	return ret;
1992 }
1993 
1994 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1995 			    struct ocfs2_space_resv *sr)
1996 {
1997 	struct inode *inode = file_inode(file);
1998 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999 	int ret;
2000 
2001 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2002 	    !ocfs2_writes_unwritten_extents(osb))
2003 		return -ENOTTY;
2004 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2005 		 !ocfs2_sparse_alloc(osb))
2006 		return -ENOTTY;
2007 
2008 	if (!S_ISREG(inode->i_mode))
2009 		return -EINVAL;
2010 
2011 	if (!(file->f_mode & FMODE_WRITE))
2012 		return -EBADF;
2013 
2014 	ret = mnt_want_write_file(file);
2015 	if (ret)
2016 		return ret;
2017 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2018 	mnt_drop_write_file(file);
2019 	return ret;
2020 }
2021 
2022 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2023 			    loff_t len)
2024 {
2025 	struct inode *inode = file_inode(file);
2026 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2027 	struct ocfs2_space_resv sr;
2028 	int change_size = 1;
2029 	int cmd = OCFS2_IOC_RESVSP64;
2030 
2031 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2032 		return -EOPNOTSUPP;
2033 	if (!ocfs2_writes_unwritten_extents(osb))
2034 		return -EOPNOTSUPP;
2035 
2036 	if (mode & FALLOC_FL_KEEP_SIZE)
2037 		change_size = 0;
2038 
2039 	if (mode & FALLOC_FL_PUNCH_HOLE)
2040 		cmd = OCFS2_IOC_UNRESVSP64;
2041 
2042 	sr.l_whence = 0;
2043 	sr.l_start = (s64)offset;
2044 	sr.l_len = (s64)len;
2045 
2046 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2047 					 change_size);
2048 }
2049 
2050 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2051 				   size_t count)
2052 {
2053 	int ret = 0;
2054 	unsigned int extent_flags;
2055 	u32 cpos, clusters, extent_len, phys_cpos;
2056 	struct super_block *sb = inode->i_sb;
2057 
2058 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2059 	    !ocfs2_is_refcount_inode(inode) ||
2060 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2061 		return 0;
2062 
2063 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2064 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2065 
2066 	while (clusters) {
2067 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2068 					 &extent_flags);
2069 		if (ret < 0) {
2070 			mlog_errno(ret);
2071 			goto out;
2072 		}
2073 
2074 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2075 			ret = 1;
2076 			break;
2077 		}
2078 
2079 		if (extent_len > clusters)
2080 			extent_len = clusters;
2081 
2082 		clusters -= extent_len;
2083 		cpos += extent_len;
2084 	}
2085 out:
2086 	return ret;
2087 }
2088 
2089 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2090 {
2091 	int blockmask = inode->i_sb->s_blocksize - 1;
2092 	loff_t final_size = pos + count;
2093 
2094 	if ((pos & blockmask) || (final_size & blockmask))
2095 		return 1;
2096 	return 0;
2097 }
2098 
2099 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2100 					    struct file *file,
2101 					    loff_t pos, size_t count,
2102 					    int *meta_level)
2103 {
2104 	int ret;
2105 	struct buffer_head *di_bh = NULL;
2106 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2107 	u32 clusters =
2108 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2109 
2110 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2111 	if (ret) {
2112 		mlog_errno(ret);
2113 		goto out;
2114 	}
2115 
2116 	*meta_level = 1;
2117 
2118 	ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2119 	if (ret)
2120 		mlog_errno(ret);
2121 out:
2122 	brelse(di_bh);
2123 	return ret;
2124 }
2125 
2126 static int ocfs2_prepare_inode_for_write(struct file *file,
2127 					 loff_t pos, size_t count, int wait)
2128 {
2129 	int ret = 0, meta_level = 0, overwrite_io = 0;
2130 	struct dentry *dentry = file->f_path.dentry;
2131 	struct inode *inode = d_inode(dentry);
2132 	struct buffer_head *di_bh = NULL;
2133 
2134 	/*
2135 	 * We start with a read level meta lock and only jump to an ex
2136 	 * if we need to make modifications here.
2137 	 */
2138 	for(;;) {
2139 		if (wait)
2140 			ret = ocfs2_inode_lock(inode, NULL, meta_level);
2141 		else
2142 			ret = ocfs2_try_inode_lock(inode,
2143 				overwrite_io ? NULL : &di_bh, meta_level);
2144 		if (ret < 0) {
2145 			meta_level = -1;
2146 			if (ret != -EAGAIN)
2147 				mlog_errno(ret);
2148 			goto out;
2149 		}
2150 
2151 		/*
2152 		 * Check if IO will overwrite allocated blocks in case
2153 		 * IOCB_NOWAIT flag is set.
2154 		 */
2155 		if (!wait && !overwrite_io) {
2156 			overwrite_io = 1;
2157 			if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) {
2158 				ret = -EAGAIN;
2159 				goto out_unlock;
2160 			}
2161 
2162 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2163 			brelse(di_bh);
2164 			di_bh = NULL;
2165 			up_read(&OCFS2_I(inode)->ip_alloc_sem);
2166 			if (ret < 0) {
2167 				if (ret != -EAGAIN)
2168 					mlog_errno(ret);
2169 				goto out_unlock;
2170 			}
2171 		}
2172 
2173 		/* Clear suid / sgid if necessary. We do this here
2174 		 * instead of later in the write path because
2175 		 * remove_suid() calls ->setattr without any hint that
2176 		 * we may have already done our cluster locking. Since
2177 		 * ocfs2_setattr() *must* take cluster locks to
2178 		 * proceed, this will lead us to recursively lock the
2179 		 * inode. There's also the dinode i_size state which
2180 		 * can be lost via setattr during extending writes (we
2181 		 * set inode->i_size at the end of a write. */
2182 		if (should_remove_suid(dentry)) {
2183 			if (meta_level == 0) {
2184 				ocfs2_inode_unlock(inode, meta_level);
2185 				meta_level = 1;
2186 				continue;
2187 			}
2188 
2189 			ret = ocfs2_write_remove_suid(inode);
2190 			if (ret < 0) {
2191 				mlog_errno(ret);
2192 				goto out_unlock;
2193 			}
2194 		}
2195 
2196 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2197 		if (ret == 1) {
2198 			ocfs2_inode_unlock(inode, meta_level);
2199 			meta_level = -1;
2200 
2201 			ret = ocfs2_prepare_inode_for_refcount(inode,
2202 							       file,
2203 							       pos,
2204 							       count,
2205 							       &meta_level);
2206 		}
2207 
2208 		if (ret < 0) {
2209 			mlog_errno(ret);
2210 			goto out_unlock;
2211 		}
2212 
2213 		break;
2214 	}
2215 
2216 out_unlock:
2217 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2218 					    pos, count, wait);
2219 
2220 	brelse(di_bh);
2221 
2222 	if (meta_level >= 0)
2223 		ocfs2_inode_unlock(inode, meta_level);
2224 
2225 out:
2226 	return ret;
2227 }
2228 
2229 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2230 				    struct iov_iter *from)
2231 {
2232 	int rw_level;
2233 	ssize_t written = 0;
2234 	ssize_t ret;
2235 	size_t count = iov_iter_count(from);
2236 	struct file *file = iocb->ki_filp;
2237 	struct inode *inode = file_inode(file);
2238 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2239 	int full_coherency = !(osb->s_mount_opt &
2240 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2241 	void *saved_ki_complete = NULL;
2242 	int append_write = ((iocb->ki_pos + count) >=
2243 			i_size_read(inode) ? 1 : 0);
2244 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2245 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2246 
2247 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2248 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2249 		file->f_path.dentry->d_name.len,
2250 		file->f_path.dentry->d_name.name,
2251 		(unsigned int)from->nr_segs);	/* GRRRRR */
2252 
2253 	if (!direct_io && nowait)
2254 		return -EOPNOTSUPP;
2255 
2256 	if (count == 0)
2257 		return 0;
2258 
2259 	if (nowait) {
2260 		if (!inode_trylock(inode))
2261 			return -EAGAIN;
2262 	} else
2263 		inode_lock(inode);
2264 
2265 	/*
2266 	 * Concurrent O_DIRECT writes are allowed with
2267 	 * mount_option "coherency=buffered".
2268 	 * For append write, we must take rw EX.
2269 	 */
2270 	rw_level = (!direct_io || full_coherency || append_write);
2271 
2272 	if (nowait)
2273 		ret = ocfs2_try_rw_lock(inode, rw_level);
2274 	else
2275 		ret = ocfs2_rw_lock(inode, rw_level);
2276 	if (ret < 0) {
2277 		if (ret != -EAGAIN)
2278 			mlog_errno(ret);
2279 		goto out_mutex;
2280 	}
2281 
2282 	/*
2283 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2284 	 * inode_lock to guarantee coherency.
2285 	 */
2286 	if (direct_io && full_coherency) {
2287 		/*
2288 		 * We need to take and drop the inode lock to force
2289 		 * other nodes to drop their caches.  Buffered I/O
2290 		 * already does this in write_begin().
2291 		 */
2292 		if (nowait)
2293 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2294 		else
2295 			ret = ocfs2_inode_lock(inode, NULL, 1);
2296 		if (ret < 0) {
2297 			if (ret != -EAGAIN)
2298 				mlog_errno(ret);
2299 			goto out;
2300 		}
2301 
2302 		ocfs2_inode_unlock(inode, 1);
2303 	}
2304 
2305 	ret = generic_write_checks(iocb, from);
2306 	if (ret <= 0) {
2307 		if (ret)
2308 			mlog_errno(ret);
2309 		goto out;
2310 	}
2311 	count = ret;
2312 
2313 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2314 	if (ret < 0) {
2315 		if (ret != -EAGAIN)
2316 			mlog_errno(ret);
2317 		goto out;
2318 	}
2319 
2320 	if (direct_io && !is_sync_kiocb(iocb) &&
2321 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2322 		/*
2323 		 * Make it a sync io if it's an unaligned aio.
2324 		 */
2325 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2326 	}
2327 
2328 	/* communicate with ocfs2_dio_end_io */
2329 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2330 
2331 	written = __generic_file_write_iter(iocb, from);
2332 	/* buffered aio wouldn't have proper lock coverage today */
2333 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2334 
2335 	/*
2336 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2337 	 * function pointer which is called when o_direct io completes so that
2338 	 * it can unlock our rw lock.
2339 	 * Unfortunately there are error cases which call end_io and others
2340 	 * that don't.  so we don't have to unlock the rw_lock if either an
2341 	 * async dio is going to do it in the future or an end_io after an
2342 	 * error has already done it.
2343 	 */
2344 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2345 		rw_level = -1;
2346 	}
2347 
2348 	if (unlikely(written <= 0))
2349 		goto out;
2350 
2351 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2352 	    IS_SYNC(inode)) {
2353 		ret = filemap_fdatawrite_range(file->f_mapping,
2354 					       iocb->ki_pos - written,
2355 					       iocb->ki_pos - 1);
2356 		if (ret < 0)
2357 			written = ret;
2358 
2359 		if (!ret) {
2360 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2361 			if (ret < 0)
2362 				written = ret;
2363 		}
2364 
2365 		if (!ret)
2366 			ret = filemap_fdatawait_range(file->f_mapping,
2367 						      iocb->ki_pos - written,
2368 						      iocb->ki_pos - 1);
2369 	}
2370 
2371 out:
2372 	if (saved_ki_complete)
2373 		xchg(&iocb->ki_complete, saved_ki_complete);
2374 
2375 	if (rw_level != -1)
2376 		ocfs2_rw_unlock(inode, rw_level);
2377 
2378 out_mutex:
2379 	inode_unlock(inode);
2380 
2381 	if (written)
2382 		ret = written;
2383 	return ret;
2384 }
2385 
2386 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2387 				   struct iov_iter *to)
2388 {
2389 	int ret = 0, rw_level = -1, lock_level = 0;
2390 	struct file *filp = iocb->ki_filp;
2391 	struct inode *inode = file_inode(filp);
2392 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2393 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2394 
2395 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2396 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2397 			filp->f_path.dentry->d_name.len,
2398 			filp->f_path.dentry->d_name.name,
2399 			to->nr_segs);	/* GRRRRR */
2400 
2401 
2402 	if (!inode) {
2403 		ret = -EINVAL;
2404 		mlog_errno(ret);
2405 		goto bail;
2406 	}
2407 
2408 	if (!direct_io && nowait)
2409 		return -EOPNOTSUPP;
2410 
2411 	/*
2412 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2413 	 * need locks to protect pending reads from racing with truncate.
2414 	 */
2415 	if (direct_io) {
2416 		if (nowait)
2417 			ret = ocfs2_try_rw_lock(inode, 0);
2418 		else
2419 			ret = ocfs2_rw_lock(inode, 0);
2420 
2421 		if (ret < 0) {
2422 			if (ret != -EAGAIN)
2423 				mlog_errno(ret);
2424 			goto bail;
2425 		}
2426 		rw_level = 0;
2427 		/* communicate with ocfs2_dio_end_io */
2428 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2429 	}
2430 
2431 	/*
2432 	 * We're fine letting folks race truncates and extending
2433 	 * writes with read across the cluster, just like they can
2434 	 * locally. Hence no rw_lock during read.
2435 	 *
2436 	 * Take and drop the meta data lock to update inode fields
2437 	 * like i_size. This allows the checks down below
2438 	 * generic_file_read_iter() a chance of actually working.
2439 	 */
2440 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2441 				     !nowait);
2442 	if (ret < 0) {
2443 		if (ret != -EAGAIN)
2444 			mlog_errno(ret);
2445 		goto bail;
2446 	}
2447 	ocfs2_inode_unlock(inode, lock_level);
2448 
2449 	ret = generic_file_read_iter(iocb, to);
2450 	trace_generic_file_read_iter_ret(ret);
2451 
2452 	/* buffered aio wouldn't have proper lock coverage today */
2453 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2454 
2455 	/* see ocfs2_file_write_iter */
2456 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2457 		rw_level = -1;
2458 	}
2459 
2460 bail:
2461 	if (rw_level != -1)
2462 		ocfs2_rw_unlock(inode, rw_level);
2463 
2464 	return ret;
2465 }
2466 
2467 /* Refer generic_file_llseek_unlocked() */
2468 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2469 {
2470 	struct inode *inode = file->f_mapping->host;
2471 	int ret = 0;
2472 
2473 	inode_lock(inode);
2474 
2475 	switch (whence) {
2476 	case SEEK_SET:
2477 		break;
2478 	case SEEK_END:
2479 		/* SEEK_END requires the OCFS2 inode lock for the file
2480 		 * because it references the file's size.
2481 		 */
2482 		ret = ocfs2_inode_lock(inode, NULL, 0);
2483 		if (ret < 0) {
2484 			mlog_errno(ret);
2485 			goto out;
2486 		}
2487 		offset += i_size_read(inode);
2488 		ocfs2_inode_unlock(inode, 0);
2489 		break;
2490 	case SEEK_CUR:
2491 		if (offset == 0) {
2492 			offset = file->f_pos;
2493 			goto out;
2494 		}
2495 		offset += file->f_pos;
2496 		break;
2497 	case SEEK_DATA:
2498 	case SEEK_HOLE:
2499 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2500 		if (ret)
2501 			goto out;
2502 		break;
2503 	default:
2504 		ret = -EINVAL;
2505 		goto out;
2506 	}
2507 
2508 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2509 
2510 out:
2511 	inode_unlock(inode);
2512 	if (ret)
2513 		return ret;
2514 	return offset;
2515 }
2516 
2517 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2518 				     struct file *file_out, loff_t pos_out,
2519 				     loff_t len, unsigned int remap_flags)
2520 {
2521 	struct inode *inode_in = file_inode(file_in);
2522 	struct inode *inode_out = file_inode(file_out);
2523 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2524 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2525 	bool same_inode = (inode_in == inode_out);
2526 	loff_t remapped = 0;
2527 	ssize_t ret;
2528 
2529 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2530 		return -EINVAL;
2531 	if (!ocfs2_refcount_tree(osb))
2532 		return -EOPNOTSUPP;
2533 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2534 		return -EROFS;
2535 
2536 	/* Lock both files against IO */
2537 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2538 	if (ret)
2539 		return ret;
2540 
2541 	/* Check file eligibility and prepare for block sharing. */
2542 	ret = -EINVAL;
2543 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2544 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2545 		goto out_unlock;
2546 
2547 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2548 			&len, remap_flags);
2549 	if (ret < 0 || len == 0)
2550 		goto out_unlock;
2551 
2552 	/* Lock out changes to the allocation maps and remap. */
2553 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2554 	if (!same_inode)
2555 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2556 				  SINGLE_DEPTH_NESTING);
2557 
2558 	/* Zap any page cache for the destination file's range. */
2559 	truncate_inode_pages_range(&inode_out->i_data,
2560 				   round_down(pos_out, PAGE_SIZE),
2561 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2562 
2563 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2564 			inode_out, out_bh, pos_out, len);
2565 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2566 	if (!same_inode)
2567 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2568 	if (remapped < 0) {
2569 		ret = remapped;
2570 		mlog_errno(ret);
2571 		goto out_unlock;
2572 	}
2573 
2574 	/*
2575 	 * Empty the extent map so that we may get the right extent
2576 	 * record from the disk.
2577 	 */
2578 	ocfs2_extent_map_trunc(inode_in, 0);
2579 	ocfs2_extent_map_trunc(inode_out, 0);
2580 
2581 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2582 	if (ret) {
2583 		mlog_errno(ret);
2584 		goto out_unlock;
2585 	}
2586 
2587 out_unlock:
2588 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2589 	return remapped > 0 ? remapped : ret;
2590 }
2591 
2592 const struct inode_operations ocfs2_file_iops = {
2593 	.setattr	= ocfs2_setattr,
2594 	.getattr	= ocfs2_getattr,
2595 	.permission	= ocfs2_permission,
2596 	.listxattr	= ocfs2_listxattr,
2597 	.fiemap		= ocfs2_fiemap,
2598 	.get_acl	= ocfs2_iop_get_acl,
2599 	.set_acl	= ocfs2_iop_set_acl,
2600 };
2601 
2602 const struct inode_operations ocfs2_special_file_iops = {
2603 	.setattr	= ocfs2_setattr,
2604 	.getattr	= ocfs2_getattr,
2605 	.permission	= ocfs2_permission,
2606 	.get_acl	= ocfs2_iop_get_acl,
2607 	.set_acl	= ocfs2_iop_set_acl,
2608 };
2609 
2610 /*
2611  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2612  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2613  */
2614 const struct file_operations ocfs2_fops = {
2615 	.llseek		= ocfs2_file_llseek,
2616 	.mmap		= ocfs2_mmap,
2617 	.fsync		= ocfs2_sync_file,
2618 	.release	= ocfs2_file_release,
2619 	.open		= ocfs2_file_open,
2620 	.read_iter	= ocfs2_file_read_iter,
2621 	.write_iter	= ocfs2_file_write_iter,
2622 	.unlocked_ioctl	= ocfs2_ioctl,
2623 #ifdef CONFIG_COMPAT
2624 	.compat_ioctl   = ocfs2_compat_ioctl,
2625 #endif
2626 	.lock		= ocfs2_lock,
2627 	.flock		= ocfs2_flock,
2628 	.splice_read	= generic_file_splice_read,
2629 	.splice_write	= iter_file_splice_write,
2630 	.fallocate	= ocfs2_fallocate,
2631 	.remap_file_range = ocfs2_remap_file_range,
2632 };
2633 
2634 const struct file_operations ocfs2_dops = {
2635 	.llseek		= generic_file_llseek,
2636 	.read		= generic_read_dir,
2637 	.iterate	= ocfs2_readdir,
2638 	.fsync		= ocfs2_sync_file,
2639 	.release	= ocfs2_dir_release,
2640 	.open		= ocfs2_dir_open,
2641 	.unlocked_ioctl	= ocfs2_ioctl,
2642 #ifdef CONFIG_COMPAT
2643 	.compat_ioctl   = ocfs2_compat_ioctl,
2644 #endif
2645 	.lock		= ocfs2_lock,
2646 	.flock		= ocfs2_flock,
2647 };
2648 
2649 /*
2650  * POSIX-lockless variants of our file_operations.
2651  *
2652  * These will be used if the underlying cluster stack does not support
2653  * posix file locking, if the user passes the "localflocks" mount
2654  * option, or if we have a local-only fs.
2655  *
2656  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2657  * so we still want it in the case of no stack support for
2658  * plocks. Internally, it will do the right thing when asked to ignore
2659  * the cluster.
2660  */
2661 const struct file_operations ocfs2_fops_no_plocks = {
2662 	.llseek		= ocfs2_file_llseek,
2663 	.mmap		= ocfs2_mmap,
2664 	.fsync		= ocfs2_sync_file,
2665 	.release	= ocfs2_file_release,
2666 	.open		= ocfs2_file_open,
2667 	.read_iter	= ocfs2_file_read_iter,
2668 	.write_iter	= ocfs2_file_write_iter,
2669 	.unlocked_ioctl	= ocfs2_ioctl,
2670 #ifdef CONFIG_COMPAT
2671 	.compat_ioctl   = ocfs2_compat_ioctl,
2672 #endif
2673 	.flock		= ocfs2_flock,
2674 	.splice_read	= generic_file_splice_read,
2675 	.splice_write	= iter_file_splice_write,
2676 	.fallocate	= ocfs2_fallocate,
2677 	.remap_file_range = ocfs2_remap_file_range,
2678 };
2679 
2680 const struct file_operations ocfs2_dops_no_plocks = {
2681 	.llseek		= generic_file_llseek,
2682 	.read		= generic_read_dir,
2683 	.iterate	= ocfs2_readdir,
2684 	.fsync		= ocfs2_sync_file,
2685 	.release	= ocfs2_dir_release,
2686 	.open		= ocfs2_dir_open,
2687 	.unlocked_ioctl	= ocfs2_ioctl,
2688 #ifdef CONFIG_COMPAT
2689 	.compat_ioctl   = ocfs2_compat_ioctl,
2690 #endif
2691 	.flock		= ocfs2_flock,
2692 };
2693