1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * file.c 6 * 7 * File open, close, extend, truncate 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12 #include <linux/capability.h> 13 #include <linux/fs.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/highmem.h> 17 #include <linux/pagemap.h> 18 #include <linux/uio.h> 19 #include <linux/sched.h> 20 #include <linux/splice.h> 21 #include <linux/mount.h> 22 #include <linux/writeback.h> 23 #include <linux/falloc.h> 24 #include <linux/quotaops.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 28 #include <cluster/masklog.h> 29 30 #include "ocfs2.h" 31 32 #include "alloc.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "dlmglue.h" 36 #include "extent_map.h" 37 #include "file.h" 38 #include "sysfile.h" 39 #include "inode.h" 40 #include "ioctl.h" 41 #include "journal.h" 42 #include "locks.h" 43 #include "mmap.h" 44 #include "suballoc.h" 45 #include "super.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "quota.h" 49 #include "refcounttree.h" 50 #include "ocfs2_trace.h" 51 52 #include "buffer_head_io.h" 53 54 static int ocfs2_init_file_private(struct inode *inode, struct file *file) 55 { 56 struct ocfs2_file_private *fp; 57 58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 59 if (!fp) 60 return -ENOMEM; 61 62 fp->fp_file = file; 63 mutex_init(&fp->fp_mutex); 64 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 65 file->private_data = fp; 66 67 return 0; 68 } 69 70 static void ocfs2_free_file_private(struct inode *inode, struct file *file) 71 { 72 struct ocfs2_file_private *fp = file->private_data; 73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 74 75 if (fp) { 76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 77 ocfs2_lock_res_free(&fp->fp_flock); 78 kfree(fp); 79 file->private_data = NULL; 80 } 81 } 82 83 static int ocfs2_file_open(struct inode *inode, struct file *file) 84 { 85 int status; 86 int mode = file->f_flags; 87 struct ocfs2_inode_info *oi = OCFS2_I(inode); 88 89 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 90 (unsigned long long)oi->ip_blkno, 91 file->f_path.dentry->d_name.len, 92 file->f_path.dentry->d_name.name, mode); 93 94 if (file->f_mode & FMODE_WRITE) { 95 status = dquot_initialize(inode); 96 if (status) 97 goto leave; 98 } 99 100 spin_lock(&oi->ip_lock); 101 102 /* Check that the inode hasn't been wiped from disk by another 103 * node. If it hasn't then we're safe as long as we hold the 104 * spin lock until our increment of open count. */ 105 if (oi->ip_flags & OCFS2_INODE_DELETED) { 106 spin_unlock(&oi->ip_lock); 107 108 status = -ENOENT; 109 goto leave; 110 } 111 112 if (mode & O_DIRECT) 113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 114 115 oi->ip_open_count++; 116 spin_unlock(&oi->ip_lock); 117 118 status = ocfs2_init_file_private(inode, file); 119 if (status) { 120 /* 121 * We want to set open count back if we're failing the 122 * open. 123 */ 124 spin_lock(&oi->ip_lock); 125 oi->ip_open_count--; 126 spin_unlock(&oi->ip_lock); 127 } 128 129 file->f_mode |= FMODE_NOWAIT; 130 131 leave: 132 return status; 133 } 134 135 static int ocfs2_file_release(struct inode *inode, struct file *file) 136 { 137 struct ocfs2_inode_info *oi = OCFS2_I(inode); 138 139 spin_lock(&oi->ip_lock); 140 if (!--oi->ip_open_count) 141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 142 143 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 144 oi->ip_blkno, 145 file->f_path.dentry->d_name.len, 146 file->f_path.dentry->d_name.name, 147 oi->ip_open_count); 148 spin_unlock(&oi->ip_lock); 149 150 ocfs2_free_file_private(inode, file); 151 152 return 0; 153 } 154 155 static int ocfs2_dir_open(struct inode *inode, struct file *file) 156 { 157 return ocfs2_init_file_private(inode, file); 158 } 159 160 static int ocfs2_dir_release(struct inode *inode, struct file *file) 161 { 162 ocfs2_free_file_private(inode, file); 163 return 0; 164 } 165 166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 167 int datasync) 168 { 169 int err = 0; 170 struct inode *inode = file->f_mapping->host; 171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 172 struct ocfs2_inode_info *oi = OCFS2_I(inode); 173 journal_t *journal = osb->journal->j_journal; 174 int ret; 175 tid_t commit_tid; 176 bool needs_barrier = false; 177 178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 179 oi->ip_blkno, 180 file->f_path.dentry->d_name.len, 181 file->f_path.dentry->d_name.name, 182 (unsigned long long)datasync); 183 184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 185 return -EROFS; 186 187 err = file_write_and_wait_range(file, start, end); 188 if (err) 189 return err; 190 191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 192 if (journal->j_flags & JBD2_BARRIER && 193 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 194 needs_barrier = true; 195 err = jbd2_complete_transaction(journal, commit_tid); 196 if (needs_barrier) { 197 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 198 if (!err) 199 err = ret; 200 } 201 202 if (err) 203 mlog_errno(err); 204 205 return (err < 0) ? -EIO : 0; 206 } 207 208 int ocfs2_should_update_atime(struct inode *inode, 209 struct vfsmount *vfsmnt) 210 { 211 struct timespec64 now; 212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 213 214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 215 return 0; 216 217 if ((inode->i_flags & S_NOATIME) || 218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 219 return 0; 220 221 /* 222 * We can be called with no vfsmnt structure - NFSD will 223 * sometimes do this. 224 * 225 * Note that our action here is different than touch_atime() - 226 * if we can't tell whether this is a noatime mount, then we 227 * don't know whether to trust the value of s_atime_quantum. 228 */ 229 if (vfsmnt == NULL) 230 return 0; 231 232 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 234 return 0; 235 236 if (vfsmnt->mnt_flags & MNT_RELATIME) { 237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 239 return 1; 240 241 return 0; 242 } 243 244 now = current_time(inode); 245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 246 return 0; 247 else 248 return 1; 249 } 250 251 int ocfs2_update_inode_atime(struct inode *inode, 252 struct buffer_head *bh) 253 { 254 int ret; 255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 256 handle_t *handle; 257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 258 259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 260 if (IS_ERR(handle)) { 261 ret = PTR_ERR(handle); 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 267 OCFS2_JOURNAL_ACCESS_WRITE); 268 if (ret) { 269 mlog_errno(ret); 270 goto out_commit; 271 } 272 273 /* 274 * Don't use ocfs2_mark_inode_dirty() here as we don't always 275 * have i_mutex to guard against concurrent changes to other 276 * inode fields. 277 */ 278 inode->i_atime = current_time(inode); 279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 281 ocfs2_update_inode_fsync_trans(handle, inode, 0); 282 ocfs2_journal_dirty(handle, bh); 283 284 out_commit: 285 ocfs2_commit_trans(osb, handle); 286 out: 287 return ret; 288 } 289 290 int ocfs2_set_inode_size(handle_t *handle, 291 struct inode *inode, 292 struct buffer_head *fe_bh, 293 u64 new_i_size) 294 { 295 int status; 296 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_ctime = inode->i_mtime = current_time(inode); 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307 bail: 308 return status; 309 } 310 311 int ocfs2_simple_size_update(struct inode *inode, 312 struct buffer_head *di_bh, 313 u64 new_i_size) 314 { 315 int ret; 316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 317 handle_t *handle = NULL; 318 319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 320 if (IS_ERR(handle)) { 321 ret = PTR_ERR(handle); 322 mlog_errno(ret); 323 goto out; 324 } 325 326 ret = ocfs2_set_inode_size(handle, inode, di_bh, 327 new_i_size); 328 if (ret < 0) 329 mlog_errno(ret); 330 331 ocfs2_update_inode_fsync_trans(handle, inode, 0); 332 ocfs2_commit_trans(osb, handle); 333 out: 334 return ret; 335 } 336 337 static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340 { 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366 out: 367 return status; 368 } 369 370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374 { 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 /* 381 * We need to CoW the cluster contains the offset if it is reflinked 382 * since we will call ocfs2_zero_range_for_truncate later which will 383 * write "0" from offset to the end of the cluster. 384 */ 385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 386 if (status) { 387 mlog_errno(status); 388 return status; 389 } 390 391 /* TODO: This needs to actually orphan the inode in this 392 * transaction. */ 393 394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 395 if (IS_ERR(handle)) { 396 status = PTR_ERR(handle); 397 mlog_errno(status); 398 goto out; 399 } 400 401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 402 OCFS2_JOURNAL_ACCESS_WRITE); 403 if (status < 0) { 404 mlog_errno(status); 405 goto out_commit; 406 } 407 408 /* 409 * Do this before setting i_size. 410 */ 411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 413 cluster_bytes); 414 if (status) { 415 mlog_errno(status); 416 goto out_commit; 417 } 418 419 i_size_write(inode, new_i_size); 420 inode->i_ctime = inode->i_mtime = current_time(inode); 421 422 di = (struct ocfs2_dinode *) fe_bh->b_data; 423 di->i_size = cpu_to_le64(new_i_size); 424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 426 ocfs2_update_inode_fsync_trans(handle, inode, 0); 427 428 ocfs2_journal_dirty(handle, fe_bh); 429 430 out_commit: 431 ocfs2_commit_trans(osb, handle); 432 out: 433 return status; 434 } 435 436 int ocfs2_truncate_file(struct inode *inode, 437 struct buffer_head *di_bh, 438 u64 new_i_size) 439 { 440 int status = 0; 441 struct ocfs2_dinode *fe = NULL; 442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 443 444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 445 * already validated it */ 446 fe = (struct ocfs2_dinode *) di_bh->b_data; 447 448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)le64_to_cpu(fe->i_size), 450 (unsigned long long)new_i_size); 451 452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 453 "Inode %llu, inode i_size = %lld != di " 454 "i_size = %llu, i_flags = 0x%x\n", 455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 456 i_size_read(inode), 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 le32_to_cpu(fe->i_flags)); 459 460 if (new_i_size > le64_to_cpu(fe->i_size)) { 461 trace_ocfs2_truncate_file_error( 462 (unsigned long long)le64_to_cpu(fe->i_size), 463 (unsigned long long)new_i_size); 464 status = -EINVAL; 465 mlog_errno(status); 466 goto bail; 467 } 468 469 down_write(&OCFS2_I(inode)->ip_alloc_sem); 470 471 ocfs2_resv_discard(&osb->osb_la_resmap, 472 &OCFS2_I(inode)->ip_la_data_resv); 473 474 /* 475 * The inode lock forced other nodes to sync and drop their 476 * pages, which (correctly) happens even if we have a truncate 477 * without allocation change - ocfs2 cluster sizes can be much 478 * greater than page size, so we have to truncate them 479 * anyway. 480 */ 481 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 482 truncate_inode_pages(inode->i_mapping, new_i_size); 483 484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 485 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 486 i_size_read(inode), 1); 487 if (status) 488 mlog_errno(status); 489 490 goto bail_unlock_sem; 491 } 492 493 /* alright, we're going to need to do a full blown alloc size 494 * change. Orphan the inode so that recovery can complete the 495 * truncate if necessary. This does the task of marking 496 * i_size. */ 497 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 498 if (status < 0) { 499 mlog_errno(status); 500 goto bail_unlock_sem; 501 } 502 503 status = ocfs2_commit_truncate(osb, inode, di_bh); 504 if (status < 0) { 505 mlog_errno(status); 506 goto bail_unlock_sem; 507 } 508 509 /* TODO: orphan dir cleanup here. */ 510 bail_unlock_sem: 511 up_write(&OCFS2_I(inode)->ip_alloc_sem); 512 513 bail: 514 if (!status && OCFS2_I(inode)->ip_clusters == 0) 515 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 516 517 return status; 518 } 519 520 /* 521 * extend file allocation only here. 522 * we'll update all the disk stuff, and oip->alloc_size 523 * 524 * expect stuff to be locked, a transaction started and enough data / 525 * metadata reservations in the contexts. 526 * 527 * Will return -EAGAIN, and a reason if a restart is needed. 528 * If passed in, *reason will always be set, even in error. 529 */ 530 int ocfs2_add_inode_data(struct ocfs2_super *osb, 531 struct inode *inode, 532 u32 *logical_offset, 533 u32 clusters_to_add, 534 int mark_unwritten, 535 struct buffer_head *fe_bh, 536 handle_t *handle, 537 struct ocfs2_alloc_context *data_ac, 538 struct ocfs2_alloc_context *meta_ac, 539 enum ocfs2_alloc_restarted *reason_ret) 540 { 541 int ret; 542 struct ocfs2_extent_tree et; 543 544 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 545 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 546 clusters_to_add, mark_unwritten, 547 data_ac, meta_ac, reason_ret); 548 549 return ret; 550 } 551 552 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 553 u32 clusters_to_add, int mark_unwritten) 554 { 555 int status = 0; 556 int restart_func = 0; 557 int credits; 558 u32 prev_clusters; 559 struct buffer_head *bh = NULL; 560 struct ocfs2_dinode *fe = NULL; 561 handle_t *handle = NULL; 562 struct ocfs2_alloc_context *data_ac = NULL; 563 struct ocfs2_alloc_context *meta_ac = NULL; 564 enum ocfs2_alloc_restarted why = RESTART_NONE; 565 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 566 struct ocfs2_extent_tree et; 567 int did_quota = 0; 568 569 /* 570 * Unwritten extent only exists for file systems which 571 * support holes. 572 */ 573 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 574 575 status = ocfs2_read_inode_block(inode, &bh); 576 if (status < 0) { 577 mlog_errno(status); 578 goto leave; 579 } 580 fe = (struct ocfs2_dinode *) bh->b_data; 581 582 restart_all: 583 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 584 585 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 586 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 587 &data_ac, &meta_ac); 588 if (status) { 589 mlog_errno(status); 590 goto leave; 591 } 592 593 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 594 handle = ocfs2_start_trans(osb, credits); 595 if (IS_ERR(handle)) { 596 status = PTR_ERR(handle); 597 handle = NULL; 598 mlog_errno(status); 599 goto leave; 600 } 601 602 restarted_transaction: 603 trace_ocfs2_extend_allocation( 604 (unsigned long long)OCFS2_I(inode)->ip_blkno, 605 (unsigned long long)i_size_read(inode), 606 le32_to_cpu(fe->i_clusters), clusters_to_add, 607 why, restart_func); 608 609 status = dquot_alloc_space_nodirty(inode, 610 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 611 if (status) 612 goto leave; 613 did_quota = 1; 614 615 /* reserve a write to the file entry early on - that we if we 616 * run out of credits in the allocation path, we can still 617 * update i_size. */ 618 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 619 OCFS2_JOURNAL_ACCESS_WRITE); 620 if (status < 0) { 621 mlog_errno(status); 622 goto leave; 623 } 624 625 prev_clusters = OCFS2_I(inode)->ip_clusters; 626 627 status = ocfs2_add_inode_data(osb, 628 inode, 629 &logical_start, 630 clusters_to_add, 631 mark_unwritten, 632 bh, 633 handle, 634 data_ac, 635 meta_ac, 636 &why); 637 if ((status < 0) && (status != -EAGAIN)) { 638 if (status != -ENOSPC) 639 mlog_errno(status); 640 goto leave; 641 } 642 ocfs2_update_inode_fsync_trans(handle, inode, 1); 643 ocfs2_journal_dirty(handle, bh); 644 645 spin_lock(&OCFS2_I(inode)->ip_lock); 646 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 647 spin_unlock(&OCFS2_I(inode)->ip_lock); 648 /* Release unused quota reservation */ 649 dquot_free_space(inode, 650 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 651 did_quota = 0; 652 653 if (why != RESTART_NONE && clusters_to_add) { 654 if (why == RESTART_META) { 655 restart_func = 1; 656 status = 0; 657 } else { 658 BUG_ON(why != RESTART_TRANS); 659 660 status = ocfs2_allocate_extend_trans(handle, 1); 661 if (status < 0) { 662 /* handle still has to be committed at 663 * this point. */ 664 status = -ENOMEM; 665 mlog_errno(status); 666 goto leave; 667 } 668 goto restarted_transaction; 669 } 670 } 671 672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 673 le32_to_cpu(fe->i_clusters), 674 (unsigned long long)le64_to_cpu(fe->i_size), 675 OCFS2_I(inode)->ip_clusters, 676 (unsigned long long)i_size_read(inode)); 677 678 leave: 679 if (status < 0 && did_quota) 680 dquot_free_space(inode, 681 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 682 if (handle) { 683 ocfs2_commit_trans(osb, handle); 684 handle = NULL; 685 } 686 if (data_ac) { 687 ocfs2_free_alloc_context(data_ac); 688 data_ac = NULL; 689 } 690 if (meta_ac) { 691 ocfs2_free_alloc_context(meta_ac); 692 meta_ac = NULL; 693 } 694 if ((!status) && restart_func) { 695 restart_func = 0; 696 goto restart_all; 697 } 698 brelse(bh); 699 bh = NULL; 700 701 return status; 702 } 703 704 /* 705 * While a write will already be ordering the data, a truncate will not. 706 * Thus, we need to explicitly order the zeroed pages. 707 */ 708 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 709 struct buffer_head *di_bh, 710 loff_t start_byte, 711 loff_t length) 712 { 713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 714 handle_t *handle = NULL; 715 int ret = 0; 716 717 if (!ocfs2_should_order_data(inode)) 718 goto out; 719 720 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 721 if (IS_ERR(handle)) { 722 ret = -ENOMEM; 723 mlog_errno(ret); 724 goto out; 725 } 726 727 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 728 if (ret < 0) { 729 mlog_errno(ret); 730 goto out; 731 } 732 733 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 734 OCFS2_JOURNAL_ACCESS_WRITE); 735 if (ret) 736 mlog_errno(ret); 737 ocfs2_update_inode_fsync_trans(handle, inode, 1); 738 739 out: 740 if (ret) { 741 if (!IS_ERR(handle)) 742 ocfs2_commit_trans(osb, handle); 743 handle = ERR_PTR(ret); 744 } 745 return handle; 746 } 747 748 /* Some parts of this taken from generic_cont_expand, which turned out 749 * to be too fragile to do exactly what we need without us having to 750 * worry about recursive locking in ->write_begin() and ->write_end(). */ 751 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 752 u64 abs_to, struct buffer_head *di_bh) 753 { 754 struct address_space *mapping = inode->i_mapping; 755 struct page *page; 756 unsigned long index = abs_from >> PAGE_SHIFT; 757 handle_t *handle; 758 int ret = 0; 759 unsigned zero_from, zero_to, block_start, block_end; 760 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 761 762 BUG_ON(abs_from >= abs_to); 763 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 764 BUG_ON(abs_from & (inode->i_blkbits - 1)); 765 766 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 767 abs_from, 768 abs_to - abs_from); 769 if (IS_ERR(handle)) { 770 ret = PTR_ERR(handle); 771 goto out; 772 } 773 774 page = find_or_create_page(mapping, index, GFP_NOFS); 775 if (!page) { 776 ret = -ENOMEM; 777 mlog_errno(ret); 778 goto out_commit_trans; 779 } 780 781 /* Get the offsets within the page that we want to zero */ 782 zero_from = abs_from & (PAGE_SIZE - 1); 783 zero_to = abs_to & (PAGE_SIZE - 1); 784 if (!zero_to) 785 zero_to = PAGE_SIZE; 786 787 trace_ocfs2_write_zero_page( 788 (unsigned long long)OCFS2_I(inode)->ip_blkno, 789 (unsigned long long)abs_from, 790 (unsigned long long)abs_to, 791 index, zero_from, zero_to); 792 793 /* We know that zero_from is block aligned */ 794 for (block_start = zero_from; block_start < zero_to; 795 block_start = block_end) { 796 block_end = block_start + i_blocksize(inode); 797 798 /* 799 * block_start is block-aligned. Bump it by one to force 800 * __block_write_begin and block_commit_write to zero the 801 * whole block. 802 */ 803 ret = __block_write_begin(page, block_start + 1, 0, 804 ocfs2_get_block); 805 if (ret < 0) { 806 mlog_errno(ret); 807 goto out_unlock; 808 } 809 810 811 /* must not update i_size! */ 812 ret = block_commit_write(page, block_start + 1, 813 block_start + 1); 814 if (ret < 0) 815 mlog_errno(ret); 816 else 817 ret = 0; 818 } 819 820 /* 821 * fs-writeback will release the dirty pages without page lock 822 * whose offset are over inode size, the release happens at 823 * block_write_full_page(). 824 */ 825 i_size_write(inode, abs_to); 826 inode->i_blocks = ocfs2_inode_sector_count(inode); 827 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 828 inode->i_mtime = inode->i_ctime = current_time(inode); 829 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 830 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 831 di->i_mtime_nsec = di->i_ctime_nsec; 832 if (handle) { 833 ocfs2_journal_dirty(handle, di_bh); 834 ocfs2_update_inode_fsync_trans(handle, inode, 1); 835 } 836 837 out_unlock: 838 unlock_page(page); 839 put_page(page); 840 out_commit_trans: 841 if (handle) 842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 843 out: 844 return ret; 845 } 846 847 /* 848 * Find the next range to zero. We do this in terms of bytes because 849 * that's what ocfs2_zero_extend() wants, and it is dealing with the 850 * pagecache. We may return multiple extents. 851 * 852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 853 * needs to be zeroed. range_start and range_end return the next zeroing 854 * range. A subsequent call should pass the previous range_end as its 855 * zero_start. If range_end is 0, there's nothing to do. 856 * 857 * Unwritten extents are skipped over. Refcounted extents are CoWd. 858 */ 859 static int ocfs2_zero_extend_get_range(struct inode *inode, 860 struct buffer_head *di_bh, 861 u64 zero_start, u64 zero_end, 862 u64 *range_start, u64 *range_end) 863 { 864 int rc = 0, needs_cow = 0; 865 u32 p_cpos, zero_clusters = 0; 866 u32 zero_cpos = 867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 869 unsigned int num_clusters = 0; 870 unsigned int ext_flags = 0; 871 872 while (zero_cpos < last_cpos) { 873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 874 &num_clusters, &ext_flags); 875 if (rc) { 876 mlog_errno(rc); 877 goto out; 878 } 879 880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 881 zero_clusters = num_clusters; 882 if (ext_flags & OCFS2_EXT_REFCOUNTED) 883 needs_cow = 1; 884 break; 885 } 886 887 zero_cpos += num_clusters; 888 } 889 if (!zero_clusters) { 890 *range_end = 0; 891 goto out; 892 } 893 894 while ((zero_cpos + zero_clusters) < last_cpos) { 895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 896 &p_cpos, &num_clusters, 897 &ext_flags); 898 if (rc) { 899 mlog_errno(rc); 900 goto out; 901 } 902 903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 904 break; 905 if (ext_flags & OCFS2_EXT_REFCOUNTED) 906 needs_cow = 1; 907 zero_clusters += num_clusters; 908 } 909 if ((zero_cpos + zero_clusters) > last_cpos) 910 zero_clusters = last_cpos - zero_cpos; 911 912 if (needs_cow) { 913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 914 zero_clusters, UINT_MAX); 915 if (rc) { 916 mlog_errno(rc); 917 goto out; 918 } 919 } 920 921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 923 zero_cpos + zero_clusters); 924 925 out: 926 return rc; 927 } 928 929 /* 930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 931 * has made sure that the entire range needs zeroing. 932 */ 933 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 934 u64 range_end, struct buffer_head *di_bh) 935 { 936 int rc = 0; 937 u64 next_pos; 938 u64 zero_pos = range_start; 939 940 trace_ocfs2_zero_extend_range( 941 (unsigned long long)OCFS2_I(inode)->ip_blkno, 942 (unsigned long long)range_start, 943 (unsigned long long)range_end); 944 BUG_ON(range_start >= range_end); 945 946 while (zero_pos < range_end) { 947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 948 if (next_pos > range_end) 949 next_pos = range_end; 950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 951 if (rc < 0) { 952 mlog_errno(rc); 953 break; 954 } 955 zero_pos = next_pos; 956 957 /* 958 * Very large extends have the potential to lock up 959 * the cpu for extended periods of time. 960 */ 961 cond_resched(); 962 } 963 964 return rc; 965 } 966 967 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 968 loff_t zero_to_size) 969 { 970 int ret = 0; 971 u64 zero_start, range_start = 0, range_end = 0; 972 struct super_block *sb = inode->i_sb; 973 974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 976 (unsigned long long)zero_start, 977 (unsigned long long)i_size_read(inode)); 978 while (zero_start < zero_to_size) { 979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 980 zero_to_size, 981 &range_start, 982 &range_end); 983 if (ret) { 984 mlog_errno(ret); 985 break; 986 } 987 if (!range_end) 988 break; 989 /* Trim the ends */ 990 if (range_start < zero_start) 991 range_start = zero_start; 992 if (range_end > zero_to_size) 993 range_end = zero_to_size; 994 995 ret = ocfs2_zero_extend_range(inode, range_start, 996 range_end, di_bh); 997 if (ret) { 998 mlog_errno(ret); 999 break; 1000 } 1001 zero_start = range_end; 1002 } 1003 1004 return ret; 1005 } 1006 1007 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1008 u64 new_i_size, u64 zero_to) 1009 { 1010 int ret; 1011 u32 clusters_to_add; 1012 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1013 1014 /* 1015 * Only quota files call this without a bh, and they can't be 1016 * refcounted. 1017 */ 1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1020 1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1022 if (clusters_to_add < oi->ip_clusters) 1023 clusters_to_add = 0; 1024 else 1025 clusters_to_add -= oi->ip_clusters; 1026 1027 if (clusters_to_add) { 1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1029 clusters_to_add, 0); 1030 if (ret) { 1031 mlog_errno(ret); 1032 goto out; 1033 } 1034 } 1035 1036 /* 1037 * Call this even if we don't add any clusters to the tree. We 1038 * still need to zero the area between the old i_size and the 1039 * new i_size. 1040 */ 1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1042 if (ret < 0) 1043 mlog_errno(ret); 1044 1045 out: 1046 return ret; 1047 } 1048 1049 static int ocfs2_extend_file(struct inode *inode, 1050 struct buffer_head *di_bh, 1051 u64 new_i_size) 1052 { 1053 int ret = 0; 1054 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1055 1056 BUG_ON(!di_bh); 1057 1058 /* setattr sometimes calls us like this. */ 1059 if (new_i_size == 0) 1060 goto out; 1061 1062 if (i_size_read(inode) == new_i_size) 1063 goto out; 1064 BUG_ON(new_i_size < i_size_read(inode)); 1065 1066 /* 1067 * The alloc sem blocks people in read/write from reading our 1068 * allocation until we're done changing it. We depend on 1069 * i_mutex to block other extend/truncate calls while we're 1070 * here. We even have to hold it for sparse files because there 1071 * might be some tail zeroing. 1072 */ 1073 down_write(&oi->ip_alloc_sem); 1074 1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1076 /* 1077 * We can optimize small extends by keeping the inodes 1078 * inline data. 1079 */ 1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1081 up_write(&oi->ip_alloc_sem); 1082 goto out_update_size; 1083 } 1084 1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1086 if (ret) { 1087 up_write(&oi->ip_alloc_sem); 1088 mlog_errno(ret); 1089 goto out; 1090 } 1091 } 1092 1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1095 else 1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1097 new_i_size); 1098 1099 up_write(&oi->ip_alloc_sem); 1100 1101 if (ret < 0) { 1102 mlog_errno(ret); 1103 goto out; 1104 } 1105 1106 out_update_size: 1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1108 if (ret < 0) 1109 mlog_errno(ret); 1110 1111 out: 1112 return ret; 1113 } 1114 1115 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1116 { 1117 int status = 0, size_change; 1118 int inode_locked = 0; 1119 struct inode *inode = d_inode(dentry); 1120 struct super_block *sb = inode->i_sb; 1121 struct ocfs2_super *osb = OCFS2_SB(sb); 1122 struct buffer_head *bh = NULL; 1123 handle_t *handle = NULL; 1124 struct dquot *transfer_to[MAXQUOTAS] = { }; 1125 int qtype; 1126 int had_lock; 1127 struct ocfs2_lock_holder oh; 1128 1129 trace_ocfs2_setattr(inode, dentry, 1130 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1131 dentry->d_name.len, dentry->d_name.name, 1132 attr->ia_valid, attr->ia_mode, 1133 from_kuid(&init_user_ns, attr->ia_uid), 1134 from_kgid(&init_user_ns, attr->ia_gid)); 1135 1136 /* ensuring we don't even attempt to truncate a symlink */ 1137 if (S_ISLNK(inode->i_mode)) 1138 attr->ia_valid &= ~ATTR_SIZE; 1139 1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1141 | ATTR_GID | ATTR_UID | ATTR_MODE) 1142 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1143 return 0; 1144 1145 status = setattr_prepare(dentry, attr); 1146 if (status) 1147 return status; 1148 1149 if (is_quota_modification(inode, attr)) { 1150 status = dquot_initialize(inode); 1151 if (status) 1152 return status; 1153 } 1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1155 if (size_change) { 1156 /* 1157 * Here we should wait dio to finish before inode lock 1158 * to avoid a deadlock between ocfs2_setattr() and 1159 * ocfs2_dio_end_io_write() 1160 */ 1161 inode_dio_wait(inode); 1162 1163 status = ocfs2_rw_lock(inode, 1); 1164 if (status < 0) { 1165 mlog_errno(status); 1166 goto bail; 1167 } 1168 } 1169 1170 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1171 if (had_lock < 0) { 1172 status = had_lock; 1173 goto bail_unlock_rw; 1174 } else if (had_lock) { 1175 /* 1176 * As far as we know, ocfs2_setattr() could only be the first 1177 * VFS entry point in the call chain of recursive cluster 1178 * locking issue. 1179 * 1180 * For instance: 1181 * chmod_common() 1182 * notify_change() 1183 * ocfs2_setattr() 1184 * posix_acl_chmod() 1185 * ocfs2_iop_get_acl() 1186 * 1187 * But, we're not 100% sure if it's always true, because the 1188 * ordering of the VFS entry points in the call chain is out 1189 * of our control. So, we'd better dump the stack here to 1190 * catch the other cases of recursive locking. 1191 */ 1192 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1193 dump_stack(); 1194 } 1195 inode_locked = 1; 1196 1197 if (size_change) { 1198 status = inode_newsize_ok(inode, attr->ia_size); 1199 if (status) 1200 goto bail_unlock; 1201 1202 if (i_size_read(inode) >= attr->ia_size) { 1203 if (ocfs2_should_order_data(inode)) { 1204 status = ocfs2_begin_ordered_truncate(inode, 1205 attr->ia_size); 1206 if (status) 1207 goto bail_unlock; 1208 } 1209 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1210 } else 1211 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1212 if (status < 0) { 1213 if (status != -ENOSPC) 1214 mlog_errno(status); 1215 status = -ENOSPC; 1216 goto bail_unlock; 1217 } 1218 } 1219 1220 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1221 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1222 /* 1223 * Gather pointers to quota structures so that allocation / 1224 * freeing of quota structures happens here and not inside 1225 * dquot_transfer() where we have problems with lock ordering 1226 */ 1227 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1228 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1229 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1230 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1231 if (IS_ERR(transfer_to[USRQUOTA])) { 1232 status = PTR_ERR(transfer_to[USRQUOTA]); 1233 transfer_to[USRQUOTA] = NULL; 1234 goto bail_unlock; 1235 } 1236 } 1237 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1239 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1240 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1241 if (IS_ERR(transfer_to[GRPQUOTA])) { 1242 status = PTR_ERR(transfer_to[GRPQUOTA]); 1243 transfer_to[GRPQUOTA] = NULL; 1244 goto bail_unlock; 1245 } 1246 } 1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1248 2 * ocfs2_quota_trans_credits(sb)); 1249 if (IS_ERR(handle)) { 1250 status = PTR_ERR(handle); 1251 mlog_errno(status); 1252 goto bail_unlock; 1253 } 1254 status = __dquot_transfer(inode, transfer_to); 1255 if (status < 0) 1256 goto bail_commit; 1257 } else { 1258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1259 if (IS_ERR(handle)) { 1260 status = PTR_ERR(handle); 1261 mlog_errno(status); 1262 goto bail_unlock; 1263 } 1264 } 1265 1266 setattr_copy(inode, attr); 1267 mark_inode_dirty(inode); 1268 1269 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1270 if (status < 0) 1271 mlog_errno(status); 1272 1273 bail_commit: 1274 ocfs2_commit_trans(osb, handle); 1275 bail_unlock: 1276 if (status && inode_locked) { 1277 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1278 inode_locked = 0; 1279 } 1280 bail_unlock_rw: 1281 if (size_change) 1282 ocfs2_rw_unlock(inode, 1); 1283 bail: 1284 1285 /* Release quota pointers in case we acquired them */ 1286 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1287 dqput(transfer_to[qtype]); 1288 1289 if (!status && attr->ia_valid & ATTR_MODE) { 1290 status = ocfs2_acl_chmod(inode, bh); 1291 if (status < 0) 1292 mlog_errno(status); 1293 } 1294 if (inode_locked) 1295 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1296 1297 brelse(bh); 1298 return status; 1299 } 1300 1301 int ocfs2_getattr(const struct path *path, struct kstat *stat, 1302 u32 request_mask, unsigned int flags) 1303 { 1304 struct inode *inode = d_inode(path->dentry); 1305 struct super_block *sb = path->dentry->d_sb; 1306 struct ocfs2_super *osb = sb->s_fs_info; 1307 int err; 1308 1309 err = ocfs2_inode_revalidate(path->dentry); 1310 if (err) { 1311 if (err != -ENOENT) 1312 mlog_errno(err); 1313 goto bail; 1314 } 1315 1316 generic_fillattr(inode, stat); 1317 /* 1318 * If there is inline data in the inode, the inode will normally not 1319 * have data blocks allocated (it may have an external xattr block). 1320 * Report at least one sector for such files, so tools like tar, rsync, 1321 * others don't incorrectly think the file is completely sparse. 1322 */ 1323 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1324 stat->blocks += (stat->size + 511)>>9; 1325 1326 /* We set the blksize from the cluster size for performance */ 1327 stat->blksize = osb->s_clustersize; 1328 1329 bail: 1330 return err; 1331 } 1332 1333 int ocfs2_permission(struct inode *inode, int mask) 1334 { 1335 int ret, had_lock; 1336 struct ocfs2_lock_holder oh; 1337 1338 if (mask & MAY_NOT_BLOCK) 1339 return -ECHILD; 1340 1341 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1342 if (had_lock < 0) { 1343 ret = had_lock; 1344 goto out; 1345 } else if (had_lock) { 1346 /* See comments in ocfs2_setattr() for details. 1347 * The call chain of this case could be: 1348 * do_sys_open() 1349 * may_open() 1350 * inode_permission() 1351 * ocfs2_permission() 1352 * ocfs2_iop_get_acl() 1353 */ 1354 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1355 dump_stack(); 1356 } 1357 1358 ret = generic_permission(inode, mask); 1359 1360 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1361 out: 1362 return ret; 1363 } 1364 1365 static int __ocfs2_write_remove_suid(struct inode *inode, 1366 struct buffer_head *bh) 1367 { 1368 int ret; 1369 handle_t *handle; 1370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1371 struct ocfs2_dinode *di; 1372 1373 trace_ocfs2_write_remove_suid( 1374 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1375 inode->i_mode); 1376 1377 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1378 if (IS_ERR(handle)) { 1379 ret = PTR_ERR(handle); 1380 mlog_errno(ret); 1381 goto out; 1382 } 1383 1384 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1385 OCFS2_JOURNAL_ACCESS_WRITE); 1386 if (ret < 0) { 1387 mlog_errno(ret); 1388 goto out_trans; 1389 } 1390 1391 inode->i_mode &= ~S_ISUID; 1392 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1393 inode->i_mode &= ~S_ISGID; 1394 1395 di = (struct ocfs2_dinode *) bh->b_data; 1396 di->i_mode = cpu_to_le16(inode->i_mode); 1397 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1398 1399 ocfs2_journal_dirty(handle, bh); 1400 1401 out_trans: 1402 ocfs2_commit_trans(osb, handle); 1403 out: 1404 return ret; 1405 } 1406 1407 static int ocfs2_write_remove_suid(struct inode *inode) 1408 { 1409 int ret; 1410 struct buffer_head *bh = NULL; 1411 1412 ret = ocfs2_read_inode_block(inode, &bh); 1413 if (ret < 0) { 1414 mlog_errno(ret); 1415 goto out; 1416 } 1417 1418 ret = __ocfs2_write_remove_suid(inode, bh); 1419 out: 1420 brelse(bh); 1421 return ret; 1422 } 1423 1424 /* 1425 * Allocate enough extents to cover the region starting at byte offset 1426 * start for len bytes. Existing extents are skipped, any extents 1427 * added are marked as "unwritten". 1428 */ 1429 static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1430 u64 start, u64 len) 1431 { 1432 int ret; 1433 u32 cpos, phys_cpos, clusters, alloc_size; 1434 u64 end = start + len; 1435 struct buffer_head *di_bh = NULL; 1436 1437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1438 ret = ocfs2_read_inode_block(inode, &di_bh); 1439 if (ret) { 1440 mlog_errno(ret); 1441 goto out; 1442 } 1443 1444 /* 1445 * Nothing to do if the requested reservation range 1446 * fits within the inode. 1447 */ 1448 if (ocfs2_size_fits_inline_data(di_bh, end)) 1449 goto out; 1450 1451 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1452 if (ret) { 1453 mlog_errno(ret); 1454 goto out; 1455 } 1456 } 1457 1458 /* 1459 * We consider both start and len to be inclusive. 1460 */ 1461 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1462 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1463 clusters -= cpos; 1464 1465 while (clusters) { 1466 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1467 &alloc_size, NULL); 1468 if (ret) { 1469 mlog_errno(ret); 1470 goto out; 1471 } 1472 1473 /* 1474 * Hole or existing extent len can be arbitrary, so 1475 * cap it to our own allocation request. 1476 */ 1477 if (alloc_size > clusters) 1478 alloc_size = clusters; 1479 1480 if (phys_cpos) { 1481 /* 1482 * We already have an allocation at this 1483 * region so we can safely skip it. 1484 */ 1485 goto next; 1486 } 1487 1488 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1489 if (ret) { 1490 if (ret != -ENOSPC) 1491 mlog_errno(ret); 1492 goto out; 1493 } 1494 1495 next: 1496 cpos += alloc_size; 1497 clusters -= alloc_size; 1498 } 1499 1500 ret = 0; 1501 out: 1502 1503 brelse(di_bh); 1504 return ret; 1505 } 1506 1507 /* 1508 * Truncate a byte range, avoiding pages within partial clusters. This 1509 * preserves those pages for the zeroing code to write to. 1510 */ 1511 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1512 u64 byte_len) 1513 { 1514 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1515 loff_t start, end; 1516 struct address_space *mapping = inode->i_mapping; 1517 1518 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1519 end = byte_start + byte_len; 1520 end = end & ~(osb->s_clustersize - 1); 1521 1522 if (start < end) { 1523 unmap_mapping_range(mapping, start, end - start, 0); 1524 truncate_inode_pages_range(mapping, start, end - 1); 1525 } 1526 } 1527 1528 static int ocfs2_zero_partial_clusters(struct inode *inode, 1529 u64 start, u64 len) 1530 { 1531 int ret = 0; 1532 u64 tmpend = 0; 1533 u64 end = start + len; 1534 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1535 unsigned int csize = osb->s_clustersize; 1536 handle_t *handle; 1537 1538 /* 1539 * The "start" and "end" values are NOT necessarily part of 1540 * the range whose allocation is being deleted. Rather, this 1541 * is what the user passed in with the request. We must zero 1542 * partial clusters here. There's no need to worry about 1543 * physical allocation - the zeroing code knows to skip holes. 1544 */ 1545 trace_ocfs2_zero_partial_clusters( 1546 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1547 (unsigned long long)start, (unsigned long long)end); 1548 1549 /* 1550 * If both edges are on a cluster boundary then there's no 1551 * zeroing required as the region is part of the allocation to 1552 * be truncated. 1553 */ 1554 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1555 goto out; 1556 1557 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1558 if (IS_ERR(handle)) { 1559 ret = PTR_ERR(handle); 1560 mlog_errno(ret); 1561 goto out; 1562 } 1563 1564 /* 1565 * If start is on a cluster boundary and end is somewhere in another 1566 * cluster, we have not COWed the cluster starting at start, unless 1567 * end is also within the same cluster. So, in this case, we skip this 1568 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1569 * to the next one. 1570 */ 1571 if ((start & (csize - 1)) != 0) { 1572 /* 1573 * We want to get the byte offset of the end of the 1st 1574 * cluster. 1575 */ 1576 tmpend = (u64)osb->s_clustersize + 1577 (start & ~(osb->s_clustersize - 1)); 1578 if (tmpend > end) 1579 tmpend = end; 1580 1581 trace_ocfs2_zero_partial_clusters_range1( 1582 (unsigned long long)start, 1583 (unsigned long long)tmpend); 1584 1585 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1586 tmpend); 1587 if (ret) 1588 mlog_errno(ret); 1589 } 1590 1591 if (tmpend < end) { 1592 /* 1593 * This may make start and end equal, but the zeroing 1594 * code will skip any work in that case so there's no 1595 * need to catch it up here. 1596 */ 1597 start = end & ~(osb->s_clustersize - 1); 1598 1599 trace_ocfs2_zero_partial_clusters_range2( 1600 (unsigned long long)start, (unsigned long long)end); 1601 1602 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1603 if (ret) 1604 mlog_errno(ret); 1605 } 1606 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1607 1608 ocfs2_commit_trans(osb, handle); 1609 out: 1610 return ret; 1611 } 1612 1613 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1614 { 1615 int i; 1616 struct ocfs2_extent_rec *rec = NULL; 1617 1618 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1619 1620 rec = &el->l_recs[i]; 1621 1622 if (le32_to_cpu(rec->e_cpos) < pos) 1623 break; 1624 } 1625 1626 return i; 1627 } 1628 1629 /* 1630 * Helper to calculate the punching pos and length in one run, we handle the 1631 * following three cases in order: 1632 * 1633 * - remove the entire record 1634 * - remove a partial record 1635 * - no record needs to be removed (hole-punching completed) 1636 */ 1637 static void ocfs2_calc_trunc_pos(struct inode *inode, 1638 struct ocfs2_extent_list *el, 1639 struct ocfs2_extent_rec *rec, 1640 u32 trunc_start, u32 *trunc_cpos, 1641 u32 *trunc_len, u32 *trunc_end, 1642 u64 *blkno, int *done) 1643 { 1644 int ret = 0; 1645 u32 coff, range; 1646 1647 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1648 1649 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1650 /* 1651 * remove an entire extent record. 1652 */ 1653 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1654 /* 1655 * Skip holes if any. 1656 */ 1657 if (range < *trunc_end) 1658 *trunc_end = range; 1659 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1660 *blkno = le64_to_cpu(rec->e_blkno); 1661 *trunc_end = le32_to_cpu(rec->e_cpos); 1662 } else if (range > trunc_start) { 1663 /* 1664 * remove a partial extent record, which means we're 1665 * removing the last extent record. 1666 */ 1667 *trunc_cpos = trunc_start; 1668 /* 1669 * skip hole if any. 1670 */ 1671 if (range < *trunc_end) 1672 *trunc_end = range; 1673 *trunc_len = *trunc_end - trunc_start; 1674 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1675 *blkno = le64_to_cpu(rec->e_blkno) + 1676 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1677 *trunc_end = trunc_start; 1678 } else { 1679 /* 1680 * It may have two following possibilities: 1681 * 1682 * - last record has been removed 1683 * - trunc_start was within a hole 1684 * 1685 * both two cases mean the completion of hole punching. 1686 */ 1687 ret = 1; 1688 } 1689 1690 *done = ret; 1691 } 1692 1693 int ocfs2_remove_inode_range(struct inode *inode, 1694 struct buffer_head *di_bh, u64 byte_start, 1695 u64 byte_len) 1696 { 1697 int ret = 0, flags = 0, done = 0, i; 1698 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1699 u32 cluster_in_el; 1700 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1701 struct ocfs2_cached_dealloc_ctxt dealloc; 1702 struct address_space *mapping = inode->i_mapping; 1703 struct ocfs2_extent_tree et; 1704 struct ocfs2_path *path = NULL; 1705 struct ocfs2_extent_list *el = NULL; 1706 struct ocfs2_extent_rec *rec = NULL; 1707 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1708 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1709 1710 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1711 ocfs2_init_dealloc_ctxt(&dealloc); 1712 1713 trace_ocfs2_remove_inode_range( 1714 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1715 (unsigned long long)byte_start, 1716 (unsigned long long)byte_len); 1717 1718 if (byte_len == 0) 1719 return 0; 1720 1721 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1722 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1723 byte_start + byte_len, 0); 1724 if (ret) { 1725 mlog_errno(ret); 1726 goto out; 1727 } 1728 /* 1729 * There's no need to get fancy with the page cache 1730 * truncate of an inline-data inode. We're talking 1731 * about less than a page here, which will be cached 1732 * in the dinode buffer anyway. 1733 */ 1734 unmap_mapping_range(mapping, 0, 0, 0); 1735 truncate_inode_pages(mapping, 0); 1736 goto out; 1737 } 1738 1739 /* 1740 * For reflinks, we may need to CoW 2 clusters which might be 1741 * partially zero'd later, if hole's start and end offset were 1742 * within one cluster(means is not exactly aligned to clustersize). 1743 */ 1744 1745 if (ocfs2_is_refcount_inode(inode)) { 1746 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1747 if (ret) { 1748 mlog_errno(ret); 1749 goto out; 1750 } 1751 1752 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1753 if (ret) { 1754 mlog_errno(ret); 1755 goto out; 1756 } 1757 } 1758 1759 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1760 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1761 cluster_in_el = trunc_end; 1762 1763 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1764 if (ret) { 1765 mlog_errno(ret); 1766 goto out; 1767 } 1768 1769 path = ocfs2_new_path_from_et(&et); 1770 if (!path) { 1771 ret = -ENOMEM; 1772 mlog_errno(ret); 1773 goto out; 1774 } 1775 1776 while (trunc_end > trunc_start) { 1777 1778 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1779 cluster_in_el); 1780 if (ret) { 1781 mlog_errno(ret); 1782 goto out; 1783 } 1784 1785 el = path_leaf_el(path); 1786 1787 i = ocfs2_find_rec(el, trunc_end); 1788 /* 1789 * Need to go to previous extent block. 1790 */ 1791 if (i < 0) { 1792 if (path->p_tree_depth == 0) 1793 break; 1794 1795 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1796 path, 1797 &cluster_in_el); 1798 if (ret) { 1799 mlog_errno(ret); 1800 goto out; 1801 } 1802 1803 /* 1804 * We've reached the leftmost extent block, 1805 * it's safe to leave. 1806 */ 1807 if (cluster_in_el == 0) 1808 break; 1809 1810 /* 1811 * The 'pos' searched for previous extent block is 1812 * always one cluster less than actual trunc_end. 1813 */ 1814 trunc_end = cluster_in_el + 1; 1815 1816 ocfs2_reinit_path(path, 1); 1817 1818 continue; 1819 1820 } else 1821 rec = &el->l_recs[i]; 1822 1823 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1824 &trunc_len, &trunc_end, &blkno, &done); 1825 if (done) 1826 break; 1827 1828 flags = rec->e_flags; 1829 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1830 1831 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1832 phys_cpos, trunc_len, flags, 1833 &dealloc, refcount_loc, false); 1834 if (ret < 0) { 1835 mlog_errno(ret); 1836 goto out; 1837 } 1838 1839 cluster_in_el = trunc_end; 1840 1841 ocfs2_reinit_path(path, 1); 1842 } 1843 1844 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1845 1846 out: 1847 ocfs2_free_path(path); 1848 ocfs2_schedule_truncate_log_flush(osb, 1); 1849 ocfs2_run_deallocs(osb, &dealloc); 1850 1851 return ret; 1852 } 1853 1854 /* 1855 * Parts of this function taken from xfs_change_file_space() 1856 */ 1857 static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1858 loff_t f_pos, unsigned int cmd, 1859 struct ocfs2_space_resv *sr, 1860 int change_size) 1861 { 1862 int ret; 1863 s64 llen; 1864 loff_t size; 1865 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1866 struct buffer_head *di_bh = NULL; 1867 handle_t *handle; 1868 unsigned long long max_off = inode->i_sb->s_maxbytes; 1869 1870 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1871 return -EROFS; 1872 1873 inode_lock(inode); 1874 1875 /* 1876 * This prevents concurrent writes on other nodes 1877 */ 1878 ret = ocfs2_rw_lock(inode, 1); 1879 if (ret) { 1880 mlog_errno(ret); 1881 goto out; 1882 } 1883 1884 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1885 if (ret) { 1886 mlog_errno(ret); 1887 goto out_rw_unlock; 1888 } 1889 1890 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1891 ret = -EPERM; 1892 goto out_inode_unlock; 1893 } 1894 1895 switch (sr->l_whence) { 1896 case 0: /*SEEK_SET*/ 1897 break; 1898 case 1: /*SEEK_CUR*/ 1899 sr->l_start += f_pos; 1900 break; 1901 case 2: /*SEEK_END*/ 1902 sr->l_start += i_size_read(inode); 1903 break; 1904 default: 1905 ret = -EINVAL; 1906 goto out_inode_unlock; 1907 } 1908 sr->l_whence = 0; 1909 1910 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1911 1912 if (sr->l_start < 0 1913 || sr->l_start > max_off 1914 || (sr->l_start + llen) < 0 1915 || (sr->l_start + llen) > max_off) { 1916 ret = -EINVAL; 1917 goto out_inode_unlock; 1918 } 1919 size = sr->l_start + sr->l_len; 1920 1921 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1922 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1923 if (sr->l_len <= 0) { 1924 ret = -EINVAL; 1925 goto out_inode_unlock; 1926 } 1927 } 1928 1929 if (file && should_remove_suid(file->f_path.dentry)) { 1930 ret = __ocfs2_write_remove_suid(inode, di_bh); 1931 if (ret) { 1932 mlog_errno(ret); 1933 goto out_inode_unlock; 1934 } 1935 } 1936 1937 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1938 switch (cmd) { 1939 case OCFS2_IOC_RESVSP: 1940 case OCFS2_IOC_RESVSP64: 1941 /* 1942 * This takes unsigned offsets, but the signed ones we 1943 * pass have been checked against overflow above. 1944 */ 1945 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 1946 sr->l_len); 1947 break; 1948 case OCFS2_IOC_UNRESVSP: 1949 case OCFS2_IOC_UNRESVSP64: 1950 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 1951 sr->l_len); 1952 break; 1953 default: 1954 ret = -EINVAL; 1955 } 1956 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1957 if (ret) { 1958 mlog_errno(ret); 1959 goto out_inode_unlock; 1960 } 1961 1962 /* 1963 * We update c/mtime for these changes 1964 */ 1965 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1966 if (IS_ERR(handle)) { 1967 ret = PTR_ERR(handle); 1968 mlog_errno(ret); 1969 goto out_inode_unlock; 1970 } 1971 1972 if (change_size && i_size_read(inode) < size) 1973 i_size_write(inode, size); 1974 1975 inode->i_ctime = inode->i_mtime = current_time(inode); 1976 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 1977 if (ret < 0) 1978 mlog_errno(ret); 1979 1980 if (file && (file->f_flags & O_SYNC)) 1981 handle->h_sync = 1; 1982 1983 ocfs2_commit_trans(osb, handle); 1984 1985 out_inode_unlock: 1986 brelse(di_bh); 1987 ocfs2_inode_unlock(inode, 1); 1988 out_rw_unlock: 1989 ocfs2_rw_unlock(inode, 1); 1990 1991 out: 1992 inode_unlock(inode); 1993 return ret; 1994 } 1995 1996 int ocfs2_change_file_space(struct file *file, unsigned int cmd, 1997 struct ocfs2_space_resv *sr) 1998 { 1999 struct inode *inode = file_inode(file); 2000 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2001 int ret; 2002 2003 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2004 !ocfs2_writes_unwritten_extents(osb)) 2005 return -ENOTTY; 2006 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2007 !ocfs2_sparse_alloc(osb)) 2008 return -ENOTTY; 2009 2010 if (!S_ISREG(inode->i_mode)) 2011 return -EINVAL; 2012 2013 if (!(file->f_mode & FMODE_WRITE)) 2014 return -EBADF; 2015 2016 ret = mnt_want_write_file(file); 2017 if (ret) 2018 return ret; 2019 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2020 mnt_drop_write_file(file); 2021 return ret; 2022 } 2023 2024 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2025 loff_t len) 2026 { 2027 struct inode *inode = file_inode(file); 2028 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2029 struct ocfs2_space_resv sr; 2030 int change_size = 1; 2031 int cmd = OCFS2_IOC_RESVSP64; 2032 2033 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2034 return -EOPNOTSUPP; 2035 if (!ocfs2_writes_unwritten_extents(osb)) 2036 return -EOPNOTSUPP; 2037 2038 if (mode & FALLOC_FL_KEEP_SIZE) 2039 change_size = 0; 2040 2041 if (mode & FALLOC_FL_PUNCH_HOLE) 2042 cmd = OCFS2_IOC_UNRESVSP64; 2043 2044 sr.l_whence = 0; 2045 sr.l_start = (s64)offset; 2046 sr.l_len = (s64)len; 2047 2048 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2049 change_size); 2050 } 2051 2052 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2053 size_t count) 2054 { 2055 int ret = 0; 2056 unsigned int extent_flags; 2057 u32 cpos, clusters, extent_len, phys_cpos; 2058 struct super_block *sb = inode->i_sb; 2059 2060 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2061 !ocfs2_is_refcount_inode(inode) || 2062 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2063 return 0; 2064 2065 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2066 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2067 2068 while (clusters) { 2069 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2070 &extent_flags); 2071 if (ret < 0) { 2072 mlog_errno(ret); 2073 goto out; 2074 } 2075 2076 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2077 ret = 1; 2078 break; 2079 } 2080 2081 if (extent_len > clusters) 2082 extent_len = clusters; 2083 2084 clusters -= extent_len; 2085 cpos += extent_len; 2086 } 2087 out: 2088 return ret; 2089 } 2090 2091 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2092 { 2093 int blockmask = inode->i_sb->s_blocksize - 1; 2094 loff_t final_size = pos + count; 2095 2096 if ((pos & blockmask) || (final_size & blockmask)) 2097 return 1; 2098 return 0; 2099 } 2100 2101 static int ocfs2_prepare_inode_for_refcount(struct inode *inode, 2102 struct file *file, 2103 loff_t pos, size_t count, 2104 int *meta_level) 2105 { 2106 int ret; 2107 struct buffer_head *di_bh = NULL; 2108 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2109 u32 clusters = 2110 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2111 2112 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2113 if (ret) { 2114 mlog_errno(ret); 2115 goto out; 2116 } 2117 2118 *meta_level = 1; 2119 2120 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2121 if (ret) 2122 mlog_errno(ret); 2123 out: 2124 brelse(di_bh); 2125 return ret; 2126 } 2127 2128 static int ocfs2_prepare_inode_for_write(struct file *file, 2129 loff_t pos, size_t count, int wait) 2130 { 2131 int ret = 0, meta_level = 0, overwrite_io = 0; 2132 struct dentry *dentry = file->f_path.dentry; 2133 struct inode *inode = d_inode(dentry); 2134 struct buffer_head *di_bh = NULL; 2135 2136 /* 2137 * We start with a read level meta lock and only jump to an ex 2138 * if we need to make modifications here. 2139 */ 2140 for(;;) { 2141 if (wait) 2142 ret = ocfs2_inode_lock(inode, NULL, meta_level); 2143 else 2144 ret = ocfs2_try_inode_lock(inode, 2145 overwrite_io ? NULL : &di_bh, meta_level); 2146 if (ret < 0) { 2147 meta_level = -1; 2148 if (ret != -EAGAIN) 2149 mlog_errno(ret); 2150 goto out; 2151 } 2152 2153 /* 2154 * Check if IO will overwrite allocated blocks in case 2155 * IOCB_NOWAIT flag is set. 2156 */ 2157 if (!wait && !overwrite_io) { 2158 overwrite_io = 1; 2159 if (!down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem)) { 2160 ret = -EAGAIN; 2161 goto out_unlock; 2162 } 2163 2164 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2165 brelse(di_bh); 2166 di_bh = NULL; 2167 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2168 if (ret < 0) { 2169 if (ret != -EAGAIN) 2170 mlog_errno(ret); 2171 goto out_unlock; 2172 } 2173 } 2174 2175 /* Clear suid / sgid if necessary. We do this here 2176 * instead of later in the write path because 2177 * remove_suid() calls ->setattr without any hint that 2178 * we may have already done our cluster locking. Since 2179 * ocfs2_setattr() *must* take cluster locks to 2180 * proceed, this will lead us to recursively lock the 2181 * inode. There's also the dinode i_size state which 2182 * can be lost via setattr during extending writes (we 2183 * set inode->i_size at the end of a write. */ 2184 if (should_remove_suid(dentry)) { 2185 if (meta_level == 0) { 2186 ocfs2_inode_unlock(inode, meta_level); 2187 meta_level = 1; 2188 continue; 2189 } 2190 2191 ret = ocfs2_write_remove_suid(inode); 2192 if (ret < 0) { 2193 mlog_errno(ret); 2194 goto out_unlock; 2195 } 2196 } 2197 2198 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2199 if (ret == 1) { 2200 ocfs2_inode_unlock(inode, meta_level); 2201 meta_level = -1; 2202 2203 ret = ocfs2_prepare_inode_for_refcount(inode, 2204 file, 2205 pos, 2206 count, 2207 &meta_level); 2208 } 2209 2210 if (ret < 0) { 2211 mlog_errno(ret); 2212 goto out_unlock; 2213 } 2214 2215 break; 2216 } 2217 2218 out_unlock: 2219 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2220 pos, count, wait); 2221 2222 brelse(di_bh); 2223 2224 if (meta_level >= 0) 2225 ocfs2_inode_unlock(inode, meta_level); 2226 2227 out: 2228 return ret; 2229 } 2230 2231 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2232 struct iov_iter *from) 2233 { 2234 int rw_level; 2235 ssize_t written = 0; 2236 ssize_t ret; 2237 size_t count = iov_iter_count(from); 2238 struct file *file = iocb->ki_filp; 2239 struct inode *inode = file_inode(file); 2240 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2241 int full_coherency = !(osb->s_mount_opt & 2242 OCFS2_MOUNT_COHERENCY_BUFFERED); 2243 void *saved_ki_complete = NULL; 2244 int append_write = ((iocb->ki_pos + count) >= 2245 i_size_read(inode) ? 1 : 0); 2246 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2247 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2248 2249 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2250 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2251 file->f_path.dentry->d_name.len, 2252 file->f_path.dentry->d_name.name, 2253 (unsigned int)from->nr_segs); /* GRRRRR */ 2254 2255 if (!direct_io && nowait) 2256 return -EOPNOTSUPP; 2257 2258 if (count == 0) 2259 return 0; 2260 2261 if (nowait) { 2262 if (!inode_trylock(inode)) 2263 return -EAGAIN; 2264 } else 2265 inode_lock(inode); 2266 2267 /* 2268 * Concurrent O_DIRECT writes are allowed with 2269 * mount_option "coherency=buffered". 2270 * For append write, we must take rw EX. 2271 */ 2272 rw_level = (!direct_io || full_coherency || append_write); 2273 2274 if (nowait) 2275 ret = ocfs2_try_rw_lock(inode, rw_level); 2276 else 2277 ret = ocfs2_rw_lock(inode, rw_level); 2278 if (ret < 0) { 2279 if (ret != -EAGAIN) 2280 mlog_errno(ret); 2281 goto out_mutex; 2282 } 2283 2284 /* 2285 * O_DIRECT writes with "coherency=full" need to take EX cluster 2286 * inode_lock to guarantee coherency. 2287 */ 2288 if (direct_io && full_coherency) { 2289 /* 2290 * We need to take and drop the inode lock to force 2291 * other nodes to drop their caches. Buffered I/O 2292 * already does this in write_begin(). 2293 */ 2294 if (nowait) 2295 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2296 else 2297 ret = ocfs2_inode_lock(inode, NULL, 1); 2298 if (ret < 0) { 2299 if (ret != -EAGAIN) 2300 mlog_errno(ret); 2301 goto out; 2302 } 2303 2304 ocfs2_inode_unlock(inode, 1); 2305 } 2306 2307 ret = generic_write_checks(iocb, from); 2308 if (ret <= 0) { 2309 if (ret) 2310 mlog_errno(ret); 2311 goto out; 2312 } 2313 count = ret; 2314 2315 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2316 if (ret < 0) { 2317 if (ret != -EAGAIN) 2318 mlog_errno(ret); 2319 goto out; 2320 } 2321 2322 if (direct_io && !is_sync_kiocb(iocb) && 2323 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2324 /* 2325 * Make it a sync io if it's an unaligned aio. 2326 */ 2327 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2328 } 2329 2330 /* communicate with ocfs2_dio_end_io */ 2331 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2332 2333 written = __generic_file_write_iter(iocb, from); 2334 /* buffered aio wouldn't have proper lock coverage today */ 2335 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2336 2337 /* 2338 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2339 * function pointer which is called when o_direct io completes so that 2340 * it can unlock our rw lock. 2341 * Unfortunately there are error cases which call end_io and others 2342 * that don't. so we don't have to unlock the rw_lock if either an 2343 * async dio is going to do it in the future or an end_io after an 2344 * error has already done it. 2345 */ 2346 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2347 rw_level = -1; 2348 } 2349 2350 if (unlikely(written <= 0)) 2351 goto out; 2352 2353 if (((file->f_flags & O_DSYNC) && !direct_io) || 2354 IS_SYNC(inode)) { 2355 ret = filemap_fdatawrite_range(file->f_mapping, 2356 iocb->ki_pos - written, 2357 iocb->ki_pos - 1); 2358 if (ret < 0) 2359 written = ret; 2360 2361 if (!ret) { 2362 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2363 if (ret < 0) 2364 written = ret; 2365 } 2366 2367 if (!ret) 2368 ret = filemap_fdatawait_range(file->f_mapping, 2369 iocb->ki_pos - written, 2370 iocb->ki_pos - 1); 2371 } 2372 2373 out: 2374 if (saved_ki_complete) 2375 xchg(&iocb->ki_complete, saved_ki_complete); 2376 2377 if (rw_level != -1) 2378 ocfs2_rw_unlock(inode, rw_level); 2379 2380 out_mutex: 2381 inode_unlock(inode); 2382 2383 if (written) 2384 ret = written; 2385 return ret; 2386 } 2387 2388 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2389 struct iov_iter *to) 2390 { 2391 int ret = 0, rw_level = -1, lock_level = 0; 2392 struct file *filp = iocb->ki_filp; 2393 struct inode *inode = file_inode(filp); 2394 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2395 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2396 2397 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2398 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2399 filp->f_path.dentry->d_name.len, 2400 filp->f_path.dentry->d_name.name, 2401 to->nr_segs); /* GRRRRR */ 2402 2403 2404 if (!inode) { 2405 ret = -EINVAL; 2406 mlog_errno(ret); 2407 goto bail; 2408 } 2409 2410 if (!direct_io && nowait) 2411 return -EOPNOTSUPP; 2412 2413 /* 2414 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2415 * need locks to protect pending reads from racing with truncate. 2416 */ 2417 if (direct_io) { 2418 if (nowait) 2419 ret = ocfs2_try_rw_lock(inode, 0); 2420 else 2421 ret = ocfs2_rw_lock(inode, 0); 2422 2423 if (ret < 0) { 2424 if (ret != -EAGAIN) 2425 mlog_errno(ret); 2426 goto bail; 2427 } 2428 rw_level = 0; 2429 /* communicate with ocfs2_dio_end_io */ 2430 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2431 } 2432 2433 /* 2434 * We're fine letting folks race truncates and extending 2435 * writes with read across the cluster, just like they can 2436 * locally. Hence no rw_lock during read. 2437 * 2438 * Take and drop the meta data lock to update inode fields 2439 * like i_size. This allows the checks down below 2440 * generic_file_read_iter() a chance of actually working. 2441 */ 2442 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2443 !nowait); 2444 if (ret < 0) { 2445 if (ret != -EAGAIN) 2446 mlog_errno(ret); 2447 goto bail; 2448 } 2449 ocfs2_inode_unlock(inode, lock_level); 2450 2451 ret = generic_file_read_iter(iocb, to); 2452 trace_generic_file_read_iter_ret(ret); 2453 2454 /* buffered aio wouldn't have proper lock coverage today */ 2455 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2456 2457 /* see ocfs2_file_write_iter */ 2458 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2459 rw_level = -1; 2460 } 2461 2462 bail: 2463 if (rw_level != -1) 2464 ocfs2_rw_unlock(inode, rw_level); 2465 2466 return ret; 2467 } 2468 2469 /* Refer generic_file_llseek_unlocked() */ 2470 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2471 { 2472 struct inode *inode = file->f_mapping->host; 2473 int ret = 0; 2474 2475 inode_lock(inode); 2476 2477 switch (whence) { 2478 case SEEK_SET: 2479 break; 2480 case SEEK_END: 2481 /* SEEK_END requires the OCFS2 inode lock for the file 2482 * because it references the file's size. 2483 */ 2484 ret = ocfs2_inode_lock(inode, NULL, 0); 2485 if (ret < 0) { 2486 mlog_errno(ret); 2487 goto out; 2488 } 2489 offset += i_size_read(inode); 2490 ocfs2_inode_unlock(inode, 0); 2491 break; 2492 case SEEK_CUR: 2493 if (offset == 0) { 2494 offset = file->f_pos; 2495 goto out; 2496 } 2497 offset += file->f_pos; 2498 break; 2499 case SEEK_DATA: 2500 case SEEK_HOLE: 2501 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2502 if (ret) 2503 goto out; 2504 break; 2505 default: 2506 ret = -EINVAL; 2507 goto out; 2508 } 2509 2510 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2511 2512 out: 2513 inode_unlock(inode); 2514 if (ret) 2515 return ret; 2516 return offset; 2517 } 2518 2519 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2520 struct file *file_out, loff_t pos_out, 2521 loff_t len, unsigned int remap_flags) 2522 { 2523 struct inode *inode_in = file_inode(file_in); 2524 struct inode *inode_out = file_inode(file_out); 2525 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2526 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2527 bool same_inode = (inode_in == inode_out); 2528 loff_t remapped = 0; 2529 ssize_t ret; 2530 2531 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2532 return -EINVAL; 2533 if (!ocfs2_refcount_tree(osb)) 2534 return -EOPNOTSUPP; 2535 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2536 return -EROFS; 2537 2538 /* Lock both files against IO */ 2539 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2540 if (ret) 2541 return ret; 2542 2543 /* Check file eligibility and prepare for block sharing. */ 2544 ret = -EINVAL; 2545 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2546 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2547 goto out_unlock; 2548 2549 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2550 &len, remap_flags); 2551 if (ret < 0 || len == 0) 2552 goto out_unlock; 2553 2554 /* Lock out changes to the allocation maps and remap. */ 2555 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2556 if (!same_inode) 2557 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2558 SINGLE_DEPTH_NESTING); 2559 2560 /* Zap any page cache for the destination file's range. */ 2561 truncate_inode_pages_range(&inode_out->i_data, 2562 round_down(pos_out, PAGE_SIZE), 2563 round_up(pos_out + len, PAGE_SIZE) - 1); 2564 2565 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2566 inode_out, out_bh, pos_out, len); 2567 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2568 if (!same_inode) 2569 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2570 if (remapped < 0) { 2571 ret = remapped; 2572 mlog_errno(ret); 2573 goto out_unlock; 2574 } 2575 2576 /* 2577 * Empty the extent map so that we may get the right extent 2578 * record from the disk. 2579 */ 2580 ocfs2_extent_map_trunc(inode_in, 0); 2581 ocfs2_extent_map_trunc(inode_out, 0); 2582 2583 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2584 if (ret) { 2585 mlog_errno(ret); 2586 goto out_unlock; 2587 } 2588 2589 out_unlock: 2590 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2591 return remapped > 0 ? remapped : ret; 2592 } 2593 2594 const struct inode_operations ocfs2_file_iops = { 2595 .setattr = ocfs2_setattr, 2596 .getattr = ocfs2_getattr, 2597 .permission = ocfs2_permission, 2598 .listxattr = ocfs2_listxattr, 2599 .fiemap = ocfs2_fiemap, 2600 .get_acl = ocfs2_iop_get_acl, 2601 .set_acl = ocfs2_iop_set_acl, 2602 }; 2603 2604 const struct inode_operations ocfs2_special_file_iops = { 2605 .setattr = ocfs2_setattr, 2606 .getattr = ocfs2_getattr, 2607 .permission = ocfs2_permission, 2608 .get_acl = ocfs2_iop_get_acl, 2609 .set_acl = ocfs2_iop_set_acl, 2610 }; 2611 2612 /* 2613 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2614 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2615 */ 2616 const struct file_operations ocfs2_fops = { 2617 .llseek = ocfs2_file_llseek, 2618 .mmap = ocfs2_mmap, 2619 .fsync = ocfs2_sync_file, 2620 .release = ocfs2_file_release, 2621 .open = ocfs2_file_open, 2622 .read_iter = ocfs2_file_read_iter, 2623 .write_iter = ocfs2_file_write_iter, 2624 .unlocked_ioctl = ocfs2_ioctl, 2625 #ifdef CONFIG_COMPAT 2626 .compat_ioctl = ocfs2_compat_ioctl, 2627 #endif 2628 .lock = ocfs2_lock, 2629 .flock = ocfs2_flock, 2630 .splice_read = generic_file_splice_read, 2631 .splice_write = iter_file_splice_write, 2632 .fallocate = ocfs2_fallocate, 2633 .remap_file_range = ocfs2_remap_file_range, 2634 }; 2635 2636 const struct file_operations ocfs2_dops = { 2637 .llseek = generic_file_llseek, 2638 .read = generic_read_dir, 2639 .iterate = ocfs2_readdir, 2640 .fsync = ocfs2_sync_file, 2641 .release = ocfs2_dir_release, 2642 .open = ocfs2_dir_open, 2643 .unlocked_ioctl = ocfs2_ioctl, 2644 #ifdef CONFIG_COMPAT 2645 .compat_ioctl = ocfs2_compat_ioctl, 2646 #endif 2647 .lock = ocfs2_lock, 2648 .flock = ocfs2_flock, 2649 }; 2650 2651 /* 2652 * POSIX-lockless variants of our file_operations. 2653 * 2654 * These will be used if the underlying cluster stack does not support 2655 * posix file locking, if the user passes the "localflocks" mount 2656 * option, or if we have a local-only fs. 2657 * 2658 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2659 * so we still want it in the case of no stack support for 2660 * plocks. Internally, it will do the right thing when asked to ignore 2661 * the cluster. 2662 */ 2663 const struct file_operations ocfs2_fops_no_plocks = { 2664 .llseek = ocfs2_file_llseek, 2665 .mmap = ocfs2_mmap, 2666 .fsync = ocfs2_sync_file, 2667 .release = ocfs2_file_release, 2668 .open = ocfs2_file_open, 2669 .read_iter = ocfs2_file_read_iter, 2670 .write_iter = ocfs2_file_write_iter, 2671 .unlocked_ioctl = ocfs2_ioctl, 2672 #ifdef CONFIG_COMPAT 2673 .compat_ioctl = ocfs2_compat_ioctl, 2674 #endif 2675 .flock = ocfs2_flock, 2676 .splice_read = generic_file_splice_read, 2677 .splice_write = iter_file_splice_write, 2678 .fallocate = ocfs2_fallocate, 2679 .remap_file_range = ocfs2_remap_file_range, 2680 }; 2681 2682 const struct file_operations ocfs2_dops_no_plocks = { 2683 .llseek = generic_file_llseek, 2684 .read = generic_read_dir, 2685 .iterate = ocfs2_readdir, 2686 .fsync = ocfs2_sync_file, 2687 .release = ocfs2_dir_release, 2688 .open = ocfs2_dir_open, 2689 .unlocked_ioctl = ocfs2_ioctl, 2690 #ifdef CONFIG_COMPAT 2691 .compat_ioctl = ocfs2_compat_ioctl, 2692 #endif 2693 .flock = ocfs2_flock, 2694 }; 2695