xref: /linux/fs/ocfs2/file.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #include <cluster/masklog.h>
42 
43 #include "ocfs2.h"
44 
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 			      (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 			      file->f_path.dentry->d_name.len,
105 			      file->f_path.dentry->d_name.name, mode);
106 
107 	if (file->f_mode & FMODE_WRITE)
108 		dquot_initialize(inode);
109 
110 	spin_lock(&oi->ip_lock);
111 
112 	/* Check that the inode hasn't been wiped from disk by another
113 	 * node. If it hasn't then we're safe as long as we hold the
114 	 * spin lock until our increment of open count. */
115 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 		spin_unlock(&oi->ip_lock);
117 
118 		status = -ENOENT;
119 		goto leave;
120 	}
121 
122 	if (mode & O_DIRECT)
123 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124 
125 	oi->ip_open_count++;
126 	spin_unlock(&oi->ip_lock);
127 
128 	status = ocfs2_init_file_private(inode, file);
129 	if (status) {
130 		/*
131 		 * We want to set open count back if we're failing the
132 		 * open.
133 		 */
134 		spin_lock(&oi->ip_lock);
135 		oi->ip_open_count--;
136 		spin_unlock(&oi->ip_lock);
137 	}
138 
139 leave:
140 	return status;
141 }
142 
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
146 
147 	spin_lock(&oi->ip_lock);
148 	if (!--oi->ip_open_count)
149 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150 
151 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 				 oi->ip_blkno,
153 				 file->f_path.dentry->d_name.len,
154 				 file->f_path.dentry->d_name.name,
155 				 oi->ip_open_count);
156 	spin_unlock(&oi->ip_lock);
157 
158 	ocfs2_free_file_private(inode, file);
159 
160 	return 0;
161 }
162 
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 	return ocfs2_init_file_private(inode, file);
166 }
167 
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 	ocfs2_free_file_private(inode, file);
171 	return 0;
172 }
173 
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 			   int datasync)
176 {
177 	int err = 0;
178 	journal_t *journal;
179 	struct inode *inode = file->f_mapping->host;
180 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181 
182 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 			      OCFS2_I(inode)->ip_blkno,
184 			      file->f_path.dentry->d_name.len,
185 			      file->f_path.dentry->d_name.name,
186 			      (unsigned long long)datasync);
187 
188 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 	if (err)
190 		return err;
191 
192 	/*
193 	 * Probably don't need the i_mutex at all in here, just putting it here
194 	 * to be consistent with how fsync used to be called, someone more
195 	 * familiar with the fs could possibly remove it.
196 	 */
197 	mutex_lock(&inode->i_mutex);
198 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 		/*
200 		 * We still have to flush drive's caches to get data to the
201 		 * platter
202 		 */
203 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 		goto bail;
206 	}
207 
208 	journal = osb->journal->j_journal;
209 	err = jbd2_journal_force_commit(journal);
210 
211 bail:
212 	if (err)
213 		mlog_errno(err);
214 	mutex_unlock(&inode->i_mutex);
215 
216 	return (err < 0) ? -EIO : 0;
217 }
218 
219 int ocfs2_should_update_atime(struct inode *inode,
220 			      struct vfsmount *vfsmnt)
221 {
222 	struct timespec now;
223 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224 
225 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 		return 0;
227 
228 	if ((inode->i_flags & S_NOATIME) ||
229 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 		return 0;
231 
232 	/*
233 	 * We can be called with no vfsmnt structure - NFSD will
234 	 * sometimes do this.
235 	 *
236 	 * Note that our action here is different than touch_atime() -
237 	 * if we can't tell whether this is a noatime mount, then we
238 	 * don't know whether to trust the value of s_atime_quantum.
239 	 */
240 	if (vfsmnt == NULL)
241 		return 0;
242 
243 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 		return 0;
246 
247 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 			return 1;
251 
252 		return 0;
253 	}
254 
255 	now = CURRENT_TIME;
256 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 		return 0;
258 	else
259 		return 1;
260 }
261 
262 int ocfs2_update_inode_atime(struct inode *inode,
263 			     struct buffer_head *bh)
264 {
265 	int ret;
266 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 	handle_t *handle;
268 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269 
270 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 	if (IS_ERR(handle)) {
272 		ret = PTR_ERR(handle);
273 		mlog_errno(ret);
274 		goto out;
275 	}
276 
277 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 				      OCFS2_JOURNAL_ACCESS_WRITE);
279 	if (ret) {
280 		mlog_errno(ret);
281 		goto out_commit;
282 	}
283 
284 	/*
285 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 	 * have i_mutex to guard against concurrent changes to other
287 	 * inode fields.
288 	 */
289 	inode->i_atime = CURRENT_TIME;
290 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 	ocfs2_journal_dirty(handle, bh);
293 
294 out_commit:
295 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 	return ret;
298 }
299 
300 static int ocfs2_set_inode_size(handle_t *handle,
301 				struct inode *inode,
302 				struct buffer_head *fe_bh,
303 				u64 new_i_size)
304 {
305 	int status;
306 
307 	i_size_write(inode, new_i_size);
308 	inode->i_blocks = ocfs2_inode_sector_count(inode);
309 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310 
311 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 	if (status < 0) {
313 		mlog_errno(status);
314 		goto bail;
315 	}
316 
317 bail:
318 	return status;
319 }
320 
321 int ocfs2_simple_size_update(struct inode *inode,
322 			     struct buffer_head *di_bh,
323 			     u64 new_i_size)
324 {
325 	int ret;
326 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 	handle_t *handle = NULL;
328 
329 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 	if (IS_ERR(handle)) {
331 		ret = PTR_ERR(handle);
332 		mlog_errno(ret);
333 		goto out;
334 	}
335 
336 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 				   new_i_size);
338 	if (ret < 0)
339 		mlog_errno(ret);
340 
341 	ocfs2_commit_trans(osb, handle);
342 out:
343 	return ret;
344 }
345 
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 			      struct buffer_head *fe_bh,
348 			      u64 offset)
349 {
350 	int status;
351 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 	unsigned int num_clusters = 0;
353 	unsigned int ext_flags = 0;
354 
355 	/*
356 	 * If the new offset is aligned to the range of the cluster, there is
357 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 	 * CoW either.
359 	 */
360 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 		return 0;
362 
363 	status = ocfs2_get_clusters(inode, cpos, &phys,
364 				    &num_clusters, &ext_flags);
365 	if (status) {
366 		mlog_errno(status);
367 		goto out;
368 	}
369 
370 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 		goto out;
372 
373 	return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374 
375 out:
376 	return status;
377 }
378 
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 				     struct inode *inode,
381 				     struct buffer_head *fe_bh,
382 				     u64 new_i_size)
383 {
384 	int status;
385 	handle_t *handle;
386 	struct ocfs2_dinode *di;
387 	u64 cluster_bytes;
388 
389 	/*
390 	 * We need to CoW the cluster contains the offset if it is reflinked
391 	 * since we will call ocfs2_zero_range_for_truncate later which will
392 	 * write "0" from offset to the end of the cluster.
393 	 */
394 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 	if (status) {
396 		mlog_errno(status);
397 		return status;
398 	}
399 
400 	/* TODO: This needs to actually orphan the inode in this
401 	 * transaction. */
402 
403 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 	if (IS_ERR(handle)) {
405 		status = PTR_ERR(handle);
406 		mlog_errno(status);
407 		goto out;
408 	}
409 
410 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 					 OCFS2_JOURNAL_ACCESS_WRITE);
412 	if (status < 0) {
413 		mlog_errno(status);
414 		goto out_commit;
415 	}
416 
417 	/*
418 	 * Do this before setting i_size.
419 	 */
420 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 					       cluster_bytes);
423 	if (status) {
424 		mlog_errno(status);
425 		goto out_commit;
426 	}
427 
428 	i_size_write(inode, new_i_size);
429 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430 
431 	di = (struct ocfs2_dinode *) fe_bh->b_data;
432 	di->i_size = cpu_to_le64(new_i_size);
433 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435 
436 	ocfs2_journal_dirty(handle, fe_bh);
437 
438 out_commit:
439 	ocfs2_commit_trans(osb, handle);
440 out:
441 	return status;
442 }
443 
444 static int ocfs2_truncate_file(struct inode *inode,
445 			       struct buffer_head *di_bh,
446 			       u64 new_i_size)
447 {
448 	int status = 0;
449 	struct ocfs2_dinode *fe = NULL;
450 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451 
452 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 	 * already validated it */
454 	fe = (struct ocfs2_dinode *) di_bh->b_data;
455 
456 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 				  (unsigned long long)le64_to_cpu(fe->i_size),
458 				  (unsigned long long)new_i_size);
459 
460 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 			"Inode %llu, inode i_size = %lld != di "
462 			"i_size = %llu, i_flags = 0x%x\n",
463 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
464 			i_size_read(inode),
465 			(unsigned long long)le64_to_cpu(fe->i_size),
466 			le32_to_cpu(fe->i_flags));
467 
468 	if (new_i_size > le64_to_cpu(fe->i_size)) {
469 		trace_ocfs2_truncate_file_error(
470 			(unsigned long long)le64_to_cpu(fe->i_size),
471 			(unsigned long long)new_i_size);
472 		status = -EINVAL;
473 		mlog_errno(status);
474 		goto bail;
475 	}
476 
477 	/* lets handle the simple truncate cases before doing any more
478 	 * cluster locking. */
479 	if (new_i_size == le64_to_cpu(fe->i_size))
480 		goto bail;
481 
482 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
483 
484 	ocfs2_resv_discard(&osb->osb_la_resmap,
485 			   &OCFS2_I(inode)->ip_la_data_resv);
486 
487 	/*
488 	 * The inode lock forced other nodes to sync and drop their
489 	 * pages, which (correctly) happens even if we have a truncate
490 	 * without allocation change - ocfs2 cluster sizes can be much
491 	 * greater than page size, so we have to truncate them
492 	 * anyway.
493 	 */
494 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 	truncate_inode_pages(inode->i_mapping, new_i_size);
496 
497 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 					       i_size_read(inode), 1);
500 		if (status)
501 			mlog_errno(status);
502 
503 		goto bail_unlock_sem;
504 	}
505 
506 	/* alright, we're going to need to do a full blown alloc size
507 	 * change. Orphan the inode so that recovery can complete the
508 	 * truncate if necessary. This does the task of marking
509 	 * i_size. */
510 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 	if (status < 0) {
512 		mlog_errno(status);
513 		goto bail_unlock_sem;
514 	}
515 
516 	status = ocfs2_commit_truncate(osb, inode, di_bh);
517 	if (status < 0) {
518 		mlog_errno(status);
519 		goto bail_unlock_sem;
520 	}
521 
522 	/* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
525 
526 bail:
527 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529 
530 	return status;
531 }
532 
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 			 struct inode *inode,
545 			 u32 *logical_offset,
546 			 u32 clusters_to_add,
547 			 int mark_unwritten,
548 			 struct buffer_head *fe_bh,
549 			 handle_t *handle,
550 			 struct ocfs2_alloc_context *data_ac,
551 			 struct ocfs2_alloc_context *meta_ac,
552 			 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 	int ret;
555 	struct ocfs2_extent_tree et;
556 
557 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 					  clusters_to_add, mark_unwritten,
560 					  data_ac, meta_ac, reason_ret);
561 
562 	return ret;
563 }
564 
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 				     u32 clusters_to_add, int mark_unwritten)
567 {
568 	int status = 0;
569 	int restart_func = 0;
570 	int credits;
571 	u32 prev_clusters;
572 	struct buffer_head *bh = NULL;
573 	struct ocfs2_dinode *fe = NULL;
574 	handle_t *handle = NULL;
575 	struct ocfs2_alloc_context *data_ac = NULL;
576 	struct ocfs2_alloc_context *meta_ac = NULL;
577 	enum ocfs2_alloc_restarted why;
578 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 	struct ocfs2_extent_tree et;
580 	int did_quota = 0;
581 
582 	/*
583 	 * This function only exists for file systems which don't
584 	 * support holes.
585 	 */
586 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587 
588 	status = ocfs2_read_inode_block(inode, &bh);
589 	if (status < 0) {
590 		mlog_errno(status);
591 		goto leave;
592 	}
593 	fe = (struct ocfs2_dinode *) bh->b_data;
594 
595 restart_all:
596 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597 
598 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 				       &data_ac, &meta_ac);
601 	if (status) {
602 		mlog_errno(status);
603 		goto leave;
604 	}
605 
606 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607 					    clusters_to_add);
608 	handle = ocfs2_start_trans(osb, credits);
609 	if (IS_ERR(handle)) {
610 		status = PTR_ERR(handle);
611 		handle = NULL;
612 		mlog_errno(status);
613 		goto leave;
614 	}
615 
616 restarted_transaction:
617 	trace_ocfs2_extend_allocation(
618 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
619 		(unsigned long long)i_size_read(inode),
620 		le32_to_cpu(fe->i_clusters), clusters_to_add,
621 		why, restart_func);
622 
623 	status = dquot_alloc_space_nodirty(inode,
624 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 	if (status)
626 		goto leave;
627 	did_quota = 1;
628 
629 	/* reserve a write to the file entry early on - that we if we
630 	 * run out of credits in the allocation path, we can still
631 	 * update i_size. */
632 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 					 OCFS2_JOURNAL_ACCESS_WRITE);
634 	if (status < 0) {
635 		mlog_errno(status);
636 		goto leave;
637 	}
638 
639 	prev_clusters = OCFS2_I(inode)->ip_clusters;
640 
641 	status = ocfs2_add_inode_data(osb,
642 				      inode,
643 				      &logical_start,
644 				      clusters_to_add,
645 				      mark_unwritten,
646 				      bh,
647 				      handle,
648 				      data_ac,
649 				      meta_ac,
650 				      &why);
651 	if ((status < 0) && (status != -EAGAIN)) {
652 		if (status != -ENOSPC)
653 			mlog_errno(status);
654 		goto leave;
655 	}
656 
657 	ocfs2_journal_dirty(handle, bh);
658 
659 	spin_lock(&OCFS2_I(inode)->ip_lock);
660 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 	spin_unlock(&OCFS2_I(inode)->ip_lock);
662 	/* Release unused quota reservation */
663 	dquot_free_space(inode,
664 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 	did_quota = 0;
666 
667 	if (why != RESTART_NONE && clusters_to_add) {
668 		if (why == RESTART_META) {
669 			restart_func = 1;
670 			status = 0;
671 		} else {
672 			BUG_ON(why != RESTART_TRANS);
673 
674 			/* TODO: This can be more intelligent. */
675 			credits = ocfs2_calc_extend_credits(osb->sb,
676 							    &fe->id2.i_list,
677 							    clusters_to_add);
678 			status = ocfs2_extend_trans(handle, credits);
679 			if (status < 0) {
680 				/* handle still has to be committed at
681 				 * this point. */
682 				status = -ENOMEM;
683 				mlog_errno(status);
684 				goto leave;
685 			}
686 			goto restarted_transaction;
687 		}
688 	}
689 
690 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 	     le32_to_cpu(fe->i_clusters),
692 	     (unsigned long long)le64_to_cpu(fe->i_size),
693 	     OCFS2_I(inode)->ip_clusters,
694 	     (unsigned long long)i_size_read(inode));
695 
696 leave:
697 	if (status < 0 && did_quota)
698 		dquot_free_space(inode,
699 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 	if (handle) {
701 		ocfs2_commit_trans(osb, handle);
702 		handle = NULL;
703 	}
704 	if (data_ac) {
705 		ocfs2_free_alloc_context(data_ac);
706 		data_ac = NULL;
707 	}
708 	if (meta_ac) {
709 		ocfs2_free_alloc_context(meta_ac);
710 		meta_ac = NULL;
711 	}
712 	if ((!status) && restart_func) {
713 		restart_func = 0;
714 		goto restart_all;
715 	}
716 	brelse(bh);
717 	bh = NULL;
718 
719 	return status;
720 }
721 
722 /*
723  * While a write will already be ordering the data, a truncate will not.
724  * Thus, we need to explicitly order the zeroed pages.
725  */
726 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727 {
728 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729 	handle_t *handle = NULL;
730 	int ret = 0;
731 
732 	if (!ocfs2_should_order_data(inode))
733 		goto out;
734 
735 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736 	if (IS_ERR(handle)) {
737 		ret = -ENOMEM;
738 		mlog_errno(ret);
739 		goto out;
740 	}
741 
742 	ret = ocfs2_jbd2_file_inode(handle, inode);
743 	if (ret < 0)
744 		mlog_errno(ret);
745 
746 out:
747 	if (ret) {
748 		if (!IS_ERR(handle))
749 			ocfs2_commit_trans(osb, handle);
750 		handle = ERR_PTR(ret);
751 	}
752 	return handle;
753 }
754 
755 /* Some parts of this taken from generic_cont_expand, which turned out
756  * to be too fragile to do exactly what we need without us having to
757  * worry about recursive locking in ->write_begin() and ->write_end(). */
758 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759 				 u64 abs_to)
760 {
761 	struct address_space *mapping = inode->i_mapping;
762 	struct page *page;
763 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764 	handle_t *handle = NULL;
765 	int ret = 0;
766 	unsigned zero_from, zero_to, block_start, block_end;
767 
768 	BUG_ON(abs_from >= abs_to);
769 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 	BUG_ON(abs_from & (inode->i_blkbits - 1));
771 
772 	page = find_or_create_page(mapping, index, GFP_NOFS);
773 	if (!page) {
774 		ret = -ENOMEM;
775 		mlog_errno(ret);
776 		goto out;
777 	}
778 
779 	/* Get the offsets within the page that we want to zero */
780 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 	if (!zero_to)
783 		zero_to = PAGE_CACHE_SIZE;
784 
785 	trace_ocfs2_write_zero_page(
786 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
787 			(unsigned long long)abs_from,
788 			(unsigned long long)abs_to,
789 			index, zero_from, zero_to);
790 
791 	/* We know that zero_from is block aligned */
792 	for (block_start = zero_from; block_start < zero_to;
793 	     block_start = block_end) {
794 		block_end = block_start + (1 << inode->i_blkbits);
795 
796 		/*
797 		 * block_start is block-aligned.  Bump it by one to force
798 		 * __block_write_begin and block_commit_write to zero the
799 		 * whole block.
800 		 */
801 		ret = __block_write_begin(page, block_start + 1, 0,
802 					  ocfs2_get_block);
803 		if (ret < 0) {
804 			mlog_errno(ret);
805 			goto out_unlock;
806 		}
807 
808 		if (!handle) {
809 			handle = ocfs2_zero_start_ordered_transaction(inode);
810 			if (IS_ERR(handle)) {
811 				ret = PTR_ERR(handle);
812 				handle = NULL;
813 				break;
814 			}
815 		}
816 
817 		/* must not update i_size! */
818 		ret = block_commit_write(page, block_start + 1,
819 					 block_start + 1);
820 		if (ret < 0)
821 			mlog_errno(ret);
822 		else
823 			ret = 0;
824 	}
825 
826 	if (handle)
827 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828 
829 out_unlock:
830 	unlock_page(page);
831 	page_cache_release(page);
832 out:
833 	return ret;
834 }
835 
836 /*
837  * Find the next range to zero.  We do this in terms of bytes because
838  * that's what ocfs2_zero_extend() wants, and it is dealing with the
839  * pagecache.  We may return multiple extents.
840  *
841  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842  * needs to be zeroed.  range_start and range_end return the next zeroing
843  * range.  A subsequent call should pass the previous range_end as its
844  * zero_start.  If range_end is 0, there's nothing to do.
845  *
846  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
847  */
848 static int ocfs2_zero_extend_get_range(struct inode *inode,
849 				       struct buffer_head *di_bh,
850 				       u64 zero_start, u64 zero_end,
851 				       u64 *range_start, u64 *range_end)
852 {
853 	int rc = 0, needs_cow = 0;
854 	u32 p_cpos, zero_clusters = 0;
855 	u32 zero_cpos =
856 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858 	unsigned int num_clusters = 0;
859 	unsigned int ext_flags = 0;
860 
861 	while (zero_cpos < last_cpos) {
862 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863 					&num_clusters, &ext_flags);
864 		if (rc) {
865 			mlog_errno(rc);
866 			goto out;
867 		}
868 
869 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870 			zero_clusters = num_clusters;
871 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
872 				needs_cow = 1;
873 			break;
874 		}
875 
876 		zero_cpos += num_clusters;
877 	}
878 	if (!zero_clusters) {
879 		*range_end = 0;
880 		goto out;
881 	}
882 
883 	while ((zero_cpos + zero_clusters) < last_cpos) {
884 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885 					&p_cpos, &num_clusters,
886 					&ext_flags);
887 		if (rc) {
888 			mlog_errno(rc);
889 			goto out;
890 		}
891 
892 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893 			break;
894 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
895 			needs_cow = 1;
896 		zero_clusters += num_clusters;
897 	}
898 	if ((zero_cpos + zero_clusters) > last_cpos)
899 		zero_clusters = last_cpos - zero_cpos;
900 
901 	if (needs_cow) {
902 		rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903 					zero_clusters, UINT_MAX);
904 		if (rc) {
905 			mlog_errno(rc);
906 			goto out;
907 		}
908 	}
909 
910 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912 					     zero_cpos + zero_clusters);
913 
914 out:
915 	return rc;
916 }
917 
918 /*
919  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
920  * has made sure that the entire range needs zeroing.
921  */
922 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923 				   u64 range_end)
924 {
925 	int rc = 0;
926 	u64 next_pos;
927 	u64 zero_pos = range_start;
928 
929 	trace_ocfs2_zero_extend_range(
930 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
931 			(unsigned long long)range_start,
932 			(unsigned long long)range_end);
933 	BUG_ON(range_start >= range_end);
934 
935 	while (zero_pos < range_end) {
936 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937 		if (next_pos > range_end)
938 			next_pos = range_end;
939 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940 		if (rc < 0) {
941 			mlog_errno(rc);
942 			break;
943 		}
944 		zero_pos = next_pos;
945 
946 		/*
947 		 * Very large extends have the potential to lock up
948 		 * the cpu for extended periods of time.
949 		 */
950 		cond_resched();
951 	}
952 
953 	return rc;
954 }
955 
956 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957 		      loff_t zero_to_size)
958 {
959 	int ret = 0;
960 	u64 zero_start, range_start = 0, range_end = 0;
961 	struct super_block *sb = inode->i_sb;
962 
963 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965 				(unsigned long long)zero_start,
966 				(unsigned long long)i_size_read(inode));
967 	while (zero_start < zero_to_size) {
968 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969 						  zero_to_size,
970 						  &range_start,
971 						  &range_end);
972 		if (ret) {
973 			mlog_errno(ret);
974 			break;
975 		}
976 		if (!range_end)
977 			break;
978 		/* Trim the ends */
979 		if (range_start < zero_start)
980 			range_start = zero_start;
981 		if (range_end > zero_to_size)
982 			range_end = zero_to_size;
983 
984 		ret = ocfs2_zero_extend_range(inode, range_start,
985 					      range_end);
986 		if (ret) {
987 			mlog_errno(ret);
988 			break;
989 		}
990 		zero_start = range_end;
991 	}
992 
993 	return ret;
994 }
995 
996 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997 			  u64 new_i_size, u64 zero_to)
998 {
999 	int ret;
1000 	u32 clusters_to_add;
1001 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002 
1003 	/*
1004 	 * Only quota files call this without a bh, and they can't be
1005 	 * refcounted.
1006 	 */
1007 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009 
1010 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011 	if (clusters_to_add < oi->ip_clusters)
1012 		clusters_to_add = 0;
1013 	else
1014 		clusters_to_add -= oi->ip_clusters;
1015 
1016 	if (clusters_to_add) {
1017 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018 						clusters_to_add, 0);
1019 		if (ret) {
1020 			mlog_errno(ret);
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Call this even if we don't add any clusters to the tree. We
1027 	 * still need to zero the area between the old i_size and the
1028 	 * new i_size.
1029 	 */
1030 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031 	if (ret < 0)
1032 		mlog_errno(ret);
1033 
1034 out:
1035 	return ret;
1036 }
1037 
1038 static int ocfs2_extend_file(struct inode *inode,
1039 			     struct buffer_head *di_bh,
1040 			     u64 new_i_size)
1041 {
1042 	int ret = 0;
1043 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044 
1045 	BUG_ON(!di_bh);
1046 
1047 	/* setattr sometimes calls us like this. */
1048 	if (new_i_size == 0)
1049 		goto out;
1050 
1051 	if (i_size_read(inode) == new_i_size)
1052 		goto out;
1053 	BUG_ON(new_i_size < i_size_read(inode));
1054 
1055 	/*
1056 	 * The alloc sem blocks people in read/write from reading our
1057 	 * allocation until we're done changing it. We depend on
1058 	 * i_mutex to block other extend/truncate calls while we're
1059 	 * here.  We even have to hold it for sparse files because there
1060 	 * might be some tail zeroing.
1061 	 */
1062 	down_write(&oi->ip_alloc_sem);
1063 
1064 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065 		/*
1066 		 * We can optimize small extends by keeping the inodes
1067 		 * inline data.
1068 		 */
1069 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070 			up_write(&oi->ip_alloc_sem);
1071 			goto out_update_size;
1072 		}
1073 
1074 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075 		if (ret) {
1076 			up_write(&oi->ip_alloc_sem);
1077 			mlog_errno(ret);
1078 			goto out;
1079 		}
1080 	}
1081 
1082 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084 	else
1085 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086 					    new_i_size);
1087 
1088 	up_write(&oi->ip_alloc_sem);
1089 
1090 	if (ret < 0) {
1091 		mlog_errno(ret);
1092 		goto out;
1093 	}
1094 
1095 out_update_size:
1096 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097 	if (ret < 0)
1098 		mlog_errno(ret);
1099 
1100 out:
1101 	return ret;
1102 }
1103 
1104 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105 {
1106 	int status = 0, size_change;
1107 	struct inode *inode = dentry->d_inode;
1108 	struct super_block *sb = inode->i_sb;
1109 	struct ocfs2_super *osb = OCFS2_SB(sb);
1110 	struct buffer_head *bh = NULL;
1111 	handle_t *handle = NULL;
1112 	struct dquot *transfer_to[MAXQUOTAS] = { };
1113 	int qtype;
1114 
1115 	trace_ocfs2_setattr(inode, dentry,
1116 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117 			    dentry->d_name.len, dentry->d_name.name,
1118 			    attr->ia_valid, attr->ia_mode,
1119 			    attr->ia_uid, attr->ia_gid);
1120 
1121 	/* ensuring we don't even attempt to truncate a symlink */
1122 	if (S_ISLNK(inode->i_mode))
1123 		attr->ia_valid &= ~ATTR_SIZE;
1124 
1125 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128 		return 0;
1129 
1130 	status = inode_change_ok(inode, attr);
1131 	if (status)
1132 		return status;
1133 
1134 	if (is_quota_modification(inode, attr))
1135 		dquot_initialize(inode);
1136 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137 	if (size_change) {
1138 		status = ocfs2_rw_lock(inode, 1);
1139 		if (status < 0) {
1140 			mlog_errno(status);
1141 			goto bail;
1142 		}
1143 	}
1144 
1145 	status = ocfs2_inode_lock(inode, &bh, 1);
1146 	if (status < 0) {
1147 		if (status != -ENOENT)
1148 			mlog_errno(status);
1149 		goto bail_unlock_rw;
1150 	}
1151 
1152 	if (size_change && attr->ia_size != i_size_read(inode)) {
1153 		status = inode_newsize_ok(inode, attr->ia_size);
1154 		if (status)
1155 			goto bail_unlock;
1156 
1157 		inode_dio_wait(inode);
1158 
1159 		if (i_size_read(inode) > attr->ia_size) {
1160 			if (ocfs2_should_order_data(inode)) {
1161 				status = ocfs2_begin_ordered_truncate(inode,
1162 								      attr->ia_size);
1163 				if (status)
1164 					goto bail_unlock;
1165 			}
1166 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167 		} else
1168 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169 		if (status < 0) {
1170 			if (status != -ENOSPC)
1171 				mlog_errno(status);
1172 			status = -ENOSPC;
1173 			goto bail_unlock;
1174 		}
1175 	}
1176 
1177 	if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178 	    (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179 		/*
1180 		 * Gather pointers to quota structures so that allocation /
1181 		 * freeing of quota structures happens here and not inside
1182 		 * dquot_transfer() where we have problems with lock ordering
1183 		 */
1184 		if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1188 			if (!transfer_to[USRQUOTA]) {
1189 				status = -ESRCH;
1190 				goto bail_unlock;
1191 			}
1192 		}
1193 		if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1194 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1195 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1196 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1197 			if (!transfer_to[GRPQUOTA]) {
1198 				status = -ESRCH;
1199 				goto bail_unlock;
1200 			}
1201 		}
1202 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1203 					   2 * ocfs2_quota_trans_credits(sb));
1204 		if (IS_ERR(handle)) {
1205 			status = PTR_ERR(handle);
1206 			mlog_errno(status);
1207 			goto bail_unlock;
1208 		}
1209 		status = __dquot_transfer(inode, transfer_to);
1210 		if (status < 0)
1211 			goto bail_commit;
1212 	} else {
1213 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1214 		if (IS_ERR(handle)) {
1215 			status = PTR_ERR(handle);
1216 			mlog_errno(status);
1217 			goto bail_unlock;
1218 		}
1219 	}
1220 
1221 	/*
1222 	 * This will intentionally not wind up calling truncate_setsize(),
1223 	 * since all the work for a size change has been done above.
1224 	 * Otherwise, we could get into problems with truncate as
1225 	 * ip_alloc_sem is used there to protect against i_size
1226 	 * changes.
1227 	 *
1228 	 * XXX: this means the conditional below can probably be removed.
1229 	 */
1230 	if ((attr->ia_valid & ATTR_SIZE) &&
1231 	    attr->ia_size != i_size_read(inode)) {
1232 		status = vmtruncate(inode, attr->ia_size);
1233 		if (status) {
1234 			mlog_errno(status);
1235 			goto bail_commit;
1236 		}
1237 	}
1238 
1239 	setattr_copy(inode, attr);
1240 	mark_inode_dirty(inode);
1241 
1242 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1243 	if (status < 0)
1244 		mlog_errno(status);
1245 
1246 bail_commit:
1247 	ocfs2_commit_trans(osb, handle);
1248 bail_unlock:
1249 	ocfs2_inode_unlock(inode, 1);
1250 bail_unlock_rw:
1251 	if (size_change)
1252 		ocfs2_rw_unlock(inode, 1);
1253 bail:
1254 	brelse(bh);
1255 
1256 	/* Release quota pointers in case we acquired them */
1257 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1258 		dqput(transfer_to[qtype]);
1259 
1260 	if (!status && attr->ia_valid & ATTR_MODE) {
1261 		status = ocfs2_acl_chmod(inode);
1262 		if (status < 0)
1263 			mlog_errno(status);
1264 	}
1265 
1266 	return status;
1267 }
1268 
1269 int ocfs2_getattr(struct vfsmount *mnt,
1270 		  struct dentry *dentry,
1271 		  struct kstat *stat)
1272 {
1273 	struct inode *inode = dentry->d_inode;
1274 	struct super_block *sb = dentry->d_inode->i_sb;
1275 	struct ocfs2_super *osb = sb->s_fs_info;
1276 	int err;
1277 
1278 	err = ocfs2_inode_revalidate(dentry);
1279 	if (err) {
1280 		if (err != -ENOENT)
1281 			mlog_errno(err);
1282 		goto bail;
1283 	}
1284 
1285 	generic_fillattr(inode, stat);
1286 
1287 	/* We set the blksize from the cluster size for performance */
1288 	stat->blksize = osb->s_clustersize;
1289 
1290 bail:
1291 	return err;
1292 }
1293 
1294 int ocfs2_permission(struct inode *inode, int mask)
1295 {
1296 	int ret;
1297 
1298 	if (mask & MAY_NOT_BLOCK)
1299 		return -ECHILD;
1300 
1301 	ret = ocfs2_inode_lock(inode, NULL, 0);
1302 	if (ret) {
1303 		if (ret != -ENOENT)
1304 			mlog_errno(ret);
1305 		goto out;
1306 	}
1307 
1308 	ret = generic_permission(inode, mask);
1309 
1310 	ocfs2_inode_unlock(inode, 0);
1311 out:
1312 	return ret;
1313 }
1314 
1315 static int __ocfs2_write_remove_suid(struct inode *inode,
1316 				     struct buffer_head *bh)
1317 {
1318 	int ret;
1319 	handle_t *handle;
1320 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1321 	struct ocfs2_dinode *di;
1322 
1323 	trace_ocfs2_write_remove_suid(
1324 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1325 			inode->i_mode);
1326 
1327 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1328 	if (IS_ERR(handle)) {
1329 		ret = PTR_ERR(handle);
1330 		mlog_errno(ret);
1331 		goto out;
1332 	}
1333 
1334 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1335 				      OCFS2_JOURNAL_ACCESS_WRITE);
1336 	if (ret < 0) {
1337 		mlog_errno(ret);
1338 		goto out_trans;
1339 	}
1340 
1341 	inode->i_mode &= ~S_ISUID;
1342 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1343 		inode->i_mode &= ~S_ISGID;
1344 
1345 	di = (struct ocfs2_dinode *) bh->b_data;
1346 	di->i_mode = cpu_to_le16(inode->i_mode);
1347 
1348 	ocfs2_journal_dirty(handle, bh);
1349 
1350 out_trans:
1351 	ocfs2_commit_trans(osb, handle);
1352 out:
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Will look for holes and unwritten extents in the range starting at
1358  * pos for count bytes (inclusive).
1359  */
1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1361 				       size_t count)
1362 {
1363 	int ret = 0;
1364 	unsigned int extent_flags;
1365 	u32 cpos, clusters, extent_len, phys_cpos;
1366 	struct super_block *sb = inode->i_sb;
1367 
1368 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1369 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1370 
1371 	while (clusters) {
1372 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1373 					 &extent_flags);
1374 		if (ret < 0) {
1375 			mlog_errno(ret);
1376 			goto out;
1377 		}
1378 
1379 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1380 			ret = 1;
1381 			break;
1382 		}
1383 
1384 		if (extent_len > clusters)
1385 			extent_len = clusters;
1386 
1387 		clusters -= extent_len;
1388 		cpos += extent_len;
1389 	}
1390 out:
1391 	return ret;
1392 }
1393 
1394 static int ocfs2_write_remove_suid(struct inode *inode)
1395 {
1396 	int ret;
1397 	struct buffer_head *bh = NULL;
1398 
1399 	ret = ocfs2_read_inode_block(inode, &bh);
1400 	if (ret < 0) {
1401 		mlog_errno(ret);
1402 		goto out;
1403 	}
1404 
1405 	ret =  __ocfs2_write_remove_suid(inode, bh);
1406 out:
1407 	brelse(bh);
1408 	return ret;
1409 }
1410 
1411 /*
1412  * Allocate enough extents to cover the region starting at byte offset
1413  * start for len bytes. Existing extents are skipped, any extents
1414  * added are marked as "unwritten".
1415  */
1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1417 					    u64 start, u64 len)
1418 {
1419 	int ret;
1420 	u32 cpos, phys_cpos, clusters, alloc_size;
1421 	u64 end = start + len;
1422 	struct buffer_head *di_bh = NULL;
1423 
1424 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1425 		ret = ocfs2_read_inode_block(inode, &di_bh);
1426 		if (ret) {
1427 			mlog_errno(ret);
1428 			goto out;
1429 		}
1430 
1431 		/*
1432 		 * Nothing to do if the requested reservation range
1433 		 * fits within the inode.
1434 		 */
1435 		if (ocfs2_size_fits_inline_data(di_bh, end))
1436 			goto out;
1437 
1438 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1439 		if (ret) {
1440 			mlog_errno(ret);
1441 			goto out;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * We consider both start and len to be inclusive.
1447 	 */
1448 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1449 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1450 	clusters -= cpos;
1451 
1452 	while (clusters) {
1453 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1454 					 &alloc_size, NULL);
1455 		if (ret) {
1456 			mlog_errno(ret);
1457 			goto out;
1458 		}
1459 
1460 		/*
1461 		 * Hole or existing extent len can be arbitrary, so
1462 		 * cap it to our own allocation request.
1463 		 */
1464 		if (alloc_size > clusters)
1465 			alloc_size = clusters;
1466 
1467 		if (phys_cpos) {
1468 			/*
1469 			 * We already have an allocation at this
1470 			 * region so we can safely skip it.
1471 			 */
1472 			goto next;
1473 		}
1474 
1475 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1476 		if (ret) {
1477 			if (ret != -ENOSPC)
1478 				mlog_errno(ret);
1479 			goto out;
1480 		}
1481 
1482 next:
1483 		cpos += alloc_size;
1484 		clusters -= alloc_size;
1485 	}
1486 
1487 	ret = 0;
1488 out:
1489 
1490 	brelse(di_bh);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * Truncate a byte range, avoiding pages within partial clusters. This
1496  * preserves those pages for the zeroing code to write to.
1497  */
1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1499 					 u64 byte_len)
1500 {
1501 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 	loff_t start, end;
1503 	struct address_space *mapping = inode->i_mapping;
1504 
1505 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1506 	end = byte_start + byte_len;
1507 	end = end & ~(osb->s_clustersize - 1);
1508 
1509 	if (start < end) {
1510 		unmap_mapping_range(mapping, start, end - start, 0);
1511 		truncate_inode_pages_range(mapping, start, end - 1);
1512 	}
1513 }
1514 
1515 static int ocfs2_zero_partial_clusters(struct inode *inode,
1516 				       u64 start, u64 len)
1517 {
1518 	int ret = 0;
1519 	u64 tmpend, end = start + len;
1520 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 	unsigned int csize = osb->s_clustersize;
1522 	handle_t *handle;
1523 
1524 	/*
1525 	 * The "start" and "end" values are NOT necessarily part of
1526 	 * the range whose allocation is being deleted. Rather, this
1527 	 * is what the user passed in with the request. We must zero
1528 	 * partial clusters here. There's no need to worry about
1529 	 * physical allocation - the zeroing code knows to skip holes.
1530 	 */
1531 	trace_ocfs2_zero_partial_clusters(
1532 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1533 		(unsigned long long)start, (unsigned long long)end);
1534 
1535 	/*
1536 	 * If both edges are on a cluster boundary then there's no
1537 	 * zeroing required as the region is part of the allocation to
1538 	 * be truncated.
1539 	 */
1540 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1541 		goto out;
1542 
1543 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1544 	if (IS_ERR(handle)) {
1545 		ret = PTR_ERR(handle);
1546 		mlog_errno(ret);
1547 		goto out;
1548 	}
1549 
1550 	/*
1551 	 * We want to get the byte offset of the end of the 1st cluster.
1552 	 */
1553 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1554 	if (tmpend > end)
1555 		tmpend = end;
1556 
1557 	trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1558 						 (unsigned long long)tmpend);
1559 
1560 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1561 	if (ret)
1562 		mlog_errno(ret);
1563 
1564 	if (tmpend < end) {
1565 		/*
1566 		 * This may make start and end equal, but the zeroing
1567 		 * code will skip any work in that case so there's no
1568 		 * need to catch it up here.
1569 		 */
1570 		start = end & ~(osb->s_clustersize - 1);
1571 
1572 		trace_ocfs2_zero_partial_clusters_range2(
1573 			(unsigned long long)start, (unsigned long long)end);
1574 
1575 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1576 		if (ret)
1577 			mlog_errno(ret);
1578 	}
1579 
1580 	ocfs2_commit_trans(osb, handle);
1581 out:
1582 	return ret;
1583 }
1584 
1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1586 {
1587 	int i;
1588 	struct ocfs2_extent_rec *rec = NULL;
1589 
1590 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1591 
1592 		rec = &el->l_recs[i];
1593 
1594 		if (le32_to_cpu(rec->e_cpos) < pos)
1595 			break;
1596 	}
1597 
1598 	return i;
1599 }
1600 
1601 /*
1602  * Helper to calculate the punching pos and length in one run, we handle the
1603  * following three cases in order:
1604  *
1605  * - remove the entire record
1606  * - remove a partial record
1607  * - no record needs to be removed (hole-punching completed)
1608 */
1609 static void ocfs2_calc_trunc_pos(struct inode *inode,
1610 				 struct ocfs2_extent_list *el,
1611 				 struct ocfs2_extent_rec *rec,
1612 				 u32 trunc_start, u32 *trunc_cpos,
1613 				 u32 *trunc_len, u32 *trunc_end,
1614 				 u64 *blkno, int *done)
1615 {
1616 	int ret = 0;
1617 	u32 coff, range;
1618 
1619 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1620 
1621 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1622 		/*
1623 		 * remove an entire extent record.
1624 		 */
1625 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1626 		/*
1627 		 * Skip holes if any.
1628 		 */
1629 		if (range < *trunc_end)
1630 			*trunc_end = range;
1631 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1632 		*blkno = le64_to_cpu(rec->e_blkno);
1633 		*trunc_end = le32_to_cpu(rec->e_cpos);
1634 	} else if (range > trunc_start) {
1635 		/*
1636 		 * remove a partial extent record, which means we're
1637 		 * removing the last extent record.
1638 		 */
1639 		*trunc_cpos = trunc_start;
1640 		/*
1641 		 * skip hole if any.
1642 		 */
1643 		if (range < *trunc_end)
1644 			*trunc_end = range;
1645 		*trunc_len = *trunc_end - trunc_start;
1646 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1647 		*blkno = le64_to_cpu(rec->e_blkno) +
1648 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1649 		*trunc_end = trunc_start;
1650 	} else {
1651 		/*
1652 		 * It may have two following possibilities:
1653 		 *
1654 		 * - last record has been removed
1655 		 * - trunc_start was within a hole
1656 		 *
1657 		 * both two cases mean the completion of hole punching.
1658 		 */
1659 		ret = 1;
1660 	}
1661 
1662 	*done = ret;
1663 }
1664 
1665 static int ocfs2_remove_inode_range(struct inode *inode,
1666 				    struct buffer_head *di_bh, u64 byte_start,
1667 				    u64 byte_len)
1668 {
1669 	int ret = 0, flags = 0, done = 0, i;
1670 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1671 	u32 cluster_in_el;
1672 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 	struct ocfs2_cached_dealloc_ctxt dealloc;
1674 	struct address_space *mapping = inode->i_mapping;
1675 	struct ocfs2_extent_tree et;
1676 	struct ocfs2_path *path = NULL;
1677 	struct ocfs2_extent_list *el = NULL;
1678 	struct ocfs2_extent_rec *rec = NULL;
1679 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1680 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1681 
1682 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1683 	ocfs2_init_dealloc_ctxt(&dealloc);
1684 
1685 	trace_ocfs2_remove_inode_range(
1686 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1687 			(unsigned long long)byte_start,
1688 			(unsigned long long)byte_len);
1689 
1690 	if (byte_len == 0)
1691 		return 0;
1692 
1693 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695 					    byte_start + byte_len, 0);
1696 		if (ret) {
1697 			mlog_errno(ret);
1698 			goto out;
1699 		}
1700 		/*
1701 		 * There's no need to get fancy with the page cache
1702 		 * truncate of an inline-data inode. We're talking
1703 		 * about less than a page here, which will be cached
1704 		 * in the dinode buffer anyway.
1705 		 */
1706 		unmap_mapping_range(mapping, 0, 0, 0);
1707 		truncate_inode_pages(mapping, 0);
1708 		goto out;
1709 	}
1710 
1711 	/*
1712 	 * For reflinks, we may need to CoW 2 clusters which might be
1713 	 * partially zero'd later, if hole's start and end offset were
1714 	 * within one cluster(means is not exactly aligned to clustersize).
1715 	 */
1716 
1717 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718 
1719 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720 		if (ret) {
1721 			mlog_errno(ret);
1722 			goto out;
1723 		}
1724 
1725 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726 		if (ret) {
1727 			mlog_errno(ret);
1728 			goto out;
1729 		}
1730 	}
1731 
1732 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734 	cluster_in_el = trunc_end;
1735 
1736 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1737 	if (ret) {
1738 		mlog_errno(ret);
1739 		goto out;
1740 	}
1741 
1742 	path = ocfs2_new_path_from_et(&et);
1743 	if (!path) {
1744 		ret = -ENOMEM;
1745 		mlog_errno(ret);
1746 		goto out;
1747 	}
1748 
1749 	while (trunc_end > trunc_start) {
1750 
1751 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1752 				      cluster_in_el);
1753 		if (ret) {
1754 			mlog_errno(ret);
1755 			goto out;
1756 		}
1757 
1758 		el = path_leaf_el(path);
1759 
1760 		i = ocfs2_find_rec(el, trunc_end);
1761 		/*
1762 		 * Need to go to previous extent block.
1763 		 */
1764 		if (i < 0) {
1765 			if (path->p_tree_depth == 0)
1766 				break;
1767 
1768 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1769 							    path,
1770 							    &cluster_in_el);
1771 			if (ret) {
1772 				mlog_errno(ret);
1773 				goto out;
1774 			}
1775 
1776 			/*
1777 			 * We've reached the leftmost extent block,
1778 			 * it's safe to leave.
1779 			 */
1780 			if (cluster_in_el == 0)
1781 				break;
1782 
1783 			/*
1784 			 * The 'pos' searched for previous extent block is
1785 			 * always one cluster less than actual trunc_end.
1786 			 */
1787 			trunc_end = cluster_in_el + 1;
1788 
1789 			ocfs2_reinit_path(path, 1);
1790 
1791 			continue;
1792 
1793 		} else
1794 			rec = &el->l_recs[i];
1795 
1796 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1797 				     &trunc_len, &trunc_end, &blkno, &done);
1798 		if (done)
1799 			break;
1800 
1801 		flags = rec->e_flags;
1802 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1803 
1804 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1805 					       phys_cpos, trunc_len, flags,
1806 					       &dealloc, refcount_loc);
1807 		if (ret < 0) {
1808 			mlog_errno(ret);
1809 			goto out;
1810 		}
1811 
1812 		cluster_in_el = trunc_end;
1813 
1814 		ocfs2_reinit_path(path, 1);
1815 	}
1816 
1817 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1818 
1819 out:
1820 	ocfs2_schedule_truncate_log_flush(osb, 1);
1821 	ocfs2_run_deallocs(osb, &dealloc);
1822 
1823 	return ret;
1824 }
1825 
1826 /*
1827  * Parts of this function taken from xfs_change_file_space()
1828  */
1829 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1830 				     loff_t f_pos, unsigned int cmd,
1831 				     struct ocfs2_space_resv *sr,
1832 				     int change_size)
1833 {
1834 	int ret;
1835 	s64 llen;
1836 	loff_t size;
1837 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838 	struct buffer_head *di_bh = NULL;
1839 	handle_t *handle;
1840 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1841 
1842 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1843 		return -EROFS;
1844 
1845 	mutex_lock(&inode->i_mutex);
1846 
1847 	/*
1848 	 * This prevents concurrent writes on other nodes
1849 	 */
1850 	ret = ocfs2_rw_lock(inode, 1);
1851 	if (ret) {
1852 		mlog_errno(ret);
1853 		goto out;
1854 	}
1855 
1856 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1857 	if (ret) {
1858 		mlog_errno(ret);
1859 		goto out_rw_unlock;
1860 	}
1861 
1862 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1863 		ret = -EPERM;
1864 		goto out_inode_unlock;
1865 	}
1866 
1867 	switch (sr->l_whence) {
1868 	case 0: /*SEEK_SET*/
1869 		break;
1870 	case 1: /*SEEK_CUR*/
1871 		sr->l_start += f_pos;
1872 		break;
1873 	case 2: /*SEEK_END*/
1874 		sr->l_start += i_size_read(inode);
1875 		break;
1876 	default:
1877 		ret = -EINVAL;
1878 		goto out_inode_unlock;
1879 	}
1880 	sr->l_whence = 0;
1881 
1882 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1883 
1884 	if (sr->l_start < 0
1885 	    || sr->l_start > max_off
1886 	    || (sr->l_start + llen) < 0
1887 	    || (sr->l_start + llen) > max_off) {
1888 		ret = -EINVAL;
1889 		goto out_inode_unlock;
1890 	}
1891 	size = sr->l_start + sr->l_len;
1892 
1893 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1894 		if (sr->l_len <= 0) {
1895 			ret = -EINVAL;
1896 			goto out_inode_unlock;
1897 		}
1898 	}
1899 
1900 	if (file && should_remove_suid(file->f_path.dentry)) {
1901 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1902 		if (ret) {
1903 			mlog_errno(ret);
1904 			goto out_inode_unlock;
1905 		}
1906 	}
1907 
1908 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1909 	switch (cmd) {
1910 	case OCFS2_IOC_RESVSP:
1911 	case OCFS2_IOC_RESVSP64:
1912 		/*
1913 		 * This takes unsigned offsets, but the signed ones we
1914 		 * pass have been checked against overflow above.
1915 		 */
1916 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1917 						       sr->l_len);
1918 		break;
1919 	case OCFS2_IOC_UNRESVSP:
1920 	case OCFS2_IOC_UNRESVSP64:
1921 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1922 					       sr->l_len);
1923 		break;
1924 	default:
1925 		ret = -EINVAL;
1926 	}
1927 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1928 	if (ret) {
1929 		mlog_errno(ret);
1930 		goto out_inode_unlock;
1931 	}
1932 
1933 	/*
1934 	 * We update c/mtime for these changes
1935 	 */
1936 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1937 	if (IS_ERR(handle)) {
1938 		ret = PTR_ERR(handle);
1939 		mlog_errno(ret);
1940 		goto out_inode_unlock;
1941 	}
1942 
1943 	if (change_size && i_size_read(inode) < size)
1944 		i_size_write(inode, size);
1945 
1946 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1947 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1948 	if (ret < 0)
1949 		mlog_errno(ret);
1950 
1951 	if (file && (file->f_flags & O_SYNC))
1952 		handle->h_sync = 1;
1953 
1954 	ocfs2_commit_trans(osb, handle);
1955 
1956 out_inode_unlock:
1957 	brelse(di_bh);
1958 	ocfs2_inode_unlock(inode, 1);
1959 out_rw_unlock:
1960 	ocfs2_rw_unlock(inode, 1);
1961 
1962 out:
1963 	mutex_unlock(&inode->i_mutex);
1964 	return ret;
1965 }
1966 
1967 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1968 			    struct ocfs2_space_resv *sr)
1969 {
1970 	struct inode *inode = file->f_path.dentry->d_inode;
1971 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1972 	int ret;
1973 
1974 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1975 	    !ocfs2_writes_unwritten_extents(osb))
1976 		return -ENOTTY;
1977 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1978 		 !ocfs2_sparse_alloc(osb))
1979 		return -ENOTTY;
1980 
1981 	if (!S_ISREG(inode->i_mode))
1982 		return -EINVAL;
1983 
1984 	if (!(file->f_mode & FMODE_WRITE))
1985 		return -EBADF;
1986 
1987 	ret = mnt_want_write_file(file);
1988 	if (ret)
1989 		return ret;
1990 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1991 	mnt_drop_write_file(file);
1992 	return ret;
1993 }
1994 
1995 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1996 			    loff_t len)
1997 {
1998 	struct inode *inode = file->f_path.dentry->d_inode;
1999 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2000 	struct ocfs2_space_resv sr;
2001 	int change_size = 1;
2002 	int cmd = OCFS2_IOC_RESVSP64;
2003 
2004 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2005 		return -EOPNOTSUPP;
2006 	if (!ocfs2_writes_unwritten_extents(osb))
2007 		return -EOPNOTSUPP;
2008 
2009 	if (mode & FALLOC_FL_KEEP_SIZE)
2010 		change_size = 0;
2011 
2012 	if (mode & FALLOC_FL_PUNCH_HOLE)
2013 		cmd = OCFS2_IOC_UNRESVSP64;
2014 
2015 	sr.l_whence = 0;
2016 	sr.l_start = (s64)offset;
2017 	sr.l_len = (s64)len;
2018 
2019 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2020 					 change_size);
2021 }
2022 
2023 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2024 				   size_t count)
2025 {
2026 	int ret = 0;
2027 	unsigned int extent_flags;
2028 	u32 cpos, clusters, extent_len, phys_cpos;
2029 	struct super_block *sb = inode->i_sb;
2030 
2031 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2032 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2033 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2034 		return 0;
2035 
2036 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2037 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2038 
2039 	while (clusters) {
2040 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2041 					 &extent_flags);
2042 		if (ret < 0) {
2043 			mlog_errno(ret);
2044 			goto out;
2045 		}
2046 
2047 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2048 			ret = 1;
2049 			break;
2050 		}
2051 
2052 		if (extent_len > clusters)
2053 			extent_len = clusters;
2054 
2055 		clusters -= extent_len;
2056 		cpos += extent_len;
2057 	}
2058 out:
2059 	return ret;
2060 }
2061 
2062 static void ocfs2_aiodio_wait(struct inode *inode)
2063 {
2064 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2065 
2066 	wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2067 }
2068 
2069 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2070 {
2071 	int blockmask = inode->i_sb->s_blocksize - 1;
2072 	loff_t final_size = pos + count;
2073 
2074 	if ((pos & blockmask) || (final_size & blockmask))
2075 		return 1;
2076 	return 0;
2077 }
2078 
2079 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2080 					    struct file *file,
2081 					    loff_t pos, size_t count,
2082 					    int *meta_level)
2083 {
2084 	int ret;
2085 	struct buffer_head *di_bh = NULL;
2086 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2087 	u32 clusters =
2088 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2089 
2090 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2091 	if (ret) {
2092 		mlog_errno(ret);
2093 		goto out;
2094 	}
2095 
2096 	*meta_level = 1;
2097 
2098 	ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2099 	if (ret)
2100 		mlog_errno(ret);
2101 out:
2102 	brelse(di_bh);
2103 	return ret;
2104 }
2105 
2106 static int ocfs2_prepare_inode_for_write(struct file *file,
2107 					 loff_t *ppos,
2108 					 size_t count,
2109 					 int appending,
2110 					 int *direct_io,
2111 					 int *has_refcount)
2112 {
2113 	int ret = 0, meta_level = 0;
2114 	struct dentry *dentry = file->f_path.dentry;
2115 	struct inode *inode = dentry->d_inode;
2116 	loff_t saved_pos = 0, end;
2117 
2118 	/*
2119 	 * We start with a read level meta lock and only jump to an ex
2120 	 * if we need to make modifications here.
2121 	 */
2122 	for(;;) {
2123 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2124 		if (ret < 0) {
2125 			meta_level = -1;
2126 			mlog_errno(ret);
2127 			goto out;
2128 		}
2129 
2130 		/* Clear suid / sgid if necessary. We do this here
2131 		 * instead of later in the write path because
2132 		 * remove_suid() calls ->setattr without any hint that
2133 		 * we may have already done our cluster locking. Since
2134 		 * ocfs2_setattr() *must* take cluster locks to
2135 		 * proceed, this will lead us to recursively lock the
2136 		 * inode. There's also the dinode i_size state which
2137 		 * can be lost via setattr during extending writes (we
2138 		 * set inode->i_size at the end of a write. */
2139 		if (should_remove_suid(dentry)) {
2140 			if (meta_level == 0) {
2141 				ocfs2_inode_unlock(inode, meta_level);
2142 				meta_level = 1;
2143 				continue;
2144 			}
2145 
2146 			ret = ocfs2_write_remove_suid(inode);
2147 			if (ret < 0) {
2148 				mlog_errno(ret);
2149 				goto out_unlock;
2150 			}
2151 		}
2152 
2153 		/* work on a copy of ppos until we're sure that we won't have
2154 		 * to recalculate it due to relocking. */
2155 		if (appending)
2156 			saved_pos = i_size_read(inode);
2157 		else
2158 			saved_pos = *ppos;
2159 
2160 		end = saved_pos + count;
2161 
2162 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2163 		if (ret == 1) {
2164 			ocfs2_inode_unlock(inode, meta_level);
2165 			meta_level = -1;
2166 
2167 			ret = ocfs2_prepare_inode_for_refcount(inode,
2168 							       file,
2169 							       saved_pos,
2170 							       count,
2171 							       &meta_level);
2172 			if (has_refcount)
2173 				*has_refcount = 1;
2174 			if (direct_io)
2175 				*direct_io = 0;
2176 		}
2177 
2178 		if (ret < 0) {
2179 			mlog_errno(ret);
2180 			goto out_unlock;
2181 		}
2182 
2183 		/*
2184 		 * Skip the O_DIRECT checks if we don't need
2185 		 * them.
2186 		 */
2187 		if (!direct_io || !(*direct_io))
2188 			break;
2189 
2190 		/*
2191 		 * There's no sane way to do direct writes to an inode
2192 		 * with inline data.
2193 		 */
2194 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2195 			*direct_io = 0;
2196 			break;
2197 		}
2198 
2199 		/*
2200 		 * Allowing concurrent direct writes means
2201 		 * i_size changes wouldn't be synchronized, so
2202 		 * one node could wind up truncating another
2203 		 * nodes writes.
2204 		 */
2205 		if (end > i_size_read(inode)) {
2206 			*direct_io = 0;
2207 			break;
2208 		}
2209 
2210 		/*
2211 		 * We don't fill holes during direct io, so
2212 		 * check for them here. If any are found, the
2213 		 * caller will have to retake some cluster
2214 		 * locks and initiate the io as buffered.
2215 		 */
2216 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2217 		if (ret == 1) {
2218 			*direct_io = 0;
2219 			ret = 0;
2220 		} else if (ret < 0)
2221 			mlog_errno(ret);
2222 		break;
2223 	}
2224 
2225 	if (appending)
2226 		*ppos = saved_pos;
2227 
2228 out_unlock:
2229 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2230 					    saved_pos, appending, count,
2231 					    direct_io, has_refcount);
2232 
2233 	if (meta_level >= 0)
2234 		ocfs2_inode_unlock(inode, meta_level);
2235 
2236 out:
2237 	return ret;
2238 }
2239 
2240 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2241 				    const struct iovec *iov,
2242 				    unsigned long nr_segs,
2243 				    loff_t pos)
2244 {
2245 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2246 	int can_do_direct, has_refcount = 0;
2247 	ssize_t written = 0;
2248 	size_t ocount;		/* original count */
2249 	size_t count;		/* after file limit checks */
2250 	loff_t old_size, *ppos = &iocb->ki_pos;
2251 	u32 old_clusters;
2252 	struct file *file = iocb->ki_filp;
2253 	struct inode *inode = file->f_path.dentry->d_inode;
2254 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2255 	int full_coherency = !(osb->s_mount_opt &
2256 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2257 	int unaligned_dio = 0;
2258 
2259 	trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2260 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2261 		file->f_path.dentry->d_name.len,
2262 		file->f_path.dentry->d_name.name,
2263 		(unsigned int)nr_segs);
2264 
2265 	if (iocb->ki_left == 0)
2266 		return 0;
2267 
2268 	sb_start_write(inode->i_sb);
2269 
2270 	appending = file->f_flags & O_APPEND ? 1 : 0;
2271 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2272 
2273 	mutex_lock(&inode->i_mutex);
2274 
2275 	ocfs2_iocb_clear_sem_locked(iocb);
2276 
2277 relock:
2278 	/* to match setattr's i_mutex -> rw_lock ordering */
2279 	if (direct_io) {
2280 		have_alloc_sem = 1;
2281 		/* communicate with ocfs2_dio_end_io */
2282 		ocfs2_iocb_set_sem_locked(iocb);
2283 	}
2284 
2285 	/*
2286 	 * Concurrent O_DIRECT writes are allowed with
2287 	 * mount_option "coherency=buffered".
2288 	 */
2289 	rw_level = (!direct_io || full_coherency);
2290 
2291 	ret = ocfs2_rw_lock(inode, rw_level);
2292 	if (ret < 0) {
2293 		mlog_errno(ret);
2294 		goto out_sems;
2295 	}
2296 
2297 	/*
2298 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2299 	 * inode_lock to guarantee coherency.
2300 	 */
2301 	if (direct_io && full_coherency) {
2302 		/*
2303 		 * We need to take and drop the inode lock to force
2304 		 * other nodes to drop their caches.  Buffered I/O
2305 		 * already does this in write_begin().
2306 		 */
2307 		ret = ocfs2_inode_lock(inode, NULL, 1);
2308 		if (ret < 0) {
2309 			mlog_errno(ret);
2310 			goto out_sems;
2311 		}
2312 
2313 		ocfs2_inode_unlock(inode, 1);
2314 	}
2315 
2316 	can_do_direct = direct_io;
2317 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2318 					    iocb->ki_left, appending,
2319 					    &can_do_direct, &has_refcount);
2320 	if (ret < 0) {
2321 		mlog_errno(ret);
2322 		goto out;
2323 	}
2324 
2325 	if (direct_io && !is_sync_kiocb(iocb))
2326 		unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_left,
2327 						      *ppos);
2328 
2329 	/*
2330 	 * We can't complete the direct I/O as requested, fall back to
2331 	 * buffered I/O.
2332 	 */
2333 	if (direct_io && !can_do_direct) {
2334 		ocfs2_rw_unlock(inode, rw_level);
2335 
2336 		have_alloc_sem = 0;
2337 		rw_level = -1;
2338 
2339 		direct_io = 0;
2340 		goto relock;
2341 	}
2342 
2343 	if (unaligned_dio) {
2344 		/*
2345 		 * Wait on previous unaligned aio to complete before
2346 		 * proceeding.
2347 		 */
2348 		ocfs2_aiodio_wait(inode);
2349 
2350 		/* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2351 		atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2352 		ocfs2_iocb_set_unaligned_aio(iocb);
2353 	}
2354 
2355 	/*
2356 	 * To later detect whether a journal commit for sync writes is
2357 	 * necessary, we sample i_size, and cluster count here.
2358 	 */
2359 	old_size = i_size_read(inode);
2360 	old_clusters = OCFS2_I(inode)->ip_clusters;
2361 
2362 	/* communicate with ocfs2_dio_end_io */
2363 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2364 
2365 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2366 				     VERIFY_READ);
2367 	if (ret)
2368 		goto out_dio;
2369 
2370 	count = ocount;
2371 	ret = generic_write_checks(file, ppos, &count,
2372 				   S_ISBLK(inode->i_mode));
2373 	if (ret)
2374 		goto out_dio;
2375 
2376 	if (direct_io) {
2377 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2378 						    ppos, count, ocount);
2379 		if (written < 0) {
2380 			ret = written;
2381 			goto out_dio;
2382 		}
2383 	} else {
2384 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2385 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2386 						      ppos, count, 0);
2387 		current->backing_dev_info = NULL;
2388 	}
2389 
2390 out_dio:
2391 	/* buffered aio wouldn't have proper lock coverage today */
2392 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2393 
2394 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2395 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2396 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2397 					       pos + count - 1);
2398 		if (ret < 0)
2399 			written = ret;
2400 
2401 		if (!ret && ((old_size != i_size_read(inode)) ||
2402 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2403 			     has_refcount)) {
2404 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2405 			if (ret < 0)
2406 				written = ret;
2407 		}
2408 
2409 		if (!ret)
2410 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2411 						      pos + count - 1);
2412 	}
2413 
2414 	/*
2415 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2416 	 * function pointer which is called when o_direct io completes so that
2417 	 * it can unlock our rw lock.
2418 	 * Unfortunately there are error cases which call end_io and others
2419 	 * that don't.  so we don't have to unlock the rw_lock if either an
2420 	 * async dio is going to do it in the future or an end_io after an
2421 	 * error has already done it.
2422 	 */
2423 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2424 		rw_level = -1;
2425 		have_alloc_sem = 0;
2426 		unaligned_dio = 0;
2427 	}
2428 
2429 	if (unaligned_dio) {
2430 		ocfs2_iocb_clear_unaligned_aio(iocb);
2431 		atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2432 	}
2433 
2434 out:
2435 	if (rw_level != -1)
2436 		ocfs2_rw_unlock(inode, rw_level);
2437 
2438 out_sems:
2439 	if (have_alloc_sem)
2440 		ocfs2_iocb_clear_sem_locked(iocb);
2441 
2442 	mutex_unlock(&inode->i_mutex);
2443 	sb_end_write(inode->i_sb);
2444 
2445 	if (written)
2446 		ret = written;
2447 	return ret;
2448 }
2449 
2450 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2451 				struct file *out,
2452 				struct splice_desc *sd)
2453 {
2454 	int ret;
2455 
2456 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2457 					    sd->total_len, 0, NULL, NULL);
2458 	if (ret < 0) {
2459 		mlog_errno(ret);
2460 		return ret;
2461 	}
2462 
2463 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2464 }
2465 
2466 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2467 				       struct file *out,
2468 				       loff_t *ppos,
2469 				       size_t len,
2470 				       unsigned int flags)
2471 {
2472 	int ret;
2473 	struct address_space *mapping = out->f_mapping;
2474 	struct inode *inode = mapping->host;
2475 	struct splice_desc sd = {
2476 		.total_len = len,
2477 		.flags = flags,
2478 		.pos = *ppos,
2479 		.u.file = out,
2480 	};
2481 
2482 
2483 	trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2484 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2485 			out->f_path.dentry->d_name.len,
2486 			out->f_path.dentry->d_name.name, len);
2487 
2488 	if (pipe->inode)
2489 		mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2490 
2491 	splice_from_pipe_begin(&sd);
2492 	do {
2493 		ret = splice_from_pipe_next(pipe, &sd);
2494 		if (ret <= 0)
2495 			break;
2496 
2497 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2498 		ret = ocfs2_rw_lock(inode, 1);
2499 		if (ret < 0)
2500 			mlog_errno(ret);
2501 		else {
2502 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2503 			ocfs2_rw_unlock(inode, 1);
2504 		}
2505 		mutex_unlock(&inode->i_mutex);
2506 	} while (ret > 0);
2507 	splice_from_pipe_end(pipe, &sd);
2508 
2509 	if (pipe->inode)
2510 		mutex_unlock(&pipe->inode->i_mutex);
2511 
2512 	if (sd.num_spliced)
2513 		ret = sd.num_spliced;
2514 
2515 	if (ret > 0) {
2516 		int err;
2517 
2518 		err = generic_write_sync(out, *ppos, ret);
2519 		if (err)
2520 			ret = err;
2521 		else
2522 			*ppos += ret;
2523 
2524 		balance_dirty_pages_ratelimited(mapping);
2525 	}
2526 
2527 	return ret;
2528 }
2529 
2530 static ssize_t ocfs2_file_splice_read(struct file *in,
2531 				      loff_t *ppos,
2532 				      struct pipe_inode_info *pipe,
2533 				      size_t len,
2534 				      unsigned int flags)
2535 {
2536 	int ret = 0, lock_level = 0;
2537 	struct inode *inode = in->f_path.dentry->d_inode;
2538 
2539 	trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2540 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2541 			in->f_path.dentry->d_name.len,
2542 			in->f_path.dentry->d_name.name, len);
2543 
2544 	/*
2545 	 * See the comment in ocfs2_file_aio_read()
2546 	 */
2547 	ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2548 	if (ret < 0) {
2549 		mlog_errno(ret);
2550 		goto bail;
2551 	}
2552 	ocfs2_inode_unlock(inode, lock_level);
2553 
2554 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2555 
2556 bail:
2557 	return ret;
2558 }
2559 
2560 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2561 				   const struct iovec *iov,
2562 				   unsigned long nr_segs,
2563 				   loff_t pos)
2564 {
2565 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2566 	struct file *filp = iocb->ki_filp;
2567 	struct inode *inode = filp->f_path.dentry->d_inode;
2568 
2569 	trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2570 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2571 			filp->f_path.dentry->d_name.len,
2572 			filp->f_path.dentry->d_name.name, nr_segs);
2573 
2574 
2575 	if (!inode) {
2576 		ret = -EINVAL;
2577 		mlog_errno(ret);
2578 		goto bail;
2579 	}
2580 
2581 	ocfs2_iocb_clear_sem_locked(iocb);
2582 
2583 	/*
2584 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2585 	 * need locks to protect pending reads from racing with truncate.
2586 	 */
2587 	if (filp->f_flags & O_DIRECT) {
2588 		have_alloc_sem = 1;
2589 		ocfs2_iocb_set_sem_locked(iocb);
2590 
2591 		ret = ocfs2_rw_lock(inode, 0);
2592 		if (ret < 0) {
2593 			mlog_errno(ret);
2594 			goto bail;
2595 		}
2596 		rw_level = 0;
2597 		/* communicate with ocfs2_dio_end_io */
2598 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2599 	}
2600 
2601 	/*
2602 	 * We're fine letting folks race truncates and extending
2603 	 * writes with read across the cluster, just like they can
2604 	 * locally. Hence no rw_lock during read.
2605 	 *
2606 	 * Take and drop the meta data lock to update inode fields
2607 	 * like i_size. This allows the checks down below
2608 	 * generic_file_aio_read() a chance of actually working.
2609 	 */
2610 	ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2611 	if (ret < 0) {
2612 		mlog_errno(ret);
2613 		goto bail;
2614 	}
2615 	ocfs2_inode_unlock(inode, lock_level);
2616 
2617 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2618 	trace_generic_file_aio_read_ret(ret);
2619 
2620 	/* buffered aio wouldn't have proper lock coverage today */
2621 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2622 
2623 	/* see ocfs2_file_aio_write */
2624 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2625 		rw_level = -1;
2626 		have_alloc_sem = 0;
2627 	}
2628 
2629 bail:
2630 	if (have_alloc_sem)
2631 		ocfs2_iocb_clear_sem_locked(iocb);
2632 
2633 	if (rw_level != -1)
2634 		ocfs2_rw_unlock(inode, rw_level);
2635 
2636 	return ret;
2637 }
2638 
2639 /* Refer generic_file_llseek_unlocked() */
2640 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 	struct inode *inode = file->f_mapping->host;
2643 	int ret = 0;
2644 
2645 	mutex_lock(&inode->i_mutex);
2646 
2647 	switch (whence) {
2648 	case SEEK_SET:
2649 		break;
2650 	case SEEK_END:
2651 		offset += inode->i_size;
2652 		break;
2653 	case SEEK_CUR:
2654 		if (offset == 0) {
2655 			offset = file->f_pos;
2656 			goto out;
2657 		}
2658 		offset += file->f_pos;
2659 		break;
2660 	case SEEK_DATA:
2661 	case SEEK_HOLE:
2662 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2663 		if (ret)
2664 			goto out;
2665 		break;
2666 	default:
2667 		ret = -EINVAL;
2668 		goto out;
2669 	}
2670 
2671 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
2672 		ret = -EINVAL;
2673 	if (!ret && offset > inode->i_sb->s_maxbytes)
2674 		ret = -EINVAL;
2675 	if (ret)
2676 		goto out;
2677 
2678 	if (offset != file->f_pos) {
2679 		file->f_pos = offset;
2680 		file->f_version = 0;
2681 	}
2682 
2683 out:
2684 	mutex_unlock(&inode->i_mutex);
2685 	if (ret)
2686 		return ret;
2687 	return offset;
2688 }
2689 
2690 const struct inode_operations ocfs2_file_iops = {
2691 	.setattr	= ocfs2_setattr,
2692 	.getattr	= ocfs2_getattr,
2693 	.permission	= ocfs2_permission,
2694 	.setxattr	= generic_setxattr,
2695 	.getxattr	= generic_getxattr,
2696 	.listxattr	= ocfs2_listxattr,
2697 	.removexattr	= generic_removexattr,
2698 	.fiemap		= ocfs2_fiemap,
2699 	.get_acl	= ocfs2_iop_get_acl,
2700 };
2701 
2702 const struct inode_operations ocfs2_special_file_iops = {
2703 	.setattr	= ocfs2_setattr,
2704 	.getattr	= ocfs2_getattr,
2705 	.permission	= ocfs2_permission,
2706 	.get_acl	= ocfs2_iop_get_acl,
2707 };
2708 
2709 /*
2710  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2711  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2712  */
2713 const struct file_operations ocfs2_fops = {
2714 	.llseek		= ocfs2_file_llseek,
2715 	.read		= do_sync_read,
2716 	.write		= do_sync_write,
2717 	.mmap		= ocfs2_mmap,
2718 	.fsync		= ocfs2_sync_file,
2719 	.release	= ocfs2_file_release,
2720 	.open		= ocfs2_file_open,
2721 	.aio_read	= ocfs2_file_aio_read,
2722 	.aio_write	= ocfs2_file_aio_write,
2723 	.unlocked_ioctl	= ocfs2_ioctl,
2724 #ifdef CONFIG_COMPAT
2725 	.compat_ioctl   = ocfs2_compat_ioctl,
2726 #endif
2727 	.lock		= ocfs2_lock,
2728 	.flock		= ocfs2_flock,
2729 	.splice_read	= ocfs2_file_splice_read,
2730 	.splice_write	= ocfs2_file_splice_write,
2731 	.fallocate	= ocfs2_fallocate,
2732 };
2733 
2734 const struct file_operations ocfs2_dops = {
2735 	.llseek		= generic_file_llseek,
2736 	.read		= generic_read_dir,
2737 	.readdir	= ocfs2_readdir,
2738 	.fsync		= ocfs2_sync_file,
2739 	.release	= ocfs2_dir_release,
2740 	.open		= ocfs2_dir_open,
2741 	.unlocked_ioctl	= ocfs2_ioctl,
2742 #ifdef CONFIG_COMPAT
2743 	.compat_ioctl   = ocfs2_compat_ioctl,
2744 #endif
2745 	.lock		= ocfs2_lock,
2746 	.flock		= ocfs2_flock,
2747 };
2748 
2749 /*
2750  * POSIX-lockless variants of our file_operations.
2751  *
2752  * These will be used if the underlying cluster stack does not support
2753  * posix file locking, if the user passes the "localflocks" mount
2754  * option, or if we have a local-only fs.
2755  *
2756  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2757  * so we still want it in the case of no stack support for
2758  * plocks. Internally, it will do the right thing when asked to ignore
2759  * the cluster.
2760  */
2761 const struct file_operations ocfs2_fops_no_plocks = {
2762 	.llseek		= ocfs2_file_llseek,
2763 	.read		= do_sync_read,
2764 	.write		= do_sync_write,
2765 	.mmap		= ocfs2_mmap,
2766 	.fsync		= ocfs2_sync_file,
2767 	.release	= ocfs2_file_release,
2768 	.open		= ocfs2_file_open,
2769 	.aio_read	= ocfs2_file_aio_read,
2770 	.aio_write	= ocfs2_file_aio_write,
2771 	.unlocked_ioctl	= ocfs2_ioctl,
2772 #ifdef CONFIG_COMPAT
2773 	.compat_ioctl   = ocfs2_compat_ioctl,
2774 #endif
2775 	.flock		= ocfs2_flock,
2776 	.splice_read	= ocfs2_file_splice_read,
2777 	.splice_write	= ocfs2_file_splice_write,
2778 	.fallocate	= ocfs2_fallocate,
2779 };
2780 
2781 const struct file_operations ocfs2_dops_no_plocks = {
2782 	.llseek		= generic_file_llseek,
2783 	.read		= generic_read_dir,
2784 	.readdir	= ocfs2_readdir,
2785 	.fsync		= ocfs2_sync_file,
2786 	.release	= ocfs2_dir_release,
2787 	.open		= ocfs2_dir_open,
2788 	.unlocked_ioctl	= ocfs2_ioctl,
2789 #ifdef CONFIG_COMPAT
2790 	.compat_ioctl   = ocfs2_compat_ioctl,
2791 #endif
2792 	.flock		= ocfs2_flock,
2793 };
2794