xref: /linux/fs/ocfs2/file.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * file.c
5  *
6  * File open, close, extend, truncate
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 
41 #define MLOG_MASK_PREFIX ML_INODE
42 #include <cluster/masklog.h>
43 
44 #include "ocfs2.h"
45 
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 
65 #include "buffer_head_io.h"
66 
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 	struct ocfs2_file_private *fp;
70 
71 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 	if (!fp)
73 		return -ENOMEM;
74 
75 	fp->fp_file = file;
76 	mutex_init(&fp->fp_mutex);
77 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 	file->private_data = fp;
79 
80 	return 0;
81 }
82 
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 	struct ocfs2_file_private *fp = file->private_data;
86 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87 
88 	if (fp) {
89 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 		ocfs2_lock_res_free(&fp->fp_flock);
91 		kfree(fp);
92 		file->private_data = NULL;
93 	}
94 }
95 
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 	int status;
99 	int mode = file->f_flags;
100 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
101 
102 	mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
103 		   file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name);
104 
105 	if (file->f_mode & FMODE_WRITE)
106 		dquot_initialize(inode);
107 
108 	spin_lock(&oi->ip_lock);
109 
110 	/* Check that the inode hasn't been wiped from disk by another
111 	 * node. If it hasn't then we're safe as long as we hold the
112 	 * spin lock until our increment of open count. */
113 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
114 		spin_unlock(&oi->ip_lock);
115 
116 		status = -ENOENT;
117 		goto leave;
118 	}
119 
120 	if (mode & O_DIRECT)
121 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
122 
123 	oi->ip_open_count++;
124 	spin_unlock(&oi->ip_lock);
125 
126 	status = ocfs2_init_file_private(inode, file);
127 	if (status) {
128 		/*
129 		 * We want to set open count back if we're failing the
130 		 * open.
131 		 */
132 		spin_lock(&oi->ip_lock);
133 		oi->ip_open_count--;
134 		spin_unlock(&oi->ip_lock);
135 	}
136 
137 leave:
138 	mlog_exit(status);
139 	return status;
140 }
141 
142 static int ocfs2_file_release(struct inode *inode, struct file *file)
143 {
144 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
145 
146 	mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
147 		       file->f_path.dentry->d_name.len,
148 		       file->f_path.dentry->d_name.name);
149 
150 	spin_lock(&oi->ip_lock);
151 	if (!--oi->ip_open_count)
152 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
153 	spin_unlock(&oi->ip_lock);
154 
155 	ocfs2_free_file_private(inode, file);
156 
157 	mlog_exit(0);
158 
159 	return 0;
160 }
161 
162 static int ocfs2_dir_open(struct inode *inode, struct file *file)
163 {
164 	return ocfs2_init_file_private(inode, file);
165 }
166 
167 static int ocfs2_dir_release(struct inode *inode, struct file *file)
168 {
169 	ocfs2_free_file_private(inode, file);
170 	return 0;
171 }
172 
173 static int ocfs2_sync_file(struct file *file, int datasync)
174 {
175 	int err = 0;
176 	journal_t *journal;
177 	struct inode *inode = file->f_mapping->host;
178 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
179 
180 	mlog_entry("(0x%p, %d, 0x%p, '%.*s')\n", file, datasync,
181 		   file->f_path.dentry, file->f_path.dentry->d_name.len,
182 		   file->f_path.dentry->d_name.name);
183 
184 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
185 		/*
186 		 * We still have to flush drive's caches to get data to the
187 		 * platter
188 		 */
189 		if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
190 			blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL,
191 					   NULL, BLKDEV_IFL_WAIT);
192 		goto bail;
193 	}
194 
195 	journal = osb->journal->j_journal;
196 	err = jbd2_journal_force_commit(journal);
197 
198 bail:
199 	mlog_exit(err);
200 
201 	return (err < 0) ? -EIO : 0;
202 }
203 
204 int ocfs2_should_update_atime(struct inode *inode,
205 			      struct vfsmount *vfsmnt)
206 {
207 	struct timespec now;
208 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
209 
210 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
211 		return 0;
212 
213 	if ((inode->i_flags & S_NOATIME) ||
214 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
215 		return 0;
216 
217 	/*
218 	 * We can be called with no vfsmnt structure - NFSD will
219 	 * sometimes do this.
220 	 *
221 	 * Note that our action here is different than touch_atime() -
222 	 * if we can't tell whether this is a noatime mount, then we
223 	 * don't know whether to trust the value of s_atime_quantum.
224 	 */
225 	if (vfsmnt == NULL)
226 		return 0;
227 
228 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
229 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 		return 0;
231 
232 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
233 		if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
234 		    (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
235 			return 1;
236 
237 		return 0;
238 	}
239 
240 	now = CURRENT_TIME;
241 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
242 		return 0;
243 	else
244 		return 1;
245 }
246 
247 int ocfs2_update_inode_atime(struct inode *inode,
248 			     struct buffer_head *bh)
249 {
250 	int ret;
251 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
252 	handle_t *handle;
253 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
254 
255 	mlog_entry_void();
256 
257 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258 	if (IS_ERR(handle)) {
259 		ret = PTR_ERR(handle);
260 		mlog_errno(ret);
261 		goto out;
262 	}
263 
264 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265 				      OCFS2_JOURNAL_ACCESS_WRITE);
266 	if (ret) {
267 		mlog_errno(ret);
268 		goto out_commit;
269 	}
270 
271 	/*
272 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
273 	 * have i_mutex to guard against concurrent changes to other
274 	 * inode fields.
275 	 */
276 	inode->i_atime = CURRENT_TIME;
277 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279 	ocfs2_journal_dirty(handle, bh);
280 
281 out_commit:
282 	ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
283 out:
284 	mlog_exit(ret);
285 	return ret;
286 }
287 
288 static int ocfs2_set_inode_size(handle_t *handle,
289 				struct inode *inode,
290 				struct buffer_head *fe_bh,
291 				u64 new_i_size)
292 {
293 	int status;
294 
295 	mlog_entry_void();
296 	i_size_write(inode, new_i_size);
297 	inode->i_blocks = ocfs2_inode_sector_count(inode);
298 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
299 
300 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
301 	if (status < 0) {
302 		mlog_errno(status);
303 		goto bail;
304 	}
305 
306 bail:
307 	mlog_exit(status);
308 	return status;
309 }
310 
311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_commit_trans(osb, handle);
332 out:
333 	return ret;
334 }
335 
336 static int ocfs2_cow_file_pos(struct inode *inode,
337 			      struct buffer_head *fe_bh,
338 			      u64 offset)
339 {
340 	int status;
341 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
342 	unsigned int num_clusters = 0;
343 	unsigned int ext_flags = 0;
344 
345 	/*
346 	 * If the new offset is aligned to the range of the cluster, there is
347 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
348 	 * CoW either.
349 	 */
350 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
351 		return 0;
352 
353 	status = ocfs2_get_clusters(inode, cpos, &phys,
354 				    &num_clusters, &ext_flags);
355 	if (status) {
356 		mlog_errno(status);
357 		goto out;
358 	}
359 
360 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
361 		goto out;
362 
363 	return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
364 
365 out:
366 	return status;
367 }
368 
369 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
370 				     struct inode *inode,
371 				     struct buffer_head *fe_bh,
372 				     u64 new_i_size)
373 {
374 	int status;
375 	handle_t *handle;
376 	struct ocfs2_dinode *di;
377 	u64 cluster_bytes;
378 
379 	mlog_entry_void();
380 
381 	/*
382 	 * We need to CoW the cluster contains the offset if it is reflinked
383 	 * since we will call ocfs2_zero_range_for_truncate later which will
384 	 * write "0" from offset to the end of the cluster.
385 	 */
386 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
387 	if (status) {
388 		mlog_errno(status);
389 		return status;
390 	}
391 
392 	/* TODO: This needs to actually orphan the inode in this
393 	 * transaction. */
394 
395 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
396 	if (IS_ERR(handle)) {
397 		status = PTR_ERR(handle);
398 		mlog_errno(status);
399 		goto out;
400 	}
401 
402 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
403 					 OCFS2_JOURNAL_ACCESS_WRITE);
404 	if (status < 0) {
405 		mlog_errno(status);
406 		goto out_commit;
407 	}
408 
409 	/*
410 	 * Do this before setting i_size.
411 	 */
412 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
413 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
414 					       cluster_bytes);
415 	if (status) {
416 		mlog_errno(status);
417 		goto out_commit;
418 	}
419 
420 	i_size_write(inode, new_i_size);
421 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
422 
423 	di = (struct ocfs2_dinode *) fe_bh->b_data;
424 	di->i_size = cpu_to_le64(new_i_size);
425 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
426 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 
434 	mlog_exit(status);
435 	return status;
436 }
437 
438 static int ocfs2_truncate_file(struct inode *inode,
439 			       struct buffer_head *di_bh,
440 			       u64 new_i_size)
441 {
442 	int status = 0;
443 	struct ocfs2_dinode *fe = NULL;
444 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
445 
446 	mlog_entry("(inode = %llu, new_i_size = %llu\n",
447 		   (unsigned long long)OCFS2_I(inode)->ip_blkno,
448 		   (unsigned long long)new_i_size);
449 
450 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
451 	 * already validated it */
452 	fe = (struct ocfs2_dinode *) di_bh->b_data;
453 
454 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
455 			"Inode %llu, inode i_size = %lld != di "
456 			"i_size = %llu, i_flags = 0x%x\n",
457 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
458 			i_size_read(inode),
459 			(unsigned long long)le64_to_cpu(fe->i_size),
460 			le32_to_cpu(fe->i_flags));
461 
462 	if (new_i_size > le64_to_cpu(fe->i_size)) {
463 		mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
464 		     (unsigned long long)le64_to_cpu(fe->i_size),
465 		     (unsigned long long)new_i_size);
466 		status = -EINVAL;
467 		mlog_errno(status);
468 		goto bail;
469 	}
470 
471 	mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
472 	     (unsigned long long)le64_to_cpu(fe->i_blkno),
473 	     (unsigned long long)le64_to_cpu(fe->i_size),
474 	     (unsigned long long)new_i_size);
475 
476 	/* lets handle the simple truncate cases before doing any more
477 	 * cluster locking. */
478 	if (new_i_size == le64_to_cpu(fe->i_size))
479 		goto bail;
480 
481 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
482 
483 	ocfs2_resv_discard(&osb->osb_la_resmap,
484 			   &OCFS2_I(inode)->ip_la_data_resv);
485 
486 	/*
487 	 * The inode lock forced other nodes to sync and drop their
488 	 * pages, which (correctly) happens even if we have a truncate
489 	 * without allocation change - ocfs2 cluster sizes can be much
490 	 * greater than page size, so we have to truncate them
491 	 * anyway.
492 	 */
493 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
494 	truncate_inode_pages(inode->i_mapping, new_i_size);
495 
496 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
498 					       i_size_read(inode), 1);
499 		if (status)
500 			mlog_errno(status);
501 
502 		goto bail_unlock_sem;
503 	}
504 
505 	/* alright, we're going to need to do a full blown alloc size
506 	 * change. Orphan the inode so that recovery can complete the
507 	 * truncate if necessary. This does the task of marking
508 	 * i_size. */
509 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
510 	if (status < 0) {
511 		mlog_errno(status);
512 		goto bail_unlock_sem;
513 	}
514 
515 	status = ocfs2_commit_truncate(osb, inode, di_bh);
516 	if (status < 0) {
517 		mlog_errno(status);
518 		goto bail_unlock_sem;
519 	}
520 
521 	/* TODO: orphan dir cleanup here. */
522 bail_unlock_sem:
523 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
524 
525 bail:
526 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
527 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
528 
529 	mlog_exit(status);
530 	return status;
531 }
532 
533 /*
534  * extend file allocation only here.
535  * we'll update all the disk stuff, and oip->alloc_size
536  *
537  * expect stuff to be locked, a transaction started and enough data /
538  * metadata reservations in the contexts.
539  *
540  * Will return -EAGAIN, and a reason if a restart is needed.
541  * If passed in, *reason will always be set, even in error.
542  */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 			 struct inode *inode,
545 			 u32 *logical_offset,
546 			 u32 clusters_to_add,
547 			 int mark_unwritten,
548 			 struct buffer_head *fe_bh,
549 			 handle_t *handle,
550 			 struct ocfs2_alloc_context *data_ac,
551 			 struct ocfs2_alloc_context *meta_ac,
552 			 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 	int ret;
555 	struct ocfs2_extent_tree et;
556 
557 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 					  clusters_to_add, mark_unwritten,
560 					  data_ac, meta_ac, reason_ret);
561 
562 	return ret;
563 }
564 
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 				     u32 clusters_to_add, int mark_unwritten)
567 {
568 	int status = 0;
569 	int restart_func = 0;
570 	int credits;
571 	u32 prev_clusters;
572 	struct buffer_head *bh = NULL;
573 	struct ocfs2_dinode *fe = NULL;
574 	handle_t *handle = NULL;
575 	struct ocfs2_alloc_context *data_ac = NULL;
576 	struct ocfs2_alloc_context *meta_ac = NULL;
577 	enum ocfs2_alloc_restarted why;
578 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 	struct ocfs2_extent_tree et;
580 	int did_quota = 0;
581 
582 	mlog_entry("(clusters_to_add = %u)\n", clusters_to_add);
583 
584 	/*
585 	 * This function only exists for file systems which don't
586 	 * support holes.
587 	 */
588 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
589 
590 	status = ocfs2_read_inode_block(inode, &bh);
591 	if (status < 0) {
592 		mlog_errno(status);
593 		goto leave;
594 	}
595 	fe = (struct ocfs2_dinode *) bh->b_data;
596 
597 restart_all:
598 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
599 
600 	mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
601 	     "clusters_to_add = %u\n",
602 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
603 	     (long long)i_size_read(inode), le32_to_cpu(fe->i_clusters),
604 	     clusters_to_add);
605 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
606 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
607 				       &data_ac, &meta_ac);
608 	if (status) {
609 		mlog_errno(status);
610 		goto leave;
611 	}
612 
613 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
614 					    clusters_to_add);
615 	handle = ocfs2_start_trans(osb, credits);
616 	if (IS_ERR(handle)) {
617 		status = PTR_ERR(handle);
618 		handle = NULL;
619 		mlog_errno(status);
620 		goto leave;
621 	}
622 
623 restarted_transaction:
624 	status = dquot_alloc_space_nodirty(inode,
625 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
626 	if (status)
627 		goto leave;
628 	did_quota = 1;
629 
630 	/* reserve a write to the file entry early on - that we if we
631 	 * run out of credits in the allocation path, we can still
632 	 * update i_size. */
633 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
634 					 OCFS2_JOURNAL_ACCESS_WRITE);
635 	if (status < 0) {
636 		mlog_errno(status);
637 		goto leave;
638 	}
639 
640 	prev_clusters = OCFS2_I(inode)->ip_clusters;
641 
642 	status = ocfs2_add_inode_data(osb,
643 				      inode,
644 				      &logical_start,
645 				      clusters_to_add,
646 				      mark_unwritten,
647 				      bh,
648 				      handle,
649 				      data_ac,
650 				      meta_ac,
651 				      &why);
652 	if ((status < 0) && (status != -EAGAIN)) {
653 		if (status != -ENOSPC)
654 			mlog_errno(status);
655 		goto leave;
656 	}
657 
658 	ocfs2_journal_dirty(handle, bh);
659 
660 	spin_lock(&OCFS2_I(inode)->ip_lock);
661 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
662 	spin_unlock(&OCFS2_I(inode)->ip_lock);
663 	/* Release unused quota reservation */
664 	dquot_free_space(inode,
665 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
666 	did_quota = 0;
667 
668 	if (why != RESTART_NONE && clusters_to_add) {
669 		if (why == RESTART_META) {
670 			mlog(0, "restarting function.\n");
671 			restart_func = 1;
672 			status = 0;
673 		} else {
674 			BUG_ON(why != RESTART_TRANS);
675 
676 			mlog(0, "restarting transaction.\n");
677 			/* TODO: This can be more intelligent. */
678 			credits = ocfs2_calc_extend_credits(osb->sb,
679 							    &fe->id2.i_list,
680 							    clusters_to_add);
681 			status = ocfs2_extend_trans(handle, credits);
682 			if (status < 0) {
683 				/* handle still has to be committed at
684 				 * this point. */
685 				status = -ENOMEM;
686 				mlog_errno(status);
687 				goto leave;
688 			}
689 			goto restarted_transaction;
690 		}
691 	}
692 
693 	mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
694 	     le32_to_cpu(fe->i_clusters),
695 	     (unsigned long long)le64_to_cpu(fe->i_size));
696 	mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
697 	     OCFS2_I(inode)->ip_clusters, (long long)i_size_read(inode));
698 
699 leave:
700 	if (status < 0 && did_quota)
701 		dquot_free_space(inode,
702 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
703 	if (handle) {
704 		ocfs2_commit_trans(osb, handle);
705 		handle = NULL;
706 	}
707 	if (data_ac) {
708 		ocfs2_free_alloc_context(data_ac);
709 		data_ac = NULL;
710 	}
711 	if (meta_ac) {
712 		ocfs2_free_alloc_context(meta_ac);
713 		meta_ac = NULL;
714 	}
715 	if ((!status) && restart_func) {
716 		restart_func = 0;
717 		goto restart_all;
718 	}
719 	brelse(bh);
720 	bh = NULL;
721 
722 	mlog_exit(status);
723 	return status;
724 }
725 
726 /*
727  * While a write will already be ordering the data, a truncate will not.
728  * Thus, we need to explicitly order the zeroed pages.
729  */
730 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
731 {
732 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
733 	handle_t *handle = NULL;
734 	int ret = 0;
735 
736 	if (!ocfs2_should_order_data(inode))
737 		goto out;
738 
739 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
740 	if (IS_ERR(handle)) {
741 		ret = -ENOMEM;
742 		mlog_errno(ret);
743 		goto out;
744 	}
745 
746 	ret = ocfs2_jbd2_file_inode(handle, inode);
747 	if (ret < 0)
748 		mlog_errno(ret);
749 
750 out:
751 	if (ret) {
752 		if (!IS_ERR(handle))
753 			ocfs2_commit_trans(osb, handle);
754 		handle = ERR_PTR(ret);
755 	}
756 	return handle;
757 }
758 
759 /* Some parts of this taken from generic_cont_expand, which turned out
760  * to be too fragile to do exactly what we need without us having to
761  * worry about recursive locking in ->write_begin() and ->write_end(). */
762 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
763 				 u64 abs_to)
764 {
765 	struct address_space *mapping = inode->i_mapping;
766 	struct page *page;
767 	unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
768 	handle_t *handle = NULL;
769 	int ret = 0;
770 	unsigned zero_from, zero_to, block_start, block_end;
771 
772 	BUG_ON(abs_from >= abs_to);
773 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
774 	BUG_ON(abs_from & (inode->i_blkbits - 1));
775 
776 	page = find_or_create_page(mapping, index, GFP_NOFS);
777 	if (!page) {
778 		ret = -ENOMEM;
779 		mlog_errno(ret);
780 		goto out;
781 	}
782 
783 	/* Get the offsets within the page that we want to zero */
784 	zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
785 	zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
786 	if (!zero_to)
787 		zero_to = PAGE_CACHE_SIZE;
788 
789 	mlog(0,
790 	     "abs_from = %llu, abs_to = %llu, index = %lu, zero_from = %u, zero_to = %u\n",
791 	     (unsigned long long)abs_from, (unsigned long long)abs_to,
792 	     index, zero_from, zero_to);
793 
794 	/* We know that zero_from is block aligned */
795 	for (block_start = zero_from; block_start < zero_to;
796 	     block_start = block_end) {
797 		block_end = block_start + (1 << inode->i_blkbits);
798 
799 		/*
800 		 * block_start is block-aligned.  Bump it by one to
801 		 * force ocfs2_{prepare,commit}_write() to zero the
802 		 * whole block.
803 		 */
804 		ret = ocfs2_prepare_write_nolock(inode, page,
805 						 block_start + 1,
806 						 block_start + 1);
807 		if (ret < 0) {
808 			mlog_errno(ret);
809 			goto out_unlock;
810 		}
811 
812 		if (!handle) {
813 			handle = ocfs2_zero_start_ordered_transaction(inode);
814 			if (IS_ERR(handle)) {
815 				ret = PTR_ERR(handle);
816 				handle = NULL;
817 				break;
818 			}
819 		}
820 
821 		/* must not update i_size! */
822 		ret = block_commit_write(page, block_start + 1,
823 					 block_start + 1);
824 		if (ret < 0)
825 			mlog_errno(ret);
826 		else
827 			ret = 0;
828 	}
829 
830 	if (handle)
831 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
832 
833 out_unlock:
834 	unlock_page(page);
835 	page_cache_release(page);
836 out:
837 	return ret;
838 }
839 
840 /*
841  * Find the next range to zero.  We do this in terms of bytes because
842  * that's what ocfs2_zero_extend() wants, and it is dealing with the
843  * pagecache.  We may return multiple extents.
844  *
845  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
846  * needs to be zeroed.  range_start and range_end return the next zeroing
847  * range.  A subsequent call should pass the previous range_end as its
848  * zero_start.  If range_end is 0, there's nothing to do.
849  *
850  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
851  */
852 static int ocfs2_zero_extend_get_range(struct inode *inode,
853 				       struct buffer_head *di_bh,
854 				       u64 zero_start, u64 zero_end,
855 				       u64 *range_start, u64 *range_end)
856 {
857 	int rc = 0, needs_cow = 0;
858 	u32 p_cpos, zero_clusters = 0;
859 	u32 zero_cpos =
860 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
861 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
862 	unsigned int num_clusters = 0;
863 	unsigned int ext_flags = 0;
864 
865 	while (zero_cpos < last_cpos) {
866 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
867 					&num_clusters, &ext_flags);
868 		if (rc) {
869 			mlog_errno(rc);
870 			goto out;
871 		}
872 
873 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
874 			zero_clusters = num_clusters;
875 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
876 				needs_cow = 1;
877 			break;
878 		}
879 
880 		zero_cpos += num_clusters;
881 	}
882 	if (!zero_clusters) {
883 		*range_end = 0;
884 		goto out;
885 	}
886 
887 	while ((zero_cpos + zero_clusters) < last_cpos) {
888 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
889 					&p_cpos, &num_clusters,
890 					&ext_flags);
891 		if (rc) {
892 			mlog_errno(rc);
893 			goto out;
894 		}
895 
896 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
897 			break;
898 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
899 			needs_cow = 1;
900 		zero_clusters += num_clusters;
901 	}
902 	if ((zero_cpos + zero_clusters) > last_cpos)
903 		zero_clusters = last_cpos - zero_cpos;
904 
905 	if (needs_cow) {
906 		rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
907 					zero_clusters, UINT_MAX);
908 		if (rc) {
909 			mlog_errno(rc);
910 			goto out;
911 		}
912 	}
913 
914 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
915 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
916 					     zero_cpos + zero_clusters);
917 
918 out:
919 	return rc;
920 }
921 
922 /*
923  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
924  * has made sure that the entire range needs zeroing.
925  */
926 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
927 				   u64 range_end)
928 {
929 	int rc = 0;
930 	u64 next_pos;
931 	u64 zero_pos = range_start;
932 
933 	mlog(0, "range_start = %llu, range_end = %llu\n",
934 	     (unsigned long long)range_start,
935 	     (unsigned long long)range_end);
936 	BUG_ON(range_start >= range_end);
937 
938 	while (zero_pos < range_end) {
939 		next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
940 		if (next_pos > range_end)
941 			next_pos = range_end;
942 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
943 		if (rc < 0) {
944 			mlog_errno(rc);
945 			break;
946 		}
947 		zero_pos = next_pos;
948 
949 		/*
950 		 * Very large extends have the potential to lock up
951 		 * the cpu for extended periods of time.
952 		 */
953 		cond_resched();
954 	}
955 
956 	return rc;
957 }
958 
959 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
960 		      loff_t zero_to_size)
961 {
962 	int ret = 0;
963 	u64 zero_start, range_start = 0, range_end = 0;
964 	struct super_block *sb = inode->i_sb;
965 
966 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
967 	mlog(0, "zero_start %llu for i_size %llu\n",
968 	     (unsigned long long)zero_start,
969 	     (unsigned long long)i_size_read(inode));
970 	while (zero_start < zero_to_size) {
971 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
972 						  zero_to_size,
973 						  &range_start,
974 						  &range_end);
975 		if (ret) {
976 			mlog_errno(ret);
977 			break;
978 		}
979 		if (!range_end)
980 			break;
981 		/* Trim the ends */
982 		if (range_start < zero_start)
983 			range_start = zero_start;
984 		if (range_end > zero_to_size)
985 			range_end = zero_to_size;
986 
987 		ret = ocfs2_zero_extend_range(inode, range_start,
988 					      range_end);
989 		if (ret) {
990 			mlog_errno(ret);
991 			break;
992 		}
993 		zero_start = range_end;
994 	}
995 
996 	return ret;
997 }
998 
999 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1000 			  u64 new_i_size, u64 zero_to)
1001 {
1002 	int ret;
1003 	u32 clusters_to_add;
1004 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1005 
1006 	/*
1007 	 * Only quota files call this without a bh, and they can't be
1008 	 * refcounted.
1009 	 */
1010 	BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1011 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1012 
1013 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1014 	if (clusters_to_add < oi->ip_clusters)
1015 		clusters_to_add = 0;
1016 	else
1017 		clusters_to_add -= oi->ip_clusters;
1018 
1019 	if (clusters_to_add) {
1020 		ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1021 						clusters_to_add, 0);
1022 		if (ret) {
1023 			mlog_errno(ret);
1024 			goto out;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * Call this even if we don't add any clusters to the tree. We
1030 	 * still need to zero the area between the old i_size and the
1031 	 * new i_size.
1032 	 */
1033 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1034 	if (ret < 0)
1035 		mlog_errno(ret);
1036 
1037 out:
1038 	return ret;
1039 }
1040 
1041 static int ocfs2_extend_file(struct inode *inode,
1042 			     struct buffer_head *di_bh,
1043 			     u64 new_i_size)
1044 {
1045 	int ret = 0;
1046 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1047 
1048 	BUG_ON(!di_bh);
1049 
1050 	/* setattr sometimes calls us like this. */
1051 	if (new_i_size == 0)
1052 		goto out;
1053 
1054 	if (i_size_read(inode) == new_i_size)
1055 		goto out;
1056 	BUG_ON(new_i_size < i_size_read(inode));
1057 
1058 	/*
1059 	 * The alloc sem blocks people in read/write from reading our
1060 	 * allocation until we're done changing it. We depend on
1061 	 * i_mutex to block other extend/truncate calls while we're
1062 	 * here.  We even have to hold it for sparse files because there
1063 	 * might be some tail zeroing.
1064 	 */
1065 	down_write(&oi->ip_alloc_sem);
1066 
1067 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1068 		/*
1069 		 * We can optimize small extends by keeping the inodes
1070 		 * inline data.
1071 		 */
1072 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1073 			up_write(&oi->ip_alloc_sem);
1074 			goto out_update_size;
1075 		}
1076 
1077 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1078 		if (ret) {
1079 			up_write(&oi->ip_alloc_sem);
1080 			mlog_errno(ret);
1081 			goto out;
1082 		}
1083 	}
1084 
1085 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1086 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1087 	else
1088 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1089 					    new_i_size);
1090 
1091 	up_write(&oi->ip_alloc_sem);
1092 
1093 	if (ret < 0) {
1094 		mlog_errno(ret);
1095 		goto out;
1096 	}
1097 
1098 out_update_size:
1099 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1100 	if (ret < 0)
1101 		mlog_errno(ret);
1102 
1103 out:
1104 	return ret;
1105 }
1106 
1107 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1108 {
1109 	int status = 0, size_change;
1110 	struct inode *inode = dentry->d_inode;
1111 	struct super_block *sb = inode->i_sb;
1112 	struct ocfs2_super *osb = OCFS2_SB(sb);
1113 	struct buffer_head *bh = NULL;
1114 	handle_t *handle = NULL;
1115 	struct dquot *transfer_to[MAXQUOTAS] = { };
1116 	int qtype;
1117 
1118 	mlog_entry("(0x%p, '%.*s')\n", dentry,
1119 	           dentry->d_name.len, dentry->d_name.name);
1120 
1121 	/* ensuring we don't even attempt to truncate a symlink */
1122 	if (S_ISLNK(inode->i_mode))
1123 		attr->ia_valid &= ~ATTR_SIZE;
1124 
1125 	if (attr->ia_valid & ATTR_MODE)
1126 		mlog(0, "mode change: %d\n", attr->ia_mode);
1127 	if (attr->ia_valid & ATTR_UID)
1128 		mlog(0, "uid change: %d\n", attr->ia_uid);
1129 	if (attr->ia_valid & ATTR_GID)
1130 		mlog(0, "gid change: %d\n", attr->ia_gid);
1131 	if (attr->ia_valid & ATTR_SIZE)
1132 		mlog(0, "size change...\n");
1133 	if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME))
1134 		mlog(0, "time change...\n");
1135 
1136 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1137 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1138 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) {
1139 		mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid);
1140 		return 0;
1141 	}
1142 
1143 	status = inode_change_ok(inode, attr);
1144 	if (status)
1145 		return status;
1146 
1147 	if (is_quota_modification(inode, attr))
1148 		dquot_initialize(inode);
1149 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1150 	if (size_change) {
1151 		status = ocfs2_rw_lock(inode, 1);
1152 		if (status < 0) {
1153 			mlog_errno(status);
1154 			goto bail;
1155 		}
1156 	}
1157 
1158 	status = ocfs2_inode_lock(inode, &bh, 1);
1159 	if (status < 0) {
1160 		if (status != -ENOENT)
1161 			mlog_errno(status);
1162 		goto bail_unlock_rw;
1163 	}
1164 
1165 	if (size_change && attr->ia_size != i_size_read(inode)) {
1166 		status = inode_newsize_ok(inode, attr->ia_size);
1167 		if (status)
1168 			goto bail_unlock;
1169 
1170 		if (i_size_read(inode) > attr->ia_size) {
1171 			if (ocfs2_should_order_data(inode)) {
1172 				status = ocfs2_begin_ordered_truncate(inode,
1173 								      attr->ia_size);
1174 				if (status)
1175 					goto bail_unlock;
1176 			}
1177 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1178 		} else
1179 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1180 		if (status < 0) {
1181 			if (status != -ENOSPC)
1182 				mlog_errno(status);
1183 			status = -ENOSPC;
1184 			goto bail_unlock;
1185 		}
1186 	}
1187 
1188 	if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1189 	    (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1190 		/*
1191 		 * Gather pointers to quota structures so that allocation /
1192 		 * freeing of quota structures happens here and not inside
1193 		 * dquot_transfer() where we have problems with lock ordering
1194 		 */
1195 		if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1196 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1197 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1198 			transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1199 						      USRQUOTA);
1200 			if (!transfer_to[USRQUOTA]) {
1201 				status = -ESRCH;
1202 				goto bail_unlock;
1203 			}
1204 		}
1205 		if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1206 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1207 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1208 			transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1209 						      GRPQUOTA);
1210 			if (!transfer_to[GRPQUOTA]) {
1211 				status = -ESRCH;
1212 				goto bail_unlock;
1213 			}
1214 		}
1215 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1216 					   2 * ocfs2_quota_trans_credits(sb));
1217 		if (IS_ERR(handle)) {
1218 			status = PTR_ERR(handle);
1219 			mlog_errno(status);
1220 			goto bail_unlock;
1221 		}
1222 		status = __dquot_transfer(inode, transfer_to);
1223 		if (status < 0)
1224 			goto bail_commit;
1225 	} else {
1226 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1227 		if (IS_ERR(handle)) {
1228 			status = PTR_ERR(handle);
1229 			mlog_errno(status);
1230 			goto bail_unlock;
1231 		}
1232 	}
1233 
1234 	/*
1235 	 * This will intentionally not wind up calling truncate_setsize(),
1236 	 * since all the work for a size change has been done above.
1237 	 * Otherwise, we could get into problems with truncate as
1238 	 * ip_alloc_sem is used there to protect against i_size
1239 	 * changes.
1240 	 *
1241 	 * XXX: this means the conditional below can probably be removed.
1242 	 */
1243 	if ((attr->ia_valid & ATTR_SIZE) &&
1244 	    attr->ia_size != i_size_read(inode)) {
1245 		status = vmtruncate(inode, attr->ia_size);
1246 		if (status) {
1247 			mlog_errno(status);
1248 			goto bail_commit;
1249 		}
1250 	}
1251 
1252 	setattr_copy(inode, attr);
1253 	mark_inode_dirty(inode);
1254 
1255 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1256 	if (status < 0)
1257 		mlog_errno(status);
1258 
1259 bail_commit:
1260 	ocfs2_commit_trans(osb, handle);
1261 bail_unlock:
1262 	ocfs2_inode_unlock(inode, 1);
1263 bail_unlock_rw:
1264 	if (size_change)
1265 		ocfs2_rw_unlock(inode, 1);
1266 bail:
1267 	brelse(bh);
1268 
1269 	/* Release quota pointers in case we acquired them */
1270 	for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1271 		dqput(transfer_to[qtype]);
1272 
1273 	if (!status && attr->ia_valid & ATTR_MODE) {
1274 		status = ocfs2_acl_chmod(inode);
1275 		if (status < 0)
1276 			mlog_errno(status);
1277 	}
1278 
1279 	mlog_exit(status);
1280 	return status;
1281 }
1282 
1283 int ocfs2_getattr(struct vfsmount *mnt,
1284 		  struct dentry *dentry,
1285 		  struct kstat *stat)
1286 {
1287 	struct inode *inode = dentry->d_inode;
1288 	struct super_block *sb = dentry->d_inode->i_sb;
1289 	struct ocfs2_super *osb = sb->s_fs_info;
1290 	int err;
1291 
1292 	mlog_entry_void();
1293 
1294 	err = ocfs2_inode_revalidate(dentry);
1295 	if (err) {
1296 		if (err != -ENOENT)
1297 			mlog_errno(err);
1298 		goto bail;
1299 	}
1300 
1301 	generic_fillattr(inode, stat);
1302 
1303 	/* We set the blksize from the cluster size for performance */
1304 	stat->blksize = osb->s_clustersize;
1305 
1306 bail:
1307 	mlog_exit(err);
1308 
1309 	return err;
1310 }
1311 
1312 int ocfs2_permission(struct inode *inode, int mask)
1313 {
1314 	int ret;
1315 
1316 	mlog_entry_void();
1317 
1318 	ret = ocfs2_inode_lock(inode, NULL, 0);
1319 	if (ret) {
1320 		if (ret != -ENOENT)
1321 			mlog_errno(ret);
1322 		goto out;
1323 	}
1324 
1325 	ret = generic_permission(inode, mask, ocfs2_check_acl);
1326 
1327 	ocfs2_inode_unlock(inode, 0);
1328 out:
1329 	mlog_exit(ret);
1330 	return ret;
1331 }
1332 
1333 static int __ocfs2_write_remove_suid(struct inode *inode,
1334 				     struct buffer_head *bh)
1335 {
1336 	int ret;
1337 	handle_t *handle;
1338 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1339 	struct ocfs2_dinode *di;
1340 
1341 	mlog_entry("(Inode %llu, mode 0%o)\n",
1342 		   (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode);
1343 
1344 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1345 	if (IS_ERR(handle)) {
1346 		ret = PTR_ERR(handle);
1347 		mlog_errno(ret);
1348 		goto out;
1349 	}
1350 
1351 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1352 				      OCFS2_JOURNAL_ACCESS_WRITE);
1353 	if (ret < 0) {
1354 		mlog_errno(ret);
1355 		goto out_trans;
1356 	}
1357 
1358 	inode->i_mode &= ~S_ISUID;
1359 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1360 		inode->i_mode &= ~S_ISGID;
1361 
1362 	di = (struct ocfs2_dinode *) bh->b_data;
1363 	di->i_mode = cpu_to_le16(inode->i_mode);
1364 
1365 	ocfs2_journal_dirty(handle, bh);
1366 
1367 out_trans:
1368 	ocfs2_commit_trans(osb, handle);
1369 out:
1370 	mlog_exit(ret);
1371 	return ret;
1372 }
1373 
1374 /*
1375  * Will look for holes and unwritten extents in the range starting at
1376  * pos for count bytes (inclusive).
1377  */
1378 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1379 				       size_t count)
1380 {
1381 	int ret = 0;
1382 	unsigned int extent_flags;
1383 	u32 cpos, clusters, extent_len, phys_cpos;
1384 	struct super_block *sb = inode->i_sb;
1385 
1386 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1387 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1388 
1389 	while (clusters) {
1390 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1391 					 &extent_flags);
1392 		if (ret < 0) {
1393 			mlog_errno(ret);
1394 			goto out;
1395 		}
1396 
1397 		if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1398 			ret = 1;
1399 			break;
1400 		}
1401 
1402 		if (extent_len > clusters)
1403 			extent_len = clusters;
1404 
1405 		clusters -= extent_len;
1406 		cpos += extent_len;
1407 	}
1408 out:
1409 	return ret;
1410 }
1411 
1412 static int ocfs2_write_remove_suid(struct inode *inode)
1413 {
1414 	int ret;
1415 	struct buffer_head *bh = NULL;
1416 
1417 	ret = ocfs2_read_inode_block(inode, &bh);
1418 	if (ret < 0) {
1419 		mlog_errno(ret);
1420 		goto out;
1421 	}
1422 
1423 	ret =  __ocfs2_write_remove_suid(inode, bh);
1424 out:
1425 	brelse(bh);
1426 	return ret;
1427 }
1428 
1429 /*
1430  * Allocate enough extents to cover the region starting at byte offset
1431  * start for len bytes. Existing extents are skipped, any extents
1432  * added are marked as "unwritten".
1433  */
1434 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1435 					    u64 start, u64 len)
1436 {
1437 	int ret;
1438 	u32 cpos, phys_cpos, clusters, alloc_size;
1439 	u64 end = start + len;
1440 	struct buffer_head *di_bh = NULL;
1441 
1442 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1443 		ret = ocfs2_read_inode_block(inode, &di_bh);
1444 		if (ret) {
1445 			mlog_errno(ret);
1446 			goto out;
1447 		}
1448 
1449 		/*
1450 		 * Nothing to do if the requested reservation range
1451 		 * fits within the inode.
1452 		 */
1453 		if (ocfs2_size_fits_inline_data(di_bh, end))
1454 			goto out;
1455 
1456 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1457 		if (ret) {
1458 			mlog_errno(ret);
1459 			goto out;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * We consider both start and len to be inclusive.
1465 	 */
1466 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1467 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1468 	clusters -= cpos;
1469 
1470 	while (clusters) {
1471 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1472 					 &alloc_size, NULL);
1473 		if (ret) {
1474 			mlog_errno(ret);
1475 			goto out;
1476 		}
1477 
1478 		/*
1479 		 * Hole or existing extent len can be arbitrary, so
1480 		 * cap it to our own allocation request.
1481 		 */
1482 		if (alloc_size > clusters)
1483 			alloc_size = clusters;
1484 
1485 		if (phys_cpos) {
1486 			/*
1487 			 * We already have an allocation at this
1488 			 * region so we can safely skip it.
1489 			 */
1490 			goto next;
1491 		}
1492 
1493 		ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1494 		if (ret) {
1495 			if (ret != -ENOSPC)
1496 				mlog_errno(ret);
1497 			goto out;
1498 		}
1499 
1500 next:
1501 		cpos += alloc_size;
1502 		clusters -= alloc_size;
1503 	}
1504 
1505 	ret = 0;
1506 out:
1507 
1508 	brelse(di_bh);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * Truncate a byte range, avoiding pages within partial clusters. This
1514  * preserves those pages for the zeroing code to write to.
1515  */
1516 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1517 					 u64 byte_len)
1518 {
1519 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1520 	loff_t start, end;
1521 	struct address_space *mapping = inode->i_mapping;
1522 
1523 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1524 	end = byte_start + byte_len;
1525 	end = end & ~(osb->s_clustersize - 1);
1526 
1527 	if (start < end) {
1528 		unmap_mapping_range(mapping, start, end - start, 0);
1529 		truncate_inode_pages_range(mapping, start, end - 1);
1530 	}
1531 }
1532 
1533 static int ocfs2_zero_partial_clusters(struct inode *inode,
1534 				       u64 start, u64 len)
1535 {
1536 	int ret = 0;
1537 	u64 tmpend, end = start + len;
1538 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1539 	unsigned int csize = osb->s_clustersize;
1540 	handle_t *handle;
1541 
1542 	/*
1543 	 * The "start" and "end" values are NOT necessarily part of
1544 	 * the range whose allocation is being deleted. Rather, this
1545 	 * is what the user passed in with the request. We must zero
1546 	 * partial clusters here. There's no need to worry about
1547 	 * physical allocation - the zeroing code knows to skip holes.
1548 	 */
1549 	mlog(0, "byte start: %llu, end: %llu\n",
1550 	     (unsigned long long)start, (unsigned long long)end);
1551 
1552 	/*
1553 	 * If both edges are on a cluster boundary then there's no
1554 	 * zeroing required as the region is part of the allocation to
1555 	 * be truncated.
1556 	 */
1557 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1558 		goto out;
1559 
1560 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1561 	if (IS_ERR(handle)) {
1562 		ret = PTR_ERR(handle);
1563 		mlog_errno(ret);
1564 		goto out;
1565 	}
1566 
1567 	/*
1568 	 * We want to get the byte offset of the end of the 1st cluster.
1569 	 */
1570 	tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1571 	if (tmpend > end)
1572 		tmpend = end;
1573 
1574 	mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1575 	     (unsigned long long)start, (unsigned long long)tmpend);
1576 
1577 	ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1578 	if (ret)
1579 		mlog_errno(ret);
1580 
1581 	if (tmpend < end) {
1582 		/*
1583 		 * This may make start and end equal, but the zeroing
1584 		 * code will skip any work in that case so there's no
1585 		 * need to catch it up here.
1586 		 */
1587 		start = end & ~(osb->s_clustersize - 1);
1588 
1589 		mlog(0, "2nd range: start: %llu, end: %llu\n",
1590 		     (unsigned long long)start, (unsigned long long)end);
1591 
1592 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1593 		if (ret)
1594 			mlog_errno(ret);
1595 	}
1596 
1597 	ocfs2_commit_trans(osb, handle);
1598 out:
1599 	return ret;
1600 }
1601 
1602 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1603 {
1604 	int i;
1605 	struct ocfs2_extent_rec *rec = NULL;
1606 
1607 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1608 
1609 		rec = &el->l_recs[i];
1610 
1611 		if (le32_to_cpu(rec->e_cpos) < pos)
1612 			break;
1613 	}
1614 
1615 	return i;
1616 }
1617 
1618 /*
1619  * Helper to calculate the punching pos and length in one run, we handle the
1620  * following three cases in order:
1621  *
1622  * - remove the entire record
1623  * - remove a partial record
1624  * - no record needs to be removed (hole-punching completed)
1625 */
1626 static void ocfs2_calc_trunc_pos(struct inode *inode,
1627 				 struct ocfs2_extent_list *el,
1628 				 struct ocfs2_extent_rec *rec,
1629 				 u32 trunc_start, u32 *trunc_cpos,
1630 				 u32 *trunc_len, u32 *trunc_end,
1631 				 u64 *blkno, int *done)
1632 {
1633 	int ret = 0;
1634 	u32 coff, range;
1635 
1636 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1637 
1638 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1639 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1640 		/*
1641 		 * Skip holes if any.
1642 		 */
1643 		if (range < *trunc_end)
1644 			*trunc_end = range;
1645 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1646 		*blkno = le64_to_cpu(rec->e_blkno);
1647 		*trunc_end = le32_to_cpu(rec->e_cpos);
1648 	} else if (range > trunc_start) {
1649 		*trunc_cpos = trunc_start;
1650 		*trunc_len = *trunc_end - trunc_start;
1651 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1652 		*blkno = le64_to_cpu(rec->e_blkno) +
1653 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1654 		*trunc_end = trunc_start;
1655 	} else {
1656 		/*
1657 		 * It may have two following possibilities:
1658 		 *
1659 		 * - last record has been removed
1660 		 * - trunc_start was within a hole
1661 		 *
1662 		 * both two cases mean the completion of hole punching.
1663 		 */
1664 		ret = 1;
1665 	}
1666 
1667 	*done = ret;
1668 }
1669 
1670 static int ocfs2_remove_inode_range(struct inode *inode,
1671 				    struct buffer_head *di_bh, u64 byte_start,
1672 				    u64 byte_len)
1673 {
1674 	int ret = 0, flags = 0, done = 0, i;
1675 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1676 	u32 cluster_in_el;
1677 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1678 	struct ocfs2_cached_dealloc_ctxt dealloc;
1679 	struct address_space *mapping = inode->i_mapping;
1680 	struct ocfs2_extent_tree et;
1681 	struct ocfs2_path *path = NULL;
1682 	struct ocfs2_extent_list *el = NULL;
1683 	struct ocfs2_extent_rec *rec = NULL;
1684 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1685 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1686 
1687 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1688 	ocfs2_init_dealloc_ctxt(&dealloc);
1689 
1690 	if (byte_len == 0)
1691 		return 0;
1692 
1693 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695 					    byte_start + byte_len, 0);
1696 		if (ret) {
1697 			mlog_errno(ret);
1698 			goto out;
1699 		}
1700 		/*
1701 		 * There's no need to get fancy with the page cache
1702 		 * truncate of an inline-data inode. We're talking
1703 		 * about less than a page here, which will be cached
1704 		 * in the dinode buffer anyway.
1705 		 */
1706 		unmap_mapping_range(mapping, 0, 0, 0);
1707 		truncate_inode_pages(mapping, 0);
1708 		goto out;
1709 	}
1710 
1711 	/*
1712 	 * For reflinks, we may need to CoW 2 clusters which might be
1713 	 * partially zero'd later, if hole's start and end offset were
1714 	 * within one cluster(means is not exactly aligned to clustersize).
1715 	 */
1716 
1717 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718 
1719 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720 		if (ret) {
1721 			mlog_errno(ret);
1722 			goto out;
1723 		}
1724 
1725 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726 		if (ret) {
1727 			mlog_errno(ret);
1728 			goto out;
1729 		}
1730 	}
1731 
1732 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734 	cluster_in_el = trunc_end;
1735 
1736 	mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, cend: %u\n",
1737 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1738 	     (unsigned long long)byte_start,
1739 	     (unsigned long long)byte_len, trunc_start, trunc_end);
1740 
1741 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1742 	if (ret) {
1743 		mlog_errno(ret);
1744 		goto out;
1745 	}
1746 
1747 	path = ocfs2_new_path_from_et(&et);
1748 	if (!path) {
1749 		ret = -ENOMEM;
1750 		mlog_errno(ret);
1751 		goto out;
1752 	}
1753 
1754 	while (trunc_end > trunc_start) {
1755 
1756 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1757 				      cluster_in_el);
1758 		if (ret) {
1759 			mlog_errno(ret);
1760 			goto out;
1761 		}
1762 
1763 		el = path_leaf_el(path);
1764 
1765 		i = ocfs2_find_rec(el, trunc_end);
1766 		/*
1767 		 * Need to go to previous extent block.
1768 		 */
1769 		if (i < 0) {
1770 			if (path->p_tree_depth == 0)
1771 				break;
1772 
1773 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1774 							    path,
1775 							    &cluster_in_el);
1776 			if (ret) {
1777 				mlog_errno(ret);
1778 				goto out;
1779 			}
1780 
1781 			/*
1782 			 * We've reached the leftmost extent block,
1783 			 * it's safe to leave.
1784 			 */
1785 			if (cluster_in_el == 0)
1786 				break;
1787 
1788 			/*
1789 			 * The 'pos' searched for previous extent block is
1790 			 * always one cluster less than actual trunc_end.
1791 			 */
1792 			trunc_end = cluster_in_el + 1;
1793 
1794 			ocfs2_reinit_path(path, 1);
1795 
1796 			continue;
1797 
1798 		} else
1799 			rec = &el->l_recs[i];
1800 
1801 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1802 				     &trunc_len, &trunc_end, &blkno, &done);
1803 		if (done)
1804 			break;
1805 
1806 		flags = rec->e_flags;
1807 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1808 
1809 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1810 					       phys_cpos, trunc_len, flags,
1811 					       &dealloc, refcount_loc);
1812 		if (ret < 0) {
1813 			mlog_errno(ret);
1814 			goto out;
1815 		}
1816 
1817 		cluster_in_el = trunc_end;
1818 
1819 		ocfs2_reinit_path(path, 1);
1820 	}
1821 
1822 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1823 
1824 out:
1825 	ocfs2_schedule_truncate_log_flush(osb, 1);
1826 	ocfs2_run_deallocs(osb, &dealloc);
1827 
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Parts of this function taken from xfs_change_file_space()
1833  */
1834 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1835 				     loff_t f_pos, unsigned int cmd,
1836 				     struct ocfs2_space_resv *sr,
1837 				     int change_size)
1838 {
1839 	int ret;
1840 	s64 llen;
1841 	loff_t size;
1842 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1843 	struct buffer_head *di_bh = NULL;
1844 	handle_t *handle;
1845 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1846 
1847 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1848 		return -EROFS;
1849 
1850 	mutex_lock(&inode->i_mutex);
1851 
1852 	/*
1853 	 * This prevents concurrent writes on other nodes
1854 	 */
1855 	ret = ocfs2_rw_lock(inode, 1);
1856 	if (ret) {
1857 		mlog_errno(ret);
1858 		goto out;
1859 	}
1860 
1861 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1862 	if (ret) {
1863 		mlog_errno(ret);
1864 		goto out_rw_unlock;
1865 	}
1866 
1867 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1868 		ret = -EPERM;
1869 		goto out_inode_unlock;
1870 	}
1871 
1872 	switch (sr->l_whence) {
1873 	case 0: /*SEEK_SET*/
1874 		break;
1875 	case 1: /*SEEK_CUR*/
1876 		sr->l_start += f_pos;
1877 		break;
1878 	case 2: /*SEEK_END*/
1879 		sr->l_start += i_size_read(inode);
1880 		break;
1881 	default:
1882 		ret = -EINVAL;
1883 		goto out_inode_unlock;
1884 	}
1885 	sr->l_whence = 0;
1886 
1887 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1888 
1889 	if (sr->l_start < 0
1890 	    || sr->l_start > max_off
1891 	    || (sr->l_start + llen) < 0
1892 	    || (sr->l_start + llen) > max_off) {
1893 		ret = -EINVAL;
1894 		goto out_inode_unlock;
1895 	}
1896 	size = sr->l_start + sr->l_len;
1897 
1898 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1899 		if (sr->l_len <= 0) {
1900 			ret = -EINVAL;
1901 			goto out_inode_unlock;
1902 		}
1903 	}
1904 
1905 	if (file && should_remove_suid(file->f_path.dentry)) {
1906 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1907 		if (ret) {
1908 			mlog_errno(ret);
1909 			goto out_inode_unlock;
1910 		}
1911 	}
1912 
1913 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1914 	switch (cmd) {
1915 	case OCFS2_IOC_RESVSP:
1916 	case OCFS2_IOC_RESVSP64:
1917 		/*
1918 		 * This takes unsigned offsets, but the signed ones we
1919 		 * pass have been checked against overflow above.
1920 		 */
1921 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1922 						       sr->l_len);
1923 		break;
1924 	case OCFS2_IOC_UNRESVSP:
1925 	case OCFS2_IOC_UNRESVSP64:
1926 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1927 					       sr->l_len);
1928 		break;
1929 	default:
1930 		ret = -EINVAL;
1931 	}
1932 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1933 	if (ret) {
1934 		mlog_errno(ret);
1935 		goto out_inode_unlock;
1936 	}
1937 
1938 	/*
1939 	 * We update c/mtime for these changes
1940 	 */
1941 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1942 	if (IS_ERR(handle)) {
1943 		ret = PTR_ERR(handle);
1944 		mlog_errno(ret);
1945 		goto out_inode_unlock;
1946 	}
1947 
1948 	if (change_size && i_size_read(inode) < size)
1949 		i_size_write(inode, size);
1950 
1951 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1952 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1953 	if (ret < 0)
1954 		mlog_errno(ret);
1955 
1956 	ocfs2_commit_trans(osb, handle);
1957 
1958 out_inode_unlock:
1959 	brelse(di_bh);
1960 	ocfs2_inode_unlock(inode, 1);
1961 out_rw_unlock:
1962 	ocfs2_rw_unlock(inode, 1);
1963 
1964 out:
1965 	mutex_unlock(&inode->i_mutex);
1966 	return ret;
1967 }
1968 
1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1970 			    struct ocfs2_space_resv *sr)
1971 {
1972 	struct inode *inode = file->f_path.dentry->d_inode;
1973 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1974 
1975 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1976 	    !ocfs2_writes_unwritten_extents(osb))
1977 		return -ENOTTY;
1978 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1979 		 !ocfs2_sparse_alloc(osb))
1980 		return -ENOTTY;
1981 
1982 	if (!S_ISREG(inode->i_mode))
1983 		return -EINVAL;
1984 
1985 	if (!(file->f_mode & FMODE_WRITE))
1986 		return -EBADF;
1987 
1988 	return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1989 }
1990 
1991 static long ocfs2_fallocate(struct inode *inode, int mode, loff_t offset,
1992 			    loff_t len)
1993 {
1994 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1995 	struct ocfs2_space_resv sr;
1996 	int change_size = 1;
1997 
1998 	if (!ocfs2_writes_unwritten_extents(osb))
1999 		return -EOPNOTSUPP;
2000 
2001 	if (S_ISDIR(inode->i_mode))
2002 		return -ENODEV;
2003 
2004 	if (mode & FALLOC_FL_KEEP_SIZE)
2005 		change_size = 0;
2006 
2007 	sr.l_whence = 0;
2008 	sr.l_start = (s64)offset;
2009 	sr.l_len = (s64)len;
2010 
2011 	return __ocfs2_change_file_space(NULL, inode, offset,
2012 					 OCFS2_IOC_RESVSP64, &sr, change_size);
2013 }
2014 
2015 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2016 				   size_t count)
2017 {
2018 	int ret = 0;
2019 	unsigned int extent_flags;
2020 	u32 cpos, clusters, extent_len, phys_cpos;
2021 	struct super_block *sb = inode->i_sb;
2022 
2023 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2024 	    !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2025 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2026 		return 0;
2027 
2028 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2029 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2030 
2031 	while (clusters) {
2032 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2033 					 &extent_flags);
2034 		if (ret < 0) {
2035 			mlog_errno(ret);
2036 			goto out;
2037 		}
2038 
2039 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2040 			ret = 1;
2041 			break;
2042 		}
2043 
2044 		if (extent_len > clusters)
2045 			extent_len = clusters;
2046 
2047 		clusters -= extent_len;
2048 		cpos += extent_len;
2049 	}
2050 out:
2051 	return ret;
2052 }
2053 
2054 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2055 					    struct file *file,
2056 					    loff_t pos, size_t count,
2057 					    int *meta_level)
2058 {
2059 	int ret;
2060 	struct buffer_head *di_bh = NULL;
2061 	u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2062 	u32 clusters =
2063 		ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2064 
2065 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2066 	if (ret) {
2067 		mlog_errno(ret);
2068 		goto out;
2069 	}
2070 
2071 	*meta_level = 1;
2072 
2073 	ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2074 	if (ret)
2075 		mlog_errno(ret);
2076 out:
2077 	brelse(di_bh);
2078 	return ret;
2079 }
2080 
2081 static int ocfs2_prepare_inode_for_write(struct file *file,
2082 					 loff_t *ppos,
2083 					 size_t count,
2084 					 int appending,
2085 					 int *direct_io,
2086 					 int *has_refcount)
2087 {
2088 	int ret = 0, meta_level = 0;
2089 	struct dentry *dentry = file->f_path.dentry;
2090 	struct inode *inode = dentry->d_inode;
2091 	loff_t saved_pos, end;
2092 
2093 	/*
2094 	 * We start with a read level meta lock and only jump to an ex
2095 	 * if we need to make modifications here.
2096 	 */
2097 	for(;;) {
2098 		ret = ocfs2_inode_lock(inode, NULL, meta_level);
2099 		if (ret < 0) {
2100 			meta_level = -1;
2101 			mlog_errno(ret);
2102 			goto out;
2103 		}
2104 
2105 		/* Clear suid / sgid if necessary. We do this here
2106 		 * instead of later in the write path because
2107 		 * remove_suid() calls ->setattr without any hint that
2108 		 * we may have already done our cluster locking. Since
2109 		 * ocfs2_setattr() *must* take cluster locks to
2110 		 * proceeed, this will lead us to recursively lock the
2111 		 * inode. There's also the dinode i_size state which
2112 		 * can be lost via setattr during extending writes (we
2113 		 * set inode->i_size at the end of a write. */
2114 		if (should_remove_suid(dentry)) {
2115 			if (meta_level == 0) {
2116 				ocfs2_inode_unlock(inode, meta_level);
2117 				meta_level = 1;
2118 				continue;
2119 			}
2120 
2121 			ret = ocfs2_write_remove_suid(inode);
2122 			if (ret < 0) {
2123 				mlog_errno(ret);
2124 				goto out_unlock;
2125 			}
2126 		}
2127 
2128 		/* work on a copy of ppos until we're sure that we won't have
2129 		 * to recalculate it due to relocking. */
2130 		if (appending) {
2131 			saved_pos = i_size_read(inode);
2132 			mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos);
2133 		} else {
2134 			saved_pos = *ppos;
2135 		}
2136 
2137 		end = saved_pos + count;
2138 
2139 		ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2140 		if (ret == 1) {
2141 			ocfs2_inode_unlock(inode, meta_level);
2142 			meta_level = -1;
2143 
2144 			ret = ocfs2_prepare_inode_for_refcount(inode,
2145 							       file,
2146 							       saved_pos,
2147 							       count,
2148 							       &meta_level);
2149 			if (has_refcount)
2150 				*has_refcount = 1;
2151 			if (direct_io)
2152 				*direct_io = 0;
2153 		}
2154 
2155 		if (ret < 0) {
2156 			mlog_errno(ret);
2157 			goto out_unlock;
2158 		}
2159 
2160 		/*
2161 		 * Skip the O_DIRECT checks if we don't need
2162 		 * them.
2163 		 */
2164 		if (!direct_io || !(*direct_io))
2165 			break;
2166 
2167 		/*
2168 		 * There's no sane way to do direct writes to an inode
2169 		 * with inline data.
2170 		 */
2171 		if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2172 			*direct_io = 0;
2173 			break;
2174 		}
2175 
2176 		/*
2177 		 * Allowing concurrent direct writes means
2178 		 * i_size changes wouldn't be synchronized, so
2179 		 * one node could wind up truncating another
2180 		 * nodes writes.
2181 		 */
2182 		if (end > i_size_read(inode)) {
2183 			*direct_io = 0;
2184 			break;
2185 		}
2186 
2187 		/*
2188 		 * We don't fill holes during direct io, so
2189 		 * check for them here. If any are found, the
2190 		 * caller will have to retake some cluster
2191 		 * locks and initiate the io as buffered.
2192 		 */
2193 		ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2194 		if (ret == 1) {
2195 			*direct_io = 0;
2196 			ret = 0;
2197 		} else if (ret < 0)
2198 			mlog_errno(ret);
2199 		break;
2200 	}
2201 
2202 	if (appending)
2203 		*ppos = saved_pos;
2204 
2205 out_unlock:
2206 	if (meta_level >= 0)
2207 		ocfs2_inode_unlock(inode, meta_level);
2208 
2209 out:
2210 	return ret;
2211 }
2212 
2213 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2214 				    const struct iovec *iov,
2215 				    unsigned long nr_segs,
2216 				    loff_t pos)
2217 {
2218 	int ret, direct_io, appending, rw_level, have_alloc_sem  = 0;
2219 	int can_do_direct, has_refcount = 0;
2220 	ssize_t written = 0;
2221 	size_t ocount;		/* original count */
2222 	size_t count;		/* after file limit checks */
2223 	loff_t old_size, *ppos = &iocb->ki_pos;
2224 	u32 old_clusters;
2225 	struct file *file = iocb->ki_filp;
2226 	struct inode *inode = file->f_path.dentry->d_inode;
2227 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2228 	int full_coherency = !(osb->s_mount_opt &
2229 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2230 
2231 	mlog_entry("(0x%p, %u, '%.*s')\n", file,
2232 		   (unsigned int)nr_segs,
2233 		   file->f_path.dentry->d_name.len,
2234 		   file->f_path.dentry->d_name.name);
2235 
2236 	if (iocb->ki_left == 0)
2237 		return 0;
2238 
2239 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2240 
2241 	appending = file->f_flags & O_APPEND ? 1 : 0;
2242 	direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2243 
2244 	mutex_lock(&inode->i_mutex);
2245 
2246 relock:
2247 	/* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2248 	if (direct_io) {
2249 		down_read(&inode->i_alloc_sem);
2250 		have_alloc_sem = 1;
2251 	}
2252 
2253 	/*
2254 	 * Concurrent O_DIRECT writes are allowed with
2255 	 * mount_option "coherency=buffered".
2256 	 */
2257 	rw_level = (!direct_io || full_coherency);
2258 
2259 	ret = ocfs2_rw_lock(inode, rw_level);
2260 	if (ret < 0) {
2261 		mlog_errno(ret);
2262 		goto out_sems;
2263 	}
2264 
2265 	/*
2266 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2267 	 * inode_lock to guarantee coherency.
2268 	 */
2269 	if (direct_io && full_coherency) {
2270 		/*
2271 		 * We need to take and drop the inode lock to force
2272 		 * other nodes to drop their caches.  Buffered I/O
2273 		 * already does this in write_begin().
2274 		 */
2275 		ret = ocfs2_inode_lock(inode, NULL, 1);
2276 		if (ret < 0) {
2277 			mlog_errno(ret);
2278 			goto out_sems;
2279 		}
2280 
2281 		ocfs2_inode_unlock(inode, 1);
2282 	}
2283 
2284 	can_do_direct = direct_io;
2285 	ret = ocfs2_prepare_inode_for_write(file, ppos,
2286 					    iocb->ki_left, appending,
2287 					    &can_do_direct, &has_refcount);
2288 	if (ret < 0) {
2289 		mlog_errno(ret);
2290 		goto out;
2291 	}
2292 
2293 	/*
2294 	 * We can't complete the direct I/O as requested, fall back to
2295 	 * buffered I/O.
2296 	 */
2297 	if (direct_io && !can_do_direct) {
2298 		ocfs2_rw_unlock(inode, rw_level);
2299 		up_read(&inode->i_alloc_sem);
2300 
2301 		have_alloc_sem = 0;
2302 		rw_level = -1;
2303 
2304 		direct_io = 0;
2305 		goto relock;
2306 	}
2307 
2308 	/*
2309 	 * To later detect whether a journal commit for sync writes is
2310 	 * necessary, we sample i_size, and cluster count here.
2311 	 */
2312 	old_size = i_size_read(inode);
2313 	old_clusters = OCFS2_I(inode)->ip_clusters;
2314 
2315 	/* communicate with ocfs2_dio_end_io */
2316 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2317 
2318 	ret = generic_segment_checks(iov, &nr_segs, &ocount,
2319 				     VERIFY_READ);
2320 	if (ret)
2321 		goto out_dio;
2322 
2323 	count = ocount;
2324 	ret = generic_write_checks(file, ppos, &count,
2325 				   S_ISBLK(inode->i_mode));
2326 	if (ret)
2327 		goto out_dio;
2328 
2329 	if (direct_io) {
2330 		written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2331 						    ppos, count, ocount);
2332 		if (written < 0) {
2333 			ret = written;
2334 			goto out_dio;
2335 		}
2336 	} else {
2337 		current->backing_dev_info = file->f_mapping->backing_dev_info;
2338 		written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2339 						      ppos, count, 0);
2340 		current->backing_dev_info = NULL;
2341 	}
2342 
2343 out_dio:
2344 	/* buffered aio wouldn't have proper lock coverage today */
2345 	BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2346 
2347 	if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2348 	    ((file->f_flags & O_DIRECT) && !direct_io)) {
2349 		ret = filemap_fdatawrite_range(file->f_mapping, pos,
2350 					       pos + count - 1);
2351 		if (ret < 0)
2352 			written = ret;
2353 
2354 		if (!ret && ((old_size != i_size_read(inode)) ||
2355 			     (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2356 			     has_refcount)) {
2357 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2358 			if (ret < 0)
2359 				written = ret;
2360 		}
2361 
2362 		if (!ret)
2363 			ret = filemap_fdatawait_range(file->f_mapping, pos,
2364 						      pos + count - 1);
2365 	}
2366 
2367 	/*
2368 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2369 	 * function pointer which is called when o_direct io completes so that
2370 	 * it can unlock our rw lock.  (it's the clustered equivalent of
2371 	 * i_alloc_sem; protects truncate from racing with pending ios).
2372 	 * Unfortunately there are error cases which call end_io and others
2373 	 * that don't.  so we don't have to unlock the rw_lock if either an
2374 	 * async dio is going to do it in the future or an end_io after an
2375 	 * error has already done it.
2376 	 */
2377 	if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2378 		rw_level = -1;
2379 		have_alloc_sem = 0;
2380 	}
2381 
2382 out:
2383 	if (rw_level != -1)
2384 		ocfs2_rw_unlock(inode, rw_level);
2385 
2386 out_sems:
2387 	if (have_alloc_sem)
2388 		up_read(&inode->i_alloc_sem);
2389 
2390 	mutex_unlock(&inode->i_mutex);
2391 
2392 	if (written)
2393 		ret = written;
2394 	mlog_exit(ret);
2395 	return ret;
2396 }
2397 
2398 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2399 				struct file *out,
2400 				struct splice_desc *sd)
2401 {
2402 	int ret;
2403 
2404 	ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2405 					    sd->total_len, 0, NULL, NULL);
2406 	if (ret < 0) {
2407 		mlog_errno(ret);
2408 		return ret;
2409 	}
2410 
2411 	return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2412 }
2413 
2414 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2415 				       struct file *out,
2416 				       loff_t *ppos,
2417 				       size_t len,
2418 				       unsigned int flags)
2419 {
2420 	int ret;
2421 	struct address_space *mapping = out->f_mapping;
2422 	struct inode *inode = mapping->host;
2423 	struct splice_desc sd = {
2424 		.total_len = len,
2425 		.flags = flags,
2426 		.pos = *ppos,
2427 		.u.file = out,
2428 	};
2429 
2430 	mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe,
2431 		   (unsigned int)len,
2432 		   out->f_path.dentry->d_name.len,
2433 		   out->f_path.dentry->d_name.name);
2434 
2435 	if (pipe->inode)
2436 		mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2437 
2438 	splice_from_pipe_begin(&sd);
2439 	do {
2440 		ret = splice_from_pipe_next(pipe, &sd);
2441 		if (ret <= 0)
2442 			break;
2443 
2444 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2445 		ret = ocfs2_rw_lock(inode, 1);
2446 		if (ret < 0)
2447 			mlog_errno(ret);
2448 		else {
2449 			ret = ocfs2_splice_to_file(pipe, out, &sd);
2450 			ocfs2_rw_unlock(inode, 1);
2451 		}
2452 		mutex_unlock(&inode->i_mutex);
2453 	} while (ret > 0);
2454 	splice_from_pipe_end(pipe, &sd);
2455 
2456 	if (pipe->inode)
2457 		mutex_unlock(&pipe->inode->i_mutex);
2458 
2459 	if (sd.num_spliced)
2460 		ret = sd.num_spliced;
2461 
2462 	if (ret > 0) {
2463 		unsigned long nr_pages;
2464 		int err;
2465 
2466 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2467 
2468 		err = generic_write_sync(out, *ppos, ret);
2469 		if (err)
2470 			ret = err;
2471 		else
2472 			*ppos += ret;
2473 
2474 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2475 	}
2476 
2477 	mlog_exit(ret);
2478 	return ret;
2479 }
2480 
2481 static ssize_t ocfs2_file_splice_read(struct file *in,
2482 				      loff_t *ppos,
2483 				      struct pipe_inode_info *pipe,
2484 				      size_t len,
2485 				      unsigned int flags)
2486 {
2487 	int ret = 0, lock_level = 0;
2488 	struct inode *inode = in->f_path.dentry->d_inode;
2489 
2490 	mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe,
2491 		   (unsigned int)len,
2492 		   in->f_path.dentry->d_name.len,
2493 		   in->f_path.dentry->d_name.name);
2494 
2495 	/*
2496 	 * See the comment in ocfs2_file_aio_read()
2497 	 */
2498 	ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2499 	if (ret < 0) {
2500 		mlog_errno(ret);
2501 		goto bail;
2502 	}
2503 	ocfs2_inode_unlock(inode, lock_level);
2504 
2505 	ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2506 
2507 bail:
2508 	mlog_exit(ret);
2509 	return ret;
2510 }
2511 
2512 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2513 				   const struct iovec *iov,
2514 				   unsigned long nr_segs,
2515 				   loff_t pos)
2516 {
2517 	int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2518 	struct file *filp = iocb->ki_filp;
2519 	struct inode *inode = filp->f_path.dentry->d_inode;
2520 
2521 	mlog_entry("(0x%p, %u, '%.*s')\n", filp,
2522 		   (unsigned int)nr_segs,
2523 		   filp->f_path.dentry->d_name.len,
2524 		   filp->f_path.dentry->d_name.name);
2525 
2526 	if (!inode) {
2527 		ret = -EINVAL;
2528 		mlog_errno(ret);
2529 		goto bail;
2530 	}
2531 
2532 	/*
2533 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2534 	 * need locks to protect pending reads from racing with truncate.
2535 	 */
2536 	if (filp->f_flags & O_DIRECT) {
2537 		down_read(&inode->i_alloc_sem);
2538 		have_alloc_sem = 1;
2539 
2540 		ret = ocfs2_rw_lock(inode, 0);
2541 		if (ret < 0) {
2542 			mlog_errno(ret);
2543 			goto bail;
2544 		}
2545 		rw_level = 0;
2546 		/* communicate with ocfs2_dio_end_io */
2547 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2548 	}
2549 
2550 	/*
2551 	 * We're fine letting folks race truncates and extending
2552 	 * writes with read across the cluster, just like they can
2553 	 * locally. Hence no rw_lock during read.
2554 	 *
2555 	 * Take and drop the meta data lock to update inode fields
2556 	 * like i_size. This allows the checks down below
2557 	 * generic_file_aio_read() a chance of actually working.
2558 	 */
2559 	ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2560 	if (ret < 0) {
2561 		mlog_errno(ret);
2562 		goto bail;
2563 	}
2564 	ocfs2_inode_unlock(inode, lock_level);
2565 
2566 	ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2567 	if (ret == -EINVAL)
2568 		mlog(0, "generic_file_aio_read returned -EINVAL\n");
2569 
2570 	/* buffered aio wouldn't have proper lock coverage today */
2571 	BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2572 
2573 	/* see ocfs2_file_aio_write */
2574 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2575 		rw_level = -1;
2576 		have_alloc_sem = 0;
2577 	}
2578 
2579 bail:
2580 	if (have_alloc_sem)
2581 		up_read(&inode->i_alloc_sem);
2582 	if (rw_level != -1)
2583 		ocfs2_rw_unlock(inode, rw_level);
2584 	mlog_exit(ret);
2585 
2586 	return ret;
2587 }
2588 
2589 const struct inode_operations ocfs2_file_iops = {
2590 	.setattr	= ocfs2_setattr,
2591 	.getattr	= ocfs2_getattr,
2592 	.permission	= ocfs2_permission,
2593 	.setxattr	= generic_setxattr,
2594 	.getxattr	= generic_getxattr,
2595 	.listxattr	= ocfs2_listxattr,
2596 	.removexattr	= generic_removexattr,
2597 	.fallocate	= ocfs2_fallocate,
2598 	.fiemap		= ocfs2_fiemap,
2599 };
2600 
2601 const struct inode_operations ocfs2_special_file_iops = {
2602 	.setattr	= ocfs2_setattr,
2603 	.getattr	= ocfs2_getattr,
2604 	.permission	= ocfs2_permission,
2605 };
2606 
2607 /*
2608  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2609  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2610  */
2611 const struct file_operations ocfs2_fops = {
2612 	.llseek		= generic_file_llseek,
2613 	.read		= do_sync_read,
2614 	.write		= do_sync_write,
2615 	.mmap		= ocfs2_mmap,
2616 	.fsync		= ocfs2_sync_file,
2617 	.release	= ocfs2_file_release,
2618 	.open		= ocfs2_file_open,
2619 	.aio_read	= ocfs2_file_aio_read,
2620 	.aio_write	= ocfs2_file_aio_write,
2621 	.unlocked_ioctl	= ocfs2_ioctl,
2622 #ifdef CONFIG_COMPAT
2623 	.compat_ioctl   = ocfs2_compat_ioctl,
2624 #endif
2625 	.lock		= ocfs2_lock,
2626 	.flock		= ocfs2_flock,
2627 	.splice_read	= ocfs2_file_splice_read,
2628 	.splice_write	= ocfs2_file_splice_write,
2629 };
2630 
2631 const struct file_operations ocfs2_dops = {
2632 	.llseek		= generic_file_llseek,
2633 	.read		= generic_read_dir,
2634 	.readdir	= ocfs2_readdir,
2635 	.fsync		= ocfs2_sync_file,
2636 	.release	= ocfs2_dir_release,
2637 	.open		= ocfs2_dir_open,
2638 	.unlocked_ioctl	= ocfs2_ioctl,
2639 #ifdef CONFIG_COMPAT
2640 	.compat_ioctl   = ocfs2_compat_ioctl,
2641 #endif
2642 	.lock		= ocfs2_lock,
2643 	.flock		= ocfs2_flock,
2644 };
2645 
2646 /*
2647  * POSIX-lockless variants of our file_operations.
2648  *
2649  * These will be used if the underlying cluster stack does not support
2650  * posix file locking, if the user passes the "localflocks" mount
2651  * option, or if we have a local-only fs.
2652  *
2653  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2654  * so we still want it in the case of no stack support for
2655  * plocks. Internally, it will do the right thing when asked to ignore
2656  * the cluster.
2657  */
2658 const struct file_operations ocfs2_fops_no_plocks = {
2659 	.llseek		= generic_file_llseek,
2660 	.read		= do_sync_read,
2661 	.write		= do_sync_write,
2662 	.mmap		= ocfs2_mmap,
2663 	.fsync		= ocfs2_sync_file,
2664 	.release	= ocfs2_file_release,
2665 	.open		= ocfs2_file_open,
2666 	.aio_read	= ocfs2_file_aio_read,
2667 	.aio_write	= ocfs2_file_aio_write,
2668 	.unlocked_ioctl	= ocfs2_ioctl,
2669 #ifdef CONFIG_COMPAT
2670 	.compat_ioctl   = ocfs2_compat_ioctl,
2671 #endif
2672 	.flock		= ocfs2_flock,
2673 	.splice_read	= ocfs2_file_splice_read,
2674 	.splice_write	= ocfs2_file_splice_write,
2675 };
2676 
2677 const struct file_operations ocfs2_dops_no_plocks = {
2678 	.llseek		= generic_file_llseek,
2679 	.read		= generic_read_dir,
2680 	.readdir	= ocfs2_readdir,
2681 	.fsync		= ocfs2_sync_file,
2682 	.release	= ocfs2_dir_release,
2683 	.open		= ocfs2_dir_open,
2684 	.unlocked_ioctl	= ocfs2_ioctl,
2685 #ifdef CONFIG_COMPAT
2686 	.compat_ioctl   = ocfs2_compat_ioctl,
2687 #endif
2688 	.flock		= ocfs2_flock,
2689 };
2690