xref: /linux/fs/ocfs2/cluster/heartbeat.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 
37 #include "heartbeat.h"
38 #include "tcp.h"
39 #include "nodemanager.h"
40 #include "quorum.h"
41 
42 #include "masklog.h"
43 
44 
45 /*
46  * The first heartbeat pass had one global thread that would serialize all hb
47  * callback calls.  This global serializing sem should only be removed once
48  * we've made sure that all callees can deal with being called concurrently
49  * from multiple hb region threads.
50  */
51 static DECLARE_RWSEM(o2hb_callback_sem);
52 
53 /*
54  * multiple hb threads are watching multiple regions.  A node is live
55  * whenever any of the threads sees activity from the node in its region.
56  */
57 static spinlock_t o2hb_live_lock = SPIN_LOCK_UNLOCKED;
58 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60 static LIST_HEAD(o2hb_node_events);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
62 
63 static LIST_HEAD(o2hb_all_regions);
64 
65 static struct o2hb_callback {
66 	struct list_head list;
67 } o2hb_callbacks[O2HB_NUM_CB];
68 
69 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
70 
71 #define O2HB_DEFAULT_BLOCK_BITS       9
72 
73 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
74 
75 /* Only sets a new threshold if there are no active regions.
76  *
77  * No locking or otherwise interesting code is required for reading
78  * o2hb_dead_threshold as it can't change once regions are active and
79  * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold)
81 {
82 	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 		spin_lock(&o2hb_live_lock);
84 		if (list_empty(&o2hb_all_regions))
85 			o2hb_dead_threshold = threshold;
86 		spin_unlock(&o2hb_live_lock);
87 	}
88 }
89 
90 struct o2hb_node_event {
91 	struct list_head        hn_item;
92 	enum o2hb_callback_type hn_event_type;
93 	struct o2nm_node        *hn_node;
94 	int                     hn_node_num;
95 };
96 
97 struct o2hb_disk_slot {
98 	struct o2hb_disk_heartbeat_block *ds_raw_block;
99 	u8			ds_node_num;
100 	u64			ds_last_time;
101 	u64			ds_last_generation;
102 	u16			ds_equal_samples;
103 	u16			ds_changed_samples;
104 	struct list_head	ds_live_item;
105 };
106 
107 /* each thread owns a region.. when we're asked to tear down the region
108  * we ask the thread to stop, who cleans up the region */
109 struct o2hb_region {
110 	struct config_item	hr_item;
111 
112 	struct list_head	hr_all_item;
113 	unsigned		hr_unclean_stop:1;
114 
115 	/* protected by the hr_callback_sem */
116 	struct task_struct 	*hr_task;
117 
118 	unsigned int		hr_blocks;
119 	unsigned long long	hr_start_block;
120 
121 	unsigned int		hr_block_bits;
122 	unsigned int		hr_block_bytes;
123 
124 	unsigned int		hr_slots_per_page;
125 	unsigned int		hr_num_pages;
126 
127 	struct page             **hr_slot_data;
128 	struct block_device	*hr_bdev;
129 	struct o2hb_disk_slot	*hr_slots;
130 
131 	/* let the person setting up hb wait for it to return until it
132 	 * has reached a 'steady' state.  This will be fixed when we have
133 	 * a more complete api that doesn't lead to this sort of fragility. */
134 	atomic_t		hr_steady_iterations;
135 
136 	char			hr_dev_name[BDEVNAME_SIZE];
137 
138 	unsigned int		hr_timeout_ms;
139 
140 	/* randomized as the region goes up and down so that a node
141 	 * recognizes a node going up and down in one iteration */
142 	u64			hr_generation;
143 
144 	struct work_struct	hr_write_timeout_work;
145 	unsigned long		hr_last_timeout_start;
146 
147 	/* Used during o2hb_check_slot to hold a copy of the block
148 	 * being checked because we temporarily have to zero out the
149 	 * crc field. */
150 	struct o2hb_disk_heartbeat_block *hr_tmp_block;
151 };
152 
153 struct o2hb_bio_wait_ctxt {
154 	atomic_t          wc_num_reqs;
155 	struct completion wc_io_complete;
156 	int               wc_error;
157 };
158 
159 static void o2hb_write_timeout(void *arg)
160 {
161 	struct o2hb_region *reg = arg;
162 
163 	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
164 	     "milliseconds\n", reg->hr_dev_name,
165 	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
166 	o2quo_disk_timeout();
167 }
168 
169 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
170 {
171 	mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
172 
173 	cancel_delayed_work(&reg->hr_write_timeout_work);
174 	reg->hr_last_timeout_start = jiffies;
175 	schedule_delayed_work(&reg->hr_write_timeout_work,
176 			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
177 }
178 
179 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
180 {
181 	cancel_delayed_work(&reg->hr_write_timeout_work);
182 	flush_scheduled_work();
183 }
184 
185 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc,
186 				      unsigned int num_ios)
187 {
188 	atomic_set(&wc->wc_num_reqs, num_ios);
189 	init_completion(&wc->wc_io_complete);
190 	wc->wc_error = 0;
191 }
192 
193 /* Used in error paths too */
194 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
195 				     unsigned int num)
196 {
197 	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
198 	 * good news is that the fast path only completes one at a time */
199 	while(num--) {
200 		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
201 			BUG_ON(num > 0);
202 			complete(&wc->wc_io_complete);
203 		}
204 	}
205 }
206 
207 static void o2hb_wait_on_io(struct o2hb_region *reg,
208 			    struct o2hb_bio_wait_ctxt *wc)
209 {
210 	struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
211 
212 	blk_run_address_space(mapping);
213 
214 	wait_for_completion(&wc->wc_io_complete);
215 }
216 
217 static int o2hb_bio_end_io(struct bio *bio,
218 			   unsigned int bytes_done,
219 			   int error)
220 {
221 	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
222 
223 	if (error) {
224 		mlog(ML_ERROR, "IO Error %d\n", error);
225 		wc->wc_error = error;
226 	}
227 
228 	if (bio->bi_size)
229 		return 1;
230 
231 	o2hb_bio_wait_dec(wc, 1);
232 	return 0;
233 }
234 
235 /* Setup a Bio to cover I/O against num_slots slots starting at
236  * start_slot. */
237 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
238 				      struct o2hb_bio_wait_ctxt *wc,
239 				      unsigned int start_slot,
240 				      unsigned int num_slots)
241 {
242 	int i, nr_vecs, len, first_page, last_page;
243 	unsigned int vec_len, vec_start;
244 	unsigned int bits = reg->hr_block_bits;
245 	unsigned int spp = reg->hr_slots_per_page;
246 	struct bio *bio;
247 	struct page *page;
248 
249 	nr_vecs = (num_slots + spp - 1) / spp;
250 
251 	/* Testing has shown this allocation to take long enough under
252 	 * GFP_KERNEL that the local node can get fenced. It would be
253 	 * nicest if we could pre-allocate these bios and avoid this
254 	 * all together. */
255 	bio = bio_alloc(GFP_ATOMIC, nr_vecs);
256 	if (!bio) {
257 		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
258 		bio = ERR_PTR(-ENOMEM);
259 		goto bail;
260 	}
261 
262 	/* Must put everything in 512 byte sectors for the bio... */
263 	bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9);
264 	bio->bi_bdev = reg->hr_bdev;
265 	bio->bi_private = wc;
266 	bio->bi_end_io = o2hb_bio_end_io;
267 
268 	first_page = start_slot / spp;
269 	last_page = first_page + nr_vecs;
270 	vec_start = (start_slot << bits) % PAGE_CACHE_SIZE;
271 	for(i = first_page; i < last_page; i++) {
272 		page = reg->hr_slot_data[i];
273 
274 		vec_len = PAGE_CACHE_SIZE;
275 		/* last page might be short */
276 		if (((i + 1) * spp) > (start_slot + num_slots))
277 			vec_len = ((num_slots + start_slot) % spp) << bits;
278 		vec_len -=  vec_start;
279 
280 		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
281 		     i, vec_len, vec_start);
282 
283 		len = bio_add_page(bio, page, vec_len, vec_start);
284 		if (len != vec_len) {
285 			bio_put(bio);
286 			bio = ERR_PTR(-EIO);
287 
288 			mlog(ML_ERROR, "Error adding page to bio i = %d, "
289 			     "vec_len = %u, len = %d\n, start = %u\n",
290 			     i, vec_len, len, vec_start);
291 			goto bail;
292 		}
293 
294 		vec_start = 0;
295 	}
296 
297 bail:
298 	return bio;
299 }
300 
301 /*
302  * Compute the maximum number of sectors the bdev can handle in one bio,
303  * as a power of two.
304  *
305  * Stolen from oracleasm, thanks Joel!
306  */
307 static int compute_max_sectors(struct block_device *bdev)
308 {
309 	int max_pages, max_sectors, pow_two_sectors;
310 
311 	struct request_queue *q;
312 
313 	q = bdev_get_queue(bdev);
314 	max_pages = q->max_sectors >> (PAGE_SHIFT - 9);
315 	if (max_pages > BIO_MAX_PAGES)
316 		max_pages = BIO_MAX_PAGES;
317 	if (max_pages > q->max_phys_segments)
318 		max_pages = q->max_phys_segments;
319 	if (max_pages > q->max_hw_segments)
320 		max_pages = q->max_hw_segments;
321 	max_pages--; /* Handle I/Os that straddle a page */
322 
323 	max_sectors = max_pages << (PAGE_SHIFT - 9);
324 
325 	/* Why is fls() 1-based???? */
326 	pow_two_sectors = 1 << (fls(max_sectors) - 1);
327 
328 	return pow_two_sectors;
329 }
330 
331 static inline void o2hb_compute_request_limits(struct o2hb_region *reg,
332 					       unsigned int num_slots,
333 					       unsigned int *num_bios,
334 					       unsigned int *slots_per_bio)
335 {
336 	unsigned int max_sectors, io_sectors;
337 
338 	max_sectors = compute_max_sectors(reg->hr_bdev);
339 
340 	io_sectors = num_slots << (reg->hr_block_bits - 9);
341 
342 	*num_bios = (io_sectors + max_sectors - 1) / max_sectors;
343 	*slots_per_bio = max_sectors >> (reg->hr_block_bits - 9);
344 
345 	mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This "
346 	     "device can handle %u sectors of I/O\n", io_sectors, num_slots,
347 	     max_sectors);
348 	mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n",
349 	     *num_bios, *slots_per_bio);
350 }
351 
352 static int o2hb_read_slots(struct o2hb_region *reg,
353 			   unsigned int max_slots)
354 {
355 	unsigned int num_bios, slots_per_bio, start_slot, num_slots;
356 	int i, status;
357 	struct o2hb_bio_wait_ctxt wc;
358 	struct bio **bios;
359 	struct bio *bio;
360 
361 	o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio);
362 
363 	bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL);
364 	if (!bios) {
365 		status = -ENOMEM;
366 		mlog_errno(status);
367 		return status;
368 	}
369 
370 	o2hb_bio_wait_init(&wc, num_bios);
371 
372 	num_slots = slots_per_bio;
373 	for(i = 0; i < num_bios; i++) {
374 		start_slot = i * slots_per_bio;
375 
376 		/* adjust num_slots at last bio */
377 		if (max_slots < (start_slot + num_slots))
378 			num_slots = max_slots - start_slot;
379 
380 		bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots);
381 		if (IS_ERR(bio)) {
382 			o2hb_bio_wait_dec(&wc, num_bios - i);
383 
384 			status = PTR_ERR(bio);
385 			mlog_errno(status);
386 			goto bail_and_wait;
387 		}
388 		bios[i] = bio;
389 
390 		submit_bio(READ, bio);
391 	}
392 
393 	status = 0;
394 
395 bail_and_wait:
396 	o2hb_wait_on_io(reg, &wc);
397 	if (wc.wc_error && !status)
398 		status = wc.wc_error;
399 
400 	if (bios) {
401 		for(i = 0; i < num_bios; i++)
402 			if (bios[i])
403 				bio_put(bios[i]);
404 		kfree(bios);
405 	}
406 
407 	return status;
408 }
409 
410 static int o2hb_issue_node_write(struct o2hb_region *reg,
411 				 struct bio **write_bio,
412 				 struct o2hb_bio_wait_ctxt *write_wc)
413 {
414 	int status;
415 	unsigned int slot;
416 	struct bio *bio;
417 
418 	o2hb_bio_wait_init(write_wc, 1);
419 
420 	slot = o2nm_this_node();
421 
422 	bio = o2hb_setup_one_bio(reg, write_wc, slot, 1);
423 	if (IS_ERR(bio)) {
424 		status = PTR_ERR(bio);
425 		mlog_errno(status);
426 		goto bail;
427 	}
428 
429 	submit_bio(WRITE, bio);
430 
431 	*write_bio = bio;
432 	status = 0;
433 bail:
434 	return status;
435 }
436 
437 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
438 				     struct o2hb_disk_heartbeat_block *hb_block)
439 {
440 	__le32 old_cksum;
441 	u32 ret;
442 
443 	/* We want to compute the block crc with a 0 value in the
444 	 * hb_cksum field. Save it off here and replace after the
445 	 * crc. */
446 	old_cksum = hb_block->hb_cksum;
447 	hb_block->hb_cksum = 0;
448 
449 	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
450 
451 	hb_block->hb_cksum = old_cksum;
452 
453 	return ret;
454 }
455 
456 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
457 {
458 	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
459 	     "cksum = 0x%x, generation 0x%llx\n",
460 	     (long long)le64_to_cpu(hb_block->hb_seq),
461 	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
462 	     (long long)le64_to_cpu(hb_block->hb_generation));
463 }
464 
465 static int o2hb_verify_crc(struct o2hb_region *reg,
466 			   struct o2hb_disk_heartbeat_block *hb_block)
467 {
468 	u32 read, computed;
469 
470 	read = le32_to_cpu(hb_block->hb_cksum);
471 	computed = o2hb_compute_block_crc_le(reg, hb_block);
472 
473 	return read == computed;
474 }
475 
476 /* We want to make sure that nobody is heartbeating on top of us --
477  * this will help detect an invalid configuration. */
478 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
479 {
480 	int node_num, ret;
481 	struct o2hb_disk_slot *slot;
482 	struct o2hb_disk_heartbeat_block *hb_block;
483 
484 	node_num = o2nm_this_node();
485 
486 	ret = 1;
487 	slot = &reg->hr_slots[node_num];
488 	/* Don't check on our 1st timestamp */
489 	if (slot->ds_last_time) {
490 		hb_block = slot->ds_raw_block;
491 
492 		if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
493 			ret = 0;
494 	}
495 
496 	return ret;
497 }
498 
499 static inline void o2hb_prepare_block(struct o2hb_region *reg,
500 				      u64 generation)
501 {
502 	int node_num;
503 	u64 cputime;
504 	struct o2hb_disk_slot *slot;
505 	struct o2hb_disk_heartbeat_block *hb_block;
506 
507 	node_num = o2nm_this_node();
508 	slot = &reg->hr_slots[node_num];
509 
510 	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
511 	memset(hb_block, 0, reg->hr_block_bytes);
512 	/* TODO: time stuff */
513 	cputime = CURRENT_TIME.tv_sec;
514 	if (!cputime)
515 		cputime = 1;
516 
517 	hb_block->hb_seq = cpu_to_le64(cputime);
518 	hb_block->hb_node = node_num;
519 	hb_block->hb_generation = cpu_to_le64(generation);
520 
521 	/* This step must always happen last! */
522 	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
523 								   hb_block));
524 
525 	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
526 	     (long long)cpu_to_le64(generation),
527 	     le32_to_cpu(hb_block->hb_cksum));
528 }
529 
530 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
531 				struct o2nm_node *node,
532 				int idx)
533 {
534 	struct list_head *iter;
535 	struct o2hb_callback_func *f;
536 
537 	list_for_each(iter, &hbcall->list) {
538 		f = list_entry(iter, struct o2hb_callback_func, hc_item);
539 		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
540 		(f->hc_func)(node, idx, f->hc_data);
541 	}
542 }
543 
544 /* Will run the list in order until we process the passed event */
545 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
546 {
547 	int empty;
548 	struct o2hb_callback *hbcall;
549 	struct o2hb_node_event *event;
550 
551 	spin_lock(&o2hb_live_lock);
552 	empty = list_empty(&queued_event->hn_item);
553 	spin_unlock(&o2hb_live_lock);
554 	if (empty)
555 		return;
556 
557 	/* Holding callback sem assures we don't alter the callback
558 	 * lists when doing this, and serializes ourselves with other
559 	 * processes wanting callbacks. */
560 	down_write(&o2hb_callback_sem);
561 
562 	spin_lock(&o2hb_live_lock);
563 	while (!list_empty(&o2hb_node_events)
564 	       && !list_empty(&queued_event->hn_item)) {
565 		event = list_entry(o2hb_node_events.next,
566 				   struct o2hb_node_event,
567 				   hn_item);
568 		list_del_init(&event->hn_item);
569 		spin_unlock(&o2hb_live_lock);
570 
571 		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
572 		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
573 		     event->hn_node_num);
574 
575 		hbcall = hbcall_from_type(event->hn_event_type);
576 
577 		/* We should *never* have gotten on to the list with a
578 		 * bad type... This isn't something that we should try
579 		 * to recover from. */
580 		BUG_ON(IS_ERR(hbcall));
581 
582 		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
583 
584 		spin_lock(&o2hb_live_lock);
585 	}
586 	spin_unlock(&o2hb_live_lock);
587 
588 	up_write(&o2hb_callback_sem);
589 }
590 
591 static void o2hb_queue_node_event(struct o2hb_node_event *event,
592 				  enum o2hb_callback_type type,
593 				  struct o2nm_node *node,
594 				  int node_num)
595 {
596 	assert_spin_locked(&o2hb_live_lock);
597 
598 	event->hn_event_type = type;
599 	event->hn_node = node;
600 	event->hn_node_num = node_num;
601 
602 	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
603 	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
604 
605 	list_add_tail(&event->hn_item, &o2hb_node_events);
606 }
607 
608 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
609 {
610 	struct o2hb_node_event event =
611 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
612 	struct o2nm_node *node;
613 
614 	node = o2nm_get_node_by_num(slot->ds_node_num);
615 	if (!node)
616 		return;
617 
618 	spin_lock(&o2hb_live_lock);
619 	if (!list_empty(&slot->ds_live_item)) {
620 		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
621 		     slot->ds_node_num);
622 
623 		list_del_init(&slot->ds_live_item);
624 
625 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
626 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
627 
628 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
629 					      slot->ds_node_num);
630 		}
631 	}
632 	spin_unlock(&o2hb_live_lock);
633 
634 	o2hb_run_event_list(&event);
635 
636 	o2nm_node_put(node);
637 }
638 
639 static int o2hb_check_slot(struct o2hb_region *reg,
640 			   struct o2hb_disk_slot *slot)
641 {
642 	int changed = 0, gen_changed = 0;
643 	struct o2hb_node_event event =
644 		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
645 	struct o2nm_node *node;
646 	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
647 	u64 cputime;
648 
649 	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
650 
651 	/* Is this correct? Do we assume that the node doesn't exist
652 	 * if we're not configured for him? */
653 	node = o2nm_get_node_by_num(slot->ds_node_num);
654 	if (!node)
655 		return 0;
656 
657 	if (!o2hb_verify_crc(reg, hb_block)) {
658 		/* all paths from here will drop o2hb_live_lock for
659 		 * us. */
660 		spin_lock(&o2hb_live_lock);
661 
662 		/* Don't print an error on the console in this case -
663 		 * a freshly formatted heartbeat area will not have a
664 		 * crc set on it. */
665 		if (list_empty(&slot->ds_live_item))
666 			goto out;
667 
668 		/* The node is live but pushed out a bad crc. We
669 		 * consider it a transient miss but don't populate any
670 		 * other values as they may be junk. */
671 		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
672 		     slot->ds_node_num, reg->hr_dev_name);
673 		o2hb_dump_slot(hb_block);
674 
675 		slot->ds_equal_samples++;
676 		goto fire_callbacks;
677 	}
678 
679 	/* we don't care if these wrap.. the state transitions below
680 	 * clear at the right places */
681 	cputime = le64_to_cpu(hb_block->hb_seq);
682 	if (slot->ds_last_time != cputime)
683 		slot->ds_changed_samples++;
684 	else
685 		slot->ds_equal_samples++;
686 	slot->ds_last_time = cputime;
687 
688 	/* The node changed heartbeat generations. We assume this to
689 	 * mean it dropped off but came back before we timed out. We
690 	 * want to consider it down for the time being but don't want
691 	 * to lose any changed_samples state we might build up to
692 	 * considering it live again. */
693 	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
694 		gen_changed = 1;
695 		slot->ds_equal_samples = 0;
696 		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
697 		     "to 0x%llx)\n", slot->ds_node_num,
698 		     (long long)slot->ds_last_generation,
699 		     (long long)le64_to_cpu(hb_block->hb_generation));
700 	}
701 
702 	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
703 
704 	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
705 	     "seq %llu last %llu changed %u equal %u\n",
706 	     slot->ds_node_num, (long long)slot->ds_last_generation,
707 	     le32_to_cpu(hb_block->hb_cksum),
708 	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
709 	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
710 	     slot->ds_equal_samples);
711 
712 	spin_lock(&o2hb_live_lock);
713 
714 fire_callbacks:
715 	/* dead nodes only come to life after some number of
716 	 * changes at any time during their dead time */
717 	if (list_empty(&slot->ds_live_item) &&
718 	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
719 		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
720 		     slot->ds_node_num, (long long)slot->ds_last_generation);
721 
722 		/* first on the list generates a callback */
723 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
724 			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
725 
726 			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
727 					      slot->ds_node_num);
728 
729 			changed = 1;
730 		}
731 
732 		list_add_tail(&slot->ds_live_item,
733 			      &o2hb_live_slots[slot->ds_node_num]);
734 
735 		slot->ds_equal_samples = 0;
736 		goto out;
737 	}
738 
739 	/* if the list is dead, we're done.. */
740 	if (list_empty(&slot->ds_live_item))
741 		goto out;
742 
743 	/* live nodes only go dead after enough consequtive missed
744 	 * samples..  reset the missed counter whenever we see
745 	 * activity */
746 	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
747 		mlog(ML_HEARTBEAT, "Node %d left my region\n",
748 		     slot->ds_node_num);
749 
750 		/* last off the live_slot generates a callback */
751 		list_del_init(&slot->ds_live_item);
752 		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
753 			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
754 
755 			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
756 					      slot->ds_node_num);
757 
758 			changed = 1;
759 		}
760 
761 		/* We don't clear this because the node is still
762 		 * actually writing new blocks. */
763 		if (!gen_changed)
764 			slot->ds_changed_samples = 0;
765 		goto out;
766 	}
767 	if (slot->ds_changed_samples) {
768 		slot->ds_changed_samples = 0;
769 		slot->ds_equal_samples = 0;
770 	}
771 out:
772 	spin_unlock(&o2hb_live_lock);
773 
774 	o2hb_run_event_list(&event);
775 
776 	o2nm_node_put(node);
777 	return changed;
778 }
779 
780 /* This could be faster if we just implmented a find_last_bit, but I
781  * don't think the circumstances warrant it. */
782 static int o2hb_highest_node(unsigned long *nodes,
783 			     int numbits)
784 {
785 	int highest, node;
786 
787 	highest = numbits;
788 	node = -1;
789 	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
790 		if (node >= numbits)
791 			break;
792 
793 		highest = node;
794 	}
795 
796 	return highest;
797 }
798 
799 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
800 {
801 	int i, ret, highest_node, change = 0;
802 	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
803 	struct bio *write_bio;
804 	struct o2hb_bio_wait_ctxt write_wc;
805 
806 	ret = o2nm_configured_node_map(configured_nodes,
807 				       sizeof(configured_nodes));
808 	if (ret) {
809 		mlog_errno(ret);
810 		return ret;
811 	}
812 
813 	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
814 	if (highest_node >= O2NM_MAX_NODES) {
815 		mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
816 		return -EINVAL;
817 	}
818 
819 	/* No sense in reading the slots of nodes that don't exist
820 	 * yet. Of course, if the node definitions have holes in them
821 	 * then we're reading an empty slot anyway... Consider this
822 	 * best-effort. */
823 	ret = o2hb_read_slots(reg, highest_node + 1);
824 	if (ret < 0) {
825 		mlog_errno(ret);
826 		return ret;
827 	}
828 
829 	/* With an up to date view of the slots, we can check that no
830 	 * other node has been improperly configured to heartbeat in
831 	 * our slot. */
832 	if (!o2hb_check_last_timestamp(reg))
833 		mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
834 		     "in our slot!\n", reg->hr_dev_name);
835 
836 	/* fill in the proper info for our next heartbeat */
837 	o2hb_prepare_block(reg, reg->hr_generation);
838 
839 	/* And fire off the write. Note that we don't wait on this I/O
840 	 * until later. */
841 	ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
842 	if (ret < 0) {
843 		mlog_errno(ret);
844 		return ret;
845 	}
846 
847 	i = -1;
848 	while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
849 
850 		change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
851 	}
852 
853 	/*
854 	 * We have to be sure we've advertised ourselves on disk
855 	 * before we can go to steady state.  This ensures that
856 	 * people we find in our steady state have seen us.
857 	 */
858 	o2hb_wait_on_io(reg, &write_wc);
859 	bio_put(write_bio);
860 	if (write_wc.wc_error) {
861 		/* Do not re-arm the write timeout on I/O error - we
862 		 * can't be sure that the new block ever made it to
863 		 * disk */
864 		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
865 		     write_wc.wc_error, reg->hr_dev_name);
866 		return write_wc.wc_error;
867 	}
868 
869 	o2hb_arm_write_timeout(reg);
870 
871 	/* let the person who launched us know when things are steady */
872 	if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
873 		if (atomic_dec_and_test(&reg->hr_steady_iterations))
874 			wake_up(&o2hb_steady_queue);
875 	}
876 
877 	return 0;
878 }
879 
880 /* Subtract b from a, storing the result in a. a *must* have a larger
881  * value than b. */
882 static void o2hb_tv_subtract(struct timeval *a,
883 			     struct timeval *b)
884 {
885 	/* just return 0 when a is after b */
886 	if (a->tv_sec < b->tv_sec ||
887 	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
888 		a->tv_sec = 0;
889 		a->tv_usec = 0;
890 		return;
891 	}
892 
893 	a->tv_sec -= b->tv_sec;
894 	a->tv_usec -= b->tv_usec;
895 	while ( a->tv_usec < 0 ) {
896 		a->tv_sec--;
897 		a->tv_usec += 1000000;
898 	}
899 }
900 
901 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
902 				       struct timeval *end)
903 {
904 	struct timeval res = *end;
905 
906 	o2hb_tv_subtract(&res, start);
907 
908 	return res.tv_sec * 1000 + res.tv_usec / 1000;
909 }
910 
911 /*
912  * we ride the region ref that the region dir holds.  before the region
913  * dir is removed and drops it ref it will wait to tear down this
914  * thread.
915  */
916 static int o2hb_thread(void *data)
917 {
918 	int i, ret;
919 	struct o2hb_region *reg = data;
920 	struct bio *write_bio;
921 	struct o2hb_bio_wait_ctxt write_wc;
922 	struct timeval before_hb, after_hb;
923 	unsigned int elapsed_msec;
924 
925 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
926 
927 	set_user_nice(current, -20);
928 
929 	while (!kthread_should_stop() && !reg->hr_unclean_stop) {
930 		/* We track the time spent inside
931 		 * o2hb_do_disk_heartbeat so that we avoid more then
932 		 * hr_timeout_ms between disk writes. On busy systems
933 		 * this should result in a heartbeat which is less
934 		 * likely to time itself out. */
935 		do_gettimeofday(&before_hb);
936 
937 		i = 0;
938 		do {
939 			ret = o2hb_do_disk_heartbeat(reg);
940 		} while (ret && ++i < 2);
941 
942 		do_gettimeofday(&after_hb);
943 		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
944 
945 		mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
946 		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
947 		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
948 		     elapsed_msec);
949 
950 		if (elapsed_msec < reg->hr_timeout_ms) {
951 			/* the kthread api has blocked signals for us so no
952 			 * need to record the return value. */
953 			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
954 		}
955 	}
956 
957 	o2hb_disarm_write_timeout(reg);
958 
959 	/* unclean stop is only used in very bad situation */
960 	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
961 		o2hb_shutdown_slot(&reg->hr_slots[i]);
962 
963 	/* Explicit down notification - avoid forcing the other nodes
964 	 * to timeout on this region when we could just as easily
965 	 * write a clear generation - thus indicating to them that
966 	 * this node has left this region.
967 	 *
968 	 * XXX: Should we skip this on unclean_stop? */
969 	o2hb_prepare_block(reg, 0);
970 	ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
971 	if (ret == 0) {
972 		o2hb_wait_on_io(reg, &write_wc);
973 		bio_put(write_bio);
974 	} else {
975 		mlog_errno(ret);
976 	}
977 
978 	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
979 
980 	return 0;
981 }
982 
983 void o2hb_init(void)
984 {
985 	int i;
986 
987 	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
988 		INIT_LIST_HEAD(&o2hb_callbacks[i].list);
989 
990 	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
991 		INIT_LIST_HEAD(&o2hb_live_slots[i]);
992 
993 	INIT_LIST_HEAD(&o2hb_node_events);
994 
995 	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
996 }
997 
998 /* if we're already in a callback then we're already serialized by the sem */
999 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1000 					     unsigned bytes)
1001 {
1002 	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1003 
1004 	memcpy(map, &o2hb_live_node_bitmap, bytes);
1005 }
1006 
1007 /*
1008  * get a map of all nodes that are heartbeating in any regions
1009  */
1010 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1011 {
1012 	/* callers want to serialize this map and callbacks so that they
1013 	 * can trust that they don't miss nodes coming to the party */
1014 	down_read(&o2hb_callback_sem);
1015 	spin_lock(&o2hb_live_lock);
1016 	o2hb_fill_node_map_from_callback(map, bytes);
1017 	spin_unlock(&o2hb_live_lock);
1018 	up_read(&o2hb_callback_sem);
1019 }
1020 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1021 
1022 /*
1023  * heartbeat configfs bits.  The heartbeat set is a default set under
1024  * the cluster set in nodemanager.c.
1025  */
1026 
1027 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1028 {
1029 	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1030 }
1031 
1032 /* drop_item only drops its ref after killing the thread, nothing should
1033  * be using the region anymore.  this has to clean up any state that
1034  * attributes might have built up. */
1035 static void o2hb_region_release(struct config_item *item)
1036 {
1037 	int i;
1038 	struct page *page;
1039 	struct o2hb_region *reg = to_o2hb_region(item);
1040 
1041 	if (reg->hr_tmp_block)
1042 		kfree(reg->hr_tmp_block);
1043 
1044 	if (reg->hr_slot_data) {
1045 		for (i = 0; i < reg->hr_num_pages; i++) {
1046 			page = reg->hr_slot_data[i];
1047 			if (page)
1048 				__free_page(page);
1049 		}
1050 		kfree(reg->hr_slot_data);
1051 	}
1052 
1053 	if (reg->hr_bdev)
1054 		blkdev_put(reg->hr_bdev);
1055 
1056 	if (reg->hr_slots)
1057 		kfree(reg->hr_slots);
1058 
1059 	spin_lock(&o2hb_live_lock);
1060 	list_del(&reg->hr_all_item);
1061 	spin_unlock(&o2hb_live_lock);
1062 
1063 	kfree(reg);
1064 }
1065 
1066 static int o2hb_read_block_input(struct o2hb_region *reg,
1067 				 const char *page,
1068 				 size_t count,
1069 				 unsigned long *ret_bytes,
1070 				 unsigned int *ret_bits)
1071 {
1072 	unsigned long bytes;
1073 	char *p = (char *)page;
1074 
1075 	bytes = simple_strtoul(p, &p, 0);
1076 	if (!p || (*p && (*p != '\n')))
1077 		return -EINVAL;
1078 
1079 	/* Heartbeat and fs min / max block sizes are the same. */
1080 	if (bytes > 4096 || bytes < 512)
1081 		return -ERANGE;
1082 	if (hweight16(bytes) != 1)
1083 		return -EINVAL;
1084 
1085 	if (ret_bytes)
1086 		*ret_bytes = bytes;
1087 	if (ret_bits)
1088 		*ret_bits = ffs(bytes) - 1;
1089 
1090 	return 0;
1091 }
1092 
1093 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1094 					    char *page)
1095 {
1096 	return sprintf(page, "%u\n", reg->hr_block_bytes);
1097 }
1098 
1099 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1100 					     const char *page,
1101 					     size_t count)
1102 {
1103 	int status;
1104 	unsigned long block_bytes;
1105 	unsigned int block_bits;
1106 
1107 	if (reg->hr_bdev)
1108 		return -EINVAL;
1109 
1110 	status = o2hb_read_block_input(reg, page, count,
1111 				       &block_bytes, &block_bits);
1112 	if (status)
1113 		return status;
1114 
1115 	reg->hr_block_bytes = (unsigned int)block_bytes;
1116 	reg->hr_block_bits = block_bits;
1117 
1118 	return count;
1119 }
1120 
1121 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1122 					    char *page)
1123 {
1124 	return sprintf(page, "%llu\n", reg->hr_start_block);
1125 }
1126 
1127 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1128 					     const char *page,
1129 					     size_t count)
1130 {
1131 	unsigned long long tmp;
1132 	char *p = (char *)page;
1133 
1134 	if (reg->hr_bdev)
1135 		return -EINVAL;
1136 
1137 	tmp = simple_strtoull(p, &p, 0);
1138 	if (!p || (*p && (*p != '\n')))
1139 		return -EINVAL;
1140 
1141 	reg->hr_start_block = tmp;
1142 
1143 	return count;
1144 }
1145 
1146 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1147 				       char *page)
1148 {
1149 	return sprintf(page, "%d\n", reg->hr_blocks);
1150 }
1151 
1152 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1153 					const char *page,
1154 					size_t count)
1155 {
1156 	unsigned long tmp;
1157 	char *p = (char *)page;
1158 
1159 	if (reg->hr_bdev)
1160 		return -EINVAL;
1161 
1162 	tmp = simple_strtoul(p, &p, 0);
1163 	if (!p || (*p && (*p != '\n')))
1164 		return -EINVAL;
1165 
1166 	if (tmp > O2NM_MAX_NODES || tmp == 0)
1167 		return -ERANGE;
1168 
1169 	reg->hr_blocks = (unsigned int)tmp;
1170 
1171 	return count;
1172 }
1173 
1174 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1175 				    char *page)
1176 {
1177 	unsigned int ret = 0;
1178 
1179 	if (reg->hr_bdev)
1180 		ret = sprintf(page, "%s\n", reg->hr_dev_name);
1181 
1182 	return ret;
1183 }
1184 
1185 static void o2hb_init_region_params(struct o2hb_region *reg)
1186 {
1187 	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1188 	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1189 
1190 	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1191 	     reg->hr_start_block, reg->hr_blocks);
1192 	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1193 	     reg->hr_block_bytes, reg->hr_block_bits);
1194 	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1195 	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1196 }
1197 
1198 static int o2hb_map_slot_data(struct o2hb_region *reg)
1199 {
1200 	int i, j;
1201 	unsigned int last_slot;
1202 	unsigned int spp = reg->hr_slots_per_page;
1203 	struct page *page;
1204 	char *raw;
1205 	struct o2hb_disk_slot *slot;
1206 
1207 	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1208 	if (reg->hr_tmp_block == NULL) {
1209 		mlog_errno(-ENOMEM);
1210 		return -ENOMEM;
1211 	}
1212 
1213 	reg->hr_slots = kcalloc(reg->hr_blocks,
1214 				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1215 	if (reg->hr_slots == NULL) {
1216 		mlog_errno(-ENOMEM);
1217 		return -ENOMEM;
1218 	}
1219 
1220 	for(i = 0; i < reg->hr_blocks; i++) {
1221 		slot = &reg->hr_slots[i];
1222 		slot->ds_node_num = i;
1223 		INIT_LIST_HEAD(&slot->ds_live_item);
1224 		slot->ds_raw_block = NULL;
1225 	}
1226 
1227 	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1228 	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1229 			   "at %u blocks per page\n",
1230 	     reg->hr_num_pages, reg->hr_blocks, spp);
1231 
1232 	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1233 				    GFP_KERNEL);
1234 	if (!reg->hr_slot_data) {
1235 		mlog_errno(-ENOMEM);
1236 		return -ENOMEM;
1237 	}
1238 
1239 	for(i = 0; i < reg->hr_num_pages; i++) {
1240 		page = alloc_page(GFP_KERNEL);
1241 		if (!page) {
1242 			mlog_errno(-ENOMEM);
1243 			return -ENOMEM;
1244 		}
1245 
1246 		reg->hr_slot_data[i] = page;
1247 
1248 		last_slot = i * spp;
1249 		raw = page_address(page);
1250 		for (j = 0;
1251 		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
1252 		     j++) {
1253 			BUG_ON((j + last_slot) >= reg->hr_blocks);
1254 
1255 			slot = &reg->hr_slots[j + last_slot];
1256 			slot->ds_raw_block =
1257 				(struct o2hb_disk_heartbeat_block *) raw;
1258 
1259 			raw += reg->hr_block_bytes;
1260 		}
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /* Read in all the slots available and populate the tracking
1267  * structures so that we can start with a baseline idea of what's
1268  * there. */
1269 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1270 {
1271 	int ret, i;
1272 	struct o2hb_disk_slot *slot;
1273 	struct o2hb_disk_heartbeat_block *hb_block;
1274 
1275 	mlog_entry_void();
1276 
1277 	ret = o2hb_read_slots(reg, reg->hr_blocks);
1278 	if (ret) {
1279 		mlog_errno(ret);
1280 		goto out;
1281 	}
1282 
1283 	/* We only want to get an idea of the values initially in each
1284 	 * slot, so we do no verification - o2hb_check_slot will
1285 	 * actually determine if each configured slot is valid and
1286 	 * whether any values have changed. */
1287 	for(i = 0; i < reg->hr_blocks; i++) {
1288 		slot = &reg->hr_slots[i];
1289 		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1290 
1291 		/* Only fill the values that o2hb_check_slot uses to
1292 		 * determine changing slots */
1293 		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1294 		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1295 	}
1296 
1297 out:
1298 	mlog_exit(ret);
1299 	return ret;
1300 }
1301 
1302 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1303 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1304 				     const char *page,
1305 				     size_t count)
1306 {
1307 	long fd;
1308 	int sectsize;
1309 	char *p = (char *)page;
1310 	struct file *filp = NULL;
1311 	struct inode *inode = NULL;
1312 	ssize_t ret = -EINVAL;
1313 
1314 	if (reg->hr_bdev)
1315 		goto out;
1316 
1317 	/* We can't heartbeat without having had our node number
1318 	 * configured yet. */
1319 	if (o2nm_this_node() == O2NM_MAX_NODES)
1320 		goto out;
1321 
1322 	fd = simple_strtol(p, &p, 0);
1323 	if (!p || (*p && (*p != '\n')))
1324 		goto out;
1325 
1326 	if (fd < 0 || fd >= INT_MAX)
1327 		goto out;
1328 
1329 	filp = fget(fd);
1330 	if (filp == NULL)
1331 		goto out;
1332 
1333 	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1334 	    reg->hr_block_bytes == 0)
1335 		goto out;
1336 
1337 	inode = igrab(filp->f_mapping->host);
1338 	if (inode == NULL)
1339 		goto out;
1340 
1341 	if (!S_ISBLK(inode->i_mode))
1342 		goto out;
1343 
1344 	reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1345 	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1346 	if (ret) {
1347 		reg->hr_bdev = NULL;
1348 		goto out;
1349 	}
1350 	inode = NULL;
1351 
1352 	bdevname(reg->hr_bdev, reg->hr_dev_name);
1353 
1354 	sectsize = bdev_hardsect_size(reg->hr_bdev);
1355 	if (sectsize != reg->hr_block_bytes) {
1356 		mlog(ML_ERROR,
1357 		     "blocksize %u incorrect for device, expected %d",
1358 		     reg->hr_block_bytes, sectsize);
1359 		ret = -EINVAL;
1360 		goto out;
1361 	}
1362 
1363 	o2hb_init_region_params(reg);
1364 
1365 	/* Generation of zero is invalid */
1366 	do {
1367 		get_random_bytes(&reg->hr_generation,
1368 				 sizeof(reg->hr_generation));
1369 	} while (reg->hr_generation == 0);
1370 
1371 	ret = o2hb_map_slot_data(reg);
1372 	if (ret) {
1373 		mlog_errno(ret);
1374 		goto out;
1375 	}
1376 
1377 	ret = o2hb_populate_slot_data(reg);
1378 	if (ret) {
1379 		mlog_errno(ret);
1380 		goto out;
1381 	}
1382 
1383 	INIT_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout, reg);
1384 
1385 	/*
1386 	 * A node is considered live after it has beat LIVE_THRESHOLD
1387 	 * times.  We're not steady until we've given them a chance
1388 	 * _after_ our first read.
1389 	 */
1390 	atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1391 
1392 	reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1393 				   reg->hr_item.ci_name);
1394 	if (IS_ERR(reg->hr_task)) {
1395 		ret = PTR_ERR(reg->hr_task);
1396 		mlog_errno(ret);
1397 		reg->hr_task = NULL;
1398 		goto out;
1399 	}
1400 
1401 	ret = wait_event_interruptible(o2hb_steady_queue,
1402 				atomic_read(&reg->hr_steady_iterations) == 0);
1403 	if (ret) {
1404 		kthread_stop(reg->hr_task);
1405 		reg->hr_task = NULL;
1406 		goto out;
1407 	}
1408 
1409 	ret = count;
1410 out:
1411 	if (filp)
1412 		fput(filp);
1413 	if (inode)
1414 		iput(inode);
1415 	if (ret < 0) {
1416 		if (reg->hr_bdev) {
1417 			blkdev_put(reg->hr_bdev);
1418 			reg->hr_bdev = NULL;
1419 		}
1420 	}
1421 	return ret;
1422 }
1423 
1424 struct o2hb_region_attribute {
1425 	struct configfs_attribute attr;
1426 	ssize_t (*show)(struct o2hb_region *, char *);
1427 	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1428 };
1429 
1430 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1431 	.attr	= { .ca_owner = THIS_MODULE,
1432 		    .ca_name = "block_bytes",
1433 		    .ca_mode = S_IRUGO | S_IWUSR },
1434 	.show	= o2hb_region_block_bytes_read,
1435 	.store	= o2hb_region_block_bytes_write,
1436 };
1437 
1438 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1439 	.attr	= { .ca_owner = THIS_MODULE,
1440 		    .ca_name = "start_block",
1441 		    .ca_mode = S_IRUGO | S_IWUSR },
1442 	.show	= o2hb_region_start_block_read,
1443 	.store	= o2hb_region_start_block_write,
1444 };
1445 
1446 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1447 	.attr	= { .ca_owner = THIS_MODULE,
1448 		    .ca_name = "blocks",
1449 		    .ca_mode = S_IRUGO | S_IWUSR },
1450 	.show	= o2hb_region_blocks_read,
1451 	.store	= o2hb_region_blocks_write,
1452 };
1453 
1454 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1455 	.attr	= { .ca_owner = THIS_MODULE,
1456 		    .ca_name = "dev",
1457 		    .ca_mode = S_IRUGO | S_IWUSR },
1458 	.show	= o2hb_region_dev_read,
1459 	.store	= o2hb_region_dev_write,
1460 };
1461 
1462 static struct configfs_attribute *o2hb_region_attrs[] = {
1463 	&o2hb_region_attr_block_bytes.attr,
1464 	&o2hb_region_attr_start_block.attr,
1465 	&o2hb_region_attr_blocks.attr,
1466 	&o2hb_region_attr_dev.attr,
1467 	NULL,
1468 };
1469 
1470 static ssize_t o2hb_region_show(struct config_item *item,
1471 				struct configfs_attribute *attr,
1472 				char *page)
1473 {
1474 	struct o2hb_region *reg = to_o2hb_region(item);
1475 	struct o2hb_region_attribute *o2hb_region_attr =
1476 		container_of(attr, struct o2hb_region_attribute, attr);
1477 	ssize_t ret = 0;
1478 
1479 	if (o2hb_region_attr->show)
1480 		ret = o2hb_region_attr->show(reg, page);
1481 	return ret;
1482 }
1483 
1484 static ssize_t o2hb_region_store(struct config_item *item,
1485 				 struct configfs_attribute *attr,
1486 				 const char *page, size_t count)
1487 {
1488 	struct o2hb_region *reg = to_o2hb_region(item);
1489 	struct o2hb_region_attribute *o2hb_region_attr =
1490 		container_of(attr, struct o2hb_region_attribute, attr);
1491 	ssize_t ret = -EINVAL;
1492 
1493 	if (o2hb_region_attr->store)
1494 		ret = o2hb_region_attr->store(reg, page, count);
1495 	return ret;
1496 }
1497 
1498 static struct configfs_item_operations o2hb_region_item_ops = {
1499 	.release		= o2hb_region_release,
1500 	.show_attribute		= o2hb_region_show,
1501 	.store_attribute	= o2hb_region_store,
1502 };
1503 
1504 static struct config_item_type o2hb_region_type = {
1505 	.ct_item_ops	= &o2hb_region_item_ops,
1506 	.ct_attrs	= o2hb_region_attrs,
1507 	.ct_owner	= THIS_MODULE,
1508 };
1509 
1510 /* heartbeat set */
1511 
1512 struct o2hb_heartbeat_group {
1513 	struct config_group hs_group;
1514 	/* some stuff? */
1515 };
1516 
1517 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1518 {
1519 	return group ?
1520 		container_of(group, struct o2hb_heartbeat_group, hs_group)
1521 		: NULL;
1522 }
1523 
1524 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1525 							  const char *name)
1526 {
1527 	struct o2hb_region *reg = NULL;
1528 	struct config_item *ret = NULL;
1529 
1530 	reg = kcalloc(1, sizeof(struct o2hb_region), GFP_KERNEL);
1531 	if (reg == NULL)
1532 		goto out; /* ENOMEM */
1533 
1534 	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1535 
1536 	ret = &reg->hr_item;
1537 
1538 	spin_lock(&o2hb_live_lock);
1539 	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1540 	spin_unlock(&o2hb_live_lock);
1541 out:
1542 	if (ret == NULL)
1543 		kfree(reg);
1544 
1545 	return ret;
1546 }
1547 
1548 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1549 					   struct config_item *item)
1550 {
1551 	struct o2hb_region *reg = to_o2hb_region(item);
1552 
1553 	/* stop the thread when the user removes the region dir */
1554 	if (reg->hr_task) {
1555 		kthread_stop(reg->hr_task);
1556 		reg->hr_task = NULL;
1557 	}
1558 
1559 	config_item_put(item);
1560 }
1561 
1562 struct o2hb_heartbeat_group_attribute {
1563 	struct configfs_attribute attr;
1564 	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1565 	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1566 };
1567 
1568 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1569 					 struct configfs_attribute *attr,
1570 					 char *page)
1571 {
1572 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1573 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1574 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1575 	ssize_t ret = 0;
1576 
1577 	if (o2hb_heartbeat_group_attr->show)
1578 		ret = o2hb_heartbeat_group_attr->show(reg, page);
1579 	return ret;
1580 }
1581 
1582 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1583 					  struct configfs_attribute *attr,
1584 					  const char *page, size_t count)
1585 {
1586 	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1587 	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1588 		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1589 	ssize_t ret = -EINVAL;
1590 
1591 	if (o2hb_heartbeat_group_attr->store)
1592 		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1593 	return ret;
1594 }
1595 
1596 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1597 						     char *page)
1598 {
1599 	return sprintf(page, "%u\n", o2hb_dead_threshold);
1600 }
1601 
1602 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1603 						    const char *page,
1604 						    size_t count)
1605 {
1606 	unsigned long tmp;
1607 	char *p = (char *)page;
1608 
1609 	tmp = simple_strtoul(p, &p, 10);
1610 	if (!p || (*p && (*p != '\n')))
1611                 return -EINVAL;
1612 
1613 	/* this will validate ranges for us. */
1614 	o2hb_dead_threshold_set((unsigned int) tmp);
1615 
1616 	return count;
1617 }
1618 
1619 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1620 	.attr	= { .ca_owner = THIS_MODULE,
1621 		    .ca_name = "dead_threshold",
1622 		    .ca_mode = S_IRUGO | S_IWUSR },
1623 	.show	= o2hb_heartbeat_group_threshold_show,
1624 	.store	= o2hb_heartbeat_group_threshold_store,
1625 };
1626 
1627 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1628 	&o2hb_heartbeat_group_attr_threshold.attr,
1629 	NULL,
1630 };
1631 
1632 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1633 	.show_attribute		= o2hb_heartbeat_group_show,
1634 	.store_attribute	= o2hb_heartbeat_group_store,
1635 };
1636 
1637 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1638 	.make_item	= o2hb_heartbeat_group_make_item,
1639 	.drop_item	= o2hb_heartbeat_group_drop_item,
1640 };
1641 
1642 static struct config_item_type o2hb_heartbeat_group_type = {
1643 	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
1644 	.ct_item_ops	= &o2hb_hearbeat_group_item_ops,
1645 	.ct_attrs	= o2hb_heartbeat_group_attrs,
1646 	.ct_owner	= THIS_MODULE,
1647 };
1648 
1649 /* this is just here to avoid touching group in heartbeat.h which the
1650  * entire damn world #includes */
1651 struct config_group *o2hb_alloc_hb_set(void)
1652 {
1653 	struct o2hb_heartbeat_group *hs = NULL;
1654 	struct config_group *ret = NULL;
1655 
1656 	hs = kcalloc(1, sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1657 	if (hs == NULL)
1658 		goto out;
1659 
1660 	config_group_init_type_name(&hs->hs_group, "heartbeat",
1661 				    &o2hb_heartbeat_group_type);
1662 
1663 	ret = &hs->hs_group;
1664 out:
1665 	if (ret == NULL)
1666 		kfree(hs);
1667 	return ret;
1668 }
1669 
1670 void o2hb_free_hb_set(struct config_group *group)
1671 {
1672 	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1673 	kfree(hs);
1674 }
1675 
1676 /* hb callback registration and issueing */
1677 
1678 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1679 {
1680 	if (type == O2HB_NUM_CB)
1681 		return ERR_PTR(-EINVAL);
1682 
1683 	return &o2hb_callbacks[type];
1684 }
1685 
1686 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1687 			 enum o2hb_callback_type type,
1688 			 o2hb_cb_func *func,
1689 			 void *data,
1690 			 int priority)
1691 {
1692 	INIT_LIST_HEAD(&hc->hc_item);
1693 	hc->hc_func = func;
1694 	hc->hc_data = data;
1695 	hc->hc_priority = priority;
1696 	hc->hc_type = type;
1697 	hc->hc_magic = O2HB_CB_MAGIC;
1698 }
1699 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1700 
1701 int o2hb_register_callback(struct o2hb_callback_func *hc)
1702 {
1703 	struct o2hb_callback_func *tmp;
1704 	struct list_head *iter;
1705 	struct o2hb_callback *hbcall;
1706 	int ret;
1707 
1708 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1709 	BUG_ON(!list_empty(&hc->hc_item));
1710 
1711 	hbcall = hbcall_from_type(hc->hc_type);
1712 	if (IS_ERR(hbcall)) {
1713 		ret = PTR_ERR(hbcall);
1714 		goto out;
1715 	}
1716 
1717 	down_write(&o2hb_callback_sem);
1718 
1719 	list_for_each(iter, &hbcall->list) {
1720 		tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1721 		if (hc->hc_priority < tmp->hc_priority) {
1722 			list_add_tail(&hc->hc_item, iter);
1723 			break;
1724 		}
1725 	}
1726 	if (list_empty(&hc->hc_item))
1727 		list_add_tail(&hc->hc_item, &hbcall->list);
1728 
1729 	up_write(&o2hb_callback_sem);
1730 	ret = 0;
1731 out:
1732 	mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1733 	     ret, __builtin_return_address(0), hc);
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1737 
1738 int o2hb_unregister_callback(struct o2hb_callback_func *hc)
1739 {
1740 	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1741 
1742 	mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1743 	     __builtin_return_address(0), hc);
1744 
1745 	if (list_empty(&hc->hc_item))
1746 		return 0;
1747 
1748 	down_write(&o2hb_callback_sem);
1749 
1750 	list_del_init(&hc->hc_item);
1751 
1752 	up_write(&o2hb_callback_sem);
1753 
1754 	return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1757 
1758 int o2hb_check_node_heartbeating(u8 node_num)
1759 {
1760 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1761 
1762 	o2hb_fill_node_map(testing_map, sizeof(testing_map));
1763 	if (!test_bit(node_num, testing_map)) {
1764 		mlog(ML_HEARTBEAT,
1765 		     "node (%u) does not have heartbeating enabled.\n",
1766 		     node_num);
1767 		return 0;
1768 	}
1769 
1770 	return 1;
1771 }
1772 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1773 
1774 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1775 {
1776 	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1777 
1778 	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1779 	if (!test_bit(node_num, testing_map)) {
1780 		mlog(ML_HEARTBEAT,
1781 		     "node (%u) does not have heartbeating enabled.\n",
1782 		     node_num);
1783 		return 0;
1784 	}
1785 
1786 	return 1;
1787 }
1788 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1789 
1790 /* Makes sure our local node is configured with a node number, and is
1791  * heartbeating. */
1792 int o2hb_check_local_node_heartbeating(void)
1793 {
1794 	u8 node_num;
1795 
1796 	/* if this node was set then we have networking */
1797 	node_num = o2nm_this_node();
1798 	if (node_num == O2NM_MAX_NODES) {
1799 		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1800 		return 0;
1801 	}
1802 
1803 	return o2hb_check_node_heartbeating(node_num);
1804 }
1805 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1806 
1807 /*
1808  * this is just a hack until we get the plumbing which flips file systems
1809  * read only and drops the hb ref instead of killing the node dead.
1810  */
1811 void o2hb_stop_all_regions(void)
1812 {
1813 	struct o2hb_region *reg;
1814 
1815 	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1816 
1817 	spin_lock(&o2hb_live_lock);
1818 
1819 	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1820 		reg->hr_unclean_stop = 1;
1821 
1822 	spin_unlock(&o2hb_live_lock);
1823 }
1824 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
1825