1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2004, 2005 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/jiffies.h> 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/bio.h> 28 #include <linux/blkdev.h> 29 #include <linux/delay.h> 30 #include <linux/file.h> 31 #include <linux/kthread.h> 32 #include <linux/configfs.h> 33 #include <linux/random.h> 34 #include <linux/crc32.h> 35 #include <linux/time.h> 36 37 #include "heartbeat.h" 38 #include "tcp.h" 39 #include "nodemanager.h" 40 #include "quorum.h" 41 42 #include "masklog.h" 43 44 45 /* 46 * The first heartbeat pass had one global thread that would serialize all hb 47 * callback calls. This global serializing sem should only be removed once 48 * we've made sure that all callees can deal with being called concurrently 49 * from multiple hb region threads. 50 */ 51 static DECLARE_RWSEM(o2hb_callback_sem); 52 53 /* 54 * multiple hb threads are watching multiple regions. A node is live 55 * whenever any of the threads sees activity from the node in its region. 56 */ 57 static spinlock_t o2hb_live_lock = SPIN_LOCK_UNLOCKED; 58 static struct list_head o2hb_live_slots[O2NM_MAX_NODES]; 59 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)]; 60 static LIST_HEAD(o2hb_node_events); 61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue); 62 63 static LIST_HEAD(o2hb_all_regions); 64 65 static struct o2hb_callback { 66 struct list_head list; 67 } o2hb_callbacks[O2HB_NUM_CB]; 68 69 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type); 70 71 #define O2HB_DEFAULT_BLOCK_BITS 9 72 73 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD; 74 75 /* Only sets a new threshold if there are no active regions. 76 * 77 * No locking or otherwise interesting code is required for reading 78 * o2hb_dead_threshold as it can't change once regions are active and 79 * it's not interesting to anyone until then anyway. */ 80 static void o2hb_dead_threshold_set(unsigned int threshold) 81 { 82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) { 83 spin_lock(&o2hb_live_lock); 84 if (list_empty(&o2hb_all_regions)) 85 o2hb_dead_threshold = threshold; 86 spin_unlock(&o2hb_live_lock); 87 } 88 } 89 90 struct o2hb_node_event { 91 struct list_head hn_item; 92 enum o2hb_callback_type hn_event_type; 93 struct o2nm_node *hn_node; 94 int hn_node_num; 95 }; 96 97 struct o2hb_disk_slot { 98 struct o2hb_disk_heartbeat_block *ds_raw_block; 99 u8 ds_node_num; 100 u64 ds_last_time; 101 u64 ds_last_generation; 102 u16 ds_equal_samples; 103 u16 ds_changed_samples; 104 struct list_head ds_live_item; 105 }; 106 107 /* each thread owns a region.. when we're asked to tear down the region 108 * we ask the thread to stop, who cleans up the region */ 109 struct o2hb_region { 110 struct config_item hr_item; 111 112 struct list_head hr_all_item; 113 unsigned hr_unclean_stop:1; 114 115 /* protected by the hr_callback_sem */ 116 struct task_struct *hr_task; 117 118 unsigned int hr_blocks; 119 unsigned long long hr_start_block; 120 121 unsigned int hr_block_bits; 122 unsigned int hr_block_bytes; 123 124 unsigned int hr_slots_per_page; 125 unsigned int hr_num_pages; 126 127 struct page **hr_slot_data; 128 struct block_device *hr_bdev; 129 struct o2hb_disk_slot *hr_slots; 130 131 /* let the person setting up hb wait for it to return until it 132 * has reached a 'steady' state. This will be fixed when we have 133 * a more complete api that doesn't lead to this sort of fragility. */ 134 atomic_t hr_steady_iterations; 135 136 char hr_dev_name[BDEVNAME_SIZE]; 137 138 unsigned int hr_timeout_ms; 139 140 /* randomized as the region goes up and down so that a node 141 * recognizes a node going up and down in one iteration */ 142 u64 hr_generation; 143 144 struct work_struct hr_write_timeout_work; 145 unsigned long hr_last_timeout_start; 146 147 /* Used during o2hb_check_slot to hold a copy of the block 148 * being checked because we temporarily have to zero out the 149 * crc field. */ 150 struct o2hb_disk_heartbeat_block *hr_tmp_block; 151 }; 152 153 struct o2hb_bio_wait_ctxt { 154 atomic_t wc_num_reqs; 155 struct completion wc_io_complete; 156 int wc_error; 157 }; 158 159 static void o2hb_write_timeout(void *arg) 160 { 161 struct o2hb_region *reg = arg; 162 163 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u " 164 "milliseconds\n", reg->hr_dev_name, 165 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start)); 166 o2quo_disk_timeout(); 167 } 168 169 static void o2hb_arm_write_timeout(struct o2hb_region *reg) 170 { 171 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS); 172 173 cancel_delayed_work(®->hr_write_timeout_work); 174 reg->hr_last_timeout_start = jiffies; 175 schedule_delayed_work(®->hr_write_timeout_work, 176 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS)); 177 } 178 179 static void o2hb_disarm_write_timeout(struct o2hb_region *reg) 180 { 181 cancel_delayed_work(®->hr_write_timeout_work); 182 flush_scheduled_work(); 183 } 184 185 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc, 186 unsigned int num_ios) 187 { 188 atomic_set(&wc->wc_num_reqs, num_ios); 189 init_completion(&wc->wc_io_complete); 190 wc->wc_error = 0; 191 } 192 193 /* Used in error paths too */ 194 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc, 195 unsigned int num) 196 { 197 /* sadly atomic_sub_and_test() isn't available on all platforms. The 198 * good news is that the fast path only completes one at a time */ 199 while(num--) { 200 if (atomic_dec_and_test(&wc->wc_num_reqs)) { 201 BUG_ON(num > 0); 202 complete(&wc->wc_io_complete); 203 } 204 } 205 } 206 207 static void o2hb_wait_on_io(struct o2hb_region *reg, 208 struct o2hb_bio_wait_ctxt *wc) 209 { 210 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping; 211 212 blk_run_address_space(mapping); 213 214 wait_for_completion(&wc->wc_io_complete); 215 } 216 217 static int o2hb_bio_end_io(struct bio *bio, 218 unsigned int bytes_done, 219 int error) 220 { 221 struct o2hb_bio_wait_ctxt *wc = bio->bi_private; 222 223 if (error) { 224 mlog(ML_ERROR, "IO Error %d\n", error); 225 wc->wc_error = error; 226 } 227 228 if (bio->bi_size) 229 return 1; 230 231 o2hb_bio_wait_dec(wc, 1); 232 return 0; 233 } 234 235 /* Setup a Bio to cover I/O against num_slots slots starting at 236 * start_slot. */ 237 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg, 238 struct o2hb_bio_wait_ctxt *wc, 239 unsigned int start_slot, 240 unsigned int num_slots) 241 { 242 int i, nr_vecs, len, first_page, last_page; 243 unsigned int vec_len, vec_start; 244 unsigned int bits = reg->hr_block_bits; 245 unsigned int spp = reg->hr_slots_per_page; 246 struct bio *bio; 247 struct page *page; 248 249 nr_vecs = (num_slots + spp - 1) / spp; 250 251 /* Testing has shown this allocation to take long enough under 252 * GFP_KERNEL that the local node can get fenced. It would be 253 * nicest if we could pre-allocate these bios and avoid this 254 * all together. */ 255 bio = bio_alloc(GFP_ATOMIC, nr_vecs); 256 if (!bio) { 257 mlog(ML_ERROR, "Could not alloc slots BIO!\n"); 258 bio = ERR_PTR(-ENOMEM); 259 goto bail; 260 } 261 262 /* Must put everything in 512 byte sectors for the bio... */ 263 bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9); 264 bio->bi_bdev = reg->hr_bdev; 265 bio->bi_private = wc; 266 bio->bi_end_io = o2hb_bio_end_io; 267 268 first_page = start_slot / spp; 269 last_page = first_page + nr_vecs; 270 vec_start = (start_slot << bits) % PAGE_CACHE_SIZE; 271 for(i = first_page; i < last_page; i++) { 272 page = reg->hr_slot_data[i]; 273 274 vec_len = PAGE_CACHE_SIZE; 275 /* last page might be short */ 276 if (((i + 1) * spp) > (start_slot + num_slots)) 277 vec_len = ((num_slots + start_slot) % spp) << bits; 278 vec_len -= vec_start; 279 280 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n", 281 i, vec_len, vec_start); 282 283 len = bio_add_page(bio, page, vec_len, vec_start); 284 if (len != vec_len) { 285 bio_put(bio); 286 bio = ERR_PTR(-EIO); 287 288 mlog(ML_ERROR, "Error adding page to bio i = %d, " 289 "vec_len = %u, len = %d\n, start = %u\n", 290 i, vec_len, len, vec_start); 291 goto bail; 292 } 293 294 vec_start = 0; 295 } 296 297 bail: 298 return bio; 299 } 300 301 /* 302 * Compute the maximum number of sectors the bdev can handle in one bio, 303 * as a power of two. 304 * 305 * Stolen from oracleasm, thanks Joel! 306 */ 307 static int compute_max_sectors(struct block_device *bdev) 308 { 309 int max_pages, max_sectors, pow_two_sectors; 310 311 struct request_queue *q; 312 313 q = bdev_get_queue(bdev); 314 max_pages = q->max_sectors >> (PAGE_SHIFT - 9); 315 if (max_pages > BIO_MAX_PAGES) 316 max_pages = BIO_MAX_PAGES; 317 if (max_pages > q->max_phys_segments) 318 max_pages = q->max_phys_segments; 319 if (max_pages > q->max_hw_segments) 320 max_pages = q->max_hw_segments; 321 max_pages--; /* Handle I/Os that straddle a page */ 322 323 max_sectors = max_pages << (PAGE_SHIFT - 9); 324 325 /* Why is fls() 1-based???? */ 326 pow_two_sectors = 1 << (fls(max_sectors) - 1); 327 328 return pow_two_sectors; 329 } 330 331 static inline void o2hb_compute_request_limits(struct o2hb_region *reg, 332 unsigned int num_slots, 333 unsigned int *num_bios, 334 unsigned int *slots_per_bio) 335 { 336 unsigned int max_sectors, io_sectors; 337 338 max_sectors = compute_max_sectors(reg->hr_bdev); 339 340 io_sectors = num_slots << (reg->hr_block_bits - 9); 341 342 *num_bios = (io_sectors + max_sectors - 1) / max_sectors; 343 *slots_per_bio = max_sectors >> (reg->hr_block_bits - 9); 344 345 mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This " 346 "device can handle %u sectors of I/O\n", io_sectors, num_slots, 347 max_sectors); 348 mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n", 349 *num_bios, *slots_per_bio); 350 } 351 352 static int o2hb_read_slots(struct o2hb_region *reg, 353 unsigned int max_slots) 354 { 355 unsigned int num_bios, slots_per_bio, start_slot, num_slots; 356 int i, status; 357 struct o2hb_bio_wait_ctxt wc; 358 struct bio **bios; 359 struct bio *bio; 360 361 o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio); 362 363 bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL); 364 if (!bios) { 365 status = -ENOMEM; 366 mlog_errno(status); 367 return status; 368 } 369 370 o2hb_bio_wait_init(&wc, num_bios); 371 372 num_slots = slots_per_bio; 373 for(i = 0; i < num_bios; i++) { 374 start_slot = i * slots_per_bio; 375 376 /* adjust num_slots at last bio */ 377 if (max_slots < (start_slot + num_slots)) 378 num_slots = max_slots - start_slot; 379 380 bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots); 381 if (IS_ERR(bio)) { 382 o2hb_bio_wait_dec(&wc, num_bios - i); 383 384 status = PTR_ERR(bio); 385 mlog_errno(status); 386 goto bail_and_wait; 387 } 388 bios[i] = bio; 389 390 submit_bio(READ, bio); 391 } 392 393 status = 0; 394 395 bail_and_wait: 396 o2hb_wait_on_io(reg, &wc); 397 if (wc.wc_error && !status) 398 status = wc.wc_error; 399 400 if (bios) { 401 for(i = 0; i < num_bios; i++) 402 if (bios[i]) 403 bio_put(bios[i]); 404 kfree(bios); 405 } 406 407 return status; 408 } 409 410 static int o2hb_issue_node_write(struct o2hb_region *reg, 411 struct bio **write_bio, 412 struct o2hb_bio_wait_ctxt *write_wc) 413 { 414 int status; 415 unsigned int slot; 416 struct bio *bio; 417 418 o2hb_bio_wait_init(write_wc, 1); 419 420 slot = o2nm_this_node(); 421 422 bio = o2hb_setup_one_bio(reg, write_wc, slot, 1); 423 if (IS_ERR(bio)) { 424 status = PTR_ERR(bio); 425 mlog_errno(status); 426 goto bail; 427 } 428 429 submit_bio(WRITE, bio); 430 431 *write_bio = bio; 432 status = 0; 433 bail: 434 return status; 435 } 436 437 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg, 438 struct o2hb_disk_heartbeat_block *hb_block) 439 { 440 __le32 old_cksum; 441 u32 ret; 442 443 /* We want to compute the block crc with a 0 value in the 444 * hb_cksum field. Save it off here and replace after the 445 * crc. */ 446 old_cksum = hb_block->hb_cksum; 447 hb_block->hb_cksum = 0; 448 449 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes); 450 451 hb_block->hb_cksum = old_cksum; 452 453 return ret; 454 } 455 456 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block) 457 { 458 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, " 459 "cksum = 0x%x, generation 0x%llx\n", 460 (long long)le64_to_cpu(hb_block->hb_seq), 461 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum), 462 (long long)le64_to_cpu(hb_block->hb_generation)); 463 } 464 465 static int o2hb_verify_crc(struct o2hb_region *reg, 466 struct o2hb_disk_heartbeat_block *hb_block) 467 { 468 u32 read, computed; 469 470 read = le32_to_cpu(hb_block->hb_cksum); 471 computed = o2hb_compute_block_crc_le(reg, hb_block); 472 473 return read == computed; 474 } 475 476 /* We want to make sure that nobody is heartbeating on top of us -- 477 * this will help detect an invalid configuration. */ 478 static int o2hb_check_last_timestamp(struct o2hb_region *reg) 479 { 480 int node_num, ret; 481 struct o2hb_disk_slot *slot; 482 struct o2hb_disk_heartbeat_block *hb_block; 483 484 node_num = o2nm_this_node(); 485 486 ret = 1; 487 slot = ®->hr_slots[node_num]; 488 /* Don't check on our 1st timestamp */ 489 if (slot->ds_last_time) { 490 hb_block = slot->ds_raw_block; 491 492 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time) 493 ret = 0; 494 } 495 496 return ret; 497 } 498 499 static inline void o2hb_prepare_block(struct o2hb_region *reg, 500 u64 generation) 501 { 502 int node_num; 503 u64 cputime; 504 struct o2hb_disk_slot *slot; 505 struct o2hb_disk_heartbeat_block *hb_block; 506 507 node_num = o2nm_this_node(); 508 slot = ®->hr_slots[node_num]; 509 510 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block; 511 memset(hb_block, 0, reg->hr_block_bytes); 512 /* TODO: time stuff */ 513 cputime = CURRENT_TIME.tv_sec; 514 if (!cputime) 515 cputime = 1; 516 517 hb_block->hb_seq = cpu_to_le64(cputime); 518 hb_block->hb_node = node_num; 519 hb_block->hb_generation = cpu_to_le64(generation); 520 521 /* This step must always happen last! */ 522 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg, 523 hb_block)); 524 525 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n", 526 (long long)cpu_to_le64(generation), 527 le32_to_cpu(hb_block->hb_cksum)); 528 } 529 530 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall, 531 struct o2nm_node *node, 532 int idx) 533 { 534 struct list_head *iter; 535 struct o2hb_callback_func *f; 536 537 list_for_each(iter, &hbcall->list) { 538 f = list_entry(iter, struct o2hb_callback_func, hc_item); 539 mlog(ML_HEARTBEAT, "calling funcs %p\n", f); 540 (f->hc_func)(node, idx, f->hc_data); 541 } 542 } 543 544 /* Will run the list in order until we process the passed event */ 545 static void o2hb_run_event_list(struct o2hb_node_event *queued_event) 546 { 547 int empty; 548 struct o2hb_callback *hbcall; 549 struct o2hb_node_event *event; 550 551 spin_lock(&o2hb_live_lock); 552 empty = list_empty(&queued_event->hn_item); 553 spin_unlock(&o2hb_live_lock); 554 if (empty) 555 return; 556 557 /* Holding callback sem assures we don't alter the callback 558 * lists when doing this, and serializes ourselves with other 559 * processes wanting callbacks. */ 560 down_write(&o2hb_callback_sem); 561 562 spin_lock(&o2hb_live_lock); 563 while (!list_empty(&o2hb_node_events) 564 && !list_empty(&queued_event->hn_item)) { 565 event = list_entry(o2hb_node_events.next, 566 struct o2hb_node_event, 567 hn_item); 568 list_del_init(&event->hn_item); 569 spin_unlock(&o2hb_live_lock); 570 571 mlog(ML_HEARTBEAT, "Node %s event for %d\n", 572 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN", 573 event->hn_node_num); 574 575 hbcall = hbcall_from_type(event->hn_event_type); 576 577 /* We should *never* have gotten on to the list with a 578 * bad type... This isn't something that we should try 579 * to recover from. */ 580 BUG_ON(IS_ERR(hbcall)); 581 582 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num); 583 584 spin_lock(&o2hb_live_lock); 585 } 586 spin_unlock(&o2hb_live_lock); 587 588 up_write(&o2hb_callback_sem); 589 } 590 591 static void o2hb_queue_node_event(struct o2hb_node_event *event, 592 enum o2hb_callback_type type, 593 struct o2nm_node *node, 594 int node_num) 595 { 596 assert_spin_locked(&o2hb_live_lock); 597 598 event->hn_event_type = type; 599 event->hn_node = node; 600 event->hn_node_num = node_num; 601 602 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n", 603 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num); 604 605 list_add_tail(&event->hn_item, &o2hb_node_events); 606 } 607 608 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot) 609 { 610 struct o2hb_node_event event = 611 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 612 struct o2nm_node *node; 613 614 node = o2nm_get_node_by_num(slot->ds_node_num); 615 if (!node) 616 return; 617 618 spin_lock(&o2hb_live_lock); 619 if (!list_empty(&slot->ds_live_item)) { 620 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n", 621 slot->ds_node_num); 622 623 list_del_init(&slot->ds_live_item); 624 625 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 626 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 627 628 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, 629 slot->ds_node_num); 630 } 631 } 632 spin_unlock(&o2hb_live_lock); 633 634 o2hb_run_event_list(&event); 635 636 o2nm_node_put(node); 637 } 638 639 static int o2hb_check_slot(struct o2hb_region *reg, 640 struct o2hb_disk_slot *slot) 641 { 642 int changed = 0, gen_changed = 0; 643 struct o2hb_node_event event = 644 { .hn_item = LIST_HEAD_INIT(event.hn_item), }; 645 struct o2nm_node *node; 646 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block; 647 u64 cputime; 648 649 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes); 650 651 /* Is this correct? Do we assume that the node doesn't exist 652 * if we're not configured for him? */ 653 node = o2nm_get_node_by_num(slot->ds_node_num); 654 if (!node) 655 return 0; 656 657 if (!o2hb_verify_crc(reg, hb_block)) { 658 /* all paths from here will drop o2hb_live_lock for 659 * us. */ 660 spin_lock(&o2hb_live_lock); 661 662 /* Don't print an error on the console in this case - 663 * a freshly formatted heartbeat area will not have a 664 * crc set on it. */ 665 if (list_empty(&slot->ds_live_item)) 666 goto out; 667 668 /* The node is live but pushed out a bad crc. We 669 * consider it a transient miss but don't populate any 670 * other values as they may be junk. */ 671 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n", 672 slot->ds_node_num, reg->hr_dev_name); 673 o2hb_dump_slot(hb_block); 674 675 slot->ds_equal_samples++; 676 goto fire_callbacks; 677 } 678 679 /* we don't care if these wrap.. the state transitions below 680 * clear at the right places */ 681 cputime = le64_to_cpu(hb_block->hb_seq); 682 if (slot->ds_last_time != cputime) 683 slot->ds_changed_samples++; 684 else 685 slot->ds_equal_samples++; 686 slot->ds_last_time = cputime; 687 688 /* The node changed heartbeat generations. We assume this to 689 * mean it dropped off but came back before we timed out. We 690 * want to consider it down for the time being but don't want 691 * to lose any changed_samples state we might build up to 692 * considering it live again. */ 693 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) { 694 gen_changed = 1; 695 slot->ds_equal_samples = 0; 696 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx " 697 "to 0x%llx)\n", slot->ds_node_num, 698 (long long)slot->ds_last_generation, 699 (long long)le64_to_cpu(hb_block->hb_generation)); 700 } 701 702 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 703 704 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x " 705 "seq %llu last %llu changed %u equal %u\n", 706 slot->ds_node_num, (long long)slot->ds_last_generation, 707 le32_to_cpu(hb_block->hb_cksum), 708 (unsigned long long)le64_to_cpu(hb_block->hb_seq), 709 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples, 710 slot->ds_equal_samples); 711 712 spin_lock(&o2hb_live_lock); 713 714 fire_callbacks: 715 /* dead nodes only come to life after some number of 716 * changes at any time during their dead time */ 717 if (list_empty(&slot->ds_live_item) && 718 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) { 719 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n", 720 slot->ds_node_num, (long long)slot->ds_last_generation); 721 722 /* first on the list generates a callback */ 723 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 724 set_bit(slot->ds_node_num, o2hb_live_node_bitmap); 725 726 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node, 727 slot->ds_node_num); 728 729 changed = 1; 730 } 731 732 list_add_tail(&slot->ds_live_item, 733 &o2hb_live_slots[slot->ds_node_num]); 734 735 slot->ds_equal_samples = 0; 736 goto out; 737 } 738 739 /* if the list is dead, we're done.. */ 740 if (list_empty(&slot->ds_live_item)) 741 goto out; 742 743 /* live nodes only go dead after enough consequtive missed 744 * samples.. reset the missed counter whenever we see 745 * activity */ 746 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) { 747 mlog(ML_HEARTBEAT, "Node %d left my region\n", 748 slot->ds_node_num); 749 750 /* last off the live_slot generates a callback */ 751 list_del_init(&slot->ds_live_item); 752 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) { 753 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap); 754 755 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node, 756 slot->ds_node_num); 757 758 changed = 1; 759 } 760 761 /* We don't clear this because the node is still 762 * actually writing new blocks. */ 763 if (!gen_changed) 764 slot->ds_changed_samples = 0; 765 goto out; 766 } 767 if (slot->ds_changed_samples) { 768 slot->ds_changed_samples = 0; 769 slot->ds_equal_samples = 0; 770 } 771 out: 772 spin_unlock(&o2hb_live_lock); 773 774 o2hb_run_event_list(&event); 775 776 o2nm_node_put(node); 777 return changed; 778 } 779 780 /* This could be faster if we just implmented a find_last_bit, but I 781 * don't think the circumstances warrant it. */ 782 static int o2hb_highest_node(unsigned long *nodes, 783 int numbits) 784 { 785 int highest, node; 786 787 highest = numbits; 788 node = -1; 789 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) { 790 if (node >= numbits) 791 break; 792 793 highest = node; 794 } 795 796 return highest; 797 } 798 799 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg) 800 { 801 int i, ret, highest_node, change = 0; 802 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)]; 803 struct bio *write_bio; 804 struct o2hb_bio_wait_ctxt write_wc; 805 806 ret = o2nm_configured_node_map(configured_nodes, 807 sizeof(configured_nodes)); 808 if (ret) { 809 mlog_errno(ret); 810 return ret; 811 } 812 813 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES); 814 if (highest_node >= O2NM_MAX_NODES) { 815 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n"); 816 return -EINVAL; 817 } 818 819 /* No sense in reading the slots of nodes that don't exist 820 * yet. Of course, if the node definitions have holes in them 821 * then we're reading an empty slot anyway... Consider this 822 * best-effort. */ 823 ret = o2hb_read_slots(reg, highest_node + 1); 824 if (ret < 0) { 825 mlog_errno(ret); 826 return ret; 827 } 828 829 /* With an up to date view of the slots, we can check that no 830 * other node has been improperly configured to heartbeat in 831 * our slot. */ 832 if (!o2hb_check_last_timestamp(reg)) 833 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating " 834 "in our slot!\n", reg->hr_dev_name); 835 836 /* fill in the proper info for our next heartbeat */ 837 o2hb_prepare_block(reg, reg->hr_generation); 838 839 /* And fire off the write. Note that we don't wait on this I/O 840 * until later. */ 841 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc); 842 if (ret < 0) { 843 mlog_errno(ret); 844 return ret; 845 } 846 847 i = -1; 848 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) { 849 850 change |= o2hb_check_slot(reg, ®->hr_slots[i]); 851 } 852 853 /* 854 * We have to be sure we've advertised ourselves on disk 855 * before we can go to steady state. This ensures that 856 * people we find in our steady state have seen us. 857 */ 858 o2hb_wait_on_io(reg, &write_wc); 859 bio_put(write_bio); 860 if (write_wc.wc_error) { 861 /* Do not re-arm the write timeout on I/O error - we 862 * can't be sure that the new block ever made it to 863 * disk */ 864 mlog(ML_ERROR, "Write error %d on device \"%s\"\n", 865 write_wc.wc_error, reg->hr_dev_name); 866 return write_wc.wc_error; 867 } 868 869 o2hb_arm_write_timeout(reg); 870 871 /* let the person who launched us know when things are steady */ 872 if (!change && (atomic_read(®->hr_steady_iterations) != 0)) { 873 if (atomic_dec_and_test(®->hr_steady_iterations)) 874 wake_up(&o2hb_steady_queue); 875 } 876 877 return 0; 878 } 879 880 /* Subtract b from a, storing the result in a. a *must* have a larger 881 * value than b. */ 882 static void o2hb_tv_subtract(struct timeval *a, 883 struct timeval *b) 884 { 885 /* just return 0 when a is after b */ 886 if (a->tv_sec < b->tv_sec || 887 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) { 888 a->tv_sec = 0; 889 a->tv_usec = 0; 890 return; 891 } 892 893 a->tv_sec -= b->tv_sec; 894 a->tv_usec -= b->tv_usec; 895 while ( a->tv_usec < 0 ) { 896 a->tv_sec--; 897 a->tv_usec += 1000000; 898 } 899 } 900 901 static unsigned int o2hb_elapsed_msecs(struct timeval *start, 902 struct timeval *end) 903 { 904 struct timeval res = *end; 905 906 o2hb_tv_subtract(&res, start); 907 908 return res.tv_sec * 1000 + res.tv_usec / 1000; 909 } 910 911 /* 912 * we ride the region ref that the region dir holds. before the region 913 * dir is removed and drops it ref it will wait to tear down this 914 * thread. 915 */ 916 static int o2hb_thread(void *data) 917 { 918 int i, ret; 919 struct o2hb_region *reg = data; 920 struct bio *write_bio; 921 struct o2hb_bio_wait_ctxt write_wc; 922 struct timeval before_hb, after_hb; 923 unsigned int elapsed_msec; 924 925 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n"); 926 927 set_user_nice(current, -20); 928 929 while (!kthread_should_stop() && !reg->hr_unclean_stop) { 930 /* We track the time spent inside 931 * o2hb_do_disk_heartbeat so that we avoid more then 932 * hr_timeout_ms between disk writes. On busy systems 933 * this should result in a heartbeat which is less 934 * likely to time itself out. */ 935 do_gettimeofday(&before_hb); 936 937 i = 0; 938 do { 939 ret = o2hb_do_disk_heartbeat(reg); 940 } while (ret && ++i < 2); 941 942 do_gettimeofday(&after_hb); 943 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb); 944 945 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n", 946 before_hb.tv_sec, (unsigned long) before_hb.tv_usec, 947 after_hb.tv_sec, (unsigned long) after_hb.tv_usec, 948 elapsed_msec); 949 950 if (elapsed_msec < reg->hr_timeout_ms) { 951 /* the kthread api has blocked signals for us so no 952 * need to record the return value. */ 953 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec); 954 } 955 } 956 957 o2hb_disarm_write_timeout(reg); 958 959 /* unclean stop is only used in very bad situation */ 960 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++) 961 o2hb_shutdown_slot(®->hr_slots[i]); 962 963 /* Explicit down notification - avoid forcing the other nodes 964 * to timeout on this region when we could just as easily 965 * write a clear generation - thus indicating to them that 966 * this node has left this region. 967 * 968 * XXX: Should we skip this on unclean_stop? */ 969 o2hb_prepare_block(reg, 0); 970 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc); 971 if (ret == 0) { 972 o2hb_wait_on_io(reg, &write_wc); 973 bio_put(write_bio); 974 } else { 975 mlog_errno(ret); 976 } 977 978 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n"); 979 980 return 0; 981 } 982 983 void o2hb_init(void) 984 { 985 int i; 986 987 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++) 988 INIT_LIST_HEAD(&o2hb_callbacks[i].list); 989 990 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++) 991 INIT_LIST_HEAD(&o2hb_live_slots[i]); 992 993 INIT_LIST_HEAD(&o2hb_node_events); 994 995 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap)); 996 } 997 998 /* if we're already in a callback then we're already serialized by the sem */ 999 static void o2hb_fill_node_map_from_callback(unsigned long *map, 1000 unsigned bytes) 1001 { 1002 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long))); 1003 1004 memcpy(map, &o2hb_live_node_bitmap, bytes); 1005 } 1006 1007 /* 1008 * get a map of all nodes that are heartbeating in any regions 1009 */ 1010 void o2hb_fill_node_map(unsigned long *map, unsigned bytes) 1011 { 1012 /* callers want to serialize this map and callbacks so that they 1013 * can trust that they don't miss nodes coming to the party */ 1014 down_read(&o2hb_callback_sem); 1015 spin_lock(&o2hb_live_lock); 1016 o2hb_fill_node_map_from_callback(map, bytes); 1017 spin_unlock(&o2hb_live_lock); 1018 up_read(&o2hb_callback_sem); 1019 } 1020 EXPORT_SYMBOL_GPL(o2hb_fill_node_map); 1021 1022 /* 1023 * heartbeat configfs bits. The heartbeat set is a default set under 1024 * the cluster set in nodemanager.c. 1025 */ 1026 1027 static struct o2hb_region *to_o2hb_region(struct config_item *item) 1028 { 1029 return item ? container_of(item, struct o2hb_region, hr_item) : NULL; 1030 } 1031 1032 /* drop_item only drops its ref after killing the thread, nothing should 1033 * be using the region anymore. this has to clean up any state that 1034 * attributes might have built up. */ 1035 static void o2hb_region_release(struct config_item *item) 1036 { 1037 int i; 1038 struct page *page; 1039 struct o2hb_region *reg = to_o2hb_region(item); 1040 1041 if (reg->hr_tmp_block) 1042 kfree(reg->hr_tmp_block); 1043 1044 if (reg->hr_slot_data) { 1045 for (i = 0; i < reg->hr_num_pages; i++) { 1046 page = reg->hr_slot_data[i]; 1047 if (page) 1048 __free_page(page); 1049 } 1050 kfree(reg->hr_slot_data); 1051 } 1052 1053 if (reg->hr_bdev) 1054 blkdev_put(reg->hr_bdev); 1055 1056 if (reg->hr_slots) 1057 kfree(reg->hr_slots); 1058 1059 spin_lock(&o2hb_live_lock); 1060 list_del(®->hr_all_item); 1061 spin_unlock(&o2hb_live_lock); 1062 1063 kfree(reg); 1064 } 1065 1066 static int o2hb_read_block_input(struct o2hb_region *reg, 1067 const char *page, 1068 size_t count, 1069 unsigned long *ret_bytes, 1070 unsigned int *ret_bits) 1071 { 1072 unsigned long bytes; 1073 char *p = (char *)page; 1074 1075 bytes = simple_strtoul(p, &p, 0); 1076 if (!p || (*p && (*p != '\n'))) 1077 return -EINVAL; 1078 1079 /* Heartbeat and fs min / max block sizes are the same. */ 1080 if (bytes > 4096 || bytes < 512) 1081 return -ERANGE; 1082 if (hweight16(bytes) != 1) 1083 return -EINVAL; 1084 1085 if (ret_bytes) 1086 *ret_bytes = bytes; 1087 if (ret_bits) 1088 *ret_bits = ffs(bytes) - 1; 1089 1090 return 0; 1091 } 1092 1093 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg, 1094 char *page) 1095 { 1096 return sprintf(page, "%u\n", reg->hr_block_bytes); 1097 } 1098 1099 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg, 1100 const char *page, 1101 size_t count) 1102 { 1103 int status; 1104 unsigned long block_bytes; 1105 unsigned int block_bits; 1106 1107 if (reg->hr_bdev) 1108 return -EINVAL; 1109 1110 status = o2hb_read_block_input(reg, page, count, 1111 &block_bytes, &block_bits); 1112 if (status) 1113 return status; 1114 1115 reg->hr_block_bytes = (unsigned int)block_bytes; 1116 reg->hr_block_bits = block_bits; 1117 1118 return count; 1119 } 1120 1121 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg, 1122 char *page) 1123 { 1124 return sprintf(page, "%llu\n", reg->hr_start_block); 1125 } 1126 1127 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg, 1128 const char *page, 1129 size_t count) 1130 { 1131 unsigned long long tmp; 1132 char *p = (char *)page; 1133 1134 if (reg->hr_bdev) 1135 return -EINVAL; 1136 1137 tmp = simple_strtoull(p, &p, 0); 1138 if (!p || (*p && (*p != '\n'))) 1139 return -EINVAL; 1140 1141 reg->hr_start_block = tmp; 1142 1143 return count; 1144 } 1145 1146 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg, 1147 char *page) 1148 { 1149 return sprintf(page, "%d\n", reg->hr_blocks); 1150 } 1151 1152 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg, 1153 const char *page, 1154 size_t count) 1155 { 1156 unsigned long tmp; 1157 char *p = (char *)page; 1158 1159 if (reg->hr_bdev) 1160 return -EINVAL; 1161 1162 tmp = simple_strtoul(p, &p, 0); 1163 if (!p || (*p && (*p != '\n'))) 1164 return -EINVAL; 1165 1166 if (tmp > O2NM_MAX_NODES || tmp == 0) 1167 return -ERANGE; 1168 1169 reg->hr_blocks = (unsigned int)tmp; 1170 1171 return count; 1172 } 1173 1174 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg, 1175 char *page) 1176 { 1177 unsigned int ret = 0; 1178 1179 if (reg->hr_bdev) 1180 ret = sprintf(page, "%s\n", reg->hr_dev_name); 1181 1182 return ret; 1183 } 1184 1185 static void o2hb_init_region_params(struct o2hb_region *reg) 1186 { 1187 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits; 1188 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS; 1189 1190 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n", 1191 reg->hr_start_block, reg->hr_blocks); 1192 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n", 1193 reg->hr_block_bytes, reg->hr_block_bits); 1194 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms); 1195 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold); 1196 } 1197 1198 static int o2hb_map_slot_data(struct o2hb_region *reg) 1199 { 1200 int i, j; 1201 unsigned int last_slot; 1202 unsigned int spp = reg->hr_slots_per_page; 1203 struct page *page; 1204 char *raw; 1205 struct o2hb_disk_slot *slot; 1206 1207 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL); 1208 if (reg->hr_tmp_block == NULL) { 1209 mlog_errno(-ENOMEM); 1210 return -ENOMEM; 1211 } 1212 1213 reg->hr_slots = kcalloc(reg->hr_blocks, 1214 sizeof(struct o2hb_disk_slot), GFP_KERNEL); 1215 if (reg->hr_slots == NULL) { 1216 mlog_errno(-ENOMEM); 1217 return -ENOMEM; 1218 } 1219 1220 for(i = 0; i < reg->hr_blocks; i++) { 1221 slot = ®->hr_slots[i]; 1222 slot->ds_node_num = i; 1223 INIT_LIST_HEAD(&slot->ds_live_item); 1224 slot->ds_raw_block = NULL; 1225 } 1226 1227 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp; 1228 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks " 1229 "at %u blocks per page\n", 1230 reg->hr_num_pages, reg->hr_blocks, spp); 1231 1232 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *), 1233 GFP_KERNEL); 1234 if (!reg->hr_slot_data) { 1235 mlog_errno(-ENOMEM); 1236 return -ENOMEM; 1237 } 1238 1239 for(i = 0; i < reg->hr_num_pages; i++) { 1240 page = alloc_page(GFP_KERNEL); 1241 if (!page) { 1242 mlog_errno(-ENOMEM); 1243 return -ENOMEM; 1244 } 1245 1246 reg->hr_slot_data[i] = page; 1247 1248 last_slot = i * spp; 1249 raw = page_address(page); 1250 for (j = 0; 1251 (j < spp) && ((j + last_slot) < reg->hr_blocks); 1252 j++) { 1253 BUG_ON((j + last_slot) >= reg->hr_blocks); 1254 1255 slot = ®->hr_slots[j + last_slot]; 1256 slot->ds_raw_block = 1257 (struct o2hb_disk_heartbeat_block *) raw; 1258 1259 raw += reg->hr_block_bytes; 1260 } 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* Read in all the slots available and populate the tracking 1267 * structures so that we can start with a baseline idea of what's 1268 * there. */ 1269 static int o2hb_populate_slot_data(struct o2hb_region *reg) 1270 { 1271 int ret, i; 1272 struct o2hb_disk_slot *slot; 1273 struct o2hb_disk_heartbeat_block *hb_block; 1274 1275 mlog_entry_void(); 1276 1277 ret = o2hb_read_slots(reg, reg->hr_blocks); 1278 if (ret) { 1279 mlog_errno(ret); 1280 goto out; 1281 } 1282 1283 /* We only want to get an idea of the values initially in each 1284 * slot, so we do no verification - o2hb_check_slot will 1285 * actually determine if each configured slot is valid and 1286 * whether any values have changed. */ 1287 for(i = 0; i < reg->hr_blocks; i++) { 1288 slot = ®->hr_slots[i]; 1289 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block; 1290 1291 /* Only fill the values that o2hb_check_slot uses to 1292 * determine changing slots */ 1293 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq); 1294 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation); 1295 } 1296 1297 out: 1298 mlog_exit(ret); 1299 return ret; 1300 } 1301 1302 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */ 1303 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg, 1304 const char *page, 1305 size_t count) 1306 { 1307 long fd; 1308 int sectsize; 1309 char *p = (char *)page; 1310 struct file *filp = NULL; 1311 struct inode *inode = NULL; 1312 ssize_t ret = -EINVAL; 1313 1314 if (reg->hr_bdev) 1315 goto out; 1316 1317 /* We can't heartbeat without having had our node number 1318 * configured yet. */ 1319 if (o2nm_this_node() == O2NM_MAX_NODES) 1320 goto out; 1321 1322 fd = simple_strtol(p, &p, 0); 1323 if (!p || (*p && (*p != '\n'))) 1324 goto out; 1325 1326 if (fd < 0 || fd >= INT_MAX) 1327 goto out; 1328 1329 filp = fget(fd); 1330 if (filp == NULL) 1331 goto out; 1332 1333 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 || 1334 reg->hr_block_bytes == 0) 1335 goto out; 1336 1337 inode = igrab(filp->f_mapping->host); 1338 if (inode == NULL) 1339 goto out; 1340 1341 if (!S_ISBLK(inode->i_mode)) 1342 goto out; 1343 1344 reg->hr_bdev = I_BDEV(filp->f_mapping->host); 1345 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0); 1346 if (ret) { 1347 reg->hr_bdev = NULL; 1348 goto out; 1349 } 1350 inode = NULL; 1351 1352 bdevname(reg->hr_bdev, reg->hr_dev_name); 1353 1354 sectsize = bdev_hardsect_size(reg->hr_bdev); 1355 if (sectsize != reg->hr_block_bytes) { 1356 mlog(ML_ERROR, 1357 "blocksize %u incorrect for device, expected %d", 1358 reg->hr_block_bytes, sectsize); 1359 ret = -EINVAL; 1360 goto out; 1361 } 1362 1363 o2hb_init_region_params(reg); 1364 1365 /* Generation of zero is invalid */ 1366 do { 1367 get_random_bytes(®->hr_generation, 1368 sizeof(reg->hr_generation)); 1369 } while (reg->hr_generation == 0); 1370 1371 ret = o2hb_map_slot_data(reg); 1372 if (ret) { 1373 mlog_errno(ret); 1374 goto out; 1375 } 1376 1377 ret = o2hb_populate_slot_data(reg); 1378 if (ret) { 1379 mlog_errno(ret); 1380 goto out; 1381 } 1382 1383 INIT_WORK(®->hr_write_timeout_work, o2hb_write_timeout, reg); 1384 1385 /* 1386 * A node is considered live after it has beat LIVE_THRESHOLD 1387 * times. We're not steady until we've given them a chance 1388 * _after_ our first read. 1389 */ 1390 atomic_set(®->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1); 1391 1392 reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s", 1393 reg->hr_item.ci_name); 1394 if (IS_ERR(reg->hr_task)) { 1395 ret = PTR_ERR(reg->hr_task); 1396 mlog_errno(ret); 1397 reg->hr_task = NULL; 1398 goto out; 1399 } 1400 1401 ret = wait_event_interruptible(o2hb_steady_queue, 1402 atomic_read(®->hr_steady_iterations) == 0); 1403 if (ret) { 1404 kthread_stop(reg->hr_task); 1405 reg->hr_task = NULL; 1406 goto out; 1407 } 1408 1409 ret = count; 1410 out: 1411 if (filp) 1412 fput(filp); 1413 if (inode) 1414 iput(inode); 1415 if (ret < 0) { 1416 if (reg->hr_bdev) { 1417 blkdev_put(reg->hr_bdev); 1418 reg->hr_bdev = NULL; 1419 } 1420 } 1421 return ret; 1422 } 1423 1424 struct o2hb_region_attribute { 1425 struct configfs_attribute attr; 1426 ssize_t (*show)(struct o2hb_region *, char *); 1427 ssize_t (*store)(struct o2hb_region *, const char *, size_t); 1428 }; 1429 1430 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = { 1431 .attr = { .ca_owner = THIS_MODULE, 1432 .ca_name = "block_bytes", 1433 .ca_mode = S_IRUGO | S_IWUSR }, 1434 .show = o2hb_region_block_bytes_read, 1435 .store = o2hb_region_block_bytes_write, 1436 }; 1437 1438 static struct o2hb_region_attribute o2hb_region_attr_start_block = { 1439 .attr = { .ca_owner = THIS_MODULE, 1440 .ca_name = "start_block", 1441 .ca_mode = S_IRUGO | S_IWUSR }, 1442 .show = o2hb_region_start_block_read, 1443 .store = o2hb_region_start_block_write, 1444 }; 1445 1446 static struct o2hb_region_attribute o2hb_region_attr_blocks = { 1447 .attr = { .ca_owner = THIS_MODULE, 1448 .ca_name = "blocks", 1449 .ca_mode = S_IRUGO | S_IWUSR }, 1450 .show = o2hb_region_blocks_read, 1451 .store = o2hb_region_blocks_write, 1452 }; 1453 1454 static struct o2hb_region_attribute o2hb_region_attr_dev = { 1455 .attr = { .ca_owner = THIS_MODULE, 1456 .ca_name = "dev", 1457 .ca_mode = S_IRUGO | S_IWUSR }, 1458 .show = o2hb_region_dev_read, 1459 .store = o2hb_region_dev_write, 1460 }; 1461 1462 static struct configfs_attribute *o2hb_region_attrs[] = { 1463 &o2hb_region_attr_block_bytes.attr, 1464 &o2hb_region_attr_start_block.attr, 1465 &o2hb_region_attr_blocks.attr, 1466 &o2hb_region_attr_dev.attr, 1467 NULL, 1468 }; 1469 1470 static ssize_t o2hb_region_show(struct config_item *item, 1471 struct configfs_attribute *attr, 1472 char *page) 1473 { 1474 struct o2hb_region *reg = to_o2hb_region(item); 1475 struct o2hb_region_attribute *o2hb_region_attr = 1476 container_of(attr, struct o2hb_region_attribute, attr); 1477 ssize_t ret = 0; 1478 1479 if (o2hb_region_attr->show) 1480 ret = o2hb_region_attr->show(reg, page); 1481 return ret; 1482 } 1483 1484 static ssize_t o2hb_region_store(struct config_item *item, 1485 struct configfs_attribute *attr, 1486 const char *page, size_t count) 1487 { 1488 struct o2hb_region *reg = to_o2hb_region(item); 1489 struct o2hb_region_attribute *o2hb_region_attr = 1490 container_of(attr, struct o2hb_region_attribute, attr); 1491 ssize_t ret = -EINVAL; 1492 1493 if (o2hb_region_attr->store) 1494 ret = o2hb_region_attr->store(reg, page, count); 1495 return ret; 1496 } 1497 1498 static struct configfs_item_operations o2hb_region_item_ops = { 1499 .release = o2hb_region_release, 1500 .show_attribute = o2hb_region_show, 1501 .store_attribute = o2hb_region_store, 1502 }; 1503 1504 static struct config_item_type o2hb_region_type = { 1505 .ct_item_ops = &o2hb_region_item_ops, 1506 .ct_attrs = o2hb_region_attrs, 1507 .ct_owner = THIS_MODULE, 1508 }; 1509 1510 /* heartbeat set */ 1511 1512 struct o2hb_heartbeat_group { 1513 struct config_group hs_group; 1514 /* some stuff? */ 1515 }; 1516 1517 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group) 1518 { 1519 return group ? 1520 container_of(group, struct o2hb_heartbeat_group, hs_group) 1521 : NULL; 1522 } 1523 1524 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group, 1525 const char *name) 1526 { 1527 struct o2hb_region *reg = NULL; 1528 struct config_item *ret = NULL; 1529 1530 reg = kcalloc(1, sizeof(struct o2hb_region), GFP_KERNEL); 1531 if (reg == NULL) 1532 goto out; /* ENOMEM */ 1533 1534 config_item_init_type_name(®->hr_item, name, &o2hb_region_type); 1535 1536 ret = ®->hr_item; 1537 1538 spin_lock(&o2hb_live_lock); 1539 list_add_tail(®->hr_all_item, &o2hb_all_regions); 1540 spin_unlock(&o2hb_live_lock); 1541 out: 1542 if (ret == NULL) 1543 kfree(reg); 1544 1545 return ret; 1546 } 1547 1548 static void o2hb_heartbeat_group_drop_item(struct config_group *group, 1549 struct config_item *item) 1550 { 1551 struct o2hb_region *reg = to_o2hb_region(item); 1552 1553 /* stop the thread when the user removes the region dir */ 1554 if (reg->hr_task) { 1555 kthread_stop(reg->hr_task); 1556 reg->hr_task = NULL; 1557 } 1558 1559 config_item_put(item); 1560 } 1561 1562 struct o2hb_heartbeat_group_attribute { 1563 struct configfs_attribute attr; 1564 ssize_t (*show)(struct o2hb_heartbeat_group *, char *); 1565 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t); 1566 }; 1567 1568 static ssize_t o2hb_heartbeat_group_show(struct config_item *item, 1569 struct configfs_attribute *attr, 1570 char *page) 1571 { 1572 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 1573 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 1574 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 1575 ssize_t ret = 0; 1576 1577 if (o2hb_heartbeat_group_attr->show) 1578 ret = o2hb_heartbeat_group_attr->show(reg, page); 1579 return ret; 1580 } 1581 1582 static ssize_t o2hb_heartbeat_group_store(struct config_item *item, 1583 struct configfs_attribute *attr, 1584 const char *page, size_t count) 1585 { 1586 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item)); 1587 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr = 1588 container_of(attr, struct o2hb_heartbeat_group_attribute, attr); 1589 ssize_t ret = -EINVAL; 1590 1591 if (o2hb_heartbeat_group_attr->store) 1592 ret = o2hb_heartbeat_group_attr->store(reg, page, count); 1593 return ret; 1594 } 1595 1596 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group, 1597 char *page) 1598 { 1599 return sprintf(page, "%u\n", o2hb_dead_threshold); 1600 } 1601 1602 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group, 1603 const char *page, 1604 size_t count) 1605 { 1606 unsigned long tmp; 1607 char *p = (char *)page; 1608 1609 tmp = simple_strtoul(p, &p, 10); 1610 if (!p || (*p && (*p != '\n'))) 1611 return -EINVAL; 1612 1613 /* this will validate ranges for us. */ 1614 o2hb_dead_threshold_set((unsigned int) tmp); 1615 1616 return count; 1617 } 1618 1619 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = { 1620 .attr = { .ca_owner = THIS_MODULE, 1621 .ca_name = "dead_threshold", 1622 .ca_mode = S_IRUGO | S_IWUSR }, 1623 .show = o2hb_heartbeat_group_threshold_show, 1624 .store = o2hb_heartbeat_group_threshold_store, 1625 }; 1626 1627 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = { 1628 &o2hb_heartbeat_group_attr_threshold.attr, 1629 NULL, 1630 }; 1631 1632 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = { 1633 .show_attribute = o2hb_heartbeat_group_show, 1634 .store_attribute = o2hb_heartbeat_group_store, 1635 }; 1636 1637 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = { 1638 .make_item = o2hb_heartbeat_group_make_item, 1639 .drop_item = o2hb_heartbeat_group_drop_item, 1640 }; 1641 1642 static struct config_item_type o2hb_heartbeat_group_type = { 1643 .ct_group_ops = &o2hb_heartbeat_group_group_ops, 1644 .ct_item_ops = &o2hb_hearbeat_group_item_ops, 1645 .ct_attrs = o2hb_heartbeat_group_attrs, 1646 .ct_owner = THIS_MODULE, 1647 }; 1648 1649 /* this is just here to avoid touching group in heartbeat.h which the 1650 * entire damn world #includes */ 1651 struct config_group *o2hb_alloc_hb_set(void) 1652 { 1653 struct o2hb_heartbeat_group *hs = NULL; 1654 struct config_group *ret = NULL; 1655 1656 hs = kcalloc(1, sizeof(struct o2hb_heartbeat_group), GFP_KERNEL); 1657 if (hs == NULL) 1658 goto out; 1659 1660 config_group_init_type_name(&hs->hs_group, "heartbeat", 1661 &o2hb_heartbeat_group_type); 1662 1663 ret = &hs->hs_group; 1664 out: 1665 if (ret == NULL) 1666 kfree(hs); 1667 return ret; 1668 } 1669 1670 void o2hb_free_hb_set(struct config_group *group) 1671 { 1672 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group); 1673 kfree(hs); 1674 } 1675 1676 /* hb callback registration and issueing */ 1677 1678 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type) 1679 { 1680 if (type == O2HB_NUM_CB) 1681 return ERR_PTR(-EINVAL); 1682 1683 return &o2hb_callbacks[type]; 1684 } 1685 1686 void o2hb_setup_callback(struct o2hb_callback_func *hc, 1687 enum o2hb_callback_type type, 1688 o2hb_cb_func *func, 1689 void *data, 1690 int priority) 1691 { 1692 INIT_LIST_HEAD(&hc->hc_item); 1693 hc->hc_func = func; 1694 hc->hc_data = data; 1695 hc->hc_priority = priority; 1696 hc->hc_type = type; 1697 hc->hc_magic = O2HB_CB_MAGIC; 1698 } 1699 EXPORT_SYMBOL_GPL(o2hb_setup_callback); 1700 1701 int o2hb_register_callback(struct o2hb_callback_func *hc) 1702 { 1703 struct o2hb_callback_func *tmp; 1704 struct list_head *iter; 1705 struct o2hb_callback *hbcall; 1706 int ret; 1707 1708 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 1709 BUG_ON(!list_empty(&hc->hc_item)); 1710 1711 hbcall = hbcall_from_type(hc->hc_type); 1712 if (IS_ERR(hbcall)) { 1713 ret = PTR_ERR(hbcall); 1714 goto out; 1715 } 1716 1717 down_write(&o2hb_callback_sem); 1718 1719 list_for_each(iter, &hbcall->list) { 1720 tmp = list_entry(iter, struct o2hb_callback_func, hc_item); 1721 if (hc->hc_priority < tmp->hc_priority) { 1722 list_add_tail(&hc->hc_item, iter); 1723 break; 1724 } 1725 } 1726 if (list_empty(&hc->hc_item)) 1727 list_add_tail(&hc->hc_item, &hbcall->list); 1728 1729 up_write(&o2hb_callback_sem); 1730 ret = 0; 1731 out: 1732 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n", 1733 ret, __builtin_return_address(0), hc); 1734 return ret; 1735 } 1736 EXPORT_SYMBOL_GPL(o2hb_register_callback); 1737 1738 int o2hb_unregister_callback(struct o2hb_callback_func *hc) 1739 { 1740 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC); 1741 1742 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n", 1743 __builtin_return_address(0), hc); 1744 1745 if (list_empty(&hc->hc_item)) 1746 return 0; 1747 1748 down_write(&o2hb_callback_sem); 1749 1750 list_del_init(&hc->hc_item); 1751 1752 up_write(&o2hb_callback_sem); 1753 1754 return 0; 1755 } 1756 EXPORT_SYMBOL_GPL(o2hb_unregister_callback); 1757 1758 int o2hb_check_node_heartbeating(u8 node_num) 1759 { 1760 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 1761 1762 o2hb_fill_node_map(testing_map, sizeof(testing_map)); 1763 if (!test_bit(node_num, testing_map)) { 1764 mlog(ML_HEARTBEAT, 1765 "node (%u) does not have heartbeating enabled.\n", 1766 node_num); 1767 return 0; 1768 } 1769 1770 return 1; 1771 } 1772 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating); 1773 1774 int o2hb_check_node_heartbeating_from_callback(u8 node_num) 1775 { 1776 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)]; 1777 1778 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map)); 1779 if (!test_bit(node_num, testing_map)) { 1780 mlog(ML_HEARTBEAT, 1781 "node (%u) does not have heartbeating enabled.\n", 1782 node_num); 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback); 1789 1790 /* Makes sure our local node is configured with a node number, and is 1791 * heartbeating. */ 1792 int o2hb_check_local_node_heartbeating(void) 1793 { 1794 u8 node_num; 1795 1796 /* if this node was set then we have networking */ 1797 node_num = o2nm_this_node(); 1798 if (node_num == O2NM_MAX_NODES) { 1799 mlog(ML_HEARTBEAT, "this node has not been configured.\n"); 1800 return 0; 1801 } 1802 1803 return o2hb_check_node_heartbeating(node_num); 1804 } 1805 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating); 1806 1807 /* 1808 * this is just a hack until we get the plumbing which flips file systems 1809 * read only and drops the hb ref instead of killing the node dead. 1810 */ 1811 void o2hb_stop_all_regions(void) 1812 { 1813 struct o2hb_region *reg; 1814 1815 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n"); 1816 1817 spin_lock(&o2hb_live_lock); 1818 1819 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) 1820 reg->hr_unclean_stop = 1; 1821 1822 spin_unlock(&o2hb_live_lock); 1823 } 1824 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions); 1825