1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int ret = 0; 141 struct ocfs2_inode_info *oi = OCFS2_I(inode); 142 143 down_read(&oi->ip_alloc_sem); 144 ret = ocfs2_get_block(inode, iblock, bh_result, create); 145 up_read(&oi->ip_alloc_sem); 146 147 return ret; 148 } 149 150 int ocfs2_get_block(struct inode *inode, sector_t iblock, 151 struct buffer_head *bh_result, int create) 152 { 153 int err = 0; 154 unsigned int ext_flags; 155 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 156 u64 p_blkno, count, past_eof; 157 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 158 159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 160 (unsigned long long)iblock, bh_result, create); 161 162 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 163 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 164 inode, inode->i_ino); 165 166 if (S_ISLNK(inode->i_mode)) { 167 /* this always does I/O for some reason. */ 168 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 169 goto bail; 170 } 171 172 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 173 &ext_flags); 174 if (err) { 175 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 176 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 177 (unsigned long long)p_blkno); 178 goto bail; 179 } 180 181 if (max_blocks < count) 182 count = max_blocks; 183 184 /* 185 * ocfs2 never allocates in this function - the only time we 186 * need to use BH_New is when we're extending i_size on a file 187 * system which doesn't support holes, in which case BH_New 188 * allows __block_write_begin() to zero. 189 * 190 * If we see this on a sparse file system, then a truncate has 191 * raced us and removed the cluster. In this case, we clear 192 * the buffers dirty and uptodate bits and let the buffer code 193 * ignore it as a hole. 194 */ 195 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 196 clear_buffer_dirty(bh_result); 197 clear_buffer_uptodate(bh_result); 198 goto bail; 199 } 200 201 /* Treat the unwritten extent as a hole for zeroing purposes. */ 202 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 203 map_bh(bh_result, inode->i_sb, p_blkno); 204 205 bh_result->b_size = count << inode->i_blkbits; 206 207 if (!ocfs2_sparse_alloc(osb)) { 208 if (p_blkno == 0) { 209 err = -EIO; 210 mlog(ML_ERROR, 211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 212 (unsigned long long)iblock, 213 (unsigned long long)p_blkno, 214 (unsigned long long)OCFS2_I(inode)->ip_blkno); 215 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 216 dump_stack(); 217 goto bail; 218 } 219 } 220 221 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 222 223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 224 (unsigned long long)past_eof); 225 if (create && (iblock >= past_eof)) 226 set_buffer_new(bh_result); 227 228 bail: 229 if (err < 0) 230 err = -EIO; 231 232 return err; 233 } 234 235 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 236 struct buffer_head *di_bh) 237 { 238 void *kaddr; 239 loff_t size; 240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 241 242 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 243 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 244 (unsigned long long)OCFS2_I(inode)->ip_blkno); 245 return -EROFS; 246 } 247 248 size = i_size_read(inode); 249 250 if (size > PAGE_SIZE || 251 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 252 ocfs2_error(inode->i_sb, 253 "Inode %llu has with inline data has bad size: %Lu\n", 254 (unsigned long long)OCFS2_I(inode)->ip_blkno, 255 (unsigned long long)size); 256 return -EROFS; 257 } 258 259 kaddr = kmap_atomic(page); 260 if (size) 261 memcpy(kaddr, di->id2.i_data.id_data, size); 262 /* Clear the remaining part of the page */ 263 memset(kaddr + size, 0, PAGE_SIZE - size); 264 flush_dcache_page(page); 265 kunmap_atomic(kaddr); 266 267 SetPageUptodate(page); 268 269 return 0; 270 } 271 272 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 273 { 274 int ret; 275 struct buffer_head *di_bh = NULL; 276 277 BUG_ON(!PageLocked(page)); 278 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 279 280 ret = ocfs2_read_inode_block(inode, &di_bh); 281 if (ret) { 282 mlog_errno(ret); 283 goto out; 284 } 285 286 ret = ocfs2_read_inline_data(inode, page, di_bh); 287 out: 288 unlock_page(page); 289 290 brelse(di_bh); 291 return ret; 292 } 293 294 static int ocfs2_readpage(struct file *file, struct page *page) 295 { 296 struct inode *inode = page->mapping->host; 297 struct ocfs2_inode_info *oi = OCFS2_I(inode); 298 loff_t start = (loff_t)page->index << PAGE_SHIFT; 299 int ret, unlock = 1; 300 301 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 302 (page ? page->index : 0)); 303 304 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 305 if (ret != 0) { 306 if (ret == AOP_TRUNCATED_PAGE) 307 unlock = 0; 308 mlog_errno(ret); 309 goto out; 310 } 311 312 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 313 /* 314 * Unlock the page and cycle ip_alloc_sem so that we don't 315 * busyloop waiting for ip_alloc_sem to unlock 316 */ 317 ret = AOP_TRUNCATED_PAGE; 318 unlock_page(page); 319 unlock = 0; 320 down_read(&oi->ip_alloc_sem); 321 up_read(&oi->ip_alloc_sem); 322 goto out_inode_unlock; 323 } 324 325 /* 326 * i_size might have just been updated as we grabed the meta lock. We 327 * might now be discovering a truncate that hit on another node. 328 * block_read_full_page->get_block freaks out if it is asked to read 329 * beyond the end of a file, so we check here. Callers 330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 331 * and notice that the page they just read isn't needed. 332 * 333 * XXX sys_readahead() seems to get that wrong? 334 */ 335 if (start >= i_size_read(inode)) { 336 zero_user(page, 0, PAGE_SIZE); 337 SetPageUptodate(page); 338 ret = 0; 339 goto out_alloc; 340 } 341 342 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 343 ret = ocfs2_readpage_inline(inode, page); 344 else 345 ret = block_read_full_page(page, ocfs2_get_block); 346 unlock = 0; 347 348 out_alloc: 349 up_read(&OCFS2_I(inode)->ip_alloc_sem); 350 out_inode_unlock: 351 ocfs2_inode_unlock(inode, 0); 352 out: 353 if (unlock) 354 unlock_page(page); 355 return ret; 356 } 357 358 /* 359 * This is used only for read-ahead. Failures or difficult to handle 360 * situations are safe to ignore. 361 * 362 * Right now, we don't bother with BH_Boundary - in-inode extent lists 363 * are quite large (243 extents on 4k blocks), so most inodes don't 364 * grow out to a tree. If need be, detecting boundary extents could 365 * trivially be added in a future version of ocfs2_get_block(). 366 */ 367 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 368 struct list_head *pages, unsigned nr_pages) 369 { 370 int ret, err = -EIO; 371 struct inode *inode = mapping->host; 372 struct ocfs2_inode_info *oi = OCFS2_I(inode); 373 loff_t start; 374 struct page *last; 375 376 /* 377 * Use the nonblocking flag for the dlm code to avoid page 378 * lock inversion, but don't bother with retrying. 379 */ 380 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 381 if (ret) 382 return err; 383 384 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 385 ocfs2_inode_unlock(inode, 0); 386 return err; 387 } 388 389 /* 390 * Don't bother with inline-data. There isn't anything 391 * to read-ahead in that case anyway... 392 */ 393 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 394 goto out_unlock; 395 396 /* 397 * Check whether a remote node truncated this file - we just 398 * drop out in that case as it's not worth handling here. 399 */ 400 last = list_entry(pages->prev, struct page, lru); 401 start = (loff_t)last->index << PAGE_SHIFT; 402 if (start >= i_size_read(inode)) 403 goto out_unlock; 404 405 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 406 407 out_unlock: 408 up_read(&oi->ip_alloc_sem); 409 ocfs2_inode_unlock(inode, 0); 410 411 return err; 412 } 413 414 /* Note: Because we don't support holes, our allocation has 415 * already happened (allocation writes zeros to the file data) 416 * so we don't have to worry about ordered writes in 417 * ocfs2_writepage. 418 * 419 * ->writepage is called during the process of invalidating the page cache 420 * during blocked lock processing. It can't block on any cluster locks 421 * to during block mapping. It's relying on the fact that the block 422 * mapping can't have disappeared under the dirty pages that it is 423 * being asked to write back. 424 */ 425 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 426 { 427 trace_ocfs2_writepage( 428 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 429 page->index); 430 431 return block_write_full_page(page, ocfs2_get_block, wbc); 432 } 433 434 /* Taken from ext3. We don't necessarily need the full blown 435 * functionality yet, but IMHO it's better to cut and paste the whole 436 * thing so we can avoid introducing our own bugs (and easily pick up 437 * their fixes when they happen) --Mark */ 438 int walk_page_buffers( handle_t *handle, 439 struct buffer_head *head, 440 unsigned from, 441 unsigned to, 442 int *partial, 443 int (*fn)( handle_t *handle, 444 struct buffer_head *bh)) 445 { 446 struct buffer_head *bh; 447 unsigned block_start, block_end; 448 unsigned blocksize = head->b_size; 449 int err, ret = 0; 450 struct buffer_head *next; 451 452 for ( bh = head, block_start = 0; 453 ret == 0 && (bh != head || !block_start); 454 block_start = block_end, bh = next) 455 { 456 next = bh->b_this_page; 457 block_end = block_start + blocksize; 458 if (block_end <= from || block_start >= to) { 459 if (partial && !buffer_uptodate(bh)) 460 *partial = 1; 461 continue; 462 } 463 err = (*fn)(handle, bh); 464 if (!ret) 465 ret = err; 466 } 467 return ret; 468 } 469 470 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 471 { 472 sector_t status; 473 u64 p_blkno = 0; 474 int err = 0; 475 struct inode *inode = mapping->host; 476 477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 478 (unsigned long long)block); 479 480 /* 481 * The swap code (ab-)uses ->bmap to get a block mapping and then 482 * bypasseѕ the file system for actual I/O. We really can't allow 483 * that on refcounted inodes, so we have to skip out here. And yes, 484 * 0 is the magic code for a bmap error.. 485 */ 486 if (ocfs2_is_refcount_inode(inode)) 487 return 0; 488 489 /* We don't need to lock journal system files, since they aren't 490 * accessed concurrently from multiple nodes. 491 */ 492 if (!INODE_JOURNAL(inode)) { 493 err = ocfs2_inode_lock(inode, NULL, 0); 494 if (err) { 495 if (err != -ENOENT) 496 mlog_errno(err); 497 goto bail; 498 } 499 down_read(&OCFS2_I(inode)->ip_alloc_sem); 500 } 501 502 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 504 NULL); 505 506 if (!INODE_JOURNAL(inode)) { 507 up_read(&OCFS2_I(inode)->ip_alloc_sem); 508 ocfs2_inode_unlock(inode, 0); 509 } 510 511 if (err) { 512 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 513 (unsigned long long)block); 514 mlog_errno(err); 515 goto bail; 516 } 517 518 bail: 519 status = err ? 0 : p_blkno; 520 521 return status; 522 } 523 524 static int ocfs2_releasepage(struct page *page, gfp_t wait) 525 { 526 if (!page_has_buffers(page)) 527 return 0; 528 return try_to_free_buffers(page); 529 } 530 531 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 532 u32 cpos, 533 unsigned int *start, 534 unsigned int *end) 535 { 536 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 537 538 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 539 unsigned int cpp; 540 541 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 542 543 cluster_start = cpos % cpp; 544 cluster_start = cluster_start << osb->s_clustersize_bits; 545 546 cluster_end = cluster_start + osb->s_clustersize; 547 } 548 549 BUG_ON(cluster_start > PAGE_SIZE); 550 BUG_ON(cluster_end > PAGE_SIZE); 551 552 if (start) 553 *start = cluster_start; 554 if (end) 555 *end = cluster_end; 556 } 557 558 /* 559 * 'from' and 'to' are the region in the page to avoid zeroing. 560 * 561 * If pagesize > clustersize, this function will avoid zeroing outside 562 * of the cluster boundary. 563 * 564 * from == to == 0 is code for "zero the entire cluster region" 565 */ 566 static void ocfs2_clear_page_regions(struct page *page, 567 struct ocfs2_super *osb, u32 cpos, 568 unsigned from, unsigned to) 569 { 570 void *kaddr; 571 unsigned int cluster_start, cluster_end; 572 573 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 574 575 kaddr = kmap_atomic(page); 576 577 if (from || to) { 578 if (from > cluster_start) 579 memset(kaddr + cluster_start, 0, from - cluster_start); 580 if (to < cluster_end) 581 memset(kaddr + to, 0, cluster_end - to); 582 } else { 583 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 584 } 585 586 kunmap_atomic(kaddr); 587 } 588 589 /* 590 * Nonsparse file systems fully allocate before we get to the write 591 * code. This prevents ocfs2_write() from tagging the write as an 592 * allocating one, which means ocfs2_map_page_blocks() might try to 593 * read-in the blocks at the tail of our file. Avoid reading them by 594 * testing i_size against each block offset. 595 */ 596 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 597 unsigned int block_start) 598 { 599 u64 offset = page_offset(page) + block_start; 600 601 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 602 return 1; 603 604 if (i_size_read(inode) > offset) 605 return 1; 606 607 return 0; 608 } 609 610 /* 611 * Some of this taken from __block_write_begin(). We already have our 612 * mapping by now though, and the entire write will be allocating or 613 * it won't, so not much need to use BH_New. 614 * 615 * This will also skip zeroing, which is handled externally. 616 */ 617 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 618 struct inode *inode, unsigned int from, 619 unsigned int to, int new) 620 { 621 int ret = 0; 622 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 623 unsigned int block_end, block_start; 624 unsigned int bsize = i_blocksize(inode); 625 626 if (!page_has_buffers(page)) 627 create_empty_buffers(page, bsize, 0); 628 629 head = page_buffers(page); 630 for (bh = head, block_start = 0; bh != head || !block_start; 631 bh = bh->b_this_page, block_start += bsize) { 632 block_end = block_start + bsize; 633 634 clear_buffer_new(bh); 635 636 /* 637 * Ignore blocks outside of our i/o range - 638 * they may belong to unallocated clusters. 639 */ 640 if (block_start >= to || block_end <= from) { 641 if (PageUptodate(page)) 642 set_buffer_uptodate(bh); 643 continue; 644 } 645 646 /* 647 * For an allocating write with cluster size >= page 648 * size, we always write the entire page. 649 */ 650 if (new) 651 set_buffer_new(bh); 652 653 if (!buffer_mapped(bh)) { 654 map_bh(bh, inode->i_sb, *p_blkno); 655 clean_bdev_bh_alias(bh); 656 } 657 658 if (PageUptodate(page)) { 659 if (!buffer_uptodate(bh)) 660 set_buffer_uptodate(bh); 661 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 662 !buffer_new(bh) && 663 ocfs2_should_read_blk(inode, page, block_start) && 664 (block_start < from || block_end > to)) { 665 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 666 *wait_bh++=bh; 667 } 668 669 *p_blkno = *p_blkno + 1; 670 } 671 672 /* 673 * If we issued read requests - let them complete. 674 */ 675 while(wait_bh > wait) { 676 wait_on_buffer(*--wait_bh); 677 if (!buffer_uptodate(*wait_bh)) 678 ret = -EIO; 679 } 680 681 if (ret == 0 || !new) 682 return ret; 683 684 /* 685 * If we get -EIO above, zero out any newly allocated blocks 686 * to avoid exposing stale data. 687 */ 688 bh = head; 689 block_start = 0; 690 do { 691 block_end = block_start + bsize; 692 if (block_end <= from) 693 goto next_bh; 694 if (block_start >= to) 695 break; 696 697 zero_user(page, block_start, bh->b_size); 698 set_buffer_uptodate(bh); 699 mark_buffer_dirty(bh); 700 701 next_bh: 702 block_start = block_end; 703 bh = bh->b_this_page; 704 } while (bh != head); 705 706 return ret; 707 } 708 709 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 710 #define OCFS2_MAX_CTXT_PAGES 1 711 #else 712 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 713 #endif 714 715 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 716 717 struct ocfs2_unwritten_extent { 718 struct list_head ue_node; 719 struct list_head ue_ip_node; 720 u32 ue_cpos; 721 u32 ue_phys; 722 }; 723 724 /* 725 * Describe the state of a single cluster to be written to. 726 */ 727 struct ocfs2_write_cluster_desc { 728 u32 c_cpos; 729 u32 c_phys; 730 /* 731 * Give this a unique field because c_phys eventually gets 732 * filled. 733 */ 734 unsigned c_new; 735 unsigned c_clear_unwritten; 736 unsigned c_needs_zero; 737 }; 738 739 struct ocfs2_write_ctxt { 740 /* Logical cluster position / len of write */ 741 u32 w_cpos; 742 u32 w_clen; 743 744 /* First cluster allocated in a nonsparse extend */ 745 u32 w_first_new_cpos; 746 747 /* Type of caller. Must be one of buffer, mmap, direct. */ 748 ocfs2_write_type_t w_type; 749 750 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 751 752 /* 753 * This is true if page_size > cluster_size. 754 * 755 * It triggers a set of special cases during write which might 756 * have to deal with allocating writes to partial pages. 757 */ 758 unsigned int w_large_pages; 759 760 /* 761 * Pages involved in this write. 762 * 763 * w_target_page is the page being written to by the user. 764 * 765 * w_pages is an array of pages which always contains 766 * w_target_page, and in the case of an allocating write with 767 * page_size < cluster size, it will contain zero'd and mapped 768 * pages adjacent to w_target_page which need to be written 769 * out in so that future reads from that region will get 770 * zero's. 771 */ 772 unsigned int w_num_pages; 773 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 774 struct page *w_target_page; 775 776 /* 777 * w_target_locked is used for page_mkwrite path indicating no unlocking 778 * against w_target_page in ocfs2_write_end_nolock. 779 */ 780 unsigned int w_target_locked:1; 781 782 /* 783 * ocfs2_write_end() uses this to know what the real range to 784 * write in the target should be. 785 */ 786 unsigned int w_target_from; 787 unsigned int w_target_to; 788 789 /* 790 * We could use journal_current_handle() but this is cleaner, 791 * IMHO -Mark 792 */ 793 handle_t *w_handle; 794 795 struct buffer_head *w_di_bh; 796 797 struct ocfs2_cached_dealloc_ctxt w_dealloc; 798 799 struct list_head w_unwritten_list; 800 }; 801 802 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 803 { 804 int i; 805 806 for(i = 0; i < num_pages; i++) { 807 if (pages[i]) { 808 unlock_page(pages[i]); 809 mark_page_accessed(pages[i]); 810 put_page(pages[i]); 811 } 812 } 813 } 814 815 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 816 { 817 int i; 818 819 /* 820 * w_target_locked is only set to true in the page_mkwrite() case. 821 * The intent is to allow us to lock the target page from write_begin() 822 * to write_end(). The caller must hold a ref on w_target_page. 823 */ 824 if (wc->w_target_locked) { 825 BUG_ON(!wc->w_target_page); 826 for (i = 0; i < wc->w_num_pages; i++) { 827 if (wc->w_target_page == wc->w_pages[i]) { 828 wc->w_pages[i] = NULL; 829 break; 830 } 831 } 832 mark_page_accessed(wc->w_target_page); 833 put_page(wc->w_target_page); 834 } 835 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 836 } 837 838 static void ocfs2_free_unwritten_list(struct inode *inode, 839 struct list_head *head) 840 { 841 struct ocfs2_inode_info *oi = OCFS2_I(inode); 842 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 843 844 list_for_each_entry_safe(ue, tmp, head, ue_node) { 845 list_del(&ue->ue_node); 846 spin_lock(&oi->ip_lock); 847 list_del(&ue->ue_ip_node); 848 spin_unlock(&oi->ip_lock); 849 kfree(ue); 850 } 851 } 852 853 static void ocfs2_free_write_ctxt(struct inode *inode, 854 struct ocfs2_write_ctxt *wc) 855 { 856 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 857 ocfs2_unlock_pages(wc); 858 brelse(wc->w_di_bh); 859 kfree(wc); 860 } 861 862 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 863 struct ocfs2_super *osb, loff_t pos, 864 unsigned len, ocfs2_write_type_t type, 865 struct buffer_head *di_bh) 866 { 867 u32 cend; 868 struct ocfs2_write_ctxt *wc; 869 870 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 871 if (!wc) 872 return -ENOMEM; 873 874 wc->w_cpos = pos >> osb->s_clustersize_bits; 875 wc->w_first_new_cpos = UINT_MAX; 876 cend = (pos + len - 1) >> osb->s_clustersize_bits; 877 wc->w_clen = cend - wc->w_cpos + 1; 878 get_bh(di_bh); 879 wc->w_di_bh = di_bh; 880 wc->w_type = type; 881 882 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 883 wc->w_large_pages = 1; 884 else 885 wc->w_large_pages = 0; 886 887 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 888 INIT_LIST_HEAD(&wc->w_unwritten_list); 889 890 *wcp = wc; 891 892 return 0; 893 } 894 895 /* 896 * If a page has any new buffers, zero them out here, and mark them uptodate 897 * and dirty so they'll be written out (in order to prevent uninitialised 898 * block data from leaking). And clear the new bit. 899 */ 900 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 901 { 902 unsigned int block_start, block_end; 903 struct buffer_head *head, *bh; 904 905 BUG_ON(!PageLocked(page)); 906 if (!page_has_buffers(page)) 907 return; 908 909 bh = head = page_buffers(page); 910 block_start = 0; 911 do { 912 block_end = block_start + bh->b_size; 913 914 if (buffer_new(bh)) { 915 if (block_end > from && block_start < to) { 916 if (!PageUptodate(page)) { 917 unsigned start, end; 918 919 start = max(from, block_start); 920 end = min(to, block_end); 921 922 zero_user_segment(page, start, end); 923 set_buffer_uptodate(bh); 924 } 925 926 clear_buffer_new(bh); 927 mark_buffer_dirty(bh); 928 } 929 } 930 931 block_start = block_end; 932 bh = bh->b_this_page; 933 } while (bh != head); 934 } 935 936 /* 937 * Only called when we have a failure during allocating write to write 938 * zero's to the newly allocated region. 939 */ 940 static void ocfs2_write_failure(struct inode *inode, 941 struct ocfs2_write_ctxt *wc, 942 loff_t user_pos, unsigned user_len) 943 { 944 int i; 945 unsigned from = user_pos & (PAGE_SIZE - 1), 946 to = user_pos + user_len; 947 struct page *tmppage; 948 949 if (wc->w_target_page) 950 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 951 952 for(i = 0; i < wc->w_num_pages; i++) { 953 tmppage = wc->w_pages[i]; 954 955 if (tmppage && page_has_buffers(tmppage)) { 956 if (ocfs2_should_order_data(inode)) 957 ocfs2_jbd2_file_inode(wc->w_handle, inode); 958 959 block_commit_write(tmppage, from, to); 960 } 961 } 962 } 963 964 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 965 struct ocfs2_write_ctxt *wc, 966 struct page *page, u32 cpos, 967 loff_t user_pos, unsigned user_len, 968 int new) 969 { 970 int ret; 971 unsigned int map_from = 0, map_to = 0; 972 unsigned int cluster_start, cluster_end; 973 unsigned int user_data_from = 0, user_data_to = 0; 974 975 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 976 &cluster_start, &cluster_end); 977 978 /* treat the write as new if the a hole/lseek spanned across 979 * the page boundary. 980 */ 981 new = new | ((i_size_read(inode) <= page_offset(page)) && 982 (page_offset(page) <= user_pos)); 983 984 if (page == wc->w_target_page) { 985 map_from = user_pos & (PAGE_SIZE - 1); 986 map_to = map_from + user_len; 987 988 if (new) 989 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 990 cluster_start, cluster_end, 991 new); 992 else 993 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 994 map_from, map_to, new); 995 if (ret) { 996 mlog_errno(ret); 997 goto out; 998 } 999 1000 user_data_from = map_from; 1001 user_data_to = map_to; 1002 if (new) { 1003 map_from = cluster_start; 1004 map_to = cluster_end; 1005 } 1006 } else { 1007 /* 1008 * If we haven't allocated the new page yet, we 1009 * shouldn't be writing it out without copying user 1010 * data. This is likely a math error from the caller. 1011 */ 1012 BUG_ON(!new); 1013 1014 map_from = cluster_start; 1015 map_to = cluster_end; 1016 1017 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1018 cluster_start, cluster_end, new); 1019 if (ret) { 1020 mlog_errno(ret); 1021 goto out; 1022 } 1023 } 1024 1025 /* 1026 * Parts of newly allocated pages need to be zero'd. 1027 * 1028 * Above, we have also rewritten 'to' and 'from' - as far as 1029 * the rest of the function is concerned, the entire cluster 1030 * range inside of a page needs to be written. 1031 * 1032 * We can skip this if the page is up to date - it's already 1033 * been zero'd from being read in as a hole. 1034 */ 1035 if (new && !PageUptodate(page)) 1036 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1037 cpos, user_data_from, user_data_to); 1038 1039 flush_dcache_page(page); 1040 1041 out: 1042 return ret; 1043 } 1044 1045 /* 1046 * This function will only grab one clusters worth of pages. 1047 */ 1048 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1049 struct ocfs2_write_ctxt *wc, 1050 u32 cpos, loff_t user_pos, 1051 unsigned user_len, int new, 1052 struct page *mmap_page) 1053 { 1054 int ret = 0, i; 1055 unsigned long start, target_index, end_index, index; 1056 struct inode *inode = mapping->host; 1057 loff_t last_byte; 1058 1059 target_index = user_pos >> PAGE_SHIFT; 1060 1061 /* 1062 * Figure out how many pages we'll be manipulating here. For 1063 * non allocating write, we just change the one 1064 * page. Otherwise, we'll need a whole clusters worth. If we're 1065 * writing past i_size, we only need enough pages to cover the 1066 * last page of the write. 1067 */ 1068 if (new) { 1069 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1070 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1071 /* 1072 * We need the index *past* the last page we could possibly 1073 * touch. This is the page past the end of the write or 1074 * i_size, whichever is greater. 1075 */ 1076 last_byte = max(user_pos + user_len, i_size_read(inode)); 1077 BUG_ON(last_byte < 1); 1078 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1079 if ((start + wc->w_num_pages) > end_index) 1080 wc->w_num_pages = end_index - start; 1081 } else { 1082 wc->w_num_pages = 1; 1083 start = target_index; 1084 } 1085 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1086 1087 for(i = 0; i < wc->w_num_pages; i++) { 1088 index = start + i; 1089 1090 if (index >= target_index && index <= end_index && 1091 wc->w_type == OCFS2_WRITE_MMAP) { 1092 /* 1093 * ocfs2_pagemkwrite() is a little different 1094 * and wants us to directly use the page 1095 * passed in. 1096 */ 1097 lock_page(mmap_page); 1098 1099 /* Exit and let the caller retry */ 1100 if (mmap_page->mapping != mapping) { 1101 WARN_ON(mmap_page->mapping); 1102 unlock_page(mmap_page); 1103 ret = -EAGAIN; 1104 goto out; 1105 } 1106 1107 get_page(mmap_page); 1108 wc->w_pages[i] = mmap_page; 1109 wc->w_target_locked = true; 1110 } else if (index >= target_index && index <= end_index && 1111 wc->w_type == OCFS2_WRITE_DIRECT) { 1112 /* Direct write has no mapping page. */ 1113 wc->w_pages[i] = NULL; 1114 continue; 1115 } else { 1116 wc->w_pages[i] = find_or_create_page(mapping, index, 1117 GFP_NOFS); 1118 if (!wc->w_pages[i]) { 1119 ret = -ENOMEM; 1120 mlog_errno(ret); 1121 goto out; 1122 } 1123 } 1124 wait_for_stable_page(wc->w_pages[i]); 1125 1126 if (index == target_index) 1127 wc->w_target_page = wc->w_pages[i]; 1128 } 1129 out: 1130 if (ret) 1131 wc->w_target_locked = false; 1132 return ret; 1133 } 1134 1135 /* 1136 * Prepare a single cluster for write one cluster into the file. 1137 */ 1138 static int ocfs2_write_cluster(struct address_space *mapping, 1139 u32 *phys, unsigned int new, 1140 unsigned int clear_unwritten, 1141 unsigned int should_zero, 1142 struct ocfs2_alloc_context *data_ac, 1143 struct ocfs2_alloc_context *meta_ac, 1144 struct ocfs2_write_ctxt *wc, u32 cpos, 1145 loff_t user_pos, unsigned user_len) 1146 { 1147 int ret, i; 1148 u64 p_blkno; 1149 struct inode *inode = mapping->host; 1150 struct ocfs2_extent_tree et; 1151 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1152 1153 if (new) { 1154 u32 tmp_pos; 1155 1156 /* 1157 * This is safe to call with the page locks - it won't take 1158 * any additional semaphores or cluster locks. 1159 */ 1160 tmp_pos = cpos; 1161 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1162 &tmp_pos, 1, !clear_unwritten, 1163 wc->w_di_bh, wc->w_handle, 1164 data_ac, meta_ac, NULL); 1165 /* 1166 * This shouldn't happen because we must have already 1167 * calculated the correct meta data allocation required. The 1168 * internal tree allocation code should know how to increase 1169 * transaction credits itself. 1170 * 1171 * If need be, we could handle -EAGAIN for a 1172 * RESTART_TRANS here. 1173 */ 1174 mlog_bug_on_msg(ret == -EAGAIN, 1175 "Inode %llu: EAGAIN return during allocation.\n", 1176 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1177 if (ret < 0) { 1178 mlog_errno(ret); 1179 goto out; 1180 } 1181 } else if (clear_unwritten) { 1182 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1183 wc->w_di_bh); 1184 ret = ocfs2_mark_extent_written(inode, &et, 1185 wc->w_handle, cpos, 1, *phys, 1186 meta_ac, &wc->w_dealloc); 1187 if (ret < 0) { 1188 mlog_errno(ret); 1189 goto out; 1190 } 1191 } 1192 1193 /* 1194 * The only reason this should fail is due to an inability to 1195 * find the extent added. 1196 */ 1197 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1198 if (ret < 0) { 1199 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1200 "at logical cluster %u", 1201 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1202 goto out; 1203 } 1204 1205 BUG_ON(*phys == 0); 1206 1207 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1208 if (!should_zero) 1209 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1210 1211 for(i = 0; i < wc->w_num_pages; i++) { 1212 int tmpret; 1213 1214 /* This is the direct io target page. */ 1215 if (wc->w_pages[i] == NULL) { 1216 p_blkno++; 1217 continue; 1218 } 1219 1220 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1221 wc->w_pages[i], cpos, 1222 user_pos, user_len, 1223 should_zero); 1224 if (tmpret) { 1225 mlog_errno(tmpret); 1226 if (ret == 0) 1227 ret = tmpret; 1228 } 1229 } 1230 1231 /* 1232 * We only have cleanup to do in case of allocating write. 1233 */ 1234 if (ret && new) 1235 ocfs2_write_failure(inode, wc, user_pos, user_len); 1236 1237 out: 1238 1239 return ret; 1240 } 1241 1242 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1243 struct ocfs2_alloc_context *data_ac, 1244 struct ocfs2_alloc_context *meta_ac, 1245 struct ocfs2_write_ctxt *wc, 1246 loff_t pos, unsigned len) 1247 { 1248 int ret, i; 1249 loff_t cluster_off; 1250 unsigned int local_len = len; 1251 struct ocfs2_write_cluster_desc *desc; 1252 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1253 1254 for (i = 0; i < wc->w_clen; i++) { 1255 desc = &wc->w_desc[i]; 1256 1257 /* 1258 * We have to make sure that the total write passed in 1259 * doesn't extend past a single cluster. 1260 */ 1261 local_len = len; 1262 cluster_off = pos & (osb->s_clustersize - 1); 1263 if ((cluster_off + local_len) > osb->s_clustersize) 1264 local_len = osb->s_clustersize - cluster_off; 1265 1266 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1267 desc->c_new, 1268 desc->c_clear_unwritten, 1269 desc->c_needs_zero, 1270 data_ac, meta_ac, 1271 wc, desc->c_cpos, pos, local_len); 1272 if (ret) { 1273 mlog_errno(ret); 1274 goto out; 1275 } 1276 1277 len -= local_len; 1278 pos += local_len; 1279 } 1280 1281 ret = 0; 1282 out: 1283 return ret; 1284 } 1285 1286 /* 1287 * ocfs2_write_end() wants to know which parts of the target page it 1288 * should complete the write on. It's easiest to compute them ahead of 1289 * time when a more complete view of the write is available. 1290 */ 1291 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1292 struct ocfs2_write_ctxt *wc, 1293 loff_t pos, unsigned len, int alloc) 1294 { 1295 struct ocfs2_write_cluster_desc *desc; 1296 1297 wc->w_target_from = pos & (PAGE_SIZE - 1); 1298 wc->w_target_to = wc->w_target_from + len; 1299 1300 if (alloc == 0) 1301 return; 1302 1303 /* 1304 * Allocating write - we may have different boundaries based 1305 * on page size and cluster size. 1306 * 1307 * NOTE: We can no longer compute one value from the other as 1308 * the actual write length and user provided length may be 1309 * different. 1310 */ 1311 1312 if (wc->w_large_pages) { 1313 /* 1314 * We only care about the 1st and last cluster within 1315 * our range and whether they should be zero'd or not. Either 1316 * value may be extended out to the start/end of a 1317 * newly allocated cluster. 1318 */ 1319 desc = &wc->w_desc[0]; 1320 if (desc->c_needs_zero) 1321 ocfs2_figure_cluster_boundaries(osb, 1322 desc->c_cpos, 1323 &wc->w_target_from, 1324 NULL); 1325 1326 desc = &wc->w_desc[wc->w_clen - 1]; 1327 if (desc->c_needs_zero) 1328 ocfs2_figure_cluster_boundaries(osb, 1329 desc->c_cpos, 1330 NULL, 1331 &wc->w_target_to); 1332 } else { 1333 wc->w_target_from = 0; 1334 wc->w_target_to = PAGE_SIZE; 1335 } 1336 } 1337 1338 /* 1339 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1340 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1341 * by the direct io procedure. 1342 * If this is a new extent that allocated by direct io, we should mark it in 1343 * the ip_unwritten_list. 1344 */ 1345 static int ocfs2_unwritten_check(struct inode *inode, 1346 struct ocfs2_write_ctxt *wc, 1347 struct ocfs2_write_cluster_desc *desc) 1348 { 1349 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1350 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1351 int ret = 0; 1352 1353 if (!desc->c_needs_zero) 1354 return 0; 1355 1356 retry: 1357 spin_lock(&oi->ip_lock); 1358 /* Needs not to zero no metter buffer or direct. The one who is zero 1359 * the cluster is doing zero. And he will clear unwritten after all 1360 * cluster io finished. */ 1361 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1362 if (desc->c_cpos == ue->ue_cpos) { 1363 BUG_ON(desc->c_new); 1364 desc->c_needs_zero = 0; 1365 desc->c_clear_unwritten = 0; 1366 goto unlock; 1367 } 1368 } 1369 1370 if (wc->w_type != OCFS2_WRITE_DIRECT) 1371 goto unlock; 1372 1373 if (new == NULL) { 1374 spin_unlock(&oi->ip_lock); 1375 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1376 GFP_NOFS); 1377 if (new == NULL) { 1378 ret = -ENOMEM; 1379 goto out; 1380 } 1381 goto retry; 1382 } 1383 /* This direct write will doing zero. */ 1384 new->ue_cpos = desc->c_cpos; 1385 new->ue_phys = desc->c_phys; 1386 desc->c_clear_unwritten = 0; 1387 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1388 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1389 new = NULL; 1390 unlock: 1391 spin_unlock(&oi->ip_lock); 1392 out: 1393 if (new) 1394 kfree(new); 1395 return ret; 1396 } 1397 1398 /* 1399 * Populate each single-cluster write descriptor in the write context 1400 * with information about the i/o to be done. 1401 * 1402 * Returns the number of clusters that will have to be allocated, as 1403 * well as a worst case estimate of the number of extent records that 1404 * would have to be created during a write to an unwritten region. 1405 */ 1406 static int ocfs2_populate_write_desc(struct inode *inode, 1407 struct ocfs2_write_ctxt *wc, 1408 unsigned int *clusters_to_alloc, 1409 unsigned int *extents_to_split) 1410 { 1411 int ret; 1412 struct ocfs2_write_cluster_desc *desc; 1413 unsigned int num_clusters = 0; 1414 unsigned int ext_flags = 0; 1415 u32 phys = 0; 1416 int i; 1417 1418 *clusters_to_alloc = 0; 1419 *extents_to_split = 0; 1420 1421 for (i = 0; i < wc->w_clen; i++) { 1422 desc = &wc->w_desc[i]; 1423 desc->c_cpos = wc->w_cpos + i; 1424 1425 if (num_clusters == 0) { 1426 /* 1427 * Need to look up the next extent record. 1428 */ 1429 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1430 &num_clusters, &ext_flags); 1431 if (ret) { 1432 mlog_errno(ret); 1433 goto out; 1434 } 1435 1436 /* We should already CoW the refcountd extent. */ 1437 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1438 1439 /* 1440 * Assume worst case - that we're writing in 1441 * the middle of the extent. 1442 * 1443 * We can assume that the write proceeds from 1444 * left to right, in which case the extent 1445 * insert code is smart enough to coalesce the 1446 * next splits into the previous records created. 1447 */ 1448 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1449 *extents_to_split = *extents_to_split + 2; 1450 } else if (phys) { 1451 /* 1452 * Only increment phys if it doesn't describe 1453 * a hole. 1454 */ 1455 phys++; 1456 } 1457 1458 /* 1459 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1460 * file that got extended. w_first_new_cpos tells us 1461 * where the newly allocated clusters are so we can 1462 * zero them. 1463 */ 1464 if (desc->c_cpos >= wc->w_first_new_cpos) { 1465 BUG_ON(phys == 0); 1466 desc->c_needs_zero = 1; 1467 } 1468 1469 desc->c_phys = phys; 1470 if (phys == 0) { 1471 desc->c_new = 1; 1472 desc->c_needs_zero = 1; 1473 desc->c_clear_unwritten = 1; 1474 *clusters_to_alloc = *clusters_to_alloc + 1; 1475 } 1476 1477 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1478 desc->c_clear_unwritten = 1; 1479 desc->c_needs_zero = 1; 1480 } 1481 1482 ret = ocfs2_unwritten_check(inode, wc, desc); 1483 if (ret) { 1484 mlog_errno(ret); 1485 goto out; 1486 } 1487 1488 num_clusters--; 1489 } 1490 1491 ret = 0; 1492 out: 1493 return ret; 1494 } 1495 1496 static int ocfs2_write_begin_inline(struct address_space *mapping, 1497 struct inode *inode, 1498 struct ocfs2_write_ctxt *wc) 1499 { 1500 int ret; 1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1502 struct page *page; 1503 handle_t *handle; 1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1505 1506 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1507 if (IS_ERR(handle)) { 1508 ret = PTR_ERR(handle); 1509 mlog_errno(ret); 1510 goto out; 1511 } 1512 1513 page = find_or_create_page(mapping, 0, GFP_NOFS); 1514 if (!page) { 1515 ocfs2_commit_trans(osb, handle); 1516 ret = -ENOMEM; 1517 mlog_errno(ret); 1518 goto out; 1519 } 1520 /* 1521 * If we don't set w_num_pages then this page won't get unlocked 1522 * and freed on cleanup of the write context. 1523 */ 1524 wc->w_pages[0] = wc->w_target_page = page; 1525 wc->w_num_pages = 1; 1526 1527 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1528 OCFS2_JOURNAL_ACCESS_WRITE); 1529 if (ret) { 1530 ocfs2_commit_trans(osb, handle); 1531 1532 mlog_errno(ret); 1533 goto out; 1534 } 1535 1536 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1537 ocfs2_set_inode_data_inline(inode, di); 1538 1539 if (!PageUptodate(page)) { 1540 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1541 if (ret) { 1542 ocfs2_commit_trans(osb, handle); 1543 1544 goto out; 1545 } 1546 } 1547 1548 wc->w_handle = handle; 1549 out: 1550 return ret; 1551 } 1552 1553 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1554 { 1555 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1556 1557 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1558 return 1; 1559 return 0; 1560 } 1561 1562 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1563 struct inode *inode, loff_t pos, 1564 unsigned len, struct page *mmap_page, 1565 struct ocfs2_write_ctxt *wc) 1566 { 1567 int ret, written = 0; 1568 loff_t end = pos + len; 1569 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1570 struct ocfs2_dinode *di = NULL; 1571 1572 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1573 len, (unsigned long long)pos, 1574 oi->ip_dyn_features); 1575 1576 /* 1577 * Handle inodes which already have inline data 1st. 1578 */ 1579 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1580 if (mmap_page == NULL && 1581 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1582 goto do_inline_write; 1583 1584 /* 1585 * The write won't fit - we have to give this inode an 1586 * inline extent list now. 1587 */ 1588 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1589 if (ret) 1590 mlog_errno(ret); 1591 goto out; 1592 } 1593 1594 /* 1595 * Check whether the inode can accept inline data. 1596 */ 1597 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1598 return 0; 1599 1600 /* 1601 * Check whether the write can fit. 1602 */ 1603 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1604 if (mmap_page || 1605 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1606 return 0; 1607 1608 do_inline_write: 1609 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1610 if (ret) { 1611 mlog_errno(ret); 1612 goto out; 1613 } 1614 1615 /* 1616 * This signals to the caller that the data can be written 1617 * inline. 1618 */ 1619 written = 1; 1620 out: 1621 return written ? written : ret; 1622 } 1623 1624 /* 1625 * This function only does anything for file systems which can't 1626 * handle sparse files. 1627 * 1628 * What we want to do here is fill in any hole between the current end 1629 * of allocation and the end of our write. That way the rest of the 1630 * write path can treat it as an non-allocating write, which has no 1631 * special case code for sparse/nonsparse files. 1632 */ 1633 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1634 struct buffer_head *di_bh, 1635 loff_t pos, unsigned len, 1636 struct ocfs2_write_ctxt *wc) 1637 { 1638 int ret; 1639 loff_t newsize = pos + len; 1640 1641 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1642 1643 if (newsize <= i_size_read(inode)) 1644 return 0; 1645 1646 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1647 if (ret) 1648 mlog_errno(ret); 1649 1650 /* There is no wc if this is call from direct. */ 1651 if (wc) 1652 wc->w_first_new_cpos = 1653 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1654 1655 return ret; 1656 } 1657 1658 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1659 loff_t pos) 1660 { 1661 int ret = 0; 1662 1663 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1664 if (pos > i_size_read(inode)) 1665 ret = ocfs2_zero_extend(inode, di_bh, pos); 1666 1667 return ret; 1668 } 1669 1670 int ocfs2_write_begin_nolock(struct address_space *mapping, 1671 loff_t pos, unsigned len, ocfs2_write_type_t type, 1672 struct page **pagep, void **fsdata, 1673 struct buffer_head *di_bh, struct page *mmap_page) 1674 { 1675 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1676 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1677 struct ocfs2_write_ctxt *wc; 1678 struct inode *inode = mapping->host; 1679 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1680 struct ocfs2_dinode *di; 1681 struct ocfs2_alloc_context *data_ac = NULL; 1682 struct ocfs2_alloc_context *meta_ac = NULL; 1683 handle_t *handle; 1684 struct ocfs2_extent_tree et; 1685 int try_free = 1, ret1; 1686 1687 try_again: 1688 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1689 if (ret) { 1690 mlog_errno(ret); 1691 return ret; 1692 } 1693 1694 if (ocfs2_supports_inline_data(osb)) { 1695 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1696 mmap_page, wc); 1697 if (ret == 1) { 1698 ret = 0; 1699 goto success; 1700 } 1701 if (ret < 0) { 1702 mlog_errno(ret); 1703 goto out; 1704 } 1705 } 1706 1707 /* Direct io change i_size late, should not zero tail here. */ 1708 if (type != OCFS2_WRITE_DIRECT) { 1709 if (ocfs2_sparse_alloc(osb)) 1710 ret = ocfs2_zero_tail(inode, di_bh, pos); 1711 else 1712 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1713 len, wc); 1714 if (ret) { 1715 mlog_errno(ret); 1716 goto out; 1717 } 1718 } 1719 1720 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1721 if (ret < 0) { 1722 mlog_errno(ret); 1723 goto out; 1724 } else if (ret == 1) { 1725 clusters_need = wc->w_clen; 1726 ret = ocfs2_refcount_cow(inode, di_bh, 1727 wc->w_cpos, wc->w_clen, UINT_MAX); 1728 if (ret) { 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 } 1733 1734 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1735 &extents_to_split); 1736 if (ret) { 1737 mlog_errno(ret); 1738 goto out; 1739 } 1740 clusters_need += clusters_to_alloc; 1741 1742 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1743 1744 trace_ocfs2_write_begin_nolock( 1745 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1746 (long long)i_size_read(inode), 1747 le32_to_cpu(di->i_clusters), 1748 pos, len, type, mmap_page, 1749 clusters_to_alloc, extents_to_split); 1750 1751 /* 1752 * We set w_target_from, w_target_to here so that 1753 * ocfs2_write_end() knows which range in the target page to 1754 * write out. An allocation requires that we write the entire 1755 * cluster range. 1756 */ 1757 if (clusters_to_alloc || extents_to_split) { 1758 /* 1759 * XXX: We are stretching the limits of 1760 * ocfs2_lock_allocators(). It greatly over-estimates 1761 * the work to be done. 1762 */ 1763 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1764 wc->w_di_bh); 1765 ret = ocfs2_lock_allocators(inode, &et, 1766 clusters_to_alloc, extents_to_split, 1767 &data_ac, &meta_ac); 1768 if (ret) { 1769 mlog_errno(ret); 1770 goto out; 1771 } 1772 1773 if (data_ac) 1774 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1775 1776 credits = ocfs2_calc_extend_credits(inode->i_sb, 1777 &di->id2.i_list); 1778 } else if (type == OCFS2_WRITE_DIRECT) 1779 /* direct write needs not to start trans if no extents alloc. */ 1780 goto success; 1781 1782 /* 1783 * We have to zero sparse allocated clusters, unwritten extent clusters, 1784 * and non-sparse clusters we just extended. For non-sparse writes, 1785 * we know zeros will only be needed in the first and/or last cluster. 1786 */ 1787 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1788 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1789 cluster_of_pages = 1; 1790 else 1791 cluster_of_pages = 0; 1792 1793 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1794 1795 handle = ocfs2_start_trans(osb, credits); 1796 if (IS_ERR(handle)) { 1797 ret = PTR_ERR(handle); 1798 mlog_errno(ret); 1799 goto out; 1800 } 1801 1802 wc->w_handle = handle; 1803 1804 if (clusters_to_alloc) { 1805 ret = dquot_alloc_space_nodirty(inode, 1806 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1807 if (ret) 1808 goto out_commit; 1809 } 1810 1811 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1812 OCFS2_JOURNAL_ACCESS_WRITE); 1813 if (ret) { 1814 mlog_errno(ret); 1815 goto out_quota; 1816 } 1817 1818 /* 1819 * Fill our page array first. That way we've grabbed enough so 1820 * that we can zero and flush if we error after adding the 1821 * extent. 1822 */ 1823 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1824 cluster_of_pages, mmap_page); 1825 if (ret && ret != -EAGAIN) { 1826 mlog_errno(ret); 1827 goto out_quota; 1828 } 1829 1830 /* 1831 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1832 * the target page. In this case, we exit with no error and no target 1833 * page. This will trigger the caller, page_mkwrite(), to re-try 1834 * the operation. 1835 */ 1836 if (ret == -EAGAIN) { 1837 BUG_ON(wc->w_target_page); 1838 ret = 0; 1839 goto out_quota; 1840 } 1841 1842 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1843 len); 1844 if (ret) { 1845 mlog_errno(ret); 1846 goto out_quota; 1847 } 1848 1849 if (data_ac) 1850 ocfs2_free_alloc_context(data_ac); 1851 if (meta_ac) 1852 ocfs2_free_alloc_context(meta_ac); 1853 1854 success: 1855 if (pagep) 1856 *pagep = wc->w_target_page; 1857 *fsdata = wc; 1858 return 0; 1859 out_quota: 1860 if (clusters_to_alloc) 1861 dquot_free_space(inode, 1862 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1863 out_commit: 1864 ocfs2_commit_trans(osb, handle); 1865 1866 out: 1867 /* 1868 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1869 * even in case of error here like ENOSPC and ENOMEM. So, we need 1870 * to unlock the target page manually to prevent deadlocks when 1871 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1872 * to VM code. 1873 */ 1874 if (wc->w_target_locked) 1875 unlock_page(mmap_page); 1876 1877 ocfs2_free_write_ctxt(inode, wc); 1878 1879 if (data_ac) { 1880 ocfs2_free_alloc_context(data_ac); 1881 data_ac = NULL; 1882 } 1883 if (meta_ac) { 1884 ocfs2_free_alloc_context(meta_ac); 1885 meta_ac = NULL; 1886 } 1887 1888 if (ret == -ENOSPC && try_free) { 1889 /* 1890 * Try to free some truncate log so that we can have enough 1891 * clusters to allocate. 1892 */ 1893 try_free = 0; 1894 1895 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1896 if (ret1 == 1) 1897 goto try_again; 1898 1899 if (ret1 < 0) 1900 mlog_errno(ret1); 1901 } 1902 1903 return ret; 1904 } 1905 1906 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1907 loff_t pos, unsigned len, unsigned flags, 1908 struct page **pagep, void **fsdata) 1909 { 1910 int ret; 1911 struct buffer_head *di_bh = NULL; 1912 struct inode *inode = mapping->host; 1913 1914 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1915 if (ret) { 1916 mlog_errno(ret); 1917 return ret; 1918 } 1919 1920 /* 1921 * Take alloc sem here to prevent concurrent lookups. That way 1922 * the mapping, zeroing and tree manipulation within 1923 * ocfs2_write() will be safe against ->readpage(). This 1924 * should also serve to lock out allocation from a shared 1925 * writeable region. 1926 */ 1927 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1928 1929 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1930 pagep, fsdata, di_bh, NULL); 1931 if (ret) { 1932 mlog_errno(ret); 1933 goto out_fail; 1934 } 1935 1936 brelse(di_bh); 1937 1938 return 0; 1939 1940 out_fail: 1941 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1942 1943 brelse(di_bh); 1944 ocfs2_inode_unlock(inode, 1); 1945 1946 return ret; 1947 } 1948 1949 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1950 unsigned len, unsigned *copied, 1951 struct ocfs2_dinode *di, 1952 struct ocfs2_write_ctxt *wc) 1953 { 1954 void *kaddr; 1955 1956 if (unlikely(*copied < len)) { 1957 if (!PageUptodate(wc->w_target_page)) { 1958 *copied = 0; 1959 return; 1960 } 1961 } 1962 1963 kaddr = kmap_atomic(wc->w_target_page); 1964 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1965 kunmap_atomic(kaddr); 1966 1967 trace_ocfs2_write_end_inline( 1968 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1969 (unsigned long long)pos, *copied, 1970 le16_to_cpu(di->id2.i_data.id_count), 1971 le16_to_cpu(di->i_dyn_features)); 1972 } 1973 1974 int ocfs2_write_end_nolock(struct address_space *mapping, 1975 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1976 { 1977 int i, ret; 1978 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1979 struct inode *inode = mapping->host; 1980 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1981 struct ocfs2_write_ctxt *wc = fsdata; 1982 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1983 handle_t *handle = wc->w_handle; 1984 struct page *tmppage; 1985 1986 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1987 1988 if (handle) { 1989 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1990 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1991 if (ret) { 1992 copied = ret; 1993 mlog_errno(ret); 1994 goto out; 1995 } 1996 } 1997 1998 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1999 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2000 goto out_write_size; 2001 } 2002 2003 if (unlikely(copied < len) && wc->w_target_page) { 2004 if (!PageUptodate(wc->w_target_page)) 2005 copied = 0; 2006 2007 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2008 start+len); 2009 } 2010 if (wc->w_target_page) 2011 flush_dcache_page(wc->w_target_page); 2012 2013 for(i = 0; i < wc->w_num_pages; i++) { 2014 tmppage = wc->w_pages[i]; 2015 2016 /* This is the direct io target page. */ 2017 if (tmppage == NULL) 2018 continue; 2019 2020 if (tmppage == wc->w_target_page) { 2021 from = wc->w_target_from; 2022 to = wc->w_target_to; 2023 2024 BUG_ON(from > PAGE_SIZE || 2025 to > PAGE_SIZE || 2026 to < from); 2027 } else { 2028 /* 2029 * Pages adjacent to the target (if any) imply 2030 * a hole-filling write in which case we want 2031 * to flush their entire range. 2032 */ 2033 from = 0; 2034 to = PAGE_SIZE; 2035 } 2036 2037 if (page_has_buffers(tmppage)) { 2038 if (handle && ocfs2_should_order_data(inode)) 2039 ocfs2_jbd2_file_inode(handle, inode); 2040 block_commit_write(tmppage, from, to); 2041 } 2042 } 2043 2044 out_write_size: 2045 /* Direct io do not update i_size here. */ 2046 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2047 pos += copied; 2048 if (pos > i_size_read(inode)) { 2049 i_size_write(inode, pos); 2050 mark_inode_dirty(inode); 2051 } 2052 inode->i_blocks = ocfs2_inode_sector_count(inode); 2053 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2054 inode->i_mtime = inode->i_ctime = current_time(inode); 2055 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2056 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2057 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2058 } 2059 if (handle) 2060 ocfs2_journal_dirty(handle, wc->w_di_bh); 2061 2062 out: 2063 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2064 * lock, or it will cause a deadlock since journal commit threads holds 2065 * this lock and will ask for the page lock when flushing the data. 2066 * put it here to preserve the unlock order. 2067 */ 2068 ocfs2_unlock_pages(wc); 2069 2070 if (handle) 2071 ocfs2_commit_trans(osb, handle); 2072 2073 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2074 2075 brelse(wc->w_di_bh); 2076 kfree(wc); 2077 2078 return copied; 2079 } 2080 2081 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2082 loff_t pos, unsigned len, unsigned copied, 2083 struct page *page, void *fsdata) 2084 { 2085 int ret; 2086 struct inode *inode = mapping->host; 2087 2088 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2089 2090 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2091 ocfs2_inode_unlock(inode, 1); 2092 2093 return ret; 2094 } 2095 2096 struct ocfs2_dio_write_ctxt { 2097 struct list_head dw_zero_list; 2098 unsigned dw_zero_count; 2099 int dw_orphaned; 2100 pid_t dw_writer_pid; 2101 }; 2102 2103 static struct ocfs2_dio_write_ctxt * 2104 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2105 { 2106 struct ocfs2_dio_write_ctxt *dwc = NULL; 2107 2108 if (bh->b_private) 2109 return bh->b_private; 2110 2111 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2112 if (dwc == NULL) 2113 return NULL; 2114 INIT_LIST_HEAD(&dwc->dw_zero_list); 2115 dwc->dw_zero_count = 0; 2116 dwc->dw_orphaned = 0; 2117 dwc->dw_writer_pid = task_pid_nr(current); 2118 bh->b_private = dwc; 2119 *alloc = 1; 2120 2121 return dwc; 2122 } 2123 2124 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2125 struct ocfs2_dio_write_ctxt *dwc) 2126 { 2127 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2128 kfree(dwc); 2129 } 2130 2131 /* 2132 * TODO: Make this into a generic get_blocks function. 2133 * 2134 * From do_direct_io in direct-io.c: 2135 * "So what we do is to permit the ->get_blocks function to populate 2136 * bh.b_size with the size of IO which is permitted at this offset and 2137 * this i_blkbits." 2138 * 2139 * This function is called directly from get_more_blocks in direct-io.c. 2140 * 2141 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2142 * fs_count, map_bh, dio->rw == WRITE); 2143 */ 2144 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2145 struct buffer_head *bh_result, int create) 2146 { 2147 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2148 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2149 struct ocfs2_write_ctxt *wc; 2150 struct ocfs2_write_cluster_desc *desc = NULL; 2151 struct ocfs2_dio_write_ctxt *dwc = NULL; 2152 struct buffer_head *di_bh = NULL; 2153 u64 p_blkno; 2154 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2155 unsigned len, total_len = bh_result->b_size; 2156 int ret = 0, first_get_block = 0; 2157 2158 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2159 len = min(total_len, len); 2160 2161 mlog(0, "get block of %lu at %llu:%u req %u\n", 2162 inode->i_ino, pos, len, total_len); 2163 2164 /* 2165 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2166 * we may need to add it to orphan dir. So can not fall to fast path 2167 * while file size will be changed. 2168 */ 2169 if (pos + total_len <= i_size_read(inode)) { 2170 2171 /* This is the fast path for re-write. */ 2172 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2173 if (buffer_mapped(bh_result) && 2174 !buffer_new(bh_result) && 2175 ret == 0) 2176 goto out; 2177 2178 /* Clear state set by ocfs2_get_block. */ 2179 bh_result->b_state = 0; 2180 } 2181 2182 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2183 if (unlikely(dwc == NULL)) { 2184 ret = -ENOMEM; 2185 mlog_errno(ret); 2186 goto out; 2187 } 2188 2189 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2190 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2191 !dwc->dw_orphaned) { 2192 /* 2193 * when we are going to alloc extents beyond file size, add the 2194 * inode to orphan dir, so we can recall those spaces when 2195 * system crashed during write. 2196 */ 2197 ret = ocfs2_add_inode_to_orphan(osb, inode); 2198 if (ret < 0) { 2199 mlog_errno(ret); 2200 goto out; 2201 } 2202 dwc->dw_orphaned = 1; 2203 } 2204 2205 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2206 if (ret) { 2207 mlog_errno(ret); 2208 goto out; 2209 } 2210 2211 down_write(&oi->ip_alloc_sem); 2212 2213 if (first_get_block) { 2214 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 2215 ret = ocfs2_zero_tail(inode, di_bh, pos); 2216 else 2217 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2218 total_len, NULL); 2219 if (ret < 0) { 2220 mlog_errno(ret); 2221 goto unlock; 2222 } 2223 } 2224 2225 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2226 OCFS2_WRITE_DIRECT, NULL, 2227 (void **)&wc, di_bh, NULL); 2228 if (ret) { 2229 mlog_errno(ret); 2230 goto unlock; 2231 } 2232 2233 desc = &wc->w_desc[0]; 2234 2235 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2236 BUG_ON(p_blkno == 0); 2237 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2238 2239 map_bh(bh_result, inode->i_sb, p_blkno); 2240 bh_result->b_size = len; 2241 if (desc->c_needs_zero) 2242 set_buffer_new(bh_result); 2243 2244 /* May sleep in end_io. It should not happen in a irq context. So defer 2245 * it to dio work queue. */ 2246 set_buffer_defer_completion(bh_result); 2247 2248 if (!list_empty(&wc->w_unwritten_list)) { 2249 struct ocfs2_unwritten_extent *ue = NULL; 2250 2251 ue = list_first_entry(&wc->w_unwritten_list, 2252 struct ocfs2_unwritten_extent, 2253 ue_node); 2254 BUG_ON(ue->ue_cpos != desc->c_cpos); 2255 /* The physical address may be 0, fill it. */ 2256 ue->ue_phys = desc->c_phys; 2257 2258 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2259 dwc->dw_zero_count++; 2260 } 2261 2262 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2263 BUG_ON(ret != len); 2264 ret = 0; 2265 unlock: 2266 up_write(&oi->ip_alloc_sem); 2267 ocfs2_inode_unlock(inode, 1); 2268 brelse(di_bh); 2269 out: 2270 if (ret < 0) 2271 ret = -EIO; 2272 return ret; 2273 } 2274 2275 static int ocfs2_dio_end_io_write(struct inode *inode, 2276 struct ocfs2_dio_write_ctxt *dwc, 2277 loff_t offset, 2278 ssize_t bytes) 2279 { 2280 struct ocfs2_cached_dealloc_ctxt dealloc; 2281 struct ocfs2_extent_tree et; 2282 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2283 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2284 struct ocfs2_unwritten_extent *ue = NULL; 2285 struct buffer_head *di_bh = NULL; 2286 struct ocfs2_dinode *di; 2287 struct ocfs2_alloc_context *data_ac = NULL; 2288 struct ocfs2_alloc_context *meta_ac = NULL; 2289 handle_t *handle = NULL; 2290 loff_t end = offset + bytes; 2291 int ret = 0, credits = 0, locked = 0; 2292 2293 ocfs2_init_dealloc_ctxt(&dealloc); 2294 2295 /* We do clear unwritten, delete orphan, change i_size here. If neither 2296 * of these happen, we can skip all this. */ 2297 if (list_empty(&dwc->dw_zero_list) && 2298 end <= i_size_read(inode) && 2299 !dwc->dw_orphaned) 2300 goto out; 2301 2302 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2303 * are in that context. */ 2304 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2305 inode_lock(inode); 2306 locked = 1; 2307 } 2308 2309 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2310 if (ret < 0) { 2311 mlog_errno(ret); 2312 goto out; 2313 } 2314 2315 down_write(&oi->ip_alloc_sem); 2316 2317 /* Delete orphan before acquire i_mutex. */ 2318 if (dwc->dw_orphaned) { 2319 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2320 2321 end = end > i_size_read(inode) ? end : 0; 2322 2323 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2324 !!end, end); 2325 if (ret < 0) 2326 mlog_errno(ret); 2327 } 2328 2329 di = (struct ocfs2_dinode *)di_bh->b_data; 2330 2331 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2332 2333 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2334 &data_ac, &meta_ac); 2335 if (ret) { 2336 mlog_errno(ret); 2337 goto unlock; 2338 } 2339 2340 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2341 2342 handle = ocfs2_start_trans(osb, credits); 2343 if (IS_ERR(handle)) { 2344 ret = PTR_ERR(handle); 2345 mlog_errno(ret); 2346 goto unlock; 2347 } 2348 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2349 OCFS2_JOURNAL_ACCESS_WRITE); 2350 if (ret) { 2351 mlog_errno(ret); 2352 goto commit; 2353 } 2354 2355 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2356 ret = ocfs2_mark_extent_written(inode, &et, handle, 2357 ue->ue_cpos, 1, 2358 ue->ue_phys, 2359 meta_ac, &dealloc); 2360 if (ret < 0) { 2361 mlog_errno(ret); 2362 break; 2363 } 2364 } 2365 2366 if (end > i_size_read(inode)) { 2367 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2368 if (ret < 0) 2369 mlog_errno(ret); 2370 } 2371 commit: 2372 ocfs2_commit_trans(osb, handle); 2373 unlock: 2374 up_write(&oi->ip_alloc_sem); 2375 ocfs2_inode_unlock(inode, 1); 2376 brelse(di_bh); 2377 out: 2378 if (data_ac) 2379 ocfs2_free_alloc_context(data_ac); 2380 if (meta_ac) 2381 ocfs2_free_alloc_context(meta_ac); 2382 ocfs2_run_deallocs(osb, &dealloc); 2383 if (locked) 2384 inode_unlock(inode); 2385 ocfs2_dio_free_write_ctx(inode, dwc); 2386 2387 return ret; 2388 } 2389 2390 /* 2391 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2392 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2393 * to protect io on one node from truncation on another. 2394 */ 2395 static int ocfs2_dio_end_io(struct kiocb *iocb, 2396 loff_t offset, 2397 ssize_t bytes, 2398 void *private) 2399 { 2400 struct inode *inode = file_inode(iocb->ki_filp); 2401 int level; 2402 int ret = 0; 2403 2404 /* this io's submitter should not have unlocked this before we could */ 2405 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2406 2407 if (bytes > 0 && private) 2408 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes); 2409 2410 ocfs2_iocb_clear_rw_locked(iocb); 2411 2412 level = ocfs2_iocb_rw_locked_level(iocb); 2413 ocfs2_rw_unlock(inode, level); 2414 return ret; 2415 } 2416 2417 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2418 { 2419 struct file *file = iocb->ki_filp; 2420 struct inode *inode = file->f_mapping->host; 2421 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2422 get_block_t *get_block; 2423 2424 /* 2425 * Fallback to buffered I/O if we see an inode without 2426 * extents. 2427 */ 2428 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2429 return 0; 2430 2431 /* Fallback to buffered I/O if we do not support append dio. */ 2432 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2433 !ocfs2_supports_append_dio(osb)) 2434 return 0; 2435 2436 if (iov_iter_rw(iter) == READ) 2437 get_block = ocfs2_lock_get_block; 2438 else 2439 get_block = ocfs2_dio_wr_get_block; 2440 2441 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2442 iter, get_block, 2443 ocfs2_dio_end_io, NULL, 0); 2444 } 2445 2446 const struct address_space_operations ocfs2_aops = { 2447 .readpage = ocfs2_readpage, 2448 .readpages = ocfs2_readpages, 2449 .writepage = ocfs2_writepage, 2450 .write_begin = ocfs2_write_begin, 2451 .write_end = ocfs2_write_end, 2452 .bmap = ocfs2_bmap, 2453 .direct_IO = ocfs2_direct_IO, 2454 .invalidatepage = block_invalidatepage, 2455 .releasepage = ocfs2_releasepage, 2456 .migratepage = buffer_migrate_page, 2457 .is_partially_uptodate = block_is_partially_uptodate, 2458 .error_remove_page = generic_error_remove_page, 2459 }; 2460