xref: /linux/fs/ocfs2/aops.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 
48 #include "buffer_head_io.h"
49 
50 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 				   struct buffer_head *bh_result, int create)
52 {
53 	int err = -EIO;
54 	int status;
55 	struct ocfs2_dinode *fe = NULL;
56 	struct buffer_head *bh = NULL;
57 	struct buffer_head *buffer_cache_bh = NULL;
58 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 	void *kaddr;
60 
61 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 		   (unsigned long long)iblock, bh_result, create);
63 
64 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65 
66 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 		     (unsigned long long)iblock);
69 		goto bail;
70 	}
71 
72 	status = ocfs2_read_inode_block(inode, &bh);
73 	if (status < 0) {
74 		mlog_errno(status);
75 		goto bail;
76 	}
77 	fe = (struct ocfs2_dinode *) bh->b_data;
78 
79 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 						    le32_to_cpu(fe->i_clusters))) {
81 		mlog(ML_ERROR, "block offset is outside the allocated size: "
82 		     "%llu\n", (unsigned long long)iblock);
83 		goto bail;
84 	}
85 
86 	/* We don't use the page cache to create symlink data, so if
87 	 * need be, copy it over from the buffer cache. */
88 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90 			    iblock;
91 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 		if (!buffer_cache_bh) {
93 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94 			goto bail;
95 		}
96 
97 		/* we haven't locked out transactions, so a commit
98 		 * could've happened. Since we've got a reference on
99 		 * the bh, even if it commits while we're doing the
100 		 * copy, the data is still good. */
101 		if (buffer_jbd(buffer_cache_bh)
102 		    && ocfs2_inode_is_new(inode)) {
103 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104 			if (!kaddr) {
105 				mlog(ML_ERROR, "couldn't kmap!\n");
106 				goto bail;
107 			}
108 			memcpy(kaddr + (bh_result->b_size * iblock),
109 			       buffer_cache_bh->b_data,
110 			       bh_result->b_size);
111 			kunmap_atomic(kaddr, KM_USER0);
112 			set_buffer_uptodate(bh_result);
113 		}
114 		brelse(buffer_cache_bh);
115 	}
116 
117 	map_bh(bh_result, inode->i_sb,
118 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
119 
120 	err = 0;
121 
122 bail:
123 	brelse(bh);
124 
125 	mlog_exit(err);
126 	return err;
127 }
128 
129 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 			   struct buffer_head *bh_result, int create)
131 {
132 	int err = 0;
133 	unsigned int ext_flags;
134 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 	u64 p_blkno, count, past_eof;
136 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
137 
138 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 		   (unsigned long long)iblock, bh_result, create);
140 
141 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 		     inode, inode->i_ino);
144 
145 	if (S_ISLNK(inode->i_mode)) {
146 		/* this always does I/O for some reason. */
147 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 		goto bail;
149 	}
150 
151 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
152 					  &ext_flags);
153 	if (err) {
154 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 		     (unsigned long long)p_blkno);
157 		goto bail;
158 	}
159 
160 	if (max_blocks < count)
161 		count = max_blocks;
162 
163 	/*
164 	 * ocfs2 never allocates in this function - the only time we
165 	 * need to use BH_New is when we're extending i_size on a file
166 	 * system which doesn't support holes, in which case BH_New
167 	 * allows block_prepare_write() to zero.
168 	 *
169 	 * If we see this on a sparse file system, then a truncate has
170 	 * raced us and removed the cluster. In this case, we clear
171 	 * the buffers dirty and uptodate bits and let the buffer code
172 	 * ignore it as a hole.
173 	 */
174 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 		clear_buffer_dirty(bh_result);
176 		clear_buffer_uptodate(bh_result);
177 		goto bail;
178 	}
179 
180 	/* Treat the unwritten extent as a hole for zeroing purposes. */
181 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182 		map_bh(bh_result, inode->i_sb, p_blkno);
183 
184 	bh_result->b_size = count << inode->i_blkbits;
185 
186 	if (!ocfs2_sparse_alloc(osb)) {
187 		if (p_blkno == 0) {
188 			err = -EIO;
189 			mlog(ML_ERROR,
190 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 			     (unsigned long long)iblock,
192 			     (unsigned long long)p_blkno,
193 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 			dump_stack();
196 		}
197 
198 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
199 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
200 		     (unsigned long long)past_eof);
201 
202 		if (create && (iblock >= past_eof))
203 			set_buffer_new(bh_result);
204 	}
205 
206 bail:
207 	if (err < 0)
208 		err = -EIO;
209 
210 	mlog_exit(err);
211 	return err;
212 }
213 
214 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
215 			   struct buffer_head *di_bh)
216 {
217 	void *kaddr;
218 	loff_t size;
219 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
220 
221 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
222 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
223 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
224 		return -EROFS;
225 	}
226 
227 	size = i_size_read(inode);
228 
229 	if (size > PAGE_CACHE_SIZE ||
230 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
231 		ocfs2_error(inode->i_sb,
232 			    "Inode %llu has with inline data has bad size: %Lu",
233 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
234 			    (unsigned long long)size);
235 		return -EROFS;
236 	}
237 
238 	kaddr = kmap_atomic(page, KM_USER0);
239 	if (size)
240 		memcpy(kaddr, di->id2.i_data.id_data, size);
241 	/* Clear the remaining part of the page */
242 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
243 	flush_dcache_page(page);
244 	kunmap_atomic(kaddr, KM_USER0);
245 
246 	SetPageUptodate(page);
247 
248 	return 0;
249 }
250 
251 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
252 {
253 	int ret;
254 	struct buffer_head *di_bh = NULL;
255 
256 	BUG_ON(!PageLocked(page));
257 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
258 
259 	ret = ocfs2_read_inode_block(inode, &di_bh);
260 	if (ret) {
261 		mlog_errno(ret);
262 		goto out;
263 	}
264 
265 	ret = ocfs2_read_inline_data(inode, page, di_bh);
266 out:
267 	unlock_page(page);
268 
269 	brelse(di_bh);
270 	return ret;
271 }
272 
273 static int ocfs2_readpage(struct file *file, struct page *page)
274 {
275 	struct inode *inode = page->mapping->host;
276 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
277 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
278 	int ret, unlock = 1;
279 
280 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
281 
282 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
283 	if (ret != 0) {
284 		if (ret == AOP_TRUNCATED_PAGE)
285 			unlock = 0;
286 		mlog_errno(ret);
287 		goto out;
288 	}
289 
290 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
291 		ret = AOP_TRUNCATED_PAGE;
292 		goto out_inode_unlock;
293 	}
294 
295 	/*
296 	 * i_size might have just been updated as we grabed the meta lock.  We
297 	 * might now be discovering a truncate that hit on another node.
298 	 * block_read_full_page->get_block freaks out if it is asked to read
299 	 * beyond the end of a file, so we check here.  Callers
300 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
301 	 * and notice that the page they just read isn't needed.
302 	 *
303 	 * XXX sys_readahead() seems to get that wrong?
304 	 */
305 	if (start >= i_size_read(inode)) {
306 		zero_user(page, 0, PAGE_SIZE);
307 		SetPageUptodate(page);
308 		ret = 0;
309 		goto out_alloc;
310 	}
311 
312 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
313 		ret = ocfs2_readpage_inline(inode, page);
314 	else
315 		ret = block_read_full_page(page, ocfs2_get_block);
316 	unlock = 0;
317 
318 out_alloc:
319 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
320 out_inode_unlock:
321 	ocfs2_inode_unlock(inode, 0);
322 out:
323 	if (unlock)
324 		unlock_page(page);
325 	mlog_exit(ret);
326 	return ret;
327 }
328 
329 /*
330  * This is used only for read-ahead. Failures or difficult to handle
331  * situations are safe to ignore.
332  *
333  * Right now, we don't bother with BH_Boundary - in-inode extent lists
334  * are quite large (243 extents on 4k blocks), so most inodes don't
335  * grow out to a tree. If need be, detecting boundary extents could
336  * trivially be added in a future version of ocfs2_get_block().
337  */
338 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
339 			   struct list_head *pages, unsigned nr_pages)
340 {
341 	int ret, err = -EIO;
342 	struct inode *inode = mapping->host;
343 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
344 	loff_t start;
345 	struct page *last;
346 
347 	/*
348 	 * Use the nonblocking flag for the dlm code to avoid page
349 	 * lock inversion, but don't bother with retrying.
350 	 */
351 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
352 	if (ret)
353 		return err;
354 
355 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
356 		ocfs2_inode_unlock(inode, 0);
357 		return err;
358 	}
359 
360 	/*
361 	 * Don't bother with inline-data. There isn't anything
362 	 * to read-ahead in that case anyway...
363 	 */
364 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
365 		goto out_unlock;
366 
367 	/*
368 	 * Check whether a remote node truncated this file - we just
369 	 * drop out in that case as it's not worth handling here.
370 	 */
371 	last = list_entry(pages->prev, struct page, lru);
372 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
373 	if (start >= i_size_read(inode))
374 		goto out_unlock;
375 
376 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
377 
378 out_unlock:
379 	up_read(&oi->ip_alloc_sem);
380 	ocfs2_inode_unlock(inode, 0);
381 
382 	return err;
383 }
384 
385 /* Note: Because we don't support holes, our allocation has
386  * already happened (allocation writes zeros to the file data)
387  * so we don't have to worry about ordered writes in
388  * ocfs2_writepage.
389  *
390  * ->writepage is called during the process of invalidating the page cache
391  * during blocked lock processing.  It can't block on any cluster locks
392  * to during block mapping.  It's relying on the fact that the block
393  * mapping can't have disappeared under the dirty pages that it is
394  * being asked to write back.
395  */
396 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
397 {
398 	int ret;
399 
400 	mlog_entry("(0x%p)\n", page);
401 
402 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
403 
404 	mlog_exit(ret);
405 
406 	return ret;
407 }
408 
409 /*
410  * This is called from ocfs2_write_zero_page() which has handled it's
411  * own cluster locking and has ensured allocation exists for those
412  * blocks to be written.
413  */
414 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
415 			       unsigned from, unsigned to)
416 {
417 	int ret;
418 
419 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
420 
421 	return ret;
422 }
423 
424 /* Taken from ext3. We don't necessarily need the full blown
425  * functionality yet, but IMHO it's better to cut and paste the whole
426  * thing so we can avoid introducing our own bugs (and easily pick up
427  * their fixes when they happen) --Mark */
428 int walk_page_buffers(	handle_t *handle,
429 			struct buffer_head *head,
430 			unsigned from,
431 			unsigned to,
432 			int *partial,
433 			int (*fn)(	handle_t *handle,
434 					struct buffer_head *bh))
435 {
436 	struct buffer_head *bh;
437 	unsigned block_start, block_end;
438 	unsigned blocksize = head->b_size;
439 	int err, ret = 0;
440 	struct buffer_head *next;
441 
442 	for (	bh = head, block_start = 0;
443 		ret == 0 && (bh != head || !block_start);
444 	    	block_start = block_end, bh = next)
445 	{
446 		next = bh->b_this_page;
447 		block_end = block_start + blocksize;
448 		if (block_end <= from || block_start >= to) {
449 			if (partial && !buffer_uptodate(bh))
450 				*partial = 1;
451 			continue;
452 		}
453 		err = (*fn)(handle, bh);
454 		if (!ret)
455 			ret = err;
456 	}
457 	return ret;
458 }
459 
460 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
461 							 struct page *page,
462 							 unsigned from,
463 							 unsigned to)
464 {
465 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
466 	handle_t *handle;
467 	int ret = 0;
468 
469 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
470 	if (IS_ERR(handle)) {
471 		ret = -ENOMEM;
472 		mlog_errno(ret);
473 		goto out;
474 	}
475 
476 	if (ocfs2_should_order_data(inode)) {
477 		ret = ocfs2_jbd2_file_inode(handle, inode);
478 		if (ret < 0)
479 			mlog_errno(ret);
480 	}
481 out:
482 	if (ret) {
483 		if (!IS_ERR(handle))
484 			ocfs2_commit_trans(osb, handle);
485 		handle = ERR_PTR(ret);
486 	}
487 	return handle;
488 }
489 
490 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
491 {
492 	sector_t status;
493 	u64 p_blkno = 0;
494 	int err = 0;
495 	struct inode *inode = mapping->host;
496 
497 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
498 
499 	/* We don't need to lock journal system files, since they aren't
500 	 * accessed concurrently from multiple nodes.
501 	 */
502 	if (!INODE_JOURNAL(inode)) {
503 		err = ocfs2_inode_lock(inode, NULL, 0);
504 		if (err) {
505 			if (err != -ENOENT)
506 				mlog_errno(err);
507 			goto bail;
508 		}
509 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
510 	}
511 
512 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
513 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
514 						  NULL);
515 
516 	if (!INODE_JOURNAL(inode)) {
517 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
518 		ocfs2_inode_unlock(inode, 0);
519 	}
520 
521 	if (err) {
522 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
523 		     (unsigned long long)block);
524 		mlog_errno(err);
525 		goto bail;
526 	}
527 
528 bail:
529 	status = err ? 0 : p_blkno;
530 
531 	mlog_exit((int)status);
532 
533 	return status;
534 }
535 
536 /*
537  * TODO: Make this into a generic get_blocks function.
538  *
539  * From do_direct_io in direct-io.c:
540  *  "So what we do is to permit the ->get_blocks function to populate
541  *   bh.b_size with the size of IO which is permitted at this offset and
542  *   this i_blkbits."
543  *
544  * This function is called directly from get_more_blocks in direct-io.c.
545  *
546  * called like this: dio->get_blocks(dio->inode, fs_startblk,
547  * 					fs_count, map_bh, dio->rw == WRITE);
548  */
549 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
550 				     struct buffer_head *bh_result, int create)
551 {
552 	int ret;
553 	u64 p_blkno, inode_blocks, contig_blocks;
554 	unsigned int ext_flags;
555 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
556 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
557 
558 	/* This function won't even be called if the request isn't all
559 	 * nicely aligned and of the right size, so there's no need
560 	 * for us to check any of that. */
561 
562 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
563 
564 	/*
565 	 * Any write past EOF is not allowed because we'd be extending.
566 	 */
567 	if (create && (iblock + max_blocks) > inode_blocks) {
568 		ret = -EIO;
569 		goto bail;
570 	}
571 
572 	/* This figures out the size of the next contiguous block, and
573 	 * our logical offset */
574 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 					  &contig_blocks, &ext_flags);
576 	if (ret) {
577 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 		     (unsigned long long)iblock);
579 		ret = -EIO;
580 		goto bail;
581 	}
582 
583 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
584 		ocfs2_error(inode->i_sb,
585 			    "Inode %llu has a hole at block %llu\n",
586 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
587 			    (unsigned long long)iblock);
588 		ret = -EROFS;
589 		goto bail;
590 	}
591 
592 	/*
593 	 * get_more_blocks() expects us to describe a hole by clearing
594 	 * the mapped bit on bh_result().
595 	 *
596 	 * Consider an unwritten extent as a hole.
597 	 */
598 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
599 		map_bh(bh_result, inode->i_sb, p_blkno);
600 	else {
601 		/*
602 		 * ocfs2_prepare_inode_for_write() should have caught
603 		 * the case where we'd be filling a hole and triggered
604 		 * a buffered write instead.
605 		 */
606 		if (create) {
607 			ret = -EIO;
608 			mlog_errno(ret);
609 			goto bail;
610 		}
611 
612 		clear_buffer_mapped(bh_result);
613 	}
614 
615 	/* make sure we don't map more than max_blocks blocks here as
616 	   that's all the kernel will handle at this point. */
617 	if (max_blocks < contig_blocks)
618 		contig_blocks = max_blocks;
619 	bh_result->b_size = contig_blocks << blocksize_bits;
620 bail:
621 	return ret;
622 }
623 
624 /*
625  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
626  * particularly interested in the aio/dio case.  Like the core uses
627  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
628  * truncation on another.
629  */
630 static void ocfs2_dio_end_io(struct kiocb *iocb,
631 			     loff_t offset,
632 			     ssize_t bytes,
633 			     void *private)
634 {
635 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
636 	int level;
637 
638 	/* this io's submitter should not have unlocked this before we could */
639 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
640 
641 	ocfs2_iocb_clear_rw_locked(iocb);
642 
643 	level = ocfs2_iocb_rw_locked_level(iocb);
644 	if (!level)
645 		up_read(&inode->i_alloc_sem);
646 	ocfs2_rw_unlock(inode, level);
647 }
648 
649 /*
650  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
651  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
652  * do journalled data.
653  */
654 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
655 {
656 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
657 
658 	jbd2_journal_invalidatepage(journal, page, offset);
659 }
660 
661 static int ocfs2_releasepage(struct page *page, gfp_t wait)
662 {
663 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
664 
665 	if (!page_has_buffers(page))
666 		return 0;
667 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
668 }
669 
670 static ssize_t ocfs2_direct_IO(int rw,
671 			       struct kiocb *iocb,
672 			       const struct iovec *iov,
673 			       loff_t offset,
674 			       unsigned long nr_segs)
675 {
676 	struct file *file = iocb->ki_filp;
677 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
678 	int ret;
679 
680 	mlog_entry_void();
681 
682 	/*
683 	 * Fallback to buffered I/O if we see an inode without
684 	 * extents.
685 	 */
686 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
687 		return 0;
688 
689 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
690 					    inode->i_sb->s_bdev, iov, offset,
691 					    nr_segs,
692 					    ocfs2_direct_IO_get_blocks,
693 					    ocfs2_dio_end_io);
694 
695 	mlog_exit(ret);
696 	return ret;
697 }
698 
699 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
700 					    u32 cpos,
701 					    unsigned int *start,
702 					    unsigned int *end)
703 {
704 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
705 
706 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
707 		unsigned int cpp;
708 
709 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
710 
711 		cluster_start = cpos % cpp;
712 		cluster_start = cluster_start << osb->s_clustersize_bits;
713 
714 		cluster_end = cluster_start + osb->s_clustersize;
715 	}
716 
717 	BUG_ON(cluster_start > PAGE_SIZE);
718 	BUG_ON(cluster_end > PAGE_SIZE);
719 
720 	if (start)
721 		*start = cluster_start;
722 	if (end)
723 		*end = cluster_end;
724 }
725 
726 /*
727  * 'from' and 'to' are the region in the page to avoid zeroing.
728  *
729  * If pagesize > clustersize, this function will avoid zeroing outside
730  * of the cluster boundary.
731  *
732  * from == to == 0 is code for "zero the entire cluster region"
733  */
734 static void ocfs2_clear_page_regions(struct page *page,
735 				     struct ocfs2_super *osb, u32 cpos,
736 				     unsigned from, unsigned to)
737 {
738 	void *kaddr;
739 	unsigned int cluster_start, cluster_end;
740 
741 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
742 
743 	kaddr = kmap_atomic(page, KM_USER0);
744 
745 	if (from || to) {
746 		if (from > cluster_start)
747 			memset(kaddr + cluster_start, 0, from - cluster_start);
748 		if (to < cluster_end)
749 			memset(kaddr + to, 0, cluster_end - to);
750 	} else {
751 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
752 	}
753 
754 	kunmap_atomic(kaddr, KM_USER0);
755 }
756 
757 /*
758  * Nonsparse file systems fully allocate before we get to the write
759  * code. This prevents ocfs2_write() from tagging the write as an
760  * allocating one, which means ocfs2_map_page_blocks() might try to
761  * read-in the blocks at the tail of our file. Avoid reading them by
762  * testing i_size against each block offset.
763  */
764 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
765 				 unsigned int block_start)
766 {
767 	u64 offset = page_offset(page) + block_start;
768 
769 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
770 		return 1;
771 
772 	if (i_size_read(inode) > offset)
773 		return 1;
774 
775 	return 0;
776 }
777 
778 /*
779  * Some of this taken from block_prepare_write(). We already have our
780  * mapping by now though, and the entire write will be allocating or
781  * it won't, so not much need to use BH_New.
782  *
783  * This will also skip zeroing, which is handled externally.
784  */
785 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
786 			  struct inode *inode, unsigned int from,
787 			  unsigned int to, int new)
788 {
789 	int ret = 0;
790 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
791 	unsigned int block_end, block_start;
792 	unsigned int bsize = 1 << inode->i_blkbits;
793 
794 	if (!page_has_buffers(page))
795 		create_empty_buffers(page, bsize, 0);
796 
797 	head = page_buffers(page);
798 	for (bh = head, block_start = 0; bh != head || !block_start;
799 	     bh = bh->b_this_page, block_start += bsize) {
800 		block_end = block_start + bsize;
801 
802 		clear_buffer_new(bh);
803 
804 		/*
805 		 * Ignore blocks outside of our i/o range -
806 		 * they may belong to unallocated clusters.
807 		 */
808 		if (block_start >= to || block_end <= from) {
809 			if (PageUptodate(page))
810 				set_buffer_uptodate(bh);
811 			continue;
812 		}
813 
814 		/*
815 		 * For an allocating write with cluster size >= page
816 		 * size, we always write the entire page.
817 		 */
818 		if (new)
819 			set_buffer_new(bh);
820 
821 		if (!buffer_mapped(bh)) {
822 			map_bh(bh, inode->i_sb, *p_blkno);
823 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
824 		}
825 
826 		if (PageUptodate(page)) {
827 			if (!buffer_uptodate(bh))
828 				set_buffer_uptodate(bh);
829 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
830 			   !buffer_new(bh) &&
831 			   ocfs2_should_read_blk(inode, page, block_start) &&
832 			   (block_start < from || block_end > to)) {
833 			ll_rw_block(READ, 1, &bh);
834 			*wait_bh++=bh;
835 		}
836 
837 		*p_blkno = *p_blkno + 1;
838 	}
839 
840 	/*
841 	 * If we issued read requests - let them complete.
842 	 */
843 	while(wait_bh > wait) {
844 		wait_on_buffer(*--wait_bh);
845 		if (!buffer_uptodate(*wait_bh))
846 			ret = -EIO;
847 	}
848 
849 	if (ret == 0 || !new)
850 		return ret;
851 
852 	/*
853 	 * If we get -EIO above, zero out any newly allocated blocks
854 	 * to avoid exposing stale data.
855 	 */
856 	bh = head;
857 	block_start = 0;
858 	do {
859 		block_end = block_start + bsize;
860 		if (block_end <= from)
861 			goto next_bh;
862 		if (block_start >= to)
863 			break;
864 
865 		zero_user(page, block_start, bh->b_size);
866 		set_buffer_uptodate(bh);
867 		mark_buffer_dirty(bh);
868 
869 next_bh:
870 		block_start = block_end;
871 		bh = bh->b_this_page;
872 	} while (bh != head);
873 
874 	return ret;
875 }
876 
877 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
878 #define OCFS2_MAX_CTXT_PAGES	1
879 #else
880 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
881 #endif
882 
883 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
884 
885 /*
886  * Describe the state of a single cluster to be written to.
887  */
888 struct ocfs2_write_cluster_desc {
889 	u32		c_cpos;
890 	u32		c_phys;
891 	/*
892 	 * Give this a unique field because c_phys eventually gets
893 	 * filled.
894 	 */
895 	unsigned	c_new;
896 	unsigned	c_unwritten;
897 };
898 
899 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
900 {
901 	return d->c_new || d->c_unwritten;
902 }
903 
904 struct ocfs2_write_ctxt {
905 	/* Logical cluster position / len of write */
906 	u32				w_cpos;
907 	u32				w_clen;
908 
909 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
910 
911 	/*
912 	 * This is true if page_size > cluster_size.
913 	 *
914 	 * It triggers a set of special cases during write which might
915 	 * have to deal with allocating writes to partial pages.
916 	 */
917 	unsigned int			w_large_pages;
918 
919 	/*
920 	 * Pages involved in this write.
921 	 *
922 	 * w_target_page is the page being written to by the user.
923 	 *
924 	 * w_pages is an array of pages which always contains
925 	 * w_target_page, and in the case of an allocating write with
926 	 * page_size < cluster size, it will contain zero'd and mapped
927 	 * pages adjacent to w_target_page which need to be written
928 	 * out in so that future reads from that region will get
929 	 * zero's.
930 	 */
931 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
932 	unsigned int			w_num_pages;
933 	struct page			*w_target_page;
934 
935 	/*
936 	 * ocfs2_write_end() uses this to know what the real range to
937 	 * write in the target should be.
938 	 */
939 	unsigned int			w_target_from;
940 	unsigned int			w_target_to;
941 
942 	/*
943 	 * We could use journal_current_handle() but this is cleaner,
944 	 * IMHO -Mark
945 	 */
946 	handle_t			*w_handle;
947 
948 	struct buffer_head		*w_di_bh;
949 
950 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
951 };
952 
953 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
954 {
955 	int i;
956 
957 	for(i = 0; i < num_pages; i++) {
958 		if (pages[i]) {
959 			unlock_page(pages[i]);
960 			mark_page_accessed(pages[i]);
961 			page_cache_release(pages[i]);
962 		}
963 	}
964 }
965 
966 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
967 {
968 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
969 
970 	brelse(wc->w_di_bh);
971 	kfree(wc);
972 }
973 
974 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 				  struct ocfs2_super *osb, loff_t pos,
976 				  unsigned len, struct buffer_head *di_bh)
977 {
978 	u32 cend;
979 	struct ocfs2_write_ctxt *wc;
980 
981 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982 	if (!wc)
983 		return -ENOMEM;
984 
985 	wc->w_cpos = pos >> osb->s_clustersize_bits;
986 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
987 	wc->w_clen = cend - wc->w_cpos + 1;
988 	get_bh(di_bh);
989 	wc->w_di_bh = di_bh;
990 
991 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
992 		wc->w_large_pages = 1;
993 	else
994 		wc->w_large_pages = 0;
995 
996 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
997 
998 	*wcp = wc;
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * If a page has any new buffers, zero them out here, and mark them uptodate
1005  * and dirty so they'll be written out (in order to prevent uninitialised
1006  * block data from leaking). And clear the new bit.
1007  */
1008 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1009 {
1010 	unsigned int block_start, block_end;
1011 	struct buffer_head *head, *bh;
1012 
1013 	BUG_ON(!PageLocked(page));
1014 	if (!page_has_buffers(page))
1015 		return;
1016 
1017 	bh = head = page_buffers(page);
1018 	block_start = 0;
1019 	do {
1020 		block_end = block_start + bh->b_size;
1021 
1022 		if (buffer_new(bh)) {
1023 			if (block_end > from && block_start < to) {
1024 				if (!PageUptodate(page)) {
1025 					unsigned start, end;
1026 
1027 					start = max(from, block_start);
1028 					end = min(to, block_end);
1029 
1030 					zero_user_segment(page, start, end);
1031 					set_buffer_uptodate(bh);
1032 				}
1033 
1034 				clear_buffer_new(bh);
1035 				mark_buffer_dirty(bh);
1036 			}
1037 		}
1038 
1039 		block_start = block_end;
1040 		bh = bh->b_this_page;
1041 	} while (bh != head);
1042 }
1043 
1044 /*
1045  * Only called when we have a failure during allocating write to write
1046  * zero's to the newly allocated region.
1047  */
1048 static void ocfs2_write_failure(struct inode *inode,
1049 				struct ocfs2_write_ctxt *wc,
1050 				loff_t user_pos, unsigned user_len)
1051 {
1052 	int i;
1053 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1054 		to = user_pos + user_len;
1055 	struct page *tmppage;
1056 
1057 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1058 
1059 	for(i = 0; i < wc->w_num_pages; i++) {
1060 		tmppage = wc->w_pages[i];
1061 
1062 		if (page_has_buffers(tmppage)) {
1063 			if (ocfs2_should_order_data(inode))
1064 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1065 
1066 			block_commit_write(tmppage, from, to);
1067 		}
1068 	}
1069 }
1070 
1071 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1072 					struct ocfs2_write_ctxt *wc,
1073 					struct page *page, u32 cpos,
1074 					loff_t user_pos, unsigned user_len,
1075 					int new)
1076 {
1077 	int ret;
1078 	unsigned int map_from = 0, map_to = 0;
1079 	unsigned int cluster_start, cluster_end;
1080 	unsigned int user_data_from = 0, user_data_to = 0;
1081 
1082 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1083 					&cluster_start, &cluster_end);
1084 
1085 	if (page == wc->w_target_page) {
1086 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1087 		map_to = map_from + user_len;
1088 
1089 		if (new)
1090 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1091 						    cluster_start, cluster_end,
1092 						    new);
1093 		else
1094 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095 						    map_from, map_to, new);
1096 		if (ret) {
1097 			mlog_errno(ret);
1098 			goto out;
1099 		}
1100 
1101 		user_data_from = map_from;
1102 		user_data_to = map_to;
1103 		if (new) {
1104 			map_from = cluster_start;
1105 			map_to = cluster_end;
1106 		}
1107 	} else {
1108 		/*
1109 		 * If we haven't allocated the new page yet, we
1110 		 * shouldn't be writing it out without copying user
1111 		 * data. This is likely a math error from the caller.
1112 		 */
1113 		BUG_ON(!new);
1114 
1115 		map_from = cluster_start;
1116 		map_to = cluster_end;
1117 
1118 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1119 					    cluster_start, cluster_end, new);
1120 		if (ret) {
1121 			mlog_errno(ret);
1122 			goto out;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Parts of newly allocated pages need to be zero'd.
1128 	 *
1129 	 * Above, we have also rewritten 'to' and 'from' - as far as
1130 	 * the rest of the function is concerned, the entire cluster
1131 	 * range inside of a page needs to be written.
1132 	 *
1133 	 * We can skip this if the page is up to date - it's already
1134 	 * been zero'd from being read in as a hole.
1135 	 */
1136 	if (new && !PageUptodate(page))
1137 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1138 					 cpos, user_data_from, user_data_to);
1139 
1140 	flush_dcache_page(page);
1141 
1142 out:
1143 	return ret;
1144 }
1145 
1146 /*
1147  * This function will only grab one clusters worth of pages.
1148  */
1149 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1150 				      struct ocfs2_write_ctxt *wc,
1151 				      u32 cpos, loff_t user_pos, int new,
1152 				      struct page *mmap_page)
1153 {
1154 	int ret = 0, i;
1155 	unsigned long start, target_index, index;
1156 	struct inode *inode = mapping->host;
1157 
1158 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1159 
1160 	/*
1161 	 * Figure out how many pages we'll be manipulating here. For
1162 	 * non allocating write, we just change the one
1163 	 * page. Otherwise, we'll need a whole clusters worth.
1164 	 */
1165 	if (new) {
1166 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1167 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1168 	} else {
1169 		wc->w_num_pages = 1;
1170 		start = target_index;
1171 	}
1172 
1173 	for(i = 0; i < wc->w_num_pages; i++) {
1174 		index = start + i;
1175 
1176 		if (index == target_index && mmap_page) {
1177 			/*
1178 			 * ocfs2_pagemkwrite() is a little different
1179 			 * and wants us to directly use the page
1180 			 * passed in.
1181 			 */
1182 			lock_page(mmap_page);
1183 
1184 			if (mmap_page->mapping != mapping) {
1185 				unlock_page(mmap_page);
1186 				/*
1187 				 * Sanity check - the locking in
1188 				 * ocfs2_pagemkwrite() should ensure
1189 				 * that this code doesn't trigger.
1190 				 */
1191 				ret = -EINVAL;
1192 				mlog_errno(ret);
1193 				goto out;
1194 			}
1195 
1196 			page_cache_get(mmap_page);
1197 			wc->w_pages[i] = mmap_page;
1198 		} else {
1199 			wc->w_pages[i] = find_or_create_page(mapping, index,
1200 							     GFP_NOFS);
1201 			if (!wc->w_pages[i]) {
1202 				ret = -ENOMEM;
1203 				mlog_errno(ret);
1204 				goto out;
1205 			}
1206 		}
1207 
1208 		if (index == target_index)
1209 			wc->w_target_page = wc->w_pages[i];
1210 	}
1211 out:
1212 	return ret;
1213 }
1214 
1215 /*
1216  * Prepare a single cluster for write one cluster into the file.
1217  */
1218 static int ocfs2_write_cluster(struct address_space *mapping,
1219 			       u32 phys, unsigned int unwritten,
1220 			       struct ocfs2_alloc_context *data_ac,
1221 			       struct ocfs2_alloc_context *meta_ac,
1222 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1223 			       loff_t user_pos, unsigned user_len)
1224 {
1225 	int ret, i, new, should_zero = 0;
1226 	u64 v_blkno, p_blkno;
1227 	struct inode *inode = mapping->host;
1228 	struct ocfs2_extent_tree et;
1229 
1230 	new = phys == 0 ? 1 : 0;
1231 	if (new || unwritten)
1232 		should_zero = 1;
1233 
1234 	if (new) {
1235 		u32 tmp_pos;
1236 
1237 		/*
1238 		 * This is safe to call with the page locks - it won't take
1239 		 * any additional semaphores or cluster locks.
1240 		 */
1241 		tmp_pos = cpos;
1242 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1243 					   &tmp_pos, 1, 0, wc->w_di_bh,
1244 					   wc->w_handle, data_ac,
1245 					   meta_ac, NULL);
1246 		/*
1247 		 * This shouldn't happen because we must have already
1248 		 * calculated the correct meta data allocation required. The
1249 		 * internal tree allocation code should know how to increase
1250 		 * transaction credits itself.
1251 		 *
1252 		 * If need be, we could handle -EAGAIN for a
1253 		 * RESTART_TRANS here.
1254 		 */
1255 		mlog_bug_on_msg(ret == -EAGAIN,
1256 				"Inode %llu: EAGAIN return during allocation.\n",
1257 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1258 		if (ret < 0) {
1259 			mlog_errno(ret);
1260 			goto out;
1261 		}
1262 	} else if (unwritten) {
1263 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1264 		ret = ocfs2_mark_extent_written(inode, &et,
1265 						wc->w_handle, cpos, 1, phys,
1266 						meta_ac, &wc->w_dealloc);
1267 		if (ret < 0) {
1268 			mlog_errno(ret);
1269 			goto out;
1270 		}
1271 	}
1272 
1273 	if (should_zero)
1274 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1275 	else
1276 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1277 
1278 	/*
1279 	 * The only reason this should fail is due to an inability to
1280 	 * find the extent added.
1281 	 */
1282 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1283 					  NULL);
1284 	if (ret < 0) {
1285 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1286 			    "at logical block %llu",
1287 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1288 			    (unsigned long long)v_blkno);
1289 		goto out;
1290 	}
1291 
1292 	BUG_ON(p_blkno == 0);
1293 
1294 	for(i = 0; i < wc->w_num_pages; i++) {
1295 		int tmpret;
1296 
1297 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1298 						      wc->w_pages[i], cpos,
1299 						      user_pos, user_len,
1300 						      should_zero);
1301 		if (tmpret) {
1302 			mlog_errno(tmpret);
1303 			if (ret == 0)
1304 				tmpret = ret;
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * We only have cleanup to do in case of allocating write.
1310 	 */
1311 	if (ret && new)
1312 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1313 
1314 out:
1315 
1316 	return ret;
1317 }
1318 
1319 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1320 				       struct ocfs2_alloc_context *data_ac,
1321 				       struct ocfs2_alloc_context *meta_ac,
1322 				       struct ocfs2_write_ctxt *wc,
1323 				       loff_t pos, unsigned len)
1324 {
1325 	int ret, i;
1326 	loff_t cluster_off;
1327 	unsigned int local_len = len;
1328 	struct ocfs2_write_cluster_desc *desc;
1329 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1330 
1331 	for (i = 0; i < wc->w_clen; i++) {
1332 		desc = &wc->w_desc[i];
1333 
1334 		/*
1335 		 * We have to make sure that the total write passed in
1336 		 * doesn't extend past a single cluster.
1337 		 */
1338 		local_len = len;
1339 		cluster_off = pos & (osb->s_clustersize - 1);
1340 		if ((cluster_off + local_len) > osb->s_clustersize)
1341 			local_len = osb->s_clustersize - cluster_off;
1342 
1343 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1344 					  desc->c_unwritten, data_ac, meta_ac,
1345 					  wc, desc->c_cpos, pos, local_len);
1346 		if (ret) {
1347 			mlog_errno(ret);
1348 			goto out;
1349 		}
1350 
1351 		len -= local_len;
1352 		pos += local_len;
1353 	}
1354 
1355 	ret = 0;
1356 out:
1357 	return ret;
1358 }
1359 
1360 /*
1361  * ocfs2_write_end() wants to know which parts of the target page it
1362  * should complete the write on. It's easiest to compute them ahead of
1363  * time when a more complete view of the write is available.
1364  */
1365 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1366 					struct ocfs2_write_ctxt *wc,
1367 					loff_t pos, unsigned len, int alloc)
1368 {
1369 	struct ocfs2_write_cluster_desc *desc;
1370 
1371 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1372 	wc->w_target_to = wc->w_target_from + len;
1373 
1374 	if (alloc == 0)
1375 		return;
1376 
1377 	/*
1378 	 * Allocating write - we may have different boundaries based
1379 	 * on page size and cluster size.
1380 	 *
1381 	 * NOTE: We can no longer compute one value from the other as
1382 	 * the actual write length and user provided length may be
1383 	 * different.
1384 	 */
1385 
1386 	if (wc->w_large_pages) {
1387 		/*
1388 		 * We only care about the 1st and last cluster within
1389 		 * our range and whether they should be zero'd or not. Either
1390 		 * value may be extended out to the start/end of a
1391 		 * newly allocated cluster.
1392 		 */
1393 		desc = &wc->w_desc[0];
1394 		if (ocfs2_should_zero_cluster(desc))
1395 			ocfs2_figure_cluster_boundaries(osb,
1396 							desc->c_cpos,
1397 							&wc->w_target_from,
1398 							NULL);
1399 
1400 		desc = &wc->w_desc[wc->w_clen - 1];
1401 		if (ocfs2_should_zero_cluster(desc))
1402 			ocfs2_figure_cluster_boundaries(osb,
1403 							desc->c_cpos,
1404 							NULL,
1405 							&wc->w_target_to);
1406 	} else {
1407 		wc->w_target_from = 0;
1408 		wc->w_target_to = PAGE_CACHE_SIZE;
1409 	}
1410 }
1411 
1412 /*
1413  * Populate each single-cluster write descriptor in the write context
1414  * with information about the i/o to be done.
1415  *
1416  * Returns the number of clusters that will have to be allocated, as
1417  * well as a worst case estimate of the number of extent records that
1418  * would have to be created during a write to an unwritten region.
1419  */
1420 static int ocfs2_populate_write_desc(struct inode *inode,
1421 				     struct ocfs2_write_ctxt *wc,
1422 				     unsigned int *clusters_to_alloc,
1423 				     unsigned int *extents_to_split)
1424 {
1425 	int ret;
1426 	struct ocfs2_write_cluster_desc *desc;
1427 	unsigned int num_clusters = 0;
1428 	unsigned int ext_flags = 0;
1429 	u32 phys = 0;
1430 	int i;
1431 
1432 	*clusters_to_alloc = 0;
1433 	*extents_to_split = 0;
1434 
1435 	for (i = 0; i < wc->w_clen; i++) {
1436 		desc = &wc->w_desc[i];
1437 		desc->c_cpos = wc->w_cpos + i;
1438 
1439 		if (num_clusters == 0) {
1440 			/*
1441 			 * Need to look up the next extent record.
1442 			 */
1443 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1444 						 &num_clusters, &ext_flags);
1445 			if (ret) {
1446 				mlog_errno(ret);
1447 				goto out;
1448 			}
1449 
1450 			/*
1451 			 * Assume worst case - that we're writing in
1452 			 * the middle of the extent.
1453 			 *
1454 			 * We can assume that the write proceeds from
1455 			 * left to right, in which case the extent
1456 			 * insert code is smart enough to coalesce the
1457 			 * next splits into the previous records created.
1458 			 */
1459 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1460 				*extents_to_split = *extents_to_split + 2;
1461 		} else if (phys) {
1462 			/*
1463 			 * Only increment phys if it doesn't describe
1464 			 * a hole.
1465 			 */
1466 			phys++;
1467 		}
1468 
1469 		desc->c_phys = phys;
1470 		if (phys == 0) {
1471 			desc->c_new = 1;
1472 			*clusters_to_alloc = *clusters_to_alloc + 1;
1473 		}
1474 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1475 			desc->c_unwritten = 1;
1476 
1477 		num_clusters--;
1478 	}
1479 
1480 	ret = 0;
1481 out:
1482 	return ret;
1483 }
1484 
1485 static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 				    struct inode *inode,
1487 				    struct ocfs2_write_ctxt *wc)
1488 {
1489 	int ret;
1490 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 	struct page *page;
1492 	handle_t *handle;
1493 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494 
1495 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1496 	if (!page) {
1497 		ret = -ENOMEM;
1498 		mlog_errno(ret);
1499 		goto out;
1500 	}
1501 	/*
1502 	 * If we don't set w_num_pages then this page won't get unlocked
1503 	 * and freed on cleanup of the write context.
1504 	 */
1505 	wc->w_pages[0] = wc->w_target_page = page;
1506 	wc->w_num_pages = 1;
1507 
1508 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509 	if (IS_ERR(handle)) {
1510 		ret = PTR_ERR(handle);
1511 		mlog_errno(ret);
1512 		goto out;
1513 	}
1514 
1515 	ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1516 				      OCFS2_JOURNAL_ACCESS_WRITE);
1517 	if (ret) {
1518 		ocfs2_commit_trans(osb, handle);
1519 
1520 		mlog_errno(ret);
1521 		goto out;
1522 	}
1523 
1524 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1525 		ocfs2_set_inode_data_inline(inode, di);
1526 
1527 	if (!PageUptodate(page)) {
1528 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1529 		if (ret) {
1530 			ocfs2_commit_trans(osb, handle);
1531 
1532 			goto out;
1533 		}
1534 	}
1535 
1536 	wc->w_handle = handle;
1537 out:
1538 	return ret;
1539 }
1540 
1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1542 {
1543 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1544 
1545 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1546 		return 1;
1547 	return 0;
1548 }
1549 
1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1551 					  struct inode *inode, loff_t pos,
1552 					  unsigned len, struct page *mmap_page,
1553 					  struct ocfs2_write_ctxt *wc)
1554 {
1555 	int ret, written = 0;
1556 	loff_t end = pos + len;
1557 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1558 	struct ocfs2_dinode *di = NULL;
1559 
1560 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1561 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1562 	     oi->ip_dyn_features);
1563 
1564 	/*
1565 	 * Handle inodes which already have inline data 1st.
1566 	 */
1567 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1568 		if (mmap_page == NULL &&
1569 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1570 			goto do_inline_write;
1571 
1572 		/*
1573 		 * The write won't fit - we have to give this inode an
1574 		 * inline extent list now.
1575 		 */
1576 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1577 		if (ret)
1578 			mlog_errno(ret);
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * Check whether the inode can accept inline data.
1584 	 */
1585 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1586 		return 0;
1587 
1588 	/*
1589 	 * Check whether the write can fit.
1590 	 */
1591 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1592 	if (mmap_page ||
1593 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1594 		return 0;
1595 
1596 do_inline_write:
1597 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1598 	if (ret) {
1599 		mlog_errno(ret);
1600 		goto out;
1601 	}
1602 
1603 	/*
1604 	 * This signals to the caller that the data can be written
1605 	 * inline.
1606 	 */
1607 	written = 1;
1608 out:
1609 	return written ? written : ret;
1610 }
1611 
1612 /*
1613  * This function only does anything for file systems which can't
1614  * handle sparse files.
1615  *
1616  * What we want to do here is fill in any hole between the current end
1617  * of allocation and the end of our write. That way the rest of the
1618  * write path can treat it as an non-allocating write, which has no
1619  * special case code for sparse/nonsparse files.
1620  */
1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1622 					unsigned len,
1623 					struct ocfs2_write_ctxt *wc)
1624 {
1625 	int ret;
1626 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1627 	loff_t newsize = pos + len;
1628 
1629 	if (ocfs2_sparse_alloc(osb))
1630 		return 0;
1631 
1632 	if (newsize <= i_size_read(inode))
1633 		return 0;
1634 
1635 	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1636 	if (ret)
1637 		mlog_errno(ret);
1638 
1639 	return ret;
1640 }
1641 
1642 int ocfs2_write_begin_nolock(struct address_space *mapping,
1643 			     loff_t pos, unsigned len, unsigned flags,
1644 			     struct page **pagep, void **fsdata,
1645 			     struct buffer_head *di_bh, struct page *mmap_page)
1646 {
1647 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1648 	unsigned int clusters_to_alloc, extents_to_split;
1649 	struct ocfs2_write_ctxt *wc;
1650 	struct inode *inode = mapping->host;
1651 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1652 	struct ocfs2_dinode *di;
1653 	struct ocfs2_alloc_context *data_ac = NULL;
1654 	struct ocfs2_alloc_context *meta_ac = NULL;
1655 	handle_t *handle;
1656 	struct ocfs2_extent_tree et;
1657 
1658 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1659 	if (ret) {
1660 		mlog_errno(ret);
1661 		return ret;
1662 	}
1663 
1664 	if (ocfs2_supports_inline_data(osb)) {
1665 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1666 						     mmap_page, wc);
1667 		if (ret == 1) {
1668 			ret = 0;
1669 			goto success;
1670 		}
1671 		if (ret < 0) {
1672 			mlog_errno(ret);
1673 			goto out;
1674 		}
1675 	}
1676 
1677 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1678 	if (ret) {
1679 		mlog_errno(ret);
1680 		goto out;
1681 	}
1682 
1683 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1684 					&extents_to_split);
1685 	if (ret) {
1686 		mlog_errno(ret);
1687 		goto out;
1688 	}
1689 
1690 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1691 
1692 	/*
1693 	 * We set w_target_from, w_target_to here so that
1694 	 * ocfs2_write_end() knows which range in the target page to
1695 	 * write out. An allocation requires that we write the entire
1696 	 * cluster range.
1697 	 */
1698 	if (clusters_to_alloc || extents_to_split) {
1699 		/*
1700 		 * XXX: We are stretching the limits of
1701 		 * ocfs2_lock_allocators(). It greatly over-estimates
1702 		 * the work to be done.
1703 		 */
1704 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1705 		     " clusters_to_add = %u, extents_to_split = %u\n",
1706 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1707 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1708 		     clusters_to_alloc, extents_to_split);
1709 
1710 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1711 		ret = ocfs2_lock_allocators(inode, &et,
1712 					    clusters_to_alloc, extents_to_split,
1713 					    &data_ac, &meta_ac);
1714 		if (ret) {
1715 			mlog_errno(ret);
1716 			goto out;
1717 		}
1718 
1719 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1720 						    &di->id2.i_list,
1721 						    clusters_to_alloc);
1722 
1723 	}
1724 
1725 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1726 				    clusters_to_alloc + extents_to_split);
1727 
1728 	handle = ocfs2_start_trans(osb, credits);
1729 	if (IS_ERR(handle)) {
1730 		ret = PTR_ERR(handle);
1731 		mlog_errno(ret);
1732 		goto out;
1733 	}
1734 
1735 	wc->w_handle = handle;
1736 
1737 	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1738 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1739 		ret = -EDQUOT;
1740 		goto out_commit;
1741 	}
1742 	/*
1743 	 * We don't want this to fail in ocfs2_write_end(), so do it
1744 	 * here.
1745 	 */
1746 	ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1747 				      OCFS2_JOURNAL_ACCESS_WRITE);
1748 	if (ret) {
1749 		mlog_errno(ret);
1750 		goto out_quota;
1751 	}
1752 
1753 	/*
1754 	 * Fill our page array first. That way we've grabbed enough so
1755 	 * that we can zero and flush if we error after adding the
1756 	 * extent.
1757 	 */
1758 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1759 					 clusters_to_alloc + extents_to_split,
1760 					 mmap_page);
1761 	if (ret) {
1762 		mlog_errno(ret);
1763 		goto out_quota;
1764 	}
1765 
1766 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1767 					  len);
1768 	if (ret) {
1769 		mlog_errno(ret);
1770 		goto out_quota;
1771 	}
1772 
1773 	if (data_ac)
1774 		ocfs2_free_alloc_context(data_ac);
1775 	if (meta_ac)
1776 		ocfs2_free_alloc_context(meta_ac);
1777 
1778 success:
1779 	*pagep = wc->w_target_page;
1780 	*fsdata = wc;
1781 	return 0;
1782 out_quota:
1783 	if (clusters_to_alloc)
1784 		vfs_dq_free_space(inode,
1785 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1786 out_commit:
1787 	ocfs2_commit_trans(osb, handle);
1788 
1789 out:
1790 	ocfs2_free_write_ctxt(wc);
1791 
1792 	if (data_ac)
1793 		ocfs2_free_alloc_context(data_ac);
1794 	if (meta_ac)
1795 		ocfs2_free_alloc_context(meta_ac);
1796 	return ret;
1797 }
1798 
1799 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1800 			     loff_t pos, unsigned len, unsigned flags,
1801 			     struct page **pagep, void **fsdata)
1802 {
1803 	int ret;
1804 	struct buffer_head *di_bh = NULL;
1805 	struct inode *inode = mapping->host;
1806 
1807 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1808 	if (ret) {
1809 		mlog_errno(ret);
1810 		return ret;
1811 	}
1812 
1813 	/*
1814 	 * Take alloc sem here to prevent concurrent lookups. That way
1815 	 * the mapping, zeroing and tree manipulation within
1816 	 * ocfs2_write() will be safe against ->readpage(). This
1817 	 * should also serve to lock out allocation from a shared
1818 	 * writeable region.
1819 	 */
1820 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1821 
1822 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1823 				       fsdata, di_bh, NULL);
1824 	if (ret) {
1825 		mlog_errno(ret);
1826 		goto out_fail;
1827 	}
1828 
1829 	brelse(di_bh);
1830 
1831 	return 0;
1832 
1833 out_fail:
1834 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1835 
1836 	brelse(di_bh);
1837 	ocfs2_inode_unlock(inode, 1);
1838 
1839 	return ret;
1840 }
1841 
1842 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1843 				   unsigned len, unsigned *copied,
1844 				   struct ocfs2_dinode *di,
1845 				   struct ocfs2_write_ctxt *wc)
1846 {
1847 	void *kaddr;
1848 
1849 	if (unlikely(*copied < len)) {
1850 		if (!PageUptodate(wc->w_target_page)) {
1851 			*copied = 0;
1852 			return;
1853 		}
1854 	}
1855 
1856 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1857 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1858 	kunmap_atomic(kaddr, KM_USER0);
1859 
1860 	mlog(0, "Data written to inode at offset %llu. "
1861 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1862 	     (unsigned long long)pos, *copied,
1863 	     le16_to_cpu(di->id2.i_data.id_count),
1864 	     le16_to_cpu(di->i_dyn_features));
1865 }
1866 
1867 int ocfs2_write_end_nolock(struct address_space *mapping,
1868 			   loff_t pos, unsigned len, unsigned copied,
1869 			   struct page *page, void *fsdata)
1870 {
1871 	int i;
1872 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1873 	struct inode *inode = mapping->host;
1874 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1875 	struct ocfs2_write_ctxt *wc = fsdata;
1876 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1877 	handle_t *handle = wc->w_handle;
1878 	struct page *tmppage;
1879 
1880 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1881 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1882 		goto out_write_size;
1883 	}
1884 
1885 	if (unlikely(copied < len)) {
1886 		if (!PageUptodate(wc->w_target_page))
1887 			copied = 0;
1888 
1889 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1890 				       start+len);
1891 	}
1892 	flush_dcache_page(wc->w_target_page);
1893 
1894 	for(i = 0; i < wc->w_num_pages; i++) {
1895 		tmppage = wc->w_pages[i];
1896 
1897 		if (tmppage == wc->w_target_page) {
1898 			from = wc->w_target_from;
1899 			to = wc->w_target_to;
1900 
1901 			BUG_ON(from > PAGE_CACHE_SIZE ||
1902 			       to > PAGE_CACHE_SIZE ||
1903 			       to < from);
1904 		} else {
1905 			/*
1906 			 * Pages adjacent to the target (if any) imply
1907 			 * a hole-filling write in which case we want
1908 			 * to flush their entire range.
1909 			 */
1910 			from = 0;
1911 			to = PAGE_CACHE_SIZE;
1912 		}
1913 
1914 		if (page_has_buffers(tmppage)) {
1915 			if (ocfs2_should_order_data(inode))
1916 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1917 			block_commit_write(tmppage, from, to);
1918 		}
1919 	}
1920 
1921 out_write_size:
1922 	pos += copied;
1923 	if (pos > inode->i_size) {
1924 		i_size_write(inode, pos);
1925 		mark_inode_dirty(inode);
1926 	}
1927 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1928 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1929 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1930 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1931 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1932 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1933 
1934 	ocfs2_commit_trans(osb, handle);
1935 
1936 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1937 
1938 	ocfs2_free_write_ctxt(wc);
1939 
1940 	return copied;
1941 }
1942 
1943 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1944 			   loff_t pos, unsigned len, unsigned copied,
1945 			   struct page *page, void *fsdata)
1946 {
1947 	int ret;
1948 	struct inode *inode = mapping->host;
1949 
1950 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1951 
1952 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1953 	ocfs2_inode_unlock(inode, 1);
1954 
1955 	return ret;
1956 }
1957 
1958 const struct address_space_operations ocfs2_aops = {
1959 	.readpage	= ocfs2_readpage,
1960 	.readpages	= ocfs2_readpages,
1961 	.writepage	= ocfs2_writepage,
1962 	.write_begin	= ocfs2_write_begin,
1963 	.write_end	= ocfs2_write_end,
1964 	.bmap		= ocfs2_bmap,
1965 	.sync_page	= block_sync_page,
1966 	.direct_IO	= ocfs2_direct_IO,
1967 	.invalidatepage	= ocfs2_invalidatepage,
1968 	.releasepage	= ocfs2_releasepage,
1969 	.migratepage	= buffer_migrate_page,
1970 };
1971