xref: /linux/fs/ocfs2/aops.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 
49 #include "buffer_head_io.h"
50 
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 				   struct buffer_head *bh_result, int create)
53 {
54 	int err = -EIO;
55 	int status;
56 	struct ocfs2_dinode *fe = NULL;
57 	struct buffer_head *bh = NULL;
58 	struct buffer_head *buffer_cache_bh = NULL;
59 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 	void *kaddr;
61 
62 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 		   (unsigned long long)iblock, bh_result, create);
64 
65 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 
67 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 		     (unsigned long long)iblock);
70 		goto bail;
71 	}
72 
73 	status = ocfs2_read_inode_block(inode, &bh);
74 	if (status < 0) {
75 		mlog_errno(status);
76 		goto bail;
77 	}
78 	fe = (struct ocfs2_dinode *) bh->b_data;
79 
80 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 						    le32_to_cpu(fe->i_clusters))) {
82 		mlog(ML_ERROR, "block offset is outside the allocated size: "
83 		     "%llu\n", (unsigned long long)iblock);
84 		goto bail;
85 	}
86 
87 	/* We don't use the page cache to create symlink data, so if
88 	 * need be, copy it over from the buffer cache. */
89 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 			    iblock;
92 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 		if (!buffer_cache_bh) {
94 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 			goto bail;
96 		}
97 
98 		/* we haven't locked out transactions, so a commit
99 		 * could've happened. Since we've got a reference on
100 		 * the bh, even if it commits while we're doing the
101 		 * copy, the data is still good. */
102 		if (buffer_jbd(buffer_cache_bh)
103 		    && ocfs2_inode_is_new(inode)) {
104 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 			if (!kaddr) {
106 				mlog(ML_ERROR, "couldn't kmap!\n");
107 				goto bail;
108 			}
109 			memcpy(kaddr + (bh_result->b_size * iblock),
110 			       buffer_cache_bh->b_data,
111 			       bh_result->b_size);
112 			kunmap_atomic(kaddr, KM_USER0);
113 			set_buffer_uptodate(bh_result);
114 		}
115 		brelse(buffer_cache_bh);
116 	}
117 
118 	map_bh(bh_result, inode->i_sb,
119 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120 
121 	err = 0;
122 
123 bail:
124 	brelse(bh);
125 
126 	mlog_exit(err);
127 	return err;
128 }
129 
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 		    struct buffer_head *bh_result, int create)
132 {
133 	int err = 0;
134 	unsigned int ext_flags;
135 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 	u64 p_blkno, count, past_eof;
137 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 
139 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 		   (unsigned long long)iblock, bh_result, create);
141 
142 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 		     inode, inode->i_ino);
145 
146 	if (S_ISLNK(inode->i_mode)) {
147 		/* this always does I/O for some reason. */
148 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 		goto bail;
150 	}
151 
152 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 					  &ext_flags);
154 	if (err) {
155 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 		     (unsigned long long)p_blkno);
158 		goto bail;
159 	}
160 
161 	if (max_blocks < count)
162 		count = max_blocks;
163 
164 	/*
165 	 * ocfs2 never allocates in this function - the only time we
166 	 * need to use BH_New is when we're extending i_size on a file
167 	 * system which doesn't support holes, in which case BH_New
168 	 * allows block_prepare_write() to zero.
169 	 *
170 	 * If we see this on a sparse file system, then a truncate has
171 	 * raced us and removed the cluster. In this case, we clear
172 	 * the buffers dirty and uptodate bits and let the buffer code
173 	 * ignore it as a hole.
174 	 */
175 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 		clear_buffer_dirty(bh_result);
177 		clear_buffer_uptodate(bh_result);
178 		goto bail;
179 	}
180 
181 	/* Treat the unwritten extent as a hole for zeroing purposes. */
182 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 		map_bh(bh_result, inode->i_sb, p_blkno);
184 
185 	bh_result->b_size = count << inode->i_blkbits;
186 
187 	if (!ocfs2_sparse_alloc(osb)) {
188 		if (p_blkno == 0) {
189 			err = -EIO;
190 			mlog(ML_ERROR,
191 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 			     (unsigned long long)iblock,
193 			     (unsigned long long)p_blkno,
194 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 			dump_stack();
197 			goto bail;
198 		}
199 
200 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 		     (unsigned long long)past_eof);
203 
204 		if (create && (iblock >= past_eof))
205 			set_buffer_new(bh_result);
206 	}
207 
208 bail:
209 	if (err < 0)
210 		err = -EIO;
211 
212 	mlog_exit(err);
213 	return err;
214 }
215 
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 			   struct buffer_head *di_bh)
218 {
219 	void *kaddr;
220 	loff_t size;
221 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 
223 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 		return -EROFS;
227 	}
228 
229 	size = i_size_read(inode);
230 
231 	if (size > PAGE_CACHE_SIZE ||
232 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233 		ocfs2_error(inode->i_sb,
234 			    "Inode %llu has with inline data has bad size: %Lu",
235 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 			    (unsigned long long)size);
237 		return -EROFS;
238 	}
239 
240 	kaddr = kmap_atomic(page, KM_USER0);
241 	if (size)
242 		memcpy(kaddr, di->id2.i_data.id_data, size);
243 	/* Clear the remaining part of the page */
244 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 	flush_dcache_page(page);
246 	kunmap_atomic(kaddr, KM_USER0);
247 
248 	SetPageUptodate(page);
249 
250 	return 0;
251 }
252 
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 {
255 	int ret;
256 	struct buffer_head *di_bh = NULL;
257 
258 	BUG_ON(!PageLocked(page));
259 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 
261 	ret = ocfs2_read_inode_block(inode, &di_bh);
262 	if (ret) {
263 		mlog_errno(ret);
264 		goto out;
265 	}
266 
267 	ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269 	unlock_page(page);
270 
271 	brelse(di_bh);
272 	return ret;
273 }
274 
275 static int ocfs2_readpage(struct file *file, struct page *page)
276 {
277 	struct inode *inode = page->mapping->host;
278 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
279 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 	int ret, unlock = 1;
281 
282 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 
284 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 	if (ret != 0) {
286 		if (ret == AOP_TRUNCATED_PAGE)
287 			unlock = 0;
288 		mlog_errno(ret);
289 		goto out;
290 	}
291 
292 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 		ret = AOP_TRUNCATED_PAGE;
294 		goto out_inode_unlock;
295 	}
296 
297 	/*
298 	 * i_size might have just been updated as we grabed the meta lock.  We
299 	 * might now be discovering a truncate that hit on another node.
300 	 * block_read_full_page->get_block freaks out if it is asked to read
301 	 * beyond the end of a file, so we check here.  Callers
302 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 	 * and notice that the page they just read isn't needed.
304 	 *
305 	 * XXX sys_readahead() seems to get that wrong?
306 	 */
307 	if (start >= i_size_read(inode)) {
308 		zero_user(page, 0, PAGE_SIZE);
309 		SetPageUptodate(page);
310 		ret = 0;
311 		goto out_alloc;
312 	}
313 
314 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 		ret = ocfs2_readpage_inline(inode, page);
316 	else
317 		ret = block_read_full_page(page, ocfs2_get_block);
318 	unlock = 0;
319 
320 out_alloc:
321 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 	ocfs2_inode_unlock(inode, 0);
324 out:
325 	if (unlock)
326 		unlock_page(page);
327 	mlog_exit(ret);
328 	return ret;
329 }
330 
331 /*
332  * This is used only for read-ahead. Failures or difficult to handle
333  * situations are safe to ignore.
334  *
335  * Right now, we don't bother with BH_Boundary - in-inode extent lists
336  * are quite large (243 extents on 4k blocks), so most inodes don't
337  * grow out to a tree. If need be, detecting boundary extents could
338  * trivially be added in a future version of ocfs2_get_block().
339  */
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 			   struct list_head *pages, unsigned nr_pages)
342 {
343 	int ret, err = -EIO;
344 	struct inode *inode = mapping->host;
345 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 	loff_t start;
347 	struct page *last;
348 
349 	/*
350 	 * Use the nonblocking flag for the dlm code to avoid page
351 	 * lock inversion, but don't bother with retrying.
352 	 */
353 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 	if (ret)
355 		return err;
356 
357 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 		ocfs2_inode_unlock(inode, 0);
359 		return err;
360 	}
361 
362 	/*
363 	 * Don't bother with inline-data. There isn't anything
364 	 * to read-ahead in that case anyway...
365 	 */
366 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 		goto out_unlock;
368 
369 	/*
370 	 * Check whether a remote node truncated this file - we just
371 	 * drop out in that case as it's not worth handling here.
372 	 */
373 	last = list_entry(pages->prev, struct page, lru);
374 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 	if (start >= i_size_read(inode))
376 		goto out_unlock;
377 
378 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 
380 out_unlock:
381 	up_read(&oi->ip_alloc_sem);
382 	ocfs2_inode_unlock(inode, 0);
383 
384 	return err;
385 }
386 
387 /* Note: Because we don't support holes, our allocation has
388  * already happened (allocation writes zeros to the file data)
389  * so we don't have to worry about ordered writes in
390  * ocfs2_writepage.
391  *
392  * ->writepage is called during the process of invalidating the page cache
393  * during blocked lock processing.  It can't block on any cluster locks
394  * to during block mapping.  It's relying on the fact that the block
395  * mapping can't have disappeared under the dirty pages that it is
396  * being asked to write back.
397  */
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 {
400 	int ret;
401 
402 	mlog_entry("(0x%p)\n", page);
403 
404 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
405 
406 	mlog_exit(ret);
407 
408 	return ret;
409 }
410 
411 /*
412  * This is called from ocfs2_write_zero_page() which has handled it's
413  * own cluster locking and has ensured allocation exists for those
414  * blocks to be written.
415  */
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 			       unsigned from, unsigned to)
418 {
419 	int ret;
420 
421 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
422 
423 	return ret;
424 }
425 
426 /* Taken from ext3. We don't necessarily need the full blown
427  * functionality yet, but IMHO it's better to cut and paste the whole
428  * thing so we can avoid introducing our own bugs (and easily pick up
429  * their fixes when they happen) --Mark */
430 int walk_page_buffers(	handle_t *handle,
431 			struct buffer_head *head,
432 			unsigned from,
433 			unsigned to,
434 			int *partial,
435 			int (*fn)(	handle_t *handle,
436 					struct buffer_head *bh))
437 {
438 	struct buffer_head *bh;
439 	unsigned block_start, block_end;
440 	unsigned blocksize = head->b_size;
441 	int err, ret = 0;
442 	struct buffer_head *next;
443 
444 	for (	bh = head, block_start = 0;
445 		ret == 0 && (bh != head || !block_start);
446 	    	block_start = block_end, bh = next)
447 	{
448 		next = bh->b_this_page;
449 		block_end = block_start + blocksize;
450 		if (block_end <= from || block_start >= to) {
451 			if (partial && !buffer_uptodate(bh))
452 				*partial = 1;
453 			continue;
454 		}
455 		err = (*fn)(handle, bh);
456 		if (!ret)
457 			ret = err;
458 	}
459 	return ret;
460 }
461 
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463 							 struct page *page,
464 							 unsigned from,
465 							 unsigned to)
466 {
467 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468 	handle_t *handle;
469 	int ret = 0;
470 
471 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472 	if (IS_ERR(handle)) {
473 		ret = -ENOMEM;
474 		mlog_errno(ret);
475 		goto out;
476 	}
477 
478 	if (ocfs2_should_order_data(inode)) {
479 		ret = ocfs2_jbd2_file_inode(handle, inode);
480 		if (ret < 0)
481 			mlog_errno(ret);
482 	}
483 out:
484 	if (ret) {
485 		if (!IS_ERR(handle))
486 			ocfs2_commit_trans(osb, handle);
487 		handle = ERR_PTR(ret);
488 	}
489 	return handle;
490 }
491 
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493 {
494 	sector_t status;
495 	u64 p_blkno = 0;
496 	int err = 0;
497 	struct inode *inode = mapping->host;
498 
499 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
500 
501 	/* We don't need to lock journal system files, since they aren't
502 	 * accessed concurrently from multiple nodes.
503 	 */
504 	if (!INODE_JOURNAL(inode)) {
505 		err = ocfs2_inode_lock(inode, NULL, 0);
506 		if (err) {
507 			if (err != -ENOENT)
508 				mlog_errno(err);
509 			goto bail;
510 		}
511 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
512 	}
513 
514 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 						  NULL);
517 
518 	if (!INODE_JOURNAL(inode)) {
519 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
520 		ocfs2_inode_unlock(inode, 0);
521 	}
522 
523 	if (err) {
524 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525 		     (unsigned long long)block);
526 		mlog_errno(err);
527 		goto bail;
528 	}
529 
530 bail:
531 	status = err ? 0 : p_blkno;
532 
533 	mlog_exit((int)status);
534 
535 	return status;
536 }
537 
538 /*
539  * TODO: Make this into a generic get_blocks function.
540  *
541  * From do_direct_io in direct-io.c:
542  *  "So what we do is to permit the ->get_blocks function to populate
543  *   bh.b_size with the size of IO which is permitted at this offset and
544  *   this i_blkbits."
545  *
546  * This function is called directly from get_more_blocks in direct-io.c.
547  *
548  * called like this: dio->get_blocks(dio->inode, fs_startblk,
549  * 					fs_count, map_bh, dio->rw == WRITE);
550  *
551  * Note that we never bother to allocate blocks here, and thus ignore the
552  * create argument.
553  */
554 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
555 				     struct buffer_head *bh_result, int create)
556 {
557 	int ret;
558 	u64 p_blkno, inode_blocks, contig_blocks;
559 	unsigned int ext_flags;
560 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
561 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
562 
563 	/* This function won't even be called if the request isn't all
564 	 * nicely aligned and of the right size, so there's no need
565 	 * for us to check any of that. */
566 
567 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
568 
569 	/* This figures out the size of the next contiguous block, and
570 	 * our logical offset */
571 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
572 					  &contig_blocks, &ext_flags);
573 	if (ret) {
574 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
575 		     (unsigned long long)iblock);
576 		ret = -EIO;
577 		goto bail;
578 	}
579 
580 	/* We should already CoW the refcounted extent in case of create. */
581 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
582 
583 	/*
584 	 * get_more_blocks() expects us to describe a hole by clearing
585 	 * the mapped bit on bh_result().
586 	 *
587 	 * Consider an unwritten extent as a hole.
588 	 */
589 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
590 		map_bh(bh_result, inode->i_sb, p_blkno);
591 	else
592 		clear_buffer_mapped(bh_result);
593 
594 	/* make sure we don't map more than max_blocks blocks here as
595 	   that's all the kernel will handle at this point. */
596 	if (max_blocks < contig_blocks)
597 		contig_blocks = max_blocks;
598 	bh_result->b_size = contig_blocks << blocksize_bits;
599 bail:
600 	return ret;
601 }
602 
603 /*
604  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
605  * particularly interested in the aio/dio case.  Like the core uses
606  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
607  * truncation on another.
608  */
609 static void ocfs2_dio_end_io(struct kiocb *iocb,
610 			     loff_t offset,
611 			     ssize_t bytes,
612 			     void *private)
613 {
614 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
615 	int level;
616 
617 	/* this io's submitter should not have unlocked this before we could */
618 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
619 
620 	ocfs2_iocb_clear_rw_locked(iocb);
621 
622 	level = ocfs2_iocb_rw_locked_level(iocb);
623 	if (!level)
624 		up_read(&inode->i_alloc_sem);
625 	ocfs2_rw_unlock(inode, level);
626 }
627 
628 /*
629  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
630  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
631  * do journalled data.
632  */
633 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
634 {
635 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
636 
637 	jbd2_journal_invalidatepage(journal, page, offset);
638 }
639 
640 static int ocfs2_releasepage(struct page *page, gfp_t wait)
641 {
642 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
643 
644 	if (!page_has_buffers(page))
645 		return 0;
646 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
647 }
648 
649 static ssize_t ocfs2_direct_IO(int rw,
650 			       struct kiocb *iocb,
651 			       const struct iovec *iov,
652 			       loff_t offset,
653 			       unsigned long nr_segs)
654 {
655 	struct file *file = iocb->ki_filp;
656 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
657 	int ret;
658 
659 	mlog_entry_void();
660 
661 	/*
662 	 * Fallback to buffered I/O if we see an inode without
663 	 * extents.
664 	 */
665 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
666 		return 0;
667 
668 	/* Fallback to buffered I/O if we are appending. */
669 	if (i_size_read(inode) <= offset)
670 		return 0;
671 
672 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
673 					    inode->i_sb->s_bdev, iov, offset,
674 					    nr_segs,
675 					    ocfs2_direct_IO_get_blocks,
676 					    ocfs2_dio_end_io);
677 
678 	mlog_exit(ret);
679 	return ret;
680 }
681 
682 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
683 					    u32 cpos,
684 					    unsigned int *start,
685 					    unsigned int *end)
686 {
687 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688 
689 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
690 		unsigned int cpp;
691 
692 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693 
694 		cluster_start = cpos % cpp;
695 		cluster_start = cluster_start << osb->s_clustersize_bits;
696 
697 		cluster_end = cluster_start + osb->s_clustersize;
698 	}
699 
700 	BUG_ON(cluster_start > PAGE_SIZE);
701 	BUG_ON(cluster_end > PAGE_SIZE);
702 
703 	if (start)
704 		*start = cluster_start;
705 	if (end)
706 		*end = cluster_end;
707 }
708 
709 /*
710  * 'from' and 'to' are the region in the page to avoid zeroing.
711  *
712  * If pagesize > clustersize, this function will avoid zeroing outside
713  * of the cluster boundary.
714  *
715  * from == to == 0 is code for "zero the entire cluster region"
716  */
717 static void ocfs2_clear_page_regions(struct page *page,
718 				     struct ocfs2_super *osb, u32 cpos,
719 				     unsigned from, unsigned to)
720 {
721 	void *kaddr;
722 	unsigned int cluster_start, cluster_end;
723 
724 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725 
726 	kaddr = kmap_atomic(page, KM_USER0);
727 
728 	if (from || to) {
729 		if (from > cluster_start)
730 			memset(kaddr + cluster_start, 0, from - cluster_start);
731 		if (to < cluster_end)
732 			memset(kaddr + to, 0, cluster_end - to);
733 	} else {
734 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
735 	}
736 
737 	kunmap_atomic(kaddr, KM_USER0);
738 }
739 
740 /*
741  * Nonsparse file systems fully allocate before we get to the write
742  * code. This prevents ocfs2_write() from tagging the write as an
743  * allocating one, which means ocfs2_map_page_blocks() might try to
744  * read-in the blocks at the tail of our file. Avoid reading them by
745  * testing i_size against each block offset.
746  */
747 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
748 				 unsigned int block_start)
749 {
750 	u64 offset = page_offset(page) + block_start;
751 
752 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
753 		return 1;
754 
755 	if (i_size_read(inode) > offset)
756 		return 1;
757 
758 	return 0;
759 }
760 
761 /*
762  * Some of this taken from block_prepare_write(). We already have our
763  * mapping by now though, and the entire write will be allocating or
764  * it won't, so not much need to use BH_New.
765  *
766  * This will also skip zeroing, which is handled externally.
767  */
768 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
769 			  struct inode *inode, unsigned int from,
770 			  unsigned int to, int new)
771 {
772 	int ret = 0;
773 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
774 	unsigned int block_end, block_start;
775 	unsigned int bsize = 1 << inode->i_blkbits;
776 
777 	if (!page_has_buffers(page))
778 		create_empty_buffers(page, bsize, 0);
779 
780 	head = page_buffers(page);
781 	for (bh = head, block_start = 0; bh != head || !block_start;
782 	     bh = bh->b_this_page, block_start += bsize) {
783 		block_end = block_start + bsize;
784 
785 		clear_buffer_new(bh);
786 
787 		/*
788 		 * Ignore blocks outside of our i/o range -
789 		 * they may belong to unallocated clusters.
790 		 */
791 		if (block_start >= to || block_end <= from) {
792 			if (PageUptodate(page))
793 				set_buffer_uptodate(bh);
794 			continue;
795 		}
796 
797 		/*
798 		 * For an allocating write with cluster size >= page
799 		 * size, we always write the entire page.
800 		 */
801 		if (new)
802 			set_buffer_new(bh);
803 
804 		if (!buffer_mapped(bh)) {
805 			map_bh(bh, inode->i_sb, *p_blkno);
806 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
807 		}
808 
809 		if (PageUptodate(page)) {
810 			if (!buffer_uptodate(bh))
811 				set_buffer_uptodate(bh);
812 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
813 			   !buffer_new(bh) &&
814 			   ocfs2_should_read_blk(inode, page, block_start) &&
815 			   (block_start < from || block_end > to)) {
816 			ll_rw_block(READ, 1, &bh);
817 			*wait_bh++=bh;
818 		}
819 
820 		*p_blkno = *p_blkno + 1;
821 	}
822 
823 	/*
824 	 * If we issued read requests - let them complete.
825 	 */
826 	while(wait_bh > wait) {
827 		wait_on_buffer(*--wait_bh);
828 		if (!buffer_uptodate(*wait_bh))
829 			ret = -EIO;
830 	}
831 
832 	if (ret == 0 || !new)
833 		return ret;
834 
835 	/*
836 	 * If we get -EIO above, zero out any newly allocated blocks
837 	 * to avoid exposing stale data.
838 	 */
839 	bh = head;
840 	block_start = 0;
841 	do {
842 		block_end = block_start + bsize;
843 		if (block_end <= from)
844 			goto next_bh;
845 		if (block_start >= to)
846 			break;
847 
848 		zero_user(page, block_start, bh->b_size);
849 		set_buffer_uptodate(bh);
850 		mark_buffer_dirty(bh);
851 
852 next_bh:
853 		block_start = block_end;
854 		bh = bh->b_this_page;
855 	} while (bh != head);
856 
857 	return ret;
858 }
859 
860 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
861 #define OCFS2_MAX_CTXT_PAGES	1
862 #else
863 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
864 #endif
865 
866 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
867 
868 /*
869  * Describe the state of a single cluster to be written to.
870  */
871 struct ocfs2_write_cluster_desc {
872 	u32		c_cpos;
873 	u32		c_phys;
874 	/*
875 	 * Give this a unique field because c_phys eventually gets
876 	 * filled.
877 	 */
878 	unsigned	c_new;
879 	unsigned	c_unwritten;
880 	unsigned	c_needs_zero;
881 };
882 
883 struct ocfs2_write_ctxt {
884 	/* Logical cluster position / len of write */
885 	u32				w_cpos;
886 	u32				w_clen;
887 
888 	/* First cluster allocated in a nonsparse extend */
889 	u32				w_first_new_cpos;
890 
891 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
892 
893 	/*
894 	 * This is true if page_size > cluster_size.
895 	 *
896 	 * It triggers a set of special cases during write which might
897 	 * have to deal with allocating writes to partial pages.
898 	 */
899 	unsigned int			w_large_pages;
900 
901 	/*
902 	 * Pages involved in this write.
903 	 *
904 	 * w_target_page is the page being written to by the user.
905 	 *
906 	 * w_pages is an array of pages which always contains
907 	 * w_target_page, and in the case of an allocating write with
908 	 * page_size < cluster size, it will contain zero'd and mapped
909 	 * pages adjacent to w_target_page which need to be written
910 	 * out in so that future reads from that region will get
911 	 * zero's.
912 	 */
913 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
914 	unsigned int			w_num_pages;
915 	struct page			*w_target_page;
916 
917 	/*
918 	 * ocfs2_write_end() uses this to know what the real range to
919 	 * write in the target should be.
920 	 */
921 	unsigned int			w_target_from;
922 	unsigned int			w_target_to;
923 
924 	/*
925 	 * We could use journal_current_handle() but this is cleaner,
926 	 * IMHO -Mark
927 	 */
928 	handle_t			*w_handle;
929 
930 	struct buffer_head		*w_di_bh;
931 
932 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
933 };
934 
935 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
936 {
937 	int i;
938 
939 	for(i = 0; i < num_pages; i++) {
940 		if (pages[i]) {
941 			unlock_page(pages[i]);
942 			mark_page_accessed(pages[i]);
943 			page_cache_release(pages[i]);
944 		}
945 	}
946 }
947 
948 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
949 {
950 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
951 
952 	brelse(wc->w_di_bh);
953 	kfree(wc);
954 }
955 
956 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
957 				  struct ocfs2_super *osb, loff_t pos,
958 				  unsigned len, struct buffer_head *di_bh)
959 {
960 	u32 cend;
961 	struct ocfs2_write_ctxt *wc;
962 
963 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
964 	if (!wc)
965 		return -ENOMEM;
966 
967 	wc->w_cpos = pos >> osb->s_clustersize_bits;
968 	wc->w_first_new_cpos = UINT_MAX;
969 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
970 	wc->w_clen = cend - wc->w_cpos + 1;
971 	get_bh(di_bh);
972 	wc->w_di_bh = di_bh;
973 
974 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
975 		wc->w_large_pages = 1;
976 	else
977 		wc->w_large_pages = 0;
978 
979 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
980 
981 	*wcp = wc;
982 
983 	return 0;
984 }
985 
986 /*
987  * If a page has any new buffers, zero them out here, and mark them uptodate
988  * and dirty so they'll be written out (in order to prevent uninitialised
989  * block data from leaking). And clear the new bit.
990  */
991 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
992 {
993 	unsigned int block_start, block_end;
994 	struct buffer_head *head, *bh;
995 
996 	BUG_ON(!PageLocked(page));
997 	if (!page_has_buffers(page))
998 		return;
999 
1000 	bh = head = page_buffers(page);
1001 	block_start = 0;
1002 	do {
1003 		block_end = block_start + bh->b_size;
1004 
1005 		if (buffer_new(bh)) {
1006 			if (block_end > from && block_start < to) {
1007 				if (!PageUptodate(page)) {
1008 					unsigned start, end;
1009 
1010 					start = max(from, block_start);
1011 					end = min(to, block_end);
1012 
1013 					zero_user_segment(page, start, end);
1014 					set_buffer_uptodate(bh);
1015 				}
1016 
1017 				clear_buffer_new(bh);
1018 				mark_buffer_dirty(bh);
1019 			}
1020 		}
1021 
1022 		block_start = block_end;
1023 		bh = bh->b_this_page;
1024 	} while (bh != head);
1025 }
1026 
1027 /*
1028  * Only called when we have a failure during allocating write to write
1029  * zero's to the newly allocated region.
1030  */
1031 static void ocfs2_write_failure(struct inode *inode,
1032 				struct ocfs2_write_ctxt *wc,
1033 				loff_t user_pos, unsigned user_len)
1034 {
1035 	int i;
1036 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1037 		to = user_pos + user_len;
1038 	struct page *tmppage;
1039 
1040 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1041 
1042 	for(i = 0; i < wc->w_num_pages; i++) {
1043 		tmppage = wc->w_pages[i];
1044 
1045 		if (page_has_buffers(tmppage)) {
1046 			if (ocfs2_should_order_data(inode))
1047 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1048 
1049 			block_commit_write(tmppage, from, to);
1050 		}
1051 	}
1052 }
1053 
1054 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1055 					struct ocfs2_write_ctxt *wc,
1056 					struct page *page, u32 cpos,
1057 					loff_t user_pos, unsigned user_len,
1058 					int new)
1059 {
1060 	int ret;
1061 	unsigned int map_from = 0, map_to = 0;
1062 	unsigned int cluster_start, cluster_end;
1063 	unsigned int user_data_from = 0, user_data_to = 0;
1064 
1065 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1066 					&cluster_start, &cluster_end);
1067 
1068 	if (page == wc->w_target_page) {
1069 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1070 		map_to = map_from + user_len;
1071 
1072 		if (new)
1073 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 						    cluster_start, cluster_end,
1075 						    new);
1076 		else
1077 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1078 						    map_from, map_to, new);
1079 		if (ret) {
1080 			mlog_errno(ret);
1081 			goto out;
1082 		}
1083 
1084 		user_data_from = map_from;
1085 		user_data_to = map_to;
1086 		if (new) {
1087 			map_from = cluster_start;
1088 			map_to = cluster_end;
1089 		}
1090 	} else {
1091 		/*
1092 		 * If we haven't allocated the new page yet, we
1093 		 * shouldn't be writing it out without copying user
1094 		 * data. This is likely a math error from the caller.
1095 		 */
1096 		BUG_ON(!new);
1097 
1098 		map_from = cluster_start;
1099 		map_to = cluster_end;
1100 
1101 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1102 					    cluster_start, cluster_end, new);
1103 		if (ret) {
1104 			mlog_errno(ret);
1105 			goto out;
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Parts of newly allocated pages need to be zero'd.
1111 	 *
1112 	 * Above, we have also rewritten 'to' and 'from' - as far as
1113 	 * the rest of the function is concerned, the entire cluster
1114 	 * range inside of a page needs to be written.
1115 	 *
1116 	 * We can skip this if the page is up to date - it's already
1117 	 * been zero'd from being read in as a hole.
1118 	 */
1119 	if (new && !PageUptodate(page))
1120 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1121 					 cpos, user_data_from, user_data_to);
1122 
1123 	flush_dcache_page(page);
1124 
1125 out:
1126 	return ret;
1127 }
1128 
1129 /*
1130  * This function will only grab one clusters worth of pages.
1131  */
1132 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1133 				      struct ocfs2_write_ctxt *wc,
1134 				      u32 cpos, loff_t user_pos, int new,
1135 				      struct page *mmap_page)
1136 {
1137 	int ret = 0, i;
1138 	unsigned long start, target_index, index;
1139 	struct inode *inode = mapping->host;
1140 
1141 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1142 
1143 	/*
1144 	 * Figure out how many pages we'll be manipulating here. For
1145 	 * non allocating write, we just change the one
1146 	 * page. Otherwise, we'll need a whole clusters worth.
1147 	 */
1148 	if (new) {
1149 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151 	} else {
1152 		wc->w_num_pages = 1;
1153 		start = target_index;
1154 	}
1155 
1156 	for(i = 0; i < wc->w_num_pages; i++) {
1157 		index = start + i;
1158 
1159 		if (index == target_index && mmap_page) {
1160 			/*
1161 			 * ocfs2_pagemkwrite() is a little different
1162 			 * and wants us to directly use the page
1163 			 * passed in.
1164 			 */
1165 			lock_page(mmap_page);
1166 
1167 			if (mmap_page->mapping != mapping) {
1168 				unlock_page(mmap_page);
1169 				/*
1170 				 * Sanity check - the locking in
1171 				 * ocfs2_pagemkwrite() should ensure
1172 				 * that this code doesn't trigger.
1173 				 */
1174 				ret = -EINVAL;
1175 				mlog_errno(ret);
1176 				goto out;
1177 			}
1178 
1179 			page_cache_get(mmap_page);
1180 			wc->w_pages[i] = mmap_page;
1181 		} else {
1182 			wc->w_pages[i] = find_or_create_page(mapping, index,
1183 							     GFP_NOFS);
1184 			if (!wc->w_pages[i]) {
1185 				ret = -ENOMEM;
1186 				mlog_errno(ret);
1187 				goto out;
1188 			}
1189 		}
1190 
1191 		if (index == target_index)
1192 			wc->w_target_page = wc->w_pages[i];
1193 	}
1194 out:
1195 	return ret;
1196 }
1197 
1198 /*
1199  * Prepare a single cluster for write one cluster into the file.
1200  */
1201 static int ocfs2_write_cluster(struct address_space *mapping,
1202 			       u32 phys, unsigned int unwritten,
1203 			       unsigned int should_zero,
1204 			       struct ocfs2_alloc_context *data_ac,
1205 			       struct ocfs2_alloc_context *meta_ac,
1206 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1207 			       loff_t user_pos, unsigned user_len)
1208 {
1209 	int ret, i, new;
1210 	u64 v_blkno, p_blkno;
1211 	struct inode *inode = mapping->host;
1212 	struct ocfs2_extent_tree et;
1213 
1214 	new = phys == 0 ? 1 : 0;
1215 	if (new) {
1216 		u32 tmp_pos;
1217 
1218 		/*
1219 		 * This is safe to call with the page locks - it won't take
1220 		 * any additional semaphores or cluster locks.
1221 		 */
1222 		tmp_pos = cpos;
1223 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1224 					   &tmp_pos, 1, 0, wc->w_di_bh,
1225 					   wc->w_handle, data_ac,
1226 					   meta_ac, NULL);
1227 		/*
1228 		 * This shouldn't happen because we must have already
1229 		 * calculated the correct meta data allocation required. The
1230 		 * internal tree allocation code should know how to increase
1231 		 * transaction credits itself.
1232 		 *
1233 		 * If need be, we could handle -EAGAIN for a
1234 		 * RESTART_TRANS here.
1235 		 */
1236 		mlog_bug_on_msg(ret == -EAGAIN,
1237 				"Inode %llu: EAGAIN return during allocation.\n",
1238 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1239 		if (ret < 0) {
1240 			mlog_errno(ret);
1241 			goto out;
1242 		}
1243 	} else if (unwritten) {
1244 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1245 					      wc->w_di_bh);
1246 		ret = ocfs2_mark_extent_written(inode, &et,
1247 						wc->w_handle, cpos, 1, phys,
1248 						meta_ac, &wc->w_dealloc);
1249 		if (ret < 0) {
1250 			mlog_errno(ret);
1251 			goto out;
1252 		}
1253 	}
1254 
1255 	if (should_zero)
1256 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1257 	else
1258 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1259 
1260 	/*
1261 	 * The only reason this should fail is due to an inability to
1262 	 * find the extent added.
1263 	 */
1264 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1265 					  NULL);
1266 	if (ret < 0) {
1267 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1268 			    "at logical block %llu",
1269 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1270 			    (unsigned long long)v_blkno);
1271 		goto out;
1272 	}
1273 
1274 	BUG_ON(p_blkno == 0);
1275 
1276 	for(i = 0; i < wc->w_num_pages; i++) {
1277 		int tmpret;
1278 
1279 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1280 						      wc->w_pages[i], cpos,
1281 						      user_pos, user_len,
1282 						      should_zero);
1283 		if (tmpret) {
1284 			mlog_errno(tmpret);
1285 			if (ret == 0)
1286 				ret = tmpret;
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * We only have cleanup to do in case of allocating write.
1292 	 */
1293 	if (ret && new)
1294 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1295 
1296 out:
1297 
1298 	return ret;
1299 }
1300 
1301 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1302 				       struct ocfs2_alloc_context *data_ac,
1303 				       struct ocfs2_alloc_context *meta_ac,
1304 				       struct ocfs2_write_ctxt *wc,
1305 				       loff_t pos, unsigned len)
1306 {
1307 	int ret, i;
1308 	loff_t cluster_off;
1309 	unsigned int local_len = len;
1310 	struct ocfs2_write_cluster_desc *desc;
1311 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1312 
1313 	for (i = 0; i < wc->w_clen; i++) {
1314 		desc = &wc->w_desc[i];
1315 
1316 		/*
1317 		 * We have to make sure that the total write passed in
1318 		 * doesn't extend past a single cluster.
1319 		 */
1320 		local_len = len;
1321 		cluster_off = pos & (osb->s_clustersize - 1);
1322 		if ((cluster_off + local_len) > osb->s_clustersize)
1323 			local_len = osb->s_clustersize - cluster_off;
1324 
1325 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1326 					  desc->c_unwritten,
1327 					  desc->c_needs_zero,
1328 					  data_ac, meta_ac,
1329 					  wc, desc->c_cpos, pos, local_len);
1330 		if (ret) {
1331 			mlog_errno(ret);
1332 			goto out;
1333 		}
1334 
1335 		len -= local_len;
1336 		pos += local_len;
1337 	}
1338 
1339 	ret = 0;
1340 out:
1341 	return ret;
1342 }
1343 
1344 /*
1345  * ocfs2_write_end() wants to know which parts of the target page it
1346  * should complete the write on. It's easiest to compute them ahead of
1347  * time when a more complete view of the write is available.
1348  */
1349 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1350 					struct ocfs2_write_ctxt *wc,
1351 					loff_t pos, unsigned len, int alloc)
1352 {
1353 	struct ocfs2_write_cluster_desc *desc;
1354 
1355 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1356 	wc->w_target_to = wc->w_target_from + len;
1357 
1358 	if (alloc == 0)
1359 		return;
1360 
1361 	/*
1362 	 * Allocating write - we may have different boundaries based
1363 	 * on page size and cluster size.
1364 	 *
1365 	 * NOTE: We can no longer compute one value from the other as
1366 	 * the actual write length and user provided length may be
1367 	 * different.
1368 	 */
1369 
1370 	if (wc->w_large_pages) {
1371 		/*
1372 		 * We only care about the 1st and last cluster within
1373 		 * our range and whether they should be zero'd or not. Either
1374 		 * value may be extended out to the start/end of a
1375 		 * newly allocated cluster.
1376 		 */
1377 		desc = &wc->w_desc[0];
1378 		if (desc->c_needs_zero)
1379 			ocfs2_figure_cluster_boundaries(osb,
1380 							desc->c_cpos,
1381 							&wc->w_target_from,
1382 							NULL);
1383 
1384 		desc = &wc->w_desc[wc->w_clen - 1];
1385 		if (desc->c_needs_zero)
1386 			ocfs2_figure_cluster_boundaries(osb,
1387 							desc->c_cpos,
1388 							NULL,
1389 							&wc->w_target_to);
1390 	} else {
1391 		wc->w_target_from = 0;
1392 		wc->w_target_to = PAGE_CACHE_SIZE;
1393 	}
1394 }
1395 
1396 /*
1397  * Populate each single-cluster write descriptor in the write context
1398  * with information about the i/o to be done.
1399  *
1400  * Returns the number of clusters that will have to be allocated, as
1401  * well as a worst case estimate of the number of extent records that
1402  * would have to be created during a write to an unwritten region.
1403  */
1404 static int ocfs2_populate_write_desc(struct inode *inode,
1405 				     struct ocfs2_write_ctxt *wc,
1406 				     unsigned int *clusters_to_alloc,
1407 				     unsigned int *extents_to_split)
1408 {
1409 	int ret;
1410 	struct ocfs2_write_cluster_desc *desc;
1411 	unsigned int num_clusters = 0;
1412 	unsigned int ext_flags = 0;
1413 	u32 phys = 0;
1414 	int i;
1415 
1416 	*clusters_to_alloc = 0;
1417 	*extents_to_split = 0;
1418 
1419 	for (i = 0; i < wc->w_clen; i++) {
1420 		desc = &wc->w_desc[i];
1421 		desc->c_cpos = wc->w_cpos + i;
1422 
1423 		if (num_clusters == 0) {
1424 			/*
1425 			 * Need to look up the next extent record.
1426 			 */
1427 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1428 						 &num_clusters, &ext_flags);
1429 			if (ret) {
1430 				mlog_errno(ret);
1431 				goto out;
1432 			}
1433 
1434 			/* We should already CoW the refcountd extent. */
1435 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1436 
1437 			/*
1438 			 * Assume worst case - that we're writing in
1439 			 * the middle of the extent.
1440 			 *
1441 			 * We can assume that the write proceeds from
1442 			 * left to right, in which case the extent
1443 			 * insert code is smart enough to coalesce the
1444 			 * next splits into the previous records created.
1445 			 */
1446 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1447 				*extents_to_split = *extents_to_split + 2;
1448 		} else if (phys) {
1449 			/*
1450 			 * Only increment phys if it doesn't describe
1451 			 * a hole.
1452 			 */
1453 			phys++;
1454 		}
1455 
1456 		/*
1457 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1458 		 * file that got extended.  w_first_new_cpos tells us
1459 		 * where the newly allocated clusters are so we can
1460 		 * zero them.
1461 		 */
1462 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1463 			BUG_ON(phys == 0);
1464 			desc->c_needs_zero = 1;
1465 		}
1466 
1467 		desc->c_phys = phys;
1468 		if (phys == 0) {
1469 			desc->c_new = 1;
1470 			desc->c_needs_zero = 1;
1471 			*clusters_to_alloc = *clusters_to_alloc + 1;
1472 		}
1473 
1474 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1475 			desc->c_unwritten = 1;
1476 			desc->c_needs_zero = 1;
1477 		}
1478 
1479 		num_clusters--;
1480 	}
1481 
1482 	ret = 0;
1483 out:
1484 	return ret;
1485 }
1486 
1487 static int ocfs2_write_begin_inline(struct address_space *mapping,
1488 				    struct inode *inode,
1489 				    struct ocfs2_write_ctxt *wc)
1490 {
1491 	int ret;
1492 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1493 	struct page *page;
1494 	handle_t *handle;
1495 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1496 
1497 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1498 	if (!page) {
1499 		ret = -ENOMEM;
1500 		mlog_errno(ret);
1501 		goto out;
1502 	}
1503 	/*
1504 	 * If we don't set w_num_pages then this page won't get unlocked
1505 	 * and freed on cleanup of the write context.
1506 	 */
1507 	wc->w_pages[0] = wc->w_target_page = page;
1508 	wc->w_num_pages = 1;
1509 
1510 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1511 	if (IS_ERR(handle)) {
1512 		ret = PTR_ERR(handle);
1513 		mlog_errno(ret);
1514 		goto out;
1515 	}
1516 
1517 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1518 				      OCFS2_JOURNAL_ACCESS_WRITE);
1519 	if (ret) {
1520 		ocfs2_commit_trans(osb, handle);
1521 
1522 		mlog_errno(ret);
1523 		goto out;
1524 	}
1525 
1526 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1527 		ocfs2_set_inode_data_inline(inode, di);
1528 
1529 	if (!PageUptodate(page)) {
1530 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1531 		if (ret) {
1532 			ocfs2_commit_trans(osb, handle);
1533 
1534 			goto out;
1535 		}
1536 	}
1537 
1538 	wc->w_handle = handle;
1539 out:
1540 	return ret;
1541 }
1542 
1543 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1544 {
1545 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1546 
1547 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1548 		return 1;
1549 	return 0;
1550 }
1551 
1552 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1553 					  struct inode *inode, loff_t pos,
1554 					  unsigned len, struct page *mmap_page,
1555 					  struct ocfs2_write_ctxt *wc)
1556 {
1557 	int ret, written = 0;
1558 	loff_t end = pos + len;
1559 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1560 	struct ocfs2_dinode *di = NULL;
1561 
1562 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1563 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1564 	     oi->ip_dyn_features);
1565 
1566 	/*
1567 	 * Handle inodes which already have inline data 1st.
1568 	 */
1569 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1570 		if (mmap_page == NULL &&
1571 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1572 			goto do_inline_write;
1573 
1574 		/*
1575 		 * The write won't fit - we have to give this inode an
1576 		 * inline extent list now.
1577 		 */
1578 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1579 		if (ret)
1580 			mlog_errno(ret);
1581 		goto out;
1582 	}
1583 
1584 	/*
1585 	 * Check whether the inode can accept inline data.
1586 	 */
1587 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1588 		return 0;
1589 
1590 	/*
1591 	 * Check whether the write can fit.
1592 	 */
1593 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1594 	if (mmap_page ||
1595 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1596 		return 0;
1597 
1598 do_inline_write:
1599 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1600 	if (ret) {
1601 		mlog_errno(ret);
1602 		goto out;
1603 	}
1604 
1605 	/*
1606 	 * This signals to the caller that the data can be written
1607 	 * inline.
1608 	 */
1609 	written = 1;
1610 out:
1611 	return written ? written : ret;
1612 }
1613 
1614 /*
1615  * This function only does anything for file systems which can't
1616  * handle sparse files.
1617  *
1618  * What we want to do here is fill in any hole between the current end
1619  * of allocation and the end of our write. That way the rest of the
1620  * write path can treat it as an non-allocating write, which has no
1621  * special case code for sparse/nonsparse files.
1622  */
1623 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1624 					unsigned len,
1625 					struct ocfs2_write_ctxt *wc)
1626 {
1627 	int ret;
1628 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1629 	loff_t newsize = pos + len;
1630 
1631 	if (ocfs2_sparse_alloc(osb))
1632 		return 0;
1633 
1634 	if (newsize <= i_size_read(inode))
1635 		return 0;
1636 
1637 	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1638 	if (ret)
1639 		mlog_errno(ret);
1640 
1641 	wc->w_first_new_cpos =
1642 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643 
1644 	return ret;
1645 }
1646 
1647 int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 			     loff_t pos, unsigned len, unsigned flags,
1649 			     struct page **pagep, void **fsdata,
1650 			     struct buffer_head *di_bh, struct page *mmap_page)
1651 {
1652 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653 	unsigned int clusters_to_alloc, extents_to_split;
1654 	struct ocfs2_write_ctxt *wc;
1655 	struct inode *inode = mapping->host;
1656 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 	struct ocfs2_dinode *di;
1658 	struct ocfs2_alloc_context *data_ac = NULL;
1659 	struct ocfs2_alloc_context *meta_ac = NULL;
1660 	handle_t *handle;
1661 	struct ocfs2_extent_tree et;
1662 
1663 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1664 	if (ret) {
1665 		mlog_errno(ret);
1666 		return ret;
1667 	}
1668 
1669 	if (ocfs2_supports_inline_data(osb)) {
1670 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671 						     mmap_page, wc);
1672 		if (ret == 1) {
1673 			ret = 0;
1674 			goto success;
1675 		}
1676 		if (ret < 0) {
1677 			mlog_errno(ret);
1678 			goto out;
1679 		}
1680 	}
1681 
1682 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1683 	if (ret) {
1684 		mlog_errno(ret);
1685 		goto out;
1686 	}
1687 
1688 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1689 	if (ret < 0) {
1690 		mlog_errno(ret);
1691 		goto out;
1692 	} else if (ret == 1) {
1693 		ret = ocfs2_refcount_cow(inode, di_bh,
1694 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1695 		if (ret) {
1696 			mlog_errno(ret);
1697 			goto out;
1698 		}
1699 	}
1700 
1701 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1702 					&extents_to_split);
1703 	if (ret) {
1704 		mlog_errno(ret);
1705 		goto out;
1706 	}
1707 
1708 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709 
1710 	/*
1711 	 * We set w_target_from, w_target_to here so that
1712 	 * ocfs2_write_end() knows which range in the target page to
1713 	 * write out. An allocation requires that we write the entire
1714 	 * cluster range.
1715 	 */
1716 	if (clusters_to_alloc || extents_to_split) {
1717 		/*
1718 		 * XXX: We are stretching the limits of
1719 		 * ocfs2_lock_allocators(). It greatly over-estimates
1720 		 * the work to be done.
1721 		 */
1722 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1723 		     " clusters_to_add = %u, extents_to_split = %u\n",
1724 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1725 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1726 		     clusters_to_alloc, extents_to_split);
1727 
1728 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1729 					      wc->w_di_bh);
1730 		ret = ocfs2_lock_allocators(inode, &et,
1731 					    clusters_to_alloc, extents_to_split,
1732 					    &data_ac, &meta_ac);
1733 		if (ret) {
1734 			mlog_errno(ret);
1735 			goto out;
1736 		}
1737 
1738 		if (data_ac)
1739 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1740 
1741 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1742 						    &di->id2.i_list,
1743 						    clusters_to_alloc);
1744 
1745 	}
1746 
1747 	/*
1748 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1749 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1750 	 * we know zeros will only be needed in the first and/or last cluster.
1751 	 */
1752 	if (clusters_to_alloc || extents_to_split ||
1753 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1754 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1755 		cluster_of_pages = 1;
1756 	else
1757 		cluster_of_pages = 0;
1758 
1759 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1760 
1761 	handle = ocfs2_start_trans(osb, credits);
1762 	if (IS_ERR(handle)) {
1763 		ret = PTR_ERR(handle);
1764 		mlog_errno(ret);
1765 		goto out;
1766 	}
1767 
1768 	wc->w_handle = handle;
1769 
1770 	if (clusters_to_alloc) {
1771 		ret = dquot_alloc_space_nodirty(inode,
1772 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1773 		if (ret)
1774 			goto out_commit;
1775 	}
1776 	/*
1777 	 * We don't want this to fail in ocfs2_write_end(), so do it
1778 	 * here.
1779 	 */
1780 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1781 				      OCFS2_JOURNAL_ACCESS_WRITE);
1782 	if (ret) {
1783 		mlog_errno(ret);
1784 		goto out_quota;
1785 	}
1786 
1787 	/*
1788 	 * Fill our page array first. That way we've grabbed enough so
1789 	 * that we can zero and flush if we error after adding the
1790 	 * extent.
1791 	 */
1792 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1793 					 cluster_of_pages, mmap_page);
1794 	if (ret) {
1795 		mlog_errno(ret);
1796 		goto out_quota;
1797 	}
1798 
1799 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1800 					  len);
1801 	if (ret) {
1802 		mlog_errno(ret);
1803 		goto out_quota;
1804 	}
1805 
1806 	if (data_ac)
1807 		ocfs2_free_alloc_context(data_ac);
1808 	if (meta_ac)
1809 		ocfs2_free_alloc_context(meta_ac);
1810 
1811 success:
1812 	*pagep = wc->w_target_page;
1813 	*fsdata = wc;
1814 	return 0;
1815 out_quota:
1816 	if (clusters_to_alloc)
1817 		dquot_free_space(inode,
1818 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1819 out_commit:
1820 	ocfs2_commit_trans(osb, handle);
1821 
1822 out:
1823 	ocfs2_free_write_ctxt(wc);
1824 
1825 	if (data_ac)
1826 		ocfs2_free_alloc_context(data_ac);
1827 	if (meta_ac)
1828 		ocfs2_free_alloc_context(meta_ac);
1829 	return ret;
1830 }
1831 
1832 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1833 			     loff_t pos, unsigned len, unsigned flags,
1834 			     struct page **pagep, void **fsdata)
1835 {
1836 	int ret;
1837 	struct buffer_head *di_bh = NULL;
1838 	struct inode *inode = mapping->host;
1839 
1840 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1841 	if (ret) {
1842 		mlog_errno(ret);
1843 		return ret;
1844 	}
1845 
1846 	/*
1847 	 * Take alloc sem here to prevent concurrent lookups. That way
1848 	 * the mapping, zeroing and tree manipulation within
1849 	 * ocfs2_write() will be safe against ->readpage(). This
1850 	 * should also serve to lock out allocation from a shared
1851 	 * writeable region.
1852 	 */
1853 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1854 
1855 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1856 				       fsdata, di_bh, NULL);
1857 	if (ret) {
1858 		mlog_errno(ret);
1859 		goto out_fail;
1860 	}
1861 
1862 	brelse(di_bh);
1863 
1864 	return 0;
1865 
1866 out_fail:
1867 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1868 
1869 	brelse(di_bh);
1870 	ocfs2_inode_unlock(inode, 1);
1871 
1872 	return ret;
1873 }
1874 
1875 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1876 				   unsigned len, unsigned *copied,
1877 				   struct ocfs2_dinode *di,
1878 				   struct ocfs2_write_ctxt *wc)
1879 {
1880 	void *kaddr;
1881 
1882 	if (unlikely(*copied < len)) {
1883 		if (!PageUptodate(wc->w_target_page)) {
1884 			*copied = 0;
1885 			return;
1886 		}
1887 	}
1888 
1889 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1890 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1891 	kunmap_atomic(kaddr, KM_USER0);
1892 
1893 	mlog(0, "Data written to inode at offset %llu. "
1894 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1895 	     (unsigned long long)pos, *copied,
1896 	     le16_to_cpu(di->id2.i_data.id_count),
1897 	     le16_to_cpu(di->i_dyn_features));
1898 }
1899 
1900 int ocfs2_write_end_nolock(struct address_space *mapping,
1901 			   loff_t pos, unsigned len, unsigned copied,
1902 			   struct page *page, void *fsdata)
1903 {
1904 	int i;
1905 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1906 	struct inode *inode = mapping->host;
1907 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1908 	struct ocfs2_write_ctxt *wc = fsdata;
1909 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1910 	handle_t *handle = wc->w_handle;
1911 	struct page *tmppage;
1912 
1913 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1914 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1915 		goto out_write_size;
1916 	}
1917 
1918 	if (unlikely(copied < len)) {
1919 		if (!PageUptodate(wc->w_target_page))
1920 			copied = 0;
1921 
1922 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1923 				       start+len);
1924 	}
1925 	flush_dcache_page(wc->w_target_page);
1926 
1927 	for(i = 0; i < wc->w_num_pages; i++) {
1928 		tmppage = wc->w_pages[i];
1929 
1930 		if (tmppage == wc->w_target_page) {
1931 			from = wc->w_target_from;
1932 			to = wc->w_target_to;
1933 
1934 			BUG_ON(from > PAGE_CACHE_SIZE ||
1935 			       to > PAGE_CACHE_SIZE ||
1936 			       to < from);
1937 		} else {
1938 			/*
1939 			 * Pages adjacent to the target (if any) imply
1940 			 * a hole-filling write in which case we want
1941 			 * to flush their entire range.
1942 			 */
1943 			from = 0;
1944 			to = PAGE_CACHE_SIZE;
1945 		}
1946 
1947 		if (page_has_buffers(tmppage)) {
1948 			if (ocfs2_should_order_data(inode))
1949 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1950 			block_commit_write(tmppage, from, to);
1951 		}
1952 	}
1953 
1954 out_write_size:
1955 	pos += copied;
1956 	if (pos > inode->i_size) {
1957 		i_size_write(inode, pos);
1958 		mark_inode_dirty(inode);
1959 	}
1960 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1961 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1962 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1963 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1964 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1965 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1966 
1967 	ocfs2_commit_trans(osb, handle);
1968 
1969 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1970 
1971 	ocfs2_free_write_ctxt(wc);
1972 
1973 	return copied;
1974 }
1975 
1976 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1977 			   loff_t pos, unsigned len, unsigned copied,
1978 			   struct page *page, void *fsdata)
1979 {
1980 	int ret;
1981 	struct inode *inode = mapping->host;
1982 
1983 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1984 
1985 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1986 	ocfs2_inode_unlock(inode, 1);
1987 
1988 	return ret;
1989 }
1990 
1991 const struct address_space_operations ocfs2_aops = {
1992 	.readpage		= ocfs2_readpage,
1993 	.readpages		= ocfs2_readpages,
1994 	.writepage		= ocfs2_writepage,
1995 	.write_begin		= ocfs2_write_begin,
1996 	.write_end		= ocfs2_write_end,
1997 	.bmap			= ocfs2_bmap,
1998 	.sync_page		= block_sync_page,
1999 	.direct_IO		= ocfs2_direct_IO,
2000 	.invalidatepage		= ocfs2_invalidatepage,
2001 	.releasepage		= ocfs2_releasepage,
2002 	.migratepage		= buffer_migrate_page,
2003 	.is_partially_uptodate	= block_is_partially_uptodate,
2004 	.error_remove_page	= generic_error_remove_page,
2005 };
2006