1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/slab.h> 10 #include <linux/highmem.h> 11 #include <linux/pagemap.h> 12 #include <asm/byteorder.h> 13 #include <linux/swap.h> 14 #include <linux/mpage.h> 15 #include <linux/quotaops.h> 16 #include <linux/blkdev.h> 17 #include <linux/uio.h> 18 #include <linux/mm.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "aops.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "file.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "suballoc.h" 32 #include "super.h" 33 #include "symlink.h" 34 #include "refcounttree.h" 35 #include "ocfs2_trace.h" 36 37 #include "buffer_head_io.h" 38 #include "dir.h" 39 #include "namei.h" 40 #include "sysfile.h" 41 42 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 43 struct buffer_head *bh_result, int create) 44 { 45 int err = -EIO; 46 int status; 47 struct ocfs2_dinode *fe = NULL; 48 struct buffer_head *bh = NULL; 49 struct buffer_head *buffer_cache_bh = NULL; 50 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 51 void *kaddr; 52 53 trace_ocfs2_symlink_get_block( 54 (unsigned long long)OCFS2_I(inode)->ip_blkno, 55 (unsigned long long)iblock, bh_result, create); 56 57 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 58 59 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 60 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 61 (unsigned long long)iblock); 62 goto bail; 63 } 64 65 status = ocfs2_read_inode_block(inode, &bh); 66 if (status < 0) { 67 mlog_errno(status); 68 goto bail; 69 } 70 fe = (struct ocfs2_dinode *) bh->b_data; 71 72 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 73 le32_to_cpu(fe->i_clusters))) { 74 err = -ENOMEM; 75 mlog(ML_ERROR, "block offset is outside the allocated size: " 76 "%llu\n", (unsigned long long)iblock); 77 goto bail; 78 } 79 80 /* We don't use the page cache to create symlink data, so if 81 * need be, copy it over from the buffer cache. */ 82 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 83 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 84 iblock; 85 buffer_cache_bh = sb_getblk(osb->sb, blkno); 86 if (!buffer_cache_bh) { 87 err = -ENOMEM; 88 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 89 goto bail; 90 } 91 92 /* we haven't locked out transactions, so a commit 93 * could've happened. Since we've got a reference on 94 * the bh, even if it commits while we're doing the 95 * copy, the data is still good. */ 96 if (buffer_jbd(buffer_cache_bh) 97 && ocfs2_inode_is_new(inode)) { 98 kaddr = kmap_atomic(bh_result->b_page); 99 if (!kaddr) { 100 mlog(ML_ERROR, "couldn't kmap!\n"); 101 goto bail; 102 } 103 memcpy(kaddr + (bh_result->b_size * iblock), 104 buffer_cache_bh->b_data, 105 bh_result->b_size); 106 kunmap_atomic(kaddr); 107 set_buffer_uptodate(bh_result); 108 } 109 brelse(buffer_cache_bh); 110 } 111 112 map_bh(bh_result, inode->i_sb, 113 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 114 115 err = 0; 116 117 bail: 118 brelse(bh); 119 120 return err; 121 } 122 123 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 124 struct buffer_head *bh_result, int create) 125 { 126 int ret = 0; 127 struct ocfs2_inode_info *oi = OCFS2_I(inode); 128 129 down_read(&oi->ip_alloc_sem); 130 ret = ocfs2_get_block(inode, iblock, bh_result, create); 131 up_read(&oi->ip_alloc_sem); 132 133 return ret; 134 } 135 136 int ocfs2_get_block(struct inode *inode, sector_t iblock, 137 struct buffer_head *bh_result, int create) 138 { 139 int err = 0; 140 unsigned int ext_flags; 141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 142 u64 p_blkno, count, past_eof; 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 144 145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 146 (unsigned long long)iblock, bh_result, create); 147 148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 150 inode, inode->i_ino); 151 152 if (S_ISLNK(inode->i_mode)) { 153 /* this always does I/O for some reason. */ 154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 155 goto bail; 156 } 157 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 159 &ext_flags); 160 if (err) { 161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 163 (unsigned long long)p_blkno); 164 goto bail; 165 } 166 167 if (max_blocks < count) 168 count = max_blocks; 169 170 /* 171 * ocfs2 never allocates in this function - the only time we 172 * need to use BH_New is when we're extending i_size on a file 173 * system which doesn't support holes, in which case BH_New 174 * allows __block_write_begin() to zero. 175 * 176 * If we see this on a sparse file system, then a truncate has 177 * raced us and removed the cluster. In this case, we clear 178 * the buffers dirty and uptodate bits and let the buffer code 179 * ignore it as a hole. 180 */ 181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 182 clear_buffer_dirty(bh_result); 183 clear_buffer_uptodate(bh_result); 184 goto bail; 185 } 186 187 /* Treat the unwritten extent as a hole for zeroing purposes. */ 188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 189 map_bh(bh_result, inode->i_sb, p_blkno); 190 191 bh_result->b_size = count << inode->i_blkbits; 192 193 if (!ocfs2_sparse_alloc(osb)) { 194 if (p_blkno == 0) { 195 err = -EIO; 196 mlog(ML_ERROR, 197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 198 (unsigned long long)iblock, 199 (unsigned long long)p_blkno, 200 (unsigned long long)OCFS2_I(inode)->ip_blkno); 201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 202 dump_stack(); 203 goto bail; 204 } 205 } 206 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 208 209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 210 (unsigned long long)past_eof); 211 if (create && (iblock >= past_eof)) 212 set_buffer_new(bh_result); 213 214 bail: 215 if (err < 0) 216 err = -EIO; 217 218 return err; 219 } 220 221 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 222 struct buffer_head *di_bh) 223 { 224 void *kaddr; 225 loff_t size; 226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 227 228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 230 (unsigned long long)OCFS2_I(inode)->ip_blkno); 231 return -EROFS; 232 } 233 234 size = i_size_read(inode); 235 236 if (size > PAGE_SIZE || 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 238 ocfs2_error(inode->i_sb, 239 "Inode %llu has with inline data has bad size: %Lu\n", 240 (unsigned long long)OCFS2_I(inode)->ip_blkno, 241 (unsigned long long)size); 242 return -EROFS; 243 } 244 245 kaddr = kmap_atomic(page); 246 if (size) 247 memcpy(kaddr, di->id2.i_data.id_data, size); 248 /* Clear the remaining part of the page */ 249 memset(kaddr + size, 0, PAGE_SIZE - size); 250 flush_dcache_page(page); 251 kunmap_atomic(kaddr); 252 253 SetPageUptodate(page); 254 255 return 0; 256 } 257 258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 259 { 260 int ret; 261 struct buffer_head *di_bh = NULL; 262 263 BUG_ON(!PageLocked(page)); 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 265 266 ret = ocfs2_read_inode_block(inode, &di_bh); 267 if (ret) { 268 mlog_errno(ret); 269 goto out; 270 } 271 272 ret = ocfs2_read_inline_data(inode, page, di_bh); 273 out: 274 unlock_page(page); 275 276 brelse(di_bh); 277 return ret; 278 } 279 280 static int ocfs2_readpage(struct file *file, struct page *page) 281 { 282 struct inode *inode = page->mapping->host; 283 struct ocfs2_inode_info *oi = OCFS2_I(inode); 284 loff_t start = (loff_t)page->index << PAGE_SHIFT; 285 int ret, unlock = 1; 286 287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 288 (page ? page->index : 0)); 289 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 291 if (ret != 0) { 292 if (ret == AOP_TRUNCATED_PAGE) 293 unlock = 0; 294 mlog_errno(ret); 295 goto out; 296 } 297 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 299 /* 300 * Unlock the page and cycle ip_alloc_sem so that we don't 301 * busyloop waiting for ip_alloc_sem to unlock 302 */ 303 ret = AOP_TRUNCATED_PAGE; 304 unlock_page(page); 305 unlock = 0; 306 down_read(&oi->ip_alloc_sem); 307 up_read(&oi->ip_alloc_sem); 308 goto out_inode_unlock; 309 } 310 311 /* 312 * i_size might have just been updated as we grabed the meta lock. We 313 * might now be discovering a truncate that hit on another node. 314 * block_read_full_page->get_block freaks out if it is asked to read 315 * beyond the end of a file, so we check here. Callers 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 317 * and notice that the page they just read isn't needed. 318 * 319 * XXX sys_readahead() seems to get that wrong? 320 */ 321 if (start >= i_size_read(inode)) { 322 zero_user(page, 0, PAGE_SIZE); 323 SetPageUptodate(page); 324 ret = 0; 325 goto out_alloc; 326 } 327 328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 329 ret = ocfs2_readpage_inline(inode, page); 330 else 331 ret = block_read_full_page(page, ocfs2_get_block); 332 unlock = 0; 333 334 out_alloc: 335 up_read(&oi->ip_alloc_sem); 336 out_inode_unlock: 337 ocfs2_inode_unlock(inode, 0); 338 out: 339 if (unlock) 340 unlock_page(page); 341 return ret; 342 } 343 344 /* 345 * This is used only for read-ahead. Failures or difficult to handle 346 * situations are safe to ignore. 347 * 348 * Right now, we don't bother with BH_Boundary - in-inode extent lists 349 * are quite large (243 extents on 4k blocks), so most inodes don't 350 * grow out to a tree. If need be, detecting boundary extents could 351 * trivially be added in a future version of ocfs2_get_block(). 352 */ 353 static void ocfs2_readahead(struct readahead_control *rac) 354 { 355 int ret; 356 struct inode *inode = rac->mapping->host; 357 struct ocfs2_inode_info *oi = OCFS2_I(inode); 358 359 /* 360 * Use the nonblocking flag for the dlm code to avoid page 361 * lock inversion, but don't bother with retrying. 362 */ 363 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 364 if (ret) 365 return; 366 367 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 368 goto out_unlock; 369 370 /* 371 * Don't bother with inline-data. There isn't anything 372 * to read-ahead in that case anyway... 373 */ 374 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 375 goto out_up; 376 377 /* 378 * Check whether a remote node truncated this file - we just 379 * drop out in that case as it's not worth handling here. 380 */ 381 if (readahead_pos(rac) >= i_size_read(inode)) 382 goto out_up; 383 384 mpage_readahead(rac, ocfs2_get_block); 385 386 out_up: 387 up_read(&oi->ip_alloc_sem); 388 out_unlock: 389 ocfs2_inode_unlock(inode, 0); 390 } 391 392 /* Note: Because we don't support holes, our allocation has 393 * already happened (allocation writes zeros to the file data) 394 * so we don't have to worry about ordered writes in 395 * ocfs2_writepage. 396 * 397 * ->writepage is called during the process of invalidating the page cache 398 * during blocked lock processing. It can't block on any cluster locks 399 * to during block mapping. It's relying on the fact that the block 400 * mapping can't have disappeared under the dirty pages that it is 401 * being asked to write back. 402 */ 403 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 404 { 405 trace_ocfs2_writepage( 406 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 407 page->index); 408 409 return block_write_full_page(page, ocfs2_get_block, wbc); 410 } 411 412 /* Taken from ext3. We don't necessarily need the full blown 413 * functionality yet, but IMHO it's better to cut and paste the whole 414 * thing so we can avoid introducing our own bugs (and easily pick up 415 * their fixes when they happen) --Mark */ 416 int walk_page_buffers( handle_t *handle, 417 struct buffer_head *head, 418 unsigned from, 419 unsigned to, 420 int *partial, 421 int (*fn)( handle_t *handle, 422 struct buffer_head *bh)) 423 { 424 struct buffer_head *bh; 425 unsigned block_start, block_end; 426 unsigned blocksize = head->b_size; 427 int err, ret = 0; 428 struct buffer_head *next; 429 430 for ( bh = head, block_start = 0; 431 ret == 0 && (bh != head || !block_start); 432 block_start = block_end, bh = next) 433 { 434 next = bh->b_this_page; 435 block_end = block_start + blocksize; 436 if (block_end <= from || block_start >= to) { 437 if (partial && !buffer_uptodate(bh)) 438 *partial = 1; 439 continue; 440 } 441 err = (*fn)(handle, bh); 442 if (!ret) 443 ret = err; 444 } 445 return ret; 446 } 447 448 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 449 { 450 sector_t status; 451 u64 p_blkno = 0; 452 int err = 0; 453 struct inode *inode = mapping->host; 454 455 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 456 (unsigned long long)block); 457 458 /* 459 * The swap code (ab-)uses ->bmap to get a block mapping and then 460 * bypasseѕ the file system for actual I/O. We really can't allow 461 * that on refcounted inodes, so we have to skip out here. And yes, 462 * 0 is the magic code for a bmap error.. 463 */ 464 if (ocfs2_is_refcount_inode(inode)) 465 return 0; 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 static int ocfs2_releasepage(struct page *page, gfp_t wait) 503 { 504 if (!page_has_buffers(page)) 505 return 0; 506 return try_to_free_buffers(page); 507 } 508 509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 510 u32 cpos, 511 unsigned int *start, 512 unsigned int *end) 513 { 514 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 515 516 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 517 unsigned int cpp; 518 519 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 520 521 cluster_start = cpos % cpp; 522 cluster_start = cluster_start << osb->s_clustersize_bits; 523 524 cluster_end = cluster_start + osb->s_clustersize; 525 } 526 527 BUG_ON(cluster_start > PAGE_SIZE); 528 BUG_ON(cluster_end > PAGE_SIZE); 529 530 if (start) 531 *start = cluster_start; 532 if (end) 533 *end = cluster_end; 534 } 535 536 /* 537 * 'from' and 'to' are the region in the page to avoid zeroing. 538 * 539 * If pagesize > clustersize, this function will avoid zeroing outside 540 * of the cluster boundary. 541 * 542 * from == to == 0 is code for "zero the entire cluster region" 543 */ 544 static void ocfs2_clear_page_regions(struct page *page, 545 struct ocfs2_super *osb, u32 cpos, 546 unsigned from, unsigned to) 547 { 548 void *kaddr; 549 unsigned int cluster_start, cluster_end; 550 551 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 552 553 kaddr = kmap_atomic(page); 554 555 if (from || to) { 556 if (from > cluster_start) 557 memset(kaddr + cluster_start, 0, from - cluster_start); 558 if (to < cluster_end) 559 memset(kaddr + to, 0, cluster_end - to); 560 } else { 561 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 562 } 563 564 kunmap_atomic(kaddr); 565 } 566 567 /* 568 * Nonsparse file systems fully allocate before we get to the write 569 * code. This prevents ocfs2_write() from tagging the write as an 570 * allocating one, which means ocfs2_map_page_blocks() might try to 571 * read-in the blocks at the tail of our file. Avoid reading them by 572 * testing i_size against each block offset. 573 */ 574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 575 unsigned int block_start) 576 { 577 u64 offset = page_offset(page) + block_start; 578 579 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 580 return 1; 581 582 if (i_size_read(inode) > offset) 583 return 1; 584 585 return 0; 586 } 587 588 /* 589 * Some of this taken from __block_write_begin(). We already have our 590 * mapping by now though, and the entire write will be allocating or 591 * it won't, so not much need to use BH_New. 592 * 593 * This will also skip zeroing, which is handled externally. 594 */ 595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 596 struct inode *inode, unsigned int from, 597 unsigned int to, int new) 598 { 599 int ret = 0; 600 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 601 unsigned int block_end, block_start; 602 unsigned int bsize = i_blocksize(inode); 603 604 if (!page_has_buffers(page)) 605 create_empty_buffers(page, bsize, 0); 606 607 head = page_buffers(page); 608 for (bh = head, block_start = 0; bh != head || !block_start; 609 bh = bh->b_this_page, block_start += bsize) { 610 block_end = block_start + bsize; 611 612 clear_buffer_new(bh); 613 614 /* 615 * Ignore blocks outside of our i/o range - 616 * they may belong to unallocated clusters. 617 */ 618 if (block_start >= to || block_end <= from) { 619 if (PageUptodate(page)) 620 set_buffer_uptodate(bh); 621 continue; 622 } 623 624 /* 625 * For an allocating write with cluster size >= page 626 * size, we always write the entire page. 627 */ 628 if (new) 629 set_buffer_new(bh); 630 631 if (!buffer_mapped(bh)) { 632 map_bh(bh, inode->i_sb, *p_blkno); 633 clean_bdev_bh_alias(bh); 634 } 635 636 if (PageUptodate(page)) { 637 if (!buffer_uptodate(bh)) 638 set_buffer_uptodate(bh); 639 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 640 !buffer_new(bh) && 641 ocfs2_should_read_blk(inode, page, block_start) && 642 (block_start < from || block_end > to)) { 643 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 644 *wait_bh++=bh; 645 } 646 647 *p_blkno = *p_blkno + 1; 648 } 649 650 /* 651 * If we issued read requests - let them complete. 652 */ 653 while(wait_bh > wait) { 654 wait_on_buffer(*--wait_bh); 655 if (!buffer_uptodate(*wait_bh)) 656 ret = -EIO; 657 } 658 659 if (ret == 0 || !new) 660 return ret; 661 662 /* 663 * If we get -EIO above, zero out any newly allocated blocks 664 * to avoid exposing stale data. 665 */ 666 bh = head; 667 block_start = 0; 668 do { 669 block_end = block_start + bsize; 670 if (block_end <= from) 671 goto next_bh; 672 if (block_start >= to) 673 break; 674 675 zero_user(page, block_start, bh->b_size); 676 set_buffer_uptodate(bh); 677 mark_buffer_dirty(bh); 678 679 next_bh: 680 block_start = block_end; 681 bh = bh->b_this_page; 682 } while (bh != head); 683 684 return ret; 685 } 686 687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 688 #define OCFS2_MAX_CTXT_PAGES 1 689 #else 690 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 691 #endif 692 693 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 694 695 struct ocfs2_unwritten_extent { 696 struct list_head ue_node; 697 struct list_head ue_ip_node; 698 u32 ue_cpos; 699 u32 ue_phys; 700 }; 701 702 /* 703 * Describe the state of a single cluster to be written to. 704 */ 705 struct ocfs2_write_cluster_desc { 706 u32 c_cpos; 707 u32 c_phys; 708 /* 709 * Give this a unique field because c_phys eventually gets 710 * filled. 711 */ 712 unsigned c_new; 713 unsigned c_clear_unwritten; 714 unsigned c_needs_zero; 715 }; 716 717 struct ocfs2_write_ctxt { 718 /* Logical cluster position / len of write */ 719 u32 w_cpos; 720 u32 w_clen; 721 722 /* First cluster allocated in a nonsparse extend */ 723 u32 w_first_new_cpos; 724 725 /* Type of caller. Must be one of buffer, mmap, direct. */ 726 ocfs2_write_type_t w_type; 727 728 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 729 730 /* 731 * This is true if page_size > cluster_size. 732 * 733 * It triggers a set of special cases during write which might 734 * have to deal with allocating writes to partial pages. 735 */ 736 unsigned int w_large_pages; 737 738 /* 739 * Pages involved in this write. 740 * 741 * w_target_page is the page being written to by the user. 742 * 743 * w_pages is an array of pages which always contains 744 * w_target_page, and in the case of an allocating write with 745 * page_size < cluster size, it will contain zero'd and mapped 746 * pages adjacent to w_target_page which need to be written 747 * out in so that future reads from that region will get 748 * zero's. 749 */ 750 unsigned int w_num_pages; 751 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 752 struct page *w_target_page; 753 754 /* 755 * w_target_locked is used for page_mkwrite path indicating no unlocking 756 * against w_target_page in ocfs2_write_end_nolock. 757 */ 758 unsigned int w_target_locked:1; 759 760 /* 761 * ocfs2_write_end() uses this to know what the real range to 762 * write in the target should be. 763 */ 764 unsigned int w_target_from; 765 unsigned int w_target_to; 766 767 /* 768 * We could use journal_current_handle() but this is cleaner, 769 * IMHO -Mark 770 */ 771 handle_t *w_handle; 772 773 struct buffer_head *w_di_bh; 774 775 struct ocfs2_cached_dealloc_ctxt w_dealloc; 776 777 struct list_head w_unwritten_list; 778 unsigned int w_unwritten_count; 779 }; 780 781 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 782 { 783 int i; 784 785 for(i = 0; i < num_pages; i++) { 786 if (pages[i]) { 787 unlock_page(pages[i]); 788 mark_page_accessed(pages[i]); 789 put_page(pages[i]); 790 } 791 } 792 } 793 794 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 795 { 796 int i; 797 798 /* 799 * w_target_locked is only set to true in the page_mkwrite() case. 800 * The intent is to allow us to lock the target page from write_begin() 801 * to write_end(). The caller must hold a ref on w_target_page. 802 */ 803 if (wc->w_target_locked) { 804 BUG_ON(!wc->w_target_page); 805 for (i = 0; i < wc->w_num_pages; i++) { 806 if (wc->w_target_page == wc->w_pages[i]) { 807 wc->w_pages[i] = NULL; 808 break; 809 } 810 } 811 mark_page_accessed(wc->w_target_page); 812 put_page(wc->w_target_page); 813 } 814 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 815 } 816 817 static void ocfs2_free_unwritten_list(struct inode *inode, 818 struct list_head *head) 819 { 820 struct ocfs2_inode_info *oi = OCFS2_I(inode); 821 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 822 823 list_for_each_entry_safe(ue, tmp, head, ue_node) { 824 list_del(&ue->ue_node); 825 spin_lock(&oi->ip_lock); 826 list_del(&ue->ue_ip_node); 827 spin_unlock(&oi->ip_lock); 828 kfree(ue); 829 } 830 } 831 832 static void ocfs2_free_write_ctxt(struct inode *inode, 833 struct ocfs2_write_ctxt *wc) 834 { 835 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 836 ocfs2_unlock_pages(wc); 837 brelse(wc->w_di_bh); 838 kfree(wc); 839 } 840 841 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 842 struct ocfs2_super *osb, loff_t pos, 843 unsigned len, ocfs2_write_type_t type, 844 struct buffer_head *di_bh) 845 { 846 u32 cend; 847 struct ocfs2_write_ctxt *wc; 848 849 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 850 if (!wc) 851 return -ENOMEM; 852 853 wc->w_cpos = pos >> osb->s_clustersize_bits; 854 wc->w_first_new_cpos = UINT_MAX; 855 cend = (pos + len - 1) >> osb->s_clustersize_bits; 856 wc->w_clen = cend - wc->w_cpos + 1; 857 get_bh(di_bh); 858 wc->w_di_bh = di_bh; 859 wc->w_type = type; 860 861 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 862 wc->w_large_pages = 1; 863 else 864 wc->w_large_pages = 0; 865 866 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 867 INIT_LIST_HEAD(&wc->w_unwritten_list); 868 869 *wcp = wc; 870 871 return 0; 872 } 873 874 /* 875 * If a page has any new buffers, zero them out here, and mark them uptodate 876 * and dirty so they'll be written out (in order to prevent uninitialised 877 * block data from leaking). And clear the new bit. 878 */ 879 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 880 { 881 unsigned int block_start, block_end; 882 struct buffer_head *head, *bh; 883 884 BUG_ON(!PageLocked(page)); 885 if (!page_has_buffers(page)) 886 return; 887 888 bh = head = page_buffers(page); 889 block_start = 0; 890 do { 891 block_end = block_start + bh->b_size; 892 893 if (buffer_new(bh)) { 894 if (block_end > from && block_start < to) { 895 if (!PageUptodate(page)) { 896 unsigned start, end; 897 898 start = max(from, block_start); 899 end = min(to, block_end); 900 901 zero_user_segment(page, start, end); 902 set_buffer_uptodate(bh); 903 } 904 905 clear_buffer_new(bh); 906 mark_buffer_dirty(bh); 907 } 908 } 909 910 block_start = block_end; 911 bh = bh->b_this_page; 912 } while (bh != head); 913 } 914 915 /* 916 * Only called when we have a failure during allocating write to write 917 * zero's to the newly allocated region. 918 */ 919 static void ocfs2_write_failure(struct inode *inode, 920 struct ocfs2_write_ctxt *wc, 921 loff_t user_pos, unsigned user_len) 922 { 923 int i; 924 unsigned from = user_pos & (PAGE_SIZE - 1), 925 to = user_pos + user_len; 926 struct page *tmppage; 927 928 if (wc->w_target_page) 929 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 930 931 for(i = 0; i < wc->w_num_pages; i++) { 932 tmppage = wc->w_pages[i]; 933 934 if (tmppage && page_has_buffers(tmppage)) { 935 if (ocfs2_should_order_data(inode)) 936 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 937 user_pos, user_len); 938 939 block_commit_write(tmppage, from, to); 940 } 941 } 942 } 943 944 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 945 struct ocfs2_write_ctxt *wc, 946 struct page *page, u32 cpos, 947 loff_t user_pos, unsigned user_len, 948 int new) 949 { 950 int ret; 951 unsigned int map_from = 0, map_to = 0; 952 unsigned int cluster_start, cluster_end; 953 unsigned int user_data_from = 0, user_data_to = 0; 954 955 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 956 &cluster_start, &cluster_end); 957 958 /* treat the write as new if the a hole/lseek spanned across 959 * the page boundary. 960 */ 961 new = new | ((i_size_read(inode) <= page_offset(page)) && 962 (page_offset(page) <= user_pos)); 963 964 if (page == wc->w_target_page) { 965 map_from = user_pos & (PAGE_SIZE - 1); 966 map_to = map_from + user_len; 967 968 if (new) 969 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 970 cluster_start, cluster_end, 971 new); 972 else 973 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 974 map_from, map_to, new); 975 if (ret) { 976 mlog_errno(ret); 977 goto out; 978 } 979 980 user_data_from = map_from; 981 user_data_to = map_to; 982 if (new) { 983 map_from = cluster_start; 984 map_to = cluster_end; 985 } 986 } else { 987 /* 988 * If we haven't allocated the new page yet, we 989 * shouldn't be writing it out without copying user 990 * data. This is likely a math error from the caller. 991 */ 992 BUG_ON(!new); 993 994 map_from = cluster_start; 995 map_to = cluster_end; 996 997 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 998 cluster_start, cluster_end, new); 999 if (ret) { 1000 mlog_errno(ret); 1001 goto out; 1002 } 1003 } 1004 1005 /* 1006 * Parts of newly allocated pages need to be zero'd. 1007 * 1008 * Above, we have also rewritten 'to' and 'from' - as far as 1009 * the rest of the function is concerned, the entire cluster 1010 * range inside of a page needs to be written. 1011 * 1012 * We can skip this if the page is up to date - it's already 1013 * been zero'd from being read in as a hole. 1014 */ 1015 if (new && !PageUptodate(page)) 1016 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1017 cpos, user_data_from, user_data_to); 1018 1019 flush_dcache_page(page); 1020 1021 out: 1022 return ret; 1023 } 1024 1025 /* 1026 * This function will only grab one clusters worth of pages. 1027 */ 1028 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1029 struct ocfs2_write_ctxt *wc, 1030 u32 cpos, loff_t user_pos, 1031 unsigned user_len, int new, 1032 struct page *mmap_page) 1033 { 1034 int ret = 0, i; 1035 unsigned long start, target_index, end_index, index; 1036 struct inode *inode = mapping->host; 1037 loff_t last_byte; 1038 1039 target_index = user_pos >> PAGE_SHIFT; 1040 1041 /* 1042 * Figure out how many pages we'll be manipulating here. For 1043 * non allocating write, we just change the one 1044 * page. Otherwise, we'll need a whole clusters worth. If we're 1045 * writing past i_size, we only need enough pages to cover the 1046 * last page of the write. 1047 */ 1048 if (new) { 1049 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1050 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1051 /* 1052 * We need the index *past* the last page we could possibly 1053 * touch. This is the page past the end of the write or 1054 * i_size, whichever is greater. 1055 */ 1056 last_byte = max(user_pos + user_len, i_size_read(inode)); 1057 BUG_ON(last_byte < 1); 1058 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1059 if ((start + wc->w_num_pages) > end_index) 1060 wc->w_num_pages = end_index - start; 1061 } else { 1062 wc->w_num_pages = 1; 1063 start = target_index; 1064 } 1065 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1066 1067 for(i = 0; i < wc->w_num_pages; i++) { 1068 index = start + i; 1069 1070 if (index >= target_index && index <= end_index && 1071 wc->w_type == OCFS2_WRITE_MMAP) { 1072 /* 1073 * ocfs2_pagemkwrite() is a little different 1074 * and wants us to directly use the page 1075 * passed in. 1076 */ 1077 lock_page(mmap_page); 1078 1079 /* Exit and let the caller retry */ 1080 if (mmap_page->mapping != mapping) { 1081 WARN_ON(mmap_page->mapping); 1082 unlock_page(mmap_page); 1083 ret = -EAGAIN; 1084 goto out; 1085 } 1086 1087 get_page(mmap_page); 1088 wc->w_pages[i] = mmap_page; 1089 wc->w_target_locked = true; 1090 } else if (index >= target_index && index <= end_index && 1091 wc->w_type == OCFS2_WRITE_DIRECT) { 1092 /* Direct write has no mapping page. */ 1093 wc->w_pages[i] = NULL; 1094 continue; 1095 } else { 1096 wc->w_pages[i] = find_or_create_page(mapping, index, 1097 GFP_NOFS); 1098 if (!wc->w_pages[i]) { 1099 ret = -ENOMEM; 1100 mlog_errno(ret); 1101 goto out; 1102 } 1103 } 1104 wait_for_stable_page(wc->w_pages[i]); 1105 1106 if (index == target_index) 1107 wc->w_target_page = wc->w_pages[i]; 1108 } 1109 out: 1110 if (ret) 1111 wc->w_target_locked = false; 1112 return ret; 1113 } 1114 1115 /* 1116 * Prepare a single cluster for write one cluster into the file. 1117 */ 1118 static int ocfs2_write_cluster(struct address_space *mapping, 1119 u32 *phys, unsigned int new, 1120 unsigned int clear_unwritten, 1121 unsigned int should_zero, 1122 struct ocfs2_alloc_context *data_ac, 1123 struct ocfs2_alloc_context *meta_ac, 1124 struct ocfs2_write_ctxt *wc, u32 cpos, 1125 loff_t user_pos, unsigned user_len) 1126 { 1127 int ret, i; 1128 u64 p_blkno; 1129 struct inode *inode = mapping->host; 1130 struct ocfs2_extent_tree et; 1131 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1132 1133 if (new) { 1134 u32 tmp_pos; 1135 1136 /* 1137 * This is safe to call with the page locks - it won't take 1138 * any additional semaphores or cluster locks. 1139 */ 1140 tmp_pos = cpos; 1141 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1142 &tmp_pos, 1, !clear_unwritten, 1143 wc->w_di_bh, wc->w_handle, 1144 data_ac, meta_ac, NULL); 1145 /* 1146 * This shouldn't happen because we must have already 1147 * calculated the correct meta data allocation required. The 1148 * internal tree allocation code should know how to increase 1149 * transaction credits itself. 1150 * 1151 * If need be, we could handle -EAGAIN for a 1152 * RESTART_TRANS here. 1153 */ 1154 mlog_bug_on_msg(ret == -EAGAIN, 1155 "Inode %llu: EAGAIN return during allocation.\n", 1156 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1157 if (ret < 0) { 1158 mlog_errno(ret); 1159 goto out; 1160 } 1161 } else if (clear_unwritten) { 1162 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1163 wc->w_di_bh); 1164 ret = ocfs2_mark_extent_written(inode, &et, 1165 wc->w_handle, cpos, 1, *phys, 1166 meta_ac, &wc->w_dealloc); 1167 if (ret < 0) { 1168 mlog_errno(ret); 1169 goto out; 1170 } 1171 } 1172 1173 /* 1174 * The only reason this should fail is due to an inability to 1175 * find the extent added. 1176 */ 1177 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1178 if (ret < 0) { 1179 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1180 "at logical cluster %u", 1181 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1182 goto out; 1183 } 1184 1185 BUG_ON(*phys == 0); 1186 1187 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1188 if (!should_zero) 1189 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1190 1191 for(i = 0; i < wc->w_num_pages; i++) { 1192 int tmpret; 1193 1194 /* This is the direct io target page. */ 1195 if (wc->w_pages[i] == NULL) { 1196 p_blkno++; 1197 continue; 1198 } 1199 1200 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1201 wc->w_pages[i], cpos, 1202 user_pos, user_len, 1203 should_zero); 1204 if (tmpret) { 1205 mlog_errno(tmpret); 1206 if (ret == 0) 1207 ret = tmpret; 1208 } 1209 } 1210 1211 /* 1212 * We only have cleanup to do in case of allocating write. 1213 */ 1214 if (ret && new) 1215 ocfs2_write_failure(inode, wc, user_pos, user_len); 1216 1217 out: 1218 1219 return ret; 1220 } 1221 1222 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1223 struct ocfs2_alloc_context *data_ac, 1224 struct ocfs2_alloc_context *meta_ac, 1225 struct ocfs2_write_ctxt *wc, 1226 loff_t pos, unsigned len) 1227 { 1228 int ret, i; 1229 loff_t cluster_off; 1230 unsigned int local_len = len; 1231 struct ocfs2_write_cluster_desc *desc; 1232 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1233 1234 for (i = 0; i < wc->w_clen; i++) { 1235 desc = &wc->w_desc[i]; 1236 1237 /* 1238 * We have to make sure that the total write passed in 1239 * doesn't extend past a single cluster. 1240 */ 1241 local_len = len; 1242 cluster_off = pos & (osb->s_clustersize - 1); 1243 if ((cluster_off + local_len) > osb->s_clustersize) 1244 local_len = osb->s_clustersize - cluster_off; 1245 1246 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1247 desc->c_new, 1248 desc->c_clear_unwritten, 1249 desc->c_needs_zero, 1250 data_ac, meta_ac, 1251 wc, desc->c_cpos, pos, local_len); 1252 if (ret) { 1253 mlog_errno(ret); 1254 goto out; 1255 } 1256 1257 len -= local_len; 1258 pos += local_len; 1259 } 1260 1261 ret = 0; 1262 out: 1263 return ret; 1264 } 1265 1266 /* 1267 * ocfs2_write_end() wants to know which parts of the target page it 1268 * should complete the write on. It's easiest to compute them ahead of 1269 * time when a more complete view of the write is available. 1270 */ 1271 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1272 struct ocfs2_write_ctxt *wc, 1273 loff_t pos, unsigned len, int alloc) 1274 { 1275 struct ocfs2_write_cluster_desc *desc; 1276 1277 wc->w_target_from = pos & (PAGE_SIZE - 1); 1278 wc->w_target_to = wc->w_target_from + len; 1279 1280 if (alloc == 0) 1281 return; 1282 1283 /* 1284 * Allocating write - we may have different boundaries based 1285 * on page size and cluster size. 1286 * 1287 * NOTE: We can no longer compute one value from the other as 1288 * the actual write length and user provided length may be 1289 * different. 1290 */ 1291 1292 if (wc->w_large_pages) { 1293 /* 1294 * We only care about the 1st and last cluster within 1295 * our range and whether they should be zero'd or not. Either 1296 * value may be extended out to the start/end of a 1297 * newly allocated cluster. 1298 */ 1299 desc = &wc->w_desc[0]; 1300 if (desc->c_needs_zero) 1301 ocfs2_figure_cluster_boundaries(osb, 1302 desc->c_cpos, 1303 &wc->w_target_from, 1304 NULL); 1305 1306 desc = &wc->w_desc[wc->w_clen - 1]; 1307 if (desc->c_needs_zero) 1308 ocfs2_figure_cluster_boundaries(osb, 1309 desc->c_cpos, 1310 NULL, 1311 &wc->w_target_to); 1312 } else { 1313 wc->w_target_from = 0; 1314 wc->w_target_to = PAGE_SIZE; 1315 } 1316 } 1317 1318 /* 1319 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1320 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1321 * by the direct io procedure. 1322 * If this is a new extent that allocated by direct io, we should mark it in 1323 * the ip_unwritten_list. 1324 */ 1325 static int ocfs2_unwritten_check(struct inode *inode, 1326 struct ocfs2_write_ctxt *wc, 1327 struct ocfs2_write_cluster_desc *desc) 1328 { 1329 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1330 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1331 int ret = 0; 1332 1333 if (!desc->c_needs_zero) 1334 return 0; 1335 1336 retry: 1337 spin_lock(&oi->ip_lock); 1338 /* Needs not to zero no metter buffer or direct. The one who is zero 1339 * the cluster is doing zero. And he will clear unwritten after all 1340 * cluster io finished. */ 1341 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1342 if (desc->c_cpos == ue->ue_cpos) { 1343 BUG_ON(desc->c_new); 1344 desc->c_needs_zero = 0; 1345 desc->c_clear_unwritten = 0; 1346 goto unlock; 1347 } 1348 } 1349 1350 if (wc->w_type != OCFS2_WRITE_DIRECT) 1351 goto unlock; 1352 1353 if (new == NULL) { 1354 spin_unlock(&oi->ip_lock); 1355 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1356 GFP_NOFS); 1357 if (new == NULL) { 1358 ret = -ENOMEM; 1359 goto out; 1360 } 1361 goto retry; 1362 } 1363 /* This direct write will doing zero. */ 1364 new->ue_cpos = desc->c_cpos; 1365 new->ue_phys = desc->c_phys; 1366 desc->c_clear_unwritten = 0; 1367 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1368 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1369 wc->w_unwritten_count++; 1370 new = NULL; 1371 unlock: 1372 spin_unlock(&oi->ip_lock); 1373 out: 1374 kfree(new); 1375 return ret; 1376 } 1377 1378 /* 1379 * Populate each single-cluster write descriptor in the write context 1380 * with information about the i/o to be done. 1381 * 1382 * Returns the number of clusters that will have to be allocated, as 1383 * well as a worst case estimate of the number of extent records that 1384 * would have to be created during a write to an unwritten region. 1385 */ 1386 static int ocfs2_populate_write_desc(struct inode *inode, 1387 struct ocfs2_write_ctxt *wc, 1388 unsigned int *clusters_to_alloc, 1389 unsigned int *extents_to_split) 1390 { 1391 int ret; 1392 struct ocfs2_write_cluster_desc *desc; 1393 unsigned int num_clusters = 0; 1394 unsigned int ext_flags = 0; 1395 u32 phys = 0; 1396 int i; 1397 1398 *clusters_to_alloc = 0; 1399 *extents_to_split = 0; 1400 1401 for (i = 0; i < wc->w_clen; i++) { 1402 desc = &wc->w_desc[i]; 1403 desc->c_cpos = wc->w_cpos + i; 1404 1405 if (num_clusters == 0) { 1406 /* 1407 * Need to look up the next extent record. 1408 */ 1409 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1410 &num_clusters, &ext_flags); 1411 if (ret) { 1412 mlog_errno(ret); 1413 goto out; 1414 } 1415 1416 /* We should already CoW the refcountd extent. */ 1417 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1418 1419 /* 1420 * Assume worst case - that we're writing in 1421 * the middle of the extent. 1422 * 1423 * We can assume that the write proceeds from 1424 * left to right, in which case the extent 1425 * insert code is smart enough to coalesce the 1426 * next splits into the previous records created. 1427 */ 1428 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1429 *extents_to_split = *extents_to_split + 2; 1430 } else if (phys) { 1431 /* 1432 * Only increment phys if it doesn't describe 1433 * a hole. 1434 */ 1435 phys++; 1436 } 1437 1438 /* 1439 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1440 * file that got extended. w_first_new_cpos tells us 1441 * where the newly allocated clusters are so we can 1442 * zero them. 1443 */ 1444 if (desc->c_cpos >= wc->w_first_new_cpos) { 1445 BUG_ON(phys == 0); 1446 desc->c_needs_zero = 1; 1447 } 1448 1449 desc->c_phys = phys; 1450 if (phys == 0) { 1451 desc->c_new = 1; 1452 desc->c_needs_zero = 1; 1453 desc->c_clear_unwritten = 1; 1454 *clusters_to_alloc = *clusters_to_alloc + 1; 1455 } 1456 1457 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1458 desc->c_clear_unwritten = 1; 1459 desc->c_needs_zero = 1; 1460 } 1461 1462 ret = ocfs2_unwritten_check(inode, wc, desc); 1463 if (ret) { 1464 mlog_errno(ret); 1465 goto out; 1466 } 1467 1468 num_clusters--; 1469 } 1470 1471 ret = 0; 1472 out: 1473 return ret; 1474 } 1475 1476 static int ocfs2_write_begin_inline(struct address_space *mapping, 1477 struct inode *inode, 1478 struct ocfs2_write_ctxt *wc) 1479 { 1480 int ret; 1481 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1482 struct page *page; 1483 handle_t *handle; 1484 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1485 1486 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1487 if (IS_ERR(handle)) { 1488 ret = PTR_ERR(handle); 1489 mlog_errno(ret); 1490 goto out; 1491 } 1492 1493 page = find_or_create_page(mapping, 0, GFP_NOFS); 1494 if (!page) { 1495 ocfs2_commit_trans(osb, handle); 1496 ret = -ENOMEM; 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 /* 1501 * If we don't set w_num_pages then this page won't get unlocked 1502 * and freed on cleanup of the write context. 1503 */ 1504 wc->w_pages[0] = wc->w_target_page = page; 1505 wc->w_num_pages = 1; 1506 1507 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1508 OCFS2_JOURNAL_ACCESS_WRITE); 1509 if (ret) { 1510 ocfs2_commit_trans(osb, handle); 1511 1512 mlog_errno(ret); 1513 goto out; 1514 } 1515 1516 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1517 ocfs2_set_inode_data_inline(inode, di); 1518 1519 if (!PageUptodate(page)) { 1520 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1521 if (ret) { 1522 ocfs2_commit_trans(osb, handle); 1523 1524 goto out; 1525 } 1526 } 1527 1528 wc->w_handle = handle; 1529 out: 1530 return ret; 1531 } 1532 1533 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1534 { 1535 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1536 1537 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1538 return 1; 1539 return 0; 1540 } 1541 1542 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1543 struct inode *inode, loff_t pos, 1544 unsigned len, struct page *mmap_page, 1545 struct ocfs2_write_ctxt *wc) 1546 { 1547 int ret, written = 0; 1548 loff_t end = pos + len; 1549 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1550 struct ocfs2_dinode *di = NULL; 1551 1552 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1553 len, (unsigned long long)pos, 1554 oi->ip_dyn_features); 1555 1556 /* 1557 * Handle inodes which already have inline data 1st. 1558 */ 1559 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1560 if (mmap_page == NULL && 1561 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1562 goto do_inline_write; 1563 1564 /* 1565 * The write won't fit - we have to give this inode an 1566 * inline extent list now. 1567 */ 1568 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1569 if (ret) 1570 mlog_errno(ret); 1571 goto out; 1572 } 1573 1574 /* 1575 * Check whether the inode can accept inline data. 1576 */ 1577 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1578 return 0; 1579 1580 /* 1581 * Check whether the write can fit. 1582 */ 1583 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1584 if (mmap_page || 1585 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1586 return 0; 1587 1588 do_inline_write: 1589 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1590 if (ret) { 1591 mlog_errno(ret); 1592 goto out; 1593 } 1594 1595 /* 1596 * This signals to the caller that the data can be written 1597 * inline. 1598 */ 1599 written = 1; 1600 out: 1601 return written ? written : ret; 1602 } 1603 1604 /* 1605 * This function only does anything for file systems which can't 1606 * handle sparse files. 1607 * 1608 * What we want to do here is fill in any hole between the current end 1609 * of allocation and the end of our write. That way the rest of the 1610 * write path can treat it as an non-allocating write, which has no 1611 * special case code for sparse/nonsparse files. 1612 */ 1613 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1614 struct buffer_head *di_bh, 1615 loff_t pos, unsigned len, 1616 struct ocfs2_write_ctxt *wc) 1617 { 1618 int ret; 1619 loff_t newsize = pos + len; 1620 1621 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1622 1623 if (newsize <= i_size_read(inode)) 1624 return 0; 1625 1626 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1627 if (ret) 1628 mlog_errno(ret); 1629 1630 /* There is no wc if this is call from direct. */ 1631 if (wc) 1632 wc->w_first_new_cpos = 1633 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1634 1635 return ret; 1636 } 1637 1638 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1639 loff_t pos) 1640 { 1641 int ret = 0; 1642 1643 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1644 if (pos > i_size_read(inode)) 1645 ret = ocfs2_zero_extend(inode, di_bh, pos); 1646 1647 return ret; 1648 } 1649 1650 int ocfs2_write_begin_nolock(struct address_space *mapping, 1651 loff_t pos, unsigned len, ocfs2_write_type_t type, 1652 struct page **pagep, void **fsdata, 1653 struct buffer_head *di_bh, struct page *mmap_page) 1654 { 1655 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1656 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1657 struct ocfs2_write_ctxt *wc; 1658 struct inode *inode = mapping->host; 1659 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1660 struct ocfs2_dinode *di; 1661 struct ocfs2_alloc_context *data_ac = NULL; 1662 struct ocfs2_alloc_context *meta_ac = NULL; 1663 handle_t *handle; 1664 struct ocfs2_extent_tree et; 1665 int try_free = 1, ret1; 1666 1667 try_again: 1668 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1669 if (ret) { 1670 mlog_errno(ret); 1671 return ret; 1672 } 1673 1674 if (ocfs2_supports_inline_data(osb)) { 1675 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1676 mmap_page, wc); 1677 if (ret == 1) { 1678 ret = 0; 1679 goto success; 1680 } 1681 if (ret < 0) { 1682 mlog_errno(ret); 1683 goto out; 1684 } 1685 } 1686 1687 /* Direct io change i_size late, should not zero tail here. */ 1688 if (type != OCFS2_WRITE_DIRECT) { 1689 if (ocfs2_sparse_alloc(osb)) 1690 ret = ocfs2_zero_tail(inode, di_bh, pos); 1691 else 1692 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1693 len, wc); 1694 if (ret) { 1695 mlog_errno(ret); 1696 goto out; 1697 } 1698 } 1699 1700 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1701 if (ret < 0) { 1702 mlog_errno(ret); 1703 goto out; 1704 } else if (ret == 1) { 1705 clusters_need = wc->w_clen; 1706 ret = ocfs2_refcount_cow(inode, di_bh, 1707 wc->w_cpos, wc->w_clen, UINT_MAX); 1708 if (ret) { 1709 mlog_errno(ret); 1710 goto out; 1711 } 1712 } 1713 1714 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1715 &extents_to_split); 1716 if (ret) { 1717 mlog_errno(ret); 1718 goto out; 1719 } 1720 clusters_need += clusters_to_alloc; 1721 1722 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1723 1724 trace_ocfs2_write_begin_nolock( 1725 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1726 (long long)i_size_read(inode), 1727 le32_to_cpu(di->i_clusters), 1728 pos, len, type, mmap_page, 1729 clusters_to_alloc, extents_to_split); 1730 1731 /* 1732 * We set w_target_from, w_target_to here so that 1733 * ocfs2_write_end() knows which range in the target page to 1734 * write out. An allocation requires that we write the entire 1735 * cluster range. 1736 */ 1737 if (clusters_to_alloc || extents_to_split) { 1738 /* 1739 * XXX: We are stretching the limits of 1740 * ocfs2_lock_allocators(). It greatly over-estimates 1741 * the work to be done. 1742 */ 1743 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1744 wc->w_di_bh); 1745 ret = ocfs2_lock_allocators(inode, &et, 1746 clusters_to_alloc, extents_to_split, 1747 &data_ac, &meta_ac); 1748 if (ret) { 1749 mlog_errno(ret); 1750 goto out; 1751 } 1752 1753 if (data_ac) 1754 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1755 1756 credits = ocfs2_calc_extend_credits(inode->i_sb, 1757 &di->id2.i_list); 1758 } else if (type == OCFS2_WRITE_DIRECT) 1759 /* direct write needs not to start trans if no extents alloc. */ 1760 goto success; 1761 1762 /* 1763 * We have to zero sparse allocated clusters, unwritten extent clusters, 1764 * and non-sparse clusters we just extended. For non-sparse writes, 1765 * we know zeros will only be needed in the first and/or last cluster. 1766 */ 1767 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1768 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1769 cluster_of_pages = 1; 1770 else 1771 cluster_of_pages = 0; 1772 1773 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1774 1775 handle = ocfs2_start_trans(osb, credits); 1776 if (IS_ERR(handle)) { 1777 ret = PTR_ERR(handle); 1778 mlog_errno(ret); 1779 goto out; 1780 } 1781 1782 wc->w_handle = handle; 1783 1784 if (clusters_to_alloc) { 1785 ret = dquot_alloc_space_nodirty(inode, 1786 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1787 if (ret) 1788 goto out_commit; 1789 } 1790 1791 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1792 OCFS2_JOURNAL_ACCESS_WRITE); 1793 if (ret) { 1794 mlog_errno(ret); 1795 goto out_quota; 1796 } 1797 1798 /* 1799 * Fill our page array first. That way we've grabbed enough so 1800 * that we can zero and flush if we error after adding the 1801 * extent. 1802 */ 1803 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1804 cluster_of_pages, mmap_page); 1805 if (ret && ret != -EAGAIN) { 1806 mlog_errno(ret); 1807 goto out_quota; 1808 } 1809 1810 /* 1811 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1812 * the target page. In this case, we exit with no error and no target 1813 * page. This will trigger the caller, page_mkwrite(), to re-try 1814 * the operation. 1815 */ 1816 if (ret == -EAGAIN) { 1817 BUG_ON(wc->w_target_page); 1818 ret = 0; 1819 goto out_quota; 1820 } 1821 1822 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1823 len); 1824 if (ret) { 1825 mlog_errno(ret); 1826 goto out_quota; 1827 } 1828 1829 if (data_ac) 1830 ocfs2_free_alloc_context(data_ac); 1831 if (meta_ac) 1832 ocfs2_free_alloc_context(meta_ac); 1833 1834 success: 1835 if (pagep) 1836 *pagep = wc->w_target_page; 1837 *fsdata = wc; 1838 return 0; 1839 out_quota: 1840 if (clusters_to_alloc) 1841 dquot_free_space(inode, 1842 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1843 out_commit: 1844 ocfs2_commit_trans(osb, handle); 1845 1846 out: 1847 /* 1848 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1849 * even in case of error here like ENOSPC and ENOMEM. So, we need 1850 * to unlock the target page manually to prevent deadlocks when 1851 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1852 * to VM code. 1853 */ 1854 if (wc->w_target_locked) 1855 unlock_page(mmap_page); 1856 1857 ocfs2_free_write_ctxt(inode, wc); 1858 1859 if (data_ac) { 1860 ocfs2_free_alloc_context(data_ac); 1861 data_ac = NULL; 1862 } 1863 if (meta_ac) { 1864 ocfs2_free_alloc_context(meta_ac); 1865 meta_ac = NULL; 1866 } 1867 1868 if (ret == -ENOSPC && try_free) { 1869 /* 1870 * Try to free some truncate log so that we can have enough 1871 * clusters to allocate. 1872 */ 1873 try_free = 0; 1874 1875 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1876 if (ret1 == 1) 1877 goto try_again; 1878 1879 if (ret1 < 0) 1880 mlog_errno(ret1); 1881 } 1882 1883 return ret; 1884 } 1885 1886 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1887 loff_t pos, unsigned len, unsigned flags, 1888 struct page **pagep, void **fsdata) 1889 { 1890 int ret; 1891 struct buffer_head *di_bh = NULL; 1892 struct inode *inode = mapping->host; 1893 1894 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1895 if (ret) { 1896 mlog_errno(ret); 1897 return ret; 1898 } 1899 1900 /* 1901 * Take alloc sem here to prevent concurrent lookups. That way 1902 * the mapping, zeroing and tree manipulation within 1903 * ocfs2_write() will be safe against ->readpage(). This 1904 * should also serve to lock out allocation from a shared 1905 * writeable region. 1906 */ 1907 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1908 1909 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1910 pagep, fsdata, di_bh, NULL); 1911 if (ret) { 1912 mlog_errno(ret); 1913 goto out_fail; 1914 } 1915 1916 brelse(di_bh); 1917 1918 return 0; 1919 1920 out_fail: 1921 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1922 1923 brelse(di_bh); 1924 ocfs2_inode_unlock(inode, 1); 1925 1926 return ret; 1927 } 1928 1929 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1930 unsigned len, unsigned *copied, 1931 struct ocfs2_dinode *di, 1932 struct ocfs2_write_ctxt *wc) 1933 { 1934 void *kaddr; 1935 1936 if (unlikely(*copied < len)) { 1937 if (!PageUptodate(wc->w_target_page)) { 1938 *copied = 0; 1939 return; 1940 } 1941 } 1942 1943 kaddr = kmap_atomic(wc->w_target_page); 1944 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1945 kunmap_atomic(kaddr); 1946 1947 trace_ocfs2_write_end_inline( 1948 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1949 (unsigned long long)pos, *copied, 1950 le16_to_cpu(di->id2.i_data.id_count), 1951 le16_to_cpu(di->i_dyn_features)); 1952 } 1953 1954 int ocfs2_write_end_nolock(struct address_space *mapping, 1955 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1956 { 1957 int i, ret; 1958 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1959 struct inode *inode = mapping->host; 1960 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1961 struct ocfs2_write_ctxt *wc = fsdata; 1962 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1963 handle_t *handle = wc->w_handle; 1964 struct page *tmppage; 1965 1966 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1967 1968 if (handle) { 1969 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1970 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1971 if (ret) { 1972 copied = ret; 1973 mlog_errno(ret); 1974 goto out; 1975 } 1976 } 1977 1978 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1979 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1980 goto out_write_size; 1981 } 1982 1983 if (unlikely(copied < len) && wc->w_target_page) { 1984 if (!PageUptodate(wc->w_target_page)) 1985 copied = 0; 1986 1987 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1988 start+len); 1989 } 1990 if (wc->w_target_page) 1991 flush_dcache_page(wc->w_target_page); 1992 1993 for(i = 0; i < wc->w_num_pages; i++) { 1994 tmppage = wc->w_pages[i]; 1995 1996 /* This is the direct io target page. */ 1997 if (tmppage == NULL) 1998 continue; 1999 2000 if (tmppage == wc->w_target_page) { 2001 from = wc->w_target_from; 2002 to = wc->w_target_to; 2003 2004 BUG_ON(from > PAGE_SIZE || 2005 to > PAGE_SIZE || 2006 to < from); 2007 } else { 2008 /* 2009 * Pages adjacent to the target (if any) imply 2010 * a hole-filling write in which case we want 2011 * to flush their entire range. 2012 */ 2013 from = 0; 2014 to = PAGE_SIZE; 2015 } 2016 2017 if (page_has_buffers(tmppage)) { 2018 if (handle && ocfs2_should_order_data(inode)) { 2019 loff_t start_byte = 2020 ((loff_t)tmppage->index << PAGE_SHIFT) + 2021 from; 2022 loff_t length = to - from; 2023 ocfs2_jbd2_inode_add_write(handle, inode, 2024 start_byte, length); 2025 } 2026 block_commit_write(tmppage, from, to); 2027 } 2028 } 2029 2030 out_write_size: 2031 /* Direct io do not update i_size here. */ 2032 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2033 pos += copied; 2034 if (pos > i_size_read(inode)) { 2035 i_size_write(inode, pos); 2036 mark_inode_dirty(inode); 2037 } 2038 inode->i_blocks = ocfs2_inode_sector_count(inode); 2039 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2040 inode->i_mtime = inode->i_ctime = current_time(inode); 2041 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2042 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2043 if (handle) 2044 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2045 } 2046 if (handle) 2047 ocfs2_journal_dirty(handle, wc->w_di_bh); 2048 2049 out: 2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2051 * lock, or it will cause a deadlock since journal commit threads holds 2052 * this lock and will ask for the page lock when flushing the data. 2053 * put it here to preserve the unlock order. 2054 */ 2055 ocfs2_unlock_pages(wc); 2056 2057 if (handle) 2058 ocfs2_commit_trans(osb, handle); 2059 2060 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2061 2062 brelse(wc->w_di_bh); 2063 kfree(wc); 2064 2065 return copied; 2066 } 2067 2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2069 loff_t pos, unsigned len, unsigned copied, 2070 struct page *page, void *fsdata) 2071 { 2072 int ret; 2073 struct inode *inode = mapping->host; 2074 2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2076 2077 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2078 ocfs2_inode_unlock(inode, 1); 2079 2080 return ret; 2081 } 2082 2083 struct ocfs2_dio_write_ctxt { 2084 struct list_head dw_zero_list; 2085 unsigned dw_zero_count; 2086 int dw_orphaned; 2087 pid_t dw_writer_pid; 2088 }; 2089 2090 static struct ocfs2_dio_write_ctxt * 2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2092 { 2093 struct ocfs2_dio_write_ctxt *dwc = NULL; 2094 2095 if (bh->b_private) 2096 return bh->b_private; 2097 2098 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2099 if (dwc == NULL) 2100 return NULL; 2101 INIT_LIST_HEAD(&dwc->dw_zero_list); 2102 dwc->dw_zero_count = 0; 2103 dwc->dw_orphaned = 0; 2104 dwc->dw_writer_pid = task_pid_nr(current); 2105 bh->b_private = dwc; 2106 *alloc = 1; 2107 2108 return dwc; 2109 } 2110 2111 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2112 struct ocfs2_dio_write_ctxt *dwc) 2113 { 2114 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2115 kfree(dwc); 2116 } 2117 2118 /* 2119 * TODO: Make this into a generic get_blocks function. 2120 * 2121 * From do_direct_io in direct-io.c: 2122 * "So what we do is to permit the ->get_blocks function to populate 2123 * bh.b_size with the size of IO which is permitted at this offset and 2124 * this i_blkbits." 2125 * 2126 * This function is called directly from get_more_blocks in direct-io.c. 2127 * 2128 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2129 * fs_count, map_bh, dio->rw == WRITE); 2130 */ 2131 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2132 struct buffer_head *bh_result, int create) 2133 { 2134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2136 struct ocfs2_write_ctxt *wc; 2137 struct ocfs2_write_cluster_desc *desc = NULL; 2138 struct ocfs2_dio_write_ctxt *dwc = NULL; 2139 struct buffer_head *di_bh = NULL; 2140 u64 p_blkno; 2141 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2142 loff_t pos = iblock << i_blkbits; 2143 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2144 unsigned len, total_len = bh_result->b_size; 2145 int ret = 0, first_get_block = 0; 2146 2147 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2148 len = min(total_len, len); 2149 2150 /* 2151 * bh_result->b_size is count in get_more_blocks according to write 2152 * "pos" and "end", we need map twice to return different buffer state: 2153 * 1. area in file size, not set NEW; 2154 * 2. area out file size, set NEW. 2155 * 2156 * iblock endblk 2157 * |--------|---------|---------|--------- 2158 * |<-------area in file------->| 2159 */ 2160 2161 if ((iblock <= endblk) && 2162 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2163 len = (endblk - iblock + 1) << i_blkbits; 2164 2165 mlog(0, "get block of %lu at %llu:%u req %u\n", 2166 inode->i_ino, pos, len, total_len); 2167 2168 /* 2169 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2170 * we may need to add it to orphan dir. So can not fall to fast path 2171 * while file size will be changed. 2172 */ 2173 if (pos + total_len <= i_size_read(inode)) { 2174 2175 /* This is the fast path for re-write. */ 2176 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2177 if (buffer_mapped(bh_result) && 2178 !buffer_new(bh_result) && 2179 ret == 0) 2180 goto out; 2181 2182 /* Clear state set by ocfs2_get_block. */ 2183 bh_result->b_state = 0; 2184 } 2185 2186 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2187 if (unlikely(dwc == NULL)) { 2188 ret = -ENOMEM; 2189 mlog_errno(ret); 2190 goto out; 2191 } 2192 2193 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2194 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2195 !dwc->dw_orphaned) { 2196 /* 2197 * when we are going to alloc extents beyond file size, add the 2198 * inode to orphan dir, so we can recall those spaces when 2199 * system crashed during write. 2200 */ 2201 ret = ocfs2_add_inode_to_orphan(osb, inode); 2202 if (ret < 0) { 2203 mlog_errno(ret); 2204 goto out; 2205 } 2206 dwc->dw_orphaned = 1; 2207 } 2208 2209 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2210 if (ret) { 2211 mlog_errno(ret); 2212 goto out; 2213 } 2214 2215 down_write(&oi->ip_alloc_sem); 2216 2217 if (first_get_block) { 2218 if (ocfs2_sparse_alloc(osb)) 2219 ret = ocfs2_zero_tail(inode, di_bh, pos); 2220 else 2221 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2222 total_len, NULL); 2223 if (ret < 0) { 2224 mlog_errno(ret); 2225 goto unlock; 2226 } 2227 } 2228 2229 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2230 OCFS2_WRITE_DIRECT, NULL, 2231 (void **)&wc, di_bh, NULL); 2232 if (ret) { 2233 mlog_errno(ret); 2234 goto unlock; 2235 } 2236 2237 desc = &wc->w_desc[0]; 2238 2239 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2240 BUG_ON(p_blkno == 0); 2241 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2242 2243 map_bh(bh_result, inode->i_sb, p_blkno); 2244 bh_result->b_size = len; 2245 if (desc->c_needs_zero) 2246 set_buffer_new(bh_result); 2247 2248 if (iblock > endblk) 2249 set_buffer_new(bh_result); 2250 2251 /* May sleep in end_io. It should not happen in a irq context. So defer 2252 * it to dio work queue. */ 2253 set_buffer_defer_completion(bh_result); 2254 2255 if (!list_empty(&wc->w_unwritten_list)) { 2256 struct ocfs2_unwritten_extent *ue = NULL; 2257 2258 ue = list_first_entry(&wc->w_unwritten_list, 2259 struct ocfs2_unwritten_extent, 2260 ue_node); 2261 BUG_ON(ue->ue_cpos != desc->c_cpos); 2262 /* The physical address may be 0, fill it. */ 2263 ue->ue_phys = desc->c_phys; 2264 2265 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2266 dwc->dw_zero_count += wc->w_unwritten_count; 2267 } 2268 2269 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2270 BUG_ON(ret != len); 2271 ret = 0; 2272 unlock: 2273 up_write(&oi->ip_alloc_sem); 2274 ocfs2_inode_unlock(inode, 1); 2275 brelse(di_bh); 2276 out: 2277 if (ret < 0) 2278 ret = -EIO; 2279 return ret; 2280 } 2281 2282 static int ocfs2_dio_end_io_write(struct inode *inode, 2283 struct ocfs2_dio_write_ctxt *dwc, 2284 loff_t offset, 2285 ssize_t bytes) 2286 { 2287 struct ocfs2_cached_dealloc_ctxt dealloc; 2288 struct ocfs2_extent_tree et; 2289 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2290 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2291 struct ocfs2_unwritten_extent *ue = NULL; 2292 struct buffer_head *di_bh = NULL; 2293 struct ocfs2_dinode *di; 2294 struct ocfs2_alloc_context *data_ac = NULL; 2295 struct ocfs2_alloc_context *meta_ac = NULL; 2296 handle_t *handle = NULL; 2297 loff_t end = offset + bytes; 2298 int ret = 0, credits = 0; 2299 2300 ocfs2_init_dealloc_ctxt(&dealloc); 2301 2302 /* We do clear unwritten, delete orphan, change i_size here. If neither 2303 * of these happen, we can skip all this. */ 2304 if (list_empty(&dwc->dw_zero_list) && 2305 end <= i_size_read(inode) && 2306 !dwc->dw_orphaned) 2307 goto out; 2308 2309 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2310 if (ret < 0) { 2311 mlog_errno(ret); 2312 goto out; 2313 } 2314 2315 down_write(&oi->ip_alloc_sem); 2316 2317 /* Delete orphan before acquire i_mutex. */ 2318 if (dwc->dw_orphaned) { 2319 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2320 2321 end = end > i_size_read(inode) ? end : 0; 2322 2323 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2324 !!end, end); 2325 if (ret < 0) 2326 mlog_errno(ret); 2327 } 2328 2329 di = (struct ocfs2_dinode *)di_bh->b_data; 2330 2331 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2332 2333 /* Attach dealloc with extent tree in case that we may reuse extents 2334 * which are already unlinked from current extent tree due to extent 2335 * rotation and merging. 2336 */ 2337 et.et_dealloc = &dealloc; 2338 2339 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2340 &data_ac, &meta_ac); 2341 if (ret) { 2342 mlog_errno(ret); 2343 goto unlock; 2344 } 2345 2346 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2347 2348 handle = ocfs2_start_trans(osb, credits); 2349 if (IS_ERR(handle)) { 2350 ret = PTR_ERR(handle); 2351 mlog_errno(ret); 2352 goto unlock; 2353 } 2354 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2355 OCFS2_JOURNAL_ACCESS_WRITE); 2356 if (ret) { 2357 mlog_errno(ret); 2358 goto commit; 2359 } 2360 2361 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2362 ret = ocfs2_mark_extent_written(inode, &et, handle, 2363 ue->ue_cpos, 1, 2364 ue->ue_phys, 2365 meta_ac, &dealloc); 2366 if (ret < 0) { 2367 mlog_errno(ret); 2368 break; 2369 } 2370 } 2371 2372 if (end > i_size_read(inode)) { 2373 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2374 if (ret < 0) 2375 mlog_errno(ret); 2376 } 2377 commit: 2378 ocfs2_commit_trans(osb, handle); 2379 unlock: 2380 up_write(&oi->ip_alloc_sem); 2381 ocfs2_inode_unlock(inode, 1); 2382 brelse(di_bh); 2383 out: 2384 if (data_ac) 2385 ocfs2_free_alloc_context(data_ac); 2386 if (meta_ac) 2387 ocfs2_free_alloc_context(meta_ac); 2388 ocfs2_run_deallocs(osb, &dealloc); 2389 ocfs2_dio_free_write_ctx(inode, dwc); 2390 2391 return ret; 2392 } 2393 2394 /* 2395 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2396 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2397 * to protect io on one node from truncation on another. 2398 */ 2399 static int ocfs2_dio_end_io(struct kiocb *iocb, 2400 loff_t offset, 2401 ssize_t bytes, 2402 void *private) 2403 { 2404 struct inode *inode = file_inode(iocb->ki_filp); 2405 int level; 2406 int ret = 0; 2407 2408 /* this io's submitter should not have unlocked this before we could */ 2409 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2410 2411 if (bytes <= 0) 2412 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2413 (long long)bytes); 2414 if (private) { 2415 if (bytes > 0) 2416 ret = ocfs2_dio_end_io_write(inode, private, offset, 2417 bytes); 2418 else 2419 ocfs2_dio_free_write_ctx(inode, private); 2420 } 2421 2422 ocfs2_iocb_clear_rw_locked(iocb); 2423 2424 level = ocfs2_iocb_rw_locked_level(iocb); 2425 ocfs2_rw_unlock(inode, level); 2426 return ret; 2427 } 2428 2429 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2430 { 2431 struct file *file = iocb->ki_filp; 2432 struct inode *inode = file->f_mapping->host; 2433 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2434 get_block_t *get_block; 2435 2436 /* 2437 * Fallback to buffered I/O if we see an inode without 2438 * extents. 2439 */ 2440 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2441 return 0; 2442 2443 /* Fallback to buffered I/O if we do not support append dio. */ 2444 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2445 !ocfs2_supports_append_dio(osb)) 2446 return 0; 2447 2448 if (iov_iter_rw(iter) == READ) 2449 get_block = ocfs2_lock_get_block; 2450 else 2451 get_block = ocfs2_dio_wr_get_block; 2452 2453 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2454 iter, get_block, 2455 ocfs2_dio_end_io, NULL, 0); 2456 } 2457 2458 const struct address_space_operations ocfs2_aops = { 2459 .readpage = ocfs2_readpage, 2460 .readahead = ocfs2_readahead, 2461 .writepage = ocfs2_writepage, 2462 .write_begin = ocfs2_write_begin, 2463 .write_end = ocfs2_write_end, 2464 .bmap = ocfs2_bmap, 2465 .direct_IO = ocfs2_direct_IO, 2466 .invalidatepage = block_invalidatepage, 2467 .releasepage = ocfs2_releasepage, 2468 .migratepage = buffer_migrate_page, 2469 .is_partially_uptodate = block_is_partially_uptodate, 2470 .error_remove_page = generic_error_remove_page, 2471 }; 2472