1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 50 trace_ocfs2_symlink_get_block( 51 (unsigned long long)OCFS2_I(inode)->ip_blkno, 52 (unsigned long long)iblock, bh_result, create); 53 54 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 55 56 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 57 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 58 (unsigned long long)iblock); 59 goto bail; 60 } 61 62 status = ocfs2_read_inode_block(inode, &bh); 63 if (status < 0) { 64 mlog_errno(status); 65 goto bail; 66 } 67 fe = (struct ocfs2_dinode *) bh->b_data; 68 69 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 70 le32_to_cpu(fe->i_clusters))) { 71 err = -ENOMEM; 72 mlog(ML_ERROR, "block offset is outside the allocated size: " 73 "%llu\n", (unsigned long long)iblock); 74 goto bail; 75 } 76 77 /* We don't use the page cache to create symlink data, so if 78 * need be, copy it over from the buffer cache. */ 79 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 80 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 81 iblock; 82 buffer_cache_bh = sb_getblk(osb->sb, blkno); 83 if (!buffer_cache_bh) { 84 err = -ENOMEM; 85 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 86 goto bail; 87 } 88 89 /* we haven't locked out transactions, so a commit 90 * could've happened. Since we've got a reference on 91 * the bh, even if it commits while we're doing the 92 * copy, the data is still good. */ 93 if (buffer_jbd(buffer_cache_bh) && ocfs2_inode_is_new(inode)) { 94 memcpy_to_folio(bh_result->b_folio, 95 bh_result->b_size * iblock, 96 buffer_cache_bh->b_data, 97 bh_result->b_size); 98 set_buffer_uptodate(bh_result); 99 } 100 brelse(buffer_cache_bh); 101 } 102 103 map_bh(bh_result, inode->i_sb, 104 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 105 106 err = 0; 107 108 bail: 109 brelse(bh); 110 111 return err; 112 } 113 114 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 115 struct buffer_head *bh_result, int create) 116 { 117 int ret = 0; 118 struct ocfs2_inode_info *oi = OCFS2_I(inode); 119 120 down_read(&oi->ip_alloc_sem); 121 ret = ocfs2_get_block(inode, iblock, bh_result, create); 122 up_read(&oi->ip_alloc_sem); 123 124 return ret; 125 } 126 127 int ocfs2_get_block(struct inode *inode, sector_t iblock, 128 struct buffer_head *bh_result, int create) 129 { 130 int err = 0; 131 unsigned int ext_flags; 132 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 133 u64 p_blkno, count, past_eof; 134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 135 136 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 137 (unsigned long long)iblock, bh_result, create); 138 139 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 140 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 141 inode, inode->i_ino); 142 143 if (S_ISLNK(inode->i_mode)) { 144 /* this always does I/O for some reason. */ 145 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 146 goto bail; 147 } 148 149 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 150 &ext_flags); 151 if (err) { 152 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, " 153 "block: %llu\n", inode, (unsigned long long)iblock); 154 goto bail; 155 } 156 157 if (max_blocks < count) 158 count = max_blocks; 159 160 /* 161 * ocfs2 never allocates in this function - the only time we 162 * need to use BH_New is when we're extending i_size on a file 163 * system which doesn't support holes, in which case BH_New 164 * allows __block_write_begin() to zero. 165 * 166 * If we see this on a sparse file system, then a truncate has 167 * raced us and removed the cluster. In this case, we clear 168 * the buffers dirty and uptodate bits and let the buffer code 169 * ignore it as a hole. 170 */ 171 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 172 clear_buffer_dirty(bh_result); 173 clear_buffer_uptodate(bh_result); 174 goto bail; 175 } 176 177 /* Treat the unwritten extent as a hole for zeroing purposes. */ 178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 179 map_bh(bh_result, inode->i_sb, p_blkno); 180 181 bh_result->b_size = count << inode->i_blkbits; 182 183 if (!ocfs2_sparse_alloc(osb)) { 184 if (p_blkno == 0) { 185 err = -EIO; 186 mlog(ML_ERROR, 187 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 188 (unsigned long long)iblock, 189 (unsigned long long)p_blkno, 190 (unsigned long long)OCFS2_I(inode)->ip_blkno); 191 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 192 dump_stack(); 193 goto bail; 194 } 195 } 196 197 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 198 199 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 200 (unsigned long long)past_eof); 201 if (create && (iblock >= past_eof)) 202 set_buffer_new(bh_result); 203 204 bail: 205 if (err < 0) 206 err = -EIO; 207 208 return err; 209 } 210 211 int ocfs2_read_inline_data(struct inode *inode, struct folio *folio, 212 struct buffer_head *di_bh) 213 { 214 loff_t size; 215 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 216 217 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 218 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 219 (unsigned long long)OCFS2_I(inode)->ip_blkno); 220 return -EROFS; 221 } 222 223 size = i_size_read(inode); 224 225 if (size > folio_size(folio) || 226 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 227 ocfs2_error(inode->i_sb, 228 "Inode %llu has with inline data has bad size: %Lu\n", 229 (unsigned long long)OCFS2_I(inode)->ip_blkno, 230 (unsigned long long)size); 231 return -EROFS; 232 } 233 234 folio_fill_tail(folio, 0, di->id2.i_data.id_data, size); 235 folio_mark_uptodate(folio); 236 237 return 0; 238 } 239 240 static int ocfs2_readpage_inline(struct inode *inode, struct folio *folio) 241 { 242 int ret; 243 struct buffer_head *di_bh = NULL; 244 245 BUG_ON(!folio_test_locked(folio)); 246 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 247 248 ret = ocfs2_read_inode_block(inode, &di_bh); 249 if (ret) { 250 mlog_errno(ret); 251 goto out; 252 } 253 254 ret = ocfs2_read_inline_data(inode, folio, di_bh); 255 out: 256 folio_unlock(folio); 257 258 brelse(di_bh); 259 return ret; 260 } 261 262 static int ocfs2_read_folio(struct file *file, struct folio *folio) 263 { 264 struct inode *inode = folio->mapping->host; 265 struct ocfs2_inode_info *oi = OCFS2_I(inode); 266 loff_t start = folio_pos(folio); 267 int ret, unlock = 1; 268 269 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index); 270 271 ret = ocfs2_inode_lock_with_folio(inode, NULL, 0, folio); 272 if (ret != 0) { 273 if (ret == AOP_TRUNCATED_PAGE) 274 unlock = 0; 275 mlog_errno(ret); 276 goto out; 277 } 278 279 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 280 /* 281 * Unlock the folio and cycle ip_alloc_sem so that we don't 282 * busyloop waiting for ip_alloc_sem to unlock 283 */ 284 ret = AOP_TRUNCATED_PAGE; 285 folio_unlock(folio); 286 unlock = 0; 287 down_read(&oi->ip_alloc_sem); 288 up_read(&oi->ip_alloc_sem); 289 goto out_inode_unlock; 290 } 291 292 /* 293 * i_size might have just been updated as we grabbed the meta lock. We 294 * might now be discovering a truncate that hit on another node. 295 * block_read_full_folio->get_block freaks out if it is asked to read 296 * beyond the end of a file, so we check here. Callers 297 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 298 * and notice that the folio they just read isn't needed. 299 * 300 * XXX sys_readahead() seems to get that wrong? 301 */ 302 if (start >= i_size_read(inode)) { 303 folio_zero_segment(folio, 0, folio_size(folio)); 304 folio_mark_uptodate(folio); 305 ret = 0; 306 goto out_alloc; 307 } 308 309 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 310 ret = ocfs2_readpage_inline(inode, folio); 311 else 312 ret = block_read_full_folio(folio, ocfs2_get_block); 313 unlock = 0; 314 315 out_alloc: 316 up_read(&oi->ip_alloc_sem); 317 out_inode_unlock: 318 ocfs2_inode_unlock(inode, 0); 319 out: 320 if (unlock) 321 folio_unlock(folio); 322 return ret; 323 } 324 325 /* 326 * This is used only for read-ahead. Failures or difficult to handle 327 * situations are safe to ignore. 328 * 329 * Right now, we don't bother with BH_Boundary - in-inode extent lists 330 * are quite large (243 extents on 4k blocks), so most inodes don't 331 * grow out to a tree. If need be, detecting boundary extents could 332 * trivially be added in a future version of ocfs2_get_block(). 333 */ 334 static void ocfs2_readahead(struct readahead_control *rac) 335 { 336 int ret; 337 struct inode *inode = rac->mapping->host; 338 struct ocfs2_inode_info *oi = OCFS2_I(inode); 339 340 /* 341 * Use the nonblocking flag for the dlm code to avoid page 342 * lock inversion, but don't bother with retrying. 343 */ 344 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 345 if (ret) 346 return; 347 348 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 349 goto out_unlock; 350 351 /* 352 * Don't bother with inline-data. There isn't anything 353 * to read-ahead in that case anyway... 354 */ 355 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 356 goto out_up; 357 358 /* 359 * Check whether a remote node truncated this file - we just 360 * drop out in that case as it's not worth handling here. 361 */ 362 if (readahead_pos(rac) >= i_size_read(inode)) 363 goto out_up; 364 365 mpage_readahead(rac, ocfs2_get_block); 366 367 out_up: 368 up_read(&oi->ip_alloc_sem); 369 out_unlock: 370 ocfs2_inode_unlock(inode, 0); 371 } 372 373 /* Note: Because we don't support holes, our allocation has 374 * already happened (allocation writes zeros to the file data) 375 * so we don't have to worry about ordered writes in 376 * ocfs2_writepages. 377 * 378 * ->writepages is called during the process of invalidating the page cache 379 * during blocked lock processing. It can't block on any cluster locks 380 * to during block mapping. It's relying on the fact that the block 381 * mapping can't have disappeared under the dirty pages that it is 382 * being asked to write back. 383 */ 384 static int ocfs2_writepages(struct address_space *mapping, 385 struct writeback_control *wbc) 386 { 387 return mpage_writepages(mapping, wbc, ocfs2_get_block); 388 } 389 390 /* Taken from ext3. We don't necessarily need the full blown 391 * functionality yet, but IMHO it's better to cut and paste the whole 392 * thing so we can avoid introducing our own bugs (and easily pick up 393 * their fixes when they happen) --Mark */ 394 int walk_page_buffers( handle_t *handle, 395 struct buffer_head *head, 396 unsigned from, 397 unsigned to, 398 int *partial, 399 int (*fn)( handle_t *handle, 400 struct buffer_head *bh)) 401 { 402 struct buffer_head *bh; 403 unsigned block_start, block_end; 404 unsigned blocksize = head->b_size; 405 int err, ret = 0; 406 struct buffer_head *next; 407 408 for ( bh = head, block_start = 0; 409 ret == 0 && (bh != head || !block_start); 410 block_start = block_end, bh = next) 411 { 412 next = bh->b_this_page; 413 block_end = block_start + blocksize; 414 if (block_end <= from || block_start >= to) { 415 if (partial && !buffer_uptodate(bh)) 416 *partial = 1; 417 continue; 418 } 419 err = (*fn)(handle, bh); 420 if (!ret) 421 ret = err; 422 } 423 return ret; 424 } 425 426 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 427 { 428 sector_t status; 429 u64 p_blkno = 0; 430 int err = 0; 431 struct inode *inode = mapping->host; 432 433 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 434 (unsigned long long)block); 435 436 /* 437 * The swap code (ab-)uses ->bmap to get a block mapping and then 438 * bypasseѕ the file system for actual I/O. We really can't allow 439 * that on refcounted inodes, so we have to skip out here. And yes, 440 * 0 is the magic code for a bmap error.. 441 */ 442 if (ocfs2_is_refcount_inode(inode)) 443 return 0; 444 445 /* We don't need to lock journal system files, since they aren't 446 * accessed concurrently from multiple nodes. 447 */ 448 if (!INODE_JOURNAL(inode)) { 449 err = ocfs2_inode_lock(inode, NULL, 0); 450 if (err) { 451 if (err != -ENOENT) 452 mlog_errno(err); 453 goto bail; 454 } 455 down_read(&OCFS2_I(inode)->ip_alloc_sem); 456 } 457 458 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 459 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 460 NULL); 461 462 if (!INODE_JOURNAL(inode)) { 463 up_read(&OCFS2_I(inode)->ip_alloc_sem); 464 ocfs2_inode_unlock(inode, 0); 465 } 466 467 if (err) { 468 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 469 (unsigned long long)block); 470 mlog_errno(err); 471 goto bail; 472 } 473 474 bail: 475 status = err ? 0 : p_blkno; 476 477 return status; 478 } 479 480 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) 481 { 482 if (!folio_buffers(folio)) 483 return false; 484 return try_to_free_buffers(folio); 485 } 486 487 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 488 u32 cpos, 489 unsigned int *start, 490 unsigned int *end) 491 { 492 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 493 494 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 495 unsigned int cpp; 496 497 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 498 499 cluster_start = cpos % cpp; 500 cluster_start = cluster_start << osb->s_clustersize_bits; 501 502 cluster_end = cluster_start + osb->s_clustersize; 503 } 504 505 BUG_ON(cluster_start > PAGE_SIZE); 506 BUG_ON(cluster_end > PAGE_SIZE); 507 508 if (start) 509 *start = cluster_start; 510 if (end) 511 *end = cluster_end; 512 } 513 514 /* 515 * 'from' and 'to' are the region in the page to avoid zeroing. 516 * 517 * If pagesize > clustersize, this function will avoid zeroing outside 518 * of the cluster boundary. 519 * 520 * from == to == 0 is code for "zero the entire cluster region" 521 */ 522 static void ocfs2_clear_folio_regions(struct folio *folio, 523 struct ocfs2_super *osb, u32 cpos, 524 unsigned from, unsigned to) 525 { 526 void *kaddr; 527 unsigned int cluster_start, cluster_end; 528 529 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 530 531 kaddr = kmap_local_folio(folio, 0); 532 533 if (from || to) { 534 if (from > cluster_start) 535 memset(kaddr + cluster_start, 0, from - cluster_start); 536 if (to < cluster_end) 537 memset(kaddr + to, 0, cluster_end - to); 538 } else { 539 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 540 } 541 542 kunmap_local(kaddr); 543 } 544 545 /* 546 * Nonsparse file systems fully allocate before we get to the write 547 * code. This prevents ocfs2_write() from tagging the write as an 548 * allocating one, which means ocfs2_map_folio_blocks() might try to 549 * read-in the blocks at the tail of our file. Avoid reading them by 550 * testing i_size against each block offset. 551 */ 552 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio, 553 unsigned int block_start) 554 { 555 u64 offset = folio_pos(folio) + block_start; 556 557 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 558 return 1; 559 560 if (i_size_read(inode) > offset) 561 return 1; 562 563 return 0; 564 } 565 566 /* 567 * Some of this taken from __block_write_begin(). We already have our 568 * mapping by now though, and the entire write will be allocating or 569 * it won't, so not much need to use BH_New. 570 * 571 * This will also skip zeroing, which is handled externally. 572 */ 573 int ocfs2_map_folio_blocks(struct folio *folio, u64 *p_blkno, 574 struct inode *inode, unsigned int from, 575 unsigned int to, int new) 576 { 577 int ret = 0; 578 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 579 unsigned int block_end, block_start; 580 unsigned int bsize = i_blocksize(inode); 581 582 head = folio_buffers(folio); 583 if (!head) 584 head = create_empty_buffers(folio, bsize, 0); 585 586 for (bh = head, block_start = 0; bh != head || !block_start; 587 bh = bh->b_this_page, block_start += bsize) { 588 block_end = block_start + bsize; 589 590 clear_buffer_new(bh); 591 592 /* 593 * Ignore blocks outside of our i/o range - 594 * they may belong to unallocated clusters. 595 */ 596 if (block_start >= to || block_end <= from) { 597 if (folio_test_uptodate(folio)) 598 set_buffer_uptodate(bh); 599 continue; 600 } 601 602 /* 603 * For an allocating write with cluster size >= page 604 * size, we always write the entire page. 605 */ 606 if (new) 607 set_buffer_new(bh); 608 609 if (!buffer_mapped(bh)) { 610 map_bh(bh, inode->i_sb, *p_blkno); 611 clean_bdev_bh_alias(bh); 612 } 613 614 if (folio_test_uptodate(folio)) { 615 set_buffer_uptodate(bh); 616 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 617 !buffer_new(bh) && 618 ocfs2_should_read_blk(inode, folio, block_start) && 619 (block_start < from || block_end > to)) { 620 bh_read_nowait(bh, 0); 621 *wait_bh++=bh; 622 } 623 624 *p_blkno = *p_blkno + 1; 625 } 626 627 /* 628 * If we issued read requests - let them complete. 629 */ 630 while(wait_bh > wait) { 631 wait_on_buffer(*--wait_bh); 632 if (!buffer_uptodate(*wait_bh)) 633 ret = -EIO; 634 } 635 636 if (ret == 0 || !new) 637 return ret; 638 639 /* 640 * If we get -EIO above, zero out any newly allocated blocks 641 * to avoid exposing stale data. 642 */ 643 bh = head; 644 block_start = 0; 645 do { 646 block_end = block_start + bsize; 647 if (block_end <= from) 648 goto next_bh; 649 if (block_start >= to) 650 break; 651 652 folio_zero_range(folio, block_start, bh->b_size); 653 set_buffer_uptodate(bh); 654 mark_buffer_dirty(bh); 655 656 next_bh: 657 block_start = block_end; 658 bh = bh->b_this_page; 659 } while (bh != head); 660 661 return ret; 662 } 663 664 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 665 #define OCFS2_MAX_CTXT_PAGES 1 666 #else 667 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 668 #endif 669 670 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 671 672 struct ocfs2_unwritten_extent { 673 struct list_head ue_node; 674 struct list_head ue_ip_node; 675 u32 ue_cpos; 676 u32 ue_phys; 677 }; 678 679 /* 680 * Describe the state of a single cluster to be written to. 681 */ 682 struct ocfs2_write_cluster_desc { 683 u32 c_cpos; 684 u32 c_phys; 685 /* 686 * Give this a unique field because c_phys eventually gets 687 * filled. 688 */ 689 unsigned c_new; 690 unsigned c_clear_unwritten; 691 unsigned c_needs_zero; 692 }; 693 694 struct ocfs2_write_ctxt { 695 /* Logical cluster position / len of write */ 696 u32 w_cpos; 697 u32 w_clen; 698 699 /* First cluster allocated in a nonsparse extend */ 700 u32 w_first_new_cpos; 701 702 /* Type of caller. Must be one of buffer, mmap, direct. */ 703 ocfs2_write_type_t w_type; 704 705 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 706 707 /* 708 * This is true if page_size > cluster_size. 709 * 710 * It triggers a set of special cases during write which might 711 * have to deal with allocating writes to partial pages. 712 */ 713 unsigned int w_large_pages; 714 715 /* 716 * Folios involved in this write. 717 * 718 * w_target_folio is the folio being written to by the user. 719 * 720 * w_folios is an array of folios which always contains 721 * w_target_folio, and in the case of an allocating write with 722 * page_size < cluster size, it will contain zero'd and mapped 723 * pages adjacent to w_target_folio which need to be written 724 * out in so that future reads from that region will get 725 * zero's. 726 */ 727 unsigned int w_num_folios; 728 struct folio *w_folios[OCFS2_MAX_CTXT_PAGES]; 729 struct folio *w_target_folio; 730 731 /* 732 * w_target_locked is used for page_mkwrite path indicating no unlocking 733 * against w_target_folio in ocfs2_write_end_nolock. 734 */ 735 unsigned int w_target_locked:1; 736 737 /* 738 * ocfs2_write_end() uses this to know what the real range to 739 * write in the target should be. 740 */ 741 unsigned int w_target_from; 742 unsigned int w_target_to; 743 744 /* 745 * We could use journal_current_handle() but this is cleaner, 746 * IMHO -Mark 747 */ 748 handle_t *w_handle; 749 750 struct buffer_head *w_di_bh; 751 752 struct ocfs2_cached_dealloc_ctxt w_dealloc; 753 754 struct list_head w_unwritten_list; 755 unsigned int w_unwritten_count; 756 }; 757 758 void ocfs2_unlock_and_free_folios(struct folio **folios, int num_folios) 759 { 760 int i; 761 762 for(i = 0; i < num_folios; i++) { 763 if (!folios[i]) 764 continue; 765 folio_unlock(folios[i]); 766 folio_mark_accessed(folios[i]); 767 folio_put(folios[i]); 768 } 769 } 770 771 static void ocfs2_unlock_folios(struct ocfs2_write_ctxt *wc) 772 { 773 int i; 774 775 /* 776 * w_target_locked is only set to true in the page_mkwrite() case. 777 * The intent is to allow us to lock the target page from write_begin() 778 * to write_end(). The caller must hold a ref on w_target_folio. 779 */ 780 if (wc->w_target_locked) { 781 BUG_ON(!wc->w_target_folio); 782 for (i = 0; i < wc->w_num_folios; i++) { 783 if (wc->w_target_folio == wc->w_folios[i]) { 784 wc->w_folios[i] = NULL; 785 break; 786 } 787 } 788 folio_mark_accessed(wc->w_target_folio); 789 folio_put(wc->w_target_folio); 790 } 791 ocfs2_unlock_and_free_folios(wc->w_folios, wc->w_num_folios); 792 } 793 794 static void ocfs2_free_unwritten_list(struct inode *inode, 795 struct list_head *head) 796 { 797 struct ocfs2_inode_info *oi = OCFS2_I(inode); 798 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 799 800 list_for_each_entry_safe(ue, tmp, head, ue_node) { 801 list_del(&ue->ue_node); 802 spin_lock(&oi->ip_lock); 803 list_del(&ue->ue_ip_node); 804 spin_unlock(&oi->ip_lock); 805 kfree(ue); 806 } 807 } 808 809 static void ocfs2_free_write_ctxt(struct inode *inode, 810 struct ocfs2_write_ctxt *wc) 811 { 812 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 813 ocfs2_unlock_folios(wc); 814 brelse(wc->w_di_bh); 815 kfree(wc); 816 } 817 818 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 819 struct ocfs2_super *osb, loff_t pos, 820 unsigned len, ocfs2_write_type_t type, 821 struct buffer_head *di_bh) 822 { 823 u32 cend; 824 struct ocfs2_write_ctxt *wc; 825 826 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 827 if (!wc) 828 return -ENOMEM; 829 830 wc->w_cpos = pos >> osb->s_clustersize_bits; 831 wc->w_first_new_cpos = UINT_MAX; 832 cend = (pos + len - 1) >> osb->s_clustersize_bits; 833 wc->w_clen = cend - wc->w_cpos + 1; 834 get_bh(di_bh); 835 wc->w_di_bh = di_bh; 836 wc->w_type = type; 837 838 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 839 wc->w_large_pages = 1; 840 else 841 wc->w_large_pages = 0; 842 843 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 844 INIT_LIST_HEAD(&wc->w_unwritten_list); 845 846 *wcp = wc; 847 848 return 0; 849 } 850 851 /* 852 * If a page has any new buffers, zero them out here, and mark them uptodate 853 * and dirty so they'll be written out (in order to prevent uninitialised 854 * block data from leaking). And clear the new bit. 855 */ 856 static void ocfs2_zero_new_buffers(struct folio *folio, size_t from, size_t to) 857 { 858 unsigned int block_start, block_end; 859 struct buffer_head *head, *bh; 860 861 BUG_ON(!folio_test_locked(folio)); 862 head = folio_buffers(folio); 863 if (!head) 864 return; 865 866 bh = head; 867 block_start = 0; 868 do { 869 block_end = block_start + bh->b_size; 870 871 if (buffer_new(bh)) { 872 if (block_end > from && block_start < to) { 873 if (!folio_test_uptodate(folio)) { 874 unsigned start, end; 875 876 start = max(from, block_start); 877 end = min(to, block_end); 878 879 folio_zero_segment(folio, start, end); 880 set_buffer_uptodate(bh); 881 } 882 883 clear_buffer_new(bh); 884 mark_buffer_dirty(bh); 885 } 886 } 887 888 block_start = block_end; 889 bh = bh->b_this_page; 890 } while (bh != head); 891 } 892 893 /* 894 * Only called when we have a failure during allocating write to write 895 * zero's to the newly allocated region. 896 */ 897 static void ocfs2_write_failure(struct inode *inode, 898 struct ocfs2_write_ctxt *wc, 899 loff_t user_pos, unsigned user_len) 900 { 901 int i; 902 unsigned from = user_pos & (PAGE_SIZE - 1), 903 to = user_pos + user_len; 904 905 if (wc->w_target_folio) 906 ocfs2_zero_new_buffers(wc->w_target_folio, from, to); 907 908 for (i = 0; i < wc->w_num_folios; i++) { 909 struct folio *folio = wc->w_folios[i]; 910 911 if (folio && folio_buffers(folio)) { 912 if (ocfs2_should_order_data(inode)) 913 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 914 user_pos, user_len); 915 916 block_commit_write(folio, from, to); 917 } 918 } 919 } 920 921 static int ocfs2_prepare_folio_for_write(struct inode *inode, u64 *p_blkno, 922 struct ocfs2_write_ctxt *wc, struct folio *folio, u32 cpos, 923 loff_t user_pos, unsigned user_len, int new) 924 { 925 int ret; 926 unsigned int map_from = 0, map_to = 0; 927 unsigned int cluster_start, cluster_end; 928 unsigned int user_data_from = 0, user_data_to = 0; 929 930 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 931 &cluster_start, &cluster_end); 932 933 /* treat the write as new if the a hole/lseek spanned across 934 * the page boundary. 935 */ 936 new = new | ((i_size_read(inode) <= folio_pos(folio)) && 937 (folio_pos(folio) <= user_pos)); 938 939 if (folio == wc->w_target_folio) { 940 map_from = user_pos & (PAGE_SIZE - 1); 941 map_to = map_from + user_len; 942 943 if (new) 944 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 945 cluster_start, cluster_end, new); 946 else 947 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 948 map_from, map_to, new); 949 if (ret) { 950 mlog_errno(ret); 951 goto out; 952 } 953 954 user_data_from = map_from; 955 user_data_to = map_to; 956 if (new) { 957 map_from = cluster_start; 958 map_to = cluster_end; 959 } 960 } else { 961 /* 962 * If we haven't allocated the new folio yet, we 963 * shouldn't be writing it out without copying user 964 * data. This is likely a math error from the caller. 965 */ 966 BUG_ON(!new); 967 968 map_from = cluster_start; 969 map_to = cluster_end; 970 971 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 972 cluster_start, cluster_end, new); 973 if (ret) { 974 mlog_errno(ret); 975 goto out; 976 } 977 } 978 979 /* 980 * Parts of newly allocated folios need to be zero'd. 981 * 982 * Above, we have also rewritten 'to' and 'from' - as far as 983 * the rest of the function is concerned, the entire cluster 984 * range inside of a folio needs to be written. 985 * 986 * We can skip this if the folio is uptodate - it's already 987 * been zero'd from being read in as a hole. 988 */ 989 if (new && !folio_test_uptodate(folio)) 990 ocfs2_clear_folio_regions(folio, OCFS2_SB(inode->i_sb), 991 cpos, user_data_from, user_data_to); 992 993 flush_dcache_folio(folio); 994 995 out: 996 return ret; 997 } 998 999 /* 1000 * This function will only grab one clusters worth of pages. 1001 */ 1002 static int ocfs2_grab_folios_for_write(struct address_space *mapping, 1003 struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos, 1004 unsigned user_len, int new, struct folio *mmap_folio) 1005 { 1006 int ret = 0, i; 1007 unsigned long start, target_index, end_index, index; 1008 struct inode *inode = mapping->host; 1009 loff_t last_byte; 1010 1011 target_index = user_pos >> PAGE_SHIFT; 1012 1013 /* 1014 * Figure out how many pages we'll be manipulating here. For 1015 * non allocating write, we just change the one 1016 * page. Otherwise, we'll need a whole clusters worth. If we're 1017 * writing past i_size, we only need enough pages to cover the 1018 * last page of the write. 1019 */ 1020 if (new) { 1021 wc->w_num_folios = ocfs2_pages_per_cluster(inode->i_sb); 1022 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1023 /* 1024 * We need the index *past* the last page we could possibly 1025 * touch. This is the page past the end of the write or 1026 * i_size, whichever is greater. 1027 */ 1028 last_byte = max(user_pos + user_len, i_size_read(inode)); 1029 BUG_ON(last_byte < 1); 1030 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1031 if ((start + wc->w_num_folios) > end_index) 1032 wc->w_num_folios = end_index - start; 1033 } else { 1034 wc->w_num_folios = 1; 1035 start = target_index; 1036 } 1037 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1038 1039 for(i = 0; i < wc->w_num_folios; i++) { 1040 index = start + i; 1041 1042 if (index >= target_index && index <= end_index && 1043 wc->w_type == OCFS2_WRITE_MMAP) { 1044 /* 1045 * ocfs2_pagemkwrite() is a little different 1046 * and wants us to directly use the page 1047 * passed in. 1048 */ 1049 folio_lock(mmap_folio); 1050 1051 /* Exit and let the caller retry */ 1052 if (mmap_folio->mapping != mapping) { 1053 WARN_ON(mmap_folio->mapping); 1054 folio_unlock(mmap_folio); 1055 ret = -EAGAIN; 1056 goto out; 1057 } 1058 1059 folio_get(mmap_folio); 1060 wc->w_folios[i] = mmap_folio; 1061 wc->w_target_locked = true; 1062 } else if (index >= target_index && index <= end_index && 1063 wc->w_type == OCFS2_WRITE_DIRECT) { 1064 /* Direct write has no mapping page. */ 1065 wc->w_folios[i] = NULL; 1066 continue; 1067 } else { 1068 wc->w_folios[i] = __filemap_get_folio(mapping, index, 1069 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 1070 GFP_NOFS); 1071 if (IS_ERR(wc->w_folios[i])) { 1072 ret = PTR_ERR(wc->w_folios[i]); 1073 mlog_errno(ret); 1074 wc->w_folios[i] = NULL; 1075 goto out; 1076 } 1077 } 1078 folio_wait_stable(wc->w_folios[i]); 1079 1080 if (index == target_index) 1081 wc->w_target_folio = wc->w_folios[i]; 1082 } 1083 out: 1084 if (ret) 1085 wc->w_target_locked = false; 1086 return ret; 1087 } 1088 1089 /* 1090 * Prepare a single cluster for write one cluster into the file. 1091 */ 1092 static int ocfs2_write_cluster(struct address_space *mapping, 1093 u32 *phys, unsigned int new, 1094 unsigned int clear_unwritten, 1095 unsigned int should_zero, 1096 struct ocfs2_alloc_context *data_ac, 1097 struct ocfs2_alloc_context *meta_ac, 1098 struct ocfs2_write_ctxt *wc, u32 cpos, 1099 loff_t user_pos, unsigned user_len) 1100 { 1101 int ret, i; 1102 u64 p_blkno; 1103 struct inode *inode = mapping->host; 1104 struct ocfs2_extent_tree et; 1105 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1106 1107 if (new) { 1108 u32 tmp_pos; 1109 1110 /* 1111 * This is safe to call with the page locks - it won't take 1112 * any additional semaphores or cluster locks. 1113 */ 1114 tmp_pos = cpos; 1115 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1116 &tmp_pos, 1, !clear_unwritten, 1117 wc->w_di_bh, wc->w_handle, 1118 data_ac, meta_ac, NULL); 1119 /* 1120 * This shouldn't happen because we must have already 1121 * calculated the correct meta data allocation required. The 1122 * internal tree allocation code should know how to increase 1123 * transaction credits itself. 1124 * 1125 * If need be, we could handle -EAGAIN for a 1126 * RESTART_TRANS here. 1127 */ 1128 mlog_bug_on_msg(ret == -EAGAIN, 1129 "Inode %llu: EAGAIN return during allocation.\n", 1130 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1131 if (ret < 0) { 1132 mlog_errno(ret); 1133 goto out; 1134 } 1135 } else if (clear_unwritten) { 1136 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1137 wc->w_di_bh); 1138 ret = ocfs2_mark_extent_written(inode, &et, 1139 wc->w_handle, cpos, 1, *phys, 1140 meta_ac, &wc->w_dealloc); 1141 if (ret < 0) { 1142 mlog_errno(ret); 1143 goto out; 1144 } 1145 } 1146 1147 /* 1148 * The only reason this should fail is due to an inability to 1149 * find the extent added. 1150 */ 1151 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1152 if (ret < 0) { 1153 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1154 "at logical cluster %u", 1155 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1156 goto out; 1157 } 1158 1159 BUG_ON(*phys == 0); 1160 1161 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1162 if (!should_zero) 1163 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1164 1165 for (i = 0; i < wc->w_num_folios; i++) { 1166 int tmpret; 1167 1168 /* This is the direct io target page. */ 1169 if (wc->w_folios[i] == NULL) { 1170 p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits)); 1171 continue; 1172 } 1173 1174 tmpret = ocfs2_prepare_folio_for_write(inode, &p_blkno, wc, 1175 wc->w_folios[i], cpos, user_pos, user_len, 1176 should_zero); 1177 if (tmpret) { 1178 mlog_errno(tmpret); 1179 if (ret == 0) 1180 ret = tmpret; 1181 } 1182 } 1183 1184 /* 1185 * We only have cleanup to do in case of allocating write. 1186 */ 1187 if (ret && new) 1188 ocfs2_write_failure(inode, wc, user_pos, user_len); 1189 1190 out: 1191 1192 return ret; 1193 } 1194 1195 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1196 struct ocfs2_alloc_context *data_ac, 1197 struct ocfs2_alloc_context *meta_ac, 1198 struct ocfs2_write_ctxt *wc, 1199 loff_t pos, unsigned len) 1200 { 1201 int ret, i; 1202 loff_t cluster_off; 1203 unsigned int local_len = len; 1204 struct ocfs2_write_cluster_desc *desc; 1205 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1206 1207 for (i = 0; i < wc->w_clen; i++) { 1208 desc = &wc->w_desc[i]; 1209 1210 /* 1211 * We have to make sure that the total write passed in 1212 * doesn't extend past a single cluster. 1213 */ 1214 local_len = len; 1215 cluster_off = pos & (osb->s_clustersize - 1); 1216 if ((cluster_off + local_len) > osb->s_clustersize) 1217 local_len = osb->s_clustersize - cluster_off; 1218 1219 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1220 desc->c_new, 1221 desc->c_clear_unwritten, 1222 desc->c_needs_zero, 1223 data_ac, meta_ac, 1224 wc, desc->c_cpos, pos, local_len); 1225 if (ret) { 1226 mlog_errno(ret); 1227 goto out; 1228 } 1229 1230 len -= local_len; 1231 pos += local_len; 1232 } 1233 1234 ret = 0; 1235 out: 1236 return ret; 1237 } 1238 1239 /* 1240 * ocfs2_write_end() wants to know which parts of the target page it 1241 * should complete the write on. It's easiest to compute them ahead of 1242 * time when a more complete view of the write is available. 1243 */ 1244 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1245 struct ocfs2_write_ctxt *wc, 1246 loff_t pos, unsigned len, int alloc) 1247 { 1248 struct ocfs2_write_cluster_desc *desc; 1249 1250 wc->w_target_from = pos & (PAGE_SIZE - 1); 1251 wc->w_target_to = wc->w_target_from + len; 1252 1253 if (alloc == 0) 1254 return; 1255 1256 /* 1257 * Allocating write - we may have different boundaries based 1258 * on page size and cluster size. 1259 * 1260 * NOTE: We can no longer compute one value from the other as 1261 * the actual write length and user provided length may be 1262 * different. 1263 */ 1264 1265 if (wc->w_large_pages) { 1266 /* 1267 * We only care about the 1st and last cluster within 1268 * our range and whether they should be zero'd or not. Either 1269 * value may be extended out to the start/end of a 1270 * newly allocated cluster. 1271 */ 1272 desc = &wc->w_desc[0]; 1273 if (desc->c_needs_zero) 1274 ocfs2_figure_cluster_boundaries(osb, 1275 desc->c_cpos, 1276 &wc->w_target_from, 1277 NULL); 1278 1279 desc = &wc->w_desc[wc->w_clen - 1]; 1280 if (desc->c_needs_zero) 1281 ocfs2_figure_cluster_boundaries(osb, 1282 desc->c_cpos, 1283 NULL, 1284 &wc->w_target_to); 1285 } else { 1286 wc->w_target_from = 0; 1287 wc->w_target_to = PAGE_SIZE; 1288 } 1289 } 1290 1291 /* 1292 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1293 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1294 * by the direct io procedure. 1295 * If this is a new extent that allocated by direct io, we should mark it in 1296 * the ip_unwritten_list. 1297 */ 1298 static int ocfs2_unwritten_check(struct inode *inode, 1299 struct ocfs2_write_ctxt *wc, 1300 struct ocfs2_write_cluster_desc *desc) 1301 { 1302 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1303 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1304 int ret = 0; 1305 1306 if (!desc->c_needs_zero) 1307 return 0; 1308 1309 retry: 1310 spin_lock(&oi->ip_lock); 1311 /* Needs not to zero no metter buffer or direct. The one who is zero 1312 * the cluster is doing zero. And he will clear unwritten after all 1313 * cluster io finished. */ 1314 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1315 if (desc->c_cpos == ue->ue_cpos) { 1316 BUG_ON(desc->c_new); 1317 desc->c_needs_zero = 0; 1318 desc->c_clear_unwritten = 0; 1319 goto unlock; 1320 } 1321 } 1322 1323 if (wc->w_type != OCFS2_WRITE_DIRECT) 1324 goto unlock; 1325 1326 if (new == NULL) { 1327 spin_unlock(&oi->ip_lock); 1328 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1329 GFP_NOFS); 1330 if (new == NULL) { 1331 ret = -ENOMEM; 1332 goto out; 1333 } 1334 goto retry; 1335 } 1336 /* This direct write will doing zero. */ 1337 new->ue_cpos = desc->c_cpos; 1338 new->ue_phys = desc->c_phys; 1339 desc->c_clear_unwritten = 0; 1340 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1341 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1342 wc->w_unwritten_count++; 1343 new = NULL; 1344 unlock: 1345 spin_unlock(&oi->ip_lock); 1346 out: 1347 kfree(new); 1348 return ret; 1349 } 1350 1351 /* 1352 * Populate each single-cluster write descriptor in the write context 1353 * with information about the i/o to be done. 1354 * 1355 * Returns the number of clusters that will have to be allocated, as 1356 * well as a worst case estimate of the number of extent records that 1357 * would have to be created during a write to an unwritten region. 1358 */ 1359 static int ocfs2_populate_write_desc(struct inode *inode, 1360 struct ocfs2_write_ctxt *wc, 1361 unsigned int *clusters_to_alloc, 1362 unsigned int *extents_to_split) 1363 { 1364 int ret; 1365 struct ocfs2_write_cluster_desc *desc; 1366 unsigned int num_clusters = 0; 1367 unsigned int ext_flags = 0; 1368 u32 phys = 0; 1369 int i; 1370 1371 *clusters_to_alloc = 0; 1372 *extents_to_split = 0; 1373 1374 for (i = 0; i < wc->w_clen; i++) { 1375 desc = &wc->w_desc[i]; 1376 desc->c_cpos = wc->w_cpos + i; 1377 1378 if (num_clusters == 0) { 1379 /* 1380 * Need to look up the next extent record. 1381 */ 1382 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1383 &num_clusters, &ext_flags); 1384 if (ret) { 1385 mlog_errno(ret); 1386 goto out; 1387 } 1388 1389 /* We should already CoW the refcountd extent. */ 1390 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1391 1392 /* 1393 * Assume worst case - that we're writing in 1394 * the middle of the extent. 1395 * 1396 * We can assume that the write proceeds from 1397 * left to right, in which case the extent 1398 * insert code is smart enough to coalesce the 1399 * next splits into the previous records created. 1400 */ 1401 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1402 *extents_to_split = *extents_to_split + 2; 1403 } else if (phys) { 1404 /* 1405 * Only increment phys if it doesn't describe 1406 * a hole. 1407 */ 1408 phys++; 1409 } 1410 1411 /* 1412 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1413 * file that got extended. w_first_new_cpos tells us 1414 * where the newly allocated clusters are so we can 1415 * zero them. 1416 */ 1417 if (desc->c_cpos >= wc->w_first_new_cpos) { 1418 BUG_ON(phys == 0); 1419 desc->c_needs_zero = 1; 1420 } 1421 1422 desc->c_phys = phys; 1423 if (phys == 0) { 1424 desc->c_new = 1; 1425 desc->c_needs_zero = 1; 1426 desc->c_clear_unwritten = 1; 1427 *clusters_to_alloc = *clusters_to_alloc + 1; 1428 } 1429 1430 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1431 desc->c_clear_unwritten = 1; 1432 desc->c_needs_zero = 1; 1433 } 1434 1435 ret = ocfs2_unwritten_check(inode, wc, desc); 1436 if (ret) { 1437 mlog_errno(ret); 1438 goto out; 1439 } 1440 1441 num_clusters--; 1442 } 1443 1444 ret = 0; 1445 out: 1446 return ret; 1447 } 1448 1449 static int ocfs2_write_begin_inline(struct address_space *mapping, 1450 struct inode *inode, 1451 struct ocfs2_write_ctxt *wc) 1452 { 1453 int ret; 1454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1455 struct folio *folio; 1456 handle_t *handle; 1457 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1458 1459 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1460 if (IS_ERR(handle)) { 1461 ret = PTR_ERR(handle); 1462 mlog_errno(ret); 1463 goto out; 1464 } 1465 1466 folio = __filemap_get_folio(mapping, 0, 1467 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS); 1468 if (IS_ERR(folio)) { 1469 ocfs2_commit_trans(osb, handle); 1470 ret = PTR_ERR(folio); 1471 mlog_errno(ret); 1472 goto out; 1473 } 1474 /* 1475 * If we don't set w_num_folios then this folio won't get unlocked 1476 * and freed on cleanup of the write context. 1477 */ 1478 wc->w_target_folio = folio; 1479 wc->w_folios[0] = folio; 1480 wc->w_num_folios = 1; 1481 1482 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1483 OCFS2_JOURNAL_ACCESS_WRITE); 1484 if (ret) { 1485 ocfs2_commit_trans(osb, handle); 1486 1487 mlog_errno(ret); 1488 goto out; 1489 } 1490 1491 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1492 ocfs2_set_inode_data_inline(inode, di); 1493 1494 if (!folio_test_uptodate(folio)) { 1495 ret = ocfs2_read_inline_data(inode, folio, wc->w_di_bh); 1496 if (ret) { 1497 ocfs2_commit_trans(osb, handle); 1498 1499 goto out; 1500 } 1501 } 1502 1503 wc->w_handle = handle; 1504 out: 1505 return ret; 1506 } 1507 1508 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1509 { 1510 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1511 1512 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1513 return 1; 1514 return 0; 1515 } 1516 1517 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1518 struct inode *inode, loff_t pos, size_t len, 1519 struct folio *mmap_folio, struct ocfs2_write_ctxt *wc) 1520 { 1521 int ret, written = 0; 1522 loff_t end = pos + len; 1523 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1524 struct ocfs2_dinode *di = NULL; 1525 1526 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1527 len, (unsigned long long)pos, 1528 oi->ip_dyn_features); 1529 1530 /* 1531 * Handle inodes which already have inline data 1st. 1532 */ 1533 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1534 if (mmap_folio == NULL && 1535 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1536 goto do_inline_write; 1537 1538 /* 1539 * The write won't fit - we have to give this inode an 1540 * inline extent list now. 1541 */ 1542 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1543 if (ret) 1544 mlog_errno(ret); 1545 goto out; 1546 } 1547 1548 /* 1549 * Check whether the inode can accept inline data. 1550 */ 1551 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1552 return 0; 1553 1554 /* 1555 * Check whether the write can fit. 1556 */ 1557 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1558 if (mmap_folio || 1559 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1560 return 0; 1561 1562 do_inline_write: 1563 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1564 if (ret) { 1565 mlog_errno(ret); 1566 goto out; 1567 } 1568 1569 /* 1570 * This signals to the caller that the data can be written 1571 * inline. 1572 */ 1573 written = 1; 1574 out: 1575 return written ? written : ret; 1576 } 1577 1578 /* 1579 * This function only does anything for file systems which can't 1580 * handle sparse files. 1581 * 1582 * What we want to do here is fill in any hole between the current end 1583 * of allocation and the end of our write. That way the rest of the 1584 * write path can treat it as an non-allocating write, which has no 1585 * special case code for sparse/nonsparse files. 1586 */ 1587 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1588 struct buffer_head *di_bh, 1589 loff_t pos, unsigned len, 1590 struct ocfs2_write_ctxt *wc) 1591 { 1592 int ret; 1593 loff_t newsize = pos + len; 1594 1595 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1596 1597 if (newsize <= i_size_read(inode)) 1598 return 0; 1599 1600 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1601 if (ret) 1602 mlog_errno(ret); 1603 1604 /* There is no wc if this is call from direct. */ 1605 if (wc) 1606 wc->w_first_new_cpos = 1607 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1608 1609 return ret; 1610 } 1611 1612 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1613 loff_t pos) 1614 { 1615 int ret = 0; 1616 1617 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1618 if (pos > i_size_read(inode)) 1619 ret = ocfs2_zero_extend(inode, di_bh, pos); 1620 1621 return ret; 1622 } 1623 1624 int ocfs2_write_begin_nolock(struct address_space *mapping, 1625 loff_t pos, unsigned len, ocfs2_write_type_t type, 1626 struct folio **foliop, void **fsdata, 1627 struct buffer_head *di_bh, struct folio *mmap_folio) 1628 { 1629 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1630 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1631 struct ocfs2_write_ctxt *wc; 1632 struct inode *inode = mapping->host; 1633 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1634 struct ocfs2_dinode *di; 1635 struct ocfs2_alloc_context *data_ac = NULL; 1636 struct ocfs2_alloc_context *meta_ac = NULL; 1637 handle_t *handle; 1638 struct ocfs2_extent_tree et; 1639 int try_free = 1, ret1; 1640 1641 try_again: 1642 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1643 if (ret) { 1644 mlog_errno(ret); 1645 return ret; 1646 } 1647 1648 if (ocfs2_supports_inline_data(osb)) { 1649 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1650 mmap_folio, wc); 1651 if (ret == 1) { 1652 ret = 0; 1653 goto success; 1654 } 1655 if (ret < 0) { 1656 mlog_errno(ret); 1657 goto out; 1658 } 1659 } 1660 1661 /* Direct io change i_size late, should not zero tail here. */ 1662 if (type != OCFS2_WRITE_DIRECT) { 1663 if (ocfs2_sparse_alloc(osb)) 1664 ret = ocfs2_zero_tail(inode, di_bh, pos); 1665 else 1666 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1667 len, wc); 1668 if (ret) { 1669 mlog_errno(ret); 1670 goto out; 1671 } 1672 } 1673 1674 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1675 if (ret < 0) { 1676 mlog_errno(ret); 1677 goto out; 1678 } else if (ret == 1) { 1679 clusters_need = wc->w_clen; 1680 ret = ocfs2_refcount_cow(inode, di_bh, 1681 wc->w_cpos, wc->w_clen, UINT_MAX); 1682 if (ret) { 1683 mlog_errno(ret); 1684 goto out; 1685 } 1686 } 1687 1688 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1689 &extents_to_split); 1690 if (ret) { 1691 mlog_errno(ret); 1692 goto out; 1693 } 1694 clusters_need += clusters_to_alloc; 1695 1696 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1697 1698 trace_ocfs2_write_begin_nolock( 1699 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1700 (long long)i_size_read(inode), 1701 le32_to_cpu(di->i_clusters), 1702 pos, len, type, mmap_folio, 1703 clusters_to_alloc, extents_to_split); 1704 1705 /* 1706 * We set w_target_from, w_target_to here so that 1707 * ocfs2_write_end() knows which range in the target page to 1708 * write out. An allocation requires that we write the entire 1709 * cluster range. 1710 */ 1711 if (clusters_to_alloc || extents_to_split) { 1712 /* 1713 * XXX: We are stretching the limits of 1714 * ocfs2_lock_allocators(). It greatly over-estimates 1715 * the work to be done. 1716 */ 1717 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1718 wc->w_di_bh); 1719 ret = ocfs2_lock_allocators(inode, &et, 1720 clusters_to_alloc, extents_to_split, 1721 &data_ac, &meta_ac); 1722 if (ret) { 1723 mlog_errno(ret); 1724 goto out; 1725 } 1726 1727 if (data_ac) 1728 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1729 1730 credits = ocfs2_calc_extend_credits(inode->i_sb, 1731 &di->id2.i_list); 1732 } else if (type == OCFS2_WRITE_DIRECT) 1733 /* direct write needs not to start trans if no extents alloc. */ 1734 goto success; 1735 1736 /* 1737 * We have to zero sparse allocated clusters, unwritten extent clusters, 1738 * and non-sparse clusters we just extended. For non-sparse writes, 1739 * we know zeros will only be needed in the first and/or last cluster. 1740 */ 1741 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1742 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1743 cluster_of_pages = 1; 1744 else 1745 cluster_of_pages = 0; 1746 1747 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1748 1749 handle = ocfs2_start_trans(osb, credits); 1750 if (IS_ERR(handle)) { 1751 ret = PTR_ERR(handle); 1752 mlog_errno(ret); 1753 goto out; 1754 } 1755 1756 wc->w_handle = handle; 1757 1758 if (clusters_to_alloc) { 1759 ret = dquot_alloc_space_nodirty(inode, 1760 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1761 if (ret) 1762 goto out_commit; 1763 } 1764 1765 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1766 OCFS2_JOURNAL_ACCESS_WRITE); 1767 if (ret) { 1768 mlog_errno(ret); 1769 goto out_quota; 1770 } 1771 1772 /* 1773 * Fill our folio array first. That way we've grabbed enough so 1774 * that we can zero and flush if we error after adding the 1775 * extent. 1776 */ 1777 ret = ocfs2_grab_folios_for_write(mapping, wc, wc->w_cpos, pos, len, 1778 cluster_of_pages, mmap_folio); 1779 if (ret) { 1780 /* 1781 * ocfs2_grab_folios_for_write() returns -EAGAIN if it 1782 * could not lock the target folio. In this case, we exit 1783 * with no error and no target folio. This will trigger 1784 * the caller, page_mkwrite(), to re-try the operation. 1785 */ 1786 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1787 BUG_ON(wc->w_target_folio); 1788 ret = 0; 1789 goto out_quota; 1790 } 1791 1792 mlog_errno(ret); 1793 goto out_quota; 1794 } 1795 1796 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1797 len); 1798 if (ret) { 1799 mlog_errno(ret); 1800 goto out_quota; 1801 } 1802 1803 if (data_ac) 1804 ocfs2_free_alloc_context(data_ac); 1805 if (meta_ac) 1806 ocfs2_free_alloc_context(meta_ac); 1807 1808 success: 1809 if (foliop) 1810 *foliop = wc->w_target_folio; 1811 *fsdata = wc; 1812 return 0; 1813 out_quota: 1814 if (clusters_to_alloc) 1815 dquot_free_space(inode, 1816 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1817 out_commit: 1818 ocfs2_commit_trans(osb, handle); 1819 1820 out: 1821 /* 1822 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1823 * even in case of error here like ENOSPC and ENOMEM. So, we need 1824 * to unlock the target page manually to prevent deadlocks when 1825 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1826 * to VM code. 1827 */ 1828 if (wc->w_target_locked) 1829 folio_unlock(mmap_folio); 1830 1831 ocfs2_free_write_ctxt(inode, wc); 1832 1833 if (data_ac) { 1834 ocfs2_free_alloc_context(data_ac); 1835 data_ac = NULL; 1836 } 1837 if (meta_ac) { 1838 ocfs2_free_alloc_context(meta_ac); 1839 meta_ac = NULL; 1840 } 1841 1842 if (ret == -ENOSPC && try_free) { 1843 /* 1844 * Try to free some truncate log so that we can have enough 1845 * clusters to allocate. 1846 */ 1847 try_free = 0; 1848 1849 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1850 if (ret1 == 1) 1851 goto try_again; 1852 1853 if (ret1 < 0) 1854 mlog_errno(ret1); 1855 } 1856 1857 return ret; 1858 } 1859 1860 static int ocfs2_write_begin(const struct kiocb *iocb, 1861 struct address_space *mapping, 1862 loff_t pos, unsigned len, 1863 struct folio **foliop, void **fsdata) 1864 { 1865 int ret; 1866 struct buffer_head *di_bh = NULL; 1867 struct inode *inode = mapping->host; 1868 1869 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1870 if (ret) { 1871 mlog_errno(ret); 1872 return ret; 1873 } 1874 1875 /* 1876 * Take alloc sem here to prevent concurrent lookups. That way 1877 * the mapping, zeroing and tree manipulation within 1878 * ocfs2_write() will be safe against ->read_folio(). This 1879 * should also serve to lock out allocation from a shared 1880 * writeable region. 1881 */ 1882 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1883 1884 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1885 foliop, fsdata, di_bh, NULL); 1886 if (ret) { 1887 mlog_errno(ret); 1888 goto out_fail; 1889 } 1890 1891 brelse(di_bh); 1892 1893 return 0; 1894 1895 out_fail: 1896 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1897 1898 brelse(di_bh); 1899 ocfs2_inode_unlock(inode, 1); 1900 1901 return ret; 1902 } 1903 1904 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1905 unsigned len, unsigned *copied, 1906 struct ocfs2_dinode *di, 1907 struct ocfs2_write_ctxt *wc) 1908 { 1909 if (unlikely(*copied < len)) { 1910 if (!folio_test_uptodate(wc->w_target_folio)) { 1911 *copied = 0; 1912 return; 1913 } 1914 } 1915 1916 memcpy_from_folio(di->id2.i_data.id_data + pos, wc->w_target_folio, 1917 pos, *copied); 1918 1919 trace_ocfs2_write_end_inline( 1920 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1921 (unsigned long long)pos, *copied, 1922 le16_to_cpu(di->id2.i_data.id_count), 1923 le16_to_cpu(di->i_dyn_features)); 1924 } 1925 1926 int ocfs2_write_end_nolock(struct address_space *mapping, loff_t pos, 1927 unsigned len, unsigned copied, void *fsdata) 1928 { 1929 int i, ret; 1930 size_t from, to, start = pos & (PAGE_SIZE - 1); 1931 struct inode *inode = mapping->host; 1932 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1933 struct ocfs2_write_ctxt *wc = fsdata; 1934 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1935 handle_t *handle = wc->w_handle; 1936 1937 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1938 1939 if (handle) { 1940 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1941 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1942 if (ret) { 1943 copied = ret; 1944 mlog_errno(ret); 1945 goto out; 1946 } 1947 } 1948 1949 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1950 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1951 goto out_write_size; 1952 } 1953 1954 if (unlikely(copied < len) && wc->w_target_folio) { 1955 loff_t new_isize; 1956 1957 if (!folio_test_uptodate(wc->w_target_folio)) 1958 copied = 0; 1959 1960 new_isize = max_t(loff_t, i_size_read(inode), pos + copied); 1961 if (new_isize > folio_pos(wc->w_target_folio)) 1962 ocfs2_zero_new_buffers(wc->w_target_folio, start+copied, 1963 start+len); 1964 else { 1965 /* 1966 * When folio is fully beyond new isize (data copy 1967 * failed), do not bother zeroing the folio. Invalidate 1968 * it instead so that writeback does not get confused 1969 * put page & buffer dirty bits into inconsistent 1970 * state. 1971 */ 1972 block_invalidate_folio(wc->w_target_folio, 0, 1973 folio_size(wc->w_target_folio)); 1974 } 1975 } 1976 if (wc->w_target_folio) 1977 flush_dcache_folio(wc->w_target_folio); 1978 1979 for (i = 0; i < wc->w_num_folios; i++) { 1980 struct folio *folio = wc->w_folios[i]; 1981 1982 /* This is the direct io target folio */ 1983 if (folio == NULL) 1984 continue; 1985 1986 if (folio == wc->w_target_folio) { 1987 from = wc->w_target_from; 1988 to = wc->w_target_to; 1989 1990 BUG_ON(from > folio_size(folio) || 1991 to > folio_size(folio) || 1992 to < from); 1993 } else { 1994 /* 1995 * Pages adjacent to the target (if any) imply 1996 * a hole-filling write in which case we want 1997 * to flush their entire range. 1998 */ 1999 from = 0; 2000 to = folio_size(folio); 2001 } 2002 2003 if (folio_buffers(folio)) { 2004 if (handle && ocfs2_should_order_data(inode)) { 2005 loff_t start_byte = folio_pos(folio) + from; 2006 loff_t length = to - from; 2007 ocfs2_jbd2_inode_add_write(handle, inode, 2008 start_byte, length); 2009 } 2010 block_commit_write(folio, from, to); 2011 } 2012 } 2013 2014 out_write_size: 2015 /* Direct io do not update i_size here. */ 2016 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2017 pos += copied; 2018 if (pos > i_size_read(inode)) { 2019 i_size_write(inode, pos); 2020 mark_inode_dirty(inode); 2021 } 2022 inode->i_blocks = ocfs2_inode_sector_count(inode); 2023 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2024 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2025 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode)); 2026 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 2027 if (handle) 2028 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2029 } 2030 if (handle) 2031 ocfs2_journal_dirty(handle, wc->w_di_bh); 2032 2033 out: 2034 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2035 * lock, or it will cause a deadlock since journal commit threads holds 2036 * this lock and will ask for the page lock when flushing the data. 2037 * put it here to preserve the unlock order. 2038 */ 2039 ocfs2_unlock_folios(wc); 2040 2041 if (handle) 2042 ocfs2_commit_trans(osb, handle); 2043 2044 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2045 2046 brelse(wc->w_di_bh); 2047 kfree(wc); 2048 2049 return copied; 2050 } 2051 2052 static int ocfs2_write_end(const struct kiocb *iocb, 2053 struct address_space *mapping, 2054 loff_t pos, unsigned len, unsigned copied, 2055 struct folio *folio, void *fsdata) 2056 { 2057 int ret; 2058 struct inode *inode = mapping->host; 2059 2060 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2061 2062 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2063 ocfs2_inode_unlock(inode, 1); 2064 2065 return ret; 2066 } 2067 2068 struct ocfs2_dio_write_ctxt { 2069 struct list_head dw_zero_list; 2070 unsigned dw_zero_count; 2071 int dw_orphaned; 2072 pid_t dw_writer_pid; 2073 }; 2074 2075 static struct ocfs2_dio_write_ctxt * 2076 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2077 { 2078 struct ocfs2_dio_write_ctxt *dwc = NULL; 2079 2080 if (bh->b_private) 2081 return bh->b_private; 2082 2083 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2084 if (dwc == NULL) 2085 return NULL; 2086 INIT_LIST_HEAD(&dwc->dw_zero_list); 2087 dwc->dw_zero_count = 0; 2088 dwc->dw_orphaned = 0; 2089 dwc->dw_writer_pid = task_pid_nr(current); 2090 bh->b_private = dwc; 2091 *alloc = 1; 2092 2093 return dwc; 2094 } 2095 2096 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2097 struct ocfs2_dio_write_ctxt *dwc) 2098 { 2099 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2100 kfree(dwc); 2101 } 2102 2103 /* 2104 * TODO: Make this into a generic get_blocks function. 2105 * 2106 * From do_direct_io in direct-io.c: 2107 * "So what we do is to permit the ->get_blocks function to populate 2108 * bh.b_size with the size of IO which is permitted at this offset and 2109 * this i_blkbits." 2110 * 2111 * This function is called directly from get_more_blocks in direct-io.c. 2112 * 2113 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2114 * fs_count, map_bh, dio->rw == WRITE); 2115 */ 2116 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2117 struct buffer_head *bh_result, int create) 2118 { 2119 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2120 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2121 struct ocfs2_write_ctxt *wc; 2122 struct ocfs2_write_cluster_desc *desc = NULL; 2123 struct ocfs2_dio_write_ctxt *dwc = NULL; 2124 struct buffer_head *di_bh = NULL; 2125 u64 p_blkno; 2126 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2127 loff_t pos = iblock << i_blkbits; 2128 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2129 unsigned len, total_len = bh_result->b_size; 2130 int ret = 0, first_get_block = 0; 2131 2132 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2133 len = min(total_len, len); 2134 2135 /* 2136 * bh_result->b_size is count in get_more_blocks according to write 2137 * "pos" and "end", we need map twice to return different buffer state: 2138 * 1. area in file size, not set NEW; 2139 * 2. area out file size, set NEW. 2140 * 2141 * iblock endblk 2142 * |--------|---------|---------|--------- 2143 * |<-------area in file------->| 2144 */ 2145 2146 if ((iblock <= endblk) && 2147 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2148 len = (endblk - iblock + 1) << i_blkbits; 2149 2150 mlog(0, "get block of %lu at %llu:%u req %u\n", 2151 inode->i_ino, pos, len, total_len); 2152 2153 /* 2154 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2155 * we may need to add it to orphan dir. So can not fall to fast path 2156 * while file size will be changed. 2157 */ 2158 if (pos + total_len <= i_size_read(inode)) { 2159 2160 /* This is the fast path for re-write. */ 2161 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2162 if (buffer_mapped(bh_result) && 2163 !buffer_new(bh_result) && 2164 ret == 0) 2165 goto out; 2166 2167 /* Clear state set by ocfs2_get_block. */ 2168 bh_result->b_state = 0; 2169 } 2170 2171 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2172 if (unlikely(dwc == NULL)) { 2173 ret = -ENOMEM; 2174 mlog_errno(ret); 2175 goto out; 2176 } 2177 2178 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2179 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2180 !dwc->dw_orphaned) { 2181 /* 2182 * when we are going to alloc extents beyond file size, add the 2183 * inode to orphan dir, so we can recall those spaces when 2184 * system crashed during write. 2185 */ 2186 ret = ocfs2_add_inode_to_orphan(osb, inode); 2187 if (ret < 0) { 2188 mlog_errno(ret); 2189 goto out; 2190 } 2191 dwc->dw_orphaned = 1; 2192 } 2193 2194 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2195 if (ret) { 2196 mlog_errno(ret); 2197 goto out; 2198 } 2199 2200 down_write(&oi->ip_alloc_sem); 2201 2202 if (first_get_block) { 2203 if (ocfs2_sparse_alloc(osb)) 2204 ret = ocfs2_zero_tail(inode, di_bh, pos); 2205 else 2206 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2207 total_len, NULL); 2208 if (ret < 0) { 2209 mlog_errno(ret); 2210 goto unlock; 2211 } 2212 } 2213 2214 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2215 OCFS2_WRITE_DIRECT, NULL, 2216 (void **)&wc, di_bh, NULL); 2217 if (ret) { 2218 mlog_errno(ret); 2219 goto unlock; 2220 } 2221 2222 desc = &wc->w_desc[0]; 2223 2224 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2225 BUG_ON(p_blkno == 0); 2226 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2227 2228 map_bh(bh_result, inode->i_sb, p_blkno); 2229 bh_result->b_size = len; 2230 if (desc->c_needs_zero) 2231 set_buffer_new(bh_result); 2232 2233 if (iblock > endblk) 2234 set_buffer_new(bh_result); 2235 2236 /* May sleep in end_io. It should not happen in a irq context. So defer 2237 * it to dio work queue. */ 2238 set_buffer_defer_completion(bh_result); 2239 2240 if (!list_empty(&wc->w_unwritten_list)) { 2241 struct ocfs2_unwritten_extent *ue = NULL; 2242 2243 ue = list_first_entry(&wc->w_unwritten_list, 2244 struct ocfs2_unwritten_extent, 2245 ue_node); 2246 BUG_ON(ue->ue_cpos != desc->c_cpos); 2247 /* The physical address may be 0, fill it. */ 2248 ue->ue_phys = desc->c_phys; 2249 2250 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2251 dwc->dw_zero_count += wc->w_unwritten_count; 2252 } 2253 2254 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2255 BUG_ON(ret != len); 2256 ret = 0; 2257 unlock: 2258 up_write(&oi->ip_alloc_sem); 2259 ocfs2_inode_unlock(inode, 1); 2260 brelse(di_bh); 2261 out: 2262 return ret; 2263 } 2264 2265 static int ocfs2_dio_end_io_write(struct inode *inode, 2266 struct ocfs2_dio_write_ctxt *dwc, 2267 loff_t offset, 2268 ssize_t bytes) 2269 { 2270 struct ocfs2_cached_dealloc_ctxt dealloc; 2271 struct ocfs2_extent_tree et; 2272 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2273 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2274 struct ocfs2_unwritten_extent *ue = NULL; 2275 struct buffer_head *di_bh = NULL; 2276 struct ocfs2_dinode *di; 2277 struct ocfs2_alloc_context *data_ac = NULL; 2278 struct ocfs2_alloc_context *meta_ac = NULL; 2279 handle_t *handle = NULL; 2280 loff_t end = offset + bytes; 2281 int ret = 0, credits = 0; 2282 2283 ocfs2_init_dealloc_ctxt(&dealloc); 2284 2285 /* We do clear unwritten, delete orphan, change i_size here. If neither 2286 * of these happen, we can skip all this. */ 2287 if (list_empty(&dwc->dw_zero_list) && 2288 end <= i_size_read(inode) && 2289 !dwc->dw_orphaned) 2290 goto out; 2291 2292 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2293 if (ret < 0) { 2294 mlog_errno(ret); 2295 goto out; 2296 } 2297 2298 down_write(&oi->ip_alloc_sem); 2299 2300 /* Delete orphan before acquire i_rwsem. */ 2301 if (dwc->dw_orphaned) { 2302 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2303 2304 end = end > i_size_read(inode) ? end : 0; 2305 2306 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2307 !!end, end); 2308 if (ret < 0) 2309 mlog_errno(ret); 2310 } 2311 2312 di = (struct ocfs2_dinode *)di_bh->b_data; 2313 2314 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2315 2316 /* Attach dealloc with extent tree in case that we may reuse extents 2317 * which are already unlinked from current extent tree due to extent 2318 * rotation and merging. 2319 */ 2320 et.et_dealloc = &dealloc; 2321 2322 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2323 &data_ac, &meta_ac); 2324 if (ret) { 2325 mlog_errno(ret); 2326 goto unlock; 2327 } 2328 2329 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2330 2331 handle = ocfs2_start_trans(osb, credits); 2332 if (IS_ERR(handle)) { 2333 ret = PTR_ERR(handle); 2334 mlog_errno(ret); 2335 goto unlock; 2336 } 2337 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2338 OCFS2_JOURNAL_ACCESS_WRITE); 2339 if (ret) { 2340 mlog_errno(ret); 2341 goto commit; 2342 } 2343 2344 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2345 ret = ocfs2_assure_trans_credits(handle, credits); 2346 if (ret < 0) { 2347 mlog_errno(ret); 2348 break; 2349 } 2350 ret = ocfs2_mark_extent_written(inode, &et, handle, 2351 ue->ue_cpos, 1, 2352 ue->ue_phys, 2353 meta_ac, &dealloc); 2354 if (ret < 0) { 2355 mlog_errno(ret); 2356 break; 2357 } 2358 } 2359 2360 if (end > i_size_read(inode)) { 2361 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2362 if (ret < 0) 2363 mlog_errno(ret); 2364 } 2365 commit: 2366 ocfs2_commit_trans(osb, handle); 2367 unlock: 2368 up_write(&oi->ip_alloc_sem); 2369 ocfs2_inode_unlock(inode, 1); 2370 brelse(di_bh); 2371 out: 2372 if (data_ac) 2373 ocfs2_free_alloc_context(data_ac); 2374 if (meta_ac) 2375 ocfs2_free_alloc_context(meta_ac); 2376 ocfs2_run_deallocs(osb, &dealloc); 2377 ocfs2_dio_free_write_ctx(inode, dwc); 2378 2379 return ret; 2380 } 2381 2382 /* 2383 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2384 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2385 * to protect io on one node from truncation on another. 2386 */ 2387 static int ocfs2_dio_end_io(struct kiocb *iocb, 2388 loff_t offset, 2389 ssize_t bytes, 2390 void *private) 2391 { 2392 struct inode *inode = file_inode(iocb->ki_filp); 2393 int level; 2394 int ret = 0; 2395 2396 /* this io's submitter should not have unlocked this before we could */ 2397 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2398 2399 if (bytes <= 0) 2400 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2401 (long long)bytes); 2402 if (private) { 2403 if (bytes > 0) 2404 ret = ocfs2_dio_end_io_write(inode, private, offset, 2405 bytes); 2406 else 2407 ocfs2_dio_free_write_ctx(inode, private); 2408 } 2409 2410 ocfs2_iocb_clear_rw_locked(iocb); 2411 2412 level = ocfs2_iocb_rw_locked_level(iocb); 2413 ocfs2_rw_unlock(inode, level); 2414 return ret; 2415 } 2416 2417 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2418 { 2419 struct file *file = iocb->ki_filp; 2420 struct inode *inode = file->f_mapping->host; 2421 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2422 get_block_t *get_block; 2423 2424 /* 2425 * Fallback to buffered I/O if we see an inode without 2426 * extents. 2427 */ 2428 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2429 return 0; 2430 2431 /* Fallback to buffered I/O if we do not support append dio. */ 2432 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2433 !ocfs2_supports_append_dio(osb)) 2434 return 0; 2435 2436 if (iov_iter_rw(iter) == READ) 2437 get_block = ocfs2_lock_get_block; 2438 else 2439 get_block = ocfs2_dio_wr_get_block; 2440 2441 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2442 iter, get_block, 2443 ocfs2_dio_end_io, 0); 2444 } 2445 2446 const struct address_space_operations ocfs2_aops = { 2447 .dirty_folio = block_dirty_folio, 2448 .read_folio = ocfs2_read_folio, 2449 .readahead = ocfs2_readahead, 2450 .writepages = ocfs2_writepages, 2451 .write_begin = ocfs2_write_begin, 2452 .write_end = ocfs2_write_end, 2453 .bmap = ocfs2_bmap, 2454 .direct_IO = ocfs2_direct_IO, 2455 .invalidate_folio = block_invalidate_folio, 2456 .release_folio = ocfs2_release_folio, 2457 .migrate_folio = buffer_migrate_folio, 2458 .is_partially_uptodate = block_is_partially_uptodate, 2459 .error_remove_folio = generic_error_remove_folio, 2460 }; 2461