xref: /linux/fs/ocfs2/aops.c (revision 7a4ffec9fd54ea27395e24dff726dbf58e2fe06b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 
18 #include <cluster/masklog.h>
19 
20 #include "ocfs2.h"
21 
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34 
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39 
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 				   struct buffer_head *bh_result, int create)
42 {
43 	int err = -EIO;
44 	int status;
45 	struct ocfs2_dinode *fe = NULL;
46 	struct buffer_head *bh = NULL;
47 	struct buffer_head *buffer_cache_bh = NULL;
48 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 	void *kaddr;
50 
51 	trace_ocfs2_symlink_get_block(
52 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
53 			(unsigned long long)iblock, bh_result, create);
54 
55 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56 
57 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 		     (unsigned long long)iblock);
60 		goto bail;
61 	}
62 
63 	status = ocfs2_read_inode_block(inode, &bh);
64 	if (status < 0) {
65 		mlog_errno(status);
66 		goto bail;
67 	}
68 	fe = (struct ocfs2_dinode *) bh->b_data;
69 
70 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 						    le32_to_cpu(fe->i_clusters))) {
72 		err = -ENOMEM;
73 		mlog(ML_ERROR, "block offset is outside the allocated size: "
74 		     "%llu\n", (unsigned long long)iblock);
75 		goto bail;
76 	}
77 
78 	/* We don't use the page cache to create symlink data, so if
79 	 * need be, copy it over from the buffer cache. */
80 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 			    iblock;
83 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 		if (!buffer_cache_bh) {
85 			err = -ENOMEM;
86 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 			goto bail;
88 		}
89 
90 		/* we haven't locked out transactions, so a commit
91 		 * could've happened. Since we've got a reference on
92 		 * the bh, even if it commits while we're doing the
93 		 * copy, the data is still good. */
94 		if (buffer_jbd(buffer_cache_bh)
95 		    && ocfs2_inode_is_new(inode)) {
96 			kaddr = kmap_atomic(bh_result->b_page);
97 			if (!kaddr) {
98 				mlog(ML_ERROR, "couldn't kmap!\n");
99 				goto bail;
100 			}
101 			memcpy(kaddr + (bh_result->b_size * iblock),
102 			       buffer_cache_bh->b_data,
103 			       bh_result->b_size);
104 			kunmap_atomic(kaddr);
105 			set_buffer_uptodate(bh_result);
106 		}
107 		brelse(buffer_cache_bh);
108 	}
109 
110 	map_bh(bh_result, inode->i_sb,
111 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113 	err = 0;
114 
115 bail:
116 	brelse(bh);
117 
118 	return err;
119 }
120 
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 		    struct buffer_head *bh_result, int create)
123 {
124 	int ret = 0;
125 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127 	down_read(&oi->ip_alloc_sem);
128 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 	up_read(&oi->ip_alloc_sem);
130 
131 	return ret;
132 }
133 
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 		    struct buffer_head *bh_result, int create)
136 {
137 	int err = 0;
138 	unsigned int ext_flags;
139 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 	u64 p_blkno, count, past_eof;
141 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 			      (unsigned long long)iblock, bh_result, create);
145 
146 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 		     inode, inode->i_ino);
149 
150 	if (S_ISLNK(inode->i_mode)) {
151 		/* this always does I/O for some reason. */
152 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 		goto bail;
154 	}
155 
156 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 					  &ext_flags);
158 	if (err) {
159 		mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160 		     "block: %llu\n", inode, (unsigned long long)iblock);
161 		goto bail;
162 	}
163 
164 	if (max_blocks < count)
165 		count = max_blocks;
166 
167 	/*
168 	 * ocfs2 never allocates in this function - the only time we
169 	 * need to use BH_New is when we're extending i_size on a file
170 	 * system which doesn't support holes, in which case BH_New
171 	 * allows __block_write_begin() to zero.
172 	 *
173 	 * If we see this on a sparse file system, then a truncate has
174 	 * raced us and removed the cluster. In this case, we clear
175 	 * the buffers dirty and uptodate bits and let the buffer code
176 	 * ignore it as a hole.
177 	 */
178 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179 		clear_buffer_dirty(bh_result);
180 		clear_buffer_uptodate(bh_result);
181 		goto bail;
182 	}
183 
184 	/* Treat the unwritten extent as a hole for zeroing purposes. */
185 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186 		map_bh(bh_result, inode->i_sb, p_blkno);
187 
188 	bh_result->b_size = count << inode->i_blkbits;
189 
190 	if (!ocfs2_sparse_alloc(osb)) {
191 		if (p_blkno == 0) {
192 			err = -EIO;
193 			mlog(ML_ERROR,
194 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 			     (unsigned long long)iblock,
196 			     (unsigned long long)p_blkno,
197 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
198 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199 			dump_stack();
200 			goto bail;
201 		}
202 	}
203 
204 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 
206 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207 				  (unsigned long long)past_eof);
208 	if (create && (iblock >= past_eof))
209 		set_buffer_new(bh_result);
210 
211 bail:
212 	if (err < 0)
213 		err = -EIO;
214 
215 	return err;
216 }
217 
218 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
219 			   struct buffer_head *di_bh)
220 {
221 	void *kaddr;
222 	loff_t size;
223 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 
225 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
226 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
227 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
228 		return -EROFS;
229 	}
230 
231 	size = i_size_read(inode);
232 
233 	if (size > PAGE_SIZE ||
234 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
235 		ocfs2_error(inode->i_sb,
236 			    "Inode %llu has with inline data has bad size: %Lu\n",
237 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
238 			    (unsigned long long)size);
239 		return -EROFS;
240 	}
241 
242 	kaddr = kmap_atomic(page);
243 	if (size)
244 		memcpy(kaddr, di->id2.i_data.id_data, size);
245 	/* Clear the remaining part of the page */
246 	memset(kaddr + size, 0, PAGE_SIZE - size);
247 	flush_dcache_page(page);
248 	kunmap_atomic(kaddr);
249 
250 	SetPageUptodate(page);
251 
252 	return 0;
253 }
254 
255 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 {
257 	int ret;
258 	struct buffer_head *di_bh = NULL;
259 
260 	BUG_ON(!PageLocked(page));
261 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262 
263 	ret = ocfs2_read_inode_block(inode, &di_bh);
264 	if (ret) {
265 		mlog_errno(ret);
266 		goto out;
267 	}
268 
269 	ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out:
271 	unlock_page(page);
272 
273 	brelse(di_bh);
274 	return ret;
275 }
276 
277 static int ocfs2_read_folio(struct file *file, struct folio *folio)
278 {
279 	struct inode *inode = folio->mapping->host;
280 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
281 	loff_t start = folio_pos(folio);
282 	int ret, unlock = 1;
283 
284 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
285 
286 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
287 	if (ret != 0) {
288 		if (ret == AOP_TRUNCATED_PAGE)
289 			unlock = 0;
290 		mlog_errno(ret);
291 		goto out;
292 	}
293 
294 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 		/*
296 		 * Unlock the folio and cycle ip_alloc_sem so that we don't
297 		 * busyloop waiting for ip_alloc_sem to unlock
298 		 */
299 		ret = AOP_TRUNCATED_PAGE;
300 		folio_unlock(folio);
301 		unlock = 0;
302 		down_read(&oi->ip_alloc_sem);
303 		up_read(&oi->ip_alloc_sem);
304 		goto out_inode_unlock;
305 	}
306 
307 	/*
308 	 * i_size might have just been updated as we grabed the meta lock.  We
309 	 * might now be discovering a truncate that hit on another node.
310 	 * block_read_full_folio->get_block freaks out if it is asked to read
311 	 * beyond the end of a file, so we check here.  Callers
312 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 	 * and notice that the folio they just read isn't needed.
314 	 *
315 	 * XXX sys_readahead() seems to get that wrong?
316 	 */
317 	if (start >= i_size_read(inode)) {
318 		folio_zero_segment(folio, 0, folio_size(folio));
319 		folio_mark_uptodate(folio);
320 		ret = 0;
321 		goto out_alloc;
322 	}
323 
324 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 		ret = ocfs2_readpage_inline(inode, &folio->page);
326 	else
327 		ret = block_read_full_folio(folio, ocfs2_get_block);
328 	unlock = 0;
329 
330 out_alloc:
331 	up_read(&oi->ip_alloc_sem);
332 out_inode_unlock:
333 	ocfs2_inode_unlock(inode, 0);
334 out:
335 	if (unlock)
336 		folio_unlock(folio);
337 	return ret;
338 }
339 
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static void ocfs2_readahead(struct readahead_control *rac)
350 {
351 	int ret;
352 	struct inode *inode = rac->mapping->host;
353 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
354 
355 	/*
356 	 * Use the nonblocking flag for the dlm code to avoid page
357 	 * lock inversion, but don't bother with retrying.
358 	 */
359 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360 	if (ret)
361 		return;
362 
363 	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
364 		goto out_unlock;
365 
366 	/*
367 	 * Don't bother with inline-data. There isn't anything
368 	 * to read-ahead in that case anyway...
369 	 */
370 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371 		goto out_up;
372 
373 	/*
374 	 * Check whether a remote node truncated this file - we just
375 	 * drop out in that case as it's not worth handling here.
376 	 */
377 	if (readahead_pos(rac) >= i_size_read(inode))
378 		goto out_up;
379 
380 	mpage_readahead(rac, ocfs2_get_block);
381 
382 out_up:
383 	up_read(&oi->ip_alloc_sem);
384 out_unlock:
385 	ocfs2_inode_unlock(inode, 0);
386 }
387 
388 /* Note: Because we don't support holes, our allocation has
389  * already happened (allocation writes zeros to the file data)
390  * so we don't have to worry about ordered writes in
391  * ocfs2_writepages.
392  *
393  * ->writepages is called during the process of invalidating the page cache
394  * during blocked lock processing.  It can't block on any cluster locks
395  * to during block mapping.  It's relying on the fact that the block
396  * mapping can't have disappeared under the dirty pages that it is
397  * being asked to write back.
398  */
399 static int ocfs2_writepages(struct address_space *mapping,
400 		struct writeback_control *wbc)
401 {
402 	return mpage_writepages(mapping, wbc, ocfs2_get_block);
403 }
404 
405 /* Taken from ext3. We don't necessarily need the full blown
406  * functionality yet, but IMHO it's better to cut and paste the whole
407  * thing so we can avoid introducing our own bugs (and easily pick up
408  * their fixes when they happen) --Mark */
409 int walk_page_buffers(	handle_t *handle,
410 			struct buffer_head *head,
411 			unsigned from,
412 			unsigned to,
413 			int *partial,
414 			int (*fn)(	handle_t *handle,
415 					struct buffer_head *bh))
416 {
417 	struct buffer_head *bh;
418 	unsigned block_start, block_end;
419 	unsigned blocksize = head->b_size;
420 	int err, ret = 0;
421 	struct buffer_head *next;
422 
423 	for (	bh = head, block_start = 0;
424 		ret == 0 && (bh != head || !block_start);
425 	    	block_start = block_end, bh = next)
426 	{
427 		next = bh->b_this_page;
428 		block_end = block_start + blocksize;
429 		if (block_end <= from || block_start >= to) {
430 			if (partial && !buffer_uptodate(bh))
431 				*partial = 1;
432 			continue;
433 		}
434 		err = (*fn)(handle, bh);
435 		if (!ret)
436 			ret = err;
437 	}
438 	return ret;
439 }
440 
441 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
442 {
443 	sector_t status;
444 	u64 p_blkno = 0;
445 	int err = 0;
446 	struct inode *inode = mapping->host;
447 
448 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 			 (unsigned long long)block);
450 
451 	/*
452 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
453 	 * bypasseѕ the file system for actual I/O.  We really can't allow
454 	 * that on refcounted inodes, so we have to skip out here.  And yes,
455 	 * 0 is the magic code for a bmap error..
456 	 */
457 	if (ocfs2_is_refcount_inode(inode))
458 		return 0;
459 
460 	/* We don't need to lock journal system files, since they aren't
461 	 * accessed concurrently from multiple nodes.
462 	 */
463 	if (!INODE_JOURNAL(inode)) {
464 		err = ocfs2_inode_lock(inode, NULL, 0);
465 		if (err) {
466 			if (err != -ENOENT)
467 				mlog_errno(err);
468 			goto bail;
469 		}
470 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 	}
472 
473 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 						  NULL);
476 
477 	if (!INODE_JOURNAL(inode)) {
478 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 		ocfs2_inode_unlock(inode, 0);
480 	}
481 
482 	if (err) {
483 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 		     (unsigned long long)block);
485 		mlog_errno(err);
486 		goto bail;
487 	}
488 
489 bail:
490 	status = err ? 0 : p_blkno;
491 
492 	return status;
493 }
494 
495 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
496 {
497 	if (!folio_buffers(folio))
498 		return false;
499 	return try_to_free_buffers(folio);
500 }
501 
502 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
503 					    u32 cpos,
504 					    unsigned int *start,
505 					    unsigned int *end)
506 {
507 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
508 
509 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
510 		unsigned int cpp;
511 
512 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
513 
514 		cluster_start = cpos % cpp;
515 		cluster_start = cluster_start << osb->s_clustersize_bits;
516 
517 		cluster_end = cluster_start + osb->s_clustersize;
518 	}
519 
520 	BUG_ON(cluster_start > PAGE_SIZE);
521 	BUG_ON(cluster_end > PAGE_SIZE);
522 
523 	if (start)
524 		*start = cluster_start;
525 	if (end)
526 		*end = cluster_end;
527 }
528 
529 /*
530  * 'from' and 'to' are the region in the page to avoid zeroing.
531  *
532  * If pagesize > clustersize, this function will avoid zeroing outside
533  * of the cluster boundary.
534  *
535  * from == to == 0 is code for "zero the entire cluster region"
536  */
537 static void ocfs2_clear_page_regions(struct page *page,
538 				     struct ocfs2_super *osb, u32 cpos,
539 				     unsigned from, unsigned to)
540 {
541 	void *kaddr;
542 	unsigned int cluster_start, cluster_end;
543 
544 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
545 
546 	kaddr = kmap_atomic(page);
547 
548 	if (from || to) {
549 		if (from > cluster_start)
550 			memset(kaddr + cluster_start, 0, from - cluster_start);
551 		if (to < cluster_end)
552 			memset(kaddr + to, 0, cluster_end - to);
553 	} else {
554 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
555 	}
556 
557 	kunmap_atomic(kaddr);
558 }
559 
560 /*
561  * Nonsparse file systems fully allocate before we get to the write
562  * code. This prevents ocfs2_write() from tagging the write as an
563  * allocating one, which means ocfs2_map_page_blocks() might try to
564  * read-in the blocks at the tail of our file. Avoid reading them by
565  * testing i_size against each block offset.
566  */
567 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
568 				 unsigned int block_start)
569 {
570 	u64 offset = folio_pos(folio) + block_start;
571 
572 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
573 		return 1;
574 
575 	if (i_size_read(inode) > offset)
576 		return 1;
577 
578 	return 0;
579 }
580 
581 /*
582  * Some of this taken from __block_write_begin(). We already have our
583  * mapping by now though, and the entire write will be allocating or
584  * it won't, so not much need to use BH_New.
585  *
586  * This will also skip zeroing, which is handled externally.
587  */
588 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
589 			  struct inode *inode, unsigned int from,
590 			  unsigned int to, int new)
591 {
592 	struct folio *folio = page_folio(page);
593 	int ret = 0;
594 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
595 	unsigned int block_end, block_start;
596 	unsigned int bsize = i_blocksize(inode);
597 
598 	head = folio_buffers(folio);
599 	if (!head)
600 		head = create_empty_buffers(folio, bsize, 0);
601 
602 	for (bh = head, block_start = 0; bh != head || !block_start;
603 	     bh = bh->b_this_page, block_start += bsize) {
604 		block_end = block_start + bsize;
605 
606 		clear_buffer_new(bh);
607 
608 		/*
609 		 * Ignore blocks outside of our i/o range -
610 		 * they may belong to unallocated clusters.
611 		 */
612 		if (block_start >= to || block_end <= from) {
613 			if (folio_test_uptodate(folio))
614 				set_buffer_uptodate(bh);
615 			continue;
616 		}
617 
618 		/*
619 		 * For an allocating write with cluster size >= page
620 		 * size, we always write the entire page.
621 		 */
622 		if (new)
623 			set_buffer_new(bh);
624 
625 		if (!buffer_mapped(bh)) {
626 			map_bh(bh, inode->i_sb, *p_blkno);
627 			clean_bdev_bh_alias(bh);
628 		}
629 
630 		if (folio_test_uptodate(folio)) {
631 			set_buffer_uptodate(bh);
632 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
633 			   !buffer_new(bh) &&
634 			   ocfs2_should_read_blk(inode, folio, block_start) &&
635 			   (block_start < from || block_end > to)) {
636 			bh_read_nowait(bh, 0);
637 			*wait_bh++=bh;
638 		}
639 
640 		*p_blkno = *p_blkno + 1;
641 	}
642 
643 	/*
644 	 * If we issued read requests - let them complete.
645 	 */
646 	while(wait_bh > wait) {
647 		wait_on_buffer(*--wait_bh);
648 		if (!buffer_uptodate(*wait_bh))
649 			ret = -EIO;
650 	}
651 
652 	if (ret == 0 || !new)
653 		return ret;
654 
655 	/*
656 	 * If we get -EIO above, zero out any newly allocated blocks
657 	 * to avoid exposing stale data.
658 	 */
659 	bh = head;
660 	block_start = 0;
661 	do {
662 		block_end = block_start + bsize;
663 		if (block_end <= from)
664 			goto next_bh;
665 		if (block_start >= to)
666 			break;
667 
668 		folio_zero_range(folio, block_start, bh->b_size);
669 		set_buffer_uptodate(bh);
670 		mark_buffer_dirty(bh);
671 
672 next_bh:
673 		block_start = block_end;
674 		bh = bh->b_this_page;
675 	} while (bh != head);
676 
677 	return ret;
678 }
679 
680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
681 #define OCFS2_MAX_CTXT_PAGES	1
682 #else
683 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
684 #endif
685 
686 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
687 
688 struct ocfs2_unwritten_extent {
689 	struct list_head	ue_node;
690 	struct list_head	ue_ip_node;
691 	u32			ue_cpos;
692 	u32			ue_phys;
693 };
694 
695 /*
696  * Describe the state of a single cluster to be written to.
697  */
698 struct ocfs2_write_cluster_desc {
699 	u32		c_cpos;
700 	u32		c_phys;
701 	/*
702 	 * Give this a unique field because c_phys eventually gets
703 	 * filled.
704 	 */
705 	unsigned	c_new;
706 	unsigned	c_clear_unwritten;
707 	unsigned	c_needs_zero;
708 };
709 
710 struct ocfs2_write_ctxt {
711 	/* Logical cluster position / len of write */
712 	u32				w_cpos;
713 	u32				w_clen;
714 
715 	/* First cluster allocated in a nonsparse extend */
716 	u32				w_first_new_cpos;
717 
718 	/* Type of caller. Must be one of buffer, mmap, direct.  */
719 	ocfs2_write_type_t		w_type;
720 
721 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
722 
723 	/*
724 	 * This is true if page_size > cluster_size.
725 	 *
726 	 * It triggers a set of special cases during write which might
727 	 * have to deal with allocating writes to partial pages.
728 	 */
729 	unsigned int			w_large_pages;
730 
731 	/*
732 	 * Pages involved in this write.
733 	 *
734 	 * w_target_page is the page being written to by the user.
735 	 *
736 	 * w_pages is an array of pages which always contains
737 	 * w_target_page, and in the case of an allocating write with
738 	 * page_size < cluster size, it will contain zero'd and mapped
739 	 * pages adjacent to w_target_page which need to be written
740 	 * out in so that future reads from that region will get
741 	 * zero's.
742 	 */
743 	unsigned int			w_num_pages;
744 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
745 	struct page			*w_target_page;
746 
747 	/*
748 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
749 	 * against w_target_page in ocfs2_write_end_nolock.
750 	 */
751 	unsigned int			w_target_locked:1;
752 
753 	/*
754 	 * ocfs2_write_end() uses this to know what the real range to
755 	 * write in the target should be.
756 	 */
757 	unsigned int			w_target_from;
758 	unsigned int			w_target_to;
759 
760 	/*
761 	 * We could use journal_current_handle() but this is cleaner,
762 	 * IMHO -Mark
763 	 */
764 	handle_t			*w_handle;
765 
766 	struct buffer_head		*w_di_bh;
767 
768 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
769 
770 	struct list_head		w_unwritten_list;
771 	unsigned int			w_unwritten_count;
772 };
773 
774 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
775 {
776 	int i;
777 
778 	for(i = 0; i < num_pages; i++) {
779 		if (pages[i]) {
780 			unlock_page(pages[i]);
781 			mark_page_accessed(pages[i]);
782 			put_page(pages[i]);
783 		}
784 	}
785 }
786 
787 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
788 {
789 	int i;
790 
791 	/*
792 	 * w_target_locked is only set to true in the page_mkwrite() case.
793 	 * The intent is to allow us to lock the target page from write_begin()
794 	 * to write_end(). The caller must hold a ref on w_target_page.
795 	 */
796 	if (wc->w_target_locked) {
797 		BUG_ON(!wc->w_target_page);
798 		for (i = 0; i < wc->w_num_pages; i++) {
799 			if (wc->w_target_page == wc->w_pages[i]) {
800 				wc->w_pages[i] = NULL;
801 				break;
802 			}
803 		}
804 		mark_page_accessed(wc->w_target_page);
805 		put_page(wc->w_target_page);
806 	}
807 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
808 }
809 
810 static void ocfs2_free_unwritten_list(struct inode *inode,
811 				 struct list_head *head)
812 {
813 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
814 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
815 
816 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
817 		list_del(&ue->ue_node);
818 		spin_lock(&oi->ip_lock);
819 		list_del(&ue->ue_ip_node);
820 		spin_unlock(&oi->ip_lock);
821 		kfree(ue);
822 	}
823 }
824 
825 static void ocfs2_free_write_ctxt(struct inode *inode,
826 				  struct ocfs2_write_ctxt *wc)
827 {
828 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
829 	ocfs2_unlock_pages(wc);
830 	brelse(wc->w_di_bh);
831 	kfree(wc);
832 }
833 
834 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
835 				  struct ocfs2_super *osb, loff_t pos,
836 				  unsigned len, ocfs2_write_type_t type,
837 				  struct buffer_head *di_bh)
838 {
839 	u32 cend;
840 	struct ocfs2_write_ctxt *wc;
841 
842 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
843 	if (!wc)
844 		return -ENOMEM;
845 
846 	wc->w_cpos = pos >> osb->s_clustersize_bits;
847 	wc->w_first_new_cpos = UINT_MAX;
848 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
849 	wc->w_clen = cend - wc->w_cpos + 1;
850 	get_bh(di_bh);
851 	wc->w_di_bh = di_bh;
852 	wc->w_type = type;
853 
854 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
855 		wc->w_large_pages = 1;
856 	else
857 		wc->w_large_pages = 0;
858 
859 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
860 	INIT_LIST_HEAD(&wc->w_unwritten_list);
861 
862 	*wcp = wc;
863 
864 	return 0;
865 }
866 
867 /*
868  * If a page has any new buffers, zero them out here, and mark them uptodate
869  * and dirty so they'll be written out (in order to prevent uninitialised
870  * block data from leaking). And clear the new bit.
871  */
872 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
873 {
874 	unsigned int block_start, block_end;
875 	struct buffer_head *head, *bh;
876 
877 	BUG_ON(!PageLocked(page));
878 	if (!page_has_buffers(page))
879 		return;
880 
881 	bh = head = page_buffers(page);
882 	block_start = 0;
883 	do {
884 		block_end = block_start + bh->b_size;
885 
886 		if (buffer_new(bh)) {
887 			if (block_end > from && block_start < to) {
888 				if (!PageUptodate(page)) {
889 					unsigned start, end;
890 
891 					start = max(from, block_start);
892 					end = min(to, block_end);
893 
894 					zero_user_segment(page, start, end);
895 					set_buffer_uptodate(bh);
896 				}
897 
898 				clear_buffer_new(bh);
899 				mark_buffer_dirty(bh);
900 			}
901 		}
902 
903 		block_start = block_end;
904 		bh = bh->b_this_page;
905 	} while (bh != head);
906 }
907 
908 /*
909  * Only called when we have a failure during allocating write to write
910  * zero's to the newly allocated region.
911  */
912 static void ocfs2_write_failure(struct inode *inode,
913 				struct ocfs2_write_ctxt *wc,
914 				loff_t user_pos, unsigned user_len)
915 {
916 	int i;
917 	unsigned from = user_pos & (PAGE_SIZE - 1),
918 		to = user_pos + user_len;
919 	struct page *tmppage;
920 
921 	if (wc->w_target_page)
922 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
923 
924 	for(i = 0; i < wc->w_num_pages; i++) {
925 		tmppage = wc->w_pages[i];
926 
927 		if (tmppage && page_has_buffers(tmppage)) {
928 			if (ocfs2_should_order_data(inode))
929 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
930 							   user_pos, user_len);
931 
932 			block_commit_write(tmppage, from, to);
933 		}
934 	}
935 }
936 
937 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
938 					struct ocfs2_write_ctxt *wc,
939 					struct page *page, u32 cpos,
940 					loff_t user_pos, unsigned user_len,
941 					int new)
942 {
943 	int ret;
944 	unsigned int map_from = 0, map_to = 0;
945 	unsigned int cluster_start, cluster_end;
946 	unsigned int user_data_from = 0, user_data_to = 0;
947 
948 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
949 					&cluster_start, &cluster_end);
950 
951 	/* treat the write as new if the a hole/lseek spanned across
952 	 * the page boundary.
953 	 */
954 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
955 			(page_offset(page) <= user_pos));
956 
957 	if (page == wc->w_target_page) {
958 		map_from = user_pos & (PAGE_SIZE - 1);
959 		map_to = map_from + user_len;
960 
961 		if (new)
962 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
963 						    cluster_start, cluster_end,
964 						    new);
965 		else
966 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967 						    map_from, map_to, new);
968 		if (ret) {
969 			mlog_errno(ret);
970 			goto out;
971 		}
972 
973 		user_data_from = map_from;
974 		user_data_to = map_to;
975 		if (new) {
976 			map_from = cluster_start;
977 			map_to = cluster_end;
978 		}
979 	} else {
980 		/*
981 		 * If we haven't allocated the new page yet, we
982 		 * shouldn't be writing it out without copying user
983 		 * data. This is likely a math error from the caller.
984 		 */
985 		BUG_ON(!new);
986 
987 		map_from = cluster_start;
988 		map_to = cluster_end;
989 
990 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
991 					    cluster_start, cluster_end, new);
992 		if (ret) {
993 			mlog_errno(ret);
994 			goto out;
995 		}
996 	}
997 
998 	/*
999 	 * Parts of newly allocated pages need to be zero'd.
1000 	 *
1001 	 * Above, we have also rewritten 'to' and 'from' - as far as
1002 	 * the rest of the function is concerned, the entire cluster
1003 	 * range inside of a page needs to be written.
1004 	 *
1005 	 * We can skip this if the page is up to date - it's already
1006 	 * been zero'd from being read in as a hole.
1007 	 */
1008 	if (new && !PageUptodate(page))
1009 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1010 					 cpos, user_data_from, user_data_to);
1011 
1012 	flush_dcache_page(page);
1013 
1014 out:
1015 	return ret;
1016 }
1017 
1018 /*
1019  * This function will only grab one clusters worth of pages.
1020  */
1021 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1022 				      struct ocfs2_write_ctxt *wc,
1023 				      u32 cpos, loff_t user_pos,
1024 				      unsigned user_len, int new,
1025 				      struct page *mmap_page)
1026 {
1027 	int ret = 0, i;
1028 	unsigned long start, target_index, end_index, index;
1029 	struct inode *inode = mapping->host;
1030 	loff_t last_byte;
1031 
1032 	target_index = user_pos >> PAGE_SHIFT;
1033 
1034 	/*
1035 	 * Figure out how many pages we'll be manipulating here. For
1036 	 * non allocating write, we just change the one
1037 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1038 	 * writing past i_size, we only need enough pages to cover the
1039 	 * last page of the write.
1040 	 */
1041 	if (new) {
1042 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1043 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1044 		/*
1045 		 * We need the index *past* the last page we could possibly
1046 		 * touch.  This is the page past the end of the write or
1047 		 * i_size, whichever is greater.
1048 		 */
1049 		last_byte = max(user_pos + user_len, i_size_read(inode));
1050 		BUG_ON(last_byte < 1);
1051 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1052 		if ((start + wc->w_num_pages) > end_index)
1053 			wc->w_num_pages = end_index - start;
1054 	} else {
1055 		wc->w_num_pages = 1;
1056 		start = target_index;
1057 	}
1058 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1059 
1060 	for(i = 0; i < wc->w_num_pages; i++) {
1061 		index = start + i;
1062 
1063 		if (index >= target_index && index <= end_index &&
1064 		    wc->w_type == OCFS2_WRITE_MMAP) {
1065 			/*
1066 			 * ocfs2_pagemkwrite() is a little different
1067 			 * and wants us to directly use the page
1068 			 * passed in.
1069 			 */
1070 			lock_page(mmap_page);
1071 
1072 			/* Exit and let the caller retry */
1073 			if (mmap_page->mapping != mapping) {
1074 				WARN_ON(mmap_page->mapping);
1075 				unlock_page(mmap_page);
1076 				ret = -EAGAIN;
1077 				goto out;
1078 			}
1079 
1080 			get_page(mmap_page);
1081 			wc->w_pages[i] = mmap_page;
1082 			wc->w_target_locked = true;
1083 		} else if (index >= target_index && index <= end_index &&
1084 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1085 			/* Direct write has no mapping page. */
1086 			wc->w_pages[i] = NULL;
1087 			continue;
1088 		} else {
1089 			wc->w_pages[i] = find_or_create_page(mapping, index,
1090 							     GFP_NOFS);
1091 			if (!wc->w_pages[i]) {
1092 				ret = -ENOMEM;
1093 				mlog_errno(ret);
1094 				goto out;
1095 			}
1096 		}
1097 		wait_for_stable_page(wc->w_pages[i]);
1098 
1099 		if (index == target_index)
1100 			wc->w_target_page = wc->w_pages[i];
1101 	}
1102 out:
1103 	if (ret)
1104 		wc->w_target_locked = false;
1105 	return ret;
1106 }
1107 
1108 /*
1109  * Prepare a single cluster for write one cluster into the file.
1110  */
1111 static int ocfs2_write_cluster(struct address_space *mapping,
1112 			       u32 *phys, unsigned int new,
1113 			       unsigned int clear_unwritten,
1114 			       unsigned int should_zero,
1115 			       struct ocfs2_alloc_context *data_ac,
1116 			       struct ocfs2_alloc_context *meta_ac,
1117 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1118 			       loff_t user_pos, unsigned user_len)
1119 {
1120 	int ret, i;
1121 	u64 p_blkno;
1122 	struct inode *inode = mapping->host;
1123 	struct ocfs2_extent_tree et;
1124 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1125 
1126 	if (new) {
1127 		u32 tmp_pos;
1128 
1129 		/*
1130 		 * This is safe to call with the page locks - it won't take
1131 		 * any additional semaphores or cluster locks.
1132 		 */
1133 		tmp_pos = cpos;
1134 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1135 					   &tmp_pos, 1, !clear_unwritten,
1136 					   wc->w_di_bh, wc->w_handle,
1137 					   data_ac, meta_ac, NULL);
1138 		/*
1139 		 * This shouldn't happen because we must have already
1140 		 * calculated the correct meta data allocation required. The
1141 		 * internal tree allocation code should know how to increase
1142 		 * transaction credits itself.
1143 		 *
1144 		 * If need be, we could handle -EAGAIN for a
1145 		 * RESTART_TRANS here.
1146 		 */
1147 		mlog_bug_on_msg(ret == -EAGAIN,
1148 				"Inode %llu: EAGAIN return during allocation.\n",
1149 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1150 		if (ret < 0) {
1151 			mlog_errno(ret);
1152 			goto out;
1153 		}
1154 	} else if (clear_unwritten) {
1155 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1156 					      wc->w_di_bh);
1157 		ret = ocfs2_mark_extent_written(inode, &et,
1158 						wc->w_handle, cpos, 1, *phys,
1159 						meta_ac, &wc->w_dealloc);
1160 		if (ret < 0) {
1161 			mlog_errno(ret);
1162 			goto out;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * The only reason this should fail is due to an inability to
1168 	 * find the extent added.
1169 	 */
1170 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1171 	if (ret < 0) {
1172 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1173 			    "at logical cluster %u",
1174 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1175 		goto out;
1176 	}
1177 
1178 	BUG_ON(*phys == 0);
1179 
1180 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1181 	if (!should_zero)
1182 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1183 
1184 	for(i = 0; i < wc->w_num_pages; i++) {
1185 		int tmpret;
1186 
1187 		/* This is the direct io target page. */
1188 		if (wc->w_pages[i] == NULL) {
1189 			p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits));
1190 			continue;
1191 		}
1192 
1193 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1194 						      wc->w_pages[i], cpos,
1195 						      user_pos, user_len,
1196 						      should_zero);
1197 		if (tmpret) {
1198 			mlog_errno(tmpret);
1199 			if (ret == 0)
1200 				ret = tmpret;
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * We only have cleanup to do in case of allocating write.
1206 	 */
1207 	if (ret && new)
1208 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1209 
1210 out:
1211 
1212 	return ret;
1213 }
1214 
1215 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1216 				       struct ocfs2_alloc_context *data_ac,
1217 				       struct ocfs2_alloc_context *meta_ac,
1218 				       struct ocfs2_write_ctxt *wc,
1219 				       loff_t pos, unsigned len)
1220 {
1221 	int ret, i;
1222 	loff_t cluster_off;
1223 	unsigned int local_len = len;
1224 	struct ocfs2_write_cluster_desc *desc;
1225 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1226 
1227 	for (i = 0; i < wc->w_clen; i++) {
1228 		desc = &wc->w_desc[i];
1229 
1230 		/*
1231 		 * We have to make sure that the total write passed in
1232 		 * doesn't extend past a single cluster.
1233 		 */
1234 		local_len = len;
1235 		cluster_off = pos & (osb->s_clustersize - 1);
1236 		if ((cluster_off + local_len) > osb->s_clustersize)
1237 			local_len = osb->s_clustersize - cluster_off;
1238 
1239 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1240 					  desc->c_new,
1241 					  desc->c_clear_unwritten,
1242 					  desc->c_needs_zero,
1243 					  data_ac, meta_ac,
1244 					  wc, desc->c_cpos, pos, local_len);
1245 		if (ret) {
1246 			mlog_errno(ret);
1247 			goto out;
1248 		}
1249 
1250 		len -= local_len;
1251 		pos += local_len;
1252 	}
1253 
1254 	ret = 0;
1255 out:
1256 	return ret;
1257 }
1258 
1259 /*
1260  * ocfs2_write_end() wants to know which parts of the target page it
1261  * should complete the write on. It's easiest to compute them ahead of
1262  * time when a more complete view of the write is available.
1263  */
1264 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1265 					struct ocfs2_write_ctxt *wc,
1266 					loff_t pos, unsigned len, int alloc)
1267 {
1268 	struct ocfs2_write_cluster_desc *desc;
1269 
1270 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1271 	wc->w_target_to = wc->w_target_from + len;
1272 
1273 	if (alloc == 0)
1274 		return;
1275 
1276 	/*
1277 	 * Allocating write - we may have different boundaries based
1278 	 * on page size and cluster size.
1279 	 *
1280 	 * NOTE: We can no longer compute one value from the other as
1281 	 * the actual write length and user provided length may be
1282 	 * different.
1283 	 */
1284 
1285 	if (wc->w_large_pages) {
1286 		/*
1287 		 * We only care about the 1st and last cluster within
1288 		 * our range and whether they should be zero'd or not. Either
1289 		 * value may be extended out to the start/end of a
1290 		 * newly allocated cluster.
1291 		 */
1292 		desc = &wc->w_desc[0];
1293 		if (desc->c_needs_zero)
1294 			ocfs2_figure_cluster_boundaries(osb,
1295 							desc->c_cpos,
1296 							&wc->w_target_from,
1297 							NULL);
1298 
1299 		desc = &wc->w_desc[wc->w_clen - 1];
1300 		if (desc->c_needs_zero)
1301 			ocfs2_figure_cluster_boundaries(osb,
1302 							desc->c_cpos,
1303 							NULL,
1304 							&wc->w_target_to);
1305 	} else {
1306 		wc->w_target_from = 0;
1307 		wc->w_target_to = PAGE_SIZE;
1308 	}
1309 }
1310 
1311 /*
1312  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1313  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1314  * by the direct io procedure.
1315  * If this is a new extent that allocated by direct io, we should mark it in
1316  * the ip_unwritten_list.
1317  */
1318 static int ocfs2_unwritten_check(struct inode *inode,
1319 				 struct ocfs2_write_ctxt *wc,
1320 				 struct ocfs2_write_cluster_desc *desc)
1321 {
1322 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1323 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1324 	int ret = 0;
1325 
1326 	if (!desc->c_needs_zero)
1327 		return 0;
1328 
1329 retry:
1330 	spin_lock(&oi->ip_lock);
1331 	/* Needs not to zero no metter buffer or direct. The one who is zero
1332 	 * the cluster is doing zero. And he will clear unwritten after all
1333 	 * cluster io finished. */
1334 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1335 		if (desc->c_cpos == ue->ue_cpos) {
1336 			BUG_ON(desc->c_new);
1337 			desc->c_needs_zero = 0;
1338 			desc->c_clear_unwritten = 0;
1339 			goto unlock;
1340 		}
1341 	}
1342 
1343 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1344 		goto unlock;
1345 
1346 	if (new == NULL) {
1347 		spin_unlock(&oi->ip_lock);
1348 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1349 			     GFP_NOFS);
1350 		if (new == NULL) {
1351 			ret = -ENOMEM;
1352 			goto out;
1353 		}
1354 		goto retry;
1355 	}
1356 	/* This direct write will doing zero. */
1357 	new->ue_cpos = desc->c_cpos;
1358 	new->ue_phys = desc->c_phys;
1359 	desc->c_clear_unwritten = 0;
1360 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1361 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1362 	wc->w_unwritten_count++;
1363 	new = NULL;
1364 unlock:
1365 	spin_unlock(&oi->ip_lock);
1366 out:
1367 	kfree(new);
1368 	return ret;
1369 }
1370 
1371 /*
1372  * Populate each single-cluster write descriptor in the write context
1373  * with information about the i/o to be done.
1374  *
1375  * Returns the number of clusters that will have to be allocated, as
1376  * well as a worst case estimate of the number of extent records that
1377  * would have to be created during a write to an unwritten region.
1378  */
1379 static int ocfs2_populate_write_desc(struct inode *inode,
1380 				     struct ocfs2_write_ctxt *wc,
1381 				     unsigned int *clusters_to_alloc,
1382 				     unsigned int *extents_to_split)
1383 {
1384 	int ret;
1385 	struct ocfs2_write_cluster_desc *desc;
1386 	unsigned int num_clusters = 0;
1387 	unsigned int ext_flags = 0;
1388 	u32 phys = 0;
1389 	int i;
1390 
1391 	*clusters_to_alloc = 0;
1392 	*extents_to_split = 0;
1393 
1394 	for (i = 0; i < wc->w_clen; i++) {
1395 		desc = &wc->w_desc[i];
1396 		desc->c_cpos = wc->w_cpos + i;
1397 
1398 		if (num_clusters == 0) {
1399 			/*
1400 			 * Need to look up the next extent record.
1401 			 */
1402 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403 						 &num_clusters, &ext_flags);
1404 			if (ret) {
1405 				mlog_errno(ret);
1406 				goto out;
1407 			}
1408 
1409 			/* We should already CoW the refcountd extent. */
1410 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411 
1412 			/*
1413 			 * Assume worst case - that we're writing in
1414 			 * the middle of the extent.
1415 			 *
1416 			 * We can assume that the write proceeds from
1417 			 * left to right, in which case the extent
1418 			 * insert code is smart enough to coalesce the
1419 			 * next splits into the previous records created.
1420 			 */
1421 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422 				*extents_to_split = *extents_to_split + 2;
1423 		} else if (phys) {
1424 			/*
1425 			 * Only increment phys if it doesn't describe
1426 			 * a hole.
1427 			 */
1428 			phys++;
1429 		}
1430 
1431 		/*
1432 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433 		 * file that got extended.  w_first_new_cpos tells us
1434 		 * where the newly allocated clusters are so we can
1435 		 * zero them.
1436 		 */
1437 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1438 			BUG_ON(phys == 0);
1439 			desc->c_needs_zero = 1;
1440 		}
1441 
1442 		desc->c_phys = phys;
1443 		if (phys == 0) {
1444 			desc->c_new = 1;
1445 			desc->c_needs_zero = 1;
1446 			desc->c_clear_unwritten = 1;
1447 			*clusters_to_alloc = *clusters_to_alloc + 1;
1448 		}
1449 
1450 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1451 			desc->c_clear_unwritten = 1;
1452 			desc->c_needs_zero = 1;
1453 		}
1454 
1455 		ret = ocfs2_unwritten_check(inode, wc, desc);
1456 		if (ret) {
1457 			mlog_errno(ret);
1458 			goto out;
1459 		}
1460 
1461 		num_clusters--;
1462 	}
1463 
1464 	ret = 0;
1465 out:
1466 	return ret;
1467 }
1468 
1469 static int ocfs2_write_begin_inline(struct address_space *mapping,
1470 				    struct inode *inode,
1471 				    struct ocfs2_write_ctxt *wc)
1472 {
1473 	int ret;
1474 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1475 	struct page *page;
1476 	handle_t *handle;
1477 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1478 
1479 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1480 	if (IS_ERR(handle)) {
1481 		ret = PTR_ERR(handle);
1482 		mlog_errno(ret);
1483 		goto out;
1484 	}
1485 
1486 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1487 	if (!page) {
1488 		ocfs2_commit_trans(osb, handle);
1489 		ret = -ENOMEM;
1490 		mlog_errno(ret);
1491 		goto out;
1492 	}
1493 	/*
1494 	 * If we don't set w_num_pages then this page won't get unlocked
1495 	 * and freed on cleanup of the write context.
1496 	 */
1497 	wc->w_pages[0] = wc->w_target_page = page;
1498 	wc->w_num_pages = 1;
1499 
1500 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1501 				      OCFS2_JOURNAL_ACCESS_WRITE);
1502 	if (ret) {
1503 		ocfs2_commit_trans(osb, handle);
1504 
1505 		mlog_errno(ret);
1506 		goto out;
1507 	}
1508 
1509 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510 		ocfs2_set_inode_data_inline(inode, di);
1511 
1512 	if (!PageUptodate(page)) {
1513 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514 		if (ret) {
1515 			ocfs2_commit_trans(osb, handle);
1516 
1517 			goto out;
1518 		}
1519 	}
1520 
1521 	wc->w_handle = handle;
1522 out:
1523 	return ret;
1524 }
1525 
1526 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1527 {
1528 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1529 
1530 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536 					  struct inode *inode, loff_t pos,
1537 					  unsigned len, struct page *mmap_page,
1538 					  struct ocfs2_write_ctxt *wc)
1539 {
1540 	int ret, written = 0;
1541 	loff_t end = pos + len;
1542 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1543 	struct ocfs2_dinode *di = NULL;
1544 
1545 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1546 					     len, (unsigned long long)pos,
1547 					     oi->ip_dyn_features);
1548 
1549 	/*
1550 	 * Handle inodes which already have inline data 1st.
1551 	 */
1552 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553 		if (mmap_page == NULL &&
1554 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555 			goto do_inline_write;
1556 
1557 		/*
1558 		 * The write won't fit - we have to give this inode an
1559 		 * inline extent list now.
1560 		 */
1561 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562 		if (ret)
1563 			mlog_errno(ret);
1564 		goto out;
1565 	}
1566 
1567 	/*
1568 	 * Check whether the inode can accept inline data.
1569 	 */
1570 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571 		return 0;
1572 
1573 	/*
1574 	 * Check whether the write can fit.
1575 	 */
1576 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577 	if (mmap_page ||
1578 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1579 		return 0;
1580 
1581 do_inline_write:
1582 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583 	if (ret) {
1584 		mlog_errno(ret);
1585 		goto out;
1586 	}
1587 
1588 	/*
1589 	 * This signals to the caller that the data can be written
1590 	 * inline.
1591 	 */
1592 	written = 1;
1593 out:
1594 	return written ? written : ret;
1595 }
1596 
1597 /*
1598  * This function only does anything for file systems which can't
1599  * handle sparse files.
1600  *
1601  * What we want to do here is fill in any hole between the current end
1602  * of allocation and the end of our write. That way the rest of the
1603  * write path can treat it as an non-allocating write, which has no
1604  * special case code for sparse/nonsparse files.
1605  */
1606 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607 					struct buffer_head *di_bh,
1608 					loff_t pos, unsigned len,
1609 					struct ocfs2_write_ctxt *wc)
1610 {
1611 	int ret;
1612 	loff_t newsize = pos + len;
1613 
1614 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1615 
1616 	if (newsize <= i_size_read(inode))
1617 		return 0;
1618 
1619 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1620 	if (ret)
1621 		mlog_errno(ret);
1622 
1623 	/* There is no wc if this is call from direct. */
1624 	if (wc)
1625 		wc->w_first_new_cpos =
1626 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1627 
1628 	return ret;
1629 }
1630 
1631 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1632 			   loff_t pos)
1633 {
1634 	int ret = 0;
1635 
1636 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637 	if (pos > i_size_read(inode))
1638 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1639 
1640 	return ret;
1641 }
1642 
1643 int ocfs2_write_begin_nolock(struct address_space *mapping,
1644 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1645 			     struct folio **foliop, void **fsdata,
1646 			     struct buffer_head *di_bh, struct page *mmap_page)
1647 {
1648 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1649 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1650 	struct ocfs2_write_ctxt *wc;
1651 	struct inode *inode = mapping->host;
1652 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1653 	struct ocfs2_dinode *di;
1654 	struct ocfs2_alloc_context *data_ac = NULL;
1655 	struct ocfs2_alloc_context *meta_ac = NULL;
1656 	handle_t *handle;
1657 	struct ocfs2_extent_tree et;
1658 	int try_free = 1, ret1;
1659 
1660 try_again:
1661 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1662 	if (ret) {
1663 		mlog_errno(ret);
1664 		return ret;
1665 	}
1666 
1667 	if (ocfs2_supports_inline_data(osb)) {
1668 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669 						     mmap_page, wc);
1670 		if (ret == 1) {
1671 			ret = 0;
1672 			goto success;
1673 		}
1674 		if (ret < 0) {
1675 			mlog_errno(ret);
1676 			goto out;
1677 		}
1678 	}
1679 
1680 	/* Direct io change i_size late, should not zero tail here. */
1681 	if (type != OCFS2_WRITE_DIRECT) {
1682 		if (ocfs2_sparse_alloc(osb))
1683 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1684 		else
1685 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1686 							   len, wc);
1687 		if (ret) {
1688 			mlog_errno(ret);
1689 			goto out;
1690 		}
1691 	}
1692 
1693 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1694 	if (ret < 0) {
1695 		mlog_errno(ret);
1696 		goto out;
1697 	} else if (ret == 1) {
1698 		clusters_need = wc->w_clen;
1699 		ret = ocfs2_refcount_cow(inode, di_bh,
1700 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1701 		if (ret) {
1702 			mlog_errno(ret);
1703 			goto out;
1704 		}
1705 	}
1706 
1707 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1708 					&extents_to_split);
1709 	if (ret) {
1710 		mlog_errno(ret);
1711 		goto out;
1712 	}
1713 	clusters_need += clusters_to_alloc;
1714 
1715 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1716 
1717 	trace_ocfs2_write_begin_nolock(
1718 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1719 			(long long)i_size_read(inode),
1720 			le32_to_cpu(di->i_clusters),
1721 			pos, len, type, mmap_page,
1722 			clusters_to_alloc, extents_to_split);
1723 
1724 	/*
1725 	 * We set w_target_from, w_target_to here so that
1726 	 * ocfs2_write_end() knows which range in the target page to
1727 	 * write out. An allocation requires that we write the entire
1728 	 * cluster range.
1729 	 */
1730 	if (clusters_to_alloc || extents_to_split) {
1731 		/*
1732 		 * XXX: We are stretching the limits of
1733 		 * ocfs2_lock_allocators(). It greatly over-estimates
1734 		 * the work to be done.
1735 		 */
1736 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1737 					      wc->w_di_bh);
1738 		ret = ocfs2_lock_allocators(inode, &et,
1739 					    clusters_to_alloc, extents_to_split,
1740 					    &data_ac, &meta_ac);
1741 		if (ret) {
1742 			mlog_errno(ret);
1743 			goto out;
1744 		}
1745 
1746 		if (data_ac)
1747 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1748 
1749 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1750 						    &di->id2.i_list);
1751 	} else if (type == OCFS2_WRITE_DIRECT)
1752 		/* direct write needs not to start trans if no extents alloc. */
1753 		goto success;
1754 
1755 	/*
1756 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1757 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1758 	 * we know zeros will only be needed in the first and/or last cluster.
1759 	 */
1760 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1761 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1762 		cluster_of_pages = 1;
1763 	else
1764 		cluster_of_pages = 0;
1765 
1766 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1767 
1768 	handle = ocfs2_start_trans(osb, credits);
1769 	if (IS_ERR(handle)) {
1770 		ret = PTR_ERR(handle);
1771 		mlog_errno(ret);
1772 		goto out;
1773 	}
1774 
1775 	wc->w_handle = handle;
1776 
1777 	if (clusters_to_alloc) {
1778 		ret = dquot_alloc_space_nodirty(inode,
1779 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1780 		if (ret)
1781 			goto out_commit;
1782 	}
1783 
1784 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1785 				      OCFS2_JOURNAL_ACCESS_WRITE);
1786 	if (ret) {
1787 		mlog_errno(ret);
1788 		goto out_quota;
1789 	}
1790 
1791 	/*
1792 	 * Fill our page array first. That way we've grabbed enough so
1793 	 * that we can zero and flush if we error after adding the
1794 	 * extent.
1795 	 */
1796 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1797 					 cluster_of_pages, mmap_page);
1798 	if (ret) {
1799 		/*
1800 		 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1801 		 * the target page. In this case, we exit with no error and no target
1802 		 * page. This will trigger the caller, page_mkwrite(), to re-try
1803 		 * the operation.
1804 		 */
1805 		if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1806 			BUG_ON(wc->w_target_page);
1807 			ret = 0;
1808 			goto out_quota;
1809 		}
1810 
1811 		mlog_errno(ret);
1812 		goto out_quota;
1813 	}
1814 
1815 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1816 					  len);
1817 	if (ret) {
1818 		mlog_errno(ret);
1819 		goto out_quota;
1820 	}
1821 
1822 	if (data_ac)
1823 		ocfs2_free_alloc_context(data_ac);
1824 	if (meta_ac)
1825 		ocfs2_free_alloc_context(meta_ac);
1826 
1827 success:
1828 	if (foliop)
1829 		*foliop = page_folio(wc->w_target_page);
1830 	*fsdata = wc;
1831 	return 0;
1832 out_quota:
1833 	if (clusters_to_alloc)
1834 		dquot_free_space(inode,
1835 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 out_commit:
1837 	ocfs2_commit_trans(osb, handle);
1838 
1839 out:
1840 	/*
1841 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1842 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1843 	 * to unlock the target page manually to prevent deadlocks when
1844 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1845 	 * to VM code.
1846 	 */
1847 	if (wc->w_target_locked)
1848 		unlock_page(mmap_page);
1849 
1850 	ocfs2_free_write_ctxt(inode, wc);
1851 
1852 	if (data_ac) {
1853 		ocfs2_free_alloc_context(data_ac);
1854 		data_ac = NULL;
1855 	}
1856 	if (meta_ac) {
1857 		ocfs2_free_alloc_context(meta_ac);
1858 		meta_ac = NULL;
1859 	}
1860 
1861 	if (ret == -ENOSPC && try_free) {
1862 		/*
1863 		 * Try to free some truncate log so that we can have enough
1864 		 * clusters to allocate.
1865 		 */
1866 		try_free = 0;
1867 
1868 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1869 		if (ret1 == 1)
1870 			goto try_again;
1871 
1872 		if (ret1 < 0)
1873 			mlog_errno(ret1);
1874 	}
1875 
1876 	return ret;
1877 }
1878 
1879 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1880 			     loff_t pos, unsigned len,
1881 			     struct folio **foliop, void **fsdata)
1882 {
1883 	int ret;
1884 	struct buffer_head *di_bh = NULL;
1885 	struct inode *inode = mapping->host;
1886 
1887 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1888 	if (ret) {
1889 		mlog_errno(ret);
1890 		return ret;
1891 	}
1892 
1893 	/*
1894 	 * Take alloc sem here to prevent concurrent lookups. That way
1895 	 * the mapping, zeroing and tree manipulation within
1896 	 * ocfs2_write() will be safe against ->read_folio(). This
1897 	 * should also serve to lock out allocation from a shared
1898 	 * writeable region.
1899 	 */
1900 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1901 
1902 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1903 				       foliop, fsdata, di_bh, NULL);
1904 	if (ret) {
1905 		mlog_errno(ret);
1906 		goto out_fail;
1907 	}
1908 
1909 	brelse(di_bh);
1910 
1911 	return 0;
1912 
1913 out_fail:
1914 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1915 
1916 	brelse(di_bh);
1917 	ocfs2_inode_unlock(inode, 1);
1918 
1919 	return ret;
1920 }
1921 
1922 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1923 				   unsigned len, unsigned *copied,
1924 				   struct ocfs2_dinode *di,
1925 				   struct ocfs2_write_ctxt *wc)
1926 {
1927 	void *kaddr;
1928 
1929 	if (unlikely(*copied < len)) {
1930 		if (!PageUptodate(wc->w_target_page)) {
1931 			*copied = 0;
1932 			return;
1933 		}
1934 	}
1935 
1936 	kaddr = kmap_atomic(wc->w_target_page);
1937 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1938 	kunmap_atomic(kaddr);
1939 
1940 	trace_ocfs2_write_end_inline(
1941 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1942 	     (unsigned long long)pos, *copied,
1943 	     le16_to_cpu(di->id2.i_data.id_count),
1944 	     le16_to_cpu(di->i_dyn_features));
1945 }
1946 
1947 int ocfs2_write_end_nolock(struct address_space *mapping,
1948 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1949 {
1950 	int i, ret;
1951 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1952 	struct inode *inode = mapping->host;
1953 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1954 	struct ocfs2_write_ctxt *wc = fsdata;
1955 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1956 	handle_t *handle = wc->w_handle;
1957 	struct page *tmppage;
1958 
1959 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1960 
1961 	if (handle) {
1962 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1963 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1964 		if (ret) {
1965 			copied = ret;
1966 			mlog_errno(ret);
1967 			goto out;
1968 		}
1969 	}
1970 
1971 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1972 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1973 		goto out_write_size;
1974 	}
1975 
1976 	if (unlikely(copied < len) && wc->w_target_page) {
1977 		loff_t new_isize;
1978 
1979 		if (!PageUptodate(wc->w_target_page))
1980 			copied = 0;
1981 
1982 		new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1983 		if (new_isize > page_offset(wc->w_target_page))
1984 			ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985 					       start+len);
1986 		else {
1987 			/*
1988 			 * When page is fully beyond new isize (data copy
1989 			 * failed), do not bother zeroing the page. Invalidate
1990 			 * it instead so that writeback does not get confused
1991 			 * put page & buffer dirty bits into inconsistent
1992 			 * state.
1993 			 */
1994 			block_invalidate_folio(page_folio(wc->w_target_page),
1995 						0, PAGE_SIZE);
1996 		}
1997 	}
1998 	if (wc->w_target_page)
1999 		flush_dcache_page(wc->w_target_page);
2000 
2001 	for(i = 0; i < wc->w_num_pages; i++) {
2002 		tmppage = wc->w_pages[i];
2003 
2004 		/* This is the direct io target page. */
2005 		if (tmppage == NULL)
2006 			continue;
2007 
2008 		if (tmppage == wc->w_target_page) {
2009 			from = wc->w_target_from;
2010 			to = wc->w_target_to;
2011 
2012 			BUG_ON(from > PAGE_SIZE ||
2013 			       to > PAGE_SIZE ||
2014 			       to < from);
2015 		} else {
2016 			/*
2017 			 * Pages adjacent to the target (if any) imply
2018 			 * a hole-filling write in which case we want
2019 			 * to flush their entire range.
2020 			 */
2021 			from = 0;
2022 			to = PAGE_SIZE;
2023 		}
2024 
2025 		if (page_has_buffers(tmppage)) {
2026 			if (handle && ocfs2_should_order_data(inode)) {
2027 				loff_t start_byte =
2028 					((loff_t)tmppage->index << PAGE_SHIFT) +
2029 					from;
2030 				loff_t length = to - from;
2031 				ocfs2_jbd2_inode_add_write(handle, inode,
2032 							   start_byte, length);
2033 			}
2034 			block_commit_write(tmppage, from, to);
2035 		}
2036 	}
2037 
2038 out_write_size:
2039 	/* Direct io do not update i_size here. */
2040 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2041 		pos += copied;
2042 		if (pos > i_size_read(inode)) {
2043 			i_size_write(inode, pos);
2044 			mark_inode_dirty(inode);
2045 		}
2046 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2047 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2048 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2049 		di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2050 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2051 		if (handle)
2052 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2053 	}
2054 	if (handle)
2055 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2056 
2057 out:
2058 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059 	 * lock, or it will cause a deadlock since journal commit threads holds
2060 	 * this lock and will ask for the page lock when flushing the data.
2061 	 * put it here to preserve the unlock order.
2062 	 */
2063 	ocfs2_unlock_pages(wc);
2064 
2065 	if (handle)
2066 		ocfs2_commit_trans(osb, handle);
2067 
2068 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2069 
2070 	brelse(wc->w_di_bh);
2071 	kfree(wc);
2072 
2073 	return copied;
2074 }
2075 
2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2077 			   loff_t pos, unsigned len, unsigned copied,
2078 			   struct folio *folio, void *fsdata)
2079 {
2080 	int ret;
2081 	struct inode *inode = mapping->host;
2082 
2083 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2084 
2085 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2086 	ocfs2_inode_unlock(inode, 1);
2087 
2088 	return ret;
2089 }
2090 
2091 struct ocfs2_dio_write_ctxt {
2092 	struct list_head	dw_zero_list;
2093 	unsigned		dw_zero_count;
2094 	int			dw_orphaned;
2095 	pid_t			dw_writer_pid;
2096 };
2097 
2098 static struct ocfs2_dio_write_ctxt *
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2100 {
2101 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2102 
2103 	if (bh->b_private)
2104 		return bh->b_private;
2105 
2106 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2107 	if (dwc == NULL)
2108 		return NULL;
2109 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2110 	dwc->dw_zero_count = 0;
2111 	dwc->dw_orphaned = 0;
2112 	dwc->dw_writer_pid = task_pid_nr(current);
2113 	bh->b_private = dwc;
2114 	*alloc = 1;
2115 
2116 	return dwc;
2117 }
2118 
2119 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2120 				     struct ocfs2_dio_write_ctxt *dwc)
2121 {
2122 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2123 	kfree(dwc);
2124 }
2125 
2126 /*
2127  * TODO: Make this into a generic get_blocks function.
2128  *
2129  * From do_direct_io in direct-io.c:
2130  *  "So what we do is to permit the ->get_blocks function to populate
2131  *   bh.b_size with the size of IO which is permitted at this offset and
2132  *   this i_blkbits."
2133  *
2134  * This function is called directly from get_more_blocks in direct-io.c.
2135  *
2136  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137  * 					fs_count, map_bh, dio->rw == WRITE);
2138  */
2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2140 			       struct buffer_head *bh_result, int create)
2141 {
2142 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2143 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2144 	struct ocfs2_write_ctxt *wc;
2145 	struct ocfs2_write_cluster_desc *desc = NULL;
2146 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2147 	struct buffer_head *di_bh = NULL;
2148 	u64 p_blkno;
2149 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2150 	loff_t pos = iblock << i_blkbits;
2151 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2152 	unsigned len, total_len = bh_result->b_size;
2153 	int ret = 0, first_get_block = 0;
2154 
2155 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2156 	len = min(total_len, len);
2157 
2158 	/*
2159 	 * bh_result->b_size is count in get_more_blocks according to write
2160 	 * "pos" and "end", we need map twice to return different buffer state:
2161 	 * 1. area in file size, not set NEW;
2162 	 * 2. area out file size, set  NEW.
2163 	 *
2164 	 *		   iblock    endblk
2165 	 * |--------|---------|---------|---------
2166 	 * |<-------area in file------->|
2167 	 */
2168 
2169 	if ((iblock <= endblk) &&
2170 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2171 		len = (endblk - iblock + 1) << i_blkbits;
2172 
2173 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2174 			inode->i_ino, pos, len, total_len);
2175 
2176 	/*
2177 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178 	 * we may need to add it to orphan dir. So can not fall to fast path
2179 	 * while file size will be changed.
2180 	 */
2181 	if (pos + total_len <= i_size_read(inode)) {
2182 
2183 		/* This is the fast path for re-write. */
2184 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2185 		if (buffer_mapped(bh_result) &&
2186 		    !buffer_new(bh_result) &&
2187 		    ret == 0)
2188 			goto out;
2189 
2190 		/* Clear state set by ocfs2_get_block. */
2191 		bh_result->b_state = 0;
2192 	}
2193 
2194 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2195 	if (unlikely(dwc == NULL)) {
2196 		ret = -ENOMEM;
2197 		mlog_errno(ret);
2198 		goto out;
2199 	}
2200 
2201 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2202 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2203 	    !dwc->dw_orphaned) {
2204 		/*
2205 		 * when we are going to alloc extents beyond file size, add the
2206 		 * inode to orphan dir, so we can recall those spaces when
2207 		 * system crashed during write.
2208 		 */
2209 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2210 		if (ret < 0) {
2211 			mlog_errno(ret);
2212 			goto out;
2213 		}
2214 		dwc->dw_orphaned = 1;
2215 	}
2216 
2217 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218 	if (ret) {
2219 		mlog_errno(ret);
2220 		goto out;
2221 	}
2222 
2223 	down_write(&oi->ip_alloc_sem);
2224 
2225 	if (first_get_block) {
2226 		if (ocfs2_sparse_alloc(osb))
2227 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2228 		else
2229 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2230 							   total_len, NULL);
2231 		if (ret < 0) {
2232 			mlog_errno(ret);
2233 			goto unlock;
2234 		}
2235 	}
2236 
2237 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2238 				       OCFS2_WRITE_DIRECT, NULL,
2239 				       (void **)&wc, di_bh, NULL);
2240 	if (ret) {
2241 		mlog_errno(ret);
2242 		goto unlock;
2243 	}
2244 
2245 	desc = &wc->w_desc[0];
2246 
2247 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2248 	BUG_ON(p_blkno == 0);
2249 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2250 
2251 	map_bh(bh_result, inode->i_sb, p_blkno);
2252 	bh_result->b_size = len;
2253 	if (desc->c_needs_zero)
2254 		set_buffer_new(bh_result);
2255 
2256 	if (iblock > endblk)
2257 		set_buffer_new(bh_result);
2258 
2259 	/* May sleep in end_io. It should not happen in a irq context. So defer
2260 	 * it to dio work queue. */
2261 	set_buffer_defer_completion(bh_result);
2262 
2263 	if (!list_empty(&wc->w_unwritten_list)) {
2264 		struct ocfs2_unwritten_extent *ue = NULL;
2265 
2266 		ue = list_first_entry(&wc->w_unwritten_list,
2267 				      struct ocfs2_unwritten_extent,
2268 				      ue_node);
2269 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2270 		/* The physical address may be 0, fill it. */
2271 		ue->ue_phys = desc->c_phys;
2272 
2273 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2274 		dwc->dw_zero_count += wc->w_unwritten_count;
2275 	}
2276 
2277 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2278 	BUG_ON(ret != len);
2279 	ret = 0;
2280 unlock:
2281 	up_write(&oi->ip_alloc_sem);
2282 	ocfs2_inode_unlock(inode, 1);
2283 	brelse(di_bh);
2284 out:
2285 	return ret;
2286 }
2287 
2288 static int ocfs2_dio_end_io_write(struct inode *inode,
2289 				  struct ocfs2_dio_write_ctxt *dwc,
2290 				  loff_t offset,
2291 				  ssize_t bytes)
2292 {
2293 	struct ocfs2_cached_dealloc_ctxt dealloc;
2294 	struct ocfs2_extent_tree et;
2295 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2296 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2297 	struct ocfs2_unwritten_extent *ue = NULL;
2298 	struct buffer_head *di_bh = NULL;
2299 	struct ocfs2_dinode *di;
2300 	struct ocfs2_alloc_context *data_ac = NULL;
2301 	struct ocfs2_alloc_context *meta_ac = NULL;
2302 	handle_t *handle = NULL;
2303 	loff_t end = offset + bytes;
2304 	int ret = 0, credits = 0;
2305 
2306 	ocfs2_init_dealloc_ctxt(&dealloc);
2307 
2308 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2309 	 * of these happen, we can skip all this. */
2310 	if (list_empty(&dwc->dw_zero_list) &&
2311 	    end <= i_size_read(inode) &&
2312 	    !dwc->dw_orphaned)
2313 		goto out;
2314 
2315 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2316 	if (ret < 0) {
2317 		mlog_errno(ret);
2318 		goto out;
2319 	}
2320 
2321 	down_write(&oi->ip_alloc_sem);
2322 
2323 	/* Delete orphan before acquire i_rwsem. */
2324 	if (dwc->dw_orphaned) {
2325 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2326 
2327 		end = end > i_size_read(inode) ? end : 0;
2328 
2329 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2330 				!!end, end);
2331 		if (ret < 0)
2332 			mlog_errno(ret);
2333 	}
2334 
2335 	di = (struct ocfs2_dinode *)di_bh->b_data;
2336 
2337 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2338 
2339 	/* Attach dealloc with extent tree in case that we may reuse extents
2340 	 * which are already unlinked from current extent tree due to extent
2341 	 * rotation and merging.
2342 	 */
2343 	et.et_dealloc = &dealloc;
2344 
2345 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2346 				    &data_ac, &meta_ac);
2347 	if (ret) {
2348 		mlog_errno(ret);
2349 		goto unlock;
2350 	}
2351 
2352 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2353 
2354 	handle = ocfs2_start_trans(osb, credits);
2355 	if (IS_ERR(handle)) {
2356 		ret = PTR_ERR(handle);
2357 		mlog_errno(ret);
2358 		goto unlock;
2359 	}
2360 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2361 				      OCFS2_JOURNAL_ACCESS_WRITE);
2362 	if (ret) {
2363 		mlog_errno(ret);
2364 		goto commit;
2365 	}
2366 
2367 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2368 		ret = ocfs2_assure_trans_credits(handle, credits);
2369 		if (ret < 0) {
2370 			mlog_errno(ret);
2371 			break;
2372 		}
2373 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2374 						ue->ue_cpos, 1,
2375 						ue->ue_phys,
2376 						meta_ac, &dealloc);
2377 		if (ret < 0) {
2378 			mlog_errno(ret);
2379 			break;
2380 		}
2381 	}
2382 
2383 	if (end > i_size_read(inode)) {
2384 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2385 		if (ret < 0)
2386 			mlog_errno(ret);
2387 	}
2388 commit:
2389 	ocfs2_commit_trans(osb, handle);
2390 unlock:
2391 	up_write(&oi->ip_alloc_sem);
2392 	ocfs2_inode_unlock(inode, 1);
2393 	brelse(di_bh);
2394 out:
2395 	if (data_ac)
2396 		ocfs2_free_alloc_context(data_ac);
2397 	if (meta_ac)
2398 		ocfs2_free_alloc_context(meta_ac);
2399 	ocfs2_run_deallocs(osb, &dealloc);
2400 	ocfs2_dio_free_write_ctx(inode, dwc);
2401 
2402 	return ret;
2403 }
2404 
2405 /*
2406  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2407  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2408  * to protect io on one node from truncation on another.
2409  */
2410 static int ocfs2_dio_end_io(struct kiocb *iocb,
2411 			    loff_t offset,
2412 			    ssize_t bytes,
2413 			    void *private)
2414 {
2415 	struct inode *inode = file_inode(iocb->ki_filp);
2416 	int level;
2417 	int ret = 0;
2418 
2419 	/* this io's submitter should not have unlocked this before we could */
2420 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2421 
2422 	if (bytes <= 0)
2423 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2424 				 (long long)bytes);
2425 	if (private) {
2426 		if (bytes > 0)
2427 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2428 						     bytes);
2429 		else
2430 			ocfs2_dio_free_write_ctx(inode, private);
2431 	}
2432 
2433 	ocfs2_iocb_clear_rw_locked(iocb);
2434 
2435 	level = ocfs2_iocb_rw_locked_level(iocb);
2436 	ocfs2_rw_unlock(inode, level);
2437 	return ret;
2438 }
2439 
2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2441 {
2442 	struct file *file = iocb->ki_filp;
2443 	struct inode *inode = file->f_mapping->host;
2444 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2445 	get_block_t *get_block;
2446 
2447 	/*
2448 	 * Fallback to buffered I/O if we see an inode without
2449 	 * extents.
2450 	 */
2451 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2452 		return 0;
2453 
2454 	/* Fallback to buffered I/O if we do not support append dio. */
2455 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2456 	    !ocfs2_supports_append_dio(osb))
2457 		return 0;
2458 
2459 	if (iov_iter_rw(iter) == READ)
2460 		get_block = ocfs2_lock_get_block;
2461 	else
2462 		get_block = ocfs2_dio_wr_get_block;
2463 
2464 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2465 				    iter, get_block,
2466 				    ocfs2_dio_end_io, 0);
2467 }
2468 
2469 const struct address_space_operations ocfs2_aops = {
2470 	.dirty_folio		= block_dirty_folio,
2471 	.read_folio		= ocfs2_read_folio,
2472 	.readahead		= ocfs2_readahead,
2473 	.writepages		= ocfs2_writepages,
2474 	.write_begin		= ocfs2_write_begin,
2475 	.write_end		= ocfs2_write_end,
2476 	.bmap			= ocfs2_bmap,
2477 	.direct_IO		= ocfs2_direct_IO,
2478 	.invalidate_folio	= block_invalidate_folio,
2479 	.release_folio		= ocfs2_release_folio,
2480 	.migrate_folio		= buffer_migrate_folio,
2481 	.is_partially_uptodate	= block_is_partially_uptodate,
2482 	.error_remove_folio	= generic_error_remove_folio,
2483 };
2484