1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/slab.h> 10 #include <linux/highmem.h> 11 #include <linux/pagemap.h> 12 #include <asm/byteorder.h> 13 #include <linux/swap.h> 14 #include <linux/mpage.h> 15 #include <linux/quotaops.h> 16 #include <linux/blkdev.h> 17 #include <linux/uio.h> 18 #include <linux/mm.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "aops.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "file.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "suballoc.h" 32 #include "super.h" 33 #include "symlink.h" 34 #include "refcounttree.h" 35 #include "ocfs2_trace.h" 36 37 #include "buffer_head_io.h" 38 #include "dir.h" 39 #include "namei.h" 40 #include "sysfile.h" 41 42 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 43 struct buffer_head *bh_result, int create) 44 { 45 int err = -EIO; 46 int status; 47 struct ocfs2_dinode *fe = NULL; 48 struct buffer_head *bh = NULL; 49 struct buffer_head *buffer_cache_bh = NULL; 50 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 51 void *kaddr; 52 53 trace_ocfs2_symlink_get_block( 54 (unsigned long long)OCFS2_I(inode)->ip_blkno, 55 (unsigned long long)iblock, bh_result, create); 56 57 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 58 59 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 60 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 61 (unsigned long long)iblock); 62 goto bail; 63 } 64 65 status = ocfs2_read_inode_block(inode, &bh); 66 if (status < 0) { 67 mlog_errno(status); 68 goto bail; 69 } 70 fe = (struct ocfs2_dinode *) bh->b_data; 71 72 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 73 le32_to_cpu(fe->i_clusters))) { 74 err = -ENOMEM; 75 mlog(ML_ERROR, "block offset is outside the allocated size: " 76 "%llu\n", (unsigned long long)iblock); 77 goto bail; 78 } 79 80 /* We don't use the page cache to create symlink data, so if 81 * need be, copy it over from the buffer cache. */ 82 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 83 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 84 iblock; 85 buffer_cache_bh = sb_getblk(osb->sb, blkno); 86 if (!buffer_cache_bh) { 87 err = -ENOMEM; 88 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 89 goto bail; 90 } 91 92 /* we haven't locked out transactions, so a commit 93 * could've happened. Since we've got a reference on 94 * the bh, even if it commits while we're doing the 95 * copy, the data is still good. */ 96 if (buffer_jbd(buffer_cache_bh) 97 && ocfs2_inode_is_new(inode)) { 98 kaddr = kmap_atomic(bh_result->b_page); 99 if (!kaddr) { 100 mlog(ML_ERROR, "couldn't kmap!\n"); 101 goto bail; 102 } 103 memcpy(kaddr + (bh_result->b_size * iblock), 104 buffer_cache_bh->b_data, 105 bh_result->b_size); 106 kunmap_atomic(kaddr); 107 set_buffer_uptodate(bh_result); 108 } 109 brelse(buffer_cache_bh); 110 } 111 112 map_bh(bh_result, inode->i_sb, 113 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 114 115 err = 0; 116 117 bail: 118 brelse(bh); 119 120 return err; 121 } 122 123 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 124 struct buffer_head *bh_result, int create) 125 { 126 int ret = 0; 127 struct ocfs2_inode_info *oi = OCFS2_I(inode); 128 129 down_read(&oi->ip_alloc_sem); 130 ret = ocfs2_get_block(inode, iblock, bh_result, create); 131 up_read(&oi->ip_alloc_sem); 132 133 return ret; 134 } 135 136 int ocfs2_get_block(struct inode *inode, sector_t iblock, 137 struct buffer_head *bh_result, int create) 138 { 139 int err = 0; 140 unsigned int ext_flags; 141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 142 u64 p_blkno, count, past_eof; 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 144 145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 146 (unsigned long long)iblock, bh_result, create); 147 148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 150 inode, inode->i_ino); 151 152 if (S_ISLNK(inode->i_mode)) { 153 /* this always does I/O for some reason. */ 154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 155 goto bail; 156 } 157 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 159 &ext_flags); 160 if (err) { 161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 163 (unsigned long long)p_blkno); 164 goto bail; 165 } 166 167 if (max_blocks < count) 168 count = max_blocks; 169 170 /* 171 * ocfs2 never allocates in this function - the only time we 172 * need to use BH_New is when we're extending i_size on a file 173 * system which doesn't support holes, in which case BH_New 174 * allows __block_write_begin() to zero. 175 * 176 * If we see this on a sparse file system, then a truncate has 177 * raced us and removed the cluster. In this case, we clear 178 * the buffers dirty and uptodate bits and let the buffer code 179 * ignore it as a hole. 180 */ 181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 182 clear_buffer_dirty(bh_result); 183 clear_buffer_uptodate(bh_result); 184 goto bail; 185 } 186 187 /* Treat the unwritten extent as a hole for zeroing purposes. */ 188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 189 map_bh(bh_result, inode->i_sb, p_blkno); 190 191 bh_result->b_size = count << inode->i_blkbits; 192 193 if (!ocfs2_sparse_alloc(osb)) { 194 if (p_blkno == 0) { 195 err = -EIO; 196 mlog(ML_ERROR, 197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 198 (unsigned long long)iblock, 199 (unsigned long long)p_blkno, 200 (unsigned long long)OCFS2_I(inode)->ip_blkno); 201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 202 dump_stack(); 203 goto bail; 204 } 205 } 206 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 208 209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 210 (unsigned long long)past_eof); 211 if (create && (iblock >= past_eof)) 212 set_buffer_new(bh_result); 213 214 bail: 215 if (err < 0) 216 err = -EIO; 217 218 return err; 219 } 220 221 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 222 struct buffer_head *di_bh) 223 { 224 void *kaddr; 225 loff_t size; 226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 227 228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 230 (unsigned long long)OCFS2_I(inode)->ip_blkno); 231 return -EROFS; 232 } 233 234 size = i_size_read(inode); 235 236 if (size > PAGE_SIZE || 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 238 ocfs2_error(inode->i_sb, 239 "Inode %llu has with inline data has bad size: %Lu\n", 240 (unsigned long long)OCFS2_I(inode)->ip_blkno, 241 (unsigned long long)size); 242 return -EROFS; 243 } 244 245 kaddr = kmap_atomic(page); 246 if (size) 247 memcpy(kaddr, di->id2.i_data.id_data, size); 248 /* Clear the remaining part of the page */ 249 memset(kaddr + size, 0, PAGE_SIZE - size); 250 flush_dcache_page(page); 251 kunmap_atomic(kaddr); 252 253 SetPageUptodate(page); 254 255 return 0; 256 } 257 258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 259 { 260 int ret; 261 struct buffer_head *di_bh = NULL; 262 263 BUG_ON(!PageLocked(page)); 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 265 266 ret = ocfs2_read_inode_block(inode, &di_bh); 267 if (ret) { 268 mlog_errno(ret); 269 goto out; 270 } 271 272 ret = ocfs2_read_inline_data(inode, page, di_bh); 273 out: 274 unlock_page(page); 275 276 brelse(di_bh); 277 return ret; 278 } 279 280 static int ocfs2_readpage(struct file *file, struct page *page) 281 { 282 struct inode *inode = page->mapping->host; 283 struct ocfs2_inode_info *oi = OCFS2_I(inode); 284 loff_t start = (loff_t)page->index << PAGE_SHIFT; 285 int ret, unlock = 1; 286 287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 288 (page ? page->index : 0)); 289 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 291 if (ret != 0) { 292 if (ret == AOP_TRUNCATED_PAGE) 293 unlock = 0; 294 mlog_errno(ret); 295 goto out; 296 } 297 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 299 /* 300 * Unlock the page and cycle ip_alloc_sem so that we don't 301 * busyloop waiting for ip_alloc_sem to unlock 302 */ 303 ret = AOP_TRUNCATED_PAGE; 304 unlock_page(page); 305 unlock = 0; 306 down_read(&oi->ip_alloc_sem); 307 up_read(&oi->ip_alloc_sem); 308 goto out_inode_unlock; 309 } 310 311 /* 312 * i_size might have just been updated as we grabed the meta lock. We 313 * might now be discovering a truncate that hit on another node. 314 * block_read_full_page->get_block freaks out if it is asked to read 315 * beyond the end of a file, so we check here. Callers 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 317 * and notice that the page they just read isn't needed. 318 * 319 * XXX sys_readahead() seems to get that wrong? 320 */ 321 if (start >= i_size_read(inode)) { 322 zero_user(page, 0, PAGE_SIZE); 323 SetPageUptodate(page); 324 ret = 0; 325 goto out_alloc; 326 } 327 328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 329 ret = ocfs2_readpage_inline(inode, page); 330 else 331 ret = block_read_full_page(page, ocfs2_get_block); 332 unlock = 0; 333 334 out_alloc: 335 up_read(&oi->ip_alloc_sem); 336 out_inode_unlock: 337 ocfs2_inode_unlock(inode, 0); 338 out: 339 if (unlock) 340 unlock_page(page); 341 return ret; 342 } 343 344 /* 345 * This is used only for read-ahead. Failures or difficult to handle 346 * situations are safe to ignore. 347 * 348 * Right now, we don't bother with BH_Boundary - in-inode extent lists 349 * are quite large (243 extents on 4k blocks), so most inodes don't 350 * grow out to a tree. If need be, detecting boundary extents could 351 * trivially be added in a future version of ocfs2_get_block(). 352 */ 353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 354 struct list_head *pages, unsigned nr_pages) 355 { 356 int ret, err = -EIO; 357 struct inode *inode = mapping->host; 358 struct ocfs2_inode_info *oi = OCFS2_I(inode); 359 loff_t start; 360 struct page *last; 361 362 /* 363 * Use the nonblocking flag for the dlm code to avoid page 364 * lock inversion, but don't bother with retrying. 365 */ 366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 367 if (ret) 368 return err; 369 370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 371 ocfs2_inode_unlock(inode, 0); 372 return err; 373 } 374 375 /* 376 * Don't bother with inline-data. There isn't anything 377 * to read-ahead in that case anyway... 378 */ 379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 380 goto out_unlock; 381 382 /* 383 * Check whether a remote node truncated this file - we just 384 * drop out in that case as it's not worth handling here. 385 */ 386 last = lru_to_page(pages); 387 start = (loff_t)last->index << PAGE_SHIFT; 388 if (start >= i_size_read(inode)) 389 goto out_unlock; 390 391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 392 393 out_unlock: 394 up_read(&oi->ip_alloc_sem); 395 ocfs2_inode_unlock(inode, 0); 396 397 return err; 398 } 399 400 /* Note: Because we don't support holes, our allocation has 401 * already happened (allocation writes zeros to the file data) 402 * so we don't have to worry about ordered writes in 403 * ocfs2_writepage. 404 * 405 * ->writepage is called during the process of invalidating the page cache 406 * during blocked lock processing. It can't block on any cluster locks 407 * to during block mapping. It's relying on the fact that the block 408 * mapping can't have disappeared under the dirty pages that it is 409 * being asked to write back. 410 */ 411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 412 { 413 trace_ocfs2_writepage( 414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 415 page->index); 416 417 return block_write_full_page(page, ocfs2_get_block, wbc); 418 } 419 420 /* Taken from ext3. We don't necessarily need the full blown 421 * functionality yet, but IMHO it's better to cut and paste the whole 422 * thing so we can avoid introducing our own bugs (and easily pick up 423 * their fixes when they happen) --Mark */ 424 int walk_page_buffers( handle_t *handle, 425 struct buffer_head *head, 426 unsigned from, 427 unsigned to, 428 int *partial, 429 int (*fn)( handle_t *handle, 430 struct buffer_head *bh)) 431 { 432 struct buffer_head *bh; 433 unsigned block_start, block_end; 434 unsigned blocksize = head->b_size; 435 int err, ret = 0; 436 struct buffer_head *next; 437 438 for ( bh = head, block_start = 0; 439 ret == 0 && (bh != head || !block_start); 440 block_start = block_end, bh = next) 441 { 442 next = bh->b_this_page; 443 block_end = block_start + blocksize; 444 if (block_end <= from || block_start >= to) { 445 if (partial && !buffer_uptodate(bh)) 446 *partial = 1; 447 continue; 448 } 449 err = (*fn)(handle, bh); 450 if (!ret) 451 ret = err; 452 } 453 return ret; 454 } 455 456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 457 { 458 sector_t status; 459 u64 p_blkno = 0; 460 int err = 0; 461 struct inode *inode = mapping->host; 462 463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 464 (unsigned long long)block); 465 466 /* 467 * The swap code (ab-)uses ->bmap to get a block mapping and then 468 * bypasseѕ the file system for actual I/O. We really can't allow 469 * that on refcounted inodes, so we have to skip out here. And yes, 470 * 0 is the magic code for a bmap error.. 471 */ 472 if (ocfs2_is_refcount_inode(inode)) 473 return 0; 474 475 /* We don't need to lock journal system files, since they aren't 476 * accessed concurrently from multiple nodes. 477 */ 478 if (!INODE_JOURNAL(inode)) { 479 err = ocfs2_inode_lock(inode, NULL, 0); 480 if (err) { 481 if (err != -ENOENT) 482 mlog_errno(err); 483 goto bail; 484 } 485 down_read(&OCFS2_I(inode)->ip_alloc_sem); 486 } 487 488 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 489 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 490 NULL); 491 492 if (!INODE_JOURNAL(inode)) { 493 up_read(&OCFS2_I(inode)->ip_alloc_sem); 494 ocfs2_inode_unlock(inode, 0); 495 } 496 497 if (err) { 498 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 499 (unsigned long long)block); 500 mlog_errno(err); 501 goto bail; 502 } 503 504 bail: 505 status = err ? 0 : p_blkno; 506 507 return status; 508 } 509 510 static int ocfs2_releasepage(struct page *page, gfp_t wait) 511 { 512 if (!page_has_buffers(page)) 513 return 0; 514 return try_to_free_buffers(page); 515 } 516 517 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 518 u32 cpos, 519 unsigned int *start, 520 unsigned int *end) 521 { 522 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 523 524 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 525 unsigned int cpp; 526 527 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 528 529 cluster_start = cpos % cpp; 530 cluster_start = cluster_start << osb->s_clustersize_bits; 531 532 cluster_end = cluster_start + osb->s_clustersize; 533 } 534 535 BUG_ON(cluster_start > PAGE_SIZE); 536 BUG_ON(cluster_end > PAGE_SIZE); 537 538 if (start) 539 *start = cluster_start; 540 if (end) 541 *end = cluster_end; 542 } 543 544 /* 545 * 'from' and 'to' are the region in the page to avoid zeroing. 546 * 547 * If pagesize > clustersize, this function will avoid zeroing outside 548 * of the cluster boundary. 549 * 550 * from == to == 0 is code for "zero the entire cluster region" 551 */ 552 static void ocfs2_clear_page_regions(struct page *page, 553 struct ocfs2_super *osb, u32 cpos, 554 unsigned from, unsigned to) 555 { 556 void *kaddr; 557 unsigned int cluster_start, cluster_end; 558 559 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 560 561 kaddr = kmap_atomic(page); 562 563 if (from || to) { 564 if (from > cluster_start) 565 memset(kaddr + cluster_start, 0, from - cluster_start); 566 if (to < cluster_end) 567 memset(kaddr + to, 0, cluster_end - to); 568 } else { 569 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 570 } 571 572 kunmap_atomic(kaddr); 573 } 574 575 /* 576 * Nonsparse file systems fully allocate before we get to the write 577 * code. This prevents ocfs2_write() from tagging the write as an 578 * allocating one, which means ocfs2_map_page_blocks() might try to 579 * read-in the blocks at the tail of our file. Avoid reading them by 580 * testing i_size against each block offset. 581 */ 582 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 583 unsigned int block_start) 584 { 585 u64 offset = page_offset(page) + block_start; 586 587 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 588 return 1; 589 590 if (i_size_read(inode) > offset) 591 return 1; 592 593 return 0; 594 } 595 596 /* 597 * Some of this taken from __block_write_begin(). We already have our 598 * mapping by now though, and the entire write will be allocating or 599 * it won't, so not much need to use BH_New. 600 * 601 * This will also skip zeroing, which is handled externally. 602 */ 603 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 604 struct inode *inode, unsigned int from, 605 unsigned int to, int new) 606 { 607 int ret = 0; 608 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 609 unsigned int block_end, block_start; 610 unsigned int bsize = i_blocksize(inode); 611 612 if (!page_has_buffers(page)) 613 create_empty_buffers(page, bsize, 0); 614 615 head = page_buffers(page); 616 for (bh = head, block_start = 0; bh != head || !block_start; 617 bh = bh->b_this_page, block_start += bsize) { 618 block_end = block_start + bsize; 619 620 clear_buffer_new(bh); 621 622 /* 623 * Ignore blocks outside of our i/o range - 624 * they may belong to unallocated clusters. 625 */ 626 if (block_start >= to || block_end <= from) { 627 if (PageUptodate(page)) 628 set_buffer_uptodate(bh); 629 continue; 630 } 631 632 /* 633 * For an allocating write with cluster size >= page 634 * size, we always write the entire page. 635 */ 636 if (new) 637 set_buffer_new(bh); 638 639 if (!buffer_mapped(bh)) { 640 map_bh(bh, inode->i_sb, *p_blkno); 641 clean_bdev_bh_alias(bh); 642 } 643 644 if (PageUptodate(page)) { 645 if (!buffer_uptodate(bh)) 646 set_buffer_uptodate(bh); 647 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 648 !buffer_new(bh) && 649 ocfs2_should_read_blk(inode, page, block_start) && 650 (block_start < from || block_end > to)) { 651 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 652 *wait_bh++=bh; 653 } 654 655 *p_blkno = *p_blkno + 1; 656 } 657 658 /* 659 * If we issued read requests - let them complete. 660 */ 661 while(wait_bh > wait) { 662 wait_on_buffer(*--wait_bh); 663 if (!buffer_uptodate(*wait_bh)) 664 ret = -EIO; 665 } 666 667 if (ret == 0 || !new) 668 return ret; 669 670 /* 671 * If we get -EIO above, zero out any newly allocated blocks 672 * to avoid exposing stale data. 673 */ 674 bh = head; 675 block_start = 0; 676 do { 677 block_end = block_start + bsize; 678 if (block_end <= from) 679 goto next_bh; 680 if (block_start >= to) 681 break; 682 683 zero_user(page, block_start, bh->b_size); 684 set_buffer_uptodate(bh); 685 mark_buffer_dirty(bh); 686 687 next_bh: 688 block_start = block_end; 689 bh = bh->b_this_page; 690 } while (bh != head); 691 692 return ret; 693 } 694 695 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 696 #define OCFS2_MAX_CTXT_PAGES 1 697 #else 698 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 699 #endif 700 701 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 702 703 struct ocfs2_unwritten_extent { 704 struct list_head ue_node; 705 struct list_head ue_ip_node; 706 u32 ue_cpos; 707 u32 ue_phys; 708 }; 709 710 /* 711 * Describe the state of a single cluster to be written to. 712 */ 713 struct ocfs2_write_cluster_desc { 714 u32 c_cpos; 715 u32 c_phys; 716 /* 717 * Give this a unique field because c_phys eventually gets 718 * filled. 719 */ 720 unsigned c_new; 721 unsigned c_clear_unwritten; 722 unsigned c_needs_zero; 723 }; 724 725 struct ocfs2_write_ctxt { 726 /* Logical cluster position / len of write */ 727 u32 w_cpos; 728 u32 w_clen; 729 730 /* First cluster allocated in a nonsparse extend */ 731 u32 w_first_new_cpos; 732 733 /* Type of caller. Must be one of buffer, mmap, direct. */ 734 ocfs2_write_type_t w_type; 735 736 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 737 738 /* 739 * This is true if page_size > cluster_size. 740 * 741 * It triggers a set of special cases during write which might 742 * have to deal with allocating writes to partial pages. 743 */ 744 unsigned int w_large_pages; 745 746 /* 747 * Pages involved in this write. 748 * 749 * w_target_page is the page being written to by the user. 750 * 751 * w_pages is an array of pages which always contains 752 * w_target_page, and in the case of an allocating write with 753 * page_size < cluster size, it will contain zero'd and mapped 754 * pages adjacent to w_target_page which need to be written 755 * out in so that future reads from that region will get 756 * zero's. 757 */ 758 unsigned int w_num_pages; 759 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 760 struct page *w_target_page; 761 762 /* 763 * w_target_locked is used for page_mkwrite path indicating no unlocking 764 * against w_target_page in ocfs2_write_end_nolock. 765 */ 766 unsigned int w_target_locked:1; 767 768 /* 769 * ocfs2_write_end() uses this to know what the real range to 770 * write in the target should be. 771 */ 772 unsigned int w_target_from; 773 unsigned int w_target_to; 774 775 /* 776 * We could use journal_current_handle() but this is cleaner, 777 * IMHO -Mark 778 */ 779 handle_t *w_handle; 780 781 struct buffer_head *w_di_bh; 782 783 struct ocfs2_cached_dealloc_ctxt w_dealloc; 784 785 struct list_head w_unwritten_list; 786 unsigned int w_unwritten_count; 787 }; 788 789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 790 { 791 int i; 792 793 for(i = 0; i < num_pages; i++) { 794 if (pages[i]) { 795 unlock_page(pages[i]); 796 mark_page_accessed(pages[i]); 797 put_page(pages[i]); 798 } 799 } 800 } 801 802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 803 { 804 int i; 805 806 /* 807 * w_target_locked is only set to true in the page_mkwrite() case. 808 * The intent is to allow us to lock the target page from write_begin() 809 * to write_end(). The caller must hold a ref on w_target_page. 810 */ 811 if (wc->w_target_locked) { 812 BUG_ON(!wc->w_target_page); 813 for (i = 0; i < wc->w_num_pages; i++) { 814 if (wc->w_target_page == wc->w_pages[i]) { 815 wc->w_pages[i] = NULL; 816 break; 817 } 818 } 819 mark_page_accessed(wc->w_target_page); 820 put_page(wc->w_target_page); 821 } 822 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 823 } 824 825 static void ocfs2_free_unwritten_list(struct inode *inode, 826 struct list_head *head) 827 { 828 struct ocfs2_inode_info *oi = OCFS2_I(inode); 829 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 830 831 list_for_each_entry_safe(ue, tmp, head, ue_node) { 832 list_del(&ue->ue_node); 833 spin_lock(&oi->ip_lock); 834 list_del(&ue->ue_ip_node); 835 spin_unlock(&oi->ip_lock); 836 kfree(ue); 837 } 838 } 839 840 static void ocfs2_free_write_ctxt(struct inode *inode, 841 struct ocfs2_write_ctxt *wc) 842 { 843 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 844 ocfs2_unlock_pages(wc); 845 brelse(wc->w_di_bh); 846 kfree(wc); 847 } 848 849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 850 struct ocfs2_super *osb, loff_t pos, 851 unsigned len, ocfs2_write_type_t type, 852 struct buffer_head *di_bh) 853 { 854 u32 cend; 855 struct ocfs2_write_ctxt *wc; 856 857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 858 if (!wc) 859 return -ENOMEM; 860 861 wc->w_cpos = pos >> osb->s_clustersize_bits; 862 wc->w_first_new_cpos = UINT_MAX; 863 cend = (pos + len - 1) >> osb->s_clustersize_bits; 864 wc->w_clen = cend - wc->w_cpos + 1; 865 get_bh(di_bh); 866 wc->w_di_bh = di_bh; 867 wc->w_type = type; 868 869 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 870 wc->w_large_pages = 1; 871 else 872 wc->w_large_pages = 0; 873 874 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 875 INIT_LIST_HEAD(&wc->w_unwritten_list); 876 877 *wcp = wc; 878 879 return 0; 880 } 881 882 /* 883 * If a page has any new buffers, zero them out here, and mark them uptodate 884 * and dirty so they'll be written out (in order to prevent uninitialised 885 * block data from leaking). And clear the new bit. 886 */ 887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 888 { 889 unsigned int block_start, block_end; 890 struct buffer_head *head, *bh; 891 892 BUG_ON(!PageLocked(page)); 893 if (!page_has_buffers(page)) 894 return; 895 896 bh = head = page_buffers(page); 897 block_start = 0; 898 do { 899 block_end = block_start + bh->b_size; 900 901 if (buffer_new(bh)) { 902 if (block_end > from && block_start < to) { 903 if (!PageUptodate(page)) { 904 unsigned start, end; 905 906 start = max(from, block_start); 907 end = min(to, block_end); 908 909 zero_user_segment(page, start, end); 910 set_buffer_uptodate(bh); 911 } 912 913 clear_buffer_new(bh); 914 mark_buffer_dirty(bh); 915 } 916 } 917 918 block_start = block_end; 919 bh = bh->b_this_page; 920 } while (bh != head); 921 } 922 923 /* 924 * Only called when we have a failure during allocating write to write 925 * zero's to the newly allocated region. 926 */ 927 static void ocfs2_write_failure(struct inode *inode, 928 struct ocfs2_write_ctxt *wc, 929 loff_t user_pos, unsigned user_len) 930 { 931 int i; 932 unsigned from = user_pos & (PAGE_SIZE - 1), 933 to = user_pos + user_len; 934 struct page *tmppage; 935 936 if (wc->w_target_page) 937 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 938 939 for(i = 0; i < wc->w_num_pages; i++) { 940 tmppage = wc->w_pages[i]; 941 942 if (tmppage && page_has_buffers(tmppage)) { 943 if (ocfs2_should_order_data(inode)) 944 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 945 user_pos, user_len); 946 947 block_commit_write(tmppage, from, to); 948 } 949 } 950 } 951 952 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 953 struct ocfs2_write_ctxt *wc, 954 struct page *page, u32 cpos, 955 loff_t user_pos, unsigned user_len, 956 int new) 957 { 958 int ret; 959 unsigned int map_from = 0, map_to = 0; 960 unsigned int cluster_start, cluster_end; 961 unsigned int user_data_from = 0, user_data_to = 0; 962 963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 964 &cluster_start, &cluster_end); 965 966 /* treat the write as new if the a hole/lseek spanned across 967 * the page boundary. 968 */ 969 new = new | ((i_size_read(inode) <= page_offset(page)) && 970 (page_offset(page) <= user_pos)); 971 972 if (page == wc->w_target_page) { 973 map_from = user_pos & (PAGE_SIZE - 1); 974 map_to = map_from + user_len; 975 976 if (new) 977 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 978 cluster_start, cluster_end, 979 new); 980 else 981 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 982 map_from, map_to, new); 983 if (ret) { 984 mlog_errno(ret); 985 goto out; 986 } 987 988 user_data_from = map_from; 989 user_data_to = map_to; 990 if (new) { 991 map_from = cluster_start; 992 map_to = cluster_end; 993 } 994 } else { 995 /* 996 * If we haven't allocated the new page yet, we 997 * shouldn't be writing it out without copying user 998 * data. This is likely a math error from the caller. 999 */ 1000 BUG_ON(!new); 1001 1002 map_from = cluster_start; 1003 map_to = cluster_end; 1004 1005 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1006 cluster_start, cluster_end, new); 1007 if (ret) { 1008 mlog_errno(ret); 1009 goto out; 1010 } 1011 } 1012 1013 /* 1014 * Parts of newly allocated pages need to be zero'd. 1015 * 1016 * Above, we have also rewritten 'to' and 'from' - as far as 1017 * the rest of the function is concerned, the entire cluster 1018 * range inside of a page needs to be written. 1019 * 1020 * We can skip this if the page is up to date - it's already 1021 * been zero'd from being read in as a hole. 1022 */ 1023 if (new && !PageUptodate(page)) 1024 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1025 cpos, user_data_from, user_data_to); 1026 1027 flush_dcache_page(page); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /* 1034 * This function will only grab one clusters worth of pages. 1035 */ 1036 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1037 struct ocfs2_write_ctxt *wc, 1038 u32 cpos, loff_t user_pos, 1039 unsigned user_len, int new, 1040 struct page *mmap_page) 1041 { 1042 int ret = 0, i; 1043 unsigned long start, target_index, end_index, index; 1044 struct inode *inode = mapping->host; 1045 loff_t last_byte; 1046 1047 target_index = user_pos >> PAGE_SHIFT; 1048 1049 /* 1050 * Figure out how many pages we'll be manipulating here. For 1051 * non allocating write, we just change the one 1052 * page. Otherwise, we'll need a whole clusters worth. If we're 1053 * writing past i_size, we only need enough pages to cover the 1054 * last page of the write. 1055 */ 1056 if (new) { 1057 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1058 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1059 /* 1060 * We need the index *past* the last page we could possibly 1061 * touch. This is the page past the end of the write or 1062 * i_size, whichever is greater. 1063 */ 1064 last_byte = max(user_pos + user_len, i_size_read(inode)); 1065 BUG_ON(last_byte < 1); 1066 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1067 if ((start + wc->w_num_pages) > end_index) 1068 wc->w_num_pages = end_index - start; 1069 } else { 1070 wc->w_num_pages = 1; 1071 start = target_index; 1072 } 1073 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1074 1075 for(i = 0; i < wc->w_num_pages; i++) { 1076 index = start + i; 1077 1078 if (index >= target_index && index <= end_index && 1079 wc->w_type == OCFS2_WRITE_MMAP) { 1080 /* 1081 * ocfs2_pagemkwrite() is a little different 1082 * and wants us to directly use the page 1083 * passed in. 1084 */ 1085 lock_page(mmap_page); 1086 1087 /* Exit and let the caller retry */ 1088 if (mmap_page->mapping != mapping) { 1089 WARN_ON(mmap_page->mapping); 1090 unlock_page(mmap_page); 1091 ret = -EAGAIN; 1092 goto out; 1093 } 1094 1095 get_page(mmap_page); 1096 wc->w_pages[i] = mmap_page; 1097 wc->w_target_locked = true; 1098 } else if (index >= target_index && index <= end_index && 1099 wc->w_type == OCFS2_WRITE_DIRECT) { 1100 /* Direct write has no mapping page. */ 1101 wc->w_pages[i] = NULL; 1102 continue; 1103 } else { 1104 wc->w_pages[i] = find_or_create_page(mapping, index, 1105 GFP_NOFS); 1106 if (!wc->w_pages[i]) { 1107 ret = -ENOMEM; 1108 mlog_errno(ret); 1109 goto out; 1110 } 1111 } 1112 wait_for_stable_page(wc->w_pages[i]); 1113 1114 if (index == target_index) 1115 wc->w_target_page = wc->w_pages[i]; 1116 } 1117 out: 1118 if (ret) 1119 wc->w_target_locked = false; 1120 return ret; 1121 } 1122 1123 /* 1124 * Prepare a single cluster for write one cluster into the file. 1125 */ 1126 static int ocfs2_write_cluster(struct address_space *mapping, 1127 u32 *phys, unsigned int new, 1128 unsigned int clear_unwritten, 1129 unsigned int should_zero, 1130 struct ocfs2_alloc_context *data_ac, 1131 struct ocfs2_alloc_context *meta_ac, 1132 struct ocfs2_write_ctxt *wc, u32 cpos, 1133 loff_t user_pos, unsigned user_len) 1134 { 1135 int ret, i; 1136 u64 p_blkno; 1137 struct inode *inode = mapping->host; 1138 struct ocfs2_extent_tree et; 1139 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1140 1141 if (new) { 1142 u32 tmp_pos; 1143 1144 /* 1145 * This is safe to call with the page locks - it won't take 1146 * any additional semaphores or cluster locks. 1147 */ 1148 tmp_pos = cpos; 1149 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1150 &tmp_pos, 1, !clear_unwritten, 1151 wc->w_di_bh, wc->w_handle, 1152 data_ac, meta_ac, NULL); 1153 /* 1154 * This shouldn't happen because we must have already 1155 * calculated the correct meta data allocation required. The 1156 * internal tree allocation code should know how to increase 1157 * transaction credits itself. 1158 * 1159 * If need be, we could handle -EAGAIN for a 1160 * RESTART_TRANS here. 1161 */ 1162 mlog_bug_on_msg(ret == -EAGAIN, 1163 "Inode %llu: EAGAIN return during allocation.\n", 1164 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1165 if (ret < 0) { 1166 mlog_errno(ret); 1167 goto out; 1168 } 1169 } else if (clear_unwritten) { 1170 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1171 wc->w_di_bh); 1172 ret = ocfs2_mark_extent_written(inode, &et, 1173 wc->w_handle, cpos, 1, *phys, 1174 meta_ac, &wc->w_dealloc); 1175 if (ret < 0) { 1176 mlog_errno(ret); 1177 goto out; 1178 } 1179 } 1180 1181 /* 1182 * The only reason this should fail is due to an inability to 1183 * find the extent added. 1184 */ 1185 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1186 if (ret < 0) { 1187 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1188 "at logical cluster %u", 1189 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1190 goto out; 1191 } 1192 1193 BUG_ON(*phys == 0); 1194 1195 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1196 if (!should_zero) 1197 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1198 1199 for(i = 0; i < wc->w_num_pages; i++) { 1200 int tmpret; 1201 1202 /* This is the direct io target page. */ 1203 if (wc->w_pages[i] == NULL) { 1204 p_blkno++; 1205 continue; 1206 } 1207 1208 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1209 wc->w_pages[i], cpos, 1210 user_pos, user_len, 1211 should_zero); 1212 if (tmpret) { 1213 mlog_errno(tmpret); 1214 if (ret == 0) 1215 ret = tmpret; 1216 } 1217 } 1218 1219 /* 1220 * We only have cleanup to do in case of allocating write. 1221 */ 1222 if (ret && new) 1223 ocfs2_write_failure(inode, wc, user_pos, user_len); 1224 1225 out: 1226 1227 return ret; 1228 } 1229 1230 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1231 struct ocfs2_alloc_context *data_ac, 1232 struct ocfs2_alloc_context *meta_ac, 1233 struct ocfs2_write_ctxt *wc, 1234 loff_t pos, unsigned len) 1235 { 1236 int ret, i; 1237 loff_t cluster_off; 1238 unsigned int local_len = len; 1239 struct ocfs2_write_cluster_desc *desc; 1240 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1241 1242 for (i = 0; i < wc->w_clen; i++) { 1243 desc = &wc->w_desc[i]; 1244 1245 /* 1246 * We have to make sure that the total write passed in 1247 * doesn't extend past a single cluster. 1248 */ 1249 local_len = len; 1250 cluster_off = pos & (osb->s_clustersize - 1); 1251 if ((cluster_off + local_len) > osb->s_clustersize) 1252 local_len = osb->s_clustersize - cluster_off; 1253 1254 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1255 desc->c_new, 1256 desc->c_clear_unwritten, 1257 desc->c_needs_zero, 1258 data_ac, meta_ac, 1259 wc, desc->c_cpos, pos, local_len); 1260 if (ret) { 1261 mlog_errno(ret); 1262 goto out; 1263 } 1264 1265 len -= local_len; 1266 pos += local_len; 1267 } 1268 1269 ret = 0; 1270 out: 1271 return ret; 1272 } 1273 1274 /* 1275 * ocfs2_write_end() wants to know which parts of the target page it 1276 * should complete the write on. It's easiest to compute them ahead of 1277 * time when a more complete view of the write is available. 1278 */ 1279 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1280 struct ocfs2_write_ctxt *wc, 1281 loff_t pos, unsigned len, int alloc) 1282 { 1283 struct ocfs2_write_cluster_desc *desc; 1284 1285 wc->w_target_from = pos & (PAGE_SIZE - 1); 1286 wc->w_target_to = wc->w_target_from + len; 1287 1288 if (alloc == 0) 1289 return; 1290 1291 /* 1292 * Allocating write - we may have different boundaries based 1293 * on page size and cluster size. 1294 * 1295 * NOTE: We can no longer compute one value from the other as 1296 * the actual write length and user provided length may be 1297 * different. 1298 */ 1299 1300 if (wc->w_large_pages) { 1301 /* 1302 * We only care about the 1st and last cluster within 1303 * our range and whether they should be zero'd or not. Either 1304 * value may be extended out to the start/end of a 1305 * newly allocated cluster. 1306 */ 1307 desc = &wc->w_desc[0]; 1308 if (desc->c_needs_zero) 1309 ocfs2_figure_cluster_boundaries(osb, 1310 desc->c_cpos, 1311 &wc->w_target_from, 1312 NULL); 1313 1314 desc = &wc->w_desc[wc->w_clen - 1]; 1315 if (desc->c_needs_zero) 1316 ocfs2_figure_cluster_boundaries(osb, 1317 desc->c_cpos, 1318 NULL, 1319 &wc->w_target_to); 1320 } else { 1321 wc->w_target_from = 0; 1322 wc->w_target_to = PAGE_SIZE; 1323 } 1324 } 1325 1326 /* 1327 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1328 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1329 * by the direct io procedure. 1330 * If this is a new extent that allocated by direct io, we should mark it in 1331 * the ip_unwritten_list. 1332 */ 1333 static int ocfs2_unwritten_check(struct inode *inode, 1334 struct ocfs2_write_ctxt *wc, 1335 struct ocfs2_write_cluster_desc *desc) 1336 { 1337 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1338 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1339 int ret = 0; 1340 1341 if (!desc->c_needs_zero) 1342 return 0; 1343 1344 retry: 1345 spin_lock(&oi->ip_lock); 1346 /* Needs not to zero no metter buffer or direct. The one who is zero 1347 * the cluster is doing zero. And he will clear unwritten after all 1348 * cluster io finished. */ 1349 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1350 if (desc->c_cpos == ue->ue_cpos) { 1351 BUG_ON(desc->c_new); 1352 desc->c_needs_zero = 0; 1353 desc->c_clear_unwritten = 0; 1354 goto unlock; 1355 } 1356 } 1357 1358 if (wc->w_type != OCFS2_WRITE_DIRECT) 1359 goto unlock; 1360 1361 if (new == NULL) { 1362 spin_unlock(&oi->ip_lock); 1363 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1364 GFP_NOFS); 1365 if (new == NULL) { 1366 ret = -ENOMEM; 1367 goto out; 1368 } 1369 goto retry; 1370 } 1371 /* This direct write will doing zero. */ 1372 new->ue_cpos = desc->c_cpos; 1373 new->ue_phys = desc->c_phys; 1374 desc->c_clear_unwritten = 0; 1375 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1376 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1377 wc->w_unwritten_count++; 1378 new = NULL; 1379 unlock: 1380 spin_unlock(&oi->ip_lock); 1381 out: 1382 kfree(new); 1383 return ret; 1384 } 1385 1386 /* 1387 * Populate each single-cluster write descriptor in the write context 1388 * with information about the i/o to be done. 1389 * 1390 * Returns the number of clusters that will have to be allocated, as 1391 * well as a worst case estimate of the number of extent records that 1392 * would have to be created during a write to an unwritten region. 1393 */ 1394 static int ocfs2_populate_write_desc(struct inode *inode, 1395 struct ocfs2_write_ctxt *wc, 1396 unsigned int *clusters_to_alloc, 1397 unsigned int *extents_to_split) 1398 { 1399 int ret; 1400 struct ocfs2_write_cluster_desc *desc; 1401 unsigned int num_clusters = 0; 1402 unsigned int ext_flags = 0; 1403 u32 phys = 0; 1404 int i; 1405 1406 *clusters_to_alloc = 0; 1407 *extents_to_split = 0; 1408 1409 for (i = 0; i < wc->w_clen; i++) { 1410 desc = &wc->w_desc[i]; 1411 desc->c_cpos = wc->w_cpos + i; 1412 1413 if (num_clusters == 0) { 1414 /* 1415 * Need to look up the next extent record. 1416 */ 1417 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1418 &num_clusters, &ext_flags); 1419 if (ret) { 1420 mlog_errno(ret); 1421 goto out; 1422 } 1423 1424 /* We should already CoW the refcountd extent. */ 1425 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1426 1427 /* 1428 * Assume worst case - that we're writing in 1429 * the middle of the extent. 1430 * 1431 * We can assume that the write proceeds from 1432 * left to right, in which case the extent 1433 * insert code is smart enough to coalesce the 1434 * next splits into the previous records created. 1435 */ 1436 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1437 *extents_to_split = *extents_to_split + 2; 1438 } else if (phys) { 1439 /* 1440 * Only increment phys if it doesn't describe 1441 * a hole. 1442 */ 1443 phys++; 1444 } 1445 1446 /* 1447 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1448 * file that got extended. w_first_new_cpos tells us 1449 * where the newly allocated clusters are so we can 1450 * zero them. 1451 */ 1452 if (desc->c_cpos >= wc->w_first_new_cpos) { 1453 BUG_ON(phys == 0); 1454 desc->c_needs_zero = 1; 1455 } 1456 1457 desc->c_phys = phys; 1458 if (phys == 0) { 1459 desc->c_new = 1; 1460 desc->c_needs_zero = 1; 1461 desc->c_clear_unwritten = 1; 1462 *clusters_to_alloc = *clusters_to_alloc + 1; 1463 } 1464 1465 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1466 desc->c_clear_unwritten = 1; 1467 desc->c_needs_zero = 1; 1468 } 1469 1470 ret = ocfs2_unwritten_check(inode, wc, desc); 1471 if (ret) { 1472 mlog_errno(ret); 1473 goto out; 1474 } 1475 1476 num_clusters--; 1477 } 1478 1479 ret = 0; 1480 out: 1481 return ret; 1482 } 1483 1484 static int ocfs2_write_begin_inline(struct address_space *mapping, 1485 struct inode *inode, 1486 struct ocfs2_write_ctxt *wc) 1487 { 1488 int ret; 1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1490 struct page *page; 1491 handle_t *handle; 1492 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1493 1494 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1495 if (IS_ERR(handle)) { 1496 ret = PTR_ERR(handle); 1497 mlog_errno(ret); 1498 goto out; 1499 } 1500 1501 page = find_or_create_page(mapping, 0, GFP_NOFS); 1502 if (!page) { 1503 ocfs2_commit_trans(osb, handle); 1504 ret = -ENOMEM; 1505 mlog_errno(ret); 1506 goto out; 1507 } 1508 /* 1509 * If we don't set w_num_pages then this page won't get unlocked 1510 * and freed on cleanup of the write context. 1511 */ 1512 wc->w_pages[0] = wc->w_target_page = page; 1513 wc->w_num_pages = 1; 1514 1515 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1516 OCFS2_JOURNAL_ACCESS_WRITE); 1517 if (ret) { 1518 ocfs2_commit_trans(osb, handle); 1519 1520 mlog_errno(ret); 1521 goto out; 1522 } 1523 1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1525 ocfs2_set_inode_data_inline(inode, di); 1526 1527 if (!PageUptodate(page)) { 1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1529 if (ret) { 1530 ocfs2_commit_trans(osb, handle); 1531 1532 goto out; 1533 } 1534 } 1535 1536 wc->w_handle = handle; 1537 out: 1538 return ret; 1539 } 1540 1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1542 { 1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1544 1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1546 return 1; 1547 return 0; 1548 } 1549 1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1551 struct inode *inode, loff_t pos, 1552 unsigned len, struct page *mmap_page, 1553 struct ocfs2_write_ctxt *wc) 1554 { 1555 int ret, written = 0; 1556 loff_t end = pos + len; 1557 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1558 struct ocfs2_dinode *di = NULL; 1559 1560 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1561 len, (unsigned long long)pos, 1562 oi->ip_dyn_features); 1563 1564 /* 1565 * Handle inodes which already have inline data 1st. 1566 */ 1567 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1568 if (mmap_page == NULL && 1569 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1570 goto do_inline_write; 1571 1572 /* 1573 * The write won't fit - we have to give this inode an 1574 * inline extent list now. 1575 */ 1576 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1577 if (ret) 1578 mlog_errno(ret); 1579 goto out; 1580 } 1581 1582 /* 1583 * Check whether the inode can accept inline data. 1584 */ 1585 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1586 return 0; 1587 1588 /* 1589 * Check whether the write can fit. 1590 */ 1591 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1592 if (mmap_page || 1593 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1594 return 0; 1595 1596 do_inline_write: 1597 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1598 if (ret) { 1599 mlog_errno(ret); 1600 goto out; 1601 } 1602 1603 /* 1604 * This signals to the caller that the data can be written 1605 * inline. 1606 */ 1607 written = 1; 1608 out: 1609 return written ? written : ret; 1610 } 1611 1612 /* 1613 * This function only does anything for file systems which can't 1614 * handle sparse files. 1615 * 1616 * What we want to do here is fill in any hole between the current end 1617 * of allocation and the end of our write. That way the rest of the 1618 * write path can treat it as an non-allocating write, which has no 1619 * special case code for sparse/nonsparse files. 1620 */ 1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1622 struct buffer_head *di_bh, 1623 loff_t pos, unsigned len, 1624 struct ocfs2_write_ctxt *wc) 1625 { 1626 int ret; 1627 loff_t newsize = pos + len; 1628 1629 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1630 1631 if (newsize <= i_size_read(inode)) 1632 return 0; 1633 1634 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1635 if (ret) 1636 mlog_errno(ret); 1637 1638 /* There is no wc if this is call from direct. */ 1639 if (wc) 1640 wc->w_first_new_cpos = 1641 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1642 1643 return ret; 1644 } 1645 1646 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1647 loff_t pos) 1648 { 1649 int ret = 0; 1650 1651 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1652 if (pos > i_size_read(inode)) 1653 ret = ocfs2_zero_extend(inode, di_bh, pos); 1654 1655 return ret; 1656 } 1657 1658 int ocfs2_write_begin_nolock(struct address_space *mapping, 1659 loff_t pos, unsigned len, ocfs2_write_type_t type, 1660 struct page **pagep, void **fsdata, 1661 struct buffer_head *di_bh, struct page *mmap_page) 1662 { 1663 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1664 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1665 struct ocfs2_write_ctxt *wc; 1666 struct inode *inode = mapping->host; 1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1668 struct ocfs2_dinode *di; 1669 struct ocfs2_alloc_context *data_ac = NULL; 1670 struct ocfs2_alloc_context *meta_ac = NULL; 1671 handle_t *handle; 1672 struct ocfs2_extent_tree et; 1673 int try_free = 1, ret1; 1674 1675 try_again: 1676 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1677 if (ret) { 1678 mlog_errno(ret); 1679 return ret; 1680 } 1681 1682 if (ocfs2_supports_inline_data(osb)) { 1683 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1684 mmap_page, wc); 1685 if (ret == 1) { 1686 ret = 0; 1687 goto success; 1688 } 1689 if (ret < 0) { 1690 mlog_errno(ret); 1691 goto out; 1692 } 1693 } 1694 1695 /* Direct io change i_size late, should not zero tail here. */ 1696 if (type != OCFS2_WRITE_DIRECT) { 1697 if (ocfs2_sparse_alloc(osb)) 1698 ret = ocfs2_zero_tail(inode, di_bh, pos); 1699 else 1700 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1701 len, wc); 1702 if (ret) { 1703 mlog_errno(ret); 1704 goto out; 1705 } 1706 } 1707 1708 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1709 if (ret < 0) { 1710 mlog_errno(ret); 1711 goto out; 1712 } else if (ret == 1) { 1713 clusters_need = wc->w_clen; 1714 ret = ocfs2_refcount_cow(inode, di_bh, 1715 wc->w_cpos, wc->w_clen, UINT_MAX); 1716 if (ret) { 1717 mlog_errno(ret); 1718 goto out; 1719 } 1720 } 1721 1722 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1723 &extents_to_split); 1724 if (ret) { 1725 mlog_errno(ret); 1726 goto out; 1727 } 1728 clusters_need += clusters_to_alloc; 1729 1730 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1731 1732 trace_ocfs2_write_begin_nolock( 1733 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1734 (long long)i_size_read(inode), 1735 le32_to_cpu(di->i_clusters), 1736 pos, len, type, mmap_page, 1737 clusters_to_alloc, extents_to_split); 1738 1739 /* 1740 * We set w_target_from, w_target_to here so that 1741 * ocfs2_write_end() knows which range in the target page to 1742 * write out. An allocation requires that we write the entire 1743 * cluster range. 1744 */ 1745 if (clusters_to_alloc || extents_to_split) { 1746 /* 1747 * XXX: We are stretching the limits of 1748 * ocfs2_lock_allocators(). It greatly over-estimates 1749 * the work to be done. 1750 */ 1751 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1752 wc->w_di_bh); 1753 ret = ocfs2_lock_allocators(inode, &et, 1754 clusters_to_alloc, extents_to_split, 1755 &data_ac, &meta_ac); 1756 if (ret) { 1757 mlog_errno(ret); 1758 goto out; 1759 } 1760 1761 if (data_ac) 1762 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1763 1764 credits = ocfs2_calc_extend_credits(inode->i_sb, 1765 &di->id2.i_list); 1766 } else if (type == OCFS2_WRITE_DIRECT) 1767 /* direct write needs not to start trans if no extents alloc. */ 1768 goto success; 1769 1770 /* 1771 * We have to zero sparse allocated clusters, unwritten extent clusters, 1772 * and non-sparse clusters we just extended. For non-sparse writes, 1773 * we know zeros will only be needed in the first and/or last cluster. 1774 */ 1775 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1776 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1777 cluster_of_pages = 1; 1778 else 1779 cluster_of_pages = 0; 1780 1781 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1782 1783 handle = ocfs2_start_trans(osb, credits); 1784 if (IS_ERR(handle)) { 1785 ret = PTR_ERR(handle); 1786 mlog_errno(ret); 1787 goto out; 1788 } 1789 1790 wc->w_handle = handle; 1791 1792 if (clusters_to_alloc) { 1793 ret = dquot_alloc_space_nodirty(inode, 1794 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1795 if (ret) 1796 goto out_commit; 1797 } 1798 1799 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1800 OCFS2_JOURNAL_ACCESS_WRITE); 1801 if (ret) { 1802 mlog_errno(ret); 1803 goto out_quota; 1804 } 1805 1806 /* 1807 * Fill our page array first. That way we've grabbed enough so 1808 * that we can zero and flush if we error after adding the 1809 * extent. 1810 */ 1811 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1812 cluster_of_pages, mmap_page); 1813 if (ret && ret != -EAGAIN) { 1814 mlog_errno(ret); 1815 goto out_quota; 1816 } 1817 1818 /* 1819 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1820 * the target page. In this case, we exit with no error and no target 1821 * page. This will trigger the caller, page_mkwrite(), to re-try 1822 * the operation. 1823 */ 1824 if (ret == -EAGAIN) { 1825 BUG_ON(wc->w_target_page); 1826 ret = 0; 1827 goto out_quota; 1828 } 1829 1830 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1831 len); 1832 if (ret) { 1833 mlog_errno(ret); 1834 goto out_quota; 1835 } 1836 1837 if (data_ac) 1838 ocfs2_free_alloc_context(data_ac); 1839 if (meta_ac) 1840 ocfs2_free_alloc_context(meta_ac); 1841 1842 success: 1843 if (pagep) 1844 *pagep = wc->w_target_page; 1845 *fsdata = wc; 1846 return 0; 1847 out_quota: 1848 if (clusters_to_alloc) 1849 dquot_free_space(inode, 1850 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1851 out_commit: 1852 ocfs2_commit_trans(osb, handle); 1853 1854 out: 1855 /* 1856 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1857 * even in case of error here like ENOSPC and ENOMEM. So, we need 1858 * to unlock the target page manually to prevent deadlocks when 1859 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1860 * to VM code. 1861 */ 1862 if (wc->w_target_locked) 1863 unlock_page(mmap_page); 1864 1865 ocfs2_free_write_ctxt(inode, wc); 1866 1867 if (data_ac) { 1868 ocfs2_free_alloc_context(data_ac); 1869 data_ac = NULL; 1870 } 1871 if (meta_ac) { 1872 ocfs2_free_alloc_context(meta_ac); 1873 meta_ac = NULL; 1874 } 1875 1876 if (ret == -ENOSPC && try_free) { 1877 /* 1878 * Try to free some truncate log so that we can have enough 1879 * clusters to allocate. 1880 */ 1881 try_free = 0; 1882 1883 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1884 if (ret1 == 1) 1885 goto try_again; 1886 1887 if (ret1 < 0) 1888 mlog_errno(ret1); 1889 } 1890 1891 return ret; 1892 } 1893 1894 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1895 loff_t pos, unsigned len, unsigned flags, 1896 struct page **pagep, void **fsdata) 1897 { 1898 int ret; 1899 struct buffer_head *di_bh = NULL; 1900 struct inode *inode = mapping->host; 1901 1902 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1903 if (ret) { 1904 mlog_errno(ret); 1905 return ret; 1906 } 1907 1908 /* 1909 * Take alloc sem here to prevent concurrent lookups. That way 1910 * the mapping, zeroing and tree manipulation within 1911 * ocfs2_write() will be safe against ->readpage(). This 1912 * should also serve to lock out allocation from a shared 1913 * writeable region. 1914 */ 1915 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1916 1917 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1918 pagep, fsdata, di_bh, NULL); 1919 if (ret) { 1920 mlog_errno(ret); 1921 goto out_fail; 1922 } 1923 1924 brelse(di_bh); 1925 1926 return 0; 1927 1928 out_fail: 1929 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1930 1931 brelse(di_bh); 1932 ocfs2_inode_unlock(inode, 1); 1933 1934 return ret; 1935 } 1936 1937 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1938 unsigned len, unsigned *copied, 1939 struct ocfs2_dinode *di, 1940 struct ocfs2_write_ctxt *wc) 1941 { 1942 void *kaddr; 1943 1944 if (unlikely(*copied < len)) { 1945 if (!PageUptodate(wc->w_target_page)) { 1946 *copied = 0; 1947 return; 1948 } 1949 } 1950 1951 kaddr = kmap_atomic(wc->w_target_page); 1952 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1953 kunmap_atomic(kaddr); 1954 1955 trace_ocfs2_write_end_inline( 1956 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1957 (unsigned long long)pos, *copied, 1958 le16_to_cpu(di->id2.i_data.id_count), 1959 le16_to_cpu(di->i_dyn_features)); 1960 } 1961 1962 int ocfs2_write_end_nolock(struct address_space *mapping, 1963 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1964 { 1965 int i, ret; 1966 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1967 struct inode *inode = mapping->host; 1968 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1969 struct ocfs2_write_ctxt *wc = fsdata; 1970 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1971 handle_t *handle = wc->w_handle; 1972 struct page *tmppage; 1973 1974 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1975 1976 if (handle) { 1977 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1978 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1979 if (ret) { 1980 copied = ret; 1981 mlog_errno(ret); 1982 goto out; 1983 } 1984 } 1985 1986 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1987 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1988 goto out_write_size; 1989 } 1990 1991 if (unlikely(copied < len) && wc->w_target_page) { 1992 if (!PageUptodate(wc->w_target_page)) 1993 copied = 0; 1994 1995 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1996 start+len); 1997 } 1998 if (wc->w_target_page) 1999 flush_dcache_page(wc->w_target_page); 2000 2001 for(i = 0; i < wc->w_num_pages; i++) { 2002 tmppage = wc->w_pages[i]; 2003 2004 /* This is the direct io target page. */ 2005 if (tmppage == NULL) 2006 continue; 2007 2008 if (tmppage == wc->w_target_page) { 2009 from = wc->w_target_from; 2010 to = wc->w_target_to; 2011 2012 BUG_ON(from > PAGE_SIZE || 2013 to > PAGE_SIZE || 2014 to < from); 2015 } else { 2016 /* 2017 * Pages adjacent to the target (if any) imply 2018 * a hole-filling write in which case we want 2019 * to flush their entire range. 2020 */ 2021 from = 0; 2022 to = PAGE_SIZE; 2023 } 2024 2025 if (page_has_buffers(tmppage)) { 2026 if (handle && ocfs2_should_order_data(inode)) { 2027 loff_t start_byte = 2028 ((loff_t)tmppage->index << PAGE_SHIFT) + 2029 from; 2030 loff_t length = to - from; 2031 ocfs2_jbd2_inode_add_write(handle, inode, 2032 start_byte, length); 2033 } 2034 block_commit_write(tmppage, from, to); 2035 } 2036 } 2037 2038 out_write_size: 2039 /* Direct io do not update i_size here. */ 2040 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2041 pos += copied; 2042 if (pos > i_size_read(inode)) { 2043 i_size_write(inode, pos); 2044 mark_inode_dirty(inode); 2045 } 2046 inode->i_blocks = ocfs2_inode_sector_count(inode); 2047 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2048 inode->i_mtime = inode->i_ctime = current_time(inode); 2049 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2050 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2051 if (handle) 2052 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2053 } 2054 if (handle) 2055 ocfs2_journal_dirty(handle, wc->w_di_bh); 2056 2057 out: 2058 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2059 * lock, or it will cause a deadlock since journal commit threads holds 2060 * this lock and will ask for the page lock when flushing the data. 2061 * put it here to preserve the unlock order. 2062 */ 2063 ocfs2_unlock_pages(wc); 2064 2065 if (handle) 2066 ocfs2_commit_trans(osb, handle); 2067 2068 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2069 2070 brelse(wc->w_di_bh); 2071 kfree(wc); 2072 2073 return copied; 2074 } 2075 2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2077 loff_t pos, unsigned len, unsigned copied, 2078 struct page *page, void *fsdata) 2079 { 2080 int ret; 2081 struct inode *inode = mapping->host; 2082 2083 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2084 2085 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2086 ocfs2_inode_unlock(inode, 1); 2087 2088 return ret; 2089 } 2090 2091 struct ocfs2_dio_write_ctxt { 2092 struct list_head dw_zero_list; 2093 unsigned dw_zero_count; 2094 int dw_orphaned; 2095 pid_t dw_writer_pid; 2096 }; 2097 2098 static struct ocfs2_dio_write_ctxt * 2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2100 { 2101 struct ocfs2_dio_write_ctxt *dwc = NULL; 2102 2103 if (bh->b_private) 2104 return bh->b_private; 2105 2106 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2107 if (dwc == NULL) 2108 return NULL; 2109 INIT_LIST_HEAD(&dwc->dw_zero_list); 2110 dwc->dw_zero_count = 0; 2111 dwc->dw_orphaned = 0; 2112 dwc->dw_writer_pid = task_pid_nr(current); 2113 bh->b_private = dwc; 2114 *alloc = 1; 2115 2116 return dwc; 2117 } 2118 2119 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2120 struct ocfs2_dio_write_ctxt *dwc) 2121 { 2122 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2123 kfree(dwc); 2124 } 2125 2126 /* 2127 * TODO: Make this into a generic get_blocks function. 2128 * 2129 * From do_direct_io in direct-io.c: 2130 * "So what we do is to permit the ->get_blocks function to populate 2131 * bh.b_size with the size of IO which is permitted at this offset and 2132 * this i_blkbits." 2133 * 2134 * This function is called directly from get_more_blocks in direct-io.c. 2135 * 2136 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2137 * fs_count, map_bh, dio->rw == WRITE); 2138 */ 2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2140 struct buffer_head *bh_result, int create) 2141 { 2142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2143 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2144 struct ocfs2_write_ctxt *wc; 2145 struct ocfs2_write_cluster_desc *desc = NULL; 2146 struct ocfs2_dio_write_ctxt *dwc = NULL; 2147 struct buffer_head *di_bh = NULL; 2148 u64 p_blkno; 2149 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2150 loff_t pos = iblock << i_blkbits; 2151 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2152 unsigned len, total_len = bh_result->b_size; 2153 int ret = 0, first_get_block = 0; 2154 2155 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2156 len = min(total_len, len); 2157 2158 /* 2159 * bh_result->b_size is count in get_more_blocks according to write 2160 * "pos" and "end", we need map twice to return different buffer state: 2161 * 1. area in file size, not set NEW; 2162 * 2. area out file size, set NEW. 2163 * 2164 * iblock endblk 2165 * |--------|---------|---------|--------- 2166 * |<-------area in file------->| 2167 */ 2168 2169 if ((iblock <= endblk) && 2170 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2171 len = (endblk - iblock + 1) << i_blkbits; 2172 2173 mlog(0, "get block of %lu at %llu:%u req %u\n", 2174 inode->i_ino, pos, len, total_len); 2175 2176 /* 2177 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2178 * we may need to add it to orphan dir. So can not fall to fast path 2179 * while file size will be changed. 2180 */ 2181 if (pos + total_len <= i_size_read(inode)) { 2182 2183 /* This is the fast path for re-write. */ 2184 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2185 if (buffer_mapped(bh_result) && 2186 !buffer_new(bh_result) && 2187 ret == 0) 2188 goto out; 2189 2190 /* Clear state set by ocfs2_get_block. */ 2191 bh_result->b_state = 0; 2192 } 2193 2194 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2195 if (unlikely(dwc == NULL)) { 2196 ret = -ENOMEM; 2197 mlog_errno(ret); 2198 goto out; 2199 } 2200 2201 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2202 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2203 !dwc->dw_orphaned) { 2204 /* 2205 * when we are going to alloc extents beyond file size, add the 2206 * inode to orphan dir, so we can recall those spaces when 2207 * system crashed during write. 2208 */ 2209 ret = ocfs2_add_inode_to_orphan(osb, inode); 2210 if (ret < 0) { 2211 mlog_errno(ret); 2212 goto out; 2213 } 2214 dwc->dw_orphaned = 1; 2215 } 2216 2217 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2218 if (ret) { 2219 mlog_errno(ret); 2220 goto out; 2221 } 2222 2223 down_write(&oi->ip_alloc_sem); 2224 2225 if (first_get_block) { 2226 if (ocfs2_sparse_alloc(osb)) 2227 ret = ocfs2_zero_tail(inode, di_bh, pos); 2228 else 2229 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2230 total_len, NULL); 2231 if (ret < 0) { 2232 mlog_errno(ret); 2233 goto unlock; 2234 } 2235 } 2236 2237 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2238 OCFS2_WRITE_DIRECT, NULL, 2239 (void **)&wc, di_bh, NULL); 2240 if (ret) { 2241 mlog_errno(ret); 2242 goto unlock; 2243 } 2244 2245 desc = &wc->w_desc[0]; 2246 2247 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2248 BUG_ON(p_blkno == 0); 2249 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2250 2251 map_bh(bh_result, inode->i_sb, p_blkno); 2252 bh_result->b_size = len; 2253 if (desc->c_needs_zero) 2254 set_buffer_new(bh_result); 2255 2256 if (iblock > endblk) 2257 set_buffer_new(bh_result); 2258 2259 /* May sleep in end_io. It should not happen in a irq context. So defer 2260 * it to dio work queue. */ 2261 set_buffer_defer_completion(bh_result); 2262 2263 if (!list_empty(&wc->w_unwritten_list)) { 2264 struct ocfs2_unwritten_extent *ue = NULL; 2265 2266 ue = list_first_entry(&wc->w_unwritten_list, 2267 struct ocfs2_unwritten_extent, 2268 ue_node); 2269 BUG_ON(ue->ue_cpos != desc->c_cpos); 2270 /* The physical address may be 0, fill it. */ 2271 ue->ue_phys = desc->c_phys; 2272 2273 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2274 dwc->dw_zero_count += wc->w_unwritten_count; 2275 } 2276 2277 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2278 BUG_ON(ret != len); 2279 ret = 0; 2280 unlock: 2281 up_write(&oi->ip_alloc_sem); 2282 ocfs2_inode_unlock(inode, 1); 2283 brelse(di_bh); 2284 out: 2285 if (ret < 0) 2286 ret = -EIO; 2287 return ret; 2288 } 2289 2290 static int ocfs2_dio_end_io_write(struct inode *inode, 2291 struct ocfs2_dio_write_ctxt *dwc, 2292 loff_t offset, 2293 ssize_t bytes) 2294 { 2295 struct ocfs2_cached_dealloc_ctxt dealloc; 2296 struct ocfs2_extent_tree et; 2297 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2298 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2299 struct ocfs2_unwritten_extent *ue = NULL; 2300 struct buffer_head *di_bh = NULL; 2301 struct ocfs2_dinode *di; 2302 struct ocfs2_alloc_context *data_ac = NULL; 2303 struct ocfs2_alloc_context *meta_ac = NULL; 2304 handle_t *handle = NULL; 2305 loff_t end = offset + bytes; 2306 int ret = 0, credits = 0, locked = 0; 2307 2308 ocfs2_init_dealloc_ctxt(&dealloc); 2309 2310 /* We do clear unwritten, delete orphan, change i_size here. If neither 2311 * of these happen, we can skip all this. */ 2312 if (list_empty(&dwc->dw_zero_list) && 2313 end <= i_size_read(inode) && 2314 !dwc->dw_orphaned) 2315 goto out; 2316 2317 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we 2318 * are in that context. */ 2319 if (dwc->dw_writer_pid != task_pid_nr(current)) { 2320 inode_lock(inode); 2321 locked = 1; 2322 } 2323 2324 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2325 if (ret < 0) { 2326 mlog_errno(ret); 2327 goto out; 2328 } 2329 2330 down_write(&oi->ip_alloc_sem); 2331 2332 /* Delete orphan before acquire i_mutex. */ 2333 if (dwc->dw_orphaned) { 2334 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2335 2336 end = end > i_size_read(inode) ? end : 0; 2337 2338 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2339 !!end, end); 2340 if (ret < 0) 2341 mlog_errno(ret); 2342 } 2343 2344 di = (struct ocfs2_dinode *)di_bh->b_data; 2345 2346 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2347 2348 /* Attach dealloc with extent tree in case that we may reuse extents 2349 * which are already unlinked from current extent tree due to extent 2350 * rotation and merging. 2351 */ 2352 et.et_dealloc = &dealloc; 2353 2354 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2355 &data_ac, &meta_ac); 2356 if (ret) { 2357 mlog_errno(ret); 2358 goto unlock; 2359 } 2360 2361 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2362 2363 handle = ocfs2_start_trans(osb, credits); 2364 if (IS_ERR(handle)) { 2365 ret = PTR_ERR(handle); 2366 mlog_errno(ret); 2367 goto unlock; 2368 } 2369 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2370 OCFS2_JOURNAL_ACCESS_WRITE); 2371 if (ret) { 2372 mlog_errno(ret); 2373 goto commit; 2374 } 2375 2376 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2377 ret = ocfs2_mark_extent_written(inode, &et, handle, 2378 ue->ue_cpos, 1, 2379 ue->ue_phys, 2380 meta_ac, &dealloc); 2381 if (ret < 0) { 2382 mlog_errno(ret); 2383 break; 2384 } 2385 } 2386 2387 if (end > i_size_read(inode)) { 2388 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2389 if (ret < 0) 2390 mlog_errno(ret); 2391 } 2392 commit: 2393 ocfs2_commit_trans(osb, handle); 2394 unlock: 2395 up_write(&oi->ip_alloc_sem); 2396 ocfs2_inode_unlock(inode, 1); 2397 brelse(di_bh); 2398 out: 2399 if (data_ac) 2400 ocfs2_free_alloc_context(data_ac); 2401 if (meta_ac) 2402 ocfs2_free_alloc_context(meta_ac); 2403 ocfs2_run_deallocs(osb, &dealloc); 2404 if (locked) 2405 inode_unlock(inode); 2406 ocfs2_dio_free_write_ctx(inode, dwc); 2407 2408 return ret; 2409 } 2410 2411 /* 2412 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2413 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2414 * to protect io on one node from truncation on another. 2415 */ 2416 static int ocfs2_dio_end_io(struct kiocb *iocb, 2417 loff_t offset, 2418 ssize_t bytes, 2419 void *private) 2420 { 2421 struct inode *inode = file_inode(iocb->ki_filp); 2422 int level; 2423 int ret = 0; 2424 2425 /* this io's submitter should not have unlocked this before we could */ 2426 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2427 2428 if (bytes <= 0) 2429 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2430 (long long)bytes); 2431 if (private) { 2432 if (bytes > 0) 2433 ret = ocfs2_dio_end_io_write(inode, private, offset, 2434 bytes); 2435 else 2436 ocfs2_dio_free_write_ctx(inode, private); 2437 } 2438 2439 ocfs2_iocb_clear_rw_locked(iocb); 2440 2441 level = ocfs2_iocb_rw_locked_level(iocb); 2442 ocfs2_rw_unlock(inode, level); 2443 return ret; 2444 } 2445 2446 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2447 { 2448 struct file *file = iocb->ki_filp; 2449 struct inode *inode = file->f_mapping->host; 2450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2451 get_block_t *get_block; 2452 2453 /* 2454 * Fallback to buffered I/O if we see an inode without 2455 * extents. 2456 */ 2457 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2458 return 0; 2459 2460 /* Fallback to buffered I/O if we do not support append dio. */ 2461 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2462 !ocfs2_supports_append_dio(osb)) 2463 return 0; 2464 2465 if (iov_iter_rw(iter) == READ) 2466 get_block = ocfs2_lock_get_block; 2467 else 2468 get_block = ocfs2_dio_wr_get_block; 2469 2470 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2471 iter, get_block, 2472 ocfs2_dio_end_io, NULL, 0); 2473 } 2474 2475 const struct address_space_operations ocfs2_aops = { 2476 .readpage = ocfs2_readpage, 2477 .readpages = ocfs2_readpages, 2478 .writepage = ocfs2_writepage, 2479 .write_begin = ocfs2_write_begin, 2480 .write_end = ocfs2_write_end, 2481 .bmap = ocfs2_bmap, 2482 .direct_IO = ocfs2_direct_IO, 2483 .invalidatepage = block_invalidatepage, 2484 .releasepage = ocfs2_releasepage, 2485 .migratepage = buffer_migrate_page, 2486 .is_partially_uptodate = block_is_partially_uptodate, 2487 .error_remove_page = generic_error_remove_page, 2488 }; 2489