xref: /linux/fs/ocfs2/aops.c (revision 4b024225c4a8245e6ecc66ce1df1eaf2ebeb4acb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/pipe_fs_i.h>
15 #include <linux/mpage.h>
16 #include <linux/quotaops.h>
17 #include <linux/blkdev.h>
18 #include <linux/uio.h>
19 #include <linux/mm.h>
20 
21 #include <cluster/masklog.h>
22 
23 #include "ocfs2.h"
24 
25 #include "alloc.h"
26 #include "aops.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "file.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "suballoc.h"
33 #include "super.h"
34 #include "symlink.h"
35 #include "refcounttree.h"
36 #include "ocfs2_trace.h"
37 
38 #include "buffer_head_io.h"
39 #include "dir.h"
40 #include "namei.h"
41 #include "sysfile.h"
42 
43 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
44 				   struct buffer_head *bh_result, int create)
45 {
46 	int err = -EIO;
47 	int status;
48 	struct ocfs2_dinode *fe = NULL;
49 	struct buffer_head *bh = NULL;
50 	struct buffer_head *buffer_cache_bh = NULL;
51 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
52 	void *kaddr;
53 
54 	trace_ocfs2_symlink_get_block(
55 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
56 			(unsigned long long)iblock, bh_result, create);
57 
58 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
59 
60 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
61 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
62 		     (unsigned long long)iblock);
63 		goto bail;
64 	}
65 
66 	status = ocfs2_read_inode_block(inode, &bh);
67 	if (status < 0) {
68 		mlog_errno(status);
69 		goto bail;
70 	}
71 	fe = (struct ocfs2_dinode *) bh->b_data;
72 
73 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
74 						    le32_to_cpu(fe->i_clusters))) {
75 		err = -ENOMEM;
76 		mlog(ML_ERROR, "block offset is outside the allocated size: "
77 		     "%llu\n", (unsigned long long)iblock);
78 		goto bail;
79 	}
80 
81 	/* We don't use the page cache to create symlink data, so if
82 	 * need be, copy it over from the buffer cache. */
83 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
84 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
85 			    iblock;
86 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
87 		if (!buffer_cache_bh) {
88 			err = -ENOMEM;
89 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
90 			goto bail;
91 		}
92 
93 		/* we haven't locked out transactions, so a commit
94 		 * could've happened. Since we've got a reference on
95 		 * the bh, even if it commits while we're doing the
96 		 * copy, the data is still good. */
97 		if (buffer_jbd(buffer_cache_bh)
98 		    && ocfs2_inode_is_new(inode)) {
99 			kaddr = kmap_atomic(bh_result->b_page);
100 			if (!kaddr) {
101 				mlog(ML_ERROR, "couldn't kmap!\n");
102 				goto bail;
103 			}
104 			memcpy(kaddr + (bh_result->b_size * iblock),
105 			       buffer_cache_bh->b_data,
106 			       bh_result->b_size);
107 			kunmap_atomic(kaddr);
108 			set_buffer_uptodate(bh_result);
109 		}
110 		brelse(buffer_cache_bh);
111 	}
112 
113 	map_bh(bh_result, inode->i_sb,
114 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
115 
116 	err = 0;
117 
118 bail:
119 	brelse(bh);
120 
121 	return err;
122 }
123 
124 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
125 		    struct buffer_head *bh_result, int create)
126 {
127 	int ret = 0;
128 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
129 
130 	down_read(&oi->ip_alloc_sem);
131 	ret = ocfs2_get_block(inode, iblock, bh_result, create);
132 	up_read(&oi->ip_alloc_sem);
133 
134 	return ret;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&oi->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = lru_to_page(pages);
388 	start = (loff_t)last->index << PAGE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/*
468 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 	 * bypasseѕ the file system for actual I/O.  We really can't allow
470 	 * that on refcounted inodes, so we have to skip out here.  And yes,
471 	 * 0 is the magic code for a bmap error..
472 	 */
473 	if (ocfs2_is_refcount_inode(inode))
474 		return 0;
475 
476 	/* We don't need to lock journal system files, since they aren't
477 	 * accessed concurrently from multiple nodes.
478 	 */
479 	if (!INODE_JOURNAL(inode)) {
480 		err = ocfs2_inode_lock(inode, NULL, 0);
481 		if (err) {
482 			if (err != -ENOENT)
483 				mlog_errno(err);
484 			goto bail;
485 		}
486 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
487 	}
488 
489 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
490 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
491 						  NULL);
492 
493 	if (!INODE_JOURNAL(inode)) {
494 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
495 		ocfs2_inode_unlock(inode, 0);
496 	}
497 
498 	if (err) {
499 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
500 		     (unsigned long long)block);
501 		mlog_errno(err);
502 		goto bail;
503 	}
504 
505 bail:
506 	status = err ? 0 : p_blkno;
507 
508 	return status;
509 }
510 
511 static int ocfs2_releasepage(struct page *page, gfp_t wait)
512 {
513 	if (!page_has_buffers(page))
514 		return 0;
515 	return try_to_free_buffers(page);
516 }
517 
518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
519 					    u32 cpos,
520 					    unsigned int *start,
521 					    unsigned int *end)
522 {
523 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524 
525 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
526 		unsigned int cpp;
527 
528 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529 
530 		cluster_start = cpos % cpp;
531 		cluster_start = cluster_start << osb->s_clustersize_bits;
532 
533 		cluster_end = cluster_start + osb->s_clustersize;
534 	}
535 
536 	BUG_ON(cluster_start > PAGE_SIZE);
537 	BUG_ON(cluster_end > PAGE_SIZE);
538 
539 	if (start)
540 		*start = cluster_start;
541 	if (end)
542 		*end = cluster_end;
543 }
544 
545 /*
546  * 'from' and 'to' are the region in the page to avoid zeroing.
547  *
548  * If pagesize > clustersize, this function will avoid zeroing outside
549  * of the cluster boundary.
550  *
551  * from == to == 0 is code for "zero the entire cluster region"
552  */
553 static void ocfs2_clear_page_regions(struct page *page,
554 				     struct ocfs2_super *osb, u32 cpos,
555 				     unsigned from, unsigned to)
556 {
557 	void *kaddr;
558 	unsigned int cluster_start, cluster_end;
559 
560 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561 
562 	kaddr = kmap_atomic(page);
563 
564 	if (from || to) {
565 		if (from > cluster_start)
566 			memset(kaddr + cluster_start, 0, from - cluster_start);
567 		if (to < cluster_end)
568 			memset(kaddr + to, 0, cluster_end - to);
569 	} else {
570 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
571 	}
572 
573 	kunmap_atomic(kaddr);
574 }
575 
576 /*
577  * Nonsparse file systems fully allocate before we get to the write
578  * code. This prevents ocfs2_write() from tagging the write as an
579  * allocating one, which means ocfs2_map_page_blocks() might try to
580  * read-in the blocks at the tail of our file. Avoid reading them by
581  * testing i_size against each block offset.
582  */
583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
584 				 unsigned int block_start)
585 {
586 	u64 offset = page_offset(page) + block_start;
587 
588 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
589 		return 1;
590 
591 	if (i_size_read(inode) > offset)
592 		return 1;
593 
594 	return 0;
595 }
596 
597 /*
598  * Some of this taken from __block_write_begin(). We already have our
599  * mapping by now though, and the entire write will be allocating or
600  * it won't, so not much need to use BH_New.
601  *
602  * This will also skip zeroing, which is handled externally.
603  */
604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
605 			  struct inode *inode, unsigned int from,
606 			  unsigned int to, int new)
607 {
608 	int ret = 0;
609 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
610 	unsigned int block_end, block_start;
611 	unsigned int bsize = i_blocksize(inode);
612 
613 	if (!page_has_buffers(page))
614 		create_empty_buffers(page, bsize, 0);
615 
616 	head = page_buffers(page);
617 	for (bh = head, block_start = 0; bh != head || !block_start;
618 	     bh = bh->b_this_page, block_start += bsize) {
619 		block_end = block_start + bsize;
620 
621 		clear_buffer_new(bh);
622 
623 		/*
624 		 * Ignore blocks outside of our i/o range -
625 		 * they may belong to unallocated clusters.
626 		 */
627 		if (block_start >= to || block_end <= from) {
628 			if (PageUptodate(page))
629 				set_buffer_uptodate(bh);
630 			continue;
631 		}
632 
633 		/*
634 		 * For an allocating write with cluster size >= page
635 		 * size, we always write the entire page.
636 		 */
637 		if (new)
638 			set_buffer_new(bh);
639 
640 		if (!buffer_mapped(bh)) {
641 			map_bh(bh, inode->i_sb, *p_blkno);
642 			clean_bdev_bh_alias(bh);
643 		}
644 
645 		if (PageUptodate(page)) {
646 			if (!buffer_uptodate(bh))
647 				set_buffer_uptodate(bh);
648 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
649 			   !buffer_new(bh) &&
650 			   ocfs2_should_read_blk(inode, page, block_start) &&
651 			   (block_start < from || block_end > to)) {
652 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
653 			*wait_bh++=bh;
654 		}
655 
656 		*p_blkno = *p_blkno + 1;
657 	}
658 
659 	/*
660 	 * If we issued read requests - let them complete.
661 	 */
662 	while(wait_bh > wait) {
663 		wait_on_buffer(*--wait_bh);
664 		if (!buffer_uptodate(*wait_bh))
665 			ret = -EIO;
666 	}
667 
668 	if (ret == 0 || !new)
669 		return ret;
670 
671 	/*
672 	 * If we get -EIO above, zero out any newly allocated blocks
673 	 * to avoid exposing stale data.
674 	 */
675 	bh = head;
676 	block_start = 0;
677 	do {
678 		block_end = block_start + bsize;
679 		if (block_end <= from)
680 			goto next_bh;
681 		if (block_start >= to)
682 			break;
683 
684 		zero_user(page, block_start, bh->b_size);
685 		set_buffer_uptodate(bh);
686 		mark_buffer_dirty(bh);
687 
688 next_bh:
689 		block_start = block_end;
690 		bh = bh->b_this_page;
691 	} while (bh != head);
692 
693 	return ret;
694 }
695 
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES	1
698 #else
699 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
700 #endif
701 
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703 
704 struct ocfs2_unwritten_extent {
705 	struct list_head	ue_node;
706 	struct list_head	ue_ip_node;
707 	u32			ue_cpos;
708 	u32			ue_phys;
709 };
710 
711 /*
712  * Describe the state of a single cluster to be written to.
713  */
714 struct ocfs2_write_cluster_desc {
715 	u32		c_cpos;
716 	u32		c_phys;
717 	/*
718 	 * Give this a unique field because c_phys eventually gets
719 	 * filled.
720 	 */
721 	unsigned	c_new;
722 	unsigned	c_clear_unwritten;
723 	unsigned	c_needs_zero;
724 };
725 
726 struct ocfs2_write_ctxt {
727 	/* Logical cluster position / len of write */
728 	u32				w_cpos;
729 	u32				w_clen;
730 
731 	/* First cluster allocated in a nonsparse extend */
732 	u32				w_first_new_cpos;
733 
734 	/* Type of caller. Must be one of buffer, mmap, direct.  */
735 	ocfs2_write_type_t		w_type;
736 
737 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
738 
739 	/*
740 	 * This is true if page_size > cluster_size.
741 	 *
742 	 * It triggers a set of special cases during write which might
743 	 * have to deal with allocating writes to partial pages.
744 	 */
745 	unsigned int			w_large_pages;
746 
747 	/*
748 	 * Pages involved in this write.
749 	 *
750 	 * w_target_page is the page being written to by the user.
751 	 *
752 	 * w_pages is an array of pages which always contains
753 	 * w_target_page, and in the case of an allocating write with
754 	 * page_size < cluster size, it will contain zero'd and mapped
755 	 * pages adjacent to w_target_page which need to be written
756 	 * out in so that future reads from that region will get
757 	 * zero's.
758 	 */
759 	unsigned int			w_num_pages;
760 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
761 	struct page			*w_target_page;
762 
763 	/*
764 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 	 * against w_target_page in ocfs2_write_end_nolock.
766 	 */
767 	unsigned int			w_target_locked:1;
768 
769 	/*
770 	 * ocfs2_write_end() uses this to know what the real range to
771 	 * write in the target should be.
772 	 */
773 	unsigned int			w_target_from;
774 	unsigned int			w_target_to;
775 
776 	/*
777 	 * We could use journal_current_handle() but this is cleaner,
778 	 * IMHO -Mark
779 	 */
780 	handle_t			*w_handle;
781 
782 	struct buffer_head		*w_di_bh;
783 
784 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
785 
786 	struct list_head		w_unwritten_list;
787 	unsigned int			w_unwritten_count;
788 };
789 
790 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
791 {
792 	int i;
793 
794 	for(i = 0; i < num_pages; i++) {
795 		if (pages[i]) {
796 			unlock_page(pages[i]);
797 			mark_page_accessed(pages[i]);
798 			put_page(pages[i]);
799 		}
800 	}
801 }
802 
803 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
804 {
805 	int i;
806 
807 	/*
808 	 * w_target_locked is only set to true in the page_mkwrite() case.
809 	 * The intent is to allow us to lock the target page from write_begin()
810 	 * to write_end(). The caller must hold a ref on w_target_page.
811 	 */
812 	if (wc->w_target_locked) {
813 		BUG_ON(!wc->w_target_page);
814 		for (i = 0; i < wc->w_num_pages; i++) {
815 			if (wc->w_target_page == wc->w_pages[i]) {
816 				wc->w_pages[i] = NULL;
817 				break;
818 			}
819 		}
820 		mark_page_accessed(wc->w_target_page);
821 		put_page(wc->w_target_page);
822 	}
823 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
824 }
825 
826 static void ocfs2_free_unwritten_list(struct inode *inode,
827 				 struct list_head *head)
828 {
829 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
830 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
831 
832 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
833 		list_del(&ue->ue_node);
834 		spin_lock(&oi->ip_lock);
835 		list_del(&ue->ue_ip_node);
836 		spin_unlock(&oi->ip_lock);
837 		kfree(ue);
838 	}
839 }
840 
841 static void ocfs2_free_write_ctxt(struct inode *inode,
842 				  struct ocfs2_write_ctxt *wc)
843 {
844 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
845 	ocfs2_unlock_pages(wc);
846 	brelse(wc->w_di_bh);
847 	kfree(wc);
848 }
849 
850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
851 				  struct ocfs2_super *osb, loff_t pos,
852 				  unsigned len, ocfs2_write_type_t type,
853 				  struct buffer_head *di_bh)
854 {
855 	u32 cend;
856 	struct ocfs2_write_ctxt *wc;
857 
858 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
859 	if (!wc)
860 		return -ENOMEM;
861 
862 	wc->w_cpos = pos >> osb->s_clustersize_bits;
863 	wc->w_first_new_cpos = UINT_MAX;
864 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
865 	wc->w_clen = cend - wc->w_cpos + 1;
866 	get_bh(di_bh);
867 	wc->w_di_bh = di_bh;
868 	wc->w_type = type;
869 
870 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
871 		wc->w_large_pages = 1;
872 	else
873 		wc->w_large_pages = 0;
874 
875 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
876 	INIT_LIST_HEAD(&wc->w_unwritten_list);
877 
878 	*wcp = wc;
879 
880 	return 0;
881 }
882 
883 /*
884  * If a page has any new buffers, zero them out here, and mark them uptodate
885  * and dirty so they'll be written out (in order to prevent uninitialised
886  * block data from leaking). And clear the new bit.
887  */
888 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889 {
890 	unsigned int block_start, block_end;
891 	struct buffer_head *head, *bh;
892 
893 	BUG_ON(!PageLocked(page));
894 	if (!page_has_buffers(page))
895 		return;
896 
897 	bh = head = page_buffers(page);
898 	block_start = 0;
899 	do {
900 		block_end = block_start + bh->b_size;
901 
902 		if (buffer_new(bh)) {
903 			if (block_end > from && block_start < to) {
904 				if (!PageUptodate(page)) {
905 					unsigned start, end;
906 
907 					start = max(from, block_start);
908 					end = min(to, block_end);
909 
910 					zero_user_segment(page, start, end);
911 					set_buffer_uptodate(bh);
912 				}
913 
914 				clear_buffer_new(bh);
915 				mark_buffer_dirty(bh);
916 			}
917 		}
918 
919 		block_start = block_end;
920 		bh = bh->b_this_page;
921 	} while (bh != head);
922 }
923 
924 /*
925  * Only called when we have a failure during allocating write to write
926  * zero's to the newly allocated region.
927  */
928 static void ocfs2_write_failure(struct inode *inode,
929 				struct ocfs2_write_ctxt *wc,
930 				loff_t user_pos, unsigned user_len)
931 {
932 	int i;
933 	unsigned from = user_pos & (PAGE_SIZE - 1),
934 		to = user_pos + user_len;
935 	struct page *tmppage;
936 
937 	if (wc->w_target_page)
938 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
939 
940 	for(i = 0; i < wc->w_num_pages; i++) {
941 		tmppage = wc->w_pages[i];
942 
943 		if (tmppage && page_has_buffers(tmppage)) {
944 			if (ocfs2_should_order_data(inode))
945 				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
946 							   user_pos, user_len);
947 
948 			block_commit_write(tmppage, from, to);
949 		}
950 	}
951 }
952 
953 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
954 					struct ocfs2_write_ctxt *wc,
955 					struct page *page, u32 cpos,
956 					loff_t user_pos, unsigned user_len,
957 					int new)
958 {
959 	int ret;
960 	unsigned int map_from = 0, map_to = 0;
961 	unsigned int cluster_start, cluster_end;
962 	unsigned int user_data_from = 0, user_data_to = 0;
963 
964 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
965 					&cluster_start, &cluster_end);
966 
967 	/* treat the write as new if the a hole/lseek spanned across
968 	 * the page boundary.
969 	 */
970 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
971 			(page_offset(page) <= user_pos));
972 
973 	if (page == wc->w_target_page) {
974 		map_from = user_pos & (PAGE_SIZE - 1);
975 		map_to = map_from + user_len;
976 
977 		if (new)
978 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
979 						    cluster_start, cluster_end,
980 						    new);
981 		else
982 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
983 						    map_from, map_to, new);
984 		if (ret) {
985 			mlog_errno(ret);
986 			goto out;
987 		}
988 
989 		user_data_from = map_from;
990 		user_data_to = map_to;
991 		if (new) {
992 			map_from = cluster_start;
993 			map_to = cluster_end;
994 		}
995 	} else {
996 		/*
997 		 * If we haven't allocated the new page yet, we
998 		 * shouldn't be writing it out without copying user
999 		 * data. This is likely a math error from the caller.
1000 		 */
1001 		BUG_ON(!new);
1002 
1003 		map_from = cluster_start;
1004 		map_to = cluster_end;
1005 
1006 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1007 					    cluster_start, cluster_end, new);
1008 		if (ret) {
1009 			mlog_errno(ret);
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Parts of newly allocated pages need to be zero'd.
1016 	 *
1017 	 * Above, we have also rewritten 'to' and 'from' - as far as
1018 	 * the rest of the function is concerned, the entire cluster
1019 	 * range inside of a page needs to be written.
1020 	 *
1021 	 * We can skip this if the page is up to date - it's already
1022 	 * been zero'd from being read in as a hole.
1023 	 */
1024 	if (new && !PageUptodate(page))
1025 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1026 					 cpos, user_data_from, user_data_to);
1027 
1028 	flush_dcache_page(page);
1029 
1030 out:
1031 	return ret;
1032 }
1033 
1034 /*
1035  * This function will only grab one clusters worth of pages.
1036  */
1037 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1038 				      struct ocfs2_write_ctxt *wc,
1039 				      u32 cpos, loff_t user_pos,
1040 				      unsigned user_len, int new,
1041 				      struct page *mmap_page)
1042 {
1043 	int ret = 0, i;
1044 	unsigned long start, target_index, end_index, index;
1045 	struct inode *inode = mapping->host;
1046 	loff_t last_byte;
1047 
1048 	target_index = user_pos >> PAGE_SHIFT;
1049 
1050 	/*
1051 	 * Figure out how many pages we'll be manipulating here. For
1052 	 * non allocating write, we just change the one
1053 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1054 	 * writing past i_size, we only need enough pages to cover the
1055 	 * last page of the write.
1056 	 */
1057 	if (new) {
1058 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1059 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060 		/*
1061 		 * We need the index *past* the last page we could possibly
1062 		 * touch.  This is the page past the end of the write or
1063 		 * i_size, whichever is greater.
1064 		 */
1065 		last_byte = max(user_pos + user_len, i_size_read(inode));
1066 		BUG_ON(last_byte < 1);
1067 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1068 		if ((start + wc->w_num_pages) > end_index)
1069 			wc->w_num_pages = end_index - start;
1070 	} else {
1071 		wc->w_num_pages = 1;
1072 		start = target_index;
1073 	}
1074 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075 
1076 	for(i = 0; i < wc->w_num_pages; i++) {
1077 		index = start + i;
1078 
1079 		if (index >= target_index && index <= end_index &&
1080 		    wc->w_type == OCFS2_WRITE_MMAP) {
1081 			/*
1082 			 * ocfs2_pagemkwrite() is a little different
1083 			 * and wants us to directly use the page
1084 			 * passed in.
1085 			 */
1086 			lock_page(mmap_page);
1087 
1088 			/* Exit and let the caller retry */
1089 			if (mmap_page->mapping != mapping) {
1090 				WARN_ON(mmap_page->mapping);
1091 				unlock_page(mmap_page);
1092 				ret = -EAGAIN;
1093 				goto out;
1094 			}
1095 
1096 			get_page(mmap_page);
1097 			wc->w_pages[i] = mmap_page;
1098 			wc->w_target_locked = true;
1099 		} else if (index >= target_index && index <= end_index &&
1100 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1101 			/* Direct write has no mapping page. */
1102 			wc->w_pages[i] = NULL;
1103 			continue;
1104 		} else {
1105 			wc->w_pages[i] = find_or_create_page(mapping, index,
1106 							     GFP_NOFS);
1107 			if (!wc->w_pages[i]) {
1108 				ret = -ENOMEM;
1109 				mlog_errno(ret);
1110 				goto out;
1111 			}
1112 		}
1113 		wait_for_stable_page(wc->w_pages[i]);
1114 
1115 		if (index == target_index)
1116 			wc->w_target_page = wc->w_pages[i];
1117 	}
1118 out:
1119 	if (ret)
1120 		wc->w_target_locked = false;
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Prepare a single cluster for write one cluster into the file.
1126  */
1127 static int ocfs2_write_cluster(struct address_space *mapping,
1128 			       u32 *phys, unsigned int new,
1129 			       unsigned int clear_unwritten,
1130 			       unsigned int should_zero,
1131 			       struct ocfs2_alloc_context *data_ac,
1132 			       struct ocfs2_alloc_context *meta_ac,
1133 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1134 			       loff_t user_pos, unsigned user_len)
1135 {
1136 	int ret, i;
1137 	u64 p_blkno;
1138 	struct inode *inode = mapping->host;
1139 	struct ocfs2_extent_tree et;
1140 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141 
1142 	if (new) {
1143 		u32 tmp_pos;
1144 
1145 		/*
1146 		 * This is safe to call with the page locks - it won't take
1147 		 * any additional semaphores or cluster locks.
1148 		 */
1149 		tmp_pos = cpos;
1150 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1151 					   &tmp_pos, 1, !clear_unwritten,
1152 					   wc->w_di_bh, wc->w_handle,
1153 					   data_ac, meta_ac, NULL);
1154 		/*
1155 		 * This shouldn't happen because we must have already
1156 		 * calculated the correct meta data allocation required. The
1157 		 * internal tree allocation code should know how to increase
1158 		 * transaction credits itself.
1159 		 *
1160 		 * If need be, we could handle -EAGAIN for a
1161 		 * RESTART_TRANS here.
1162 		 */
1163 		mlog_bug_on_msg(ret == -EAGAIN,
1164 				"Inode %llu: EAGAIN return during allocation.\n",
1165 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1166 		if (ret < 0) {
1167 			mlog_errno(ret);
1168 			goto out;
1169 		}
1170 	} else if (clear_unwritten) {
1171 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1172 					      wc->w_di_bh);
1173 		ret = ocfs2_mark_extent_written(inode, &et,
1174 						wc->w_handle, cpos, 1, *phys,
1175 						meta_ac, &wc->w_dealloc);
1176 		if (ret < 0) {
1177 			mlog_errno(ret);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * The only reason this should fail is due to an inability to
1184 	 * find the extent added.
1185 	 */
1186 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1187 	if (ret < 0) {
1188 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1189 			    "at logical cluster %u",
1190 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1191 		goto out;
1192 	}
1193 
1194 	BUG_ON(*phys == 0);
1195 
1196 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1197 	if (!should_zero)
1198 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199 
1200 	for(i = 0; i < wc->w_num_pages; i++) {
1201 		int tmpret;
1202 
1203 		/* This is the direct io target page. */
1204 		if (wc->w_pages[i] == NULL) {
1205 			p_blkno++;
1206 			continue;
1207 		}
1208 
1209 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1210 						      wc->w_pages[i], cpos,
1211 						      user_pos, user_len,
1212 						      should_zero);
1213 		if (tmpret) {
1214 			mlog_errno(tmpret);
1215 			if (ret == 0)
1216 				ret = tmpret;
1217 		}
1218 	}
1219 
1220 	/*
1221 	 * We only have cleanup to do in case of allocating write.
1222 	 */
1223 	if (ret && new)
1224 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1225 
1226 out:
1227 
1228 	return ret;
1229 }
1230 
1231 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1232 				       struct ocfs2_alloc_context *data_ac,
1233 				       struct ocfs2_alloc_context *meta_ac,
1234 				       struct ocfs2_write_ctxt *wc,
1235 				       loff_t pos, unsigned len)
1236 {
1237 	int ret, i;
1238 	loff_t cluster_off;
1239 	unsigned int local_len = len;
1240 	struct ocfs2_write_cluster_desc *desc;
1241 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242 
1243 	for (i = 0; i < wc->w_clen; i++) {
1244 		desc = &wc->w_desc[i];
1245 
1246 		/*
1247 		 * We have to make sure that the total write passed in
1248 		 * doesn't extend past a single cluster.
1249 		 */
1250 		local_len = len;
1251 		cluster_off = pos & (osb->s_clustersize - 1);
1252 		if ((cluster_off + local_len) > osb->s_clustersize)
1253 			local_len = osb->s_clustersize - cluster_off;
1254 
1255 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1256 					  desc->c_new,
1257 					  desc->c_clear_unwritten,
1258 					  desc->c_needs_zero,
1259 					  data_ac, meta_ac,
1260 					  wc, desc->c_cpos, pos, local_len);
1261 		if (ret) {
1262 			mlog_errno(ret);
1263 			goto out;
1264 		}
1265 
1266 		len -= local_len;
1267 		pos += local_len;
1268 	}
1269 
1270 	ret = 0;
1271 out:
1272 	return ret;
1273 }
1274 
1275 /*
1276  * ocfs2_write_end() wants to know which parts of the target page it
1277  * should complete the write on. It's easiest to compute them ahead of
1278  * time when a more complete view of the write is available.
1279  */
1280 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1281 					struct ocfs2_write_ctxt *wc,
1282 					loff_t pos, unsigned len, int alloc)
1283 {
1284 	struct ocfs2_write_cluster_desc *desc;
1285 
1286 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1287 	wc->w_target_to = wc->w_target_from + len;
1288 
1289 	if (alloc == 0)
1290 		return;
1291 
1292 	/*
1293 	 * Allocating write - we may have different boundaries based
1294 	 * on page size and cluster size.
1295 	 *
1296 	 * NOTE: We can no longer compute one value from the other as
1297 	 * the actual write length and user provided length may be
1298 	 * different.
1299 	 */
1300 
1301 	if (wc->w_large_pages) {
1302 		/*
1303 		 * We only care about the 1st and last cluster within
1304 		 * our range and whether they should be zero'd or not. Either
1305 		 * value may be extended out to the start/end of a
1306 		 * newly allocated cluster.
1307 		 */
1308 		desc = &wc->w_desc[0];
1309 		if (desc->c_needs_zero)
1310 			ocfs2_figure_cluster_boundaries(osb,
1311 							desc->c_cpos,
1312 							&wc->w_target_from,
1313 							NULL);
1314 
1315 		desc = &wc->w_desc[wc->w_clen - 1];
1316 		if (desc->c_needs_zero)
1317 			ocfs2_figure_cluster_boundaries(osb,
1318 							desc->c_cpos,
1319 							NULL,
1320 							&wc->w_target_to);
1321 	} else {
1322 		wc->w_target_from = 0;
1323 		wc->w_target_to = PAGE_SIZE;
1324 	}
1325 }
1326 
1327 /*
1328  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330  * by the direct io procedure.
1331  * If this is a new extent that allocated by direct io, we should mark it in
1332  * the ip_unwritten_list.
1333  */
1334 static int ocfs2_unwritten_check(struct inode *inode,
1335 				 struct ocfs2_write_ctxt *wc,
1336 				 struct ocfs2_write_cluster_desc *desc)
1337 {
1338 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1339 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1340 	int ret = 0;
1341 
1342 	if (!desc->c_needs_zero)
1343 		return 0;
1344 
1345 retry:
1346 	spin_lock(&oi->ip_lock);
1347 	/* Needs not to zero no metter buffer or direct. The one who is zero
1348 	 * the cluster is doing zero. And he will clear unwritten after all
1349 	 * cluster io finished. */
1350 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1351 		if (desc->c_cpos == ue->ue_cpos) {
1352 			BUG_ON(desc->c_new);
1353 			desc->c_needs_zero = 0;
1354 			desc->c_clear_unwritten = 0;
1355 			goto unlock;
1356 		}
1357 	}
1358 
1359 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1360 		goto unlock;
1361 
1362 	if (new == NULL) {
1363 		spin_unlock(&oi->ip_lock);
1364 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1365 			     GFP_NOFS);
1366 		if (new == NULL) {
1367 			ret = -ENOMEM;
1368 			goto out;
1369 		}
1370 		goto retry;
1371 	}
1372 	/* This direct write will doing zero. */
1373 	new->ue_cpos = desc->c_cpos;
1374 	new->ue_phys = desc->c_phys;
1375 	desc->c_clear_unwritten = 0;
1376 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1377 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1378 	wc->w_unwritten_count++;
1379 	new = NULL;
1380 unlock:
1381 	spin_unlock(&oi->ip_lock);
1382 out:
1383 	kfree(new);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * Populate each single-cluster write descriptor in the write context
1389  * with information about the i/o to be done.
1390  *
1391  * Returns the number of clusters that will have to be allocated, as
1392  * well as a worst case estimate of the number of extent records that
1393  * would have to be created during a write to an unwritten region.
1394  */
1395 static int ocfs2_populate_write_desc(struct inode *inode,
1396 				     struct ocfs2_write_ctxt *wc,
1397 				     unsigned int *clusters_to_alloc,
1398 				     unsigned int *extents_to_split)
1399 {
1400 	int ret;
1401 	struct ocfs2_write_cluster_desc *desc;
1402 	unsigned int num_clusters = 0;
1403 	unsigned int ext_flags = 0;
1404 	u32 phys = 0;
1405 	int i;
1406 
1407 	*clusters_to_alloc = 0;
1408 	*extents_to_split = 0;
1409 
1410 	for (i = 0; i < wc->w_clen; i++) {
1411 		desc = &wc->w_desc[i];
1412 		desc->c_cpos = wc->w_cpos + i;
1413 
1414 		if (num_clusters == 0) {
1415 			/*
1416 			 * Need to look up the next extent record.
1417 			 */
1418 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1419 						 &num_clusters, &ext_flags);
1420 			if (ret) {
1421 				mlog_errno(ret);
1422 				goto out;
1423 			}
1424 
1425 			/* We should already CoW the refcountd extent. */
1426 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1427 
1428 			/*
1429 			 * Assume worst case - that we're writing in
1430 			 * the middle of the extent.
1431 			 *
1432 			 * We can assume that the write proceeds from
1433 			 * left to right, in which case the extent
1434 			 * insert code is smart enough to coalesce the
1435 			 * next splits into the previous records created.
1436 			 */
1437 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1438 				*extents_to_split = *extents_to_split + 2;
1439 		} else if (phys) {
1440 			/*
1441 			 * Only increment phys if it doesn't describe
1442 			 * a hole.
1443 			 */
1444 			phys++;
1445 		}
1446 
1447 		/*
1448 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449 		 * file that got extended.  w_first_new_cpos tells us
1450 		 * where the newly allocated clusters are so we can
1451 		 * zero them.
1452 		 */
1453 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1454 			BUG_ON(phys == 0);
1455 			desc->c_needs_zero = 1;
1456 		}
1457 
1458 		desc->c_phys = phys;
1459 		if (phys == 0) {
1460 			desc->c_new = 1;
1461 			desc->c_needs_zero = 1;
1462 			desc->c_clear_unwritten = 1;
1463 			*clusters_to_alloc = *clusters_to_alloc + 1;
1464 		}
1465 
1466 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1467 			desc->c_clear_unwritten = 1;
1468 			desc->c_needs_zero = 1;
1469 		}
1470 
1471 		ret = ocfs2_unwritten_check(inode, wc, desc);
1472 		if (ret) {
1473 			mlog_errno(ret);
1474 			goto out;
1475 		}
1476 
1477 		num_clusters--;
1478 	}
1479 
1480 	ret = 0;
1481 out:
1482 	return ret;
1483 }
1484 
1485 static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 				    struct inode *inode,
1487 				    struct ocfs2_write_ctxt *wc)
1488 {
1489 	int ret;
1490 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 	struct page *page;
1492 	handle_t *handle;
1493 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494 
1495 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1496 	if (IS_ERR(handle)) {
1497 		ret = PTR_ERR(handle);
1498 		mlog_errno(ret);
1499 		goto out;
1500 	}
1501 
1502 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 	if (!page) {
1504 		ocfs2_commit_trans(osb, handle);
1505 		ret = -ENOMEM;
1506 		mlog_errno(ret);
1507 		goto out;
1508 	}
1509 	/*
1510 	 * If we don't set w_num_pages then this page won't get unlocked
1511 	 * and freed on cleanup of the write context.
1512 	 */
1513 	wc->w_pages[0] = wc->w_target_page = page;
1514 	wc->w_num_pages = 1;
1515 
1516 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1517 				      OCFS2_JOURNAL_ACCESS_WRITE);
1518 	if (ret) {
1519 		ocfs2_commit_trans(osb, handle);
1520 
1521 		mlog_errno(ret);
1522 		goto out;
1523 	}
1524 
1525 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1526 		ocfs2_set_inode_data_inline(inode, di);
1527 
1528 	if (!PageUptodate(page)) {
1529 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 		if (ret) {
1531 			ocfs2_commit_trans(osb, handle);
1532 
1533 			goto out;
1534 		}
1535 	}
1536 
1537 	wc->w_handle = handle;
1538 out:
1539 	return ret;
1540 }
1541 
1542 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543 {
1544 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545 
1546 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1547 		return 1;
1548 	return 0;
1549 }
1550 
1551 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1552 					  struct inode *inode, loff_t pos,
1553 					  unsigned len, struct page *mmap_page,
1554 					  struct ocfs2_write_ctxt *wc)
1555 {
1556 	int ret, written = 0;
1557 	loff_t end = pos + len;
1558 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 	struct ocfs2_dinode *di = NULL;
1560 
1561 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1562 					     len, (unsigned long long)pos,
1563 					     oi->ip_dyn_features);
1564 
1565 	/*
1566 	 * Handle inodes which already have inline data 1st.
1567 	 */
1568 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1569 		if (mmap_page == NULL &&
1570 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1571 			goto do_inline_write;
1572 
1573 		/*
1574 		 * The write won't fit - we have to give this inode an
1575 		 * inline extent list now.
1576 		 */
1577 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1578 		if (ret)
1579 			mlog_errno(ret);
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * Check whether the inode can accept inline data.
1585 	 */
1586 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1587 		return 0;
1588 
1589 	/*
1590 	 * Check whether the write can fit.
1591 	 */
1592 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1593 	if (mmap_page ||
1594 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1595 		return 0;
1596 
1597 do_inline_write:
1598 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1599 	if (ret) {
1600 		mlog_errno(ret);
1601 		goto out;
1602 	}
1603 
1604 	/*
1605 	 * This signals to the caller that the data can be written
1606 	 * inline.
1607 	 */
1608 	written = 1;
1609 out:
1610 	return written ? written : ret;
1611 }
1612 
1613 /*
1614  * This function only does anything for file systems which can't
1615  * handle sparse files.
1616  *
1617  * What we want to do here is fill in any hole between the current end
1618  * of allocation and the end of our write. That way the rest of the
1619  * write path can treat it as an non-allocating write, which has no
1620  * special case code for sparse/nonsparse files.
1621  */
1622 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1623 					struct buffer_head *di_bh,
1624 					loff_t pos, unsigned len,
1625 					struct ocfs2_write_ctxt *wc)
1626 {
1627 	int ret;
1628 	loff_t newsize = pos + len;
1629 
1630 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631 
1632 	if (newsize <= i_size_read(inode))
1633 		return 0;
1634 
1635 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1636 	if (ret)
1637 		mlog_errno(ret);
1638 
1639 	/* There is no wc if this is call from direct. */
1640 	if (wc)
1641 		wc->w_first_new_cpos =
1642 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643 
1644 	return ret;
1645 }
1646 
1647 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1648 			   loff_t pos)
1649 {
1650 	int ret = 0;
1651 
1652 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1653 	if (pos > i_size_read(inode))
1654 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1655 
1656 	return ret;
1657 }
1658 
1659 int ocfs2_write_begin_nolock(struct address_space *mapping,
1660 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1661 			     struct page **pagep, void **fsdata,
1662 			     struct buffer_head *di_bh, struct page *mmap_page)
1663 {
1664 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1665 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1666 	struct ocfs2_write_ctxt *wc;
1667 	struct inode *inode = mapping->host;
1668 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1669 	struct ocfs2_dinode *di;
1670 	struct ocfs2_alloc_context *data_ac = NULL;
1671 	struct ocfs2_alloc_context *meta_ac = NULL;
1672 	handle_t *handle;
1673 	struct ocfs2_extent_tree et;
1674 	int try_free = 1, ret1;
1675 
1676 try_again:
1677 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1678 	if (ret) {
1679 		mlog_errno(ret);
1680 		return ret;
1681 	}
1682 
1683 	if (ocfs2_supports_inline_data(osb)) {
1684 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 						     mmap_page, wc);
1686 		if (ret == 1) {
1687 			ret = 0;
1688 			goto success;
1689 		}
1690 		if (ret < 0) {
1691 			mlog_errno(ret);
1692 			goto out;
1693 		}
1694 	}
1695 
1696 	/* Direct io change i_size late, should not zero tail here. */
1697 	if (type != OCFS2_WRITE_DIRECT) {
1698 		if (ocfs2_sparse_alloc(osb))
1699 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1700 		else
1701 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1702 							   len, wc);
1703 		if (ret) {
1704 			mlog_errno(ret);
1705 			goto out;
1706 		}
1707 	}
1708 
1709 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710 	if (ret < 0) {
1711 		mlog_errno(ret);
1712 		goto out;
1713 	} else if (ret == 1) {
1714 		clusters_need = wc->w_clen;
1715 		ret = ocfs2_refcount_cow(inode, di_bh,
1716 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1717 		if (ret) {
1718 			mlog_errno(ret);
1719 			goto out;
1720 		}
1721 	}
1722 
1723 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1724 					&extents_to_split);
1725 	if (ret) {
1726 		mlog_errno(ret);
1727 		goto out;
1728 	}
1729 	clusters_need += clusters_to_alloc;
1730 
1731 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732 
1733 	trace_ocfs2_write_begin_nolock(
1734 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1735 			(long long)i_size_read(inode),
1736 			le32_to_cpu(di->i_clusters),
1737 			pos, len, type, mmap_page,
1738 			clusters_to_alloc, extents_to_split);
1739 
1740 	/*
1741 	 * We set w_target_from, w_target_to here so that
1742 	 * ocfs2_write_end() knows which range in the target page to
1743 	 * write out. An allocation requires that we write the entire
1744 	 * cluster range.
1745 	 */
1746 	if (clusters_to_alloc || extents_to_split) {
1747 		/*
1748 		 * XXX: We are stretching the limits of
1749 		 * ocfs2_lock_allocators(). It greatly over-estimates
1750 		 * the work to be done.
1751 		 */
1752 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1753 					      wc->w_di_bh);
1754 		ret = ocfs2_lock_allocators(inode, &et,
1755 					    clusters_to_alloc, extents_to_split,
1756 					    &data_ac, &meta_ac);
1757 		if (ret) {
1758 			mlog_errno(ret);
1759 			goto out;
1760 		}
1761 
1762 		if (data_ac)
1763 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764 
1765 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1766 						    &di->id2.i_list);
1767 	} else if (type == OCFS2_WRITE_DIRECT)
1768 		/* direct write needs not to start trans if no extents alloc. */
1769 		goto success;
1770 
1771 	/*
1772 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1773 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1774 	 * we know zeros will only be needed in the first and/or last cluster.
1775 	 */
1776 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1777 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1778 		cluster_of_pages = 1;
1779 	else
1780 		cluster_of_pages = 0;
1781 
1782 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783 
1784 	handle = ocfs2_start_trans(osb, credits);
1785 	if (IS_ERR(handle)) {
1786 		ret = PTR_ERR(handle);
1787 		mlog_errno(ret);
1788 		goto out;
1789 	}
1790 
1791 	wc->w_handle = handle;
1792 
1793 	if (clusters_to_alloc) {
1794 		ret = dquot_alloc_space_nodirty(inode,
1795 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1796 		if (ret)
1797 			goto out_commit;
1798 	}
1799 
1800 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1801 				      OCFS2_JOURNAL_ACCESS_WRITE);
1802 	if (ret) {
1803 		mlog_errno(ret);
1804 		goto out_quota;
1805 	}
1806 
1807 	/*
1808 	 * Fill our page array first. That way we've grabbed enough so
1809 	 * that we can zero and flush if we error after adding the
1810 	 * extent.
1811 	 */
1812 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1813 					 cluster_of_pages, mmap_page);
1814 	if (ret && ret != -EAGAIN) {
1815 		mlog_errno(ret);
1816 		goto out_quota;
1817 	}
1818 
1819 	/*
1820 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821 	 * the target page. In this case, we exit with no error and no target
1822 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1823 	 * the operation.
1824 	 */
1825 	if (ret == -EAGAIN) {
1826 		BUG_ON(wc->w_target_page);
1827 		ret = 0;
1828 		goto out_quota;
1829 	}
1830 
1831 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832 					  len);
1833 	if (ret) {
1834 		mlog_errno(ret);
1835 		goto out_quota;
1836 	}
1837 
1838 	if (data_ac)
1839 		ocfs2_free_alloc_context(data_ac);
1840 	if (meta_ac)
1841 		ocfs2_free_alloc_context(meta_ac);
1842 
1843 success:
1844 	if (pagep)
1845 		*pagep = wc->w_target_page;
1846 	*fsdata = wc;
1847 	return 0;
1848 out_quota:
1849 	if (clusters_to_alloc)
1850 		dquot_free_space(inode,
1851 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1852 out_commit:
1853 	ocfs2_commit_trans(osb, handle);
1854 
1855 out:
1856 	/*
1857 	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858 	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1859 	 * to unlock the target page manually to prevent deadlocks when
1860 	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1861 	 * to VM code.
1862 	 */
1863 	if (wc->w_target_locked)
1864 		unlock_page(mmap_page);
1865 
1866 	ocfs2_free_write_ctxt(inode, wc);
1867 
1868 	if (data_ac) {
1869 		ocfs2_free_alloc_context(data_ac);
1870 		data_ac = NULL;
1871 	}
1872 	if (meta_ac) {
1873 		ocfs2_free_alloc_context(meta_ac);
1874 		meta_ac = NULL;
1875 	}
1876 
1877 	if (ret == -ENOSPC && try_free) {
1878 		/*
1879 		 * Try to free some truncate log so that we can have enough
1880 		 * clusters to allocate.
1881 		 */
1882 		try_free = 0;
1883 
1884 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1885 		if (ret1 == 1)
1886 			goto try_again;
1887 
1888 		if (ret1 < 0)
1889 			mlog_errno(ret1);
1890 	}
1891 
1892 	return ret;
1893 }
1894 
1895 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1896 			     loff_t pos, unsigned len, unsigned flags,
1897 			     struct page **pagep, void **fsdata)
1898 {
1899 	int ret;
1900 	struct buffer_head *di_bh = NULL;
1901 	struct inode *inode = mapping->host;
1902 
1903 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1904 	if (ret) {
1905 		mlog_errno(ret);
1906 		return ret;
1907 	}
1908 
1909 	/*
1910 	 * Take alloc sem here to prevent concurrent lookups. That way
1911 	 * the mapping, zeroing and tree manipulation within
1912 	 * ocfs2_write() will be safe against ->readpage(). This
1913 	 * should also serve to lock out allocation from a shared
1914 	 * writeable region.
1915 	 */
1916 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917 
1918 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1919 				       pagep, fsdata, di_bh, NULL);
1920 	if (ret) {
1921 		mlog_errno(ret);
1922 		goto out_fail;
1923 	}
1924 
1925 	brelse(di_bh);
1926 
1927 	return 0;
1928 
1929 out_fail:
1930 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931 
1932 	brelse(di_bh);
1933 	ocfs2_inode_unlock(inode, 1);
1934 
1935 	return ret;
1936 }
1937 
1938 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1939 				   unsigned len, unsigned *copied,
1940 				   struct ocfs2_dinode *di,
1941 				   struct ocfs2_write_ctxt *wc)
1942 {
1943 	void *kaddr;
1944 
1945 	if (unlikely(*copied < len)) {
1946 		if (!PageUptodate(wc->w_target_page)) {
1947 			*copied = 0;
1948 			return;
1949 		}
1950 	}
1951 
1952 	kaddr = kmap_atomic(wc->w_target_page);
1953 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1954 	kunmap_atomic(kaddr);
1955 
1956 	trace_ocfs2_write_end_inline(
1957 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1958 	     (unsigned long long)pos, *copied,
1959 	     le16_to_cpu(di->id2.i_data.id_count),
1960 	     le16_to_cpu(di->i_dyn_features));
1961 }
1962 
1963 int ocfs2_write_end_nolock(struct address_space *mapping,
1964 			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965 {
1966 	int i, ret;
1967 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1968 	struct inode *inode = mapping->host;
1969 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1970 	struct ocfs2_write_ctxt *wc = fsdata;
1971 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1972 	handle_t *handle = wc->w_handle;
1973 	struct page *tmppage;
1974 
1975 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1976 
1977 	if (handle) {
1978 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1979 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1980 		if (ret) {
1981 			copied = ret;
1982 			mlog_errno(ret);
1983 			goto out;
1984 		}
1985 	}
1986 
1987 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1988 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1989 		goto out_write_size;
1990 	}
1991 
1992 	if (unlikely(copied < len) && wc->w_target_page) {
1993 		if (!PageUptodate(wc->w_target_page))
1994 			copied = 0;
1995 
1996 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1997 				       start+len);
1998 	}
1999 	if (wc->w_target_page)
2000 		flush_dcache_page(wc->w_target_page);
2001 
2002 	for(i = 0; i < wc->w_num_pages; i++) {
2003 		tmppage = wc->w_pages[i];
2004 
2005 		/* This is the direct io target page. */
2006 		if (tmppage == NULL)
2007 			continue;
2008 
2009 		if (tmppage == wc->w_target_page) {
2010 			from = wc->w_target_from;
2011 			to = wc->w_target_to;
2012 
2013 			BUG_ON(from > PAGE_SIZE ||
2014 			       to > PAGE_SIZE ||
2015 			       to < from);
2016 		} else {
2017 			/*
2018 			 * Pages adjacent to the target (if any) imply
2019 			 * a hole-filling write in which case we want
2020 			 * to flush their entire range.
2021 			 */
2022 			from = 0;
2023 			to = PAGE_SIZE;
2024 		}
2025 
2026 		if (page_has_buffers(tmppage)) {
2027 			if (handle && ocfs2_should_order_data(inode)) {
2028 				loff_t start_byte =
2029 					((loff_t)tmppage->index << PAGE_SHIFT) +
2030 					from;
2031 				loff_t length = to - from;
2032 				ocfs2_jbd2_inode_add_write(handle, inode,
2033 							   start_byte, length);
2034 			}
2035 			block_commit_write(tmppage, from, to);
2036 		}
2037 	}
2038 
2039 out_write_size:
2040 	/* Direct io do not update i_size here. */
2041 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2042 		pos += copied;
2043 		if (pos > i_size_read(inode)) {
2044 			i_size_write(inode, pos);
2045 			mark_inode_dirty(inode);
2046 		}
2047 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2048 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2049 		inode->i_mtime = inode->i_ctime = current_time(inode);
2050 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2051 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2052 		if (handle)
2053 			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 	}
2055 	if (handle)
2056 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2057 
2058 out:
2059 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 	 * lock, or it will cause a deadlock since journal commit threads holds
2061 	 * this lock and will ask for the page lock when flushing the data.
2062 	 * put it here to preserve the unlock order.
2063 	 */
2064 	ocfs2_unlock_pages(wc);
2065 
2066 	if (handle)
2067 		ocfs2_commit_trans(osb, handle);
2068 
2069 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070 
2071 	brelse(wc->w_di_bh);
2072 	kfree(wc);
2073 
2074 	return copied;
2075 }
2076 
2077 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2078 			   loff_t pos, unsigned len, unsigned copied,
2079 			   struct page *page, void *fsdata)
2080 {
2081 	int ret;
2082 	struct inode *inode = mapping->host;
2083 
2084 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085 
2086 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2087 	ocfs2_inode_unlock(inode, 1);
2088 
2089 	return ret;
2090 }
2091 
2092 struct ocfs2_dio_write_ctxt {
2093 	struct list_head	dw_zero_list;
2094 	unsigned		dw_zero_count;
2095 	int			dw_orphaned;
2096 	pid_t			dw_writer_pid;
2097 };
2098 
2099 static struct ocfs2_dio_write_ctxt *
2100 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101 {
2102 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2103 
2104 	if (bh->b_private)
2105 		return bh->b_private;
2106 
2107 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2108 	if (dwc == NULL)
2109 		return NULL;
2110 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2111 	dwc->dw_zero_count = 0;
2112 	dwc->dw_orphaned = 0;
2113 	dwc->dw_writer_pid = task_pid_nr(current);
2114 	bh->b_private = dwc;
2115 	*alloc = 1;
2116 
2117 	return dwc;
2118 }
2119 
2120 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2121 				     struct ocfs2_dio_write_ctxt *dwc)
2122 {
2123 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2124 	kfree(dwc);
2125 }
2126 
2127 /*
2128  * TODO: Make this into a generic get_blocks function.
2129  *
2130  * From do_direct_io in direct-io.c:
2131  *  "So what we do is to permit the ->get_blocks function to populate
2132  *   bh.b_size with the size of IO which is permitted at this offset and
2133  *   this i_blkbits."
2134  *
2135  * This function is called directly from get_more_blocks in direct-io.c.
2136  *
2137  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138  * 					fs_count, map_bh, dio->rw == WRITE);
2139  */
2140 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2141 			       struct buffer_head *bh_result, int create)
2142 {
2143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2144 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2145 	struct ocfs2_write_ctxt *wc;
2146 	struct ocfs2_write_cluster_desc *desc = NULL;
2147 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2148 	struct buffer_head *di_bh = NULL;
2149 	u64 p_blkno;
2150 	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2151 	loff_t pos = iblock << i_blkbits;
2152 	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2153 	unsigned len, total_len = bh_result->b_size;
2154 	int ret = 0, first_get_block = 0;
2155 
2156 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2157 	len = min(total_len, len);
2158 
2159 	/*
2160 	 * bh_result->b_size is count in get_more_blocks according to write
2161 	 * "pos" and "end", we need map twice to return different buffer state:
2162 	 * 1. area in file size, not set NEW;
2163 	 * 2. area out file size, set  NEW.
2164 	 *
2165 	 *		   iblock    endblk
2166 	 * |--------|---------|---------|---------
2167 	 * |<-------area in file------->|
2168 	 */
2169 
2170 	if ((iblock <= endblk) &&
2171 	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2172 		len = (endblk - iblock + 1) << i_blkbits;
2173 
2174 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 			inode->i_ino, pos, len, total_len);
2176 
2177 	/*
2178 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 	 * we may need to add it to orphan dir. So can not fall to fast path
2180 	 * while file size will be changed.
2181 	 */
2182 	if (pos + total_len <= i_size_read(inode)) {
2183 
2184 		/* This is the fast path for re-write. */
2185 		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2186 		if (buffer_mapped(bh_result) &&
2187 		    !buffer_new(bh_result) &&
2188 		    ret == 0)
2189 			goto out;
2190 
2191 		/* Clear state set by ocfs2_get_block. */
2192 		bh_result->b_state = 0;
2193 	}
2194 
2195 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2196 	if (unlikely(dwc == NULL)) {
2197 		ret = -ENOMEM;
2198 		mlog_errno(ret);
2199 		goto out;
2200 	}
2201 
2202 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2203 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2204 	    !dwc->dw_orphaned) {
2205 		/*
2206 		 * when we are going to alloc extents beyond file size, add the
2207 		 * inode to orphan dir, so we can recall those spaces when
2208 		 * system crashed during write.
2209 		 */
2210 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2211 		if (ret < 0) {
2212 			mlog_errno(ret);
2213 			goto out;
2214 		}
2215 		dwc->dw_orphaned = 1;
2216 	}
2217 
2218 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2219 	if (ret) {
2220 		mlog_errno(ret);
2221 		goto out;
2222 	}
2223 
2224 	down_write(&oi->ip_alloc_sem);
2225 
2226 	if (first_get_block) {
2227 		if (ocfs2_sparse_alloc(osb))
2228 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2229 		else
2230 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2231 							   total_len, NULL);
2232 		if (ret < 0) {
2233 			mlog_errno(ret);
2234 			goto unlock;
2235 		}
2236 	}
2237 
2238 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2239 				       OCFS2_WRITE_DIRECT, NULL,
2240 				       (void **)&wc, di_bh, NULL);
2241 	if (ret) {
2242 		mlog_errno(ret);
2243 		goto unlock;
2244 	}
2245 
2246 	desc = &wc->w_desc[0];
2247 
2248 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2249 	BUG_ON(p_blkno == 0);
2250 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251 
2252 	map_bh(bh_result, inode->i_sb, p_blkno);
2253 	bh_result->b_size = len;
2254 	if (desc->c_needs_zero)
2255 		set_buffer_new(bh_result);
2256 
2257 	if (iblock > endblk)
2258 		set_buffer_new(bh_result);
2259 
2260 	/* May sleep in end_io. It should not happen in a irq context. So defer
2261 	 * it to dio work queue. */
2262 	set_buffer_defer_completion(bh_result);
2263 
2264 	if (!list_empty(&wc->w_unwritten_list)) {
2265 		struct ocfs2_unwritten_extent *ue = NULL;
2266 
2267 		ue = list_first_entry(&wc->w_unwritten_list,
2268 				      struct ocfs2_unwritten_extent,
2269 				      ue_node);
2270 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2271 		/* The physical address may be 0, fill it. */
2272 		ue->ue_phys = desc->c_phys;
2273 
2274 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2275 		dwc->dw_zero_count += wc->w_unwritten_count;
2276 	}
2277 
2278 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2279 	BUG_ON(ret != len);
2280 	ret = 0;
2281 unlock:
2282 	up_write(&oi->ip_alloc_sem);
2283 	ocfs2_inode_unlock(inode, 1);
2284 	brelse(di_bh);
2285 out:
2286 	if (ret < 0)
2287 		ret = -EIO;
2288 	return ret;
2289 }
2290 
2291 static int ocfs2_dio_end_io_write(struct inode *inode,
2292 				  struct ocfs2_dio_write_ctxt *dwc,
2293 				  loff_t offset,
2294 				  ssize_t bytes)
2295 {
2296 	struct ocfs2_cached_dealloc_ctxt dealloc;
2297 	struct ocfs2_extent_tree et;
2298 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2299 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2300 	struct ocfs2_unwritten_extent *ue = NULL;
2301 	struct buffer_head *di_bh = NULL;
2302 	struct ocfs2_dinode *di;
2303 	struct ocfs2_alloc_context *data_ac = NULL;
2304 	struct ocfs2_alloc_context *meta_ac = NULL;
2305 	handle_t *handle = NULL;
2306 	loff_t end = offset + bytes;
2307 	int ret = 0, credits = 0, locked = 0;
2308 
2309 	ocfs2_init_dealloc_ctxt(&dealloc);
2310 
2311 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2312 	 * of these happen, we can skip all this. */
2313 	if (list_empty(&dwc->dw_zero_list) &&
2314 	    end <= i_size_read(inode) &&
2315 	    !dwc->dw_orphaned)
2316 		goto out;
2317 
2318 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319 	 * are in that context. */
2320 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2321 		inode_lock(inode);
2322 		locked = 1;
2323 	}
2324 
2325 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2326 	if (ret < 0) {
2327 		mlog_errno(ret);
2328 		goto out;
2329 	}
2330 
2331 	down_write(&oi->ip_alloc_sem);
2332 
2333 	/* Delete orphan before acquire i_mutex. */
2334 	if (dwc->dw_orphaned) {
2335 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336 
2337 		end = end > i_size_read(inode) ? end : 0;
2338 
2339 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2340 				!!end, end);
2341 		if (ret < 0)
2342 			mlog_errno(ret);
2343 	}
2344 
2345 	di = (struct ocfs2_dinode *)di_bh->b_data;
2346 
2347 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348 
2349 	/* Attach dealloc with extent tree in case that we may reuse extents
2350 	 * which are already unlinked from current extent tree due to extent
2351 	 * rotation and merging.
2352 	 */
2353 	et.et_dealloc = &dealloc;
2354 
2355 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2356 				    &data_ac, &meta_ac);
2357 	if (ret) {
2358 		mlog_errno(ret);
2359 		goto unlock;
2360 	}
2361 
2362 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363 
2364 	handle = ocfs2_start_trans(osb, credits);
2365 	if (IS_ERR(handle)) {
2366 		ret = PTR_ERR(handle);
2367 		mlog_errno(ret);
2368 		goto unlock;
2369 	}
2370 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2371 				      OCFS2_JOURNAL_ACCESS_WRITE);
2372 	if (ret) {
2373 		mlog_errno(ret);
2374 		goto commit;
2375 	}
2376 
2377 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2378 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2379 						ue->ue_cpos, 1,
2380 						ue->ue_phys,
2381 						meta_ac, &dealloc);
2382 		if (ret < 0) {
2383 			mlog_errno(ret);
2384 			break;
2385 		}
2386 	}
2387 
2388 	if (end > i_size_read(inode)) {
2389 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390 		if (ret < 0)
2391 			mlog_errno(ret);
2392 	}
2393 commit:
2394 	ocfs2_commit_trans(osb, handle);
2395 unlock:
2396 	up_write(&oi->ip_alloc_sem);
2397 	ocfs2_inode_unlock(inode, 1);
2398 	brelse(di_bh);
2399 out:
2400 	if (data_ac)
2401 		ocfs2_free_alloc_context(data_ac);
2402 	if (meta_ac)
2403 		ocfs2_free_alloc_context(meta_ac);
2404 	ocfs2_run_deallocs(osb, &dealloc);
2405 	if (locked)
2406 		inode_unlock(inode);
2407 	ocfs2_dio_free_write_ctx(inode, dwc);
2408 
2409 	return ret;
2410 }
2411 
2412 /*
2413  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2414  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2415  * to protect io on one node from truncation on another.
2416  */
2417 static int ocfs2_dio_end_io(struct kiocb *iocb,
2418 			    loff_t offset,
2419 			    ssize_t bytes,
2420 			    void *private)
2421 {
2422 	struct inode *inode = file_inode(iocb->ki_filp);
2423 	int level;
2424 	int ret = 0;
2425 
2426 	/* this io's submitter should not have unlocked this before we could */
2427 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428 
2429 	if (bytes <= 0)
2430 		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2431 				 (long long)bytes);
2432 	if (private) {
2433 		if (bytes > 0)
2434 			ret = ocfs2_dio_end_io_write(inode, private, offset,
2435 						     bytes);
2436 		else
2437 			ocfs2_dio_free_write_ctx(inode, private);
2438 	}
2439 
2440 	ocfs2_iocb_clear_rw_locked(iocb);
2441 
2442 	level = ocfs2_iocb_rw_locked_level(iocb);
2443 	ocfs2_rw_unlock(inode, level);
2444 	return ret;
2445 }
2446 
2447 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448 {
2449 	struct file *file = iocb->ki_filp;
2450 	struct inode *inode = file->f_mapping->host;
2451 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2452 	get_block_t *get_block;
2453 
2454 	/*
2455 	 * Fallback to buffered I/O if we see an inode without
2456 	 * extents.
2457 	 */
2458 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2459 		return 0;
2460 
2461 	/* Fallback to buffered I/O if we do not support append dio. */
2462 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2463 	    !ocfs2_supports_append_dio(osb))
2464 		return 0;
2465 
2466 	if (iov_iter_rw(iter) == READ)
2467 		get_block = ocfs2_lock_get_block;
2468 	else
2469 		get_block = ocfs2_dio_wr_get_block;
2470 
2471 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2472 				    iter, get_block,
2473 				    ocfs2_dio_end_io, NULL, 0);
2474 }
2475 
2476 const struct address_space_operations ocfs2_aops = {
2477 	.readpage		= ocfs2_readpage,
2478 	.readpages		= ocfs2_readpages,
2479 	.writepage		= ocfs2_writepage,
2480 	.write_begin		= ocfs2_write_begin,
2481 	.write_end		= ocfs2_write_end,
2482 	.bmap			= ocfs2_bmap,
2483 	.direct_IO		= ocfs2_direct_IO,
2484 	.invalidatepage		= block_invalidatepage,
2485 	.releasepage		= ocfs2_releasepage,
2486 	.migratepage		= buffer_migrate_page,
2487 	.is_partially_uptodate	= block_is_partially_uptodate,
2488 	.error_remove_page	= generic_error_remove_page,
2489 };
2490