xref: /linux/fs/ocfs2/aops.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32 
33 #include "ocfs2.h"
34 
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45 
46 #include "buffer_head_io.h"
47 
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 				   struct buffer_head *bh_result, int create)
50 {
51 	int err = -EIO;
52 	int status;
53 	struct ocfs2_dinode *fe = NULL;
54 	struct buffer_head *bh = NULL;
55 	struct buffer_head *buffer_cache_bh = NULL;
56 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 	void *kaddr;
58 
59 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 		   (unsigned long long)iblock, bh_result, create);
61 
62 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63 
64 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 		     (unsigned long long)iblock);
67 		goto bail;
68 	}
69 
70 	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 				  OCFS2_I(inode)->ip_blkno,
72 				  &bh, OCFS2_BH_CACHED, inode);
73 	if (status < 0) {
74 		mlog_errno(status);
75 		goto bail;
76 	}
77 	fe = (struct ocfs2_dinode *) bh->b_data;
78 
79 	if (!OCFS2_IS_VALID_DINODE(fe)) {
80 		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 		     fe->i_signature);
83 		goto bail;
84 	}
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		mlog(ML_ERROR, "block offset is outside the allocated size: "
89 		     "%llu\n", (unsigned long long)iblock);
90 		goto bail;
91 	}
92 
93 	/* We don't use the page cache to create symlink data, so if
94 	 * need be, copy it over from the buffer cache. */
95 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 			    iblock;
98 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 		if (!buffer_cache_bh) {
100 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 			goto bail;
102 		}
103 
104 		/* we haven't locked out transactions, so a commit
105 		 * could've happened. Since we've got a reference on
106 		 * the bh, even if it commits while we're doing the
107 		 * copy, the data is still good. */
108 		if (buffer_jbd(buffer_cache_bh)
109 		    && ocfs2_inode_is_new(inode)) {
110 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 			if (!kaddr) {
112 				mlog(ML_ERROR, "couldn't kmap!\n");
113 				goto bail;
114 			}
115 			memcpy(kaddr + (bh_result->b_size * iblock),
116 			       buffer_cache_bh->b_data,
117 			       bh_result->b_size);
118 			kunmap_atomic(kaddr, KM_USER0);
119 			set_buffer_uptodate(bh_result);
120 		}
121 		brelse(buffer_cache_bh);
122 	}
123 
124 	map_bh(bh_result, inode->i_sb,
125 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126 
127 	err = 0;
128 
129 bail:
130 	if (bh)
131 		brelse(bh);
132 
133 	mlog_exit(err);
134 	return err;
135 }
136 
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 			   struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 p_blkno, past_eof;
143 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 
145 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 		   (unsigned long long)iblock, bh_result, create);
147 
148 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 		     inode, inode->i_ino);
151 
152 	if (S_ISLNK(inode->i_mode)) {
153 		/* this always does I/O for some reason. */
154 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 		goto bail;
156 	}
157 
158 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 					  &ext_flags);
160 	if (err) {
161 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 		     (unsigned long long)p_blkno);
164 		goto bail;
165 	}
166 
167 	/*
168 	 * ocfs2 never allocates in this function - the only time we
169 	 * need to use BH_New is when we're extending i_size on a file
170 	 * system which doesn't support holes, in which case BH_New
171 	 * allows block_prepare_write() to zero.
172 	 */
173 	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 			"ino %lu, iblock %llu\n", inode->i_ino,
175 			(unsigned long long)iblock);
176 
177 	/* Treat the unwritten extent as a hole for zeroing purposes. */
178 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 		map_bh(bh_result, inode->i_sb, p_blkno);
180 
181 	if (!ocfs2_sparse_alloc(osb)) {
182 		if (p_blkno == 0) {
183 			err = -EIO;
184 			mlog(ML_ERROR,
185 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 			     (unsigned long long)iblock,
187 			     (unsigned long long)p_blkno,
188 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 			dump_stack();
191 		}
192 
193 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 		     (unsigned long long)past_eof);
196 
197 		if (create && (iblock >= past_eof))
198 			set_buffer_new(bh_result);
199 	}
200 
201 bail:
202 	if (err < 0)
203 		err = -EIO;
204 
205 	mlog_exit(err);
206 	return err;
207 }
208 
209 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
210 			   struct buffer_head *di_bh)
211 {
212 	void *kaddr;
213 	unsigned int size;
214 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
215 
216 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
217 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
218 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
219 		return -EROFS;
220 	}
221 
222 	size = i_size_read(inode);
223 
224 	if (size > PAGE_CACHE_SIZE ||
225 	    size > ocfs2_max_inline_data(inode->i_sb)) {
226 		ocfs2_error(inode->i_sb,
227 			    "Inode %llu has with inline data has bad size: %u",
228 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
229 		return -EROFS;
230 	}
231 
232 	kaddr = kmap_atomic(page, KM_USER0);
233 	if (size)
234 		memcpy(kaddr, di->id2.i_data.id_data, size);
235 	/* Clear the remaining part of the page */
236 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
237 	flush_dcache_page(page);
238 	kunmap_atomic(kaddr, KM_USER0);
239 
240 	SetPageUptodate(page);
241 
242 	return 0;
243 }
244 
245 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
246 {
247 	int ret;
248 	struct buffer_head *di_bh = NULL;
249 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
250 
251 	BUG_ON(!PageLocked(page));
252 	BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
253 
254 	ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
255 			       OCFS2_BH_CACHED, inode);
256 	if (ret) {
257 		mlog_errno(ret);
258 		goto out;
259 	}
260 
261 	ret = ocfs2_read_inline_data(inode, page, di_bh);
262 out:
263 	unlock_page(page);
264 
265 	brelse(di_bh);
266 	return ret;
267 }
268 
269 static int ocfs2_readpage(struct file *file, struct page *page)
270 {
271 	struct inode *inode = page->mapping->host;
272 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
273 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
274 	int ret, unlock = 1;
275 
276 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
277 
278 	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
279 	if (ret != 0) {
280 		if (ret == AOP_TRUNCATED_PAGE)
281 			unlock = 0;
282 		mlog_errno(ret);
283 		goto out;
284 	}
285 
286 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
287 		ret = AOP_TRUNCATED_PAGE;
288 		goto out_meta_unlock;
289 	}
290 
291 	/*
292 	 * i_size might have just been updated as we grabed the meta lock.  We
293 	 * might now be discovering a truncate that hit on another node.
294 	 * block_read_full_page->get_block freaks out if it is asked to read
295 	 * beyond the end of a file, so we check here.  Callers
296 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
297 	 * and notice that the page they just read isn't needed.
298 	 *
299 	 * XXX sys_readahead() seems to get that wrong?
300 	 */
301 	if (start >= i_size_read(inode)) {
302 		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
303 		SetPageUptodate(page);
304 		ret = 0;
305 		goto out_alloc;
306 	}
307 
308 	ret = ocfs2_data_lock_with_page(inode, 0, page);
309 	if (ret != 0) {
310 		if (ret == AOP_TRUNCATED_PAGE)
311 			unlock = 0;
312 		mlog_errno(ret);
313 		goto out_alloc;
314 	}
315 
316 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317 		ret = ocfs2_readpage_inline(inode, page);
318 	else
319 		ret = block_read_full_page(page, ocfs2_get_block);
320 	unlock = 0;
321 
322 	ocfs2_data_unlock(inode, 0);
323 out_alloc:
324 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
325 out_meta_unlock:
326 	ocfs2_meta_unlock(inode, 0);
327 out:
328 	if (unlock)
329 		unlock_page(page);
330 	mlog_exit(ret);
331 	return ret;
332 }
333 
334 /* Note: Because we don't support holes, our allocation has
335  * already happened (allocation writes zeros to the file data)
336  * so we don't have to worry about ordered writes in
337  * ocfs2_writepage.
338  *
339  * ->writepage is called during the process of invalidating the page cache
340  * during blocked lock processing.  It can't block on any cluster locks
341  * to during block mapping.  It's relying on the fact that the block
342  * mapping can't have disappeared under the dirty pages that it is
343  * being asked to write back.
344  */
345 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
346 {
347 	int ret;
348 
349 	mlog_entry("(0x%p)\n", page);
350 
351 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
352 
353 	mlog_exit(ret);
354 
355 	return ret;
356 }
357 
358 /*
359  * This is called from ocfs2_write_zero_page() which has handled it's
360  * own cluster locking and has ensured allocation exists for those
361  * blocks to be written.
362  */
363 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
364 			       unsigned from, unsigned to)
365 {
366 	int ret;
367 
368 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
369 
370 	return ret;
371 }
372 
373 /* Taken from ext3. We don't necessarily need the full blown
374  * functionality yet, but IMHO it's better to cut and paste the whole
375  * thing so we can avoid introducing our own bugs (and easily pick up
376  * their fixes when they happen) --Mark */
377 int walk_page_buffers(	handle_t *handle,
378 			struct buffer_head *head,
379 			unsigned from,
380 			unsigned to,
381 			int *partial,
382 			int (*fn)(	handle_t *handle,
383 					struct buffer_head *bh))
384 {
385 	struct buffer_head *bh;
386 	unsigned block_start, block_end;
387 	unsigned blocksize = head->b_size;
388 	int err, ret = 0;
389 	struct buffer_head *next;
390 
391 	for (	bh = head, block_start = 0;
392 		ret == 0 && (bh != head || !block_start);
393 	    	block_start = block_end, bh = next)
394 	{
395 		next = bh->b_this_page;
396 		block_end = block_start + blocksize;
397 		if (block_end <= from || block_start >= to) {
398 			if (partial && !buffer_uptodate(bh))
399 				*partial = 1;
400 			continue;
401 		}
402 		err = (*fn)(handle, bh);
403 		if (!ret)
404 			ret = err;
405 	}
406 	return ret;
407 }
408 
409 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
410 							 struct page *page,
411 							 unsigned from,
412 							 unsigned to)
413 {
414 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
415 	handle_t *handle = NULL;
416 	int ret = 0;
417 
418 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
419 	if (!handle) {
420 		ret = -ENOMEM;
421 		mlog_errno(ret);
422 		goto out;
423 	}
424 
425 	if (ocfs2_should_order_data(inode)) {
426 		ret = walk_page_buffers(handle,
427 					page_buffers(page),
428 					from, to, NULL,
429 					ocfs2_journal_dirty_data);
430 		if (ret < 0)
431 			mlog_errno(ret);
432 	}
433 out:
434 	if (ret) {
435 		if (handle)
436 			ocfs2_commit_trans(osb, handle);
437 		handle = ERR_PTR(ret);
438 	}
439 	return handle;
440 }
441 
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444 	sector_t status;
445 	u64 p_blkno = 0;
446 	int err = 0;
447 	struct inode *inode = mapping->host;
448 
449 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
450 
451 	/* We don't need to lock journal system files, since they aren't
452 	 * accessed concurrently from multiple nodes.
453 	 */
454 	if (!INODE_JOURNAL(inode)) {
455 		err = ocfs2_meta_lock(inode, NULL, 0);
456 		if (err) {
457 			if (err != -ENOENT)
458 				mlog_errno(err);
459 			goto bail;
460 		}
461 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
462 	}
463 
464 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
465 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
466 						  NULL);
467 
468 	if (!INODE_JOURNAL(inode)) {
469 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
470 		ocfs2_meta_unlock(inode, 0);
471 	}
472 
473 	if (err) {
474 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
475 		     (unsigned long long)block);
476 		mlog_errno(err);
477 		goto bail;
478 	}
479 
480 bail:
481 	status = err ? 0 : p_blkno;
482 
483 	mlog_exit((int)status);
484 
485 	return status;
486 }
487 
488 /*
489  * TODO: Make this into a generic get_blocks function.
490  *
491  * From do_direct_io in direct-io.c:
492  *  "So what we do is to permit the ->get_blocks function to populate
493  *   bh.b_size with the size of IO which is permitted at this offset and
494  *   this i_blkbits."
495  *
496  * This function is called directly from get_more_blocks in direct-io.c.
497  *
498  * called like this: dio->get_blocks(dio->inode, fs_startblk,
499  * 					fs_count, map_bh, dio->rw == WRITE);
500  */
501 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
502 				     struct buffer_head *bh_result, int create)
503 {
504 	int ret;
505 	u64 p_blkno, inode_blocks, contig_blocks;
506 	unsigned int ext_flags;
507 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
508 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
509 
510 	/* This function won't even be called if the request isn't all
511 	 * nicely aligned and of the right size, so there's no need
512 	 * for us to check any of that. */
513 
514 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
515 
516 	/*
517 	 * Any write past EOF is not allowed because we'd be extending.
518 	 */
519 	if (create && (iblock + max_blocks) > inode_blocks) {
520 		ret = -EIO;
521 		goto bail;
522 	}
523 
524 	/* This figures out the size of the next contiguous block, and
525 	 * our logical offset */
526 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
527 					  &contig_blocks, &ext_flags);
528 	if (ret) {
529 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
530 		     (unsigned long long)iblock);
531 		ret = -EIO;
532 		goto bail;
533 	}
534 
535 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
536 		ocfs2_error(inode->i_sb,
537 			    "Inode %llu has a hole at block %llu\n",
538 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
539 			    (unsigned long long)iblock);
540 		ret = -EROFS;
541 		goto bail;
542 	}
543 
544 	/*
545 	 * get_more_blocks() expects us to describe a hole by clearing
546 	 * the mapped bit on bh_result().
547 	 *
548 	 * Consider an unwritten extent as a hole.
549 	 */
550 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
551 		map_bh(bh_result, inode->i_sb, p_blkno);
552 	else {
553 		/*
554 		 * ocfs2_prepare_inode_for_write() should have caught
555 		 * the case where we'd be filling a hole and triggered
556 		 * a buffered write instead.
557 		 */
558 		if (create) {
559 			ret = -EIO;
560 			mlog_errno(ret);
561 			goto bail;
562 		}
563 
564 		clear_buffer_mapped(bh_result);
565 	}
566 
567 	/* make sure we don't map more than max_blocks blocks here as
568 	   that's all the kernel will handle at this point. */
569 	if (max_blocks < contig_blocks)
570 		contig_blocks = max_blocks;
571 	bh_result->b_size = contig_blocks << blocksize_bits;
572 bail:
573 	return ret;
574 }
575 
576 /*
577  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
578  * particularly interested in the aio/dio case.  Like the core uses
579  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
580  * truncation on another.
581  */
582 static void ocfs2_dio_end_io(struct kiocb *iocb,
583 			     loff_t offset,
584 			     ssize_t bytes,
585 			     void *private)
586 {
587 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
588 	int level;
589 
590 	/* this io's submitter should not have unlocked this before we could */
591 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
592 
593 	ocfs2_iocb_clear_rw_locked(iocb);
594 
595 	level = ocfs2_iocb_rw_locked_level(iocb);
596 	if (!level)
597 		up_read(&inode->i_alloc_sem);
598 	ocfs2_rw_unlock(inode, level);
599 }
600 
601 /*
602  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604  * do journalled data.
605  */
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607 {
608 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609 
610 	journal_invalidatepage(journal, page, offset);
611 }
612 
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
614 {
615 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616 
617 	if (!page_has_buffers(page))
618 		return 0;
619 	return journal_try_to_free_buffers(journal, page, wait);
620 }
621 
622 static ssize_t ocfs2_direct_IO(int rw,
623 			       struct kiocb *iocb,
624 			       const struct iovec *iov,
625 			       loff_t offset,
626 			       unsigned long nr_segs)
627 {
628 	struct file *file = iocb->ki_filp;
629 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
630 	int ret;
631 
632 	mlog_entry_void();
633 
634 	/*
635 	 * Fallback to buffered I/O if we see an inode without
636 	 * extents.
637 	 */
638 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
639 		return 0;
640 
641 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
642 		/*
643 		 * We get PR data locks even for O_DIRECT.  This
644 		 * allows concurrent O_DIRECT I/O but doesn't let
645 		 * O_DIRECT with extending and buffered zeroing writes
646 		 * race.  If they did race then the buffered zeroing
647 		 * could be written back after the O_DIRECT I/O.  It's
648 		 * one thing to tell people not to mix buffered and
649 		 * O_DIRECT writes, but expecting them to understand
650 		 * that file extension is also an implicit buffered
651 		 * write is too much.  By getting the PR we force
652 		 * writeback of the buffered zeroing before
653 		 * proceeding.
654 		 */
655 		ret = ocfs2_data_lock(inode, 0);
656 		if (ret < 0) {
657 			mlog_errno(ret);
658 			goto out;
659 		}
660 		ocfs2_data_unlock(inode, 0);
661 	}
662 
663 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
664 					    inode->i_sb->s_bdev, iov, offset,
665 					    nr_segs,
666 					    ocfs2_direct_IO_get_blocks,
667 					    ocfs2_dio_end_io);
668 out:
669 	mlog_exit(ret);
670 	return ret;
671 }
672 
673 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
674 					    u32 cpos,
675 					    unsigned int *start,
676 					    unsigned int *end)
677 {
678 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
679 
680 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
681 		unsigned int cpp;
682 
683 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
684 
685 		cluster_start = cpos % cpp;
686 		cluster_start = cluster_start << osb->s_clustersize_bits;
687 
688 		cluster_end = cluster_start + osb->s_clustersize;
689 	}
690 
691 	BUG_ON(cluster_start > PAGE_SIZE);
692 	BUG_ON(cluster_end > PAGE_SIZE);
693 
694 	if (start)
695 		*start = cluster_start;
696 	if (end)
697 		*end = cluster_end;
698 }
699 
700 /*
701  * 'from' and 'to' are the region in the page to avoid zeroing.
702  *
703  * If pagesize > clustersize, this function will avoid zeroing outside
704  * of the cluster boundary.
705  *
706  * from == to == 0 is code for "zero the entire cluster region"
707  */
708 static void ocfs2_clear_page_regions(struct page *page,
709 				     struct ocfs2_super *osb, u32 cpos,
710 				     unsigned from, unsigned to)
711 {
712 	void *kaddr;
713 	unsigned int cluster_start, cluster_end;
714 
715 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
716 
717 	kaddr = kmap_atomic(page, KM_USER0);
718 
719 	if (from || to) {
720 		if (from > cluster_start)
721 			memset(kaddr + cluster_start, 0, from - cluster_start);
722 		if (to < cluster_end)
723 			memset(kaddr + to, 0, cluster_end - to);
724 	} else {
725 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
726 	}
727 
728 	kunmap_atomic(kaddr, KM_USER0);
729 }
730 
731 /*
732  * Some of this taken from block_prepare_write(). We already have our
733  * mapping by now though, and the entire write will be allocating or
734  * it won't, so not much need to use BH_New.
735  *
736  * This will also skip zeroing, which is handled externally.
737  */
738 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
739 			  struct inode *inode, unsigned int from,
740 			  unsigned int to, int new)
741 {
742 	int ret = 0;
743 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
744 	unsigned int block_end, block_start;
745 	unsigned int bsize = 1 << inode->i_blkbits;
746 
747 	if (!page_has_buffers(page))
748 		create_empty_buffers(page, bsize, 0);
749 
750 	head = page_buffers(page);
751 	for (bh = head, block_start = 0; bh != head || !block_start;
752 	     bh = bh->b_this_page, block_start += bsize) {
753 		block_end = block_start + bsize;
754 
755 		clear_buffer_new(bh);
756 
757 		/*
758 		 * Ignore blocks outside of our i/o range -
759 		 * they may belong to unallocated clusters.
760 		 */
761 		if (block_start >= to || block_end <= from) {
762 			if (PageUptodate(page))
763 				set_buffer_uptodate(bh);
764 			continue;
765 		}
766 
767 		/*
768 		 * For an allocating write with cluster size >= page
769 		 * size, we always write the entire page.
770 		 */
771 		if (new)
772 			set_buffer_new(bh);
773 
774 		if (!buffer_mapped(bh)) {
775 			map_bh(bh, inode->i_sb, *p_blkno);
776 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
777 		}
778 
779 		if (PageUptodate(page)) {
780 			if (!buffer_uptodate(bh))
781 				set_buffer_uptodate(bh);
782 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
783 			   !buffer_new(bh) &&
784 			   (block_start < from || block_end > to)) {
785 			ll_rw_block(READ, 1, &bh);
786 			*wait_bh++=bh;
787 		}
788 
789 		*p_blkno = *p_blkno + 1;
790 	}
791 
792 	/*
793 	 * If we issued read requests - let them complete.
794 	 */
795 	while(wait_bh > wait) {
796 		wait_on_buffer(*--wait_bh);
797 		if (!buffer_uptodate(*wait_bh))
798 			ret = -EIO;
799 	}
800 
801 	if (ret == 0 || !new)
802 		return ret;
803 
804 	/*
805 	 * If we get -EIO above, zero out any newly allocated blocks
806 	 * to avoid exposing stale data.
807 	 */
808 	bh = head;
809 	block_start = 0;
810 	do {
811 		block_end = block_start + bsize;
812 		if (block_end <= from)
813 			goto next_bh;
814 		if (block_start >= to)
815 			break;
816 
817 		zero_user_page(page, block_start, bh->b_size, KM_USER0);
818 		set_buffer_uptodate(bh);
819 		mark_buffer_dirty(bh);
820 
821 next_bh:
822 		block_start = block_end;
823 		bh = bh->b_this_page;
824 	} while (bh != head);
825 
826 	return ret;
827 }
828 
829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830 #define OCFS2_MAX_CTXT_PAGES	1
831 #else
832 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
833 #endif
834 
835 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
836 
837 /*
838  * Describe the state of a single cluster to be written to.
839  */
840 struct ocfs2_write_cluster_desc {
841 	u32		c_cpos;
842 	u32		c_phys;
843 	/*
844 	 * Give this a unique field because c_phys eventually gets
845 	 * filled.
846 	 */
847 	unsigned	c_new;
848 	unsigned	c_unwritten;
849 };
850 
851 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
852 {
853 	return d->c_new || d->c_unwritten;
854 }
855 
856 struct ocfs2_write_ctxt {
857 	/* Logical cluster position / len of write */
858 	u32				w_cpos;
859 	u32				w_clen;
860 
861 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
862 
863 	/*
864 	 * This is true if page_size > cluster_size.
865 	 *
866 	 * It triggers a set of special cases during write which might
867 	 * have to deal with allocating writes to partial pages.
868 	 */
869 	unsigned int			w_large_pages;
870 
871 	/*
872 	 * Pages involved in this write.
873 	 *
874 	 * w_target_page is the page being written to by the user.
875 	 *
876 	 * w_pages is an array of pages which always contains
877 	 * w_target_page, and in the case of an allocating write with
878 	 * page_size < cluster size, it will contain zero'd and mapped
879 	 * pages adjacent to w_target_page which need to be written
880 	 * out in so that future reads from that region will get
881 	 * zero's.
882 	 */
883 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
884 	unsigned int			w_num_pages;
885 	struct page			*w_target_page;
886 
887 	/*
888 	 * ocfs2_write_end() uses this to know what the real range to
889 	 * write in the target should be.
890 	 */
891 	unsigned int			w_target_from;
892 	unsigned int			w_target_to;
893 
894 	/*
895 	 * We could use journal_current_handle() but this is cleaner,
896 	 * IMHO -Mark
897 	 */
898 	handle_t			*w_handle;
899 
900 	struct buffer_head		*w_di_bh;
901 
902 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
903 };
904 
905 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
906 {
907 	int i;
908 
909 	for(i = 0; i < num_pages; i++) {
910 		if (pages[i]) {
911 			unlock_page(pages[i]);
912 			mark_page_accessed(pages[i]);
913 			page_cache_release(pages[i]);
914 		}
915 	}
916 }
917 
918 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
919 {
920 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
921 
922 	brelse(wc->w_di_bh);
923 	kfree(wc);
924 }
925 
926 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
927 				  struct ocfs2_super *osb, loff_t pos,
928 				  unsigned len, struct buffer_head *di_bh)
929 {
930 	u32 cend;
931 	struct ocfs2_write_ctxt *wc;
932 
933 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
934 	if (!wc)
935 		return -ENOMEM;
936 
937 	wc->w_cpos = pos >> osb->s_clustersize_bits;
938 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
939 	wc->w_clen = cend - wc->w_cpos + 1;
940 	get_bh(di_bh);
941 	wc->w_di_bh = di_bh;
942 
943 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
944 		wc->w_large_pages = 1;
945 	else
946 		wc->w_large_pages = 0;
947 
948 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
949 
950 	*wcp = wc;
951 
952 	return 0;
953 }
954 
955 /*
956  * If a page has any new buffers, zero them out here, and mark them uptodate
957  * and dirty so they'll be written out (in order to prevent uninitialised
958  * block data from leaking). And clear the new bit.
959  */
960 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
961 {
962 	unsigned int block_start, block_end;
963 	struct buffer_head *head, *bh;
964 
965 	BUG_ON(!PageLocked(page));
966 	if (!page_has_buffers(page))
967 		return;
968 
969 	bh = head = page_buffers(page);
970 	block_start = 0;
971 	do {
972 		block_end = block_start + bh->b_size;
973 
974 		if (buffer_new(bh)) {
975 			if (block_end > from && block_start < to) {
976 				if (!PageUptodate(page)) {
977 					unsigned start, end;
978 
979 					start = max(from, block_start);
980 					end = min(to, block_end);
981 
982 					zero_user_page(page, start, end - start, KM_USER0);
983 					set_buffer_uptodate(bh);
984 				}
985 
986 				clear_buffer_new(bh);
987 				mark_buffer_dirty(bh);
988 			}
989 		}
990 
991 		block_start = block_end;
992 		bh = bh->b_this_page;
993 	} while (bh != head);
994 }
995 
996 /*
997  * Only called when we have a failure during allocating write to write
998  * zero's to the newly allocated region.
999  */
1000 static void ocfs2_write_failure(struct inode *inode,
1001 				struct ocfs2_write_ctxt *wc,
1002 				loff_t user_pos, unsigned user_len)
1003 {
1004 	int i;
1005 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1006 		to = user_pos + user_len;
1007 	struct page *tmppage;
1008 
1009 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1010 
1011 	for(i = 0; i < wc->w_num_pages; i++) {
1012 		tmppage = wc->w_pages[i];
1013 
1014 		if (ocfs2_should_order_data(inode))
1015 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1016 					  from, to, NULL,
1017 					  ocfs2_journal_dirty_data);
1018 
1019 		block_commit_write(tmppage, from, to);
1020 	}
1021 }
1022 
1023 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1024 					struct ocfs2_write_ctxt *wc,
1025 					struct page *page, u32 cpos,
1026 					loff_t user_pos, unsigned user_len,
1027 					int new)
1028 {
1029 	int ret;
1030 	unsigned int map_from = 0, map_to = 0;
1031 	unsigned int cluster_start, cluster_end;
1032 	unsigned int user_data_from = 0, user_data_to = 0;
1033 
1034 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1035 					&cluster_start, &cluster_end);
1036 
1037 	if (page == wc->w_target_page) {
1038 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1039 		map_to = map_from + user_len;
1040 
1041 		if (new)
1042 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1043 						    cluster_start, cluster_end,
1044 						    new);
1045 		else
1046 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 						    map_from, map_to, new);
1048 		if (ret) {
1049 			mlog_errno(ret);
1050 			goto out;
1051 		}
1052 
1053 		user_data_from = map_from;
1054 		user_data_to = map_to;
1055 		if (new) {
1056 			map_from = cluster_start;
1057 			map_to = cluster_end;
1058 		}
1059 	} else {
1060 		/*
1061 		 * If we haven't allocated the new page yet, we
1062 		 * shouldn't be writing it out without copying user
1063 		 * data. This is likely a math error from the caller.
1064 		 */
1065 		BUG_ON(!new);
1066 
1067 		map_from = cluster_start;
1068 		map_to = cluster_end;
1069 
1070 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 					    cluster_start, cluster_end, new);
1072 		if (ret) {
1073 			mlog_errno(ret);
1074 			goto out;
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * Parts of newly allocated pages need to be zero'd.
1080 	 *
1081 	 * Above, we have also rewritten 'to' and 'from' - as far as
1082 	 * the rest of the function is concerned, the entire cluster
1083 	 * range inside of a page needs to be written.
1084 	 *
1085 	 * We can skip this if the page is up to date - it's already
1086 	 * been zero'd from being read in as a hole.
1087 	 */
1088 	if (new && !PageUptodate(page))
1089 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1090 					 cpos, user_data_from, user_data_to);
1091 
1092 	flush_dcache_page(page);
1093 
1094 out:
1095 	return ret;
1096 }
1097 
1098 /*
1099  * This function will only grab one clusters worth of pages.
1100  */
1101 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1102 				      struct ocfs2_write_ctxt *wc,
1103 				      u32 cpos, loff_t user_pos, int new,
1104 				      struct page *mmap_page)
1105 {
1106 	int ret = 0, i;
1107 	unsigned long start, target_index, index;
1108 	struct inode *inode = mapping->host;
1109 
1110 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1111 
1112 	/*
1113 	 * Figure out how many pages we'll be manipulating here. For
1114 	 * non allocating write, we just change the one
1115 	 * page. Otherwise, we'll need a whole clusters worth.
1116 	 */
1117 	if (new) {
1118 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1119 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1120 	} else {
1121 		wc->w_num_pages = 1;
1122 		start = target_index;
1123 	}
1124 
1125 	for(i = 0; i < wc->w_num_pages; i++) {
1126 		index = start + i;
1127 
1128 		if (index == target_index && mmap_page) {
1129 			/*
1130 			 * ocfs2_pagemkwrite() is a little different
1131 			 * and wants us to directly use the page
1132 			 * passed in.
1133 			 */
1134 			lock_page(mmap_page);
1135 
1136 			if (mmap_page->mapping != mapping) {
1137 				unlock_page(mmap_page);
1138 				/*
1139 				 * Sanity check - the locking in
1140 				 * ocfs2_pagemkwrite() should ensure
1141 				 * that this code doesn't trigger.
1142 				 */
1143 				ret = -EINVAL;
1144 				mlog_errno(ret);
1145 				goto out;
1146 			}
1147 
1148 			page_cache_get(mmap_page);
1149 			wc->w_pages[i] = mmap_page;
1150 		} else {
1151 			wc->w_pages[i] = find_or_create_page(mapping, index,
1152 							     GFP_NOFS);
1153 			if (!wc->w_pages[i]) {
1154 				ret = -ENOMEM;
1155 				mlog_errno(ret);
1156 				goto out;
1157 			}
1158 		}
1159 
1160 		if (index == target_index)
1161 			wc->w_target_page = wc->w_pages[i];
1162 	}
1163 out:
1164 	return ret;
1165 }
1166 
1167 /*
1168  * Prepare a single cluster for write one cluster into the file.
1169  */
1170 static int ocfs2_write_cluster(struct address_space *mapping,
1171 			       u32 phys, unsigned int unwritten,
1172 			       struct ocfs2_alloc_context *data_ac,
1173 			       struct ocfs2_alloc_context *meta_ac,
1174 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1175 			       loff_t user_pos, unsigned user_len)
1176 {
1177 	int ret, i, new, should_zero = 0;
1178 	u64 v_blkno, p_blkno;
1179 	struct inode *inode = mapping->host;
1180 
1181 	new = phys == 0 ? 1 : 0;
1182 	if (new || unwritten)
1183 		should_zero = 1;
1184 
1185 	if (new) {
1186 		u32 tmp_pos;
1187 
1188 		/*
1189 		 * This is safe to call with the page locks - it won't take
1190 		 * any additional semaphores or cluster locks.
1191 		 */
1192 		tmp_pos = cpos;
1193 		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1194 						 &tmp_pos, 1, 0, wc->w_di_bh,
1195 						 wc->w_handle, data_ac,
1196 						 meta_ac, NULL);
1197 		/*
1198 		 * This shouldn't happen because we must have already
1199 		 * calculated the correct meta data allocation required. The
1200 		 * internal tree allocation code should know how to increase
1201 		 * transaction credits itself.
1202 		 *
1203 		 * If need be, we could handle -EAGAIN for a
1204 		 * RESTART_TRANS here.
1205 		 */
1206 		mlog_bug_on_msg(ret == -EAGAIN,
1207 				"Inode %llu: EAGAIN return during allocation.\n",
1208 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1209 		if (ret < 0) {
1210 			mlog_errno(ret);
1211 			goto out;
1212 		}
1213 	} else if (unwritten) {
1214 		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1215 						wc->w_handle, cpos, 1, phys,
1216 						meta_ac, &wc->w_dealloc);
1217 		if (ret < 0) {
1218 			mlog_errno(ret);
1219 			goto out;
1220 		}
1221 	}
1222 
1223 	if (should_zero)
1224 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1225 	else
1226 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1227 
1228 	/*
1229 	 * The only reason this should fail is due to an inability to
1230 	 * find the extent added.
1231 	 */
1232 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1233 					  NULL);
1234 	if (ret < 0) {
1235 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 			    "at logical block %llu",
1237 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 			    (unsigned long long)v_blkno);
1239 		goto out;
1240 	}
1241 
1242 	BUG_ON(p_blkno == 0);
1243 
1244 	for(i = 0; i < wc->w_num_pages; i++) {
1245 		int tmpret;
1246 
1247 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 						      wc->w_pages[i], cpos,
1249 						      user_pos, user_len,
1250 						      should_zero);
1251 		if (tmpret) {
1252 			mlog_errno(tmpret);
1253 			if (ret == 0)
1254 				tmpret = ret;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * We only have cleanup to do in case of allocating write.
1260 	 */
1261 	if (ret && new)
1262 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1263 
1264 out:
1265 
1266 	return ret;
1267 }
1268 
1269 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 				       struct ocfs2_alloc_context *data_ac,
1271 				       struct ocfs2_alloc_context *meta_ac,
1272 				       struct ocfs2_write_ctxt *wc,
1273 				       loff_t pos, unsigned len)
1274 {
1275 	int ret, i;
1276 	loff_t cluster_off;
1277 	unsigned int local_len = len;
1278 	struct ocfs2_write_cluster_desc *desc;
1279 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1280 
1281 	for (i = 0; i < wc->w_clen; i++) {
1282 		desc = &wc->w_desc[i];
1283 
1284 		/*
1285 		 * We have to make sure that the total write passed in
1286 		 * doesn't extend past a single cluster.
1287 		 */
1288 		local_len = len;
1289 		cluster_off = pos & (osb->s_clustersize - 1);
1290 		if ((cluster_off + local_len) > osb->s_clustersize)
1291 			local_len = osb->s_clustersize - cluster_off;
1292 
1293 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294 					  desc->c_unwritten, data_ac, meta_ac,
1295 					  wc, desc->c_cpos, pos, local_len);
1296 		if (ret) {
1297 			mlog_errno(ret);
1298 			goto out;
1299 		}
1300 
1301 		len -= local_len;
1302 		pos += local_len;
1303 	}
1304 
1305 	ret = 0;
1306 out:
1307 	return ret;
1308 }
1309 
1310 /*
1311  * ocfs2_write_end() wants to know which parts of the target page it
1312  * should complete the write on. It's easiest to compute them ahead of
1313  * time when a more complete view of the write is available.
1314  */
1315 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1316 					struct ocfs2_write_ctxt *wc,
1317 					loff_t pos, unsigned len, int alloc)
1318 {
1319 	struct ocfs2_write_cluster_desc *desc;
1320 
1321 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1322 	wc->w_target_to = wc->w_target_from + len;
1323 
1324 	if (alloc == 0)
1325 		return;
1326 
1327 	/*
1328 	 * Allocating write - we may have different boundaries based
1329 	 * on page size and cluster size.
1330 	 *
1331 	 * NOTE: We can no longer compute one value from the other as
1332 	 * the actual write length and user provided length may be
1333 	 * different.
1334 	 */
1335 
1336 	if (wc->w_large_pages) {
1337 		/*
1338 		 * We only care about the 1st and last cluster within
1339 		 * our range and whether they should be zero'd or not. Either
1340 		 * value may be extended out to the start/end of a
1341 		 * newly allocated cluster.
1342 		 */
1343 		desc = &wc->w_desc[0];
1344 		if (ocfs2_should_zero_cluster(desc))
1345 			ocfs2_figure_cluster_boundaries(osb,
1346 							desc->c_cpos,
1347 							&wc->w_target_from,
1348 							NULL);
1349 
1350 		desc = &wc->w_desc[wc->w_clen - 1];
1351 		if (ocfs2_should_zero_cluster(desc))
1352 			ocfs2_figure_cluster_boundaries(osb,
1353 							desc->c_cpos,
1354 							NULL,
1355 							&wc->w_target_to);
1356 	} else {
1357 		wc->w_target_from = 0;
1358 		wc->w_target_to = PAGE_CACHE_SIZE;
1359 	}
1360 }
1361 
1362 /*
1363  * Populate each single-cluster write descriptor in the write context
1364  * with information about the i/o to be done.
1365  *
1366  * Returns the number of clusters that will have to be allocated, as
1367  * well as a worst case estimate of the number of extent records that
1368  * would have to be created during a write to an unwritten region.
1369  */
1370 static int ocfs2_populate_write_desc(struct inode *inode,
1371 				     struct ocfs2_write_ctxt *wc,
1372 				     unsigned int *clusters_to_alloc,
1373 				     unsigned int *extents_to_split)
1374 {
1375 	int ret;
1376 	struct ocfs2_write_cluster_desc *desc;
1377 	unsigned int num_clusters = 0;
1378 	unsigned int ext_flags = 0;
1379 	u32 phys = 0;
1380 	int i;
1381 
1382 	*clusters_to_alloc = 0;
1383 	*extents_to_split = 0;
1384 
1385 	for (i = 0; i < wc->w_clen; i++) {
1386 		desc = &wc->w_desc[i];
1387 		desc->c_cpos = wc->w_cpos + i;
1388 
1389 		if (num_clusters == 0) {
1390 			/*
1391 			 * Need to look up the next extent record.
1392 			 */
1393 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1394 						 &num_clusters, &ext_flags);
1395 			if (ret) {
1396 				mlog_errno(ret);
1397 				goto out;
1398 			}
1399 
1400 			/*
1401 			 * Assume worst case - that we're writing in
1402 			 * the middle of the extent.
1403 			 *
1404 			 * We can assume that the write proceeds from
1405 			 * left to right, in which case the extent
1406 			 * insert code is smart enough to coalesce the
1407 			 * next splits into the previous records created.
1408 			 */
1409 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1410 				*extents_to_split = *extents_to_split + 2;
1411 		} else if (phys) {
1412 			/*
1413 			 * Only increment phys if it doesn't describe
1414 			 * a hole.
1415 			 */
1416 			phys++;
1417 		}
1418 
1419 		desc->c_phys = phys;
1420 		if (phys == 0) {
1421 			desc->c_new = 1;
1422 			*clusters_to_alloc = *clusters_to_alloc + 1;
1423 		}
1424 		if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425 			desc->c_unwritten = 1;
1426 
1427 		num_clusters--;
1428 	}
1429 
1430 	ret = 0;
1431 out:
1432 	return ret;
1433 }
1434 
1435 static int ocfs2_write_begin_inline(struct address_space *mapping,
1436 				    struct inode *inode,
1437 				    struct ocfs2_write_ctxt *wc)
1438 {
1439 	int ret;
1440 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1441 	struct page *page;
1442 	handle_t *handle;
1443 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1444 
1445 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1446 	if (!page) {
1447 		ret = -ENOMEM;
1448 		mlog_errno(ret);
1449 		goto out;
1450 	}
1451 	/*
1452 	 * If we don't set w_num_pages then this page won't get unlocked
1453 	 * and freed on cleanup of the write context.
1454 	 */
1455 	wc->w_pages[0] = wc->w_target_page = page;
1456 	wc->w_num_pages = 1;
1457 
1458 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1459 	if (IS_ERR(handle)) {
1460 		ret = PTR_ERR(handle);
1461 		mlog_errno(ret);
1462 		goto out;
1463 	}
1464 
1465 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1466 				   OCFS2_JOURNAL_ACCESS_WRITE);
1467 	if (ret) {
1468 		ocfs2_commit_trans(osb, handle);
1469 
1470 		mlog_errno(ret);
1471 		goto out;
1472 	}
1473 
1474 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1475 		ocfs2_set_inode_data_inline(inode, di);
1476 
1477 	if (!PageUptodate(page)) {
1478 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1479 		if (ret) {
1480 			ocfs2_commit_trans(osb, handle);
1481 
1482 			goto out;
1483 		}
1484 	}
1485 
1486 	wc->w_handle = handle;
1487 out:
1488 	return ret;
1489 }
1490 
1491 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1492 {
1493 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1494 
1495 	if (new_size < le16_to_cpu(di->id2.i_data.id_count))
1496 		return 1;
1497 	return 0;
1498 }
1499 
1500 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1501 					  struct inode *inode, loff_t pos,
1502 					  unsigned len, struct page *mmap_page,
1503 					  struct ocfs2_write_ctxt *wc)
1504 {
1505 	int ret, written = 0;
1506 	loff_t end = pos + len;
1507 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1508 
1509 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1510 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1511 	     oi->ip_dyn_features);
1512 
1513 	/*
1514 	 * Handle inodes which already have inline data 1st.
1515 	 */
1516 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1517 		if (mmap_page == NULL &&
1518 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1519 			goto do_inline_write;
1520 
1521 		/*
1522 		 * The write won't fit - we have to give this inode an
1523 		 * inline extent list now.
1524 		 */
1525 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1526 		if (ret)
1527 			mlog_errno(ret);
1528 		goto out;
1529 	}
1530 
1531 	/*
1532 	 * Check whether the inode can accept inline data.
1533 	 */
1534 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1535 		return 0;
1536 
1537 	/*
1538 	 * Check whether the write can fit.
1539 	 */
1540 	if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1541 		return 0;
1542 
1543 do_inline_write:
1544 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1545 	if (ret) {
1546 		mlog_errno(ret);
1547 		goto out;
1548 	}
1549 
1550 	/*
1551 	 * This signals to the caller that the data can be written
1552 	 * inline.
1553 	 */
1554 	written = 1;
1555 out:
1556 	return written ? written : ret;
1557 }
1558 
1559 /*
1560  * This function only does anything for file systems which can't
1561  * handle sparse files.
1562  *
1563  * What we want to do here is fill in any hole between the current end
1564  * of allocation and the end of our write. That way the rest of the
1565  * write path can treat it as an non-allocating write, which has no
1566  * special case code for sparse/nonsparse files.
1567  */
1568 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1569 					unsigned len,
1570 					struct ocfs2_write_ctxt *wc)
1571 {
1572 	int ret;
1573 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1574 	loff_t newsize = pos + len;
1575 
1576 	if (ocfs2_sparse_alloc(osb))
1577 		return 0;
1578 
1579 	if (newsize <= i_size_read(inode))
1580 		return 0;
1581 
1582 	ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1583 	if (ret)
1584 		mlog_errno(ret);
1585 
1586 	return ret;
1587 }
1588 
1589 int ocfs2_write_begin_nolock(struct address_space *mapping,
1590 			     loff_t pos, unsigned len, unsigned flags,
1591 			     struct page **pagep, void **fsdata,
1592 			     struct buffer_head *di_bh, struct page *mmap_page)
1593 {
1594 	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1595 	unsigned int clusters_to_alloc, extents_to_split;
1596 	struct ocfs2_write_ctxt *wc;
1597 	struct inode *inode = mapping->host;
1598 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1599 	struct ocfs2_dinode *di;
1600 	struct ocfs2_alloc_context *data_ac = NULL;
1601 	struct ocfs2_alloc_context *meta_ac = NULL;
1602 	handle_t *handle;
1603 
1604 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1605 	if (ret) {
1606 		mlog_errno(ret);
1607 		return ret;
1608 	}
1609 
1610 	if (ocfs2_supports_inline_data(osb)) {
1611 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1612 						     mmap_page, wc);
1613 		if (ret == 1) {
1614 			ret = 0;
1615 			goto success;
1616 		}
1617 		if (ret < 0) {
1618 			mlog_errno(ret);
1619 			goto out;
1620 		}
1621 	}
1622 
1623 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1624 	if (ret) {
1625 		mlog_errno(ret);
1626 		goto out;
1627 	}
1628 
1629 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1630 					&extents_to_split);
1631 	if (ret) {
1632 		mlog_errno(ret);
1633 		goto out;
1634 	}
1635 
1636 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1637 
1638 	/*
1639 	 * We set w_target_from, w_target_to here so that
1640 	 * ocfs2_write_end() knows which range in the target page to
1641 	 * write out. An allocation requires that we write the entire
1642 	 * cluster range.
1643 	 */
1644 	if (clusters_to_alloc || extents_to_split) {
1645 		/*
1646 		 * XXX: We are stretching the limits of
1647 		 * ocfs2_lock_allocators(). It greatly over-estimates
1648 		 * the work to be done.
1649 		 */
1650 		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1651 					    extents_to_split, &data_ac, &meta_ac);
1652 		if (ret) {
1653 			mlog_errno(ret);
1654 			goto out;
1655 		}
1656 
1657 		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1658 						    clusters_to_alloc);
1659 
1660 	}
1661 
1662 	ocfs2_set_target_boundaries(osb, wc, pos, len,
1663 				    clusters_to_alloc + extents_to_split);
1664 
1665 	handle = ocfs2_start_trans(osb, credits);
1666 	if (IS_ERR(handle)) {
1667 		ret = PTR_ERR(handle);
1668 		mlog_errno(ret);
1669 		goto out;
1670 	}
1671 
1672 	wc->w_handle = handle;
1673 
1674 	/*
1675 	 * We don't want this to fail in ocfs2_write_end(), so do it
1676 	 * here.
1677 	 */
1678 	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1679 				   OCFS2_JOURNAL_ACCESS_WRITE);
1680 	if (ret) {
1681 		mlog_errno(ret);
1682 		goto out_commit;
1683 	}
1684 
1685 	/*
1686 	 * Fill our page array first. That way we've grabbed enough so
1687 	 * that we can zero and flush if we error after adding the
1688 	 * extent.
1689 	 */
1690 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1691 					 clusters_to_alloc + extents_to_split,
1692 					 mmap_page);
1693 	if (ret) {
1694 		mlog_errno(ret);
1695 		goto out_commit;
1696 	}
1697 
1698 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1699 					  len);
1700 	if (ret) {
1701 		mlog_errno(ret);
1702 		goto out_commit;
1703 	}
1704 
1705 	if (data_ac)
1706 		ocfs2_free_alloc_context(data_ac);
1707 	if (meta_ac)
1708 		ocfs2_free_alloc_context(meta_ac);
1709 
1710 success:
1711 	*pagep = wc->w_target_page;
1712 	*fsdata = wc;
1713 	return 0;
1714 out_commit:
1715 	ocfs2_commit_trans(osb, handle);
1716 
1717 out:
1718 	ocfs2_free_write_ctxt(wc);
1719 
1720 	if (data_ac)
1721 		ocfs2_free_alloc_context(data_ac);
1722 	if (meta_ac)
1723 		ocfs2_free_alloc_context(meta_ac);
1724 	return ret;
1725 }
1726 
1727 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1728 			     loff_t pos, unsigned len, unsigned flags,
1729 			     struct page **pagep, void **fsdata)
1730 {
1731 	int ret;
1732 	struct buffer_head *di_bh = NULL;
1733 	struct inode *inode = mapping->host;
1734 
1735 	ret = ocfs2_meta_lock(inode, &di_bh, 1);
1736 	if (ret) {
1737 		mlog_errno(ret);
1738 		return ret;
1739 	}
1740 
1741 	/*
1742 	 * Take alloc sem here to prevent concurrent lookups. That way
1743 	 * the mapping, zeroing and tree manipulation within
1744 	 * ocfs2_write() will be safe against ->readpage(). This
1745 	 * should also serve to lock out allocation from a shared
1746 	 * writeable region.
1747 	 */
1748 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1749 
1750 	ret = ocfs2_data_lock(inode, 1);
1751 	if (ret) {
1752 		mlog_errno(ret);
1753 		goto out_fail;
1754 	}
1755 
1756 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1757 				       fsdata, di_bh, NULL);
1758 	if (ret) {
1759 		mlog_errno(ret);
1760 		goto out_fail_data;
1761 	}
1762 
1763 	brelse(di_bh);
1764 
1765 	return 0;
1766 
1767 out_fail_data:
1768 	ocfs2_data_unlock(inode, 1);
1769 out_fail:
1770 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1771 
1772 	brelse(di_bh);
1773 	ocfs2_meta_unlock(inode, 1);
1774 
1775 	return ret;
1776 }
1777 
1778 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1779 				   unsigned len, unsigned *copied,
1780 				   struct ocfs2_dinode *di,
1781 				   struct ocfs2_write_ctxt *wc)
1782 {
1783 	void *kaddr;
1784 
1785 	if (unlikely(*copied < len)) {
1786 		if (!PageUptodate(wc->w_target_page)) {
1787 			*copied = 0;
1788 			return;
1789 		}
1790 	}
1791 
1792 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1793 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1794 	kunmap_atomic(kaddr, KM_USER0);
1795 
1796 	mlog(0, "Data written to inode at offset %llu. "
1797 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1798 	     (unsigned long long)pos, *copied,
1799 	     le16_to_cpu(di->id2.i_data.id_count),
1800 	     le16_to_cpu(di->i_dyn_features));
1801 }
1802 
1803 int ocfs2_write_end_nolock(struct address_space *mapping,
1804 			   loff_t pos, unsigned len, unsigned copied,
1805 			   struct page *page, void *fsdata)
1806 {
1807 	int i;
1808 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1809 	struct inode *inode = mapping->host;
1810 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1811 	struct ocfs2_write_ctxt *wc = fsdata;
1812 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1813 	handle_t *handle = wc->w_handle;
1814 	struct page *tmppage;
1815 
1816 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1817 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1818 		goto out_write_size;
1819 	}
1820 
1821 	if (unlikely(copied < len)) {
1822 		if (!PageUptodate(wc->w_target_page))
1823 			copied = 0;
1824 
1825 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1826 				       start+len);
1827 	}
1828 	flush_dcache_page(wc->w_target_page);
1829 
1830 	for(i = 0; i < wc->w_num_pages; i++) {
1831 		tmppage = wc->w_pages[i];
1832 
1833 		if (tmppage == wc->w_target_page) {
1834 			from = wc->w_target_from;
1835 			to = wc->w_target_to;
1836 
1837 			BUG_ON(from > PAGE_CACHE_SIZE ||
1838 			       to > PAGE_CACHE_SIZE ||
1839 			       to < from);
1840 		} else {
1841 			/*
1842 			 * Pages adjacent to the target (if any) imply
1843 			 * a hole-filling write in which case we want
1844 			 * to flush their entire range.
1845 			 */
1846 			from = 0;
1847 			to = PAGE_CACHE_SIZE;
1848 		}
1849 
1850 		if (ocfs2_should_order_data(inode))
1851 			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1852 					  from, to, NULL,
1853 					  ocfs2_journal_dirty_data);
1854 
1855 		block_commit_write(tmppage, from, to);
1856 	}
1857 
1858 out_write_size:
1859 	pos += copied;
1860 	if (pos > inode->i_size) {
1861 		i_size_write(inode, pos);
1862 		mark_inode_dirty(inode);
1863 	}
1864 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1865 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1866 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1867 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1868 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1869 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1870 
1871 	ocfs2_commit_trans(osb, handle);
1872 
1873 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1874 
1875 	ocfs2_free_write_ctxt(wc);
1876 
1877 	return copied;
1878 }
1879 
1880 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1881 			   loff_t pos, unsigned len, unsigned copied,
1882 			   struct page *page, void *fsdata)
1883 {
1884 	int ret;
1885 	struct inode *inode = mapping->host;
1886 
1887 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1888 
1889 	ocfs2_data_unlock(inode, 1);
1890 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1891 	ocfs2_meta_unlock(inode, 1);
1892 
1893 	return ret;
1894 }
1895 
1896 const struct address_space_operations ocfs2_aops = {
1897 	.readpage	= ocfs2_readpage,
1898 	.writepage	= ocfs2_writepage,
1899 	.write_begin	= ocfs2_write_begin,
1900 	.write_end	= ocfs2_write_end,
1901 	.bmap		= ocfs2_bmap,
1902 	.sync_page	= block_sync_page,
1903 	.direct_IO	= ocfs2_direct_IO,
1904 	.invalidatepage	= ocfs2_invalidatepage,
1905 	.releasepage	= ocfs2_releasepage,
1906 	.migratepage	= buffer_migrate_page,
1907 };
1908