1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 30 #define MLOG_MASK_PREFIX ML_FILE_IO 31 #include <cluster/masklog.h> 32 33 #include "ocfs2.h" 34 35 #include "alloc.h" 36 #include "aops.h" 37 #include "dlmglue.h" 38 #include "extent_map.h" 39 #include "file.h" 40 #include "inode.h" 41 #include "journal.h" 42 #include "suballoc.h" 43 #include "super.h" 44 #include "symlink.h" 45 46 #include "buffer_head_io.h" 47 48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 49 struct buffer_head *bh_result, int create) 50 { 51 int err = -EIO; 52 int status; 53 struct ocfs2_dinode *fe = NULL; 54 struct buffer_head *bh = NULL; 55 struct buffer_head *buffer_cache_bh = NULL; 56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 57 void *kaddr; 58 59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 60 (unsigned long long)iblock, bh_result, create); 61 62 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 63 64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 66 (unsigned long long)iblock); 67 goto bail; 68 } 69 70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb), 71 OCFS2_I(inode)->ip_blkno, 72 &bh, OCFS2_BH_CACHED, inode); 73 if (status < 0) { 74 mlog_errno(status); 75 goto bail; 76 } 77 fe = (struct ocfs2_dinode *) bh->b_data; 78 79 if (!OCFS2_IS_VALID_DINODE(fe)) { 80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", 81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7, 82 fe->i_signature); 83 goto bail; 84 } 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 mlog(ML_ERROR, "block offset is outside the allocated size: " 89 "%llu\n", (unsigned long long)iblock); 90 goto bail; 91 } 92 93 /* We don't use the page cache to create symlink data, so if 94 * need be, copy it over from the buffer cache. */ 95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 97 iblock; 98 buffer_cache_bh = sb_getblk(osb->sb, blkno); 99 if (!buffer_cache_bh) { 100 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 101 goto bail; 102 } 103 104 /* we haven't locked out transactions, so a commit 105 * could've happened. Since we've got a reference on 106 * the bh, even if it commits while we're doing the 107 * copy, the data is still good. */ 108 if (buffer_jbd(buffer_cache_bh) 109 && ocfs2_inode_is_new(inode)) { 110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0); 111 if (!kaddr) { 112 mlog(ML_ERROR, "couldn't kmap!\n"); 113 goto bail; 114 } 115 memcpy(kaddr + (bh_result->b_size * iblock), 116 buffer_cache_bh->b_data, 117 bh_result->b_size); 118 kunmap_atomic(kaddr, KM_USER0); 119 set_buffer_uptodate(bh_result); 120 } 121 brelse(buffer_cache_bh); 122 } 123 124 map_bh(bh_result, inode->i_sb, 125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 126 127 err = 0; 128 129 bail: 130 if (bh) 131 brelse(bh); 132 133 mlog_exit(err); 134 return err; 135 } 136 137 static int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 p_blkno, past_eof; 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 144 145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, 146 (unsigned long long)iblock, bh_result, create); 147 148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 150 inode, inode->i_ino); 151 152 if (S_ISLNK(inode->i_mode)) { 153 /* this always does I/O for some reason. */ 154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 155 goto bail; 156 } 157 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL, 159 &ext_flags); 160 if (err) { 161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 163 (unsigned long long)p_blkno); 164 goto bail; 165 } 166 167 /* 168 * ocfs2 never allocates in this function - the only time we 169 * need to use BH_New is when we're extending i_size on a file 170 * system which doesn't support holes, in which case BH_New 171 * allows block_prepare_write() to zero. 172 */ 173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb), 174 "ino %lu, iblock %llu\n", inode->i_ino, 175 (unsigned long long)iblock); 176 177 /* Treat the unwritten extent as a hole for zeroing purposes. */ 178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 179 map_bh(bh_result, inode->i_sb, p_blkno); 180 181 if (!ocfs2_sparse_alloc(osb)) { 182 if (p_blkno == 0) { 183 err = -EIO; 184 mlog(ML_ERROR, 185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 186 (unsigned long long)iblock, 187 (unsigned long long)p_blkno, 188 (unsigned long long)OCFS2_I(inode)->ip_blkno); 189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 190 dump_stack(); 191 } 192 193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, 195 (unsigned long long)past_eof); 196 197 if (create && (iblock >= past_eof)) 198 set_buffer_new(bh_result); 199 } 200 201 bail: 202 if (err < 0) 203 err = -EIO; 204 205 mlog_exit(err); 206 return err; 207 } 208 209 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 210 struct buffer_head *di_bh) 211 { 212 void *kaddr; 213 unsigned int size; 214 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 215 216 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 217 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 218 (unsigned long long)OCFS2_I(inode)->ip_blkno); 219 return -EROFS; 220 } 221 222 size = i_size_read(inode); 223 224 if (size > PAGE_CACHE_SIZE || 225 size > ocfs2_max_inline_data(inode->i_sb)) { 226 ocfs2_error(inode->i_sb, 227 "Inode %llu has with inline data has bad size: %u", 228 (unsigned long long)OCFS2_I(inode)->ip_blkno, size); 229 return -EROFS; 230 } 231 232 kaddr = kmap_atomic(page, KM_USER0); 233 if (size) 234 memcpy(kaddr, di->id2.i_data.id_data, size); 235 /* Clear the remaining part of the page */ 236 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 237 flush_dcache_page(page); 238 kunmap_atomic(kaddr, KM_USER0); 239 240 SetPageUptodate(page); 241 242 return 0; 243 } 244 245 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 246 { 247 int ret; 248 struct buffer_head *di_bh = NULL; 249 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 250 251 BUG_ON(!PageLocked(page)); 252 BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 253 254 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh, 255 OCFS2_BH_CACHED, inode); 256 if (ret) { 257 mlog_errno(ret); 258 goto out; 259 } 260 261 ret = ocfs2_read_inline_data(inode, page, di_bh); 262 out: 263 unlock_page(page); 264 265 brelse(di_bh); 266 return ret; 267 } 268 269 static int ocfs2_readpage(struct file *file, struct page *page) 270 { 271 struct inode *inode = page->mapping->host; 272 struct ocfs2_inode_info *oi = OCFS2_I(inode); 273 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 274 int ret, unlock = 1; 275 276 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); 277 278 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page); 279 if (ret != 0) { 280 if (ret == AOP_TRUNCATED_PAGE) 281 unlock = 0; 282 mlog_errno(ret); 283 goto out; 284 } 285 286 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 287 ret = AOP_TRUNCATED_PAGE; 288 goto out_meta_unlock; 289 } 290 291 /* 292 * i_size might have just been updated as we grabed the meta lock. We 293 * might now be discovering a truncate that hit on another node. 294 * block_read_full_page->get_block freaks out if it is asked to read 295 * beyond the end of a file, so we check here. Callers 296 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 297 * and notice that the page they just read isn't needed. 298 * 299 * XXX sys_readahead() seems to get that wrong? 300 */ 301 if (start >= i_size_read(inode)) { 302 zero_user_page(page, 0, PAGE_SIZE, KM_USER0); 303 SetPageUptodate(page); 304 ret = 0; 305 goto out_alloc; 306 } 307 308 ret = ocfs2_data_lock_with_page(inode, 0, page); 309 if (ret != 0) { 310 if (ret == AOP_TRUNCATED_PAGE) 311 unlock = 0; 312 mlog_errno(ret); 313 goto out_alloc; 314 } 315 316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 317 ret = ocfs2_readpage_inline(inode, page); 318 else 319 ret = block_read_full_page(page, ocfs2_get_block); 320 unlock = 0; 321 322 ocfs2_data_unlock(inode, 0); 323 out_alloc: 324 up_read(&OCFS2_I(inode)->ip_alloc_sem); 325 out_meta_unlock: 326 ocfs2_meta_unlock(inode, 0); 327 out: 328 if (unlock) 329 unlock_page(page); 330 mlog_exit(ret); 331 return ret; 332 } 333 334 /* Note: Because we don't support holes, our allocation has 335 * already happened (allocation writes zeros to the file data) 336 * so we don't have to worry about ordered writes in 337 * ocfs2_writepage. 338 * 339 * ->writepage is called during the process of invalidating the page cache 340 * during blocked lock processing. It can't block on any cluster locks 341 * to during block mapping. It's relying on the fact that the block 342 * mapping can't have disappeared under the dirty pages that it is 343 * being asked to write back. 344 */ 345 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 346 { 347 int ret; 348 349 mlog_entry("(0x%p)\n", page); 350 351 ret = block_write_full_page(page, ocfs2_get_block, wbc); 352 353 mlog_exit(ret); 354 355 return ret; 356 } 357 358 /* 359 * This is called from ocfs2_write_zero_page() which has handled it's 360 * own cluster locking and has ensured allocation exists for those 361 * blocks to be written. 362 */ 363 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, 364 unsigned from, unsigned to) 365 { 366 int ret; 367 368 ret = block_prepare_write(page, from, to, ocfs2_get_block); 369 370 return ret; 371 } 372 373 /* Taken from ext3. We don't necessarily need the full blown 374 * functionality yet, but IMHO it's better to cut and paste the whole 375 * thing so we can avoid introducing our own bugs (and easily pick up 376 * their fixes when they happen) --Mark */ 377 int walk_page_buffers( handle_t *handle, 378 struct buffer_head *head, 379 unsigned from, 380 unsigned to, 381 int *partial, 382 int (*fn)( handle_t *handle, 383 struct buffer_head *bh)) 384 { 385 struct buffer_head *bh; 386 unsigned block_start, block_end; 387 unsigned blocksize = head->b_size; 388 int err, ret = 0; 389 struct buffer_head *next; 390 391 for ( bh = head, block_start = 0; 392 ret == 0 && (bh != head || !block_start); 393 block_start = block_end, bh = next) 394 { 395 next = bh->b_this_page; 396 block_end = block_start + blocksize; 397 if (block_end <= from || block_start >= to) { 398 if (partial && !buffer_uptodate(bh)) 399 *partial = 1; 400 continue; 401 } 402 err = (*fn)(handle, bh); 403 if (!ret) 404 ret = err; 405 } 406 return ret; 407 } 408 409 handle_t *ocfs2_start_walk_page_trans(struct inode *inode, 410 struct page *page, 411 unsigned from, 412 unsigned to) 413 { 414 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 415 handle_t *handle = NULL; 416 int ret = 0; 417 418 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 419 if (!handle) { 420 ret = -ENOMEM; 421 mlog_errno(ret); 422 goto out; 423 } 424 425 if (ocfs2_should_order_data(inode)) { 426 ret = walk_page_buffers(handle, 427 page_buffers(page), 428 from, to, NULL, 429 ocfs2_journal_dirty_data); 430 if (ret < 0) 431 mlog_errno(ret); 432 } 433 out: 434 if (ret) { 435 if (handle) 436 ocfs2_commit_trans(osb, handle); 437 handle = ERR_PTR(ret); 438 } 439 return handle; 440 } 441 442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 443 { 444 sector_t status; 445 u64 p_blkno = 0; 446 int err = 0; 447 struct inode *inode = mapping->host; 448 449 mlog_entry("(block = %llu)\n", (unsigned long long)block); 450 451 /* We don't need to lock journal system files, since they aren't 452 * accessed concurrently from multiple nodes. 453 */ 454 if (!INODE_JOURNAL(inode)) { 455 err = ocfs2_meta_lock(inode, NULL, 0); 456 if (err) { 457 if (err != -ENOENT) 458 mlog_errno(err); 459 goto bail; 460 } 461 down_read(&OCFS2_I(inode)->ip_alloc_sem); 462 } 463 464 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 465 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 466 NULL); 467 468 if (!INODE_JOURNAL(inode)) { 469 up_read(&OCFS2_I(inode)->ip_alloc_sem); 470 ocfs2_meta_unlock(inode, 0); 471 } 472 473 if (err) { 474 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 475 (unsigned long long)block); 476 mlog_errno(err); 477 goto bail; 478 } 479 480 bail: 481 status = err ? 0 : p_blkno; 482 483 mlog_exit((int)status); 484 485 return status; 486 } 487 488 /* 489 * TODO: Make this into a generic get_blocks function. 490 * 491 * From do_direct_io in direct-io.c: 492 * "So what we do is to permit the ->get_blocks function to populate 493 * bh.b_size with the size of IO which is permitted at this offset and 494 * this i_blkbits." 495 * 496 * This function is called directly from get_more_blocks in direct-io.c. 497 * 498 * called like this: dio->get_blocks(dio->inode, fs_startblk, 499 * fs_count, map_bh, dio->rw == WRITE); 500 */ 501 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 502 struct buffer_head *bh_result, int create) 503 { 504 int ret; 505 u64 p_blkno, inode_blocks, contig_blocks; 506 unsigned int ext_flags; 507 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 508 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 509 510 /* This function won't even be called if the request isn't all 511 * nicely aligned and of the right size, so there's no need 512 * for us to check any of that. */ 513 514 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 515 516 /* 517 * Any write past EOF is not allowed because we'd be extending. 518 */ 519 if (create && (iblock + max_blocks) > inode_blocks) { 520 ret = -EIO; 521 goto bail; 522 } 523 524 /* This figures out the size of the next contiguous block, and 525 * our logical offset */ 526 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 527 &contig_blocks, &ext_flags); 528 if (ret) { 529 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 530 (unsigned long long)iblock); 531 ret = -EIO; 532 goto bail; 533 } 534 535 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) { 536 ocfs2_error(inode->i_sb, 537 "Inode %llu has a hole at block %llu\n", 538 (unsigned long long)OCFS2_I(inode)->ip_blkno, 539 (unsigned long long)iblock); 540 ret = -EROFS; 541 goto bail; 542 } 543 544 /* 545 * get_more_blocks() expects us to describe a hole by clearing 546 * the mapped bit on bh_result(). 547 * 548 * Consider an unwritten extent as a hole. 549 */ 550 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 551 map_bh(bh_result, inode->i_sb, p_blkno); 552 else { 553 /* 554 * ocfs2_prepare_inode_for_write() should have caught 555 * the case where we'd be filling a hole and triggered 556 * a buffered write instead. 557 */ 558 if (create) { 559 ret = -EIO; 560 mlog_errno(ret); 561 goto bail; 562 } 563 564 clear_buffer_mapped(bh_result); 565 } 566 567 /* make sure we don't map more than max_blocks blocks here as 568 that's all the kernel will handle at this point. */ 569 if (max_blocks < contig_blocks) 570 contig_blocks = max_blocks; 571 bh_result->b_size = contig_blocks << blocksize_bits; 572 bail: 573 return ret; 574 } 575 576 /* 577 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 578 * particularly interested in the aio/dio case. Like the core uses 579 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from 580 * truncation on another. 581 */ 582 static void ocfs2_dio_end_io(struct kiocb *iocb, 583 loff_t offset, 584 ssize_t bytes, 585 void *private) 586 { 587 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 588 int level; 589 590 /* this io's submitter should not have unlocked this before we could */ 591 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 592 593 ocfs2_iocb_clear_rw_locked(iocb); 594 595 level = ocfs2_iocb_rw_locked_level(iocb); 596 if (!level) 597 up_read(&inode->i_alloc_sem); 598 ocfs2_rw_unlock(inode, level); 599 } 600 601 /* 602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 603 * from ext3. PageChecked() bits have been removed as OCFS2 does not 604 * do journalled data. 605 */ 606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset) 607 { 608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 609 610 journal_invalidatepage(journal, page, offset); 611 } 612 613 static int ocfs2_releasepage(struct page *page, gfp_t wait) 614 { 615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 616 617 if (!page_has_buffers(page)) 618 return 0; 619 return journal_try_to_free_buffers(journal, page, wait); 620 } 621 622 static ssize_t ocfs2_direct_IO(int rw, 623 struct kiocb *iocb, 624 const struct iovec *iov, 625 loff_t offset, 626 unsigned long nr_segs) 627 { 628 struct file *file = iocb->ki_filp; 629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; 630 int ret; 631 632 mlog_entry_void(); 633 634 /* 635 * Fallback to buffered I/O if we see an inode without 636 * extents. 637 */ 638 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 639 return 0; 640 641 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { 642 /* 643 * We get PR data locks even for O_DIRECT. This 644 * allows concurrent O_DIRECT I/O but doesn't let 645 * O_DIRECT with extending and buffered zeroing writes 646 * race. If they did race then the buffered zeroing 647 * could be written back after the O_DIRECT I/O. It's 648 * one thing to tell people not to mix buffered and 649 * O_DIRECT writes, but expecting them to understand 650 * that file extension is also an implicit buffered 651 * write is too much. By getting the PR we force 652 * writeback of the buffered zeroing before 653 * proceeding. 654 */ 655 ret = ocfs2_data_lock(inode, 0); 656 if (ret < 0) { 657 mlog_errno(ret); 658 goto out; 659 } 660 ocfs2_data_unlock(inode, 0); 661 } 662 663 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 664 inode->i_sb->s_bdev, iov, offset, 665 nr_segs, 666 ocfs2_direct_IO_get_blocks, 667 ocfs2_dio_end_io); 668 out: 669 mlog_exit(ret); 670 return ret; 671 } 672 673 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 674 u32 cpos, 675 unsigned int *start, 676 unsigned int *end) 677 { 678 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 679 680 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 681 unsigned int cpp; 682 683 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 684 685 cluster_start = cpos % cpp; 686 cluster_start = cluster_start << osb->s_clustersize_bits; 687 688 cluster_end = cluster_start + osb->s_clustersize; 689 } 690 691 BUG_ON(cluster_start > PAGE_SIZE); 692 BUG_ON(cluster_end > PAGE_SIZE); 693 694 if (start) 695 *start = cluster_start; 696 if (end) 697 *end = cluster_end; 698 } 699 700 /* 701 * 'from' and 'to' are the region in the page to avoid zeroing. 702 * 703 * If pagesize > clustersize, this function will avoid zeroing outside 704 * of the cluster boundary. 705 * 706 * from == to == 0 is code for "zero the entire cluster region" 707 */ 708 static void ocfs2_clear_page_regions(struct page *page, 709 struct ocfs2_super *osb, u32 cpos, 710 unsigned from, unsigned to) 711 { 712 void *kaddr; 713 unsigned int cluster_start, cluster_end; 714 715 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 716 717 kaddr = kmap_atomic(page, KM_USER0); 718 719 if (from || to) { 720 if (from > cluster_start) 721 memset(kaddr + cluster_start, 0, from - cluster_start); 722 if (to < cluster_end) 723 memset(kaddr + to, 0, cluster_end - to); 724 } else { 725 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 726 } 727 728 kunmap_atomic(kaddr, KM_USER0); 729 } 730 731 /* 732 * Some of this taken from block_prepare_write(). We already have our 733 * mapping by now though, and the entire write will be allocating or 734 * it won't, so not much need to use BH_New. 735 * 736 * This will also skip zeroing, which is handled externally. 737 */ 738 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 739 struct inode *inode, unsigned int from, 740 unsigned int to, int new) 741 { 742 int ret = 0; 743 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 744 unsigned int block_end, block_start; 745 unsigned int bsize = 1 << inode->i_blkbits; 746 747 if (!page_has_buffers(page)) 748 create_empty_buffers(page, bsize, 0); 749 750 head = page_buffers(page); 751 for (bh = head, block_start = 0; bh != head || !block_start; 752 bh = bh->b_this_page, block_start += bsize) { 753 block_end = block_start + bsize; 754 755 clear_buffer_new(bh); 756 757 /* 758 * Ignore blocks outside of our i/o range - 759 * they may belong to unallocated clusters. 760 */ 761 if (block_start >= to || block_end <= from) { 762 if (PageUptodate(page)) 763 set_buffer_uptodate(bh); 764 continue; 765 } 766 767 /* 768 * For an allocating write with cluster size >= page 769 * size, we always write the entire page. 770 */ 771 if (new) 772 set_buffer_new(bh); 773 774 if (!buffer_mapped(bh)) { 775 map_bh(bh, inode->i_sb, *p_blkno); 776 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 777 } 778 779 if (PageUptodate(page)) { 780 if (!buffer_uptodate(bh)) 781 set_buffer_uptodate(bh); 782 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 783 !buffer_new(bh) && 784 (block_start < from || block_end > to)) { 785 ll_rw_block(READ, 1, &bh); 786 *wait_bh++=bh; 787 } 788 789 *p_blkno = *p_blkno + 1; 790 } 791 792 /* 793 * If we issued read requests - let them complete. 794 */ 795 while(wait_bh > wait) { 796 wait_on_buffer(*--wait_bh); 797 if (!buffer_uptodate(*wait_bh)) 798 ret = -EIO; 799 } 800 801 if (ret == 0 || !new) 802 return ret; 803 804 /* 805 * If we get -EIO above, zero out any newly allocated blocks 806 * to avoid exposing stale data. 807 */ 808 bh = head; 809 block_start = 0; 810 do { 811 block_end = block_start + bsize; 812 if (block_end <= from) 813 goto next_bh; 814 if (block_start >= to) 815 break; 816 817 zero_user_page(page, block_start, bh->b_size, KM_USER0); 818 set_buffer_uptodate(bh); 819 mark_buffer_dirty(bh); 820 821 next_bh: 822 block_start = block_end; 823 bh = bh->b_this_page; 824 } while (bh != head); 825 826 return ret; 827 } 828 829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 830 #define OCFS2_MAX_CTXT_PAGES 1 831 #else 832 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 833 #endif 834 835 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 836 837 /* 838 * Describe the state of a single cluster to be written to. 839 */ 840 struct ocfs2_write_cluster_desc { 841 u32 c_cpos; 842 u32 c_phys; 843 /* 844 * Give this a unique field because c_phys eventually gets 845 * filled. 846 */ 847 unsigned c_new; 848 unsigned c_unwritten; 849 }; 850 851 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) 852 { 853 return d->c_new || d->c_unwritten; 854 } 855 856 struct ocfs2_write_ctxt { 857 /* Logical cluster position / len of write */ 858 u32 w_cpos; 859 u32 w_clen; 860 861 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 862 863 /* 864 * This is true if page_size > cluster_size. 865 * 866 * It triggers a set of special cases during write which might 867 * have to deal with allocating writes to partial pages. 868 */ 869 unsigned int w_large_pages; 870 871 /* 872 * Pages involved in this write. 873 * 874 * w_target_page is the page being written to by the user. 875 * 876 * w_pages is an array of pages which always contains 877 * w_target_page, and in the case of an allocating write with 878 * page_size < cluster size, it will contain zero'd and mapped 879 * pages adjacent to w_target_page which need to be written 880 * out in so that future reads from that region will get 881 * zero's. 882 */ 883 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 884 unsigned int w_num_pages; 885 struct page *w_target_page; 886 887 /* 888 * ocfs2_write_end() uses this to know what the real range to 889 * write in the target should be. 890 */ 891 unsigned int w_target_from; 892 unsigned int w_target_to; 893 894 /* 895 * We could use journal_current_handle() but this is cleaner, 896 * IMHO -Mark 897 */ 898 handle_t *w_handle; 899 900 struct buffer_head *w_di_bh; 901 902 struct ocfs2_cached_dealloc_ctxt w_dealloc; 903 }; 904 905 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 906 { 907 int i; 908 909 for(i = 0; i < num_pages; i++) { 910 if (pages[i]) { 911 unlock_page(pages[i]); 912 mark_page_accessed(pages[i]); 913 page_cache_release(pages[i]); 914 } 915 } 916 } 917 918 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 919 { 920 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 921 922 brelse(wc->w_di_bh); 923 kfree(wc); 924 } 925 926 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 927 struct ocfs2_super *osb, loff_t pos, 928 unsigned len, struct buffer_head *di_bh) 929 { 930 u32 cend; 931 struct ocfs2_write_ctxt *wc; 932 933 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 934 if (!wc) 935 return -ENOMEM; 936 937 wc->w_cpos = pos >> osb->s_clustersize_bits; 938 cend = (pos + len - 1) >> osb->s_clustersize_bits; 939 wc->w_clen = cend - wc->w_cpos + 1; 940 get_bh(di_bh); 941 wc->w_di_bh = di_bh; 942 943 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 944 wc->w_large_pages = 1; 945 else 946 wc->w_large_pages = 0; 947 948 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 949 950 *wcp = wc; 951 952 return 0; 953 } 954 955 /* 956 * If a page has any new buffers, zero them out here, and mark them uptodate 957 * and dirty so they'll be written out (in order to prevent uninitialised 958 * block data from leaking). And clear the new bit. 959 */ 960 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 961 { 962 unsigned int block_start, block_end; 963 struct buffer_head *head, *bh; 964 965 BUG_ON(!PageLocked(page)); 966 if (!page_has_buffers(page)) 967 return; 968 969 bh = head = page_buffers(page); 970 block_start = 0; 971 do { 972 block_end = block_start + bh->b_size; 973 974 if (buffer_new(bh)) { 975 if (block_end > from && block_start < to) { 976 if (!PageUptodate(page)) { 977 unsigned start, end; 978 979 start = max(from, block_start); 980 end = min(to, block_end); 981 982 zero_user_page(page, start, end - start, KM_USER0); 983 set_buffer_uptodate(bh); 984 } 985 986 clear_buffer_new(bh); 987 mark_buffer_dirty(bh); 988 } 989 } 990 991 block_start = block_end; 992 bh = bh->b_this_page; 993 } while (bh != head); 994 } 995 996 /* 997 * Only called when we have a failure during allocating write to write 998 * zero's to the newly allocated region. 999 */ 1000 static void ocfs2_write_failure(struct inode *inode, 1001 struct ocfs2_write_ctxt *wc, 1002 loff_t user_pos, unsigned user_len) 1003 { 1004 int i; 1005 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1006 to = user_pos + user_len; 1007 struct page *tmppage; 1008 1009 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1010 1011 for(i = 0; i < wc->w_num_pages; i++) { 1012 tmppage = wc->w_pages[i]; 1013 1014 if (ocfs2_should_order_data(inode)) 1015 walk_page_buffers(wc->w_handle, page_buffers(tmppage), 1016 from, to, NULL, 1017 ocfs2_journal_dirty_data); 1018 1019 block_commit_write(tmppage, from, to); 1020 } 1021 } 1022 1023 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1024 struct ocfs2_write_ctxt *wc, 1025 struct page *page, u32 cpos, 1026 loff_t user_pos, unsigned user_len, 1027 int new) 1028 { 1029 int ret; 1030 unsigned int map_from = 0, map_to = 0; 1031 unsigned int cluster_start, cluster_end; 1032 unsigned int user_data_from = 0, user_data_to = 0; 1033 1034 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1035 &cluster_start, &cluster_end); 1036 1037 if (page == wc->w_target_page) { 1038 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1039 map_to = map_from + user_len; 1040 1041 if (new) 1042 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1043 cluster_start, cluster_end, 1044 new); 1045 else 1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1047 map_from, map_to, new); 1048 if (ret) { 1049 mlog_errno(ret); 1050 goto out; 1051 } 1052 1053 user_data_from = map_from; 1054 user_data_to = map_to; 1055 if (new) { 1056 map_from = cluster_start; 1057 map_to = cluster_end; 1058 } 1059 } else { 1060 /* 1061 * If we haven't allocated the new page yet, we 1062 * shouldn't be writing it out without copying user 1063 * data. This is likely a math error from the caller. 1064 */ 1065 BUG_ON(!new); 1066 1067 map_from = cluster_start; 1068 map_to = cluster_end; 1069 1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1071 cluster_start, cluster_end, new); 1072 if (ret) { 1073 mlog_errno(ret); 1074 goto out; 1075 } 1076 } 1077 1078 /* 1079 * Parts of newly allocated pages need to be zero'd. 1080 * 1081 * Above, we have also rewritten 'to' and 'from' - as far as 1082 * the rest of the function is concerned, the entire cluster 1083 * range inside of a page needs to be written. 1084 * 1085 * We can skip this if the page is up to date - it's already 1086 * been zero'd from being read in as a hole. 1087 */ 1088 if (new && !PageUptodate(page)) 1089 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1090 cpos, user_data_from, user_data_to); 1091 1092 flush_dcache_page(page); 1093 1094 out: 1095 return ret; 1096 } 1097 1098 /* 1099 * This function will only grab one clusters worth of pages. 1100 */ 1101 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1102 struct ocfs2_write_ctxt *wc, 1103 u32 cpos, loff_t user_pos, int new, 1104 struct page *mmap_page) 1105 { 1106 int ret = 0, i; 1107 unsigned long start, target_index, index; 1108 struct inode *inode = mapping->host; 1109 1110 target_index = user_pos >> PAGE_CACHE_SHIFT; 1111 1112 /* 1113 * Figure out how many pages we'll be manipulating here. For 1114 * non allocating write, we just change the one 1115 * page. Otherwise, we'll need a whole clusters worth. 1116 */ 1117 if (new) { 1118 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1119 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1120 } else { 1121 wc->w_num_pages = 1; 1122 start = target_index; 1123 } 1124 1125 for(i = 0; i < wc->w_num_pages; i++) { 1126 index = start + i; 1127 1128 if (index == target_index && mmap_page) { 1129 /* 1130 * ocfs2_pagemkwrite() is a little different 1131 * and wants us to directly use the page 1132 * passed in. 1133 */ 1134 lock_page(mmap_page); 1135 1136 if (mmap_page->mapping != mapping) { 1137 unlock_page(mmap_page); 1138 /* 1139 * Sanity check - the locking in 1140 * ocfs2_pagemkwrite() should ensure 1141 * that this code doesn't trigger. 1142 */ 1143 ret = -EINVAL; 1144 mlog_errno(ret); 1145 goto out; 1146 } 1147 1148 page_cache_get(mmap_page); 1149 wc->w_pages[i] = mmap_page; 1150 } else { 1151 wc->w_pages[i] = find_or_create_page(mapping, index, 1152 GFP_NOFS); 1153 if (!wc->w_pages[i]) { 1154 ret = -ENOMEM; 1155 mlog_errno(ret); 1156 goto out; 1157 } 1158 } 1159 1160 if (index == target_index) 1161 wc->w_target_page = wc->w_pages[i]; 1162 } 1163 out: 1164 return ret; 1165 } 1166 1167 /* 1168 * Prepare a single cluster for write one cluster into the file. 1169 */ 1170 static int ocfs2_write_cluster(struct address_space *mapping, 1171 u32 phys, unsigned int unwritten, 1172 struct ocfs2_alloc_context *data_ac, 1173 struct ocfs2_alloc_context *meta_ac, 1174 struct ocfs2_write_ctxt *wc, u32 cpos, 1175 loff_t user_pos, unsigned user_len) 1176 { 1177 int ret, i, new, should_zero = 0; 1178 u64 v_blkno, p_blkno; 1179 struct inode *inode = mapping->host; 1180 1181 new = phys == 0 ? 1 : 0; 1182 if (new || unwritten) 1183 should_zero = 1; 1184 1185 if (new) { 1186 u32 tmp_pos; 1187 1188 /* 1189 * This is safe to call with the page locks - it won't take 1190 * any additional semaphores or cluster locks. 1191 */ 1192 tmp_pos = cpos; 1193 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, 1194 &tmp_pos, 1, 0, wc->w_di_bh, 1195 wc->w_handle, data_ac, 1196 meta_ac, NULL); 1197 /* 1198 * This shouldn't happen because we must have already 1199 * calculated the correct meta data allocation required. The 1200 * internal tree allocation code should know how to increase 1201 * transaction credits itself. 1202 * 1203 * If need be, we could handle -EAGAIN for a 1204 * RESTART_TRANS here. 1205 */ 1206 mlog_bug_on_msg(ret == -EAGAIN, 1207 "Inode %llu: EAGAIN return during allocation.\n", 1208 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1209 if (ret < 0) { 1210 mlog_errno(ret); 1211 goto out; 1212 } 1213 } else if (unwritten) { 1214 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh, 1215 wc->w_handle, cpos, 1, phys, 1216 meta_ac, &wc->w_dealloc); 1217 if (ret < 0) { 1218 mlog_errno(ret); 1219 goto out; 1220 } 1221 } 1222 1223 if (should_zero) 1224 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1225 else 1226 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1227 1228 /* 1229 * The only reason this should fail is due to an inability to 1230 * find the extent added. 1231 */ 1232 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1233 NULL); 1234 if (ret < 0) { 1235 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1236 "at logical block %llu", 1237 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1238 (unsigned long long)v_blkno); 1239 goto out; 1240 } 1241 1242 BUG_ON(p_blkno == 0); 1243 1244 for(i = 0; i < wc->w_num_pages; i++) { 1245 int tmpret; 1246 1247 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1248 wc->w_pages[i], cpos, 1249 user_pos, user_len, 1250 should_zero); 1251 if (tmpret) { 1252 mlog_errno(tmpret); 1253 if (ret == 0) 1254 tmpret = ret; 1255 } 1256 } 1257 1258 /* 1259 * We only have cleanup to do in case of allocating write. 1260 */ 1261 if (ret && new) 1262 ocfs2_write_failure(inode, wc, user_pos, user_len); 1263 1264 out: 1265 1266 return ret; 1267 } 1268 1269 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1270 struct ocfs2_alloc_context *data_ac, 1271 struct ocfs2_alloc_context *meta_ac, 1272 struct ocfs2_write_ctxt *wc, 1273 loff_t pos, unsigned len) 1274 { 1275 int ret, i; 1276 loff_t cluster_off; 1277 unsigned int local_len = len; 1278 struct ocfs2_write_cluster_desc *desc; 1279 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1280 1281 for (i = 0; i < wc->w_clen; i++) { 1282 desc = &wc->w_desc[i]; 1283 1284 /* 1285 * We have to make sure that the total write passed in 1286 * doesn't extend past a single cluster. 1287 */ 1288 local_len = len; 1289 cluster_off = pos & (osb->s_clustersize - 1); 1290 if ((cluster_off + local_len) > osb->s_clustersize) 1291 local_len = osb->s_clustersize - cluster_off; 1292 1293 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1294 desc->c_unwritten, data_ac, meta_ac, 1295 wc, desc->c_cpos, pos, local_len); 1296 if (ret) { 1297 mlog_errno(ret); 1298 goto out; 1299 } 1300 1301 len -= local_len; 1302 pos += local_len; 1303 } 1304 1305 ret = 0; 1306 out: 1307 return ret; 1308 } 1309 1310 /* 1311 * ocfs2_write_end() wants to know which parts of the target page it 1312 * should complete the write on. It's easiest to compute them ahead of 1313 * time when a more complete view of the write is available. 1314 */ 1315 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1316 struct ocfs2_write_ctxt *wc, 1317 loff_t pos, unsigned len, int alloc) 1318 { 1319 struct ocfs2_write_cluster_desc *desc; 1320 1321 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1322 wc->w_target_to = wc->w_target_from + len; 1323 1324 if (alloc == 0) 1325 return; 1326 1327 /* 1328 * Allocating write - we may have different boundaries based 1329 * on page size and cluster size. 1330 * 1331 * NOTE: We can no longer compute one value from the other as 1332 * the actual write length and user provided length may be 1333 * different. 1334 */ 1335 1336 if (wc->w_large_pages) { 1337 /* 1338 * We only care about the 1st and last cluster within 1339 * our range and whether they should be zero'd or not. Either 1340 * value may be extended out to the start/end of a 1341 * newly allocated cluster. 1342 */ 1343 desc = &wc->w_desc[0]; 1344 if (ocfs2_should_zero_cluster(desc)) 1345 ocfs2_figure_cluster_boundaries(osb, 1346 desc->c_cpos, 1347 &wc->w_target_from, 1348 NULL); 1349 1350 desc = &wc->w_desc[wc->w_clen - 1]; 1351 if (ocfs2_should_zero_cluster(desc)) 1352 ocfs2_figure_cluster_boundaries(osb, 1353 desc->c_cpos, 1354 NULL, 1355 &wc->w_target_to); 1356 } else { 1357 wc->w_target_from = 0; 1358 wc->w_target_to = PAGE_CACHE_SIZE; 1359 } 1360 } 1361 1362 /* 1363 * Populate each single-cluster write descriptor in the write context 1364 * with information about the i/o to be done. 1365 * 1366 * Returns the number of clusters that will have to be allocated, as 1367 * well as a worst case estimate of the number of extent records that 1368 * would have to be created during a write to an unwritten region. 1369 */ 1370 static int ocfs2_populate_write_desc(struct inode *inode, 1371 struct ocfs2_write_ctxt *wc, 1372 unsigned int *clusters_to_alloc, 1373 unsigned int *extents_to_split) 1374 { 1375 int ret; 1376 struct ocfs2_write_cluster_desc *desc; 1377 unsigned int num_clusters = 0; 1378 unsigned int ext_flags = 0; 1379 u32 phys = 0; 1380 int i; 1381 1382 *clusters_to_alloc = 0; 1383 *extents_to_split = 0; 1384 1385 for (i = 0; i < wc->w_clen; i++) { 1386 desc = &wc->w_desc[i]; 1387 desc->c_cpos = wc->w_cpos + i; 1388 1389 if (num_clusters == 0) { 1390 /* 1391 * Need to look up the next extent record. 1392 */ 1393 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1394 &num_clusters, &ext_flags); 1395 if (ret) { 1396 mlog_errno(ret); 1397 goto out; 1398 } 1399 1400 /* 1401 * Assume worst case - that we're writing in 1402 * the middle of the extent. 1403 * 1404 * We can assume that the write proceeds from 1405 * left to right, in which case the extent 1406 * insert code is smart enough to coalesce the 1407 * next splits into the previous records created. 1408 */ 1409 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1410 *extents_to_split = *extents_to_split + 2; 1411 } else if (phys) { 1412 /* 1413 * Only increment phys if it doesn't describe 1414 * a hole. 1415 */ 1416 phys++; 1417 } 1418 1419 desc->c_phys = phys; 1420 if (phys == 0) { 1421 desc->c_new = 1; 1422 *clusters_to_alloc = *clusters_to_alloc + 1; 1423 } 1424 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1425 desc->c_unwritten = 1; 1426 1427 num_clusters--; 1428 } 1429 1430 ret = 0; 1431 out: 1432 return ret; 1433 } 1434 1435 static int ocfs2_write_begin_inline(struct address_space *mapping, 1436 struct inode *inode, 1437 struct ocfs2_write_ctxt *wc) 1438 { 1439 int ret; 1440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1441 struct page *page; 1442 handle_t *handle; 1443 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1444 1445 page = find_or_create_page(mapping, 0, GFP_NOFS); 1446 if (!page) { 1447 ret = -ENOMEM; 1448 mlog_errno(ret); 1449 goto out; 1450 } 1451 /* 1452 * If we don't set w_num_pages then this page won't get unlocked 1453 * and freed on cleanup of the write context. 1454 */ 1455 wc->w_pages[0] = wc->w_target_page = page; 1456 wc->w_num_pages = 1; 1457 1458 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1459 if (IS_ERR(handle)) { 1460 ret = PTR_ERR(handle); 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 1465 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1466 OCFS2_JOURNAL_ACCESS_WRITE); 1467 if (ret) { 1468 ocfs2_commit_trans(osb, handle); 1469 1470 mlog_errno(ret); 1471 goto out; 1472 } 1473 1474 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1475 ocfs2_set_inode_data_inline(inode, di); 1476 1477 if (!PageUptodate(page)) { 1478 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1479 if (ret) { 1480 ocfs2_commit_trans(osb, handle); 1481 1482 goto out; 1483 } 1484 } 1485 1486 wc->w_handle = handle; 1487 out: 1488 return ret; 1489 } 1490 1491 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1492 { 1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1494 1495 if (new_size < le16_to_cpu(di->id2.i_data.id_count)) 1496 return 1; 1497 return 0; 1498 } 1499 1500 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1501 struct inode *inode, loff_t pos, 1502 unsigned len, struct page *mmap_page, 1503 struct ocfs2_write_ctxt *wc) 1504 { 1505 int ret, written = 0; 1506 loff_t end = pos + len; 1507 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1508 1509 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", 1510 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, 1511 oi->ip_dyn_features); 1512 1513 /* 1514 * Handle inodes which already have inline data 1st. 1515 */ 1516 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1517 if (mmap_page == NULL && 1518 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1519 goto do_inline_write; 1520 1521 /* 1522 * The write won't fit - we have to give this inode an 1523 * inline extent list now. 1524 */ 1525 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1526 if (ret) 1527 mlog_errno(ret); 1528 goto out; 1529 } 1530 1531 /* 1532 * Check whether the inode can accept inline data. 1533 */ 1534 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1535 return 0; 1536 1537 /* 1538 * Check whether the write can fit. 1539 */ 1540 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) 1541 return 0; 1542 1543 do_inline_write: 1544 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1545 if (ret) { 1546 mlog_errno(ret); 1547 goto out; 1548 } 1549 1550 /* 1551 * This signals to the caller that the data can be written 1552 * inline. 1553 */ 1554 written = 1; 1555 out: 1556 return written ? written : ret; 1557 } 1558 1559 /* 1560 * This function only does anything for file systems which can't 1561 * handle sparse files. 1562 * 1563 * What we want to do here is fill in any hole between the current end 1564 * of allocation and the end of our write. That way the rest of the 1565 * write path can treat it as an non-allocating write, which has no 1566 * special case code for sparse/nonsparse files. 1567 */ 1568 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, 1569 unsigned len, 1570 struct ocfs2_write_ctxt *wc) 1571 { 1572 int ret; 1573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1574 loff_t newsize = pos + len; 1575 1576 if (ocfs2_sparse_alloc(osb)) 1577 return 0; 1578 1579 if (newsize <= i_size_read(inode)) 1580 return 0; 1581 1582 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); 1583 if (ret) 1584 mlog_errno(ret); 1585 1586 return ret; 1587 } 1588 1589 int ocfs2_write_begin_nolock(struct address_space *mapping, 1590 loff_t pos, unsigned len, unsigned flags, 1591 struct page **pagep, void **fsdata, 1592 struct buffer_head *di_bh, struct page *mmap_page) 1593 { 1594 int ret, credits = OCFS2_INODE_UPDATE_CREDITS; 1595 unsigned int clusters_to_alloc, extents_to_split; 1596 struct ocfs2_write_ctxt *wc; 1597 struct inode *inode = mapping->host; 1598 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1599 struct ocfs2_dinode *di; 1600 struct ocfs2_alloc_context *data_ac = NULL; 1601 struct ocfs2_alloc_context *meta_ac = NULL; 1602 handle_t *handle; 1603 1604 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1605 if (ret) { 1606 mlog_errno(ret); 1607 return ret; 1608 } 1609 1610 if (ocfs2_supports_inline_data(osb)) { 1611 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1612 mmap_page, wc); 1613 if (ret == 1) { 1614 ret = 0; 1615 goto success; 1616 } 1617 if (ret < 0) { 1618 mlog_errno(ret); 1619 goto out; 1620 } 1621 } 1622 1623 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); 1624 if (ret) { 1625 mlog_errno(ret); 1626 goto out; 1627 } 1628 1629 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1630 &extents_to_split); 1631 if (ret) { 1632 mlog_errno(ret); 1633 goto out; 1634 } 1635 1636 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1637 1638 /* 1639 * We set w_target_from, w_target_to here so that 1640 * ocfs2_write_end() knows which range in the target page to 1641 * write out. An allocation requires that we write the entire 1642 * cluster range. 1643 */ 1644 if (clusters_to_alloc || extents_to_split) { 1645 /* 1646 * XXX: We are stretching the limits of 1647 * ocfs2_lock_allocators(). It greatly over-estimates 1648 * the work to be done. 1649 */ 1650 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc, 1651 extents_to_split, &data_ac, &meta_ac); 1652 if (ret) { 1653 mlog_errno(ret); 1654 goto out; 1655 } 1656 1657 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1658 clusters_to_alloc); 1659 1660 } 1661 1662 ocfs2_set_target_boundaries(osb, wc, pos, len, 1663 clusters_to_alloc + extents_to_split); 1664 1665 handle = ocfs2_start_trans(osb, credits); 1666 if (IS_ERR(handle)) { 1667 ret = PTR_ERR(handle); 1668 mlog_errno(ret); 1669 goto out; 1670 } 1671 1672 wc->w_handle = handle; 1673 1674 /* 1675 * We don't want this to fail in ocfs2_write_end(), so do it 1676 * here. 1677 */ 1678 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, 1679 OCFS2_JOURNAL_ACCESS_WRITE); 1680 if (ret) { 1681 mlog_errno(ret); 1682 goto out_commit; 1683 } 1684 1685 /* 1686 * Fill our page array first. That way we've grabbed enough so 1687 * that we can zero and flush if we error after adding the 1688 * extent. 1689 */ 1690 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, 1691 clusters_to_alloc + extents_to_split, 1692 mmap_page); 1693 if (ret) { 1694 mlog_errno(ret); 1695 goto out_commit; 1696 } 1697 1698 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1699 len); 1700 if (ret) { 1701 mlog_errno(ret); 1702 goto out_commit; 1703 } 1704 1705 if (data_ac) 1706 ocfs2_free_alloc_context(data_ac); 1707 if (meta_ac) 1708 ocfs2_free_alloc_context(meta_ac); 1709 1710 success: 1711 *pagep = wc->w_target_page; 1712 *fsdata = wc; 1713 return 0; 1714 out_commit: 1715 ocfs2_commit_trans(osb, handle); 1716 1717 out: 1718 ocfs2_free_write_ctxt(wc); 1719 1720 if (data_ac) 1721 ocfs2_free_alloc_context(data_ac); 1722 if (meta_ac) 1723 ocfs2_free_alloc_context(meta_ac); 1724 return ret; 1725 } 1726 1727 int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1728 loff_t pos, unsigned len, unsigned flags, 1729 struct page **pagep, void **fsdata) 1730 { 1731 int ret; 1732 struct buffer_head *di_bh = NULL; 1733 struct inode *inode = mapping->host; 1734 1735 ret = ocfs2_meta_lock(inode, &di_bh, 1); 1736 if (ret) { 1737 mlog_errno(ret); 1738 return ret; 1739 } 1740 1741 /* 1742 * Take alloc sem here to prevent concurrent lookups. That way 1743 * the mapping, zeroing and tree manipulation within 1744 * ocfs2_write() will be safe against ->readpage(). This 1745 * should also serve to lock out allocation from a shared 1746 * writeable region. 1747 */ 1748 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1749 1750 ret = ocfs2_data_lock(inode, 1); 1751 if (ret) { 1752 mlog_errno(ret); 1753 goto out_fail; 1754 } 1755 1756 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, 1757 fsdata, di_bh, NULL); 1758 if (ret) { 1759 mlog_errno(ret); 1760 goto out_fail_data; 1761 } 1762 1763 brelse(di_bh); 1764 1765 return 0; 1766 1767 out_fail_data: 1768 ocfs2_data_unlock(inode, 1); 1769 out_fail: 1770 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1771 1772 brelse(di_bh); 1773 ocfs2_meta_unlock(inode, 1); 1774 1775 return ret; 1776 } 1777 1778 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1779 unsigned len, unsigned *copied, 1780 struct ocfs2_dinode *di, 1781 struct ocfs2_write_ctxt *wc) 1782 { 1783 void *kaddr; 1784 1785 if (unlikely(*copied < len)) { 1786 if (!PageUptodate(wc->w_target_page)) { 1787 *copied = 0; 1788 return; 1789 } 1790 } 1791 1792 kaddr = kmap_atomic(wc->w_target_page, KM_USER0); 1793 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1794 kunmap_atomic(kaddr, KM_USER0); 1795 1796 mlog(0, "Data written to inode at offset %llu. " 1797 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", 1798 (unsigned long long)pos, *copied, 1799 le16_to_cpu(di->id2.i_data.id_count), 1800 le16_to_cpu(di->i_dyn_features)); 1801 } 1802 1803 int ocfs2_write_end_nolock(struct address_space *mapping, 1804 loff_t pos, unsigned len, unsigned copied, 1805 struct page *page, void *fsdata) 1806 { 1807 int i; 1808 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 1809 struct inode *inode = mapping->host; 1810 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1811 struct ocfs2_write_ctxt *wc = fsdata; 1812 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1813 handle_t *handle = wc->w_handle; 1814 struct page *tmppage; 1815 1816 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1817 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1818 goto out_write_size; 1819 } 1820 1821 if (unlikely(copied < len)) { 1822 if (!PageUptodate(wc->w_target_page)) 1823 copied = 0; 1824 1825 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1826 start+len); 1827 } 1828 flush_dcache_page(wc->w_target_page); 1829 1830 for(i = 0; i < wc->w_num_pages; i++) { 1831 tmppage = wc->w_pages[i]; 1832 1833 if (tmppage == wc->w_target_page) { 1834 from = wc->w_target_from; 1835 to = wc->w_target_to; 1836 1837 BUG_ON(from > PAGE_CACHE_SIZE || 1838 to > PAGE_CACHE_SIZE || 1839 to < from); 1840 } else { 1841 /* 1842 * Pages adjacent to the target (if any) imply 1843 * a hole-filling write in which case we want 1844 * to flush their entire range. 1845 */ 1846 from = 0; 1847 to = PAGE_CACHE_SIZE; 1848 } 1849 1850 if (ocfs2_should_order_data(inode)) 1851 walk_page_buffers(wc->w_handle, page_buffers(tmppage), 1852 from, to, NULL, 1853 ocfs2_journal_dirty_data); 1854 1855 block_commit_write(tmppage, from, to); 1856 } 1857 1858 out_write_size: 1859 pos += copied; 1860 if (pos > inode->i_size) { 1861 i_size_write(inode, pos); 1862 mark_inode_dirty(inode); 1863 } 1864 inode->i_blocks = ocfs2_inode_sector_count(inode); 1865 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 1866 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1867 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 1868 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 1869 ocfs2_journal_dirty(handle, wc->w_di_bh); 1870 1871 ocfs2_commit_trans(osb, handle); 1872 1873 ocfs2_run_deallocs(osb, &wc->w_dealloc); 1874 1875 ocfs2_free_write_ctxt(wc); 1876 1877 return copied; 1878 } 1879 1880 int ocfs2_write_end(struct file *file, struct address_space *mapping, 1881 loff_t pos, unsigned len, unsigned copied, 1882 struct page *page, void *fsdata) 1883 { 1884 int ret; 1885 struct inode *inode = mapping->host; 1886 1887 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 1888 1889 ocfs2_data_unlock(inode, 1); 1890 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1891 ocfs2_meta_unlock(inode, 1); 1892 1893 return ret; 1894 } 1895 1896 const struct address_space_operations ocfs2_aops = { 1897 .readpage = ocfs2_readpage, 1898 .writepage = ocfs2_writepage, 1899 .bmap = ocfs2_bmap, 1900 .sync_page = block_sync_page, 1901 .direct_IO = ocfs2_direct_IO, 1902 .invalidatepage = ocfs2_invalidatepage, 1903 .releasepage = ocfs2_releasepage, 1904 .migratepage = buffer_migrate_page, 1905 }; 1906