xref: /linux/fs/ocfs2/aops.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 
48 #include "buffer_head_io.h"
49 
50 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 				   struct buffer_head *bh_result, int create)
52 {
53 	int err = -EIO;
54 	int status;
55 	struct ocfs2_dinode *fe = NULL;
56 	struct buffer_head *bh = NULL;
57 	struct buffer_head *buffer_cache_bh = NULL;
58 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 	void *kaddr;
60 
61 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 		   (unsigned long long)iblock, bh_result, create);
63 
64 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65 
66 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 		     (unsigned long long)iblock);
69 		goto bail;
70 	}
71 
72 	status = ocfs2_read_inode_block(inode, &bh);
73 	if (status < 0) {
74 		mlog_errno(status);
75 		goto bail;
76 	}
77 	fe = (struct ocfs2_dinode *) bh->b_data;
78 
79 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 						    le32_to_cpu(fe->i_clusters))) {
81 		mlog(ML_ERROR, "block offset is outside the allocated size: "
82 		     "%llu\n", (unsigned long long)iblock);
83 		goto bail;
84 	}
85 
86 	/* We don't use the page cache to create symlink data, so if
87 	 * need be, copy it over from the buffer cache. */
88 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90 			    iblock;
91 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 		if (!buffer_cache_bh) {
93 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94 			goto bail;
95 		}
96 
97 		/* we haven't locked out transactions, so a commit
98 		 * could've happened. Since we've got a reference on
99 		 * the bh, even if it commits while we're doing the
100 		 * copy, the data is still good. */
101 		if (buffer_jbd(buffer_cache_bh)
102 		    && ocfs2_inode_is_new(inode)) {
103 			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104 			if (!kaddr) {
105 				mlog(ML_ERROR, "couldn't kmap!\n");
106 				goto bail;
107 			}
108 			memcpy(kaddr + (bh_result->b_size * iblock),
109 			       buffer_cache_bh->b_data,
110 			       bh_result->b_size);
111 			kunmap_atomic(kaddr, KM_USER0);
112 			set_buffer_uptodate(bh_result);
113 		}
114 		brelse(buffer_cache_bh);
115 	}
116 
117 	map_bh(bh_result, inode->i_sb,
118 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
119 
120 	err = 0;
121 
122 bail:
123 	brelse(bh);
124 
125 	mlog_exit(err);
126 	return err;
127 }
128 
129 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 			   struct buffer_head *bh_result, int create)
131 {
132 	int err = 0;
133 	unsigned int ext_flags;
134 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 	u64 p_blkno, count, past_eof;
136 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
137 
138 	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 		   (unsigned long long)iblock, bh_result, create);
140 
141 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 		     inode, inode->i_ino);
144 
145 	if (S_ISLNK(inode->i_mode)) {
146 		/* this always does I/O for some reason. */
147 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 		goto bail;
149 	}
150 
151 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
152 					  &ext_flags);
153 	if (err) {
154 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 		     (unsigned long long)p_blkno);
157 		goto bail;
158 	}
159 
160 	if (max_blocks < count)
161 		count = max_blocks;
162 
163 	/*
164 	 * ocfs2 never allocates in this function - the only time we
165 	 * need to use BH_New is when we're extending i_size on a file
166 	 * system which doesn't support holes, in which case BH_New
167 	 * allows block_prepare_write() to zero.
168 	 *
169 	 * If we see this on a sparse file system, then a truncate has
170 	 * raced us and removed the cluster. In this case, we clear
171 	 * the buffers dirty and uptodate bits and let the buffer code
172 	 * ignore it as a hole.
173 	 */
174 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 		clear_buffer_dirty(bh_result);
176 		clear_buffer_uptodate(bh_result);
177 		goto bail;
178 	}
179 
180 	/* Treat the unwritten extent as a hole for zeroing purposes. */
181 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182 		map_bh(bh_result, inode->i_sb, p_blkno);
183 
184 	bh_result->b_size = count << inode->i_blkbits;
185 
186 	if (!ocfs2_sparse_alloc(osb)) {
187 		if (p_blkno == 0) {
188 			err = -EIO;
189 			mlog(ML_ERROR,
190 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 			     (unsigned long long)iblock,
192 			     (unsigned long long)p_blkno,
193 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 			dump_stack();
196 			goto bail;
197 		}
198 
199 		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
200 		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
201 		     (unsigned long long)past_eof);
202 
203 		if (create && (iblock >= past_eof))
204 			set_buffer_new(bh_result);
205 	}
206 
207 bail:
208 	if (err < 0)
209 		err = -EIO;
210 
211 	mlog_exit(err);
212 	return err;
213 }
214 
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 			   struct buffer_head *di_bh)
217 {
218 	void *kaddr;
219 	loff_t size;
220 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 
222 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 		return -EROFS;
226 	}
227 
228 	size = i_size_read(inode);
229 
230 	if (size > PAGE_CACHE_SIZE ||
231 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 		ocfs2_error(inode->i_sb,
233 			    "Inode %llu has with inline data has bad size: %Lu",
234 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 			    (unsigned long long)size);
236 		return -EROFS;
237 	}
238 
239 	kaddr = kmap_atomic(page, KM_USER0);
240 	if (size)
241 		memcpy(kaddr, di->id2.i_data.id_data, size);
242 	/* Clear the remaining part of the page */
243 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 	flush_dcache_page(page);
245 	kunmap_atomic(kaddr, KM_USER0);
246 
247 	SetPageUptodate(page);
248 
249 	return 0;
250 }
251 
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 	int ret;
255 	struct buffer_head *di_bh = NULL;
256 
257 	BUG_ON(!PageLocked(page));
258 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 
260 	ret = ocfs2_read_inode_block(inode, &di_bh);
261 	if (ret) {
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 	unlock_page(page);
269 
270 	brelse(di_bh);
271 	return ret;
272 }
273 
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 	struct inode *inode = page->mapping->host;
277 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 	int ret, unlock = 1;
280 
281 	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282 
283 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 	if (ret != 0) {
285 		if (ret == AOP_TRUNCATED_PAGE)
286 			unlock = 0;
287 		mlog_errno(ret);
288 		goto out;
289 	}
290 
291 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 		ret = AOP_TRUNCATED_PAGE;
293 		goto out_inode_unlock;
294 	}
295 
296 	/*
297 	 * i_size might have just been updated as we grabed the meta lock.  We
298 	 * might now be discovering a truncate that hit on another node.
299 	 * block_read_full_page->get_block freaks out if it is asked to read
300 	 * beyond the end of a file, so we check here.  Callers
301 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 	 * and notice that the page they just read isn't needed.
303 	 *
304 	 * XXX sys_readahead() seems to get that wrong?
305 	 */
306 	if (start >= i_size_read(inode)) {
307 		zero_user(page, 0, PAGE_SIZE);
308 		SetPageUptodate(page);
309 		ret = 0;
310 		goto out_alloc;
311 	}
312 
313 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 		ret = ocfs2_readpage_inline(inode, page);
315 	else
316 		ret = block_read_full_page(page, ocfs2_get_block);
317 	unlock = 0;
318 
319 out_alloc:
320 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 	ocfs2_inode_unlock(inode, 0);
323 out:
324 	if (unlock)
325 		unlock_page(page);
326 	mlog_exit(ret);
327 	return ret;
328 }
329 
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 			   struct list_head *pages, unsigned nr_pages)
341 {
342 	int ret, err = -EIO;
343 	struct inode *inode = mapping->host;
344 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 	loff_t start;
346 	struct page *last;
347 
348 	/*
349 	 * Use the nonblocking flag for the dlm code to avoid page
350 	 * lock inversion, but don't bother with retrying.
351 	 */
352 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 	if (ret)
354 		return err;
355 
356 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 		ocfs2_inode_unlock(inode, 0);
358 		return err;
359 	}
360 
361 	/*
362 	 * Don't bother with inline-data. There isn't anything
363 	 * to read-ahead in that case anyway...
364 	 */
365 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 		goto out_unlock;
367 
368 	/*
369 	 * Check whether a remote node truncated this file - we just
370 	 * drop out in that case as it's not worth handling here.
371 	 */
372 	last = list_entry(pages->prev, struct page, lru);
373 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 	if (start >= i_size_read(inode))
375 		goto out_unlock;
376 
377 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378 
379 out_unlock:
380 	up_read(&oi->ip_alloc_sem);
381 	ocfs2_inode_unlock(inode, 0);
382 
383 	return err;
384 }
385 
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 	int ret;
400 
401 	mlog_entry("(0x%p)\n", page);
402 
403 	ret = block_write_full_page(page, ocfs2_get_block, wbc);
404 
405 	mlog_exit(ret);
406 
407 	return ret;
408 }
409 
410 /*
411  * This is called from ocfs2_write_zero_page() which has handled it's
412  * own cluster locking and has ensured allocation exists for those
413  * blocks to be written.
414  */
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 			       unsigned from, unsigned to)
417 {
418 	int ret;
419 
420 	ret = block_prepare_write(page, from, to, ocfs2_get_block);
421 
422 	return ret;
423 }
424 
425 /* Taken from ext3. We don't necessarily need the full blown
426  * functionality yet, but IMHO it's better to cut and paste the whole
427  * thing so we can avoid introducing our own bugs (and easily pick up
428  * their fixes when they happen) --Mark */
429 int walk_page_buffers(	handle_t *handle,
430 			struct buffer_head *head,
431 			unsigned from,
432 			unsigned to,
433 			int *partial,
434 			int (*fn)(	handle_t *handle,
435 					struct buffer_head *bh))
436 {
437 	struct buffer_head *bh;
438 	unsigned block_start, block_end;
439 	unsigned blocksize = head->b_size;
440 	int err, ret = 0;
441 	struct buffer_head *next;
442 
443 	for (	bh = head, block_start = 0;
444 		ret == 0 && (bh != head || !block_start);
445 	    	block_start = block_end, bh = next)
446 	{
447 		next = bh->b_this_page;
448 		block_end = block_start + blocksize;
449 		if (block_end <= from || block_start >= to) {
450 			if (partial && !buffer_uptodate(bh))
451 				*partial = 1;
452 			continue;
453 		}
454 		err = (*fn)(handle, bh);
455 		if (!ret)
456 			ret = err;
457 	}
458 	return ret;
459 }
460 
461 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
462 							 struct page *page,
463 							 unsigned from,
464 							 unsigned to)
465 {
466 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
467 	handle_t *handle;
468 	int ret = 0;
469 
470 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
471 	if (IS_ERR(handle)) {
472 		ret = -ENOMEM;
473 		mlog_errno(ret);
474 		goto out;
475 	}
476 
477 	if (ocfs2_should_order_data(inode)) {
478 		ret = ocfs2_jbd2_file_inode(handle, inode);
479 		if (ret < 0)
480 			mlog_errno(ret);
481 	}
482 out:
483 	if (ret) {
484 		if (!IS_ERR(handle))
485 			ocfs2_commit_trans(osb, handle);
486 		handle = ERR_PTR(ret);
487 	}
488 	return handle;
489 }
490 
491 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
492 {
493 	sector_t status;
494 	u64 p_blkno = 0;
495 	int err = 0;
496 	struct inode *inode = mapping->host;
497 
498 	mlog_entry("(block = %llu)\n", (unsigned long long)block);
499 
500 	/* We don't need to lock journal system files, since they aren't
501 	 * accessed concurrently from multiple nodes.
502 	 */
503 	if (!INODE_JOURNAL(inode)) {
504 		err = ocfs2_inode_lock(inode, NULL, 0);
505 		if (err) {
506 			if (err != -ENOENT)
507 				mlog_errno(err);
508 			goto bail;
509 		}
510 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
511 	}
512 
513 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
514 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
515 						  NULL);
516 
517 	if (!INODE_JOURNAL(inode)) {
518 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
519 		ocfs2_inode_unlock(inode, 0);
520 	}
521 
522 	if (err) {
523 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
524 		     (unsigned long long)block);
525 		mlog_errno(err);
526 		goto bail;
527 	}
528 
529 bail:
530 	status = err ? 0 : p_blkno;
531 
532 	mlog_exit((int)status);
533 
534 	return status;
535 }
536 
537 /*
538  * TODO: Make this into a generic get_blocks function.
539  *
540  * From do_direct_io in direct-io.c:
541  *  "So what we do is to permit the ->get_blocks function to populate
542  *   bh.b_size with the size of IO which is permitted at this offset and
543  *   this i_blkbits."
544  *
545  * This function is called directly from get_more_blocks in direct-io.c.
546  *
547  * called like this: dio->get_blocks(dio->inode, fs_startblk,
548  * 					fs_count, map_bh, dio->rw == WRITE);
549  */
550 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
551 				     struct buffer_head *bh_result, int create)
552 {
553 	int ret;
554 	u64 p_blkno, inode_blocks, contig_blocks;
555 	unsigned int ext_flags;
556 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
557 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
558 
559 	/* This function won't even be called if the request isn't all
560 	 * nicely aligned and of the right size, so there's no need
561 	 * for us to check any of that. */
562 
563 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564 
565 	/*
566 	 * Any write past EOF is not allowed because we'd be extending.
567 	 */
568 	if (create && (iblock + max_blocks) > inode_blocks) {
569 		ret = -EIO;
570 		goto bail;
571 	}
572 
573 	/* This figures out the size of the next contiguous block, and
574 	 * our logical offset */
575 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
576 					  &contig_blocks, &ext_flags);
577 	if (ret) {
578 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
579 		     (unsigned long long)iblock);
580 		ret = -EIO;
581 		goto bail;
582 	}
583 
584 	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
585 		ocfs2_error(inode->i_sb,
586 			    "Inode %llu has a hole at block %llu\n",
587 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
588 			    (unsigned long long)iblock);
589 		ret = -EROFS;
590 		goto bail;
591 	}
592 
593 	/*
594 	 * get_more_blocks() expects us to describe a hole by clearing
595 	 * the mapped bit on bh_result().
596 	 *
597 	 * Consider an unwritten extent as a hole.
598 	 */
599 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
600 		map_bh(bh_result, inode->i_sb, p_blkno);
601 	else {
602 		/*
603 		 * ocfs2_prepare_inode_for_write() should have caught
604 		 * the case where we'd be filling a hole and triggered
605 		 * a buffered write instead.
606 		 */
607 		if (create) {
608 			ret = -EIO;
609 			mlog_errno(ret);
610 			goto bail;
611 		}
612 
613 		clear_buffer_mapped(bh_result);
614 	}
615 
616 	/* make sure we don't map more than max_blocks blocks here as
617 	   that's all the kernel will handle at this point. */
618 	if (max_blocks < contig_blocks)
619 		contig_blocks = max_blocks;
620 	bh_result->b_size = contig_blocks << blocksize_bits;
621 bail:
622 	return ret;
623 }
624 
625 /*
626  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
627  * particularly interested in the aio/dio case.  Like the core uses
628  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
629  * truncation on another.
630  */
631 static void ocfs2_dio_end_io(struct kiocb *iocb,
632 			     loff_t offset,
633 			     ssize_t bytes,
634 			     void *private)
635 {
636 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
637 	int level;
638 
639 	/* this io's submitter should not have unlocked this before we could */
640 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
641 
642 	ocfs2_iocb_clear_rw_locked(iocb);
643 
644 	level = ocfs2_iocb_rw_locked_level(iocb);
645 	if (!level)
646 		up_read(&inode->i_alloc_sem);
647 	ocfs2_rw_unlock(inode, level);
648 }
649 
650 /*
651  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
652  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
653  * do journalled data.
654  */
655 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
656 {
657 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
658 
659 	jbd2_journal_invalidatepage(journal, page, offset);
660 }
661 
662 static int ocfs2_releasepage(struct page *page, gfp_t wait)
663 {
664 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
665 
666 	if (!page_has_buffers(page))
667 		return 0;
668 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
669 }
670 
671 static ssize_t ocfs2_direct_IO(int rw,
672 			       struct kiocb *iocb,
673 			       const struct iovec *iov,
674 			       loff_t offset,
675 			       unsigned long nr_segs)
676 {
677 	struct file *file = iocb->ki_filp;
678 	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
679 	int ret;
680 
681 	mlog_entry_void();
682 
683 	/*
684 	 * Fallback to buffered I/O if we see an inode without
685 	 * extents.
686 	 */
687 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
688 		return 0;
689 
690 	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
691 					    inode->i_sb->s_bdev, iov, offset,
692 					    nr_segs,
693 					    ocfs2_direct_IO_get_blocks,
694 					    ocfs2_dio_end_io);
695 
696 	mlog_exit(ret);
697 	return ret;
698 }
699 
700 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
701 					    u32 cpos,
702 					    unsigned int *start,
703 					    unsigned int *end)
704 {
705 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
706 
707 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
708 		unsigned int cpp;
709 
710 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
711 
712 		cluster_start = cpos % cpp;
713 		cluster_start = cluster_start << osb->s_clustersize_bits;
714 
715 		cluster_end = cluster_start + osb->s_clustersize;
716 	}
717 
718 	BUG_ON(cluster_start > PAGE_SIZE);
719 	BUG_ON(cluster_end > PAGE_SIZE);
720 
721 	if (start)
722 		*start = cluster_start;
723 	if (end)
724 		*end = cluster_end;
725 }
726 
727 /*
728  * 'from' and 'to' are the region in the page to avoid zeroing.
729  *
730  * If pagesize > clustersize, this function will avoid zeroing outside
731  * of the cluster boundary.
732  *
733  * from == to == 0 is code for "zero the entire cluster region"
734  */
735 static void ocfs2_clear_page_regions(struct page *page,
736 				     struct ocfs2_super *osb, u32 cpos,
737 				     unsigned from, unsigned to)
738 {
739 	void *kaddr;
740 	unsigned int cluster_start, cluster_end;
741 
742 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
743 
744 	kaddr = kmap_atomic(page, KM_USER0);
745 
746 	if (from || to) {
747 		if (from > cluster_start)
748 			memset(kaddr + cluster_start, 0, from - cluster_start);
749 		if (to < cluster_end)
750 			memset(kaddr + to, 0, cluster_end - to);
751 	} else {
752 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
753 	}
754 
755 	kunmap_atomic(kaddr, KM_USER0);
756 }
757 
758 /*
759  * Nonsparse file systems fully allocate before we get to the write
760  * code. This prevents ocfs2_write() from tagging the write as an
761  * allocating one, which means ocfs2_map_page_blocks() might try to
762  * read-in the blocks at the tail of our file. Avoid reading them by
763  * testing i_size against each block offset.
764  */
765 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
766 				 unsigned int block_start)
767 {
768 	u64 offset = page_offset(page) + block_start;
769 
770 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
771 		return 1;
772 
773 	if (i_size_read(inode) > offset)
774 		return 1;
775 
776 	return 0;
777 }
778 
779 /*
780  * Some of this taken from block_prepare_write(). We already have our
781  * mapping by now though, and the entire write will be allocating or
782  * it won't, so not much need to use BH_New.
783  *
784  * This will also skip zeroing, which is handled externally.
785  */
786 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
787 			  struct inode *inode, unsigned int from,
788 			  unsigned int to, int new)
789 {
790 	int ret = 0;
791 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
792 	unsigned int block_end, block_start;
793 	unsigned int bsize = 1 << inode->i_blkbits;
794 
795 	if (!page_has_buffers(page))
796 		create_empty_buffers(page, bsize, 0);
797 
798 	head = page_buffers(page);
799 	for (bh = head, block_start = 0; bh != head || !block_start;
800 	     bh = bh->b_this_page, block_start += bsize) {
801 		block_end = block_start + bsize;
802 
803 		clear_buffer_new(bh);
804 
805 		/*
806 		 * Ignore blocks outside of our i/o range -
807 		 * they may belong to unallocated clusters.
808 		 */
809 		if (block_start >= to || block_end <= from) {
810 			if (PageUptodate(page))
811 				set_buffer_uptodate(bh);
812 			continue;
813 		}
814 
815 		/*
816 		 * For an allocating write with cluster size >= page
817 		 * size, we always write the entire page.
818 		 */
819 		if (new)
820 			set_buffer_new(bh);
821 
822 		if (!buffer_mapped(bh)) {
823 			map_bh(bh, inode->i_sb, *p_blkno);
824 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
825 		}
826 
827 		if (PageUptodate(page)) {
828 			if (!buffer_uptodate(bh))
829 				set_buffer_uptodate(bh);
830 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
831 			   !buffer_new(bh) &&
832 			   ocfs2_should_read_blk(inode, page, block_start) &&
833 			   (block_start < from || block_end > to)) {
834 			ll_rw_block(READ, 1, &bh);
835 			*wait_bh++=bh;
836 		}
837 
838 		*p_blkno = *p_blkno + 1;
839 	}
840 
841 	/*
842 	 * If we issued read requests - let them complete.
843 	 */
844 	while(wait_bh > wait) {
845 		wait_on_buffer(*--wait_bh);
846 		if (!buffer_uptodate(*wait_bh))
847 			ret = -EIO;
848 	}
849 
850 	if (ret == 0 || !new)
851 		return ret;
852 
853 	/*
854 	 * If we get -EIO above, zero out any newly allocated blocks
855 	 * to avoid exposing stale data.
856 	 */
857 	bh = head;
858 	block_start = 0;
859 	do {
860 		block_end = block_start + bsize;
861 		if (block_end <= from)
862 			goto next_bh;
863 		if (block_start >= to)
864 			break;
865 
866 		zero_user(page, block_start, bh->b_size);
867 		set_buffer_uptodate(bh);
868 		mark_buffer_dirty(bh);
869 
870 next_bh:
871 		block_start = block_end;
872 		bh = bh->b_this_page;
873 	} while (bh != head);
874 
875 	return ret;
876 }
877 
878 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
879 #define OCFS2_MAX_CTXT_PAGES	1
880 #else
881 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
882 #endif
883 
884 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
885 
886 /*
887  * Describe the state of a single cluster to be written to.
888  */
889 struct ocfs2_write_cluster_desc {
890 	u32		c_cpos;
891 	u32		c_phys;
892 	/*
893 	 * Give this a unique field because c_phys eventually gets
894 	 * filled.
895 	 */
896 	unsigned	c_new;
897 	unsigned	c_unwritten;
898 	unsigned	c_needs_zero;
899 };
900 
901 struct ocfs2_write_ctxt {
902 	/* Logical cluster position / len of write */
903 	u32				w_cpos;
904 	u32				w_clen;
905 
906 	/* First cluster allocated in a nonsparse extend */
907 	u32				w_first_new_cpos;
908 
909 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
910 
911 	/*
912 	 * This is true if page_size > cluster_size.
913 	 *
914 	 * It triggers a set of special cases during write which might
915 	 * have to deal with allocating writes to partial pages.
916 	 */
917 	unsigned int			w_large_pages;
918 
919 	/*
920 	 * Pages involved in this write.
921 	 *
922 	 * w_target_page is the page being written to by the user.
923 	 *
924 	 * w_pages is an array of pages which always contains
925 	 * w_target_page, and in the case of an allocating write with
926 	 * page_size < cluster size, it will contain zero'd and mapped
927 	 * pages adjacent to w_target_page which need to be written
928 	 * out in so that future reads from that region will get
929 	 * zero's.
930 	 */
931 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
932 	unsigned int			w_num_pages;
933 	struct page			*w_target_page;
934 
935 	/*
936 	 * ocfs2_write_end() uses this to know what the real range to
937 	 * write in the target should be.
938 	 */
939 	unsigned int			w_target_from;
940 	unsigned int			w_target_to;
941 
942 	/*
943 	 * We could use journal_current_handle() but this is cleaner,
944 	 * IMHO -Mark
945 	 */
946 	handle_t			*w_handle;
947 
948 	struct buffer_head		*w_di_bh;
949 
950 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
951 };
952 
953 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
954 {
955 	int i;
956 
957 	for(i = 0; i < num_pages; i++) {
958 		if (pages[i]) {
959 			unlock_page(pages[i]);
960 			mark_page_accessed(pages[i]);
961 			page_cache_release(pages[i]);
962 		}
963 	}
964 }
965 
966 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
967 {
968 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
969 
970 	brelse(wc->w_di_bh);
971 	kfree(wc);
972 }
973 
974 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 				  struct ocfs2_super *osb, loff_t pos,
976 				  unsigned len, struct buffer_head *di_bh)
977 {
978 	u32 cend;
979 	struct ocfs2_write_ctxt *wc;
980 
981 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982 	if (!wc)
983 		return -ENOMEM;
984 
985 	wc->w_cpos = pos >> osb->s_clustersize_bits;
986 	wc->w_first_new_cpos = UINT_MAX;
987 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
988 	wc->w_clen = cend - wc->w_cpos + 1;
989 	get_bh(di_bh);
990 	wc->w_di_bh = di_bh;
991 
992 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
993 		wc->w_large_pages = 1;
994 	else
995 		wc->w_large_pages = 0;
996 
997 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
998 
999 	*wcp = wc;
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * If a page has any new buffers, zero them out here, and mark them uptodate
1006  * and dirty so they'll be written out (in order to prevent uninitialised
1007  * block data from leaking). And clear the new bit.
1008  */
1009 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1010 {
1011 	unsigned int block_start, block_end;
1012 	struct buffer_head *head, *bh;
1013 
1014 	BUG_ON(!PageLocked(page));
1015 	if (!page_has_buffers(page))
1016 		return;
1017 
1018 	bh = head = page_buffers(page);
1019 	block_start = 0;
1020 	do {
1021 		block_end = block_start + bh->b_size;
1022 
1023 		if (buffer_new(bh)) {
1024 			if (block_end > from && block_start < to) {
1025 				if (!PageUptodate(page)) {
1026 					unsigned start, end;
1027 
1028 					start = max(from, block_start);
1029 					end = min(to, block_end);
1030 
1031 					zero_user_segment(page, start, end);
1032 					set_buffer_uptodate(bh);
1033 				}
1034 
1035 				clear_buffer_new(bh);
1036 				mark_buffer_dirty(bh);
1037 			}
1038 		}
1039 
1040 		block_start = block_end;
1041 		bh = bh->b_this_page;
1042 	} while (bh != head);
1043 }
1044 
1045 /*
1046  * Only called when we have a failure during allocating write to write
1047  * zero's to the newly allocated region.
1048  */
1049 static void ocfs2_write_failure(struct inode *inode,
1050 				struct ocfs2_write_ctxt *wc,
1051 				loff_t user_pos, unsigned user_len)
1052 {
1053 	int i;
1054 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1055 		to = user_pos + user_len;
1056 	struct page *tmppage;
1057 
1058 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1059 
1060 	for(i = 0; i < wc->w_num_pages; i++) {
1061 		tmppage = wc->w_pages[i];
1062 
1063 		if (page_has_buffers(tmppage)) {
1064 			if (ocfs2_should_order_data(inode))
1065 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1066 
1067 			block_commit_write(tmppage, from, to);
1068 		}
1069 	}
1070 }
1071 
1072 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1073 					struct ocfs2_write_ctxt *wc,
1074 					struct page *page, u32 cpos,
1075 					loff_t user_pos, unsigned user_len,
1076 					int new)
1077 {
1078 	int ret;
1079 	unsigned int map_from = 0, map_to = 0;
1080 	unsigned int cluster_start, cluster_end;
1081 	unsigned int user_data_from = 0, user_data_to = 0;
1082 
1083 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1084 					&cluster_start, &cluster_end);
1085 
1086 	if (page == wc->w_target_page) {
1087 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1088 		map_to = map_from + user_len;
1089 
1090 		if (new)
1091 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1092 						    cluster_start, cluster_end,
1093 						    new);
1094 		else
1095 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1096 						    map_from, map_to, new);
1097 		if (ret) {
1098 			mlog_errno(ret);
1099 			goto out;
1100 		}
1101 
1102 		user_data_from = map_from;
1103 		user_data_to = map_to;
1104 		if (new) {
1105 			map_from = cluster_start;
1106 			map_to = cluster_end;
1107 		}
1108 	} else {
1109 		/*
1110 		 * If we haven't allocated the new page yet, we
1111 		 * shouldn't be writing it out without copying user
1112 		 * data. This is likely a math error from the caller.
1113 		 */
1114 		BUG_ON(!new);
1115 
1116 		map_from = cluster_start;
1117 		map_to = cluster_end;
1118 
1119 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1120 					    cluster_start, cluster_end, new);
1121 		if (ret) {
1122 			mlog_errno(ret);
1123 			goto out;
1124 		}
1125 	}
1126 
1127 	/*
1128 	 * Parts of newly allocated pages need to be zero'd.
1129 	 *
1130 	 * Above, we have also rewritten 'to' and 'from' - as far as
1131 	 * the rest of the function is concerned, the entire cluster
1132 	 * range inside of a page needs to be written.
1133 	 *
1134 	 * We can skip this if the page is up to date - it's already
1135 	 * been zero'd from being read in as a hole.
1136 	 */
1137 	if (new && !PageUptodate(page))
1138 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1139 					 cpos, user_data_from, user_data_to);
1140 
1141 	flush_dcache_page(page);
1142 
1143 out:
1144 	return ret;
1145 }
1146 
1147 /*
1148  * This function will only grab one clusters worth of pages.
1149  */
1150 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1151 				      struct ocfs2_write_ctxt *wc,
1152 				      u32 cpos, loff_t user_pos, int new,
1153 				      struct page *mmap_page)
1154 {
1155 	int ret = 0, i;
1156 	unsigned long start, target_index, index;
1157 	struct inode *inode = mapping->host;
1158 
1159 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1160 
1161 	/*
1162 	 * Figure out how many pages we'll be manipulating here. For
1163 	 * non allocating write, we just change the one
1164 	 * page. Otherwise, we'll need a whole clusters worth.
1165 	 */
1166 	if (new) {
1167 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1168 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1169 	} else {
1170 		wc->w_num_pages = 1;
1171 		start = target_index;
1172 	}
1173 
1174 	for(i = 0; i < wc->w_num_pages; i++) {
1175 		index = start + i;
1176 
1177 		if (index == target_index && mmap_page) {
1178 			/*
1179 			 * ocfs2_pagemkwrite() is a little different
1180 			 * and wants us to directly use the page
1181 			 * passed in.
1182 			 */
1183 			lock_page(mmap_page);
1184 
1185 			if (mmap_page->mapping != mapping) {
1186 				unlock_page(mmap_page);
1187 				/*
1188 				 * Sanity check - the locking in
1189 				 * ocfs2_pagemkwrite() should ensure
1190 				 * that this code doesn't trigger.
1191 				 */
1192 				ret = -EINVAL;
1193 				mlog_errno(ret);
1194 				goto out;
1195 			}
1196 
1197 			page_cache_get(mmap_page);
1198 			wc->w_pages[i] = mmap_page;
1199 		} else {
1200 			wc->w_pages[i] = find_or_create_page(mapping, index,
1201 							     GFP_NOFS);
1202 			if (!wc->w_pages[i]) {
1203 				ret = -ENOMEM;
1204 				mlog_errno(ret);
1205 				goto out;
1206 			}
1207 		}
1208 
1209 		if (index == target_index)
1210 			wc->w_target_page = wc->w_pages[i];
1211 	}
1212 out:
1213 	return ret;
1214 }
1215 
1216 /*
1217  * Prepare a single cluster for write one cluster into the file.
1218  */
1219 static int ocfs2_write_cluster(struct address_space *mapping,
1220 			       u32 phys, unsigned int unwritten,
1221 			       unsigned int should_zero,
1222 			       struct ocfs2_alloc_context *data_ac,
1223 			       struct ocfs2_alloc_context *meta_ac,
1224 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1225 			       loff_t user_pos, unsigned user_len)
1226 {
1227 	int ret, i, new;
1228 	u64 v_blkno, p_blkno;
1229 	struct inode *inode = mapping->host;
1230 	struct ocfs2_extent_tree et;
1231 
1232 	new = phys == 0 ? 1 : 0;
1233 	if (new) {
1234 		u32 tmp_pos;
1235 
1236 		/*
1237 		 * This is safe to call with the page locks - it won't take
1238 		 * any additional semaphores or cluster locks.
1239 		 */
1240 		tmp_pos = cpos;
1241 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242 					   &tmp_pos, 1, 0, wc->w_di_bh,
1243 					   wc->w_handle, data_ac,
1244 					   meta_ac, NULL);
1245 		/*
1246 		 * This shouldn't happen because we must have already
1247 		 * calculated the correct meta data allocation required. The
1248 		 * internal tree allocation code should know how to increase
1249 		 * transaction credits itself.
1250 		 *
1251 		 * If need be, we could handle -EAGAIN for a
1252 		 * RESTART_TRANS here.
1253 		 */
1254 		mlog_bug_on_msg(ret == -EAGAIN,
1255 				"Inode %llu: EAGAIN return during allocation.\n",
1256 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1257 		if (ret < 0) {
1258 			mlog_errno(ret);
1259 			goto out;
1260 		}
1261 	} else if (unwritten) {
1262 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1263 		ret = ocfs2_mark_extent_written(inode, &et,
1264 						wc->w_handle, cpos, 1, phys,
1265 						meta_ac, &wc->w_dealloc);
1266 		if (ret < 0) {
1267 			mlog_errno(ret);
1268 			goto out;
1269 		}
1270 	}
1271 
1272 	if (should_zero)
1273 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1274 	else
1275 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1276 
1277 	/*
1278 	 * The only reason this should fail is due to an inability to
1279 	 * find the extent added.
1280 	 */
1281 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282 					  NULL);
1283 	if (ret < 0) {
1284 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285 			    "at logical block %llu",
1286 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287 			    (unsigned long long)v_blkno);
1288 		goto out;
1289 	}
1290 
1291 	BUG_ON(p_blkno == 0);
1292 
1293 	for(i = 0; i < wc->w_num_pages; i++) {
1294 		int tmpret;
1295 
1296 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297 						      wc->w_pages[i], cpos,
1298 						      user_pos, user_len,
1299 						      should_zero);
1300 		if (tmpret) {
1301 			mlog_errno(tmpret);
1302 			if (ret == 0)
1303 				ret = tmpret;
1304 		}
1305 	}
1306 
1307 	/*
1308 	 * We only have cleanup to do in case of allocating write.
1309 	 */
1310 	if (ret && new)
1311 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1312 
1313 out:
1314 
1315 	return ret;
1316 }
1317 
1318 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319 				       struct ocfs2_alloc_context *data_ac,
1320 				       struct ocfs2_alloc_context *meta_ac,
1321 				       struct ocfs2_write_ctxt *wc,
1322 				       loff_t pos, unsigned len)
1323 {
1324 	int ret, i;
1325 	loff_t cluster_off;
1326 	unsigned int local_len = len;
1327 	struct ocfs2_write_cluster_desc *desc;
1328 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1329 
1330 	for (i = 0; i < wc->w_clen; i++) {
1331 		desc = &wc->w_desc[i];
1332 
1333 		/*
1334 		 * We have to make sure that the total write passed in
1335 		 * doesn't extend past a single cluster.
1336 		 */
1337 		local_len = len;
1338 		cluster_off = pos & (osb->s_clustersize - 1);
1339 		if ((cluster_off + local_len) > osb->s_clustersize)
1340 			local_len = osb->s_clustersize - cluster_off;
1341 
1342 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343 					  desc->c_unwritten,
1344 					  desc->c_needs_zero,
1345 					  data_ac, meta_ac,
1346 					  wc, desc->c_cpos, pos, local_len);
1347 		if (ret) {
1348 			mlog_errno(ret);
1349 			goto out;
1350 		}
1351 
1352 		len -= local_len;
1353 		pos += local_len;
1354 	}
1355 
1356 	ret = 0;
1357 out:
1358 	return ret;
1359 }
1360 
1361 /*
1362  * ocfs2_write_end() wants to know which parts of the target page it
1363  * should complete the write on. It's easiest to compute them ahead of
1364  * time when a more complete view of the write is available.
1365  */
1366 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1367 					struct ocfs2_write_ctxt *wc,
1368 					loff_t pos, unsigned len, int alloc)
1369 {
1370 	struct ocfs2_write_cluster_desc *desc;
1371 
1372 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1373 	wc->w_target_to = wc->w_target_from + len;
1374 
1375 	if (alloc == 0)
1376 		return;
1377 
1378 	/*
1379 	 * Allocating write - we may have different boundaries based
1380 	 * on page size and cluster size.
1381 	 *
1382 	 * NOTE: We can no longer compute one value from the other as
1383 	 * the actual write length and user provided length may be
1384 	 * different.
1385 	 */
1386 
1387 	if (wc->w_large_pages) {
1388 		/*
1389 		 * We only care about the 1st and last cluster within
1390 		 * our range and whether they should be zero'd or not. Either
1391 		 * value may be extended out to the start/end of a
1392 		 * newly allocated cluster.
1393 		 */
1394 		desc = &wc->w_desc[0];
1395 		if (desc->c_needs_zero)
1396 			ocfs2_figure_cluster_boundaries(osb,
1397 							desc->c_cpos,
1398 							&wc->w_target_from,
1399 							NULL);
1400 
1401 		desc = &wc->w_desc[wc->w_clen - 1];
1402 		if (desc->c_needs_zero)
1403 			ocfs2_figure_cluster_boundaries(osb,
1404 							desc->c_cpos,
1405 							NULL,
1406 							&wc->w_target_to);
1407 	} else {
1408 		wc->w_target_from = 0;
1409 		wc->w_target_to = PAGE_CACHE_SIZE;
1410 	}
1411 }
1412 
1413 /*
1414  * Populate each single-cluster write descriptor in the write context
1415  * with information about the i/o to be done.
1416  *
1417  * Returns the number of clusters that will have to be allocated, as
1418  * well as a worst case estimate of the number of extent records that
1419  * would have to be created during a write to an unwritten region.
1420  */
1421 static int ocfs2_populate_write_desc(struct inode *inode,
1422 				     struct ocfs2_write_ctxt *wc,
1423 				     unsigned int *clusters_to_alloc,
1424 				     unsigned int *extents_to_split)
1425 {
1426 	int ret;
1427 	struct ocfs2_write_cluster_desc *desc;
1428 	unsigned int num_clusters = 0;
1429 	unsigned int ext_flags = 0;
1430 	u32 phys = 0;
1431 	int i;
1432 
1433 	*clusters_to_alloc = 0;
1434 	*extents_to_split = 0;
1435 
1436 	for (i = 0; i < wc->w_clen; i++) {
1437 		desc = &wc->w_desc[i];
1438 		desc->c_cpos = wc->w_cpos + i;
1439 
1440 		if (num_clusters == 0) {
1441 			/*
1442 			 * Need to look up the next extent record.
1443 			 */
1444 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1445 						 &num_clusters, &ext_flags);
1446 			if (ret) {
1447 				mlog_errno(ret);
1448 				goto out;
1449 			}
1450 
1451 			/*
1452 			 * Assume worst case - that we're writing in
1453 			 * the middle of the extent.
1454 			 *
1455 			 * We can assume that the write proceeds from
1456 			 * left to right, in which case the extent
1457 			 * insert code is smart enough to coalesce the
1458 			 * next splits into the previous records created.
1459 			 */
1460 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1461 				*extents_to_split = *extents_to_split + 2;
1462 		} else if (phys) {
1463 			/*
1464 			 * Only increment phys if it doesn't describe
1465 			 * a hole.
1466 			 */
1467 			phys++;
1468 		}
1469 
1470 		/*
1471 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1472 		 * file that got extended.  w_first_new_cpos tells us
1473 		 * where the newly allocated clusters are so we can
1474 		 * zero them.
1475 		 */
1476 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1477 			BUG_ON(phys == 0);
1478 			desc->c_needs_zero = 1;
1479 		}
1480 
1481 		desc->c_phys = phys;
1482 		if (phys == 0) {
1483 			desc->c_new = 1;
1484 			desc->c_needs_zero = 1;
1485 			*clusters_to_alloc = *clusters_to_alloc + 1;
1486 		}
1487 
1488 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1489 			desc->c_unwritten = 1;
1490 			desc->c_needs_zero = 1;
1491 		}
1492 
1493 		num_clusters--;
1494 	}
1495 
1496 	ret = 0;
1497 out:
1498 	return ret;
1499 }
1500 
1501 static int ocfs2_write_begin_inline(struct address_space *mapping,
1502 				    struct inode *inode,
1503 				    struct ocfs2_write_ctxt *wc)
1504 {
1505 	int ret;
1506 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1507 	struct page *page;
1508 	handle_t *handle;
1509 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1510 
1511 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1512 	if (!page) {
1513 		ret = -ENOMEM;
1514 		mlog_errno(ret);
1515 		goto out;
1516 	}
1517 	/*
1518 	 * If we don't set w_num_pages then this page won't get unlocked
1519 	 * and freed on cleanup of the write context.
1520 	 */
1521 	wc->w_pages[0] = wc->w_target_page = page;
1522 	wc->w_num_pages = 1;
1523 
1524 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1525 	if (IS_ERR(handle)) {
1526 		ret = PTR_ERR(handle);
1527 		mlog_errno(ret);
1528 		goto out;
1529 	}
1530 
1531 	ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1532 				      OCFS2_JOURNAL_ACCESS_WRITE);
1533 	if (ret) {
1534 		ocfs2_commit_trans(osb, handle);
1535 
1536 		mlog_errno(ret);
1537 		goto out;
1538 	}
1539 
1540 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1541 		ocfs2_set_inode_data_inline(inode, di);
1542 
1543 	if (!PageUptodate(page)) {
1544 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1545 		if (ret) {
1546 			ocfs2_commit_trans(osb, handle);
1547 
1548 			goto out;
1549 		}
1550 	}
1551 
1552 	wc->w_handle = handle;
1553 out:
1554 	return ret;
1555 }
1556 
1557 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1558 {
1559 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1560 
1561 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1562 		return 1;
1563 	return 0;
1564 }
1565 
1566 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1567 					  struct inode *inode, loff_t pos,
1568 					  unsigned len, struct page *mmap_page,
1569 					  struct ocfs2_write_ctxt *wc)
1570 {
1571 	int ret, written = 0;
1572 	loff_t end = pos + len;
1573 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1574 	struct ocfs2_dinode *di = NULL;
1575 
1576 	mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1577 	     (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1578 	     oi->ip_dyn_features);
1579 
1580 	/*
1581 	 * Handle inodes which already have inline data 1st.
1582 	 */
1583 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584 		if (mmap_page == NULL &&
1585 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586 			goto do_inline_write;
1587 
1588 		/*
1589 		 * The write won't fit - we have to give this inode an
1590 		 * inline extent list now.
1591 		 */
1592 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593 		if (ret)
1594 			mlog_errno(ret);
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * Check whether the inode can accept inline data.
1600 	 */
1601 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602 		return 0;
1603 
1604 	/*
1605 	 * Check whether the write can fit.
1606 	 */
1607 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1608 	if (mmap_page ||
1609 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1610 		return 0;
1611 
1612 do_inline_write:
1613 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 	if (ret) {
1615 		mlog_errno(ret);
1616 		goto out;
1617 	}
1618 
1619 	/*
1620 	 * This signals to the caller that the data can be written
1621 	 * inline.
1622 	 */
1623 	written = 1;
1624 out:
1625 	return written ? written : ret;
1626 }
1627 
1628 /*
1629  * This function only does anything for file systems which can't
1630  * handle sparse files.
1631  *
1632  * What we want to do here is fill in any hole between the current end
1633  * of allocation and the end of our write. That way the rest of the
1634  * write path can treat it as an non-allocating write, which has no
1635  * special case code for sparse/nonsparse files.
1636  */
1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638 					unsigned len,
1639 					struct ocfs2_write_ctxt *wc)
1640 {
1641 	int ret;
1642 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 	loff_t newsize = pos + len;
1644 
1645 	if (ocfs2_sparse_alloc(osb))
1646 		return 0;
1647 
1648 	if (newsize <= i_size_read(inode))
1649 		return 0;
1650 
1651 	ret = ocfs2_extend_no_holes(inode, newsize, pos);
1652 	if (ret)
1653 		mlog_errno(ret);
1654 
1655 	wc->w_first_new_cpos =
1656 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1657 
1658 	return ret;
1659 }
1660 
1661 int ocfs2_write_begin_nolock(struct address_space *mapping,
1662 			     loff_t pos, unsigned len, unsigned flags,
1663 			     struct page **pagep, void **fsdata,
1664 			     struct buffer_head *di_bh, struct page *mmap_page)
1665 {
1666 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1667 	unsigned int clusters_to_alloc, extents_to_split;
1668 	struct ocfs2_write_ctxt *wc;
1669 	struct inode *inode = mapping->host;
1670 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1671 	struct ocfs2_dinode *di;
1672 	struct ocfs2_alloc_context *data_ac = NULL;
1673 	struct ocfs2_alloc_context *meta_ac = NULL;
1674 	handle_t *handle;
1675 	struct ocfs2_extent_tree et;
1676 
1677 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1678 	if (ret) {
1679 		mlog_errno(ret);
1680 		return ret;
1681 	}
1682 
1683 	if (ocfs2_supports_inline_data(osb)) {
1684 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 						     mmap_page, wc);
1686 		if (ret == 1) {
1687 			ret = 0;
1688 			goto success;
1689 		}
1690 		if (ret < 0) {
1691 			mlog_errno(ret);
1692 			goto out;
1693 		}
1694 	}
1695 
1696 	ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1697 	if (ret) {
1698 		mlog_errno(ret);
1699 		goto out;
1700 	}
1701 
1702 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1703 					&extents_to_split);
1704 	if (ret) {
1705 		mlog_errno(ret);
1706 		goto out;
1707 	}
1708 
1709 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1710 
1711 	/*
1712 	 * We set w_target_from, w_target_to here so that
1713 	 * ocfs2_write_end() knows which range in the target page to
1714 	 * write out. An allocation requires that we write the entire
1715 	 * cluster range.
1716 	 */
1717 	if (clusters_to_alloc || extents_to_split) {
1718 		/*
1719 		 * XXX: We are stretching the limits of
1720 		 * ocfs2_lock_allocators(). It greatly over-estimates
1721 		 * the work to be done.
1722 		 */
1723 		mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1724 		     " clusters_to_add = %u, extents_to_split = %u\n",
1725 		     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726 		     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1727 		     clusters_to_alloc, extents_to_split);
1728 
1729 		ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1730 		ret = ocfs2_lock_allocators(inode, &et,
1731 					    clusters_to_alloc, extents_to_split,
1732 					    &data_ac, &meta_ac);
1733 		if (ret) {
1734 			mlog_errno(ret);
1735 			goto out;
1736 		}
1737 
1738 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1739 						    &di->id2.i_list,
1740 						    clusters_to_alloc);
1741 
1742 	}
1743 
1744 	/*
1745 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1747 	 * we know zeros will only be needed in the first and/or last cluster.
1748 	 */
1749 	if (clusters_to_alloc || extents_to_split ||
1750 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1751 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1752 		cluster_of_pages = 1;
1753 	else
1754 		cluster_of_pages = 0;
1755 
1756 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1757 
1758 	handle = ocfs2_start_trans(osb, credits);
1759 	if (IS_ERR(handle)) {
1760 		ret = PTR_ERR(handle);
1761 		mlog_errno(ret);
1762 		goto out;
1763 	}
1764 
1765 	wc->w_handle = handle;
1766 
1767 	if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1768 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1769 		ret = -EDQUOT;
1770 		goto out_commit;
1771 	}
1772 	/*
1773 	 * We don't want this to fail in ocfs2_write_end(), so do it
1774 	 * here.
1775 	 */
1776 	ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1777 				      OCFS2_JOURNAL_ACCESS_WRITE);
1778 	if (ret) {
1779 		mlog_errno(ret);
1780 		goto out_quota;
1781 	}
1782 
1783 	/*
1784 	 * Fill our page array first. That way we've grabbed enough so
1785 	 * that we can zero and flush if we error after adding the
1786 	 * extent.
1787 	 */
1788 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1789 					 cluster_of_pages, mmap_page);
1790 	if (ret) {
1791 		mlog_errno(ret);
1792 		goto out_quota;
1793 	}
1794 
1795 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1796 					  len);
1797 	if (ret) {
1798 		mlog_errno(ret);
1799 		goto out_quota;
1800 	}
1801 
1802 	if (data_ac)
1803 		ocfs2_free_alloc_context(data_ac);
1804 	if (meta_ac)
1805 		ocfs2_free_alloc_context(meta_ac);
1806 
1807 success:
1808 	*pagep = wc->w_target_page;
1809 	*fsdata = wc;
1810 	return 0;
1811 out_quota:
1812 	if (clusters_to_alloc)
1813 		vfs_dq_free_space(inode,
1814 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1815 out_commit:
1816 	ocfs2_commit_trans(osb, handle);
1817 
1818 out:
1819 	ocfs2_free_write_ctxt(wc);
1820 
1821 	if (data_ac)
1822 		ocfs2_free_alloc_context(data_ac);
1823 	if (meta_ac)
1824 		ocfs2_free_alloc_context(meta_ac);
1825 	return ret;
1826 }
1827 
1828 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1829 			     loff_t pos, unsigned len, unsigned flags,
1830 			     struct page **pagep, void **fsdata)
1831 {
1832 	int ret;
1833 	struct buffer_head *di_bh = NULL;
1834 	struct inode *inode = mapping->host;
1835 
1836 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1837 	if (ret) {
1838 		mlog_errno(ret);
1839 		return ret;
1840 	}
1841 
1842 	/*
1843 	 * Take alloc sem here to prevent concurrent lookups. That way
1844 	 * the mapping, zeroing and tree manipulation within
1845 	 * ocfs2_write() will be safe against ->readpage(). This
1846 	 * should also serve to lock out allocation from a shared
1847 	 * writeable region.
1848 	 */
1849 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1850 
1851 	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1852 				       fsdata, di_bh, NULL);
1853 	if (ret) {
1854 		mlog_errno(ret);
1855 		goto out_fail;
1856 	}
1857 
1858 	brelse(di_bh);
1859 
1860 	return 0;
1861 
1862 out_fail:
1863 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1864 
1865 	brelse(di_bh);
1866 	ocfs2_inode_unlock(inode, 1);
1867 
1868 	return ret;
1869 }
1870 
1871 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1872 				   unsigned len, unsigned *copied,
1873 				   struct ocfs2_dinode *di,
1874 				   struct ocfs2_write_ctxt *wc)
1875 {
1876 	void *kaddr;
1877 
1878 	if (unlikely(*copied < len)) {
1879 		if (!PageUptodate(wc->w_target_page)) {
1880 			*copied = 0;
1881 			return;
1882 		}
1883 	}
1884 
1885 	kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1886 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1887 	kunmap_atomic(kaddr, KM_USER0);
1888 
1889 	mlog(0, "Data written to inode at offset %llu. "
1890 	     "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1891 	     (unsigned long long)pos, *copied,
1892 	     le16_to_cpu(di->id2.i_data.id_count),
1893 	     le16_to_cpu(di->i_dyn_features));
1894 }
1895 
1896 int ocfs2_write_end_nolock(struct address_space *mapping,
1897 			   loff_t pos, unsigned len, unsigned copied,
1898 			   struct page *page, void *fsdata)
1899 {
1900 	int i;
1901 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1902 	struct inode *inode = mapping->host;
1903 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1904 	struct ocfs2_write_ctxt *wc = fsdata;
1905 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1906 	handle_t *handle = wc->w_handle;
1907 	struct page *tmppage;
1908 
1909 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1910 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1911 		goto out_write_size;
1912 	}
1913 
1914 	if (unlikely(copied < len)) {
1915 		if (!PageUptodate(wc->w_target_page))
1916 			copied = 0;
1917 
1918 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1919 				       start+len);
1920 	}
1921 	flush_dcache_page(wc->w_target_page);
1922 
1923 	for(i = 0; i < wc->w_num_pages; i++) {
1924 		tmppage = wc->w_pages[i];
1925 
1926 		if (tmppage == wc->w_target_page) {
1927 			from = wc->w_target_from;
1928 			to = wc->w_target_to;
1929 
1930 			BUG_ON(from > PAGE_CACHE_SIZE ||
1931 			       to > PAGE_CACHE_SIZE ||
1932 			       to < from);
1933 		} else {
1934 			/*
1935 			 * Pages adjacent to the target (if any) imply
1936 			 * a hole-filling write in which case we want
1937 			 * to flush their entire range.
1938 			 */
1939 			from = 0;
1940 			to = PAGE_CACHE_SIZE;
1941 		}
1942 
1943 		if (page_has_buffers(tmppage)) {
1944 			if (ocfs2_should_order_data(inode))
1945 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1946 			block_commit_write(tmppage, from, to);
1947 		}
1948 	}
1949 
1950 out_write_size:
1951 	pos += copied;
1952 	if (pos > inode->i_size) {
1953 		i_size_write(inode, pos);
1954 		mark_inode_dirty(inode);
1955 	}
1956 	inode->i_blocks = ocfs2_inode_sector_count(inode);
1957 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
1958 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1959 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1960 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1961 	ocfs2_journal_dirty(handle, wc->w_di_bh);
1962 
1963 	ocfs2_commit_trans(osb, handle);
1964 
1965 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
1966 
1967 	ocfs2_free_write_ctxt(wc);
1968 
1969 	return copied;
1970 }
1971 
1972 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1973 			   loff_t pos, unsigned len, unsigned copied,
1974 			   struct page *page, void *fsdata)
1975 {
1976 	int ret;
1977 	struct inode *inode = mapping->host;
1978 
1979 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1980 
1981 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1982 	ocfs2_inode_unlock(inode, 1);
1983 
1984 	return ret;
1985 }
1986 
1987 const struct address_space_operations ocfs2_aops = {
1988 	.readpage		= ocfs2_readpage,
1989 	.readpages		= ocfs2_readpages,
1990 	.writepage		= ocfs2_writepage,
1991 	.write_begin		= ocfs2_write_begin,
1992 	.write_end		= ocfs2_write_end,
1993 	.bmap			= ocfs2_bmap,
1994 	.sync_page		= block_sync_page,
1995 	.direct_IO		= ocfs2_direct_IO,
1996 	.invalidatepage		= ocfs2_invalidatepage,
1997 	.releasepage		= ocfs2_releasepage,
1998 	.migratepage		= buffer_migrate_page,
1999 	.is_partially_uptodate	= block_is_partially_uptodate,
2000 };
2001