1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 32 #include <cluster/masklog.h> 33 34 #include "ocfs2.h" 35 36 #include "alloc.h" 37 #include "aops.h" 38 #include "dlmglue.h" 39 #include "extent_map.h" 40 #include "file.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "suballoc.h" 44 #include "super.h" 45 #include "symlink.h" 46 #include "refcounttree.h" 47 #include "ocfs2_trace.h" 48 49 #include "buffer_head_io.h" 50 51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 52 struct buffer_head *bh_result, int create) 53 { 54 int err = -EIO; 55 int status; 56 struct ocfs2_dinode *fe = NULL; 57 struct buffer_head *bh = NULL; 58 struct buffer_head *buffer_cache_bh = NULL; 59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 60 void *kaddr; 61 62 trace_ocfs2_symlink_get_block( 63 (unsigned long long)OCFS2_I(inode)->ip_blkno, 64 (unsigned long long)iblock, bh_result, create); 65 66 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 67 68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 70 (unsigned long long)iblock); 71 goto bail; 72 } 73 74 status = ocfs2_read_inode_block(inode, &bh); 75 if (status < 0) { 76 mlog_errno(status); 77 goto bail; 78 } 79 fe = (struct ocfs2_dinode *) bh->b_data; 80 81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 82 le32_to_cpu(fe->i_clusters))) { 83 mlog(ML_ERROR, "block offset is outside the allocated size: " 84 "%llu\n", (unsigned long long)iblock); 85 goto bail; 86 } 87 88 /* We don't use the page cache to create symlink data, so if 89 * need be, copy it over from the buffer cache. */ 90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 92 iblock; 93 buffer_cache_bh = sb_getblk(osb->sb, blkno); 94 if (!buffer_cache_bh) { 95 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 96 goto bail; 97 } 98 99 /* we haven't locked out transactions, so a commit 100 * could've happened. Since we've got a reference on 101 * the bh, even if it commits while we're doing the 102 * copy, the data is still good. */ 103 if (buffer_jbd(buffer_cache_bh) 104 && ocfs2_inode_is_new(inode)) { 105 kaddr = kmap_atomic(bh_result->b_page); 106 if (!kaddr) { 107 mlog(ML_ERROR, "couldn't kmap!\n"); 108 goto bail; 109 } 110 memcpy(kaddr + (bh_result->b_size * iblock), 111 buffer_cache_bh->b_data, 112 bh_result->b_size); 113 kunmap_atomic(kaddr); 114 set_buffer_uptodate(bh_result); 115 } 116 brelse(buffer_cache_bh); 117 } 118 119 map_bh(bh_result, inode->i_sb, 120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 121 122 err = 0; 123 124 bail: 125 brelse(bh); 126 127 return err; 128 } 129 130 int ocfs2_get_block(struct inode *inode, sector_t iblock, 131 struct buffer_head *bh_result, int create) 132 { 133 int err = 0; 134 unsigned int ext_flags; 135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 136 u64 p_blkno, count, past_eof; 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 138 139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 140 (unsigned long long)iblock, bh_result, create); 141 142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 144 inode, inode->i_ino); 145 146 if (S_ISLNK(inode->i_mode)) { 147 /* this always does I/O for some reason. */ 148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 149 goto bail; 150 } 151 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 153 &ext_flags); 154 if (err) { 155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 157 (unsigned long long)p_blkno); 158 goto bail; 159 } 160 161 if (max_blocks < count) 162 count = max_blocks; 163 164 /* 165 * ocfs2 never allocates in this function - the only time we 166 * need to use BH_New is when we're extending i_size on a file 167 * system which doesn't support holes, in which case BH_New 168 * allows __block_write_begin() to zero. 169 * 170 * If we see this on a sparse file system, then a truncate has 171 * raced us and removed the cluster. In this case, we clear 172 * the buffers dirty and uptodate bits and let the buffer code 173 * ignore it as a hole. 174 */ 175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 176 clear_buffer_dirty(bh_result); 177 clear_buffer_uptodate(bh_result); 178 goto bail; 179 } 180 181 /* Treat the unwritten extent as a hole for zeroing purposes. */ 182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 183 map_bh(bh_result, inode->i_sb, p_blkno); 184 185 bh_result->b_size = count << inode->i_blkbits; 186 187 if (!ocfs2_sparse_alloc(osb)) { 188 if (p_blkno == 0) { 189 err = -EIO; 190 mlog(ML_ERROR, 191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 192 (unsigned long long)iblock, 193 (unsigned long long)p_blkno, 194 (unsigned long long)OCFS2_I(inode)->ip_blkno); 195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 196 dump_stack(); 197 goto bail; 198 } 199 } 200 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 202 203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 204 (unsigned long long)past_eof); 205 if (create && (iblock >= past_eof)) 206 set_buffer_new(bh_result); 207 208 bail: 209 if (err < 0) 210 err = -EIO; 211 212 return err; 213 } 214 215 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 216 struct buffer_head *di_bh) 217 { 218 void *kaddr; 219 loff_t size; 220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 221 222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 224 (unsigned long long)OCFS2_I(inode)->ip_blkno); 225 return -EROFS; 226 } 227 228 size = i_size_read(inode); 229 230 if (size > PAGE_CACHE_SIZE || 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 232 ocfs2_error(inode->i_sb, 233 "Inode %llu has with inline data has bad size: %Lu", 234 (unsigned long long)OCFS2_I(inode)->ip_blkno, 235 (unsigned long long)size); 236 return -EROFS; 237 } 238 239 kaddr = kmap_atomic(page); 240 if (size) 241 memcpy(kaddr, di->id2.i_data.id_data, size); 242 /* Clear the remaining part of the page */ 243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 244 flush_dcache_page(page); 245 kunmap_atomic(kaddr); 246 247 SetPageUptodate(page); 248 249 return 0; 250 } 251 252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 253 { 254 int ret; 255 struct buffer_head *di_bh = NULL; 256 257 BUG_ON(!PageLocked(page)); 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 259 260 ret = ocfs2_read_inode_block(inode, &di_bh); 261 if (ret) { 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_read_inline_data(inode, page, di_bh); 267 out: 268 unlock_page(page); 269 270 brelse(di_bh); 271 return ret; 272 } 273 274 static int ocfs2_readpage(struct file *file, struct page *page) 275 { 276 struct inode *inode = page->mapping->host; 277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 279 int ret, unlock = 1; 280 281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 282 (page ? page->index : 0)); 283 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 285 if (ret != 0) { 286 if (ret == AOP_TRUNCATED_PAGE) 287 unlock = 0; 288 mlog_errno(ret); 289 goto out; 290 } 291 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 293 /* 294 * Unlock the page and cycle ip_alloc_sem so that we don't 295 * busyloop waiting for ip_alloc_sem to unlock 296 */ 297 ret = AOP_TRUNCATED_PAGE; 298 unlock_page(page); 299 unlock = 0; 300 down_read(&oi->ip_alloc_sem); 301 up_read(&oi->ip_alloc_sem); 302 goto out_inode_unlock; 303 } 304 305 /* 306 * i_size might have just been updated as we grabed the meta lock. We 307 * might now be discovering a truncate that hit on another node. 308 * block_read_full_page->get_block freaks out if it is asked to read 309 * beyond the end of a file, so we check here. Callers 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 311 * and notice that the page they just read isn't needed. 312 * 313 * XXX sys_readahead() seems to get that wrong? 314 */ 315 if (start >= i_size_read(inode)) { 316 zero_user(page, 0, PAGE_SIZE); 317 SetPageUptodate(page); 318 ret = 0; 319 goto out_alloc; 320 } 321 322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 323 ret = ocfs2_readpage_inline(inode, page); 324 else 325 ret = block_read_full_page(page, ocfs2_get_block); 326 unlock = 0; 327 328 out_alloc: 329 up_read(&OCFS2_I(inode)->ip_alloc_sem); 330 out_inode_unlock: 331 ocfs2_inode_unlock(inode, 0); 332 out: 333 if (unlock) 334 unlock_page(page); 335 return ret; 336 } 337 338 /* 339 * This is used only for read-ahead. Failures or difficult to handle 340 * situations are safe to ignore. 341 * 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists 343 * are quite large (243 extents on 4k blocks), so most inodes don't 344 * grow out to a tree. If need be, detecting boundary extents could 345 * trivially be added in a future version of ocfs2_get_block(). 346 */ 347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 348 struct list_head *pages, unsigned nr_pages) 349 { 350 int ret, err = -EIO; 351 struct inode *inode = mapping->host; 352 struct ocfs2_inode_info *oi = OCFS2_I(inode); 353 loff_t start; 354 struct page *last; 355 356 /* 357 * Use the nonblocking flag for the dlm code to avoid page 358 * lock inversion, but don't bother with retrying. 359 */ 360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 361 if (ret) 362 return err; 363 364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 365 ocfs2_inode_unlock(inode, 0); 366 return err; 367 } 368 369 /* 370 * Don't bother with inline-data. There isn't anything 371 * to read-ahead in that case anyway... 372 */ 373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 374 goto out_unlock; 375 376 /* 377 * Check whether a remote node truncated this file - we just 378 * drop out in that case as it's not worth handling here. 379 */ 380 last = list_entry(pages->prev, struct page, lru); 381 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 382 if (start >= i_size_read(inode)) 383 goto out_unlock; 384 385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 386 387 out_unlock: 388 up_read(&oi->ip_alloc_sem); 389 ocfs2_inode_unlock(inode, 0); 390 391 return err; 392 } 393 394 /* Note: Because we don't support holes, our allocation has 395 * already happened (allocation writes zeros to the file data) 396 * so we don't have to worry about ordered writes in 397 * ocfs2_writepage. 398 * 399 * ->writepage is called during the process of invalidating the page cache 400 * during blocked lock processing. It can't block on any cluster locks 401 * to during block mapping. It's relying on the fact that the block 402 * mapping can't have disappeared under the dirty pages that it is 403 * being asked to write back. 404 */ 405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 406 { 407 trace_ocfs2_writepage( 408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 409 page->index); 410 411 return block_write_full_page(page, ocfs2_get_block, wbc); 412 } 413 414 /* Taken from ext3. We don't necessarily need the full blown 415 * functionality yet, but IMHO it's better to cut and paste the whole 416 * thing so we can avoid introducing our own bugs (and easily pick up 417 * their fixes when they happen) --Mark */ 418 int walk_page_buffers( handle_t *handle, 419 struct buffer_head *head, 420 unsigned from, 421 unsigned to, 422 int *partial, 423 int (*fn)( handle_t *handle, 424 struct buffer_head *bh)) 425 { 426 struct buffer_head *bh; 427 unsigned block_start, block_end; 428 unsigned blocksize = head->b_size; 429 int err, ret = 0; 430 struct buffer_head *next; 431 432 for ( bh = head, block_start = 0; 433 ret == 0 && (bh != head || !block_start); 434 block_start = block_end, bh = next) 435 { 436 next = bh->b_this_page; 437 block_end = block_start + blocksize; 438 if (block_end <= from || block_start >= to) { 439 if (partial && !buffer_uptodate(bh)) 440 *partial = 1; 441 continue; 442 } 443 err = (*fn)(handle, bh); 444 if (!ret) 445 ret = err; 446 } 447 return ret; 448 } 449 450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 451 { 452 sector_t status; 453 u64 p_blkno = 0; 454 int err = 0; 455 struct inode *inode = mapping->host; 456 457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 458 (unsigned long long)block); 459 460 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple nodes. 462 */ 463 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 466 if (err != -ENOENT) 467 mlog_errno(err); 468 goto bail; 469 } 470 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 472 473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 NULL); 476 477 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 480 } 481 482 if (err) { 483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block); 485 mlog_errno(err); 486 goto bail; 487 } 488 489 bail: 490 status = err ? 0 : p_blkno; 491 492 return status; 493 } 494 495 /* 496 * TODO: Make this into a generic get_blocks function. 497 * 498 * From do_direct_io in direct-io.c: 499 * "So what we do is to permit the ->get_blocks function to populate 500 * bh.b_size with the size of IO which is permitted at this offset and 501 * this i_blkbits." 502 * 503 * This function is called directly from get_more_blocks in direct-io.c. 504 * 505 * called like this: dio->get_blocks(dio->inode, fs_startblk, 506 * fs_count, map_bh, dio->rw == WRITE); 507 * 508 * Note that we never bother to allocate blocks here, and thus ignore the 509 * create argument. 510 */ 511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 512 struct buffer_head *bh_result, int create) 513 { 514 int ret; 515 u64 p_blkno, inode_blocks, contig_blocks; 516 unsigned int ext_flags; 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 519 520 /* This function won't even be called if the request isn't all 521 * nicely aligned and of the right size, so there's no need 522 * for us to check any of that. */ 523 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 525 526 /* This figures out the size of the next contiguous block, and 527 * our logical offset */ 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 529 &contig_blocks, &ext_flags); 530 if (ret) { 531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 532 (unsigned long long)iblock); 533 ret = -EIO; 534 goto bail; 535 } 536 537 /* We should already CoW the refcounted extent in case of create. */ 538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 539 540 /* 541 * get_more_blocks() expects us to describe a hole by clearing 542 * the mapped bit on bh_result(). 543 * 544 * Consider an unwritten extent as a hole. 545 */ 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 547 map_bh(bh_result, inode->i_sb, p_blkno); 548 else 549 clear_buffer_mapped(bh_result); 550 551 /* make sure we don't map more than max_blocks blocks here as 552 that's all the kernel will handle at this point. */ 553 if (max_blocks < contig_blocks) 554 contig_blocks = max_blocks; 555 bh_result->b_size = contig_blocks << blocksize_bits; 556 bail: 557 return ret; 558 } 559 560 /* 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 563 * to protect io on one node from truncation on another. 564 */ 565 static void ocfs2_dio_end_io(struct kiocb *iocb, 566 loff_t offset, 567 ssize_t bytes, 568 void *private, 569 int ret, 570 bool is_async) 571 { 572 struct inode *inode = file_inode(iocb->ki_filp); 573 int level; 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode); 575 576 /* this io's submitter should not have unlocked this before we could */ 577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 578 579 if (ocfs2_iocb_is_sem_locked(iocb)) 580 ocfs2_iocb_clear_sem_locked(iocb); 581 582 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 583 ocfs2_iocb_clear_unaligned_aio(iocb); 584 585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) && 586 waitqueue_active(wq)) { 587 wake_up_all(wq); 588 } 589 } 590 591 ocfs2_iocb_clear_rw_locked(iocb); 592 593 level = ocfs2_iocb_rw_locked_level(iocb); 594 ocfs2_rw_unlock(inode, level); 595 596 inode_dio_done(inode); 597 if (is_async) 598 aio_complete(iocb, ret, 0); 599 } 600 601 /* 602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen 603 * from ext3. PageChecked() bits have been removed as OCFS2 does not 604 * do journalled data. 605 */ 606 static void ocfs2_invalidatepage(struct page *page, unsigned int offset, 607 unsigned int length) 608 { 609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 610 611 jbd2_journal_invalidatepage(journal, page, offset, length); 612 } 613 614 static int ocfs2_releasepage(struct page *page, gfp_t wait) 615 { 616 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; 617 618 if (!page_has_buffers(page)) 619 return 0; 620 return jbd2_journal_try_to_free_buffers(journal, page, wait); 621 } 622 623 static ssize_t ocfs2_direct_IO(int rw, 624 struct kiocb *iocb, 625 const struct iovec *iov, 626 loff_t offset, 627 unsigned long nr_segs) 628 { 629 struct file *file = iocb->ki_filp; 630 struct inode *inode = file_inode(file)->i_mapping->host; 631 632 /* 633 * Fallback to buffered I/O if we see an inode without 634 * extents. 635 */ 636 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 637 return 0; 638 639 /* Fallback to buffered I/O if we are appending. */ 640 if (i_size_read(inode) <= offset) 641 return 0; 642 643 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, 644 iov, offset, nr_segs, 645 ocfs2_direct_IO_get_blocks, 646 ocfs2_dio_end_io, NULL, 0); 647 } 648 649 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 650 u32 cpos, 651 unsigned int *start, 652 unsigned int *end) 653 { 654 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 655 656 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 657 unsigned int cpp; 658 659 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 660 661 cluster_start = cpos % cpp; 662 cluster_start = cluster_start << osb->s_clustersize_bits; 663 664 cluster_end = cluster_start + osb->s_clustersize; 665 } 666 667 BUG_ON(cluster_start > PAGE_SIZE); 668 BUG_ON(cluster_end > PAGE_SIZE); 669 670 if (start) 671 *start = cluster_start; 672 if (end) 673 *end = cluster_end; 674 } 675 676 /* 677 * 'from' and 'to' are the region in the page to avoid zeroing. 678 * 679 * If pagesize > clustersize, this function will avoid zeroing outside 680 * of the cluster boundary. 681 * 682 * from == to == 0 is code for "zero the entire cluster region" 683 */ 684 static void ocfs2_clear_page_regions(struct page *page, 685 struct ocfs2_super *osb, u32 cpos, 686 unsigned from, unsigned to) 687 { 688 void *kaddr; 689 unsigned int cluster_start, cluster_end; 690 691 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 692 693 kaddr = kmap_atomic(page); 694 695 if (from || to) { 696 if (from > cluster_start) 697 memset(kaddr + cluster_start, 0, from - cluster_start); 698 if (to < cluster_end) 699 memset(kaddr + to, 0, cluster_end - to); 700 } else { 701 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 702 } 703 704 kunmap_atomic(kaddr); 705 } 706 707 /* 708 * Nonsparse file systems fully allocate before we get to the write 709 * code. This prevents ocfs2_write() from tagging the write as an 710 * allocating one, which means ocfs2_map_page_blocks() might try to 711 * read-in the blocks at the tail of our file. Avoid reading them by 712 * testing i_size against each block offset. 713 */ 714 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 715 unsigned int block_start) 716 { 717 u64 offset = page_offset(page) + block_start; 718 719 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 720 return 1; 721 722 if (i_size_read(inode) > offset) 723 return 1; 724 725 return 0; 726 } 727 728 /* 729 * Some of this taken from __block_write_begin(). We already have our 730 * mapping by now though, and the entire write will be allocating or 731 * it won't, so not much need to use BH_New. 732 * 733 * This will also skip zeroing, which is handled externally. 734 */ 735 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 736 struct inode *inode, unsigned int from, 737 unsigned int to, int new) 738 { 739 int ret = 0; 740 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 741 unsigned int block_end, block_start; 742 unsigned int bsize = 1 << inode->i_blkbits; 743 744 if (!page_has_buffers(page)) 745 create_empty_buffers(page, bsize, 0); 746 747 head = page_buffers(page); 748 for (bh = head, block_start = 0; bh != head || !block_start; 749 bh = bh->b_this_page, block_start += bsize) { 750 block_end = block_start + bsize; 751 752 clear_buffer_new(bh); 753 754 /* 755 * Ignore blocks outside of our i/o range - 756 * they may belong to unallocated clusters. 757 */ 758 if (block_start >= to || block_end <= from) { 759 if (PageUptodate(page)) 760 set_buffer_uptodate(bh); 761 continue; 762 } 763 764 /* 765 * For an allocating write with cluster size >= page 766 * size, we always write the entire page. 767 */ 768 if (new) 769 set_buffer_new(bh); 770 771 if (!buffer_mapped(bh)) { 772 map_bh(bh, inode->i_sb, *p_blkno); 773 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 774 } 775 776 if (PageUptodate(page)) { 777 if (!buffer_uptodate(bh)) 778 set_buffer_uptodate(bh); 779 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 780 !buffer_new(bh) && 781 ocfs2_should_read_blk(inode, page, block_start) && 782 (block_start < from || block_end > to)) { 783 ll_rw_block(READ, 1, &bh); 784 *wait_bh++=bh; 785 } 786 787 *p_blkno = *p_blkno + 1; 788 } 789 790 /* 791 * If we issued read requests - let them complete. 792 */ 793 while(wait_bh > wait) { 794 wait_on_buffer(*--wait_bh); 795 if (!buffer_uptodate(*wait_bh)) 796 ret = -EIO; 797 } 798 799 if (ret == 0 || !new) 800 return ret; 801 802 /* 803 * If we get -EIO above, zero out any newly allocated blocks 804 * to avoid exposing stale data. 805 */ 806 bh = head; 807 block_start = 0; 808 do { 809 block_end = block_start + bsize; 810 if (block_end <= from) 811 goto next_bh; 812 if (block_start >= to) 813 break; 814 815 zero_user(page, block_start, bh->b_size); 816 set_buffer_uptodate(bh); 817 mark_buffer_dirty(bh); 818 819 next_bh: 820 block_start = block_end; 821 bh = bh->b_this_page; 822 } while (bh != head); 823 824 return ret; 825 } 826 827 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 828 #define OCFS2_MAX_CTXT_PAGES 1 829 #else 830 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 831 #endif 832 833 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 834 835 /* 836 * Describe the state of a single cluster to be written to. 837 */ 838 struct ocfs2_write_cluster_desc { 839 u32 c_cpos; 840 u32 c_phys; 841 /* 842 * Give this a unique field because c_phys eventually gets 843 * filled. 844 */ 845 unsigned c_new; 846 unsigned c_unwritten; 847 unsigned c_needs_zero; 848 }; 849 850 struct ocfs2_write_ctxt { 851 /* Logical cluster position / len of write */ 852 u32 w_cpos; 853 u32 w_clen; 854 855 /* First cluster allocated in a nonsparse extend */ 856 u32 w_first_new_cpos; 857 858 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 859 860 /* 861 * This is true if page_size > cluster_size. 862 * 863 * It triggers a set of special cases during write which might 864 * have to deal with allocating writes to partial pages. 865 */ 866 unsigned int w_large_pages; 867 868 /* 869 * Pages involved in this write. 870 * 871 * w_target_page is the page being written to by the user. 872 * 873 * w_pages is an array of pages which always contains 874 * w_target_page, and in the case of an allocating write with 875 * page_size < cluster size, it will contain zero'd and mapped 876 * pages adjacent to w_target_page which need to be written 877 * out in so that future reads from that region will get 878 * zero's. 879 */ 880 unsigned int w_num_pages; 881 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 882 struct page *w_target_page; 883 884 /* 885 * w_target_locked is used for page_mkwrite path indicating no unlocking 886 * against w_target_page in ocfs2_write_end_nolock. 887 */ 888 unsigned int w_target_locked:1; 889 890 /* 891 * ocfs2_write_end() uses this to know what the real range to 892 * write in the target should be. 893 */ 894 unsigned int w_target_from; 895 unsigned int w_target_to; 896 897 /* 898 * We could use journal_current_handle() but this is cleaner, 899 * IMHO -Mark 900 */ 901 handle_t *w_handle; 902 903 struct buffer_head *w_di_bh; 904 905 struct ocfs2_cached_dealloc_ctxt w_dealloc; 906 }; 907 908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 909 { 910 int i; 911 912 for(i = 0; i < num_pages; i++) { 913 if (pages[i]) { 914 unlock_page(pages[i]); 915 mark_page_accessed(pages[i]); 916 page_cache_release(pages[i]); 917 } 918 } 919 } 920 921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 922 { 923 int i; 924 925 /* 926 * w_target_locked is only set to true in the page_mkwrite() case. 927 * The intent is to allow us to lock the target page from write_begin() 928 * to write_end(). The caller must hold a ref on w_target_page. 929 */ 930 if (wc->w_target_locked) { 931 BUG_ON(!wc->w_target_page); 932 for (i = 0; i < wc->w_num_pages; i++) { 933 if (wc->w_target_page == wc->w_pages[i]) { 934 wc->w_pages[i] = NULL; 935 break; 936 } 937 } 938 mark_page_accessed(wc->w_target_page); 939 page_cache_release(wc->w_target_page); 940 } 941 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 942 943 brelse(wc->w_di_bh); 944 kfree(wc); 945 } 946 947 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 948 struct ocfs2_super *osb, loff_t pos, 949 unsigned len, struct buffer_head *di_bh) 950 { 951 u32 cend; 952 struct ocfs2_write_ctxt *wc; 953 954 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 955 if (!wc) 956 return -ENOMEM; 957 958 wc->w_cpos = pos >> osb->s_clustersize_bits; 959 wc->w_first_new_cpos = UINT_MAX; 960 cend = (pos + len - 1) >> osb->s_clustersize_bits; 961 wc->w_clen = cend - wc->w_cpos + 1; 962 get_bh(di_bh); 963 wc->w_di_bh = di_bh; 964 965 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 966 wc->w_large_pages = 1; 967 else 968 wc->w_large_pages = 0; 969 970 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 971 972 *wcp = wc; 973 974 return 0; 975 } 976 977 /* 978 * If a page has any new buffers, zero them out here, and mark them uptodate 979 * and dirty so they'll be written out (in order to prevent uninitialised 980 * block data from leaking). And clear the new bit. 981 */ 982 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 983 { 984 unsigned int block_start, block_end; 985 struct buffer_head *head, *bh; 986 987 BUG_ON(!PageLocked(page)); 988 if (!page_has_buffers(page)) 989 return; 990 991 bh = head = page_buffers(page); 992 block_start = 0; 993 do { 994 block_end = block_start + bh->b_size; 995 996 if (buffer_new(bh)) { 997 if (block_end > from && block_start < to) { 998 if (!PageUptodate(page)) { 999 unsigned start, end; 1000 1001 start = max(from, block_start); 1002 end = min(to, block_end); 1003 1004 zero_user_segment(page, start, end); 1005 set_buffer_uptodate(bh); 1006 } 1007 1008 clear_buffer_new(bh); 1009 mark_buffer_dirty(bh); 1010 } 1011 } 1012 1013 block_start = block_end; 1014 bh = bh->b_this_page; 1015 } while (bh != head); 1016 } 1017 1018 /* 1019 * Only called when we have a failure during allocating write to write 1020 * zero's to the newly allocated region. 1021 */ 1022 static void ocfs2_write_failure(struct inode *inode, 1023 struct ocfs2_write_ctxt *wc, 1024 loff_t user_pos, unsigned user_len) 1025 { 1026 int i; 1027 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1028 to = user_pos + user_len; 1029 struct page *tmppage; 1030 1031 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1032 1033 for(i = 0; i < wc->w_num_pages; i++) { 1034 tmppage = wc->w_pages[i]; 1035 1036 if (page_has_buffers(tmppage)) { 1037 if (ocfs2_should_order_data(inode)) 1038 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1039 1040 block_commit_write(tmppage, from, to); 1041 } 1042 } 1043 } 1044 1045 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1046 struct ocfs2_write_ctxt *wc, 1047 struct page *page, u32 cpos, 1048 loff_t user_pos, unsigned user_len, 1049 int new) 1050 { 1051 int ret; 1052 unsigned int map_from = 0, map_to = 0; 1053 unsigned int cluster_start, cluster_end; 1054 unsigned int user_data_from = 0, user_data_to = 0; 1055 1056 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1057 &cluster_start, &cluster_end); 1058 1059 /* treat the write as new if the a hole/lseek spanned across 1060 * the page boundary. 1061 */ 1062 new = new | ((i_size_read(inode) <= page_offset(page)) && 1063 (page_offset(page) <= user_pos)); 1064 1065 if (page == wc->w_target_page) { 1066 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1067 map_to = map_from + user_len; 1068 1069 if (new) 1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1071 cluster_start, cluster_end, 1072 new); 1073 else 1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1075 map_from, map_to, new); 1076 if (ret) { 1077 mlog_errno(ret); 1078 goto out; 1079 } 1080 1081 user_data_from = map_from; 1082 user_data_to = map_to; 1083 if (new) { 1084 map_from = cluster_start; 1085 map_to = cluster_end; 1086 } 1087 } else { 1088 /* 1089 * If we haven't allocated the new page yet, we 1090 * shouldn't be writing it out without copying user 1091 * data. This is likely a math error from the caller. 1092 */ 1093 BUG_ON(!new); 1094 1095 map_from = cluster_start; 1096 map_to = cluster_end; 1097 1098 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1099 cluster_start, cluster_end, new); 1100 if (ret) { 1101 mlog_errno(ret); 1102 goto out; 1103 } 1104 } 1105 1106 /* 1107 * Parts of newly allocated pages need to be zero'd. 1108 * 1109 * Above, we have also rewritten 'to' and 'from' - as far as 1110 * the rest of the function is concerned, the entire cluster 1111 * range inside of a page needs to be written. 1112 * 1113 * We can skip this if the page is up to date - it's already 1114 * been zero'd from being read in as a hole. 1115 */ 1116 if (new && !PageUptodate(page)) 1117 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1118 cpos, user_data_from, user_data_to); 1119 1120 flush_dcache_page(page); 1121 1122 out: 1123 return ret; 1124 } 1125 1126 /* 1127 * This function will only grab one clusters worth of pages. 1128 */ 1129 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1130 struct ocfs2_write_ctxt *wc, 1131 u32 cpos, loff_t user_pos, 1132 unsigned user_len, int new, 1133 struct page *mmap_page) 1134 { 1135 int ret = 0, i; 1136 unsigned long start, target_index, end_index, index; 1137 struct inode *inode = mapping->host; 1138 loff_t last_byte; 1139 1140 target_index = user_pos >> PAGE_CACHE_SHIFT; 1141 1142 /* 1143 * Figure out how many pages we'll be manipulating here. For 1144 * non allocating write, we just change the one 1145 * page. Otherwise, we'll need a whole clusters worth. If we're 1146 * writing past i_size, we only need enough pages to cover the 1147 * last page of the write. 1148 */ 1149 if (new) { 1150 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1151 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1152 /* 1153 * We need the index *past* the last page we could possibly 1154 * touch. This is the page past the end of the write or 1155 * i_size, whichever is greater. 1156 */ 1157 last_byte = max(user_pos + user_len, i_size_read(inode)); 1158 BUG_ON(last_byte < 1); 1159 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1160 if ((start + wc->w_num_pages) > end_index) 1161 wc->w_num_pages = end_index - start; 1162 } else { 1163 wc->w_num_pages = 1; 1164 start = target_index; 1165 } 1166 1167 for(i = 0; i < wc->w_num_pages; i++) { 1168 index = start + i; 1169 1170 if (index == target_index && mmap_page) { 1171 /* 1172 * ocfs2_pagemkwrite() is a little different 1173 * and wants us to directly use the page 1174 * passed in. 1175 */ 1176 lock_page(mmap_page); 1177 1178 /* Exit and let the caller retry */ 1179 if (mmap_page->mapping != mapping) { 1180 WARN_ON(mmap_page->mapping); 1181 unlock_page(mmap_page); 1182 ret = -EAGAIN; 1183 goto out; 1184 } 1185 1186 page_cache_get(mmap_page); 1187 wc->w_pages[i] = mmap_page; 1188 wc->w_target_locked = true; 1189 } else { 1190 wc->w_pages[i] = find_or_create_page(mapping, index, 1191 GFP_NOFS); 1192 if (!wc->w_pages[i]) { 1193 ret = -ENOMEM; 1194 mlog_errno(ret); 1195 goto out; 1196 } 1197 } 1198 wait_for_stable_page(wc->w_pages[i]); 1199 1200 if (index == target_index) 1201 wc->w_target_page = wc->w_pages[i]; 1202 } 1203 out: 1204 if (ret) 1205 wc->w_target_locked = false; 1206 return ret; 1207 } 1208 1209 /* 1210 * Prepare a single cluster for write one cluster into the file. 1211 */ 1212 static int ocfs2_write_cluster(struct address_space *mapping, 1213 u32 phys, unsigned int unwritten, 1214 unsigned int should_zero, 1215 struct ocfs2_alloc_context *data_ac, 1216 struct ocfs2_alloc_context *meta_ac, 1217 struct ocfs2_write_ctxt *wc, u32 cpos, 1218 loff_t user_pos, unsigned user_len) 1219 { 1220 int ret, i, new; 1221 u64 v_blkno, p_blkno; 1222 struct inode *inode = mapping->host; 1223 struct ocfs2_extent_tree et; 1224 1225 new = phys == 0 ? 1 : 0; 1226 if (new) { 1227 u32 tmp_pos; 1228 1229 /* 1230 * This is safe to call with the page locks - it won't take 1231 * any additional semaphores or cluster locks. 1232 */ 1233 tmp_pos = cpos; 1234 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1235 &tmp_pos, 1, 0, wc->w_di_bh, 1236 wc->w_handle, data_ac, 1237 meta_ac, NULL); 1238 /* 1239 * This shouldn't happen because we must have already 1240 * calculated the correct meta data allocation required. The 1241 * internal tree allocation code should know how to increase 1242 * transaction credits itself. 1243 * 1244 * If need be, we could handle -EAGAIN for a 1245 * RESTART_TRANS here. 1246 */ 1247 mlog_bug_on_msg(ret == -EAGAIN, 1248 "Inode %llu: EAGAIN return during allocation.\n", 1249 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1250 if (ret < 0) { 1251 mlog_errno(ret); 1252 goto out; 1253 } 1254 } else if (unwritten) { 1255 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1256 wc->w_di_bh); 1257 ret = ocfs2_mark_extent_written(inode, &et, 1258 wc->w_handle, cpos, 1, phys, 1259 meta_ac, &wc->w_dealloc); 1260 if (ret < 0) { 1261 mlog_errno(ret); 1262 goto out; 1263 } 1264 } 1265 1266 if (should_zero) 1267 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1268 else 1269 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1270 1271 /* 1272 * The only reason this should fail is due to an inability to 1273 * find the extent added. 1274 */ 1275 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1276 NULL); 1277 if (ret < 0) { 1278 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " 1279 "at logical block %llu", 1280 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1281 (unsigned long long)v_blkno); 1282 goto out; 1283 } 1284 1285 BUG_ON(p_blkno == 0); 1286 1287 for(i = 0; i < wc->w_num_pages; i++) { 1288 int tmpret; 1289 1290 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1291 wc->w_pages[i], cpos, 1292 user_pos, user_len, 1293 should_zero); 1294 if (tmpret) { 1295 mlog_errno(tmpret); 1296 if (ret == 0) 1297 ret = tmpret; 1298 } 1299 } 1300 1301 /* 1302 * We only have cleanup to do in case of allocating write. 1303 */ 1304 if (ret && new) 1305 ocfs2_write_failure(inode, wc, user_pos, user_len); 1306 1307 out: 1308 1309 return ret; 1310 } 1311 1312 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1313 struct ocfs2_alloc_context *data_ac, 1314 struct ocfs2_alloc_context *meta_ac, 1315 struct ocfs2_write_ctxt *wc, 1316 loff_t pos, unsigned len) 1317 { 1318 int ret, i; 1319 loff_t cluster_off; 1320 unsigned int local_len = len; 1321 struct ocfs2_write_cluster_desc *desc; 1322 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1323 1324 for (i = 0; i < wc->w_clen; i++) { 1325 desc = &wc->w_desc[i]; 1326 1327 /* 1328 * We have to make sure that the total write passed in 1329 * doesn't extend past a single cluster. 1330 */ 1331 local_len = len; 1332 cluster_off = pos & (osb->s_clustersize - 1); 1333 if ((cluster_off + local_len) > osb->s_clustersize) 1334 local_len = osb->s_clustersize - cluster_off; 1335 1336 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1337 desc->c_unwritten, 1338 desc->c_needs_zero, 1339 data_ac, meta_ac, 1340 wc, desc->c_cpos, pos, local_len); 1341 if (ret) { 1342 mlog_errno(ret); 1343 goto out; 1344 } 1345 1346 len -= local_len; 1347 pos += local_len; 1348 } 1349 1350 ret = 0; 1351 out: 1352 return ret; 1353 } 1354 1355 /* 1356 * ocfs2_write_end() wants to know which parts of the target page it 1357 * should complete the write on. It's easiest to compute them ahead of 1358 * time when a more complete view of the write is available. 1359 */ 1360 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1361 struct ocfs2_write_ctxt *wc, 1362 loff_t pos, unsigned len, int alloc) 1363 { 1364 struct ocfs2_write_cluster_desc *desc; 1365 1366 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1367 wc->w_target_to = wc->w_target_from + len; 1368 1369 if (alloc == 0) 1370 return; 1371 1372 /* 1373 * Allocating write - we may have different boundaries based 1374 * on page size and cluster size. 1375 * 1376 * NOTE: We can no longer compute one value from the other as 1377 * the actual write length and user provided length may be 1378 * different. 1379 */ 1380 1381 if (wc->w_large_pages) { 1382 /* 1383 * We only care about the 1st and last cluster within 1384 * our range and whether they should be zero'd or not. Either 1385 * value may be extended out to the start/end of a 1386 * newly allocated cluster. 1387 */ 1388 desc = &wc->w_desc[0]; 1389 if (desc->c_needs_zero) 1390 ocfs2_figure_cluster_boundaries(osb, 1391 desc->c_cpos, 1392 &wc->w_target_from, 1393 NULL); 1394 1395 desc = &wc->w_desc[wc->w_clen - 1]; 1396 if (desc->c_needs_zero) 1397 ocfs2_figure_cluster_boundaries(osb, 1398 desc->c_cpos, 1399 NULL, 1400 &wc->w_target_to); 1401 } else { 1402 wc->w_target_from = 0; 1403 wc->w_target_to = PAGE_CACHE_SIZE; 1404 } 1405 } 1406 1407 /* 1408 * Populate each single-cluster write descriptor in the write context 1409 * with information about the i/o to be done. 1410 * 1411 * Returns the number of clusters that will have to be allocated, as 1412 * well as a worst case estimate of the number of extent records that 1413 * would have to be created during a write to an unwritten region. 1414 */ 1415 static int ocfs2_populate_write_desc(struct inode *inode, 1416 struct ocfs2_write_ctxt *wc, 1417 unsigned int *clusters_to_alloc, 1418 unsigned int *extents_to_split) 1419 { 1420 int ret; 1421 struct ocfs2_write_cluster_desc *desc; 1422 unsigned int num_clusters = 0; 1423 unsigned int ext_flags = 0; 1424 u32 phys = 0; 1425 int i; 1426 1427 *clusters_to_alloc = 0; 1428 *extents_to_split = 0; 1429 1430 for (i = 0; i < wc->w_clen; i++) { 1431 desc = &wc->w_desc[i]; 1432 desc->c_cpos = wc->w_cpos + i; 1433 1434 if (num_clusters == 0) { 1435 /* 1436 * Need to look up the next extent record. 1437 */ 1438 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1439 &num_clusters, &ext_flags); 1440 if (ret) { 1441 mlog_errno(ret); 1442 goto out; 1443 } 1444 1445 /* We should already CoW the refcountd extent. */ 1446 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1447 1448 /* 1449 * Assume worst case - that we're writing in 1450 * the middle of the extent. 1451 * 1452 * We can assume that the write proceeds from 1453 * left to right, in which case the extent 1454 * insert code is smart enough to coalesce the 1455 * next splits into the previous records created. 1456 */ 1457 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1458 *extents_to_split = *extents_to_split + 2; 1459 } else if (phys) { 1460 /* 1461 * Only increment phys if it doesn't describe 1462 * a hole. 1463 */ 1464 phys++; 1465 } 1466 1467 /* 1468 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1469 * file that got extended. w_first_new_cpos tells us 1470 * where the newly allocated clusters are so we can 1471 * zero them. 1472 */ 1473 if (desc->c_cpos >= wc->w_first_new_cpos) { 1474 BUG_ON(phys == 0); 1475 desc->c_needs_zero = 1; 1476 } 1477 1478 desc->c_phys = phys; 1479 if (phys == 0) { 1480 desc->c_new = 1; 1481 desc->c_needs_zero = 1; 1482 *clusters_to_alloc = *clusters_to_alloc + 1; 1483 } 1484 1485 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1486 desc->c_unwritten = 1; 1487 desc->c_needs_zero = 1; 1488 } 1489 1490 num_clusters--; 1491 } 1492 1493 ret = 0; 1494 out: 1495 return ret; 1496 } 1497 1498 static int ocfs2_write_begin_inline(struct address_space *mapping, 1499 struct inode *inode, 1500 struct ocfs2_write_ctxt *wc) 1501 { 1502 int ret; 1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1504 struct page *page; 1505 handle_t *handle; 1506 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1507 1508 page = find_or_create_page(mapping, 0, GFP_NOFS); 1509 if (!page) { 1510 ret = -ENOMEM; 1511 mlog_errno(ret); 1512 goto out; 1513 } 1514 /* 1515 * If we don't set w_num_pages then this page won't get unlocked 1516 * and freed on cleanup of the write context. 1517 */ 1518 wc->w_pages[0] = wc->w_target_page = page; 1519 wc->w_num_pages = 1; 1520 1521 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1522 if (IS_ERR(handle)) { 1523 ret = PTR_ERR(handle); 1524 mlog_errno(ret); 1525 goto out; 1526 } 1527 1528 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1529 OCFS2_JOURNAL_ACCESS_WRITE); 1530 if (ret) { 1531 ocfs2_commit_trans(osb, handle); 1532 1533 mlog_errno(ret); 1534 goto out; 1535 } 1536 1537 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1538 ocfs2_set_inode_data_inline(inode, di); 1539 1540 if (!PageUptodate(page)) { 1541 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1542 if (ret) { 1543 ocfs2_commit_trans(osb, handle); 1544 1545 goto out; 1546 } 1547 } 1548 1549 wc->w_handle = handle; 1550 out: 1551 return ret; 1552 } 1553 1554 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1555 { 1556 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1557 1558 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1559 return 1; 1560 return 0; 1561 } 1562 1563 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1564 struct inode *inode, loff_t pos, 1565 unsigned len, struct page *mmap_page, 1566 struct ocfs2_write_ctxt *wc) 1567 { 1568 int ret, written = 0; 1569 loff_t end = pos + len; 1570 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1571 struct ocfs2_dinode *di = NULL; 1572 1573 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1574 len, (unsigned long long)pos, 1575 oi->ip_dyn_features); 1576 1577 /* 1578 * Handle inodes which already have inline data 1st. 1579 */ 1580 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1581 if (mmap_page == NULL && 1582 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1583 goto do_inline_write; 1584 1585 /* 1586 * The write won't fit - we have to give this inode an 1587 * inline extent list now. 1588 */ 1589 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1590 if (ret) 1591 mlog_errno(ret); 1592 goto out; 1593 } 1594 1595 /* 1596 * Check whether the inode can accept inline data. 1597 */ 1598 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1599 return 0; 1600 1601 /* 1602 * Check whether the write can fit. 1603 */ 1604 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1605 if (mmap_page || 1606 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1607 return 0; 1608 1609 do_inline_write: 1610 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1611 if (ret) { 1612 mlog_errno(ret); 1613 goto out; 1614 } 1615 1616 /* 1617 * This signals to the caller that the data can be written 1618 * inline. 1619 */ 1620 written = 1; 1621 out: 1622 return written ? written : ret; 1623 } 1624 1625 /* 1626 * This function only does anything for file systems which can't 1627 * handle sparse files. 1628 * 1629 * What we want to do here is fill in any hole between the current end 1630 * of allocation and the end of our write. That way the rest of the 1631 * write path can treat it as an non-allocating write, which has no 1632 * special case code for sparse/nonsparse files. 1633 */ 1634 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1635 struct buffer_head *di_bh, 1636 loff_t pos, unsigned len, 1637 struct ocfs2_write_ctxt *wc) 1638 { 1639 int ret; 1640 loff_t newsize = pos + len; 1641 1642 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1643 1644 if (newsize <= i_size_read(inode)) 1645 return 0; 1646 1647 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1648 if (ret) 1649 mlog_errno(ret); 1650 1651 wc->w_first_new_cpos = 1652 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1653 1654 return ret; 1655 } 1656 1657 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1658 loff_t pos) 1659 { 1660 int ret = 0; 1661 1662 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1663 if (pos > i_size_read(inode)) 1664 ret = ocfs2_zero_extend(inode, di_bh, pos); 1665 1666 return ret; 1667 } 1668 1669 /* 1670 * Try to flush truncate logs if we can free enough clusters from it. 1671 * As for return value, "< 0" means error, "0" no space and "1" means 1672 * we have freed enough spaces and let the caller try to allocate again. 1673 */ 1674 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 1675 unsigned int needed) 1676 { 1677 tid_t target; 1678 int ret = 0; 1679 unsigned int truncated_clusters; 1680 1681 mutex_lock(&osb->osb_tl_inode->i_mutex); 1682 truncated_clusters = osb->truncated_clusters; 1683 mutex_unlock(&osb->osb_tl_inode->i_mutex); 1684 1685 /* 1686 * Check whether we can succeed in allocating if we free 1687 * the truncate log. 1688 */ 1689 if (truncated_clusters < needed) 1690 goto out; 1691 1692 ret = ocfs2_flush_truncate_log(osb); 1693 if (ret) { 1694 mlog_errno(ret); 1695 goto out; 1696 } 1697 1698 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 1699 jbd2_log_wait_commit(osb->journal->j_journal, target); 1700 ret = 1; 1701 } 1702 out: 1703 return ret; 1704 } 1705 1706 int ocfs2_write_begin_nolock(struct file *filp, 1707 struct address_space *mapping, 1708 loff_t pos, unsigned len, unsigned flags, 1709 struct page **pagep, void **fsdata, 1710 struct buffer_head *di_bh, struct page *mmap_page) 1711 { 1712 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1713 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1714 struct ocfs2_write_ctxt *wc; 1715 struct inode *inode = mapping->host; 1716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1717 struct ocfs2_dinode *di; 1718 struct ocfs2_alloc_context *data_ac = NULL; 1719 struct ocfs2_alloc_context *meta_ac = NULL; 1720 handle_t *handle; 1721 struct ocfs2_extent_tree et; 1722 int try_free = 1, ret1; 1723 1724 try_again: 1725 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 1726 if (ret) { 1727 mlog_errno(ret); 1728 return ret; 1729 } 1730 1731 if (ocfs2_supports_inline_data(osb)) { 1732 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1733 mmap_page, wc); 1734 if (ret == 1) { 1735 ret = 0; 1736 goto success; 1737 } 1738 if (ret < 0) { 1739 mlog_errno(ret); 1740 goto out; 1741 } 1742 } 1743 1744 if (ocfs2_sparse_alloc(osb)) 1745 ret = ocfs2_zero_tail(inode, di_bh, pos); 1746 else 1747 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 1748 wc); 1749 if (ret) { 1750 mlog_errno(ret); 1751 goto out; 1752 } 1753 1754 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1755 if (ret < 0) { 1756 mlog_errno(ret); 1757 goto out; 1758 } else if (ret == 1) { 1759 clusters_need = wc->w_clen; 1760 ret = ocfs2_refcount_cow(inode, filp, di_bh, 1761 wc->w_cpos, wc->w_clen, UINT_MAX); 1762 if (ret) { 1763 mlog_errno(ret); 1764 goto out; 1765 } 1766 } 1767 1768 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1769 &extents_to_split); 1770 if (ret) { 1771 mlog_errno(ret); 1772 goto out; 1773 } 1774 clusters_need += clusters_to_alloc; 1775 1776 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1777 1778 trace_ocfs2_write_begin_nolock( 1779 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1780 (long long)i_size_read(inode), 1781 le32_to_cpu(di->i_clusters), 1782 pos, len, flags, mmap_page, 1783 clusters_to_alloc, extents_to_split); 1784 1785 /* 1786 * We set w_target_from, w_target_to here so that 1787 * ocfs2_write_end() knows which range in the target page to 1788 * write out. An allocation requires that we write the entire 1789 * cluster range. 1790 */ 1791 if (clusters_to_alloc || extents_to_split) { 1792 /* 1793 * XXX: We are stretching the limits of 1794 * ocfs2_lock_allocators(). It greatly over-estimates 1795 * the work to be done. 1796 */ 1797 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1798 wc->w_di_bh); 1799 ret = ocfs2_lock_allocators(inode, &et, 1800 clusters_to_alloc, extents_to_split, 1801 &data_ac, &meta_ac); 1802 if (ret) { 1803 mlog_errno(ret); 1804 goto out; 1805 } 1806 1807 if (data_ac) 1808 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1809 1810 credits = ocfs2_calc_extend_credits(inode->i_sb, 1811 &di->id2.i_list, 1812 clusters_to_alloc); 1813 1814 } 1815 1816 /* 1817 * We have to zero sparse allocated clusters, unwritten extent clusters, 1818 * and non-sparse clusters we just extended. For non-sparse writes, 1819 * we know zeros will only be needed in the first and/or last cluster. 1820 */ 1821 if (clusters_to_alloc || extents_to_split || 1822 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1823 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 1824 cluster_of_pages = 1; 1825 else 1826 cluster_of_pages = 0; 1827 1828 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1829 1830 handle = ocfs2_start_trans(osb, credits); 1831 if (IS_ERR(handle)) { 1832 ret = PTR_ERR(handle); 1833 mlog_errno(ret); 1834 goto out; 1835 } 1836 1837 wc->w_handle = handle; 1838 1839 if (clusters_to_alloc) { 1840 ret = dquot_alloc_space_nodirty(inode, 1841 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1842 if (ret) 1843 goto out_commit; 1844 } 1845 /* 1846 * We don't want this to fail in ocfs2_write_end(), so do it 1847 * here. 1848 */ 1849 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1850 OCFS2_JOURNAL_ACCESS_WRITE); 1851 if (ret) { 1852 mlog_errno(ret); 1853 goto out_quota; 1854 } 1855 1856 /* 1857 * Fill our page array first. That way we've grabbed enough so 1858 * that we can zero and flush if we error after adding the 1859 * extent. 1860 */ 1861 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1862 cluster_of_pages, mmap_page); 1863 if (ret && ret != -EAGAIN) { 1864 mlog_errno(ret); 1865 goto out_quota; 1866 } 1867 1868 /* 1869 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1870 * the target page. In this case, we exit with no error and no target 1871 * page. This will trigger the caller, page_mkwrite(), to re-try 1872 * the operation. 1873 */ 1874 if (ret == -EAGAIN) { 1875 BUG_ON(wc->w_target_page); 1876 ret = 0; 1877 goto out_quota; 1878 } 1879 1880 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1881 len); 1882 if (ret) { 1883 mlog_errno(ret); 1884 goto out_quota; 1885 } 1886 1887 if (data_ac) 1888 ocfs2_free_alloc_context(data_ac); 1889 if (meta_ac) 1890 ocfs2_free_alloc_context(meta_ac); 1891 1892 success: 1893 *pagep = wc->w_target_page; 1894 *fsdata = wc; 1895 return 0; 1896 out_quota: 1897 if (clusters_to_alloc) 1898 dquot_free_space(inode, 1899 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1900 out_commit: 1901 ocfs2_commit_trans(osb, handle); 1902 1903 out: 1904 ocfs2_free_write_ctxt(wc); 1905 1906 if (data_ac) 1907 ocfs2_free_alloc_context(data_ac); 1908 if (meta_ac) 1909 ocfs2_free_alloc_context(meta_ac); 1910 1911 if (ret == -ENOSPC && try_free) { 1912 /* 1913 * Try to free some truncate log so that we can have enough 1914 * clusters to allocate. 1915 */ 1916 try_free = 0; 1917 1918 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1919 if (ret1 == 1) 1920 goto try_again; 1921 1922 if (ret1 < 0) 1923 mlog_errno(ret1); 1924 } 1925 1926 return ret; 1927 } 1928 1929 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1930 loff_t pos, unsigned len, unsigned flags, 1931 struct page **pagep, void **fsdata) 1932 { 1933 int ret; 1934 struct buffer_head *di_bh = NULL; 1935 struct inode *inode = mapping->host; 1936 1937 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1938 if (ret) { 1939 mlog_errno(ret); 1940 return ret; 1941 } 1942 1943 /* 1944 * Take alloc sem here to prevent concurrent lookups. That way 1945 * the mapping, zeroing and tree manipulation within 1946 * ocfs2_write() will be safe against ->readpage(). This 1947 * should also serve to lock out allocation from a shared 1948 * writeable region. 1949 */ 1950 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1951 1952 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 1953 fsdata, di_bh, NULL); 1954 if (ret) { 1955 mlog_errno(ret); 1956 goto out_fail; 1957 } 1958 1959 brelse(di_bh); 1960 1961 return 0; 1962 1963 out_fail: 1964 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1965 1966 brelse(di_bh); 1967 ocfs2_inode_unlock(inode, 1); 1968 1969 return ret; 1970 } 1971 1972 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1973 unsigned len, unsigned *copied, 1974 struct ocfs2_dinode *di, 1975 struct ocfs2_write_ctxt *wc) 1976 { 1977 void *kaddr; 1978 1979 if (unlikely(*copied < len)) { 1980 if (!PageUptodate(wc->w_target_page)) { 1981 *copied = 0; 1982 return; 1983 } 1984 } 1985 1986 kaddr = kmap_atomic(wc->w_target_page); 1987 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1988 kunmap_atomic(kaddr); 1989 1990 trace_ocfs2_write_end_inline( 1991 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1992 (unsigned long long)pos, *copied, 1993 le16_to_cpu(di->id2.i_data.id_count), 1994 le16_to_cpu(di->i_dyn_features)); 1995 } 1996 1997 int ocfs2_write_end_nolock(struct address_space *mapping, 1998 loff_t pos, unsigned len, unsigned copied, 1999 struct page *page, void *fsdata) 2000 { 2001 int i; 2002 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2003 struct inode *inode = mapping->host; 2004 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2005 struct ocfs2_write_ctxt *wc = fsdata; 2006 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2007 handle_t *handle = wc->w_handle; 2008 struct page *tmppage; 2009 2010 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2011 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2012 goto out_write_size; 2013 } 2014 2015 if (unlikely(copied < len)) { 2016 if (!PageUptodate(wc->w_target_page)) 2017 copied = 0; 2018 2019 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2020 start+len); 2021 } 2022 flush_dcache_page(wc->w_target_page); 2023 2024 for(i = 0; i < wc->w_num_pages; i++) { 2025 tmppage = wc->w_pages[i]; 2026 2027 if (tmppage == wc->w_target_page) { 2028 from = wc->w_target_from; 2029 to = wc->w_target_to; 2030 2031 BUG_ON(from > PAGE_CACHE_SIZE || 2032 to > PAGE_CACHE_SIZE || 2033 to < from); 2034 } else { 2035 /* 2036 * Pages adjacent to the target (if any) imply 2037 * a hole-filling write in which case we want 2038 * to flush their entire range. 2039 */ 2040 from = 0; 2041 to = PAGE_CACHE_SIZE; 2042 } 2043 2044 if (page_has_buffers(tmppage)) { 2045 if (ocfs2_should_order_data(inode)) 2046 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2047 block_commit_write(tmppage, from, to); 2048 } 2049 } 2050 2051 out_write_size: 2052 pos += copied; 2053 if (pos > inode->i_size) { 2054 i_size_write(inode, pos); 2055 mark_inode_dirty(inode); 2056 } 2057 inode->i_blocks = ocfs2_inode_sector_count(inode); 2058 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2059 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2060 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2061 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2062 ocfs2_journal_dirty(handle, wc->w_di_bh); 2063 2064 ocfs2_commit_trans(osb, handle); 2065 2066 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2067 2068 ocfs2_free_write_ctxt(wc); 2069 2070 return copied; 2071 } 2072 2073 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2074 loff_t pos, unsigned len, unsigned copied, 2075 struct page *page, void *fsdata) 2076 { 2077 int ret; 2078 struct inode *inode = mapping->host; 2079 2080 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2081 2082 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2083 ocfs2_inode_unlock(inode, 1); 2084 2085 return ret; 2086 } 2087 2088 const struct address_space_operations ocfs2_aops = { 2089 .readpage = ocfs2_readpage, 2090 .readpages = ocfs2_readpages, 2091 .writepage = ocfs2_writepage, 2092 .write_begin = ocfs2_write_begin, 2093 .write_end = ocfs2_write_end, 2094 .bmap = ocfs2_bmap, 2095 .direct_IO = ocfs2_direct_IO, 2096 .invalidatepage = ocfs2_invalidatepage, 2097 .releasepage = ocfs2_releasepage, 2098 .migratepage = buffer_migrate_page, 2099 .is_partially_uptodate = block_is_partially_uptodate, 2100 .error_remove_page = generic_error_remove_page, 2101 }; 2102