xref: /linux/fs/ocfs2/aops.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu\n",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 static int ocfs2_releasepage(struct page *page, gfp_t wait)
503 {
504 	if (!page_has_buffers(page))
505 		return 0;
506 	return try_to_free_buffers(page);
507 }
508 
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510 					    u32 cpos,
511 					    unsigned int *start,
512 					    unsigned int *end)
513 {
514 	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
515 
516 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
517 		unsigned int cpp;
518 
519 		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
520 
521 		cluster_start = cpos % cpp;
522 		cluster_start = cluster_start << osb->s_clustersize_bits;
523 
524 		cluster_end = cluster_start + osb->s_clustersize;
525 	}
526 
527 	BUG_ON(cluster_start > PAGE_SIZE);
528 	BUG_ON(cluster_end > PAGE_SIZE);
529 
530 	if (start)
531 		*start = cluster_start;
532 	if (end)
533 		*end = cluster_end;
534 }
535 
536 /*
537  * 'from' and 'to' are the region in the page to avoid zeroing.
538  *
539  * If pagesize > clustersize, this function will avoid zeroing outside
540  * of the cluster boundary.
541  *
542  * from == to == 0 is code for "zero the entire cluster region"
543  */
544 static void ocfs2_clear_page_regions(struct page *page,
545 				     struct ocfs2_super *osb, u32 cpos,
546 				     unsigned from, unsigned to)
547 {
548 	void *kaddr;
549 	unsigned int cluster_start, cluster_end;
550 
551 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
552 
553 	kaddr = kmap_atomic(page);
554 
555 	if (from || to) {
556 		if (from > cluster_start)
557 			memset(kaddr + cluster_start, 0, from - cluster_start);
558 		if (to < cluster_end)
559 			memset(kaddr + to, 0, cluster_end - to);
560 	} else {
561 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562 	}
563 
564 	kunmap_atomic(kaddr);
565 }
566 
567 /*
568  * Nonsparse file systems fully allocate before we get to the write
569  * code. This prevents ocfs2_write() from tagging the write as an
570  * allocating one, which means ocfs2_map_page_blocks() might try to
571  * read-in the blocks at the tail of our file. Avoid reading them by
572  * testing i_size against each block offset.
573  */
574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575 				 unsigned int block_start)
576 {
577 	u64 offset = page_offset(page) + block_start;
578 
579 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 		return 1;
581 
582 	if (i_size_read(inode) > offset)
583 		return 1;
584 
585 	return 0;
586 }
587 
588 /*
589  * Some of this taken from __block_write_begin(). We already have our
590  * mapping by now though, and the entire write will be allocating or
591  * it won't, so not much need to use BH_New.
592  *
593  * This will also skip zeroing, which is handled externally.
594  */
595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596 			  struct inode *inode, unsigned int from,
597 			  unsigned int to, int new)
598 {
599 	int ret = 0;
600 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601 	unsigned int block_end, block_start;
602 	unsigned int bsize = 1 << inode->i_blkbits;
603 
604 	if (!page_has_buffers(page))
605 		create_empty_buffers(page, bsize, 0);
606 
607 	head = page_buffers(page);
608 	for (bh = head, block_start = 0; bh != head || !block_start;
609 	     bh = bh->b_this_page, block_start += bsize) {
610 		block_end = block_start + bsize;
611 
612 		clear_buffer_new(bh);
613 
614 		/*
615 		 * Ignore blocks outside of our i/o range -
616 		 * they may belong to unallocated clusters.
617 		 */
618 		if (block_start >= to || block_end <= from) {
619 			if (PageUptodate(page))
620 				set_buffer_uptodate(bh);
621 			continue;
622 		}
623 
624 		/*
625 		 * For an allocating write with cluster size >= page
626 		 * size, we always write the entire page.
627 		 */
628 		if (new)
629 			set_buffer_new(bh);
630 
631 		if (!buffer_mapped(bh)) {
632 			map_bh(bh, inode->i_sb, *p_blkno);
633 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
634 		}
635 
636 		if (PageUptodate(page)) {
637 			if (!buffer_uptodate(bh))
638 				set_buffer_uptodate(bh);
639 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
640 			   !buffer_new(bh) &&
641 			   ocfs2_should_read_blk(inode, page, block_start) &&
642 			   (block_start < from || block_end > to)) {
643 			ll_rw_block(READ, 1, &bh);
644 			*wait_bh++=bh;
645 		}
646 
647 		*p_blkno = *p_blkno + 1;
648 	}
649 
650 	/*
651 	 * If we issued read requests - let them complete.
652 	 */
653 	while(wait_bh > wait) {
654 		wait_on_buffer(*--wait_bh);
655 		if (!buffer_uptodate(*wait_bh))
656 			ret = -EIO;
657 	}
658 
659 	if (ret == 0 || !new)
660 		return ret;
661 
662 	/*
663 	 * If we get -EIO above, zero out any newly allocated blocks
664 	 * to avoid exposing stale data.
665 	 */
666 	bh = head;
667 	block_start = 0;
668 	do {
669 		block_end = block_start + bsize;
670 		if (block_end <= from)
671 			goto next_bh;
672 		if (block_start >= to)
673 			break;
674 
675 		zero_user(page, block_start, bh->b_size);
676 		set_buffer_uptodate(bh);
677 		mark_buffer_dirty(bh);
678 
679 next_bh:
680 		block_start = block_end;
681 		bh = bh->b_this_page;
682 	} while (bh != head);
683 
684 	return ret;
685 }
686 
687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES	1
689 #else
690 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
691 #endif
692 
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
694 
695 struct ocfs2_unwritten_extent {
696 	struct list_head	ue_node;
697 	struct list_head	ue_ip_node;
698 	u32			ue_cpos;
699 	u32			ue_phys;
700 };
701 
702 /*
703  * Describe the state of a single cluster to be written to.
704  */
705 struct ocfs2_write_cluster_desc {
706 	u32		c_cpos;
707 	u32		c_phys;
708 	/*
709 	 * Give this a unique field because c_phys eventually gets
710 	 * filled.
711 	 */
712 	unsigned	c_new;
713 	unsigned	c_clear_unwritten;
714 	unsigned	c_needs_zero;
715 };
716 
717 struct ocfs2_write_ctxt {
718 	/* Logical cluster position / len of write */
719 	u32				w_cpos;
720 	u32				w_clen;
721 
722 	/* First cluster allocated in a nonsparse extend */
723 	u32				w_first_new_cpos;
724 
725 	/* Type of caller. Must be one of buffer, mmap, direct.  */
726 	ocfs2_write_type_t		w_type;
727 
728 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
729 
730 	/*
731 	 * This is true if page_size > cluster_size.
732 	 *
733 	 * It triggers a set of special cases during write which might
734 	 * have to deal with allocating writes to partial pages.
735 	 */
736 	unsigned int			w_large_pages;
737 
738 	/*
739 	 * Pages involved in this write.
740 	 *
741 	 * w_target_page is the page being written to by the user.
742 	 *
743 	 * w_pages is an array of pages which always contains
744 	 * w_target_page, and in the case of an allocating write with
745 	 * page_size < cluster size, it will contain zero'd and mapped
746 	 * pages adjacent to w_target_page which need to be written
747 	 * out in so that future reads from that region will get
748 	 * zero's.
749 	 */
750 	unsigned int			w_num_pages;
751 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
752 	struct page			*w_target_page;
753 
754 	/*
755 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 	 * against w_target_page in ocfs2_write_end_nolock.
757 	 */
758 	unsigned int			w_target_locked:1;
759 
760 	/*
761 	 * ocfs2_write_end() uses this to know what the real range to
762 	 * write in the target should be.
763 	 */
764 	unsigned int			w_target_from;
765 	unsigned int			w_target_to;
766 
767 	/*
768 	 * We could use journal_current_handle() but this is cleaner,
769 	 * IMHO -Mark
770 	 */
771 	handle_t			*w_handle;
772 
773 	struct buffer_head		*w_di_bh;
774 
775 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
776 
777 	struct list_head		w_unwritten_list;
778 };
779 
780 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
781 {
782 	int i;
783 
784 	for(i = 0; i < num_pages; i++) {
785 		if (pages[i]) {
786 			unlock_page(pages[i]);
787 			mark_page_accessed(pages[i]);
788 			put_page(pages[i]);
789 		}
790 	}
791 }
792 
793 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
794 {
795 	int i;
796 
797 	/*
798 	 * w_target_locked is only set to true in the page_mkwrite() case.
799 	 * The intent is to allow us to lock the target page from write_begin()
800 	 * to write_end(). The caller must hold a ref on w_target_page.
801 	 */
802 	if (wc->w_target_locked) {
803 		BUG_ON(!wc->w_target_page);
804 		for (i = 0; i < wc->w_num_pages; i++) {
805 			if (wc->w_target_page == wc->w_pages[i]) {
806 				wc->w_pages[i] = NULL;
807 				break;
808 			}
809 		}
810 		mark_page_accessed(wc->w_target_page);
811 		put_page(wc->w_target_page);
812 	}
813 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
814 }
815 
816 static void ocfs2_free_unwritten_list(struct inode *inode,
817 				 struct list_head *head)
818 {
819 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
820 	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
821 
822 	list_for_each_entry_safe(ue, tmp, head, ue_node) {
823 		list_del(&ue->ue_node);
824 		spin_lock(&oi->ip_lock);
825 		list_del(&ue->ue_ip_node);
826 		spin_unlock(&oi->ip_lock);
827 		kfree(ue);
828 	}
829 }
830 
831 static void ocfs2_free_write_ctxt(struct inode *inode,
832 				  struct ocfs2_write_ctxt *wc)
833 {
834 	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
835 	ocfs2_unlock_pages(wc);
836 	brelse(wc->w_di_bh);
837 	kfree(wc);
838 }
839 
840 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
841 				  struct ocfs2_super *osb, loff_t pos,
842 				  unsigned len, ocfs2_write_type_t type,
843 				  struct buffer_head *di_bh)
844 {
845 	u32 cend;
846 	struct ocfs2_write_ctxt *wc;
847 
848 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
849 	if (!wc)
850 		return -ENOMEM;
851 
852 	wc->w_cpos = pos >> osb->s_clustersize_bits;
853 	wc->w_first_new_cpos = UINT_MAX;
854 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
855 	wc->w_clen = cend - wc->w_cpos + 1;
856 	get_bh(di_bh);
857 	wc->w_di_bh = di_bh;
858 	wc->w_type = type;
859 
860 	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
861 		wc->w_large_pages = 1;
862 	else
863 		wc->w_large_pages = 0;
864 
865 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
866 	INIT_LIST_HEAD(&wc->w_unwritten_list);
867 
868 	*wcp = wc;
869 
870 	return 0;
871 }
872 
873 /*
874  * If a page has any new buffers, zero them out here, and mark them uptodate
875  * and dirty so they'll be written out (in order to prevent uninitialised
876  * block data from leaking). And clear the new bit.
877  */
878 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
879 {
880 	unsigned int block_start, block_end;
881 	struct buffer_head *head, *bh;
882 
883 	BUG_ON(!PageLocked(page));
884 	if (!page_has_buffers(page))
885 		return;
886 
887 	bh = head = page_buffers(page);
888 	block_start = 0;
889 	do {
890 		block_end = block_start + bh->b_size;
891 
892 		if (buffer_new(bh)) {
893 			if (block_end > from && block_start < to) {
894 				if (!PageUptodate(page)) {
895 					unsigned start, end;
896 
897 					start = max(from, block_start);
898 					end = min(to, block_end);
899 
900 					zero_user_segment(page, start, end);
901 					set_buffer_uptodate(bh);
902 				}
903 
904 				clear_buffer_new(bh);
905 				mark_buffer_dirty(bh);
906 			}
907 		}
908 
909 		block_start = block_end;
910 		bh = bh->b_this_page;
911 	} while (bh != head);
912 }
913 
914 /*
915  * Only called when we have a failure during allocating write to write
916  * zero's to the newly allocated region.
917  */
918 static void ocfs2_write_failure(struct inode *inode,
919 				struct ocfs2_write_ctxt *wc,
920 				loff_t user_pos, unsigned user_len)
921 {
922 	int i;
923 	unsigned from = user_pos & (PAGE_SIZE - 1),
924 		to = user_pos + user_len;
925 	struct page *tmppage;
926 
927 	if (wc->w_target_page)
928 		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
929 
930 	for(i = 0; i < wc->w_num_pages; i++) {
931 		tmppage = wc->w_pages[i];
932 
933 		if (tmppage && page_has_buffers(tmppage)) {
934 			if (ocfs2_should_order_data(inode))
935 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
936 
937 			block_commit_write(tmppage, from, to);
938 		}
939 	}
940 }
941 
942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943 					struct ocfs2_write_ctxt *wc,
944 					struct page *page, u32 cpos,
945 					loff_t user_pos, unsigned user_len,
946 					int new)
947 {
948 	int ret;
949 	unsigned int map_from = 0, map_to = 0;
950 	unsigned int cluster_start, cluster_end;
951 	unsigned int user_data_from = 0, user_data_to = 0;
952 
953 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
954 					&cluster_start, &cluster_end);
955 
956 	/* treat the write as new if the a hole/lseek spanned across
957 	 * the page boundary.
958 	 */
959 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
960 			(page_offset(page) <= user_pos));
961 
962 	if (page == wc->w_target_page) {
963 		map_from = user_pos & (PAGE_SIZE - 1);
964 		map_to = map_from + user_len;
965 
966 		if (new)
967 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 						    cluster_start, cluster_end,
969 						    new);
970 		else
971 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 						    map_from, map_to, new);
973 		if (ret) {
974 			mlog_errno(ret);
975 			goto out;
976 		}
977 
978 		user_data_from = map_from;
979 		user_data_to = map_to;
980 		if (new) {
981 			map_from = cluster_start;
982 			map_to = cluster_end;
983 		}
984 	} else {
985 		/*
986 		 * If we haven't allocated the new page yet, we
987 		 * shouldn't be writing it out without copying user
988 		 * data. This is likely a math error from the caller.
989 		 */
990 		BUG_ON(!new);
991 
992 		map_from = cluster_start;
993 		map_to = cluster_end;
994 
995 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996 					    cluster_start, cluster_end, new);
997 		if (ret) {
998 			mlog_errno(ret);
999 			goto out;
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Parts of newly allocated pages need to be zero'd.
1005 	 *
1006 	 * Above, we have also rewritten 'to' and 'from' - as far as
1007 	 * the rest of the function is concerned, the entire cluster
1008 	 * range inside of a page needs to be written.
1009 	 *
1010 	 * We can skip this if the page is up to date - it's already
1011 	 * been zero'd from being read in as a hole.
1012 	 */
1013 	if (new && !PageUptodate(page))
1014 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015 					 cpos, user_data_from, user_data_to);
1016 
1017 	flush_dcache_page(page);
1018 
1019 out:
1020 	return ret;
1021 }
1022 
1023 /*
1024  * This function will only grab one clusters worth of pages.
1025  */
1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027 				      struct ocfs2_write_ctxt *wc,
1028 				      u32 cpos, loff_t user_pos,
1029 				      unsigned user_len, int new,
1030 				      struct page *mmap_page)
1031 {
1032 	int ret = 0, i;
1033 	unsigned long start, target_index, end_index, index;
1034 	struct inode *inode = mapping->host;
1035 	loff_t last_byte;
1036 
1037 	target_index = user_pos >> PAGE_SHIFT;
1038 
1039 	/*
1040 	 * Figure out how many pages we'll be manipulating here. For
1041 	 * non allocating write, we just change the one
1042 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1043 	 * writing past i_size, we only need enough pages to cover the
1044 	 * last page of the write.
1045 	 */
1046 	if (new) {
1047 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049 		/*
1050 		 * We need the index *past* the last page we could possibly
1051 		 * touch.  This is the page past the end of the write or
1052 		 * i_size, whichever is greater.
1053 		 */
1054 		last_byte = max(user_pos + user_len, i_size_read(inode));
1055 		BUG_ON(last_byte < 1);
1056 		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057 		if ((start + wc->w_num_pages) > end_index)
1058 			wc->w_num_pages = end_index - start;
1059 	} else {
1060 		wc->w_num_pages = 1;
1061 		start = target_index;
1062 	}
1063 	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064 
1065 	for(i = 0; i < wc->w_num_pages; i++) {
1066 		index = start + i;
1067 
1068 		if (index >= target_index && index <= end_index &&
1069 		    wc->w_type == OCFS2_WRITE_MMAP) {
1070 			/*
1071 			 * ocfs2_pagemkwrite() is a little different
1072 			 * and wants us to directly use the page
1073 			 * passed in.
1074 			 */
1075 			lock_page(mmap_page);
1076 
1077 			/* Exit and let the caller retry */
1078 			if (mmap_page->mapping != mapping) {
1079 				WARN_ON(mmap_page->mapping);
1080 				unlock_page(mmap_page);
1081 				ret = -EAGAIN;
1082 				goto out;
1083 			}
1084 
1085 			get_page(mmap_page);
1086 			wc->w_pages[i] = mmap_page;
1087 			wc->w_target_locked = true;
1088 		} else if (index >= target_index && index <= end_index &&
1089 			   wc->w_type == OCFS2_WRITE_DIRECT) {
1090 			/* Direct write has no mapping page. */
1091 			wc->w_pages[i] = NULL;
1092 			continue;
1093 		} else {
1094 			wc->w_pages[i] = find_or_create_page(mapping, index,
1095 							     GFP_NOFS);
1096 			if (!wc->w_pages[i]) {
1097 				ret = -ENOMEM;
1098 				mlog_errno(ret);
1099 				goto out;
1100 			}
1101 		}
1102 		wait_for_stable_page(wc->w_pages[i]);
1103 
1104 		if (index == target_index)
1105 			wc->w_target_page = wc->w_pages[i];
1106 	}
1107 out:
1108 	if (ret)
1109 		wc->w_target_locked = false;
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Prepare a single cluster for write one cluster into the file.
1115  */
1116 static int ocfs2_write_cluster(struct address_space *mapping,
1117 			       u32 *phys, unsigned int new,
1118 			       unsigned int clear_unwritten,
1119 			       unsigned int should_zero,
1120 			       struct ocfs2_alloc_context *data_ac,
1121 			       struct ocfs2_alloc_context *meta_ac,
1122 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1123 			       loff_t user_pos, unsigned user_len)
1124 {
1125 	int ret, i;
1126 	u64 p_blkno;
1127 	struct inode *inode = mapping->host;
1128 	struct ocfs2_extent_tree et;
1129 	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130 
1131 	if (new) {
1132 		u32 tmp_pos;
1133 
1134 		/*
1135 		 * This is safe to call with the page locks - it won't take
1136 		 * any additional semaphores or cluster locks.
1137 		 */
1138 		tmp_pos = cpos;
1139 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140 					   &tmp_pos, 1, !clear_unwritten,
1141 					   wc->w_di_bh, wc->w_handle,
1142 					   data_ac, meta_ac, NULL);
1143 		/*
1144 		 * This shouldn't happen because we must have already
1145 		 * calculated the correct meta data allocation required. The
1146 		 * internal tree allocation code should know how to increase
1147 		 * transaction credits itself.
1148 		 *
1149 		 * If need be, we could handle -EAGAIN for a
1150 		 * RESTART_TRANS here.
1151 		 */
1152 		mlog_bug_on_msg(ret == -EAGAIN,
1153 				"Inode %llu: EAGAIN return during allocation.\n",
1154 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1155 		if (ret < 0) {
1156 			mlog_errno(ret);
1157 			goto out;
1158 		}
1159 	} else if (clear_unwritten) {
1160 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 					      wc->w_di_bh);
1162 		ret = ocfs2_mark_extent_written(inode, &et,
1163 						wc->w_handle, cpos, 1, *phys,
1164 						meta_ac, &wc->w_dealloc);
1165 		if (ret < 0) {
1166 			mlog_errno(ret);
1167 			goto out;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * The only reason this should fail is due to an inability to
1173 	 * find the extent added.
1174 	 */
1175 	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176 	if (ret < 0) {
1177 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178 			    "at logical cluster %u",
1179 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180 		goto out;
1181 	}
1182 
1183 	BUG_ON(*phys == 0);
1184 
1185 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 	if (!should_zero)
1187 		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188 
1189 	for(i = 0; i < wc->w_num_pages; i++) {
1190 		int tmpret;
1191 
1192 		/* This is the direct io target page. */
1193 		if (wc->w_pages[i] == NULL) {
1194 			p_blkno++;
1195 			continue;
1196 		}
1197 
1198 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199 						      wc->w_pages[i], cpos,
1200 						      user_pos, user_len,
1201 						      should_zero);
1202 		if (tmpret) {
1203 			mlog_errno(tmpret);
1204 			if (ret == 0)
1205 				ret = tmpret;
1206 		}
1207 	}
1208 
1209 	/*
1210 	 * We only have cleanup to do in case of allocating write.
1211 	 */
1212 	if (ret && new)
1213 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1214 
1215 out:
1216 
1217 	return ret;
1218 }
1219 
1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221 				       struct ocfs2_alloc_context *data_ac,
1222 				       struct ocfs2_alloc_context *meta_ac,
1223 				       struct ocfs2_write_ctxt *wc,
1224 				       loff_t pos, unsigned len)
1225 {
1226 	int ret, i;
1227 	loff_t cluster_off;
1228 	unsigned int local_len = len;
1229 	struct ocfs2_write_cluster_desc *desc;
1230 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231 
1232 	for (i = 0; i < wc->w_clen; i++) {
1233 		desc = &wc->w_desc[i];
1234 
1235 		/*
1236 		 * We have to make sure that the total write passed in
1237 		 * doesn't extend past a single cluster.
1238 		 */
1239 		local_len = len;
1240 		cluster_off = pos & (osb->s_clustersize - 1);
1241 		if ((cluster_off + local_len) > osb->s_clustersize)
1242 			local_len = osb->s_clustersize - cluster_off;
1243 
1244 		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245 					  desc->c_new,
1246 					  desc->c_clear_unwritten,
1247 					  desc->c_needs_zero,
1248 					  data_ac, meta_ac,
1249 					  wc, desc->c_cpos, pos, local_len);
1250 		if (ret) {
1251 			mlog_errno(ret);
1252 			goto out;
1253 		}
1254 
1255 		len -= local_len;
1256 		pos += local_len;
1257 	}
1258 
1259 	ret = 0;
1260 out:
1261 	return ret;
1262 }
1263 
1264 /*
1265  * ocfs2_write_end() wants to know which parts of the target page it
1266  * should complete the write on. It's easiest to compute them ahead of
1267  * time when a more complete view of the write is available.
1268  */
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270 					struct ocfs2_write_ctxt *wc,
1271 					loff_t pos, unsigned len, int alloc)
1272 {
1273 	struct ocfs2_write_cluster_desc *desc;
1274 
1275 	wc->w_target_from = pos & (PAGE_SIZE - 1);
1276 	wc->w_target_to = wc->w_target_from + len;
1277 
1278 	if (alloc == 0)
1279 		return;
1280 
1281 	/*
1282 	 * Allocating write - we may have different boundaries based
1283 	 * on page size and cluster size.
1284 	 *
1285 	 * NOTE: We can no longer compute one value from the other as
1286 	 * the actual write length and user provided length may be
1287 	 * different.
1288 	 */
1289 
1290 	if (wc->w_large_pages) {
1291 		/*
1292 		 * We only care about the 1st and last cluster within
1293 		 * our range and whether they should be zero'd or not. Either
1294 		 * value may be extended out to the start/end of a
1295 		 * newly allocated cluster.
1296 		 */
1297 		desc = &wc->w_desc[0];
1298 		if (desc->c_needs_zero)
1299 			ocfs2_figure_cluster_boundaries(osb,
1300 							desc->c_cpos,
1301 							&wc->w_target_from,
1302 							NULL);
1303 
1304 		desc = &wc->w_desc[wc->w_clen - 1];
1305 		if (desc->c_needs_zero)
1306 			ocfs2_figure_cluster_boundaries(osb,
1307 							desc->c_cpos,
1308 							NULL,
1309 							&wc->w_target_to);
1310 	} else {
1311 		wc->w_target_from = 0;
1312 		wc->w_target_to = PAGE_SIZE;
1313 	}
1314 }
1315 
1316 /*
1317  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319  * by the direct io procedure.
1320  * If this is a new extent that allocated by direct io, we should mark it in
1321  * the ip_unwritten_list.
1322  */
1323 static int ocfs2_unwritten_check(struct inode *inode,
1324 				 struct ocfs2_write_ctxt *wc,
1325 				 struct ocfs2_write_cluster_desc *desc)
1326 {
1327 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328 	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329 	int ret = 0;
1330 
1331 	if (!desc->c_needs_zero)
1332 		return 0;
1333 
1334 retry:
1335 	spin_lock(&oi->ip_lock);
1336 	/* Needs not to zero no metter buffer or direct. The one who is zero
1337 	 * the cluster is doing zero. And he will clear unwritten after all
1338 	 * cluster io finished. */
1339 	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340 		if (desc->c_cpos == ue->ue_cpos) {
1341 			BUG_ON(desc->c_new);
1342 			desc->c_needs_zero = 0;
1343 			desc->c_clear_unwritten = 0;
1344 			goto unlock;
1345 		}
1346 	}
1347 
1348 	if (wc->w_type != OCFS2_WRITE_DIRECT)
1349 		goto unlock;
1350 
1351 	if (new == NULL) {
1352 		spin_unlock(&oi->ip_lock);
1353 		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354 			     GFP_NOFS);
1355 		if (new == NULL) {
1356 			ret = -ENOMEM;
1357 			goto out;
1358 		}
1359 		goto retry;
1360 	}
1361 	/* This direct write will doing zero. */
1362 	new->ue_cpos = desc->c_cpos;
1363 	new->ue_phys = desc->c_phys;
1364 	desc->c_clear_unwritten = 0;
1365 	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366 	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367 	new = NULL;
1368 unlock:
1369 	spin_unlock(&oi->ip_lock);
1370 out:
1371 	if (new)
1372 		kfree(new);
1373 	return ret;
1374 }
1375 
1376 /*
1377  * Populate each single-cluster write descriptor in the write context
1378  * with information about the i/o to be done.
1379  *
1380  * Returns the number of clusters that will have to be allocated, as
1381  * well as a worst case estimate of the number of extent records that
1382  * would have to be created during a write to an unwritten region.
1383  */
1384 static int ocfs2_populate_write_desc(struct inode *inode,
1385 				     struct ocfs2_write_ctxt *wc,
1386 				     unsigned int *clusters_to_alloc,
1387 				     unsigned int *extents_to_split)
1388 {
1389 	int ret;
1390 	struct ocfs2_write_cluster_desc *desc;
1391 	unsigned int num_clusters = 0;
1392 	unsigned int ext_flags = 0;
1393 	u32 phys = 0;
1394 	int i;
1395 
1396 	*clusters_to_alloc = 0;
1397 	*extents_to_split = 0;
1398 
1399 	for (i = 0; i < wc->w_clen; i++) {
1400 		desc = &wc->w_desc[i];
1401 		desc->c_cpos = wc->w_cpos + i;
1402 
1403 		if (num_clusters == 0) {
1404 			/*
1405 			 * Need to look up the next extent record.
1406 			 */
1407 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408 						 &num_clusters, &ext_flags);
1409 			if (ret) {
1410 				mlog_errno(ret);
1411 				goto out;
1412 			}
1413 
1414 			/* We should already CoW the refcountd extent. */
1415 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416 
1417 			/*
1418 			 * Assume worst case - that we're writing in
1419 			 * the middle of the extent.
1420 			 *
1421 			 * We can assume that the write proceeds from
1422 			 * left to right, in which case the extent
1423 			 * insert code is smart enough to coalesce the
1424 			 * next splits into the previous records created.
1425 			 */
1426 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 				*extents_to_split = *extents_to_split + 2;
1428 		} else if (phys) {
1429 			/*
1430 			 * Only increment phys if it doesn't describe
1431 			 * a hole.
1432 			 */
1433 			phys++;
1434 		}
1435 
1436 		/*
1437 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 		 * file that got extended.  w_first_new_cpos tells us
1439 		 * where the newly allocated clusters are so we can
1440 		 * zero them.
1441 		 */
1442 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 			BUG_ON(phys == 0);
1444 			desc->c_needs_zero = 1;
1445 		}
1446 
1447 		desc->c_phys = phys;
1448 		if (phys == 0) {
1449 			desc->c_new = 1;
1450 			desc->c_needs_zero = 1;
1451 			desc->c_clear_unwritten = 1;
1452 			*clusters_to_alloc = *clusters_to_alloc + 1;
1453 		}
1454 
1455 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456 			desc->c_clear_unwritten = 1;
1457 			desc->c_needs_zero = 1;
1458 		}
1459 
1460 		ret = ocfs2_unwritten_check(inode, wc, desc);
1461 		if (ret) {
1462 			mlog_errno(ret);
1463 			goto out;
1464 		}
1465 
1466 		num_clusters--;
1467 	}
1468 
1469 	ret = 0;
1470 out:
1471 	return ret;
1472 }
1473 
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 				    struct inode *inode,
1476 				    struct ocfs2_write_ctxt *wc)
1477 {
1478 	int ret;
1479 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 	struct page *page;
1481 	handle_t *handle;
1482 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483 
1484 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485 	if (IS_ERR(handle)) {
1486 		ret = PTR_ERR(handle);
1487 		mlog_errno(ret);
1488 		goto out;
1489 	}
1490 
1491 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 	if (!page) {
1493 		ocfs2_commit_trans(osb, handle);
1494 		ret = -ENOMEM;
1495 		mlog_errno(ret);
1496 		goto out;
1497 	}
1498 	/*
1499 	 * If we don't set w_num_pages then this page won't get unlocked
1500 	 * and freed on cleanup of the write context.
1501 	 */
1502 	wc->w_pages[0] = wc->w_target_page = page;
1503 	wc->w_num_pages = 1;
1504 
1505 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506 				      OCFS2_JOURNAL_ACCESS_WRITE);
1507 	if (ret) {
1508 		ocfs2_commit_trans(osb, handle);
1509 
1510 		mlog_errno(ret);
1511 		goto out;
1512 	}
1513 
1514 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 		ocfs2_set_inode_data_inline(inode, di);
1516 
1517 	if (!PageUptodate(page)) {
1518 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 		if (ret) {
1520 			ocfs2_commit_trans(osb, handle);
1521 
1522 			goto out;
1523 		}
1524 	}
1525 
1526 	wc->w_handle = handle;
1527 out:
1528 	return ret;
1529 }
1530 
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 {
1533 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534 
1535 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 					  struct inode *inode, loff_t pos,
1542 					  unsigned len, struct page *mmap_page,
1543 					  struct ocfs2_write_ctxt *wc)
1544 {
1545 	int ret, written = 0;
1546 	loff_t end = pos + len;
1547 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548 	struct ocfs2_dinode *di = NULL;
1549 
1550 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 					     len, (unsigned long long)pos,
1552 					     oi->ip_dyn_features);
1553 
1554 	/*
1555 	 * Handle inodes which already have inline data 1st.
1556 	 */
1557 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 		if (mmap_page == NULL &&
1559 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 			goto do_inline_write;
1561 
1562 		/*
1563 		 * The write won't fit - we have to give this inode an
1564 		 * inline extent list now.
1565 		 */
1566 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 		if (ret)
1568 			mlog_errno(ret);
1569 		goto out;
1570 	}
1571 
1572 	/*
1573 	 * Check whether the inode can accept inline data.
1574 	 */
1575 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 		return 0;
1577 
1578 	/*
1579 	 * Check whether the write can fit.
1580 	 */
1581 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 	if (mmap_page ||
1583 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584 		return 0;
1585 
1586 do_inline_write:
1587 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 	if (ret) {
1589 		mlog_errno(ret);
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * This signals to the caller that the data can be written
1595 	 * inline.
1596 	 */
1597 	written = 1;
1598 out:
1599 	return written ? written : ret;
1600 }
1601 
1602 /*
1603  * This function only does anything for file systems which can't
1604  * handle sparse files.
1605  *
1606  * What we want to do here is fill in any hole between the current end
1607  * of allocation and the end of our write. That way the rest of the
1608  * write path can treat it as an non-allocating write, which has no
1609  * special case code for sparse/nonsparse files.
1610  */
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 					struct buffer_head *di_bh,
1613 					loff_t pos, unsigned len,
1614 					struct ocfs2_write_ctxt *wc)
1615 {
1616 	int ret;
1617 	loff_t newsize = pos + len;
1618 
1619 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 
1621 	if (newsize <= i_size_read(inode))
1622 		return 0;
1623 
1624 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625 	if (ret)
1626 		mlog_errno(ret);
1627 
1628 	/* There is no wc if this is call from direct. */
1629 	if (wc)
1630 		wc->w_first_new_cpos =
1631 			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632 
1633 	return ret;
1634 }
1635 
1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637 			   loff_t pos)
1638 {
1639 	int ret = 0;
1640 
1641 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 	if (pos > i_size_read(inode))
1643 		ret = ocfs2_zero_extend(inode, di_bh, pos);
1644 
1645 	return ret;
1646 }
1647 
1648 /*
1649  * Try to flush truncate logs if we can free enough clusters from it.
1650  * As for return value, "< 0" means error, "0" no space and "1" means
1651  * we have freed enough spaces and let the caller try to allocate again.
1652  */
1653 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1654 					  unsigned int needed)
1655 {
1656 	tid_t target;
1657 	int ret = 0;
1658 	unsigned int truncated_clusters;
1659 
1660 	inode_lock(osb->osb_tl_inode);
1661 	truncated_clusters = osb->truncated_clusters;
1662 	inode_unlock(osb->osb_tl_inode);
1663 
1664 	/*
1665 	 * Check whether we can succeed in allocating if we free
1666 	 * the truncate log.
1667 	 */
1668 	if (truncated_clusters < needed)
1669 		goto out;
1670 
1671 	ret = ocfs2_flush_truncate_log(osb);
1672 	if (ret) {
1673 		mlog_errno(ret);
1674 		goto out;
1675 	}
1676 
1677 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1678 		jbd2_log_wait_commit(osb->journal->j_journal, target);
1679 		ret = 1;
1680 	}
1681 out:
1682 	return ret;
1683 }
1684 
1685 int ocfs2_write_begin_nolock(struct address_space *mapping,
1686 			     loff_t pos, unsigned len, ocfs2_write_type_t type,
1687 			     struct page **pagep, void **fsdata,
1688 			     struct buffer_head *di_bh, struct page *mmap_page)
1689 {
1690 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1691 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1692 	struct ocfs2_write_ctxt *wc;
1693 	struct inode *inode = mapping->host;
1694 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695 	struct ocfs2_dinode *di;
1696 	struct ocfs2_alloc_context *data_ac = NULL;
1697 	struct ocfs2_alloc_context *meta_ac = NULL;
1698 	handle_t *handle;
1699 	struct ocfs2_extent_tree et;
1700 	int try_free = 1, ret1;
1701 
1702 try_again:
1703 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1704 	if (ret) {
1705 		mlog_errno(ret);
1706 		return ret;
1707 	}
1708 
1709 	if (ocfs2_supports_inline_data(osb)) {
1710 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1711 						     mmap_page, wc);
1712 		if (ret == 1) {
1713 			ret = 0;
1714 			goto success;
1715 		}
1716 		if (ret < 0) {
1717 			mlog_errno(ret);
1718 			goto out;
1719 		}
1720 	}
1721 
1722 	/* Direct io change i_size late, should not zero tail here. */
1723 	if (type != OCFS2_WRITE_DIRECT) {
1724 		if (ocfs2_sparse_alloc(osb))
1725 			ret = ocfs2_zero_tail(inode, di_bh, pos);
1726 		else
1727 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1728 							   len, wc);
1729 		if (ret) {
1730 			mlog_errno(ret);
1731 			goto out;
1732 		}
1733 	}
1734 
1735 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736 	if (ret < 0) {
1737 		mlog_errno(ret);
1738 		goto out;
1739 	} else if (ret == 1) {
1740 		clusters_need = wc->w_clen;
1741 		ret = ocfs2_refcount_cow(inode, di_bh,
1742 					 wc->w_cpos, wc->w_clen, UINT_MAX);
1743 		if (ret) {
1744 			mlog_errno(ret);
1745 			goto out;
1746 		}
1747 	}
1748 
1749 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750 					&extents_to_split);
1751 	if (ret) {
1752 		mlog_errno(ret);
1753 		goto out;
1754 	}
1755 	clusters_need += clusters_to_alloc;
1756 
1757 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758 
1759 	trace_ocfs2_write_begin_nolock(
1760 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1761 			(long long)i_size_read(inode),
1762 			le32_to_cpu(di->i_clusters),
1763 			pos, len, type, mmap_page,
1764 			clusters_to_alloc, extents_to_split);
1765 
1766 	/*
1767 	 * We set w_target_from, w_target_to here so that
1768 	 * ocfs2_write_end() knows which range in the target page to
1769 	 * write out. An allocation requires that we write the entire
1770 	 * cluster range.
1771 	 */
1772 	if (clusters_to_alloc || extents_to_split) {
1773 		/*
1774 		 * XXX: We are stretching the limits of
1775 		 * ocfs2_lock_allocators(). It greatly over-estimates
1776 		 * the work to be done.
1777 		 */
1778 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779 					      wc->w_di_bh);
1780 		ret = ocfs2_lock_allocators(inode, &et,
1781 					    clusters_to_alloc, extents_to_split,
1782 					    &data_ac, &meta_ac);
1783 		if (ret) {
1784 			mlog_errno(ret);
1785 			goto out;
1786 		}
1787 
1788 		if (data_ac)
1789 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790 
1791 		credits = ocfs2_calc_extend_credits(inode->i_sb,
1792 						    &di->id2.i_list);
1793 	} else if (type == OCFS2_WRITE_DIRECT)
1794 		/* direct write needs not to start trans if no extents alloc. */
1795 		goto success;
1796 
1797 	/*
1798 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1799 	 * and non-sparse clusters we just extended.  For non-sparse writes,
1800 	 * we know zeros will only be needed in the first and/or last cluster.
1801 	 */
1802 	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803 			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
1804 		cluster_of_pages = 1;
1805 	else
1806 		cluster_of_pages = 0;
1807 
1808 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1809 
1810 	handle = ocfs2_start_trans(osb, credits);
1811 	if (IS_ERR(handle)) {
1812 		ret = PTR_ERR(handle);
1813 		mlog_errno(ret);
1814 		goto out;
1815 	}
1816 
1817 	wc->w_handle = handle;
1818 
1819 	if (clusters_to_alloc) {
1820 		ret = dquot_alloc_space_nodirty(inode,
1821 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 		if (ret)
1823 			goto out_commit;
1824 	}
1825 
1826 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1827 				      OCFS2_JOURNAL_ACCESS_WRITE);
1828 	if (ret) {
1829 		mlog_errno(ret);
1830 		goto out_quota;
1831 	}
1832 
1833 	/*
1834 	 * Fill our page array first. That way we've grabbed enough so
1835 	 * that we can zero and flush if we error after adding the
1836 	 * extent.
1837 	 */
1838 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1839 					 cluster_of_pages, mmap_page);
1840 	if (ret && ret != -EAGAIN) {
1841 		mlog_errno(ret);
1842 		goto out_quota;
1843 	}
1844 
1845 	/*
1846 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1847 	 * the target page. In this case, we exit with no error and no target
1848 	 * page. This will trigger the caller, page_mkwrite(), to re-try
1849 	 * the operation.
1850 	 */
1851 	if (ret == -EAGAIN) {
1852 		BUG_ON(wc->w_target_page);
1853 		ret = 0;
1854 		goto out_quota;
1855 	}
1856 
1857 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1858 					  len);
1859 	if (ret) {
1860 		mlog_errno(ret);
1861 		goto out_quota;
1862 	}
1863 
1864 	if (data_ac)
1865 		ocfs2_free_alloc_context(data_ac);
1866 	if (meta_ac)
1867 		ocfs2_free_alloc_context(meta_ac);
1868 
1869 success:
1870 	if (pagep)
1871 		*pagep = wc->w_target_page;
1872 	*fsdata = wc;
1873 	return 0;
1874 out_quota:
1875 	if (clusters_to_alloc)
1876 		dquot_free_space(inode,
1877 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1878 out_commit:
1879 	ocfs2_commit_trans(osb, handle);
1880 
1881 out:
1882 	ocfs2_free_write_ctxt(inode, wc);
1883 
1884 	if (data_ac) {
1885 		ocfs2_free_alloc_context(data_ac);
1886 		data_ac = NULL;
1887 	}
1888 	if (meta_ac) {
1889 		ocfs2_free_alloc_context(meta_ac);
1890 		meta_ac = NULL;
1891 	}
1892 
1893 	if (ret == -ENOSPC && try_free) {
1894 		/*
1895 		 * Try to free some truncate log so that we can have enough
1896 		 * clusters to allocate.
1897 		 */
1898 		try_free = 0;
1899 
1900 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1901 		if (ret1 == 1)
1902 			goto try_again;
1903 
1904 		if (ret1 < 0)
1905 			mlog_errno(ret1);
1906 	}
1907 
1908 	return ret;
1909 }
1910 
1911 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1912 			     loff_t pos, unsigned len, unsigned flags,
1913 			     struct page **pagep, void **fsdata)
1914 {
1915 	int ret;
1916 	struct buffer_head *di_bh = NULL;
1917 	struct inode *inode = mapping->host;
1918 
1919 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1920 	if (ret) {
1921 		mlog_errno(ret);
1922 		return ret;
1923 	}
1924 
1925 	/*
1926 	 * Take alloc sem here to prevent concurrent lookups. That way
1927 	 * the mapping, zeroing and tree manipulation within
1928 	 * ocfs2_write() will be safe against ->readpage(). This
1929 	 * should also serve to lock out allocation from a shared
1930 	 * writeable region.
1931 	 */
1932 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1933 
1934 	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1935 				       pagep, fsdata, di_bh, NULL);
1936 	if (ret) {
1937 		mlog_errno(ret);
1938 		goto out_fail;
1939 	}
1940 
1941 	brelse(di_bh);
1942 
1943 	return 0;
1944 
1945 out_fail:
1946 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1947 
1948 	brelse(di_bh);
1949 	ocfs2_inode_unlock(inode, 1);
1950 
1951 	return ret;
1952 }
1953 
1954 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1955 				   unsigned len, unsigned *copied,
1956 				   struct ocfs2_dinode *di,
1957 				   struct ocfs2_write_ctxt *wc)
1958 {
1959 	void *kaddr;
1960 
1961 	if (unlikely(*copied < len)) {
1962 		if (!PageUptodate(wc->w_target_page)) {
1963 			*copied = 0;
1964 			return;
1965 		}
1966 	}
1967 
1968 	kaddr = kmap_atomic(wc->w_target_page);
1969 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1970 	kunmap_atomic(kaddr);
1971 
1972 	trace_ocfs2_write_end_inline(
1973 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1974 	     (unsigned long long)pos, *copied,
1975 	     le16_to_cpu(di->id2.i_data.id_count),
1976 	     le16_to_cpu(di->i_dyn_features));
1977 }
1978 
1979 int ocfs2_write_end_nolock(struct address_space *mapping,
1980 			   loff_t pos, unsigned len, unsigned copied,
1981 			   struct page *page, void *fsdata)
1982 {
1983 	int i, ret;
1984 	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1985 	struct inode *inode = mapping->host;
1986 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1987 	struct ocfs2_write_ctxt *wc = fsdata;
1988 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989 	handle_t *handle = wc->w_handle;
1990 	struct page *tmppage;
1991 
1992 	BUG_ON(!list_empty(&wc->w_unwritten_list));
1993 
1994 	if (handle) {
1995 		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1996 				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1997 		if (ret) {
1998 			copied = ret;
1999 			mlog_errno(ret);
2000 			goto out;
2001 		}
2002 	}
2003 
2004 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 		goto out_write_size;
2007 	}
2008 
2009 	if (unlikely(copied < len) && wc->w_target_page) {
2010 		if (!PageUptodate(wc->w_target_page))
2011 			copied = 0;
2012 
2013 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 				       start+len);
2015 	}
2016 	if (wc->w_target_page)
2017 		flush_dcache_page(wc->w_target_page);
2018 
2019 	for(i = 0; i < wc->w_num_pages; i++) {
2020 		tmppage = wc->w_pages[i];
2021 
2022 		/* This is the direct io target page. */
2023 		if (tmppage == NULL)
2024 			continue;
2025 
2026 		if (tmppage == wc->w_target_page) {
2027 			from = wc->w_target_from;
2028 			to = wc->w_target_to;
2029 
2030 			BUG_ON(from > PAGE_SIZE ||
2031 			       to > PAGE_SIZE ||
2032 			       to < from);
2033 		} else {
2034 			/*
2035 			 * Pages adjacent to the target (if any) imply
2036 			 * a hole-filling write in which case we want
2037 			 * to flush their entire range.
2038 			 */
2039 			from = 0;
2040 			to = PAGE_SIZE;
2041 		}
2042 
2043 		if (page_has_buffers(tmppage)) {
2044 			if (handle && ocfs2_should_order_data(inode))
2045 				ocfs2_jbd2_file_inode(handle, inode);
2046 			block_commit_write(tmppage, from, to);
2047 		}
2048 	}
2049 
2050 out_write_size:
2051 	/* Direct io do not update i_size here. */
2052 	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2053 		pos += copied;
2054 		if (pos > i_size_read(inode)) {
2055 			i_size_write(inode, pos);
2056 			mark_inode_dirty(inode);
2057 		}
2058 		inode->i_blocks = ocfs2_inode_sector_count(inode);
2059 		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061 		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062 		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2063 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
2064 	}
2065 	if (handle)
2066 		ocfs2_journal_dirty(handle, wc->w_di_bh);
2067 
2068 out:
2069 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2070 	 * lock, or it will cause a deadlock since journal commit threads holds
2071 	 * this lock and will ask for the page lock when flushing the data.
2072 	 * put it here to preserve the unlock order.
2073 	 */
2074 	ocfs2_unlock_pages(wc);
2075 
2076 	if (handle)
2077 		ocfs2_commit_trans(osb, handle);
2078 
2079 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2080 
2081 	brelse(wc->w_di_bh);
2082 	kfree(wc);
2083 
2084 	return copied;
2085 }
2086 
2087 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2088 			   loff_t pos, unsigned len, unsigned copied,
2089 			   struct page *page, void *fsdata)
2090 {
2091 	int ret;
2092 	struct inode *inode = mapping->host;
2093 
2094 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2095 
2096 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2097 	ocfs2_inode_unlock(inode, 1);
2098 
2099 	return ret;
2100 }
2101 
2102 struct ocfs2_dio_write_ctxt {
2103 	struct list_head	dw_zero_list;
2104 	unsigned		dw_zero_count;
2105 	int			dw_orphaned;
2106 	pid_t			dw_writer_pid;
2107 };
2108 
2109 static struct ocfs2_dio_write_ctxt *
2110 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2111 {
2112 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2113 
2114 	if (bh->b_private)
2115 		return bh->b_private;
2116 
2117 	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2118 	if (dwc == NULL)
2119 		return NULL;
2120 	INIT_LIST_HEAD(&dwc->dw_zero_list);
2121 	dwc->dw_zero_count = 0;
2122 	dwc->dw_orphaned = 0;
2123 	dwc->dw_writer_pid = task_pid_nr(current);
2124 	bh->b_private = dwc;
2125 	*alloc = 1;
2126 
2127 	return dwc;
2128 }
2129 
2130 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2131 				     struct ocfs2_dio_write_ctxt *dwc)
2132 {
2133 	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2134 	kfree(dwc);
2135 }
2136 
2137 /*
2138  * TODO: Make this into a generic get_blocks function.
2139  *
2140  * From do_direct_io in direct-io.c:
2141  *  "So what we do is to permit the ->get_blocks function to populate
2142  *   bh.b_size with the size of IO which is permitted at this offset and
2143  *   this i_blkbits."
2144  *
2145  * This function is called directly from get_more_blocks in direct-io.c.
2146  *
2147  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2148  * 					fs_count, map_bh, dio->rw == WRITE);
2149  */
2150 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2151 			       struct buffer_head *bh_result, int create)
2152 {
2153 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2154 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2155 	struct ocfs2_write_ctxt *wc;
2156 	struct ocfs2_write_cluster_desc *desc = NULL;
2157 	struct ocfs2_dio_write_ctxt *dwc = NULL;
2158 	struct buffer_head *di_bh = NULL;
2159 	u64 p_blkno;
2160 	loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2161 	unsigned len, total_len = bh_result->b_size;
2162 	int ret = 0, first_get_block = 0;
2163 
2164 	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2165 	len = min(total_len, len);
2166 
2167 	mlog(0, "get block of %lu at %llu:%u req %u\n",
2168 			inode->i_ino, pos, len, total_len);
2169 
2170 	/*
2171 	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2172 	 * we may need to add it to orphan dir. So can not fall to fast path
2173 	 * while file size will be changed.
2174 	 */
2175 	if (pos + total_len <= i_size_read(inode)) {
2176 		down_read(&oi->ip_alloc_sem);
2177 		/* This is the fast path for re-write. */
2178 		ret = ocfs2_get_block(inode, iblock, bh_result, create);
2179 
2180 		up_read(&oi->ip_alloc_sem);
2181 
2182 		if (buffer_mapped(bh_result) &&
2183 		    !buffer_new(bh_result) &&
2184 		    ret == 0)
2185 			goto out;
2186 
2187 		/* Clear state set by ocfs2_get_block. */
2188 		bh_result->b_state = 0;
2189 	}
2190 
2191 	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2192 	if (unlikely(dwc == NULL)) {
2193 		ret = -ENOMEM;
2194 		mlog_errno(ret);
2195 		goto out;
2196 	}
2197 
2198 	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2199 	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2200 	    !dwc->dw_orphaned) {
2201 		/*
2202 		 * when we are going to alloc extents beyond file size, add the
2203 		 * inode to orphan dir, so we can recall those spaces when
2204 		 * system crashed during write.
2205 		 */
2206 		ret = ocfs2_add_inode_to_orphan(osb, inode);
2207 		if (ret < 0) {
2208 			mlog_errno(ret);
2209 			goto out;
2210 		}
2211 		dwc->dw_orphaned = 1;
2212 	}
2213 
2214 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2215 	if (ret) {
2216 		mlog_errno(ret);
2217 		goto out;
2218 	}
2219 
2220 	down_write(&oi->ip_alloc_sem);
2221 
2222 	if (first_get_block) {
2223 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2224 			ret = ocfs2_zero_tail(inode, di_bh, pos);
2225 		else
2226 			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2227 							   total_len, NULL);
2228 		if (ret < 0) {
2229 			mlog_errno(ret);
2230 			goto unlock;
2231 		}
2232 	}
2233 
2234 	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2235 				       OCFS2_WRITE_DIRECT, NULL,
2236 				       (void **)&wc, di_bh, NULL);
2237 	if (ret) {
2238 		mlog_errno(ret);
2239 		goto unlock;
2240 	}
2241 
2242 	desc = &wc->w_desc[0];
2243 
2244 	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2245 	BUG_ON(p_blkno == 0);
2246 	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2247 
2248 	map_bh(bh_result, inode->i_sb, p_blkno);
2249 	bh_result->b_size = len;
2250 	if (desc->c_needs_zero)
2251 		set_buffer_new(bh_result);
2252 
2253 	/* May sleep in end_io. It should not happen in a irq context. So defer
2254 	 * it to dio work queue. */
2255 	set_buffer_defer_completion(bh_result);
2256 
2257 	if (!list_empty(&wc->w_unwritten_list)) {
2258 		struct ocfs2_unwritten_extent *ue = NULL;
2259 
2260 		ue = list_first_entry(&wc->w_unwritten_list,
2261 				      struct ocfs2_unwritten_extent,
2262 				      ue_node);
2263 		BUG_ON(ue->ue_cpos != desc->c_cpos);
2264 		/* The physical address may be 0, fill it. */
2265 		ue->ue_phys = desc->c_phys;
2266 
2267 		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2268 		dwc->dw_zero_count++;
2269 	}
2270 
2271 	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
2272 	BUG_ON(ret != len);
2273 	ret = 0;
2274 unlock:
2275 	up_write(&oi->ip_alloc_sem);
2276 	ocfs2_inode_unlock(inode, 1);
2277 	brelse(di_bh);
2278 out:
2279 	if (ret < 0)
2280 		ret = -EIO;
2281 	return ret;
2282 }
2283 
2284 static void ocfs2_dio_end_io_write(struct inode *inode,
2285 				   struct ocfs2_dio_write_ctxt *dwc,
2286 				   loff_t offset,
2287 				   ssize_t bytes)
2288 {
2289 	struct ocfs2_cached_dealloc_ctxt dealloc;
2290 	struct ocfs2_extent_tree et;
2291 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2292 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2293 	struct ocfs2_unwritten_extent *ue = NULL;
2294 	struct buffer_head *di_bh = NULL;
2295 	struct ocfs2_dinode *di;
2296 	struct ocfs2_alloc_context *data_ac = NULL;
2297 	struct ocfs2_alloc_context *meta_ac = NULL;
2298 	handle_t *handle = NULL;
2299 	loff_t end = offset + bytes;
2300 	int ret = 0, credits = 0, locked = 0;
2301 
2302 	ocfs2_init_dealloc_ctxt(&dealloc);
2303 
2304 	/* We do clear unwritten, delete orphan, change i_size here. If neither
2305 	 * of these happen, we can skip all this. */
2306 	if (list_empty(&dwc->dw_zero_list) &&
2307 	    end <= i_size_read(inode) &&
2308 	    !dwc->dw_orphaned)
2309 		goto out;
2310 
2311 	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2312 	 * are in that context. */
2313 	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2314 		inode_lock(inode);
2315 		locked = 1;
2316 	}
2317 
2318 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319 	if (ret < 0) {
2320 		mlog_errno(ret);
2321 		goto out;
2322 	}
2323 
2324 	down_write(&oi->ip_alloc_sem);
2325 
2326 	/* Delete orphan before acquire i_mutex. */
2327 	if (dwc->dw_orphaned) {
2328 		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329 
2330 		end = end > i_size_read(inode) ? end : 0;
2331 
2332 		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333 				!!end, end);
2334 		if (ret < 0)
2335 			mlog_errno(ret);
2336 	}
2337 
2338 	di = (struct ocfs2_dinode *)di_bh;
2339 
2340 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341 
2342 	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2343 				    &data_ac, &meta_ac);
2344 	if (ret) {
2345 		mlog_errno(ret);
2346 		goto unlock;
2347 	}
2348 
2349 	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2350 
2351 	handle = ocfs2_start_trans(osb, credits);
2352 	if (IS_ERR(handle)) {
2353 		ret = PTR_ERR(handle);
2354 		mlog_errno(ret);
2355 		goto unlock;
2356 	}
2357 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2358 				      OCFS2_JOURNAL_ACCESS_WRITE);
2359 	if (ret) {
2360 		mlog_errno(ret);
2361 		goto commit;
2362 	}
2363 
2364 	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2365 		ret = ocfs2_mark_extent_written(inode, &et, handle,
2366 						ue->ue_cpos, 1,
2367 						ue->ue_phys,
2368 						meta_ac, &dealloc);
2369 		if (ret < 0) {
2370 			mlog_errno(ret);
2371 			break;
2372 		}
2373 	}
2374 
2375 	if (end > i_size_read(inode)) {
2376 		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2377 		if (ret < 0)
2378 			mlog_errno(ret);
2379 	}
2380 commit:
2381 	ocfs2_commit_trans(osb, handle);
2382 unlock:
2383 	up_write(&oi->ip_alloc_sem);
2384 	ocfs2_inode_unlock(inode, 1);
2385 	brelse(di_bh);
2386 out:
2387 	if (data_ac)
2388 		ocfs2_free_alloc_context(data_ac);
2389 	if (meta_ac)
2390 		ocfs2_free_alloc_context(meta_ac);
2391 	ocfs2_run_deallocs(osb, &dealloc);
2392 	if (locked)
2393 		inode_unlock(inode);
2394 	ocfs2_dio_free_write_ctx(inode, dwc);
2395 }
2396 
2397 /*
2398  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2399  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2400  * to protect io on one node from truncation on another.
2401  */
2402 static int ocfs2_dio_end_io(struct kiocb *iocb,
2403 			    loff_t offset,
2404 			    ssize_t bytes,
2405 			    void *private)
2406 {
2407 	struct inode *inode = file_inode(iocb->ki_filp);
2408 	int level;
2409 
2410 	if (bytes <= 0)
2411 		return 0;
2412 
2413 	/* this io's submitter should not have unlocked this before we could */
2414 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2415 
2416 	if (private)
2417 		ocfs2_dio_end_io_write(inode, private, offset, bytes);
2418 
2419 	ocfs2_iocb_clear_rw_locked(iocb);
2420 
2421 	level = ocfs2_iocb_rw_locked_level(iocb);
2422 	ocfs2_rw_unlock(inode, level);
2423 	return 0;
2424 }
2425 
2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2427 {
2428 	struct file *file = iocb->ki_filp;
2429 	struct inode *inode = file_inode(file)->i_mapping->host;
2430 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2431 	get_block_t *get_block;
2432 
2433 	/*
2434 	 * Fallback to buffered I/O if we see an inode without
2435 	 * extents.
2436 	 */
2437 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2438 		return 0;
2439 
2440 	/* Fallback to buffered I/O if we do not support append dio. */
2441 	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442 	    !ocfs2_supports_append_dio(osb))
2443 		return 0;
2444 
2445 	if (iov_iter_rw(iter) == READ)
2446 		get_block = ocfs2_get_block;
2447 	else
2448 		get_block = ocfs2_dio_get_block;
2449 
2450 	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2451 				    iter, get_block,
2452 				    ocfs2_dio_end_io, NULL, 0);
2453 }
2454 
2455 const struct address_space_operations ocfs2_aops = {
2456 	.readpage		= ocfs2_readpage,
2457 	.readpages		= ocfs2_readpages,
2458 	.writepage		= ocfs2_writepage,
2459 	.write_begin		= ocfs2_write_begin,
2460 	.write_end		= ocfs2_write_end,
2461 	.bmap			= ocfs2_bmap,
2462 	.direct_IO		= ocfs2_direct_IO,
2463 	.invalidatepage		= block_invalidatepage,
2464 	.releasepage		= ocfs2_releasepage,
2465 	.migratepage		= buffer_migrate_page,
2466 	.is_partially_uptodate	= block_is_partially_uptodate,
2467 	.error_remove_page	= generic_error_remove_page,
2468 };
2469