1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * alloc.c 4 * 5 * Extent allocs and frees 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/string.h> 14 #include <linux/highmem.h> 15 #include <linux/swap.h> 16 #include <linux/quotaops.h> 17 #include <linux/blkdev.h> 18 #include <linux/sched/signal.h> 19 20 #include <cluster/masklog.h> 21 22 #include "ocfs2.h" 23 24 #include "alloc.h" 25 #include "aops.h" 26 #include "blockcheck.h" 27 #include "dlmglue.h" 28 #include "extent_map.h" 29 #include "inode.h" 30 #include "journal.h" 31 #include "localalloc.h" 32 #include "suballoc.h" 33 #include "sysfile.h" 34 #include "file.h" 35 #include "super.h" 36 #include "uptodate.h" 37 #include "xattr.h" 38 #include "refcounttree.h" 39 #include "ocfs2_trace.h" 40 41 #include "buffer_head_io.h" 42 43 enum ocfs2_contig_type { 44 CONTIG_NONE = 0, 45 CONTIG_LEFT, 46 CONTIG_RIGHT, 47 CONTIG_LEFTRIGHT, 48 }; 49 50 static enum ocfs2_contig_type 51 ocfs2_extent_rec_contig(struct super_block *sb, 52 struct ocfs2_extent_rec *ext, 53 struct ocfs2_extent_rec *insert_rec); 54 /* 55 * Operations for a specific extent tree type. 56 * 57 * To implement an on-disk btree (extent tree) type in ocfs2, add 58 * an ocfs2_extent_tree_operations structure and the matching 59 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 60 * for the allocation portion of the extent tree. 61 */ 62 struct ocfs2_extent_tree_operations { 63 /* 64 * last_eb_blk is the block number of the right most leaf extent 65 * block. Most on-disk structures containing an extent tree store 66 * this value for fast access. The ->eo_set_last_eb_blk() and 67 * ->eo_get_last_eb_blk() operations access this value. They are 68 * both required. 69 */ 70 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 71 u64 blkno); 72 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 73 74 /* 75 * The on-disk structure usually keeps track of how many total 76 * clusters are stored in this extent tree. This function updates 77 * that value. new_clusters is the delta, and must be 78 * added to the total. Required. 79 */ 80 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 81 u32 new_clusters); 82 83 /* 84 * If this extent tree is supported by an extent map, insert 85 * a record into the map. 86 */ 87 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 88 struct ocfs2_extent_rec *rec); 89 90 /* 91 * If this extent tree is supported by an extent map, truncate the 92 * map to clusters, 93 */ 94 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 95 u32 clusters); 96 97 /* 98 * If ->eo_insert_check() exists, it is called before rec is 99 * inserted into the extent tree. It is optional. 100 */ 101 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 102 struct ocfs2_extent_rec *rec); 103 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 104 105 /* 106 * -------------------------------------------------------------- 107 * The remaining are internal to ocfs2_extent_tree and don't have 108 * accessor functions 109 */ 110 111 /* 112 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 113 * It is required. 114 */ 115 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 116 117 /* 118 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 119 * it exists. If it does not, et->et_max_leaf_clusters is set 120 * to 0 (unlimited). Optional. 121 */ 122 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 123 124 /* 125 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 126 * are contiguous or not. Optional. Don't need to set it if use 127 * ocfs2_extent_rec as the tree leaf. 128 */ 129 enum ocfs2_contig_type 130 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 131 struct ocfs2_extent_rec *ext, 132 struct ocfs2_extent_rec *insert_rec); 133 }; 134 135 136 /* 137 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 138 * in the methods. 139 */ 140 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 141 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 142 u64 blkno); 143 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 144 u32 clusters); 145 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 146 struct ocfs2_extent_rec *rec); 147 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 148 u32 clusters); 149 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 150 struct ocfs2_extent_rec *rec); 151 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 152 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 153 154 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 155 struct ocfs2_extent_tree *et, 156 struct buffer_head **new_eb_bh, 157 int blk_wanted, int *blk_given); 158 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 159 160 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 161 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 162 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 163 .eo_update_clusters = ocfs2_dinode_update_clusters, 164 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 165 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 166 .eo_insert_check = ocfs2_dinode_insert_check, 167 .eo_sanity_check = ocfs2_dinode_sanity_check, 168 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 169 }; 170 171 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 172 u64 blkno) 173 { 174 struct ocfs2_dinode *di = et->et_object; 175 176 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 177 di->i_last_eb_blk = cpu_to_le64(blkno); 178 } 179 180 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 181 { 182 struct ocfs2_dinode *di = et->et_object; 183 184 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 185 return le64_to_cpu(di->i_last_eb_blk); 186 } 187 188 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 189 u32 clusters) 190 { 191 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 192 struct ocfs2_dinode *di = et->et_object; 193 194 le32_add_cpu(&di->i_clusters, clusters); 195 spin_lock(&oi->ip_lock); 196 oi->ip_clusters = le32_to_cpu(di->i_clusters); 197 spin_unlock(&oi->ip_lock); 198 } 199 200 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 201 struct ocfs2_extent_rec *rec) 202 { 203 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 204 205 ocfs2_extent_map_insert_rec(inode, rec); 206 } 207 208 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 209 u32 clusters) 210 { 211 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 212 213 ocfs2_extent_map_trunc(inode, clusters); 214 } 215 216 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 217 struct ocfs2_extent_rec *rec) 218 { 219 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 220 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 221 222 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 223 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 224 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 225 "Device %s, asking for sparse allocation: inode %llu, " 226 "cpos %u, clusters %u\n", 227 osb->dev_str, 228 (unsigned long long)oi->ip_blkno, 229 rec->e_cpos, oi->ip_clusters); 230 231 return 0; 232 } 233 234 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 235 { 236 struct ocfs2_dinode *di = et->et_object; 237 238 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 239 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 240 241 return 0; 242 } 243 244 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 245 { 246 struct ocfs2_dinode *di = et->et_object; 247 248 et->et_root_el = &di->id2.i_list; 249 } 250 251 252 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 253 { 254 struct ocfs2_xattr_value_buf *vb = et->et_object; 255 256 et->et_root_el = &vb->vb_xv->xr_list; 257 } 258 259 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 260 u64 blkno) 261 { 262 struct ocfs2_xattr_value_buf *vb = et->et_object; 263 264 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 265 } 266 267 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 272 } 273 274 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 275 u32 clusters) 276 { 277 struct ocfs2_xattr_value_buf *vb = et->et_object; 278 279 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 280 } 281 282 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 283 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 284 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 285 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 286 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 287 }; 288 289 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 290 { 291 struct ocfs2_xattr_block *xb = et->et_object; 292 293 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 294 } 295 296 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 297 { 298 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 299 et->et_max_leaf_clusters = 300 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 301 } 302 303 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 304 u64 blkno) 305 { 306 struct ocfs2_xattr_block *xb = et->et_object; 307 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 308 309 xt->xt_last_eb_blk = cpu_to_le64(blkno); 310 } 311 312 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 313 { 314 struct ocfs2_xattr_block *xb = et->et_object; 315 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 316 317 return le64_to_cpu(xt->xt_last_eb_blk); 318 } 319 320 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 321 u32 clusters) 322 { 323 struct ocfs2_xattr_block *xb = et->et_object; 324 325 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 326 } 327 328 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 329 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 330 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 331 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 332 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 333 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 334 }; 335 336 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 337 u64 blkno) 338 { 339 struct ocfs2_dx_root_block *dx_root = et->et_object; 340 341 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 342 } 343 344 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 345 { 346 struct ocfs2_dx_root_block *dx_root = et->et_object; 347 348 return le64_to_cpu(dx_root->dr_last_eb_blk); 349 } 350 351 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 352 u32 clusters) 353 { 354 struct ocfs2_dx_root_block *dx_root = et->et_object; 355 356 le32_add_cpu(&dx_root->dr_clusters, clusters); 357 } 358 359 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 364 365 return 0; 366 } 367 368 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 369 { 370 struct ocfs2_dx_root_block *dx_root = et->et_object; 371 372 et->et_root_el = &dx_root->dr_list; 373 } 374 375 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 376 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 377 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 378 .eo_update_clusters = ocfs2_dx_root_update_clusters, 379 .eo_sanity_check = ocfs2_dx_root_sanity_check, 380 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 381 }; 382 383 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 384 { 385 struct ocfs2_refcount_block *rb = et->et_object; 386 387 et->et_root_el = &rb->rf_list; 388 } 389 390 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 391 u64 blkno) 392 { 393 struct ocfs2_refcount_block *rb = et->et_object; 394 395 rb->rf_last_eb_blk = cpu_to_le64(blkno); 396 } 397 398 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 return le64_to_cpu(rb->rf_last_eb_blk); 403 } 404 405 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 406 u32 clusters) 407 { 408 struct ocfs2_refcount_block *rb = et->et_object; 409 410 le32_add_cpu(&rb->rf_clusters, clusters); 411 } 412 413 static enum ocfs2_contig_type 414 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 415 struct ocfs2_extent_rec *ext, 416 struct ocfs2_extent_rec *insert_rec) 417 { 418 return CONTIG_NONE; 419 } 420 421 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 422 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 423 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 424 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 425 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 426 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 427 }; 428 429 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 430 struct ocfs2_caching_info *ci, 431 struct buffer_head *bh, 432 ocfs2_journal_access_func access, 433 void *obj, 434 const struct ocfs2_extent_tree_operations *ops) 435 { 436 et->et_ops = ops; 437 et->et_root_bh = bh; 438 et->et_ci = ci; 439 et->et_root_journal_access = access; 440 if (!obj) 441 obj = (void *)bh->b_data; 442 et->et_object = obj; 443 et->et_dealloc = NULL; 444 445 et->et_ops->eo_fill_root_el(et); 446 if (!et->et_ops->eo_fill_max_leaf_clusters) 447 et->et_max_leaf_clusters = 0; 448 else 449 et->et_ops->eo_fill_max_leaf_clusters(et); 450 } 451 452 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 453 struct ocfs2_caching_info *ci, 454 struct buffer_head *bh) 455 { 456 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 457 NULL, &ocfs2_dinode_et_ops); 458 } 459 460 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 461 struct ocfs2_caching_info *ci, 462 struct buffer_head *bh) 463 { 464 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 465 NULL, &ocfs2_xattr_tree_et_ops); 466 } 467 468 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 469 struct ocfs2_caching_info *ci, 470 struct ocfs2_xattr_value_buf *vb) 471 { 472 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 473 &ocfs2_xattr_value_et_ops); 474 } 475 476 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 477 struct ocfs2_caching_info *ci, 478 struct buffer_head *bh) 479 { 480 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 481 NULL, &ocfs2_dx_root_et_ops); 482 } 483 484 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 485 struct ocfs2_caching_info *ci, 486 struct buffer_head *bh) 487 { 488 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 489 NULL, &ocfs2_refcount_tree_et_ops); 490 } 491 492 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 493 u64 new_last_eb_blk) 494 { 495 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 496 } 497 498 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 499 { 500 return et->et_ops->eo_get_last_eb_blk(et); 501 } 502 503 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 504 u32 clusters) 505 { 506 et->et_ops->eo_update_clusters(et, clusters); 507 } 508 509 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 510 struct ocfs2_extent_rec *rec) 511 { 512 if (et->et_ops->eo_extent_map_insert) 513 et->et_ops->eo_extent_map_insert(et, rec); 514 } 515 516 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 517 u32 clusters) 518 { 519 if (et->et_ops->eo_extent_map_truncate) 520 et->et_ops->eo_extent_map_truncate(et, clusters); 521 } 522 523 static inline int ocfs2_et_root_journal_access(handle_t *handle, 524 struct ocfs2_extent_tree *et, 525 int type) 526 { 527 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 528 type); 529 } 530 531 static inline enum ocfs2_contig_type 532 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 533 struct ocfs2_extent_rec *rec, 534 struct ocfs2_extent_rec *insert_rec) 535 { 536 if (et->et_ops->eo_extent_contig) 537 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 538 539 return ocfs2_extent_rec_contig( 540 ocfs2_metadata_cache_get_super(et->et_ci), 541 rec, insert_rec); 542 } 543 544 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 545 struct ocfs2_extent_rec *rec) 546 { 547 int ret = 0; 548 549 if (et->et_ops->eo_insert_check) 550 ret = et->et_ops->eo_insert_check(et, rec); 551 return ret; 552 } 553 554 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 555 { 556 int ret = 0; 557 558 if (et->et_ops->eo_sanity_check) 559 ret = et->et_ops->eo_sanity_check(et); 560 return ret; 561 } 562 563 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 564 struct ocfs2_extent_block *eb); 565 static void ocfs2_adjust_rightmost_records(handle_t *handle, 566 struct ocfs2_extent_tree *et, 567 struct ocfs2_path *path, 568 struct ocfs2_extent_rec *insert_rec); 569 /* 570 * Reset the actual path elements so that we can reuse the structure 571 * to build another path. Generally, this involves freeing the buffer 572 * heads. 573 */ 574 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 575 { 576 int i, start = 0, depth = 0; 577 struct ocfs2_path_item *node; 578 579 if (keep_root) 580 start = 1; 581 582 for(i = start; i < path_num_items(path); i++) { 583 node = &path->p_node[i]; 584 585 brelse(node->bh); 586 node->bh = NULL; 587 node->el = NULL; 588 } 589 590 /* 591 * Tree depth may change during truncate, or insert. If we're 592 * keeping the root extent list, then make sure that our path 593 * structure reflects the proper depth. 594 */ 595 if (keep_root) 596 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 597 else 598 path_root_access(path) = NULL; 599 600 path->p_tree_depth = depth; 601 } 602 603 void ocfs2_free_path(struct ocfs2_path *path) 604 { 605 if (path) { 606 ocfs2_reinit_path(path, 0); 607 kfree(path); 608 } 609 } 610 611 /* 612 * All the elements of src into dest. After this call, src could be freed 613 * without affecting dest. 614 * 615 * Both paths should have the same root. Any non-root elements of dest 616 * will be freed. 617 */ 618 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 619 { 620 int i; 621 622 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 623 BUG_ON(path_root_el(dest) != path_root_el(src)); 624 BUG_ON(path_root_access(dest) != path_root_access(src)); 625 626 ocfs2_reinit_path(dest, 1); 627 628 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 629 dest->p_node[i].bh = src->p_node[i].bh; 630 dest->p_node[i].el = src->p_node[i].el; 631 632 if (dest->p_node[i].bh) 633 get_bh(dest->p_node[i].bh); 634 } 635 } 636 637 /* 638 * Make the *dest path the same as src and re-initialize src path to 639 * have a root only. 640 */ 641 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 642 { 643 int i; 644 645 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 646 BUG_ON(path_root_access(dest) != path_root_access(src)); 647 648 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 649 brelse(dest->p_node[i].bh); 650 651 dest->p_node[i].bh = src->p_node[i].bh; 652 dest->p_node[i].el = src->p_node[i].el; 653 654 src->p_node[i].bh = NULL; 655 src->p_node[i].el = NULL; 656 } 657 } 658 659 /* 660 * Insert an extent block at given index. 661 * 662 * This will not take an additional reference on eb_bh. 663 */ 664 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 665 struct buffer_head *eb_bh) 666 { 667 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 668 669 /* 670 * Right now, no root bh is an extent block, so this helps 671 * catch code errors with dinode trees. The assertion can be 672 * safely removed if we ever need to insert extent block 673 * structures at the root. 674 */ 675 BUG_ON(index == 0); 676 677 path->p_node[index].bh = eb_bh; 678 path->p_node[index].el = &eb->h_list; 679 } 680 681 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 682 struct ocfs2_extent_list *root_el, 683 ocfs2_journal_access_func access) 684 { 685 struct ocfs2_path *path; 686 687 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 688 689 path = kzalloc(sizeof(*path), GFP_NOFS); 690 if (path) { 691 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 692 get_bh(root_bh); 693 path_root_bh(path) = root_bh; 694 path_root_el(path) = root_el; 695 path_root_access(path) = access; 696 } 697 698 return path; 699 } 700 701 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 702 { 703 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 704 path_root_access(path)); 705 } 706 707 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 708 { 709 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 710 et->et_root_journal_access); 711 } 712 713 /* 714 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 715 * otherwise it's the root_access function. 716 * 717 * I don't like the way this function's name looks next to 718 * ocfs2_journal_access_path(), but I don't have a better one. 719 */ 720 int ocfs2_path_bh_journal_access(handle_t *handle, 721 struct ocfs2_caching_info *ci, 722 struct ocfs2_path *path, 723 int idx) 724 { 725 ocfs2_journal_access_func access = path_root_access(path); 726 727 if (!access) 728 access = ocfs2_journal_access; 729 730 if (idx) 731 access = ocfs2_journal_access_eb; 732 733 return access(handle, ci, path->p_node[idx].bh, 734 OCFS2_JOURNAL_ACCESS_WRITE); 735 } 736 737 /* 738 * Convenience function to journal all components in a path. 739 */ 740 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 741 handle_t *handle, 742 struct ocfs2_path *path) 743 { 744 int i, ret = 0; 745 746 if (!path) 747 goto out; 748 749 for(i = 0; i < path_num_items(path); i++) { 750 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 751 if (ret < 0) { 752 mlog_errno(ret); 753 goto out; 754 } 755 } 756 757 out: 758 return ret; 759 } 760 761 /* 762 * Return the index of the extent record which contains cluster #v_cluster. 763 * -1 is returned if it was not found. 764 * 765 * Should work fine on interior and exterior nodes. 766 */ 767 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 768 { 769 int ret = -1; 770 int i; 771 struct ocfs2_extent_rec *rec; 772 u32 rec_end, rec_start, clusters; 773 774 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 775 rec = &el->l_recs[i]; 776 777 rec_start = le32_to_cpu(rec->e_cpos); 778 clusters = ocfs2_rec_clusters(el, rec); 779 780 rec_end = rec_start + clusters; 781 782 if (v_cluster >= rec_start && v_cluster < rec_end) { 783 ret = i; 784 break; 785 } 786 } 787 788 return ret; 789 } 790 791 /* 792 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 793 * ocfs2_extent_rec_contig only work properly against leaf nodes! 794 */ 795 static int ocfs2_block_extent_contig(struct super_block *sb, 796 struct ocfs2_extent_rec *ext, 797 u64 blkno) 798 { 799 u64 blk_end = le64_to_cpu(ext->e_blkno); 800 801 blk_end += ocfs2_clusters_to_blocks(sb, 802 le16_to_cpu(ext->e_leaf_clusters)); 803 804 return blkno == blk_end; 805 } 806 807 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 808 struct ocfs2_extent_rec *right) 809 { 810 u32 left_range; 811 812 left_range = le32_to_cpu(left->e_cpos) + 813 le16_to_cpu(left->e_leaf_clusters); 814 815 return (left_range == le32_to_cpu(right->e_cpos)); 816 } 817 818 static enum ocfs2_contig_type 819 ocfs2_extent_rec_contig(struct super_block *sb, 820 struct ocfs2_extent_rec *ext, 821 struct ocfs2_extent_rec *insert_rec) 822 { 823 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 824 825 /* 826 * Refuse to coalesce extent records with different flag 827 * fields - we don't want to mix unwritten extents with user 828 * data. 829 */ 830 if (ext->e_flags != insert_rec->e_flags) 831 return CONTIG_NONE; 832 833 if (ocfs2_extents_adjacent(ext, insert_rec) && 834 ocfs2_block_extent_contig(sb, ext, blkno)) 835 return CONTIG_RIGHT; 836 837 blkno = le64_to_cpu(ext->e_blkno); 838 if (ocfs2_extents_adjacent(insert_rec, ext) && 839 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 840 return CONTIG_LEFT; 841 842 return CONTIG_NONE; 843 } 844 845 /* 846 * NOTE: We can have pretty much any combination of contiguousness and 847 * appending. 848 * 849 * The usefulness of APPEND_TAIL is more in that it lets us know that 850 * we'll have to update the path to that leaf. 851 */ 852 enum ocfs2_append_type { 853 APPEND_NONE = 0, 854 APPEND_TAIL, 855 }; 856 857 enum ocfs2_split_type { 858 SPLIT_NONE = 0, 859 SPLIT_LEFT, 860 SPLIT_RIGHT, 861 }; 862 863 struct ocfs2_insert_type { 864 enum ocfs2_split_type ins_split; 865 enum ocfs2_append_type ins_appending; 866 enum ocfs2_contig_type ins_contig; 867 int ins_contig_index; 868 int ins_tree_depth; 869 }; 870 871 struct ocfs2_merge_ctxt { 872 enum ocfs2_contig_type c_contig_type; 873 int c_has_empty_extent; 874 int c_split_covers_rec; 875 }; 876 877 static int ocfs2_validate_extent_block(struct super_block *sb, 878 struct buffer_head *bh) 879 { 880 int rc; 881 struct ocfs2_extent_block *eb = 882 (struct ocfs2_extent_block *)bh->b_data; 883 884 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 885 886 BUG_ON(!buffer_uptodate(bh)); 887 888 /* 889 * If the ecc fails, we return the error but otherwise 890 * leave the filesystem running. We know any error is 891 * local to this block. 892 */ 893 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 894 if (rc) { 895 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 896 (unsigned long long)bh->b_blocknr); 897 return rc; 898 } 899 900 /* 901 * Errors after here are fatal. 902 */ 903 904 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 905 rc = ocfs2_error(sb, 906 "Extent block #%llu has bad signature %.*s\n", 907 (unsigned long long)bh->b_blocknr, 7, 908 eb->h_signature); 909 goto bail; 910 } 911 912 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 913 rc = ocfs2_error(sb, 914 "Extent block #%llu has an invalid h_blkno of %llu\n", 915 (unsigned long long)bh->b_blocknr, 916 (unsigned long long)le64_to_cpu(eb->h_blkno)); 917 goto bail; 918 } 919 920 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 921 rc = ocfs2_error(sb, 922 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 923 (unsigned long long)bh->b_blocknr, 924 le32_to_cpu(eb->h_fs_generation)); 925 bail: 926 return rc; 927 } 928 929 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 930 struct buffer_head **bh) 931 { 932 int rc; 933 struct buffer_head *tmp = *bh; 934 935 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 936 ocfs2_validate_extent_block); 937 938 /* If ocfs2_read_block() got us a new bh, pass it up. */ 939 if (!rc && !*bh) 940 *bh = tmp; 941 942 return rc; 943 } 944 945 946 /* 947 * How many free extents have we got before we need more meta data? 948 */ 949 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 950 { 951 int retval; 952 struct ocfs2_extent_list *el = NULL; 953 struct ocfs2_extent_block *eb; 954 struct buffer_head *eb_bh = NULL; 955 u64 last_eb_blk = 0; 956 957 el = et->et_root_el; 958 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 959 960 if (last_eb_blk) { 961 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 962 &eb_bh); 963 if (retval < 0) { 964 mlog_errno(retval); 965 goto bail; 966 } 967 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 968 el = &eb->h_list; 969 } 970 971 if (el->l_tree_depth != 0) { 972 retval = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 973 "Owner %llu has leaf extent block %llu with an invalid l_tree_depth of %u\n", 974 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 975 (unsigned long long)last_eb_blk, 976 le16_to_cpu(el->l_tree_depth)); 977 goto bail; 978 } 979 980 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 981 bail: 982 brelse(eb_bh); 983 984 trace_ocfs2_num_free_extents(retval); 985 return retval; 986 } 987 988 /* expects array to already be allocated 989 * 990 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 991 * l_count for you 992 */ 993 static int ocfs2_create_new_meta_bhs(handle_t *handle, 994 struct ocfs2_extent_tree *et, 995 int wanted, 996 struct ocfs2_alloc_context *meta_ac, 997 struct buffer_head *bhs[]) 998 { 999 int count, status, i; 1000 u16 suballoc_bit_start; 1001 u32 num_got; 1002 u64 suballoc_loc, first_blkno; 1003 struct ocfs2_super *osb = 1004 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1005 struct ocfs2_extent_block *eb; 1006 1007 count = 0; 1008 while (count < wanted) { 1009 status = ocfs2_claim_metadata(handle, 1010 meta_ac, 1011 wanted - count, 1012 &suballoc_loc, 1013 &suballoc_bit_start, 1014 &num_got, 1015 &first_blkno); 1016 if (status < 0) { 1017 mlog_errno(status); 1018 goto bail; 1019 } 1020 1021 for(i = count; i < (num_got + count); i++) { 1022 bhs[i] = sb_getblk(osb->sb, first_blkno); 1023 if (bhs[i] == NULL) { 1024 status = -ENOMEM; 1025 mlog_errno(status); 1026 goto bail; 1027 } 1028 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1029 1030 status = ocfs2_journal_access_eb(handle, et->et_ci, 1031 bhs[i], 1032 OCFS2_JOURNAL_ACCESS_CREATE); 1033 if (status < 0) { 1034 mlog_errno(status); 1035 goto bail; 1036 } 1037 1038 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1039 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1040 /* Ok, setup the minimal stuff here. */ 1041 strscpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1042 eb->h_blkno = cpu_to_le64(first_blkno); 1043 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1044 eb->h_suballoc_slot = 1045 cpu_to_le16(meta_ac->ac_alloc_slot); 1046 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1047 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1048 eb->h_list.l_count = 1049 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1050 1051 suballoc_bit_start++; 1052 first_blkno++; 1053 1054 /* We'll also be dirtied by the caller, so 1055 * this isn't absolutely necessary. */ 1056 ocfs2_journal_dirty(handle, bhs[i]); 1057 } 1058 1059 count += num_got; 1060 } 1061 1062 status = 0; 1063 bail: 1064 if (status < 0) { 1065 for(i = 0; i < wanted; i++) { 1066 brelse(bhs[i]); 1067 bhs[i] = NULL; 1068 } 1069 } 1070 return status; 1071 } 1072 1073 /* 1074 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1075 * 1076 * Returns the sum of the rightmost extent rec logical offset and 1077 * cluster count. 1078 * 1079 * ocfs2_add_branch() uses this to determine what logical cluster 1080 * value should be populated into the leftmost new branch records. 1081 * 1082 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1083 * value for the new topmost tree record. 1084 */ 1085 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1086 { 1087 int i; 1088 1089 i = le16_to_cpu(el->l_next_free_rec) - 1; 1090 1091 return le32_to_cpu(el->l_recs[i].e_cpos) + 1092 ocfs2_rec_clusters(el, &el->l_recs[i]); 1093 } 1094 1095 /* 1096 * Change range of the branches in the right most path according to the leaf 1097 * extent block's rightmost record. 1098 */ 1099 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1100 struct ocfs2_extent_tree *et) 1101 { 1102 int status; 1103 struct ocfs2_path *path = NULL; 1104 struct ocfs2_extent_list *el; 1105 struct ocfs2_extent_rec *rec; 1106 1107 path = ocfs2_new_path_from_et(et); 1108 if (!path) { 1109 status = -ENOMEM; 1110 return status; 1111 } 1112 1113 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1114 if (status < 0) { 1115 mlog_errno(status); 1116 goto out; 1117 } 1118 1119 status = ocfs2_extend_trans(handle, path_num_items(path)); 1120 if (status < 0) { 1121 mlog_errno(status); 1122 goto out; 1123 } 1124 1125 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1126 if (status < 0) { 1127 mlog_errno(status); 1128 goto out; 1129 } 1130 1131 el = path_leaf_el(path); 1132 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1133 1134 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1135 1136 out: 1137 ocfs2_free_path(path); 1138 return status; 1139 } 1140 1141 /* 1142 * Add an entire tree branch to our inode. eb_bh is the extent block 1143 * to start at, if we don't want to start the branch at the root 1144 * structure. 1145 * 1146 * last_eb_bh is required as we have to update it's next_leaf pointer 1147 * for the new last extent block. 1148 * 1149 * the new branch will be 'empty' in the sense that every block will 1150 * contain a single record with cluster count == 0. 1151 */ 1152 static int ocfs2_add_branch(handle_t *handle, 1153 struct ocfs2_extent_tree *et, 1154 struct buffer_head *eb_bh, 1155 struct buffer_head **last_eb_bh, 1156 struct ocfs2_alloc_context *meta_ac) 1157 { 1158 int status, new_blocks, i, block_given = 0; 1159 u64 next_blkno, new_last_eb_blk; 1160 struct buffer_head *bh; 1161 struct buffer_head **new_eb_bhs = NULL; 1162 struct ocfs2_extent_block *eb; 1163 struct ocfs2_extent_list *eb_el; 1164 struct ocfs2_extent_list *el; 1165 u32 new_cpos, root_end; 1166 1167 BUG_ON(!last_eb_bh || !*last_eb_bh); 1168 1169 if (eb_bh) { 1170 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1171 el = &eb->h_list; 1172 } else 1173 el = et->et_root_el; 1174 1175 /* we never add a branch to a leaf. */ 1176 BUG_ON(!el->l_tree_depth); 1177 1178 new_blocks = le16_to_cpu(el->l_tree_depth); 1179 1180 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1181 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1182 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1183 1184 /* 1185 * If there is a gap before the root end and the real end 1186 * of the rightmost leaf block, we need to remove the gap 1187 * between new_cpos and root_end first so that the tree 1188 * is consistent after we add a new branch(it will start 1189 * from new_cpos). 1190 */ 1191 if (root_end > new_cpos) { 1192 trace_ocfs2_adjust_rightmost_branch( 1193 (unsigned long long) 1194 ocfs2_metadata_cache_owner(et->et_ci), 1195 root_end, new_cpos); 1196 1197 status = ocfs2_adjust_rightmost_branch(handle, et); 1198 if (status) { 1199 mlog_errno(status); 1200 goto bail; 1201 } 1202 } 1203 1204 /* allocate the number of new eb blocks we need */ 1205 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1206 GFP_KERNEL); 1207 if (!new_eb_bhs) { 1208 status = -ENOMEM; 1209 mlog_errno(status); 1210 goto bail; 1211 } 1212 1213 /* Firstyly, try to reuse dealloc since we have already estimated how 1214 * many extent blocks we may use. 1215 */ 1216 if (!ocfs2_is_dealloc_empty(et)) { 1217 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1218 new_eb_bhs, new_blocks, 1219 &block_given); 1220 if (status < 0) { 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 } 1225 1226 BUG_ON(block_given > new_blocks); 1227 1228 if (block_given < new_blocks) { 1229 BUG_ON(!meta_ac); 1230 status = ocfs2_create_new_meta_bhs(handle, et, 1231 new_blocks - block_given, 1232 meta_ac, 1233 &new_eb_bhs[block_given]); 1234 if (status < 0) { 1235 mlog_errno(status); 1236 goto bail; 1237 } 1238 } 1239 1240 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1241 * linked with the rest of the tree. 1242 * conversely, new_eb_bhs[0] is the new bottommost leaf. 1243 * 1244 * when we leave the loop, new_last_eb_blk will point to the 1245 * newest leaf, and next_blkno will point to the topmost extent 1246 * block. */ 1247 next_blkno = new_last_eb_blk = 0; 1248 for(i = 0; i < new_blocks; i++) { 1249 bh = new_eb_bhs[i]; 1250 eb = (struct ocfs2_extent_block *) bh->b_data; 1251 /* ocfs2_create_new_meta_bhs() should create it right! */ 1252 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1253 eb_el = &eb->h_list; 1254 1255 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1256 OCFS2_JOURNAL_ACCESS_CREATE); 1257 if (status < 0) { 1258 mlog_errno(status); 1259 goto bail; 1260 } 1261 1262 eb->h_next_leaf_blk = 0; 1263 eb_el->l_tree_depth = cpu_to_le16(i); 1264 eb_el->l_next_free_rec = cpu_to_le16(1); 1265 /* 1266 * This actually counts as an empty extent as 1267 * c_clusters == 0 1268 */ 1269 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1270 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1271 /* 1272 * eb_el isn't always an interior node, but even leaf 1273 * nodes want a zero'd flags and reserved field so 1274 * this gets the whole 32 bits regardless of use. 1275 */ 1276 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1277 if (!eb_el->l_tree_depth) 1278 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1279 1280 ocfs2_journal_dirty(handle, bh); 1281 next_blkno = le64_to_cpu(eb->h_blkno); 1282 } 1283 1284 /* This is a bit hairy. We want to update up to three blocks 1285 * here without leaving any of them in an inconsistent state 1286 * in case of error. We don't have to worry about 1287 * journal_dirty erroring as it won't unless we've aborted the 1288 * handle (in which case we would never be here) so reserving 1289 * the write with journal_access is all we need to do. */ 1290 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1291 OCFS2_JOURNAL_ACCESS_WRITE); 1292 if (status < 0) { 1293 mlog_errno(status); 1294 goto bail; 1295 } 1296 status = ocfs2_et_root_journal_access(handle, et, 1297 OCFS2_JOURNAL_ACCESS_WRITE); 1298 if (status < 0) { 1299 mlog_errno(status); 1300 goto bail; 1301 } 1302 if (eb_bh) { 1303 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1304 OCFS2_JOURNAL_ACCESS_WRITE); 1305 if (status < 0) { 1306 mlog_errno(status); 1307 goto bail; 1308 } 1309 } 1310 1311 /* Link the new branch into the rest of the tree (el will 1312 * either be on the root_bh, or the extent block passed in. */ 1313 i = le16_to_cpu(el->l_next_free_rec); 1314 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1315 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1316 el->l_recs[i].e_int_clusters = 0; 1317 le16_add_cpu(&el->l_next_free_rec, 1); 1318 1319 /* fe needs a new last extent block pointer, as does the 1320 * next_leaf on the previously last-extent-block. */ 1321 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1322 1323 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1324 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1325 1326 ocfs2_journal_dirty(handle, *last_eb_bh); 1327 ocfs2_journal_dirty(handle, et->et_root_bh); 1328 if (eb_bh) 1329 ocfs2_journal_dirty(handle, eb_bh); 1330 1331 /* 1332 * Some callers want to track the rightmost leaf so pass it 1333 * back here. 1334 */ 1335 brelse(*last_eb_bh); 1336 get_bh(new_eb_bhs[0]); 1337 *last_eb_bh = new_eb_bhs[0]; 1338 1339 status = 0; 1340 bail: 1341 if (new_eb_bhs) { 1342 for (i = 0; i < new_blocks; i++) 1343 brelse(new_eb_bhs[i]); 1344 kfree(new_eb_bhs); 1345 } 1346 1347 return status; 1348 } 1349 1350 /* 1351 * adds another level to the allocation tree. 1352 * returns back the new extent block so you can add a branch to it 1353 * after this call. 1354 */ 1355 static int ocfs2_shift_tree_depth(handle_t *handle, 1356 struct ocfs2_extent_tree *et, 1357 struct ocfs2_alloc_context *meta_ac, 1358 struct buffer_head **ret_new_eb_bh) 1359 { 1360 int status, i, block_given = 0; 1361 u32 new_clusters; 1362 struct buffer_head *new_eb_bh = NULL; 1363 struct ocfs2_extent_block *eb; 1364 struct ocfs2_extent_list *root_el; 1365 struct ocfs2_extent_list *eb_el; 1366 1367 if (!ocfs2_is_dealloc_empty(et)) { 1368 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1369 &new_eb_bh, 1, 1370 &block_given); 1371 } else if (meta_ac) { 1372 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1373 &new_eb_bh); 1374 1375 } else { 1376 BUG(); 1377 } 1378 1379 if (status < 0) { 1380 mlog_errno(status); 1381 goto bail; 1382 } 1383 1384 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1385 /* ocfs2_create_new_meta_bhs() should create it right! */ 1386 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1387 1388 eb_el = &eb->h_list; 1389 root_el = et->et_root_el; 1390 1391 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1392 OCFS2_JOURNAL_ACCESS_CREATE); 1393 if (status < 0) { 1394 mlog_errno(status); 1395 goto bail; 1396 } 1397 1398 /* copy the root extent list data into the new extent block */ 1399 eb_el->l_tree_depth = root_el->l_tree_depth; 1400 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1401 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1402 eb_el->l_recs[i] = root_el->l_recs[i]; 1403 1404 ocfs2_journal_dirty(handle, new_eb_bh); 1405 1406 status = ocfs2_et_root_journal_access(handle, et, 1407 OCFS2_JOURNAL_ACCESS_WRITE); 1408 if (status < 0) { 1409 mlog_errno(status); 1410 goto bail; 1411 } 1412 1413 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1414 1415 /* update root_bh now */ 1416 le16_add_cpu(&root_el->l_tree_depth, 1); 1417 root_el->l_recs[0].e_cpos = 0; 1418 root_el->l_recs[0].e_blkno = eb->h_blkno; 1419 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1420 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1421 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1422 root_el->l_next_free_rec = cpu_to_le16(1); 1423 1424 /* If this is our 1st tree depth shift, then last_eb_blk 1425 * becomes the allocated extent block */ 1426 if (root_el->l_tree_depth == cpu_to_le16(1)) 1427 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1428 1429 ocfs2_journal_dirty(handle, et->et_root_bh); 1430 1431 *ret_new_eb_bh = new_eb_bh; 1432 new_eb_bh = NULL; 1433 status = 0; 1434 bail: 1435 brelse(new_eb_bh); 1436 1437 return status; 1438 } 1439 1440 /* 1441 * Should only be called when there is no space left in any of the 1442 * leaf nodes. What we want to do is find the lowest tree depth 1443 * non-leaf extent block with room for new records. There are three 1444 * valid results of this search: 1445 * 1446 * 1) a lowest extent block is found, then we pass it back in 1447 * *lowest_eb_bh and return '0' 1448 * 1449 * 2) the search fails to find anything, but the root_el has room. We 1450 * pass NULL back in *lowest_eb_bh, but still return '0' 1451 * 1452 * 3) the search fails to find anything AND the root_el is full, in 1453 * which case we return > 0 1454 * 1455 * return status < 0 indicates an error. 1456 */ 1457 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1458 struct buffer_head **target_bh) 1459 { 1460 int status = 0, i; 1461 u64 blkno; 1462 struct ocfs2_extent_block *eb; 1463 struct ocfs2_extent_list *el; 1464 struct buffer_head *bh = NULL; 1465 struct buffer_head *lowest_bh = NULL; 1466 1467 *target_bh = NULL; 1468 1469 el = et->et_root_el; 1470 1471 while(le16_to_cpu(el->l_tree_depth) > 1) { 1472 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1473 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1474 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1475 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1476 goto bail; 1477 } 1478 i = le16_to_cpu(el->l_next_free_rec) - 1; 1479 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1480 if (!blkno) { 1481 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1482 "Owner %llu has extent list where extent # %d has no physical block start\n", 1483 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1484 goto bail; 1485 } 1486 1487 brelse(bh); 1488 bh = NULL; 1489 1490 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1491 if (status < 0) { 1492 mlog_errno(status); 1493 goto bail; 1494 } 1495 1496 eb = (struct ocfs2_extent_block *) bh->b_data; 1497 el = &eb->h_list; 1498 1499 if (le16_to_cpu(el->l_next_free_rec) < 1500 le16_to_cpu(el->l_count)) { 1501 brelse(lowest_bh); 1502 lowest_bh = bh; 1503 get_bh(lowest_bh); 1504 } 1505 } 1506 1507 /* If we didn't find one and the fe doesn't have any room, 1508 * then return '1' */ 1509 el = et->et_root_el; 1510 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1511 status = 1; 1512 1513 *target_bh = lowest_bh; 1514 bail: 1515 brelse(bh); 1516 1517 return status; 1518 } 1519 1520 /* 1521 * Grow a b-tree so that it has more records. 1522 * 1523 * We might shift the tree depth in which case existing paths should 1524 * be considered invalid. 1525 * 1526 * Tree depth after the grow is returned via *final_depth. 1527 * 1528 * *last_eb_bh will be updated by ocfs2_add_branch(). 1529 */ 1530 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1531 int *final_depth, struct buffer_head **last_eb_bh, 1532 struct ocfs2_alloc_context *meta_ac) 1533 { 1534 int ret, shift; 1535 struct ocfs2_extent_list *el = et->et_root_el; 1536 int depth = le16_to_cpu(el->l_tree_depth); 1537 struct buffer_head *bh = NULL; 1538 1539 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1540 1541 shift = ocfs2_find_branch_target(et, &bh); 1542 if (shift < 0) { 1543 ret = shift; 1544 mlog_errno(ret); 1545 goto out; 1546 } 1547 1548 /* We traveled all the way to the bottom of the allocation tree 1549 * and didn't find room for any more extents - we need to add 1550 * another tree level */ 1551 if (shift) { 1552 BUG_ON(bh); 1553 trace_ocfs2_grow_tree( 1554 (unsigned long long) 1555 ocfs2_metadata_cache_owner(et->et_ci), 1556 depth); 1557 1558 /* ocfs2_shift_tree_depth will return us a buffer with 1559 * the new extent block (so we can pass that to 1560 * ocfs2_add_branch). */ 1561 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1562 if (ret < 0) { 1563 mlog_errno(ret); 1564 goto out; 1565 } 1566 depth++; 1567 if (depth == 1) { 1568 /* 1569 * Special case: we have room now if we shifted from 1570 * tree_depth 0, so no more work needs to be done. 1571 * 1572 * We won't be calling add_branch, so pass 1573 * back *last_eb_bh as the new leaf. At depth 1574 * zero, it should always be null so there's 1575 * no reason to brelse. 1576 */ 1577 BUG_ON(*last_eb_bh); 1578 get_bh(bh); 1579 *last_eb_bh = bh; 1580 goto out; 1581 } 1582 } 1583 1584 /* call ocfs2_add_branch to add the final part of the tree with 1585 * the new data. */ 1586 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1587 meta_ac); 1588 if (ret < 0) 1589 mlog_errno(ret); 1590 1591 out: 1592 if (final_depth) 1593 *final_depth = depth; 1594 brelse(bh); 1595 return ret; 1596 } 1597 1598 /* 1599 * This function will discard the rightmost extent record. 1600 */ 1601 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1602 { 1603 int next_free = le16_to_cpu(el->l_next_free_rec); 1604 int count = le16_to_cpu(el->l_count); 1605 unsigned int num_bytes; 1606 1607 BUG_ON(!next_free); 1608 /* This will cause us to go off the end of our extent list. */ 1609 BUG_ON(next_free >= count); 1610 1611 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1612 1613 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1614 } 1615 1616 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1617 struct ocfs2_extent_rec *insert_rec) 1618 { 1619 int i, insert_index, next_free, has_empty, num_bytes; 1620 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1621 struct ocfs2_extent_rec *rec; 1622 1623 next_free = le16_to_cpu(el->l_next_free_rec); 1624 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1625 1626 BUG_ON(!next_free); 1627 1628 /* The tree code before us didn't allow enough room in the leaf. */ 1629 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1630 1631 /* 1632 * The easiest way to approach this is to just remove the 1633 * empty extent and temporarily decrement next_free. 1634 */ 1635 if (has_empty) { 1636 /* 1637 * If next_free was 1 (only an empty extent), this 1638 * loop won't execute, which is fine. We still want 1639 * the decrement above to happen. 1640 */ 1641 for(i = 0; i < (next_free - 1); i++) 1642 el->l_recs[i] = el->l_recs[i+1]; 1643 1644 next_free--; 1645 } 1646 1647 /* 1648 * Figure out what the new record index should be. 1649 */ 1650 for(i = 0; i < next_free; i++) { 1651 rec = &el->l_recs[i]; 1652 1653 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1654 break; 1655 } 1656 insert_index = i; 1657 1658 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1659 has_empty, next_free, 1660 le16_to_cpu(el->l_count)); 1661 1662 BUG_ON(insert_index < 0); 1663 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1664 BUG_ON(insert_index > next_free); 1665 1666 /* 1667 * No need to memmove if we're just adding to the tail. 1668 */ 1669 if (insert_index != next_free) { 1670 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1671 1672 num_bytes = next_free - insert_index; 1673 num_bytes *= sizeof(struct ocfs2_extent_rec); 1674 memmove(&el->l_recs[insert_index + 1], 1675 &el->l_recs[insert_index], 1676 num_bytes); 1677 } 1678 1679 /* 1680 * Either we had an empty extent, and need to re-increment or 1681 * there was no empty extent on a non full rightmost leaf node, 1682 * in which case we still need to increment. 1683 */ 1684 next_free++; 1685 el->l_next_free_rec = cpu_to_le16(next_free); 1686 /* 1687 * Make sure none of the math above just messed up our tree. 1688 */ 1689 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1690 1691 el->l_recs[insert_index] = *insert_rec; 1692 1693 } 1694 1695 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1696 { 1697 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1698 1699 BUG_ON(num_recs == 0); 1700 1701 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1702 num_recs--; 1703 size = num_recs * sizeof(struct ocfs2_extent_rec); 1704 memmove(&el->l_recs[0], &el->l_recs[1], size); 1705 memset(&el->l_recs[num_recs], 0, 1706 sizeof(struct ocfs2_extent_rec)); 1707 el->l_next_free_rec = cpu_to_le16(num_recs); 1708 } 1709 } 1710 1711 /* 1712 * Create an empty extent record . 1713 * 1714 * l_next_free_rec may be updated. 1715 * 1716 * If an empty extent already exists do nothing. 1717 */ 1718 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1719 { 1720 int next_free = le16_to_cpu(el->l_next_free_rec); 1721 1722 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1723 1724 if (next_free == 0) 1725 goto set_and_inc; 1726 1727 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1728 return; 1729 1730 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1731 "Asked to create an empty extent in a full list:\n" 1732 "count = %u, tree depth = %u", 1733 le16_to_cpu(el->l_count), 1734 le16_to_cpu(el->l_tree_depth)); 1735 1736 ocfs2_shift_records_right(el); 1737 1738 set_and_inc: 1739 le16_add_cpu(&el->l_next_free_rec, 1); 1740 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1741 } 1742 1743 /* 1744 * For a rotation which involves two leaf nodes, the "root node" is 1745 * the lowest level tree node which contains a path to both leafs. This 1746 * resulting set of information can be used to form a complete "subtree" 1747 * 1748 * This function is passed two full paths from the dinode down to a 1749 * pair of adjacent leaves. It's task is to figure out which path 1750 * index contains the subtree root - this can be the root index itself 1751 * in a worst-case rotation. 1752 * 1753 * The array index of the subtree root is passed back. 1754 */ 1755 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1756 struct ocfs2_path *left, 1757 struct ocfs2_path *right) 1758 { 1759 int i = 0; 1760 1761 /* 1762 * Check that the caller passed in two paths from the same tree. 1763 */ 1764 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1765 1766 do { 1767 i++; 1768 1769 /* 1770 * The caller didn't pass two adjacent paths. 1771 */ 1772 mlog_bug_on_msg(i > left->p_tree_depth, 1773 "Owner %llu, left depth %u, right depth %u\n" 1774 "left leaf blk %llu, right leaf blk %llu\n", 1775 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1776 left->p_tree_depth, right->p_tree_depth, 1777 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1778 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1779 } while (left->p_node[i].bh->b_blocknr == 1780 right->p_node[i].bh->b_blocknr); 1781 1782 return i - 1; 1783 } 1784 1785 typedef void (path_insert_t)(void *, struct buffer_head *); 1786 1787 /* 1788 * Traverse a btree path in search of cpos, starting at root_el. 1789 * 1790 * This code can be called with a cpos larger than the tree, in which 1791 * case it will return the rightmost path. 1792 */ 1793 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1794 struct ocfs2_extent_list *root_el, u32 cpos, 1795 path_insert_t *func, void *data) 1796 { 1797 int i, ret = 0; 1798 u32 range; 1799 u64 blkno; 1800 struct buffer_head *bh = NULL; 1801 struct ocfs2_extent_block *eb; 1802 struct ocfs2_extent_list *el; 1803 struct ocfs2_extent_rec *rec; 1804 1805 el = root_el; 1806 while (el->l_tree_depth) { 1807 if (unlikely(le16_to_cpu(el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH)) { 1808 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1809 "Owner %llu has invalid tree depth %u in extent list\n", 1810 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1811 le16_to_cpu(el->l_tree_depth)); 1812 ret = -EROFS; 1813 goto out; 1814 } 1815 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1817 "Owner %llu has empty extent list at depth %u\n", 1818 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1819 le16_to_cpu(el->l_tree_depth)); 1820 ret = -EROFS; 1821 goto out; 1822 1823 } 1824 1825 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1826 rec = &el->l_recs[i]; 1827 1828 /* 1829 * In the case that cpos is off the allocation 1830 * tree, this should just wind up returning the 1831 * rightmost record. 1832 */ 1833 range = le32_to_cpu(rec->e_cpos) + 1834 ocfs2_rec_clusters(el, rec); 1835 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1836 break; 1837 } 1838 1839 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1840 if (blkno == 0) { 1841 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1842 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1843 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1844 le16_to_cpu(el->l_tree_depth), i); 1845 ret = -EROFS; 1846 goto out; 1847 } 1848 1849 brelse(bh); 1850 bh = NULL; 1851 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1852 if (ret) { 1853 mlog_errno(ret); 1854 goto out; 1855 } 1856 1857 eb = (struct ocfs2_extent_block *) bh->b_data; 1858 el = &eb->h_list; 1859 1860 if (le16_to_cpu(el->l_next_free_rec) > 1861 le16_to_cpu(el->l_count)) { 1862 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1863 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1864 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1865 (unsigned long long)bh->b_blocknr, 1866 le16_to_cpu(el->l_next_free_rec), 1867 le16_to_cpu(el->l_count)); 1868 ret = -EROFS; 1869 goto out; 1870 } 1871 1872 if (func) 1873 func(data, bh); 1874 } 1875 1876 out: 1877 /* 1878 * Catch any trailing bh that the loop didn't handle. 1879 */ 1880 brelse(bh); 1881 1882 return ret; 1883 } 1884 1885 /* 1886 * Given an initialized path (that is, it has a valid root extent 1887 * list), this function will traverse the btree in search of the path 1888 * which would contain cpos. 1889 * 1890 * The path traveled is recorded in the path structure. 1891 * 1892 * Note that this will not do any comparisons on leaf node extent 1893 * records, so it will work fine in the case that we just added a tree 1894 * branch. 1895 */ 1896 struct find_path_data { 1897 int index; 1898 struct ocfs2_path *path; 1899 }; 1900 static void find_path_ins(void *data, struct buffer_head *bh) 1901 { 1902 struct find_path_data *fp = data; 1903 1904 get_bh(bh); 1905 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1906 fp->index++; 1907 } 1908 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1909 struct ocfs2_path *path, u32 cpos) 1910 { 1911 struct find_path_data data; 1912 1913 data.index = 1; 1914 data.path = path; 1915 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1916 find_path_ins, &data); 1917 } 1918 1919 static void find_leaf_ins(void *data, struct buffer_head *bh) 1920 { 1921 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1922 struct ocfs2_extent_list *el = &eb->h_list; 1923 struct buffer_head **ret = data; 1924 1925 /* We want to retain only the leaf block. */ 1926 if (le16_to_cpu(el->l_tree_depth) == 0) { 1927 get_bh(bh); 1928 *ret = bh; 1929 } 1930 } 1931 /* 1932 * Find the leaf block in the tree which would contain cpos. No 1933 * checking of the actual leaf is done. 1934 * 1935 * Some paths want to call this instead of allocating a path structure 1936 * and calling ocfs2_find_path(). 1937 * 1938 * This function doesn't handle non btree extent lists. 1939 */ 1940 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1941 struct ocfs2_extent_list *root_el, u32 cpos, 1942 struct buffer_head **leaf_bh) 1943 { 1944 int ret; 1945 struct buffer_head *bh = NULL; 1946 1947 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1948 if (ret) { 1949 mlog_errno(ret); 1950 goto out; 1951 } 1952 1953 *leaf_bh = bh; 1954 out: 1955 return ret; 1956 } 1957 1958 /* 1959 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1960 * 1961 * Basically, we've moved stuff around at the bottom of the tree and 1962 * we need to fix up the extent records above the changes to reflect 1963 * the new changes. 1964 * 1965 * left_rec: the record on the left. 1966 * right_rec: the record to the right of left_rec 1967 * right_child_el: is the child list pointed to by right_rec 1968 * 1969 * By definition, this only works on interior nodes. 1970 */ 1971 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1972 struct ocfs2_extent_rec *right_rec, 1973 struct ocfs2_extent_list *right_child_el) 1974 { 1975 u32 left_clusters, right_end; 1976 1977 /* 1978 * Interior nodes never have holes. Their cpos is the cpos of 1979 * the leftmost record in their child list. Their cluster 1980 * count covers the full theoretical range of their child list 1981 * - the range between their cpos and the cpos of the record 1982 * immediately to their right. 1983 */ 1984 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1985 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1986 BUG_ON(right_child_el->l_tree_depth); 1987 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1988 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1989 } 1990 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1991 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1992 1993 /* 1994 * Calculate the rightmost cluster count boundary before 1995 * moving cpos - we will need to adjust clusters after 1996 * updating e_cpos to keep the same highest cluster count. 1997 */ 1998 right_end = le32_to_cpu(right_rec->e_cpos); 1999 right_end += le32_to_cpu(right_rec->e_int_clusters); 2000 2001 right_rec->e_cpos = left_rec->e_cpos; 2002 le32_add_cpu(&right_rec->e_cpos, left_clusters); 2003 2004 right_end -= le32_to_cpu(right_rec->e_cpos); 2005 right_rec->e_int_clusters = cpu_to_le32(right_end); 2006 } 2007 2008 /* 2009 * Adjust the adjacent root node records involved in a 2010 * rotation. left_el_blkno is passed in as a key so that we can easily 2011 * find it's index in the root list. 2012 */ 2013 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2014 struct ocfs2_extent_list *left_el, 2015 struct ocfs2_extent_list *right_el, 2016 u64 left_el_blkno) 2017 { 2018 int i; 2019 2020 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2021 le16_to_cpu(left_el->l_tree_depth)); 2022 2023 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2024 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2025 break; 2026 } 2027 2028 /* 2029 * The path walking code should have never returned a root and 2030 * two paths which are not adjacent. 2031 */ 2032 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2033 2034 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2035 &root_el->l_recs[i + 1], right_el); 2036 } 2037 2038 /* 2039 * We've changed a leaf block (in right_path) and need to reflect that 2040 * change back up the subtree. 2041 * 2042 * This happens in multiple places: 2043 * - When we've moved an extent record from the left path leaf to the right 2044 * path leaf to make room for an empty extent in the left path leaf. 2045 * - When our insert into the right path leaf is at the leftmost edge 2046 * and requires an update of the path immediately to it's left. This 2047 * can occur at the end of some types of rotation and appending inserts. 2048 * - When we've adjusted the last extent record in the left path leaf and the 2049 * 1st extent record in the right path leaf during cross extent block merge. 2050 */ 2051 static void ocfs2_complete_edge_insert(handle_t *handle, 2052 struct ocfs2_path *left_path, 2053 struct ocfs2_path *right_path, 2054 int subtree_index) 2055 { 2056 int i, idx; 2057 struct ocfs2_extent_list *el, *left_el, *right_el; 2058 struct ocfs2_extent_rec *left_rec, *right_rec; 2059 struct buffer_head *root_bh; 2060 2061 /* 2062 * Update the counts and position values within all the 2063 * interior nodes to reflect the leaf rotation we just did. 2064 * 2065 * The root node is handled below the loop. 2066 * 2067 * We begin the loop with right_el and left_el pointing to the 2068 * leaf lists and work our way up. 2069 * 2070 * NOTE: within this loop, left_el and right_el always refer 2071 * to the *child* lists. 2072 */ 2073 left_el = path_leaf_el(left_path); 2074 right_el = path_leaf_el(right_path); 2075 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2076 trace_ocfs2_complete_edge_insert(i); 2077 2078 /* 2079 * One nice property of knowing that all of these 2080 * nodes are below the root is that we only deal with 2081 * the leftmost right node record and the rightmost 2082 * left node record. 2083 */ 2084 el = left_path->p_node[i].el; 2085 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2086 left_rec = &el->l_recs[idx]; 2087 2088 el = right_path->p_node[i].el; 2089 right_rec = &el->l_recs[0]; 2090 2091 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2092 2093 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2094 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2095 2096 /* 2097 * Setup our list pointers now so that the current 2098 * parents become children in the next iteration. 2099 */ 2100 left_el = left_path->p_node[i].el; 2101 right_el = right_path->p_node[i].el; 2102 } 2103 2104 /* 2105 * At the root node, adjust the two adjacent records which 2106 * begin our path to the leaves. 2107 */ 2108 2109 el = left_path->p_node[subtree_index].el; 2110 left_el = left_path->p_node[subtree_index + 1].el; 2111 right_el = right_path->p_node[subtree_index + 1].el; 2112 2113 ocfs2_adjust_root_records(el, left_el, right_el, 2114 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2115 2116 root_bh = left_path->p_node[subtree_index].bh; 2117 2118 ocfs2_journal_dirty(handle, root_bh); 2119 } 2120 2121 static int ocfs2_rotate_subtree_right(handle_t *handle, 2122 struct ocfs2_extent_tree *et, 2123 struct ocfs2_path *left_path, 2124 struct ocfs2_path *right_path, 2125 int subtree_index) 2126 { 2127 int ret, i; 2128 struct buffer_head *right_leaf_bh; 2129 struct buffer_head *left_leaf_bh = NULL; 2130 struct buffer_head *root_bh; 2131 struct ocfs2_extent_list *right_el, *left_el; 2132 struct ocfs2_extent_rec move_rec; 2133 2134 left_leaf_bh = path_leaf_bh(left_path); 2135 left_el = path_leaf_el(left_path); 2136 2137 if (left_el->l_next_free_rec != left_el->l_count) { 2138 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2139 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2140 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2141 (unsigned long long)left_leaf_bh->b_blocknr, 2142 le16_to_cpu(left_el->l_next_free_rec)); 2143 return -EROFS; 2144 } 2145 2146 /* 2147 * This extent block may already have an empty record, so we 2148 * return early if so. 2149 */ 2150 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2151 return 0; 2152 2153 root_bh = left_path->p_node[subtree_index].bh; 2154 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2155 2156 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2157 subtree_index); 2158 if (ret) { 2159 mlog_errno(ret); 2160 goto out; 2161 } 2162 2163 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2164 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2165 right_path, i); 2166 if (ret) { 2167 mlog_errno(ret); 2168 goto out; 2169 } 2170 2171 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2172 left_path, i); 2173 if (ret) { 2174 mlog_errno(ret); 2175 goto out; 2176 } 2177 } 2178 2179 right_leaf_bh = path_leaf_bh(right_path); 2180 right_el = path_leaf_el(right_path); 2181 2182 /* This is a code error, not a disk corruption. */ 2183 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2184 "because rightmost leaf block %llu is empty\n", 2185 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2186 (unsigned long long)right_leaf_bh->b_blocknr); 2187 2188 ocfs2_create_empty_extent(right_el); 2189 2190 ocfs2_journal_dirty(handle, right_leaf_bh); 2191 2192 /* Do the copy now. */ 2193 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2194 move_rec = left_el->l_recs[i]; 2195 right_el->l_recs[0] = move_rec; 2196 2197 /* 2198 * Clear out the record we just copied and shift everything 2199 * over, leaving an empty extent in the left leaf. 2200 * 2201 * We temporarily subtract from next_free_rec so that the 2202 * shift will lose the tail record (which is now defunct). 2203 */ 2204 le16_add_cpu(&left_el->l_next_free_rec, -1); 2205 ocfs2_shift_records_right(left_el); 2206 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2207 le16_add_cpu(&left_el->l_next_free_rec, 1); 2208 2209 ocfs2_journal_dirty(handle, left_leaf_bh); 2210 2211 ocfs2_complete_edge_insert(handle, left_path, right_path, 2212 subtree_index); 2213 2214 out: 2215 return ret; 2216 } 2217 2218 /* 2219 * Given a full path, determine what cpos value would return us a path 2220 * containing the leaf immediately to the left of the current one. 2221 * 2222 * Will return zero if the path passed in is already the leftmost path. 2223 */ 2224 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2225 struct ocfs2_path *path, u32 *cpos) 2226 { 2227 int i, j, ret = 0; 2228 u64 blkno; 2229 struct ocfs2_extent_list *el; 2230 2231 BUG_ON(path->p_tree_depth == 0); 2232 2233 *cpos = 0; 2234 2235 blkno = path_leaf_bh(path)->b_blocknr; 2236 2237 /* Start at the tree node just above the leaf and work our way up. */ 2238 i = path->p_tree_depth - 1; 2239 while (i >= 0) { 2240 el = path->p_node[i].el; 2241 2242 /* 2243 * Find the extent record just before the one in our 2244 * path. 2245 */ 2246 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2247 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2248 if (j == 0) { 2249 if (i == 0) { 2250 /* 2251 * We've determined that the 2252 * path specified is already 2253 * the leftmost one - return a 2254 * cpos of zero. 2255 */ 2256 goto out; 2257 } 2258 /* 2259 * The leftmost record points to our 2260 * leaf - we need to travel up the 2261 * tree one level. 2262 */ 2263 goto next_node; 2264 } 2265 2266 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2267 *cpos = *cpos + ocfs2_rec_clusters(el, 2268 &el->l_recs[j - 1]); 2269 *cpos = *cpos - 1; 2270 goto out; 2271 } 2272 } 2273 2274 /* 2275 * If we got here, we never found a valid node where 2276 * the tree indicated one should be. 2277 */ 2278 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2279 (unsigned long long)blkno); 2280 ret = -EROFS; 2281 goto out; 2282 2283 next_node: 2284 blkno = path->p_node[i].bh->b_blocknr; 2285 i--; 2286 } 2287 2288 out: 2289 return ret; 2290 } 2291 2292 /* 2293 * Extend the transaction by enough credits to complete the rotation, 2294 * and still leave at least the original number of credits allocated 2295 * to this transaction. 2296 */ 2297 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2298 int op_credits, 2299 struct ocfs2_path *path) 2300 { 2301 int ret = 0; 2302 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2303 2304 if (jbd2_handle_buffer_credits(handle) < credits) 2305 ret = ocfs2_extend_trans(handle, 2306 credits - jbd2_handle_buffer_credits(handle)); 2307 2308 return ret; 2309 } 2310 2311 /* 2312 * Trap the case where we're inserting into the theoretical range past 2313 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2314 * whose cpos is less than ours into the right leaf. 2315 * 2316 * It's only necessary to look at the rightmost record of the left 2317 * leaf because the logic that calls us should ensure that the 2318 * theoretical ranges in the path components above the leaves are 2319 * correct. 2320 */ 2321 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2322 u32 insert_cpos) 2323 { 2324 struct ocfs2_extent_list *left_el; 2325 struct ocfs2_extent_rec *rec; 2326 int next_free; 2327 2328 left_el = path_leaf_el(left_path); 2329 next_free = le16_to_cpu(left_el->l_next_free_rec); 2330 rec = &left_el->l_recs[next_free - 1]; 2331 2332 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2333 return 1; 2334 return 0; 2335 } 2336 2337 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2338 { 2339 int next_free = le16_to_cpu(el->l_next_free_rec); 2340 unsigned int range; 2341 struct ocfs2_extent_rec *rec; 2342 2343 if (next_free == 0) 2344 return 0; 2345 2346 rec = &el->l_recs[0]; 2347 if (ocfs2_is_empty_extent(rec)) { 2348 /* Empty list. */ 2349 if (next_free == 1) 2350 return 0; 2351 rec = &el->l_recs[1]; 2352 } 2353 2354 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2355 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2356 return 1; 2357 return 0; 2358 } 2359 2360 /* 2361 * Rotate all the records in a btree right one record, starting at insert_cpos. 2362 * 2363 * The path to the rightmost leaf should be passed in. 2364 * 2365 * The array is assumed to be large enough to hold an entire path (tree depth). 2366 * 2367 * Upon successful return from this function: 2368 * 2369 * - The 'right_path' array will contain a path to the leaf block 2370 * whose range contains e_cpos. 2371 * - That leaf block will have a single empty extent in list index 0. 2372 * - In the case that the rotation requires a post-insert update, 2373 * *ret_left_path will contain a valid path which can be passed to 2374 * ocfs2_insert_path(). 2375 */ 2376 static int ocfs2_rotate_tree_right(handle_t *handle, 2377 struct ocfs2_extent_tree *et, 2378 enum ocfs2_split_type split, 2379 u32 insert_cpos, 2380 struct ocfs2_path *right_path, 2381 struct ocfs2_path **ret_left_path) 2382 { 2383 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2384 u32 cpos; 2385 struct ocfs2_path *left_path = NULL; 2386 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2387 2388 *ret_left_path = NULL; 2389 2390 left_path = ocfs2_new_path_from_path(right_path); 2391 if (!left_path) { 2392 ret = -ENOMEM; 2393 mlog_errno(ret); 2394 goto out; 2395 } 2396 2397 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2398 if (ret) { 2399 mlog_errno(ret); 2400 goto out; 2401 } 2402 2403 trace_ocfs2_rotate_tree_right( 2404 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2405 insert_cpos, cpos); 2406 2407 /* 2408 * What we want to do here is: 2409 * 2410 * 1) Start with the rightmost path. 2411 * 2412 * 2) Determine a path to the leaf block directly to the left 2413 * of that leaf. 2414 * 2415 * 3) Determine the 'subtree root' - the lowest level tree node 2416 * which contains a path to both leaves. 2417 * 2418 * 4) Rotate the subtree. 2419 * 2420 * 5) Find the next subtree by considering the left path to be 2421 * the new right path. 2422 * 2423 * The check at the top of this while loop also accepts 2424 * insert_cpos == cpos because cpos is only a _theoretical_ 2425 * value to get us the left path - insert_cpos might very well 2426 * be filling that hole. 2427 * 2428 * Stop at a cpos of '0' because we either started at the 2429 * leftmost branch (i.e., a tree with one branch and a 2430 * rotation inside of it), or we've gone as far as we can in 2431 * rotating subtrees. 2432 */ 2433 while (cpos && insert_cpos <= cpos) { 2434 trace_ocfs2_rotate_tree_right( 2435 (unsigned long long) 2436 ocfs2_metadata_cache_owner(et->et_ci), 2437 insert_cpos, cpos); 2438 2439 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2440 if (ret) { 2441 mlog_errno(ret); 2442 goto out; 2443 } 2444 2445 mlog_bug_on_msg(path_leaf_bh(left_path) == 2446 path_leaf_bh(right_path), 2447 "Owner %llu: error during insert of %u " 2448 "(left path cpos %u) results in two identical " 2449 "paths ending at %llu\n", 2450 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2451 insert_cpos, cpos, 2452 (unsigned long long) 2453 path_leaf_bh(left_path)->b_blocknr); 2454 2455 if (split == SPLIT_NONE && 2456 ocfs2_rotate_requires_path_adjustment(left_path, 2457 insert_cpos)) { 2458 2459 /* 2460 * We've rotated the tree as much as we 2461 * should. The rest is up to 2462 * ocfs2_insert_path() to complete, after the 2463 * record insertion. We indicate this 2464 * situation by returning the left path. 2465 * 2466 * The reason we don't adjust the records here 2467 * before the record insert is that an error 2468 * later might break the rule where a parent 2469 * record e_cpos will reflect the actual 2470 * e_cpos of the 1st nonempty record of the 2471 * child list. 2472 */ 2473 *ret_left_path = left_path; 2474 goto out_ret_path; 2475 } 2476 2477 start = ocfs2_find_subtree_root(et, left_path, right_path); 2478 2479 trace_ocfs2_rotate_subtree(start, 2480 (unsigned long long) 2481 right_path->p_node[start].bh->b_blocknr, 2482 right_path->p_tree_depth); 2483 2484 ret = ocfs2_extend_rotate_transaction(handle, start, 2485 orig_credits, right_path); 2486 if (ret) { 2487 mlog_errno(ret); 2488 goto out; 2489 } 2490 2491 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2492 right_path, start); 2493 if (ret) { 2494 mlog_errno(ret); 2495 goto out; 2496 } 2497 2498 if (split != SPLIT_NONE && 2499 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2500 insert_cpos)) { 2501 /* 2502 * A rotate moves the rightmost left leaf 2503 * record over to the leftmost right leaf 2504 * slot. If we're doing an extent split 2505 * instead of a real insert, then we have to 2506 * check that the extent to be split wasn't 2507 * just moved over. If it was, then we can 2508 * exit here, passing left_path back - 2509 * ocfs2_split_extent() is smart enough to 2510 * search both leaves. 2511 */ 2512 *ret_left_path = left_path; 2513 goto out_ret_path; 2514 } 2515 2516 /* 2517 * There is no need to re-read the next right path 2518 * as we know that it'll be our current left 2519 * path. Optimize by copying values instead. 2520 */ 2521 ocfs2_mv_path(right_path, left_path); 2522 2523 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2524 if (ret) { 2525 mlog_errno(ret); 2526 goto out; 2527 } 2528 } 2529 2530 out: 2531 ocfs2_free_path(left_path); 2532 2533 out_ret_path: 2534 return ret; 2535 } 2536 2537 static int ocfs2_update_edge_lengths(handle_t *handle, 2538 struct ocfs2_extent_tree *et, 2539 struct ocfs2_path *path) 2540 { 2541 int i, idx, ret; 2542 struct ocfs2_extent_rec *rec; 2543 struct ocfs2_extent_list *el; 2544 struct ocfs2_extent_block *eb; 2545 u32 range; 2546 2547 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2548 if (ret) { 2549 mlog_errno(ret); 2550 goto out; 2551 } 2552 2553 /* Path should always be rightmost. */ 2554 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2555 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2556 2557 el = &eb->h_list; 2558 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2559 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2560 rec = &el->l_recs[idx]; 2561 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2562 2563 for (i = 0; i < path->p_tree_depth; i++) { 2564 el = path->p_node[i].el; 2565 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2566 rec = &el->l_recs[idx]; 2567 2568 rec->e_int_clusters = cpu_to_le32(range); 2569 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2570 2571 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2572 } 2573 out: 2574 return ret; 2575 } 2576 2577 static void ocfs2_unlink_path(handle_t *handle, 2578 struct ocfs2_extent_tree *et, 2579 struct ocfs2_cached_dealloc_ctxt *dealloc, 2580 struct ocfs2_path *path, int unlink_start) 2581 { 2582 int ret, i; 2583 struct ocfs2_extent_block *eb; 2584 struct ocfs2_extent_list *el; 2585 struct buffer_head *bh; 2586 2587 for(i = unlink_start; i < path_num_items(path); i++) { 2588 bh = path->p_node[i].bh; 2589 2590 eb = (struct ocfs2_extent_block *)bh->b_data; 2591 /* 2592 * Not all nodes might have had their final count 2593 * decremented by the caller - handle this here. 2594 */ 2595 el = &eb->h_list; 2596 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2597 mlog(ML_ERROR, 2598 "Inode %llu, attempted to remove extent block " 2599 "%llu with %u records\n", 2600 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2601 (unsigned long long)le64_to_cpu(eb->h_blkno), 2602 le16_to_cpu(el->l_next_free_rec)); 2603 2604 ocfs2_journal_dirty(handle, bh); 2605 ocfs2_remove_from_cache(et->et_ci, bh); 2606 continue; 2607 } 2608 2609 el->l_next_free_rec = 0; 2610 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2611 2612 ocfs2_journal_dirty(handle, bh); 2613 2614 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2615 if (ret) 2616 mlog_errno(ret); 2617 2618 ocfs2_remove_from_cache(et->et_ci, bh); 2619 } 2620 } 2621 2622 static void ocfs2_unlink_subtree(handle_t *handle, 2623 struct ocfs2_extent_tree *et, 2624 struct ocfs2_path *left_path, 2625 struct ocfs2_path *right_path, 2626 int subtree_index, 2627 struct ocfs2_cached_dealloc_ctxt *dealloc) 2628 { 2629 int i; 2630 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2631 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2632 struct ocfs2_extent_block *eb; 2633 2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2635 2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2638 break; 2639 2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2641 2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2643 le16_add_cpu(&root_el->l_next_free_rec, -1); 2644 2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2646 eb->h_next_leaf_blk = 0; 2647 2648 ocfs2_journal_dirty(handle, root_bh); 2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2650 2651 ocfs2_unlink_path(handle, et, dealloc, right_path, 2652 subtree_index + 1); 2653 } 2654 2655 static int ocfs2_rotate_subtree_left(handle_t *handle, 2656 struct ocfs2_extent_tree *et, 2657 struct ocfs2_path *left_path, 2658 struct ocfs2_path *right_path, 2659 int subtree_index, 2660 struct ocfs2_cached_dealloc_ctxt *dealloc, 2661 int *deleted) 2662 { 2663 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2666 struct ocfs2_extent_block *eb; 2667 2668 *deleted = 0; 2669 2670 right_leaf_el = path_leaf_el(right_path); 2671 left_leaf_el = path_leaf_el(left_path); 2672 root_bh = left_path->p_node[subtree_index].bh; 2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2674 2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2676 return 0; 2677 2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2680 /* 2681 * It's legal for us to proceed if the right leaf is 2682 * the rightmost one and it has an empty extent. There 2683 * are two cases to handle - whether the leaf will be 2684 * empty after removal or not. If the leaf isn't empty 2685 * then just remove the empty extent up front. The 2686 * next block will handle empty leaves by flagging 2687 * them for unlink. 2688 * 2689 * Non rightmost leaves will throw -EAGAIN and the 2690 * caller can manually move the subtree and retry. 2691 */ 2692 2693 if (eb->h_next_leaf_blk != 0ULL) 2694 return -EAGAIN; 2695 2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2697 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2698 path_leaf_bh(right_path), 2699 OCFS2_JOURNAL_ACCESS_WRITE); 2700 if (ret) { 2701 mlog_errno(ret); 2702 goto out; 2703 } 2704 2705 ocfs2_remove_empty_extent(right_leaf_el); 2706 } else 2707 right_has_empty = 1; 2708 } 2709 2710 if (eb->h_next_leaf_blk == 0ULL && 2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2712 /* 2713 * We have to update i_last_eb_blk during the meta 2714 * data delete. 2715 */ 2716 ret = ocfs2_et_root_journal_access(handle, et, 2717 OCFS2_JOURNAL_ACCESS_WRITE); 2718 if (ret) { 2719 mlog_errno(ret); 2720 goto out; 2721 } 2722 2723 del_right_subtree = 1; 2724 } 2725 2726 /* 2727 * Getting here with an empty extent in the right path implies 2728 * that it's the rightmost path and will be deleted. 2729 */ 2730 BUG_ON(right_has_empty && !del_right_subtree); 2731 2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2733 subtree_index); 2734 if (ret) { 2735 mlog_errno(ret); 2736 goto out; 2737 } 2738 2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2741 right_path, i); 2742 if (ret) { 2743 mlog_errno(ret); 2744 goto out; 2745 } 2746 2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2748 left_path, i); 2749 if (ret) { 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 } 2754 2755 if (!right_has_empty) { 2756 /* 2757 * Only do this if we're moving a real 2758 * record. Otherwise, the action is delayed until 2759 * after removal of the right path in which case we 2760 * can do a simple shift to remove the empty extent. 2761 */ 2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2763 memset(&right_leaf_el->l_recs[0], 0, 2764 sizeof(struct ocfs2_extent_rec)); 2765 } 2766 if (eb->h_next_leaf_blk == 0ULL) { 2767 /* 2768 * Move recs over to get rid of empty extent, decrease 2769 * next_free. This is allowed to remove the last 2770 * extent in our leaf (setting l_next_free_rec to 2771 * zero) - the delete code below won't care. 2772 */ 2773 ocfs2_remove_empty_extent(right_leaf_el); 2774 } 2775 2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2778 2779 if (del_right_subtree) { 2780 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2781 subtree_index, dealloc); 2782 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2783 if (ret) { 2784 mlog_errno(ret); 2785 goto out; 2786 } 2787 2788 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2789 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2790 2791 /* 2792 * Removal of the extent in the left leaf was skipped 2793 * above so we could delete the right path 2794 * 1st. 2795 */ 2796 if (right_has_empty) 2797 ocfs2_remove_empty_extent(left_leaf_el); 2798 2799 ocfs2_journal_dirty(handle, et_root_bh); 2800 2801 *deleted = 1; 2802 } else 2803 ocfs2_complete_edge_insert(handle, left_path, right_path, 2804 subtree_index); 2805 2806 out: 2807 return ret; 2808 } 2809 2810 /* 2811 * Given a full path, determine what cpos value would return us a path 2812 * containing the leaf immediately to the right of the current one. 2813 * 2814 * Will return zero if the path passed in is already the rightmost path. 2815 * 2816 * This looks similar, but is subtly different to 2817 * ocfs2_find_cpos_for_left_leaf(). 2818 */ 2819 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2820 struct ocfs2_path *path, u32 *cpos) 2821 { 2822 int i, j, ret = 0; 2823 u64 blkno; 2824 struct ocfs2_extent_list *el; 2825 2826 *cpos = 0; 2827 2828 if (path->p_tree_depth == 0) 2829 return 0; 2830 2831 blkno = path_leaf_bh(path)->b_blocknr; 2832 2833 /* Start at the tree node just above the leaf and work our way up. */ 2834 i = path->p_tree_depth - 1; 2835 while (i >= 0) { 2836 int next_free; 2837 2838 el = path->p_node[i].el; 2839 2840 /* 2841 * Find the extent record just after the one in our 2842 * path. 2843 */ 2844 next_free = le16_to_cpu(el->l_next_free_rec); 2845 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2846 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2847 if (j == (next_free - 1)) { 2848 if (i == 0) { 2849 /* 2850 * We've determined that the 2851 * path specified is already 2852 * the rightmost one - return a 2853 * cpos of zero. 2854 */ 2855 goto out; 2856 } 2857 /* 2858 * The rightmost record points to our 2859 * leaf - we need to travel up the 2860 * tree one level. 2861 */ 2862 goto next_node; 2863 } 2864 2865 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2866 goto out; 2867 } 2868 } 2869 2870 /* 2871 * If we got here, we never found a valid node where 2872 * the tree indicated one should be. 2873 */ 2874 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2875 (unsigned long long)blkno); 2876 ret = -EROFS; 2877 goto out; 2878 2879 next_node: 2880 blkno = path->p_node[i].bh->b_blocknr; 2881 i--; 2882 } 2883 2884 out: 2885 return ret; 2886 } 2887 2888 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2889 struct ocfs2_extent_tree *et, 2890 struct ocfs2_path *path) 2891 { 2892 int ret; 2893 struct buffer_head *bh = path_leaf_bh(path); 2894 struct ocfs2_extent_list *el = path_leaf_el(path); 2895 2896 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2897 return 0; 2898 2899 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2900 path_num_items(path) - 1); 2901 if (ret) { 2902 mlog_errno(ret); 2903 goto out; 2904 } 2905 2906 ocfs2_remove_empty_extent(el); 2907 ocfs2_journal_dirty(handle, bh); 2908 2909 out: 2910 return ret; 2911 } 2912 2913 static int __ocfs2_rotate_tree_left(handle_t *handle, 2914 struct ocfs2_extent_tree *et, 2915 int orig_credits, 2916 struct ocfs2_path *path, 2917 struct ocfs2_cached_dealloc_ctxt *dealloc, 2918 struct ocfs2_path **empty_extent_path) 2919 { 2920 int ret, subtree_root, deleted; 2921 u32 right_cpos; 2922 struct ocfs2_path *left_path = NULL; 2923 struct ocfs2_path *right_path = NULL; 2924 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2925 2926 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2927 return 0; 2928 2929 *empty_extent_path = NULL; 2930 2931 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2932 if (ret) { 2933 mlog_errno(ret); 2934 goto out; 2935 } 2936 2937 left_path = ocfs2_new_path_from_path(path); 2938 if (!left_path) { 2939 ret = -ENOMEM; 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 ocfs2_cp_path(left_path, path); 2945 2946 right_path = ocfs2_new_path_from_path(path); 2947 if (!right_path) { 2948 ret = -ENOMEM; 2949 mlog_errno(ret); 2950 goto out; 2951 } 2952 2953 while (right_cpos) { 2954 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2955 if (ret) { 2956 mlog_errno(ret); 2957 goto out; 2958 } 2959 2960 subtree_root = ocfs2_find_subtree_root(et, left_path, 2961 right_path); 2962 2963 trace_ocfs2_rotate_subtree(subtree_root, 2964 (unsigned long long) 2965 right_path->p_node[subtree_root].bh->b_blocknr, 2966 right_path->p_tree_depth); 2967 2968 ret = ocfs2_extend_rotate_transaction(handle, 0, 2969 orig_credits, left_path); 2970 if (ret) { 2971 mlog_errno(ret); 2972 goto out; 2973 } 2974 2975 /* 2976 * Caller might still want to make changes to the 2977 * tree root, so re-add it to the journal here. 2978 */ 2979 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2980 left_path, 0); 2981 if (ret) { 2982 mlog_errno(ret); 2983 goto out; 2984 } 2985 2986 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2987 right_path, subtree_root, 2988 dealloc, &deleted); 2989 if (ret == -EAGAIN) { 2990 /* 2991 * The rotation has to temporarily stop due to 2992 * the right subtree having an empty 2993 * extent. Pass it back to the caller for a 2994 * fixup. 2995 */ 2996 *empty_extent_path = right_path; 2997 right_path = NULL; 2998 goto out; 2999 } 3000 if (ret) { 3001 mlog_errno(ret); 3002 goto out; 3003 } 3004 3005 /* 3006 * The subtree rotate might have removed records on 3007 * the rightmost edge. If so, then rotation is 3008 * complete. 3009 */ 3010 if (deleted) 3011 break; 3012 3013 ocfs2_mv_path(left_path, right_path); 3014 3015 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3016 &right_cpos); 3017 if (ret) { 3018 mlog_errno(ret); 3019 goto out; 3020 } 3021 } 3022 3023 out: 3024 ocfs2_free_path(right_path); 3025 ocfs2_free_path(left_path); 3026 3027 return ret; 3028 } 3029 3030 static int ocfs2_remove_rightmost_path(handle_t *handle, 3031 struct ocfs2_extent_tree *et, 3032 struct ocfs2_path *path, 3033 struct ocfs2_cached_dealloc_ctxt *dealloc) 3034 { 3035 int ret, subtree_index; 3036 u32 cpos; 3037 struct ocfs2_path *left_path = NULL; 3038 struct ocfs2_extent_block *eb; 3039 struct ocfs2_extent_list *el; 3040 3041 ret = ocfs2_et_sanity_check(et); 3042 if (ret) 3043 goto out; 3044 3045 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3046 if (ret) { 3047 mlog_errno(ret); 3048 goto out; 3049 } 3050 3051 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3052 path, &cpos); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 if (cpos) { 3059 /* 3060 * We have a path to the left of this one - it needs 3061 * an update too. 3062 */ 3063 left_path = ocfs2_new_path_from_path(path); 3064 if (!left_path) { 3065 ret = -ENOMEM; 3066 mlog_errno(ret); 3067 goto out; 3068 } 3069 3070 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3071 if (ret) { 3072 mlog_errno(ret); 3073 goto out; 3074 } 3075 3076 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3077 if (ret) { 3078 mlog_errno(ret); 3079 goto out; 3080 } 3081 3082 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3083 3084 ocfs2_unlink_subtree(handle, et, left_path, path, 3085 subtree_index, dealloc); 3086 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3087 if (ret) { 3088 mlog_errno(ret); 3089 goto out; 3090 } 3091 3092 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3093 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3094 } else { 3095 /* 3096 * 'path' is also the leftmost path which 3097 * means it must be the only one. This gets 3098 * handled differently because we want to 3099 * revert the root back to having extents 3100 * in-line. 3101 */ 3102 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3103 3104 el = et->et_root_el; 3105 el->l_tree_depth = 0; 3106 el->l_next_free_rec = 0; 3107 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3108 3109 ocfs2_et_set_last_eb_blk(et, 0); 3110 } 3111 3112 ocfs2_journal_dirty(handle, path_root_bh(path)); 3113 3114 out: 3115 ocfs2_free_path(left_path); 3116 return ret; 3117 } 3118 3119 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3120 struct ocfs2_extent_tree *et, 3121 struct ocfs2_path *path, 3122 struct ocfs2_cached_dealloc_ctxt *dealloc) 3123 { 3124 handle_t *handle; 3125 int ret; 3126 int credits = path->p_tree_depth * 2 + 1; 3127 3128 handle = ocfs2_start_trans(osb, credits); 3129 if (IS_ERR(handle)) { 3130 ret = PTR_ERR(handle); 3131 mlog_errno(ret); 3132 return ret; 3133 } 3134 3135 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3136 if (ret) 3137 mlog_errno(ret); 3138 3139 ocfs2_commit_trans(osb, handle); 3140 return ret; 3141 } 3142 3143 /* 3144 * Left rotation of btree records. 3145 * 3146 * In many ways, this is (unsurprisingly) the opposite of right 3147 * rotation. We start at some non-rightmost path containing an empty 3148 * extent in the leaf block. The code works its way to the rightmost 3149 * path by rotating records to the left in every subtree. 3150 * 3151 * This is used by any code which reduces the number of extent records 3152 * in a leaf. After removal, an empty record should be placed in the 3153 * leftmost list position. 3154 * 3155 * This won't handle a length update of the rightmost path records if 3156 * the rightmost tree leaf record is removed so the caller is 3157 * responsible for detecting and correcting that. 3158 */ 3159 static int ocfs2_rotate_tree_left(handle_t *handle, 3160 struct ocfs2_extent_tree *et, 3161 struct ocfs2_path *path, 3162 struct ocfs2_cached_dealloc_ctxt *dealloc) 3163 { 3164 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3165 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3166 struct ocfs2_extent_block *eb; 3167 struct ocfs2_extent_list *el; 3168 3169 el = path_leaf_el(path); 3170 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3171 return 0; 3172 3173 if (path->p_tree_depth == 0) { 3174 rightmost_no_delete: 3175 /* 3176 * Inline extents. This is trivially handled, so do 3177 * it up front. 3178 */ 3179 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3180 if (ret) 3181 mlog_errno(ret); 3182 goto out; 3183 } 3184 3185 /* 3186 * Handle rightmost branch now. There's several cases: 3187 * 1) simple rotation leaving records in there. That's trivial. 3188 * 2) rotation requiring a branch delete - there's no more 3189 * records left. Two cases of this: 3190 * a) There are branches to the left. 3191 * b) This is also the leftmost (the only) branch. 3192 * 3193 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3194 * 2a) we need the left branch so that we can update it with the unlink 3195 * 2b) we need to bring the root back to inline extents. 3196 */ 3197 3198 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3199 el = &eb->h_list; 3200 if (eb->h_next_leaf_blk == 0) { 3201 /* 3202 * This gets a bit tricky if we're going to delete the 3203 * rightmost path. Get the other cases out of the way 3204 * 1st. 3205 */ 3206 if (le16_to_cpu(el->l_next_free_rec) > 1) 3207 goto rightmost_no_delete; 3208 3209 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3210 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3211 "Owner %llu has empty extent block at %llu\n", 3212 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3213 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3214 goto out; 3215 } 3216 3217 /* 3218 * XXX: The caller can not trust "path" any more after 3219 * this as it will have been deleted. What do we do? 3220 * 3221 * In theory the rotate-for-merge code will never get 3222 * here because it'll always ask for a rotate in a 3223 * nonempty list. 3224 */ 3225 3226 ret = ocfs2_remove_rightmost_path(handle, et, path, 3227 dealloc); 3228 if (ret) 3229 mlog_errno(ret); 3230 goto out; 3231 } 3232 3233 /* 3234 * Now we can loop, remembering the path we get from -EAGAIN 3235 * and restarting from there. 3236 */ 3237 try_rotate: 3238 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3239 dealloc, &restart_path); 3240 if (ret && ret != -EAGAIN) { 3241 mlog_errno(ret); 3242 goto out; 3243 } 3244 3245 while (ret == -EAGAIN) { 3246 tmp_path = restart_path; 3247 restart_path = NULL; 3248 3249 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3250 tmp_path, dealloc, 3251 &restart_path); 3252 if (ret && ret != -EAGAIN) { 3253 mlog_errno(ret); 3254 goto out; 3255 } 3256 3257 ocfs2_free_path(tmp_path); 3258 tmp_path = NULL; 3259 3260 if (ret == 0) 3261 goto try_rotate; 3262 } 3263 3264 out: 3265 ocfs2_free_path(tmp_path); 3266 ocfs2_free_path(restart_path); 3267 return ret; 3268 } 3269 3270 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3271 int index) 3272 { 3273 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3274 unsigned int size; 3275 3276 if (rec->e_leaf_clusters == 0) { 3277 /* 3278 * We consumed all of the merged-from record. An empty 3279 * extent cannot exist anywhere but the 1st array 3280 * position, so move things over if the merged-from 3281 * record doesn't occupy that position. 3282 * 3283 * This creates a new empty extent so the caller 3284 * should be smart enough to have removed any existing 3285 * ones. 3286 */ 3287 if (index > 0) { 3288 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3289 size = index * sizeof(struct ocfs2_extent_rec); 3290 memmove(&el->l_recs[1], &el->l_recs[0], size); 3291 } 3292 3293 /* 3294 * Always memset - the caller doesn't check whether it 3295 * created an empty extent, so there could be junk in 3296 * the other fields. 3297 */ 3298 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3299 } 3300 } 3301 3302 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3303 struct ocfs2_path *left_path, 3304 struct ocfs2_path **ret_right_path) 3305 { 3306 int ret; 3307 u32 right_cpos; 3308 struct ocfs2_path *right_path = NULL; 3309 struct ocfs2_extent_list *left_el; 3310 3311 *ret_right_path = NULL; 3312 3313 /* This function shouldn't be called for non-trees. */ 3314 BUG_ON(left_path->p_tree_depth == 0); 3315 3316 left_el = path_leaf_el(left_path); 3317 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3318 3319 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3320 left_path, &right_cpos); 3321 if (ret) { 3322 mlog_errno(ret); 3323 goto out; 3324 } 3325 3326 /* This function shouldn't be called for the rightmost leaf. */ 3327 BUG_ON(right_cpos == 0); 3328 3329 right_path = ocfs2_new_path_from_path(left_path); 3330 if (!right_path) { 3331 ret = -ENOMEM; 3332 mlog_errno(ret); 3333 goto out; 3334 } 3335 3336 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3337 if (ret) { 3338 mlog_errno(ret); 3339 goto out; 3340 } 3341 3342 *ret_right_path = right_path; 3343 out: 3344 if (ret) 3345 ocfs2_free_path(right_path); 3346 return ret; 3347 } 3348 3349 /* 3350 * Remove split_rec clusters from the record at index and merge them 3351 * onto the beginning of the record "next" to it. 3352 * For index < l_count - 1, the next means the extent rec at index + 1. 3353 * For index == l_count - 1, the "next" means the 1st extent rec of the 3354 * next extent block. 3355 */ 3356 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3357 handle_t *handle, 3358 struct ocfs2_extent_tree *et, 3359 struct ocfs2_extent_rec *split_rec, 3360 int index) 3361 { 3362 int ret, next_free, i; 3363 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3364 struct ocfs2_extent_rec *left_rec; 3365 struct ocfs2_extent_rec *right_rec; 3366 struct ocfs2_extent_list *right_el; 3367 struct ocfs2_path *right_path = NULL; 3368 int subtree_index = 0; 3369 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3370 struct buffer_head *bh = path_leaf_bh(left_path); 3371 struct buffer_head *root_bh = NULL; 3372 3373 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3374 left_rec = &el->l_recs[index]; 3375 3376 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3377 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3378 /* we meet with a cross extent block merge. */ 3379 ret = ocfs2_get_right_path(et, left_path, &right_path); 3380 if (ret) { 3381 mlog_errno(ret); 3382 return ret; 3383 } 3384 3385 right_el = path_leaf_el(right_path); 3386 next_free = le16_to_cpu(right_el->l_next_free_rec); 3387 BUG_ON(next_free <= 0); 3388 right_rec = &right_el->l_recs[0]; 3389 if (ocfs2_is_empty_extent(right_rec)) { 3390 BUG_ON(next_free <= 1); 3391 right_rec = &right_el->l_recs[1]; 3392 } 3393 3394 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3395 le16_to_cpu(left_rec->e_leaf_clusters) != 3396 le32_to_cpu(right_rec->e_cpos)); 3397 3398 subtree_index = ocfs2_find_subtree_root(et, left_path, 3399 right_path); 3400 3401 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3402 jbd2_handle_buffer_credits(handle), 3403 right_path); 3404 if (ret) { 3405 mlog_errno(ret); 3406 goto out; 3407 } 3408 3409 root_bh = left_path->p_node[subtree_index].bh; 3410 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3411 3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3413 subtree_index); 3414 if (ret) { 3415 mlog_errno(ret); 3416 goto out; 3417 } 3418 3419 for (i = subtree_index + 1; 3420 i < path_num_items(right_path); i++) { 3421 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3422 right_path, i); 3423 if (ret) { 3424 mlog_errno(ret); 3425 goto out; 3426 } 3427 3428 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3429 left_path, i); 3430 if (ret) { 3431 mlog_errno(ret); 3432 goto out; 3433 } 3434 } 3435 3436 } else { 3437 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3438 right_rec = &el->l_recs[index + 1]; 3439 } 3440 3441 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3442 path_num_items(left_path) - 1); 3443 if (ret) { 3444 mlog_errno(ret); 3445 goto out; 3446 } 3447 3448 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3449 3450 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3451 le64_add_cpu(&right_rec->e_blkno, 3452 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3453 split_clusters)); 3454 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3455 3456 ocfs2_cleanup_merge(el, index); 3457 3458 ocfs2_journal_dirty(handle, bh); 3459 if (right_path) { 3460 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3461 ocfs2_complete_edge_insert(handle, left_path, right_path, 3462 subtree_index); 3463 } 3464 out: 3465 ocfs2_free_path(right_path); 3466 return ret; 3467 } 3468 3469 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3470 struct ocfs2_path *right_path, 3471 struct ocfs2_path **ret_left_path) 3472 { 3473 int ret; 3474 u32 left_cpos; 3475 struct ocfs2_path *left_path = NULL; 3476 3477 *ret_left_path = NULL; 3478 3479 /* This function shouldn't be called for non-trees. */ 3480 BUG_ON(right_path->p_tree_depth == 0); 3481 3482 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3483 right_path, &left_cpos); 3484 if (ret) { 3485 mlog_errno(ret); 3486 goto out; 3487 } 3488 3489 /* This function shouldn't be called for the leftmost leaf. */ 3490 BUG_ON(left_cpos == 0); 3491 3492 left_path = ocfs2_new_path_from_path(right_path); 3493 if (!left_path) { 3494 ret = -ENOMEM; 3495 mlog_errno(ret); 3496 goto out; 3497 } 3498 3499 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3500 if (ret) { 3501 mlog_errno(ret); 3502 goto out; 3503 } 3504 3505 *ret_left_path = left_path; 3506 out: 3507 if (ret) 3508 ocfs2_free_path(left_path); 3509 return ret; 3510 } 3511 3512 /* 3513 * Remove split_rec clusters from the record at index and merge them 3514 * onto the tail of the record "before" it. 3515 * For index > 0, the "before" means the extent rec at index - 1. 3516 * 3517 * For index == 0, the "before" means the last record of the previous 3518 * extent block. And there is also a situation that we may need to 3519 * remove the rightmost leaf extent block in the right_path and change 3520 * the right path to indicate the new rightmost path. 3521 */ 3522 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3523 handle_t *handle, 3524 struct ocfs2_extent_tree *et, 3525 struct ocfs2_extent_rec *split_rec, 3526 struct ocfs2_cached_dealloc_ctxt *dealloc, 3527 int index) 3528 { 3529 int ret, i, subtree_index = 0, has_empty_extent = 0; 3530 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3531 struct ocfs2_extent_rec *left_rec; 3532 struct ocfs2_extent_rec *right_rec; 3533 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3534 struct buffer_head *bh = path_leaf_bh(right_path); 3535 struct buffer_head *root_bh = NULL; 3536 struct ocfs2_path *left_path = NULL; 3537 struct ocfs2_extent_list *left_el; 3538 3539 BUG_ON(index < 0); 3540 3541 right_rec = &el->l_recs[index]; 3542 if (index == 0) { 3543 /* we meet with a cross extent block merge. */ 3544 ret = ocfs2_get_left_path(et, right_path, &left_path); 3545 if (ret) { 3546 mlog_errno(ret); 3547 return ret; 3548 } 3549 3550 left_el = path_leaf_el(left_path); 3551 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3552 le16_to_cpu(left_el->l_count)); 3553 3554 left_rec = &left_el->l_recs[ 3555 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3556 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3557 le16_to_cpu(left_rec->e_leaf_clusters) != 3558 le32_to_cpu(split_rec->e_cpos)); 3559 3560 subtree_index = ocfs2_find_subtree_root(et, left_path, 3561 right_path); 3562 3563 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3564 jbd2_handle_buffer_credits(handle), 3565 left_path); 3566 if (ret) { 3567 mlog_errno(ret); 3568 goto out; 3569 } 3570 3571 root_bh = left_path->p_node[subtree_index].bh; 3572 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3573 3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3575 subtree_index); 3576 if (ret) { 3577 mlog_errno(ret); 3578 goto out; 3579 } 3580 3581 for (i = subtree_index + 1; 3582 i < path_num_items(right_path); i++) { 3583 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3584 right_path, i); 3585 if (ret) { 3586 mlog_errno(ret); 3587 goto out; 3588 } 3589 3590 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3591 left_path, i); 3592 if (ret) { 3593 mlog_errno(ret); 3594 goto out; 3595 } 3596 } 3597 } else { 3598 left_rec = &el->l_recs[index - 1]; 3599 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3600 has_empty_extent = 1; 3601 } 3602 3603 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3604 path_num_items(right_path) - 1); 3605 if (ret) { 3606 mlog_errno(ret); 3607 goto out; 3608 } 3609 3610 if (has_empty_extent && index == 1) { 3611 /* 3612 * The easy case - we can just plop the record right in. 3613 */ 3614 *left_rec = *split_rec; 3615 } else 3616 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3617 3618 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3619 le64_add_cpu(&right_rec->e_blkno, 3620 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3621 split_clusters)); 3622 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3623 3624 ocfs2_cleanup_merge(el, index); 3625 3626 ocfs2_journal_dirty(handle, bh); 3627 if (left_path) { 3628 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3629 3630 /* 3631 * In the situation that the right_rec is empty and the extent 3632 * block is empty also, ocfs2_complete_edge_insert can't handle 3633 * it and we need to delete the right extent block. 3634 */ 3635 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3636 le16_to_cpu(el->l_next_free_rec) == 1) { 3637 /* extend credit for ocfs2_remove_rightmost_path */ 3638 ret = ocfs2_extend_rotate_transaction(handle, 0, 3639 jbd2_handle_buffer_credits(handle), 3640 right_path); 3641 if (ret) { 3642 mlog_errno(ret); 3643 goto out; 3644 } 3645 3646 ret = ocfs2_remove_rightmost_path(handle, et, 3647 right_path, 3648 dealloc); 3649 if (ret) { 3650 mlog_errno(ret); 3651 goto out; 3652 } 3653 3654 /* Now the rightmost extent block has been deleted. 3655 * So we use the new rightmost path. 3656 */ 3657 ocfs2_mv_path(right_path, left_path); 3658 } else 3659 ocfs2_complete_edge_insert(handle, left_path, 3660 right_path, subtree_index); 3661 } 3662 out: 3663 ocfs2_free_path(left_path); 3664 return ret; 3665 } 3666 3667 static int ocfs2_try_to_merge_extent(handle_t *handle, 3668 struct ocfs2_extent_tree *et, 3669 struct ocfs2_path *path, 3670 int split_index, 3671 struct ocfs2_extent_rec *split_rec, 3672 struct ocfs2_cached_dealloc_ctxt *dealloc, 3673 struct ocfs2_merge_ctxt *ctxt) 3674 { 3675 int ret = 0; 3676 struct ocfs2_extent_list *el = path_leaf_el(path); 3677 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3678 3679 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3680 3681 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3682 /* extend credit for ocfs2_remove_rightmost_path */ 3683 ret = ocfs2_extend_rotate_transaction(handle, 0, 3684 jbd2_handle_buffer_credits(handle), 3685 path); 3686 if (ret) { 3687 mlog_errno(ret); 3688 goto out; 3689 } 3690 /* 3691 * The merge code will need to create an empty 3692 * extent to take the place of the newly 3693 * emptied slot. Remove any pre-existing empty 3694 * extents - having more than one in a leaf is 3695 * illegal. 3696 */ 3697 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3698 if (ret) { 3699 mlog_errno(ret); 3700 goto out; 3701 } 3702 split_index--; 3703 rec = &el->l_recs[split_index]; 3704 } 3705 3706 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3707 /* 3708 * Left-right contig implies this. 3709 */ 3710 BUG_ON(!ctxt->c_split_covers_rec); 3711 3712 /* 3713 * Since the leftright insert always covers the entire 3714 * extent, this call will delete the insert record 3715 * entirely, resulting in an empty extent record added to 3716 * the extent block. 3717 * 3718 * Since the adding of an empty extent shifts 3719 * everything back to the right, there's no need to 3720 * update split_index here. 3721 * 3722 * When the split_index is zero, we need to merge it to the 3723 * previous extent block. It is more efficient and easier 3724 * if we do merge_right first and merge_left later. 3725 */ 3726 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3727 split_index); 3728 if (ret) { 3729 mlog_errno(ret); 3730 goto out; 3731 } 3732 3733 /* 3734 * We can only get this from logic error above. 3735 */ 3736 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3737 3738 /* extend credit for ocfs2_remove_rightmost_path */ 3739 ret = ocfs2_extend_rotate_transaction(handle, 0, 3740 jbd2_handle_buffer_credits(handle), 3741 path); 3742 if (ret) { 3743 mlog_errno(ret); 3744 goto out; 3745 } 3746 3747 /* The merge left us with an empty extent, remove it. */ 3748 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3749 if (ret) { 3750 mlog_errno(ret); 3751 goto out; 3752 } 3753 3754 rec = &el->l_recs[split_index]; 3755 3756 /* 3757 * Note that we don't pass split_rec here on purpose - 3758 * we've merged it into the rec already. 3759 */ 3760 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3761 dealloc, split_index); 3762 3763 if (ret) { 3764 mlog_errno(ret); 3765 goto out; 3766 } 3767 3768 /* extend credit for ocfs2_remove_rightmost_path */ 3769 ret = ocfs2_extend_rotate_transaction(handle, 0, 3770 jbd2_handle_buffer_credits(handle), 3771 path); 3772 if (ret) { 3773 mlog_errno(ret); 3774 goto out; 3775 } 3776 3777 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3778 /* 3779 * Error from this last rotate is not critical, so 3780 * print but don't bubble it up. 3781 */ 3782 if (ret) 3783 mlog_errno(ret); 3784 ret = 0; 3785 } else { 3786 /* 3787 * Merge a record to the left or right. 3788 * 3789 * 'contig_type' is relative to the existing record, 3790 * so for example, if we're "right contig", it's to 3791 * the record on the left (hence the left merge). 3792 */ 3793 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3794 ret = ocfs2_merge_rec_left(path, handle, et, 3795 split_rec, dealloc, 3796 split_index); 3797 if (ret) { 3798 mlog_errno(ret); 3799 goto out; 3800 } 3801 } else { 3802 ret = ocfs2_merge_rec_right(path, handle, 3803 et, split_rec, 3804 split_index); 3805 if (ret) { 3806 mlog_errno(ret); 3807 goto out; 3808 } 3809 } 3810 3811 if (ctxt->c_split_covers_rec) { 3812 /* extend credit for ocfs2_remove_rightmost_path */ 3813 ret = ocfs2_extend_rotate_transaction(handle, 0, 3814 jbd2_handle_buffer_credits(handle), 3815 path); 3816 if (ret) { 3817 mlog_errno(ret); 3818 ret = 0; 3819 goto out; 3820 } 3821 3822 /* 3823 * The merge may have left an empty extent in 3824 * our leaf. Try to rotate it away. 3825 */ 3826 ret = ocfs2_rotate_tree_left(handle, et, path, 3827 dealloc); 3828 if (ret) 3829 mlog_errno(ret); 3830 ret = 0; 3831 } 3832 } 3833 3834 out: 3835 return ret; 3836 } 3837 3838 static void ocfs2_subtract_from_rec(struct super_block *sb, 3839 enum ocfs2_split_type split, 3840 struct ocfs2_extent_rec *rec, 3841 struct ocfs2_extent_rec *split_rec) 3842 { 3843 u64 len_blocks; 3844 3845 len_blocks = ocfs2_clusters_to_blocks(sb, 3846 le16_to_cpu(split_rec->e_leaf_clusters)); 3847 3848 if (split == SPLIT_LEFT) { 3849 /* 3850 * Region is on the left edge of the existing 3851 * record. 3852 */ 3853 le32_add_cpu(&rec->e_cpos, 3854 le16_to_cpu(split_rec->e_leaf_clusters)); 3855 le64_add_cpu(&rec->e_blkno, len_blocks); 3856 le16_add_cpu(&rec->e_leaf_clusters, 3857 -le16_to_cpu(split_rec->e_leaf_clusters)); 3858 } else { 3859 /* 3860 * Region is on the right edge of the existing 3861 * record. 3862 */ 3863 le16_add_cpu(&rec->e_leaf_clusters, 3864 -le16_to_cpu(split_rec->e_leaf_clusters)); 3865 } 3866 } 3867 3868 /* 3869 * Do the final bits of extent record insertion at the target leaf 3870 * list. If this leaf is part of an allocation tree, it is assumed 3871 * that the tree above has been prepared. 3872 */ 3873 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3874 struct ocfs2_extent_rec *insert_rec, 3875 struct ocfs2_extent_list *el, 3876 struct ocfs2_insert_type *insert) 3877 { 3878 int i = insert->ins_contig_index; 3879 unsigned int range; 3880 struct ocfs2_extent_rec *rec; 3881 3882 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3883 3884 if (insert->ins_split != SPLIT_NONE) { 3885 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3886 BUG_ON(i == -1); 3887 rec = &el->l_recs[i]; 3888 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3889 insert->ins_split, rec, 3890 insert_rec); 3891 goto rotate; 3892 } 3893 3894 /* 3895 * Contiguous insert - either left or right. 3896 */ 3897 if (insert->ins_contig != CONTIG_NONE) { 3898 rec = &el->l_recs[i]; 3899 if (insert->ins_contig == CONTIG_LEFT) { 3900 rec->e_blkno = insert_rec->e_blkno; 3901 rec->e_cpos = insert_rec->e_cpos; 3902 } 3903 le16_add_cpu(&rec->e_leaf_clusters, 3904 le16_to_cpu(insert_rec->e_leaf_clusters)); 3905 return; 3906 } 3907 3908 /* 3909 * Handle insert into an empty leaf. 3910 */ 3911 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3912 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3913 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3914 el->l_recs[0] = *insert_rec; 3915 el->l_next_free_rec = cpu_to_le16(1); 3916 return; 3917 } 3918 3919 /* 3920 * Appending insert. 3921 */ 3922 if (insert->ins_appending == APPEND_TAIL) { 3923 i = le16_to_cpu(el->l_next_free_rec) - 1; 3924 rec = &el->l_recs[i]; 3925 range = le32_to_cpu(rec->e_cpos) 3926 + le16_to_cpu(rec->e_leaf_clusters); 3927 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3928 3929 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3930 le16_to_cpu(el->l_count), 3931 "owner %llu, depth %u, count %u, next free %u, " 3932 "rec.cpos %u, rec.clusters %u, " 3933 "insert.cpos %u, insert.clusters %u\n", 3934 ocfs2_metadata_cache_owner(et->et_ci), 3935 le16_to_cpu(el->l_tree_depth), 3936 le16_to_cpu(el->l_count), 3937 le16_to_cpu(el->l_next_free_rec), 3938 le32_to_cpu(el->l_recs[i].e_cpos), 3939 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3940 le32_to_cpu(insert_rec->e_cpos), 3941 le16_to_cpu(insert_rec->e_leaf_clusters)); 3942 i++; 3943 el->l_recs[i] = *insert_rec; 3944 le16_add_cpu(&el->l_next_free_rec, 1); 3945 return; 3946 } 3947 3948 rotate: 3949 /* 3950 * Ok, we have to rotate. 3951 * 3952 * At this point, it is safe to assume that inserting into an 3953 * empty leaf and appending to a leaf have both been handled 3954 * above. 3955 * 3956 * This leaf needs to have space, either by the empty 1st 3957 * extent record, or by virtue of an l_next_free_rec < l_count. 3958 */ 3959 ocfs2_rotate_leaf(el, insert_rec); 3960 } 3961 3962 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3963 struct ocfs2_extent_tree *et, 3964 struct ocfs2_path *path, 3965 struct ocfs2_extent_rec *insert_rec) 3966 { 3967 int i, next_free; 3968 struct buffer_head *bh; 3969 struct ocfs2_extent_list *el; 3970 struct ocfs2_extent_rec *rec; 3971 3972 /* 3973 * Update everything except the leaf block. 3974 */ 3975 for (i = 0; i < path->p_tree_depth; i++) { 3976 bh = path->p_node[i].bh; 3977 el = path->p_node[i].el; 3978 3979 next_free = le16_to_cpu(el->l_next_free_rec); 3980 if (next_free == 0) { 3981 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3982 "Owner %llu has a bad extent list\n", 3983 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3984 return; 3985 } 3986 3987 rec = &el->l_recs[next_free - 1]; 3988 3989 rec->e_int_clusters = insert_rec->e_cpos; 3990 le32_add_cpu(&rec->e_int_clusters, 3991 le16_to_cpu(insert_rec->e_leaf_clusters)); 3992 le32_add_cpu(&rec->e_int_clusters, 3993 -le32_to_cpu(rec->e_cpos)); 3994 3995 ocfs2_journal_dirty(handle, bh); 3996 } 3997 } 3998 3999 static int ocfs2_append_rec_to_path(handle_t *handle, 4000 struct ocfs2_extent_tree *et, 4001 struct ocfs2_extent_rec *insert_rec, 4002 struct ocfs2_path *right_path, 4003 struct ocfs2_path **ret_left_path) 4004 { 4005 int ret, next_free; 4006 struct ocfs2_extent_list *el; 4007 struct ocfs2_path *left_path = NULL; 4008 4009 *ret_left_path = NULL; 4010 4011 /* 4012 * This shouldn't happen for non-trees. The extent rec cluster 4013 * count manipulation below only works for interior nodes. 4014 */ 4015 BUG_ON(right_path->p_tree_depth == 0); 4016 4017 /* 4018 * If our appending insert is at the leftmost edge of a leaf, 4019 * then we might need to update the rightmost records of the 4020 * neighboring path. 4021 */ 4022 el = path_leaf_el(right_path); 4023 next_free = le16_to_cpu(el->l_next_free_rec); 4024 if (next_free == 0 || 4025 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4026 u32 left_cpos; 4027 4028 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4029 right_path, &left_cpos); 4030 if (ret) { 4031 mlog_errno(ret); 4032 goto out; 4033 } 4034 4035 trace_ocfs2_append_rec_to_path( 4036 (unsigned long long) 4037 ocfs2_metadata_cache_owner(et->et_ci), 4038 le32_to_cpu(insert_rec->e_cpos), 4039 left_cpos); 4040 4041 /* 4042 * No need to worry if the append is already in the 4043 * leftmost leaf. 4044 */ 4045 if (left_cpos) { 4046 left_path = ocfs2_new_path_from_path(right_path); 4047 if (!left_path) { 4048 ret = -ENOMEM; 4049 mlog_errno(ret); 4050 goto out; 4051 } 4052 4053 ret = ocfs2_find_path(et->et_ci, left_path, 4054 left_cpos); 4055 if (ret) { 4056 mlog_errno(ret); 4057 goto out; 4058 } 4059 4060 /* 4061 * ocfs2_insert_path() will pass the left_path to the 4062 * journal for us. 4063 */ 4064 } 4065 } 4066 4067 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4068 if (ret) { 4069 mlog_errno(ret); 4070 goto out; 4071 } 4072 4073 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4074 4075 *ret_left_path = left_path; 4076 ret = 0; 4077 out: 4078 if (ret != 0) 4079 ocfs2_free_path(left_path); 4080 4081 return ret; 4082 } 4083 4084 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4085 struct ocfs2_path *left_path, 4086 struct ocfs2_path *right_path, 4087 struct ocfs2_extent_rec *split_rec, 4088 enum ocfs2_split_type split) 4089 { 4090 int index; 4091 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4092 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4093 struct ocfs2_extent_rec *rec, *tmprec; 4094 4095 right_el = path_leaf_el(right_path); 4096 if (left_path) 4097 left_el = path_leaf_el(left_path); 4098 4099 el = right_el; 4100 insert_el = right_el; 4101 index = ocfs2_search_extent_list(el, cpos); 4102 if (index != -1) { 4103 if (index == 0 && left_path) { 4104 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4105 4106 /* 4107 * This typically means that the record 4108 * started in the left path but moved to the 4109 * right as a result of rotation. We either 4110 * move the existing record to the left, or we 4111 * do the later insert there. 4112 * 4113 * In this case, the left path should always 4114 * exist as the rotate code will have passed 4115 * it back for a post-insert update. 4116 */ 4117 4118 if (split == SPLIT_LEFT) { 4119 /* 4120 * It's a left split. Since we know 4121 * that the rotate code gave us an 4122 * empty extent in the left path, we 4123 * can just do the insert there. 4124 */ 4125 insert_el = left_el; 4126 } else { 4127 /* 4128 * Right split - we have to move the 4129 * existing record over to the left 4130 * leaf. The insert will be into the 4131 * newly created empty extent in the 4132 * right leaf. 4133 */ 4134 tmprec = &right_el->l_recs[index]; 4135 ocfs2_rotate_leaf(left_el, tmprec); 4136 el = left_el; 4137 4138 memset(tmprec, 0, sizeof(*tmprec)); 4139 index = ocfs2_search_extent_list(left_el, cpos); 4140 BUG_ON(index == -1); 4141 } 4142 } 4143 } else { 4144 BUG_ON(!left_path); 4145 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4146 /* 4147 * Left path is easy - we can just allow the insert to 4148 * happen. 4149 */ 4150 el = left_el; 4151 insert_el = left_el; 4152 index = ocfs2_search_extent_list(el, cpos); 4153 BUG_ON(index == -1); 4154 } 4155 4156 rec = &el->l_recs[index]; 4157 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4158 split, rec, split_rec); 4159 ocfs2_rotate_leaf(insert_el, split_rec); 4160 } 4161 4162 /* 4163 * This function only does inserts on an allocation b-tree. For tree 4164 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4165 * 4166 * right_path is the path we want to do the actual insert 4167 * in. left_path should only be passed in if we need to update that 4168 * portion of the tree after an edge insert. 4169 */ 4170 static int ocfs2_insert_path(handle_t *handle, 4171 struct ocfs2_extent_tree *et, 4172 struct ocfs2_path *left_path, 4173 struct ocfs2_path *right_path, 4174 struct ocfs2_extent_rec *insert_rec, 4175 struct ocfs2_insert_type *insert) 4176 { 4177 int ret, subtree_index; 4178 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4179 4180 if (left_path) { 4181 /* 4182 * There's a chance that left_path got passed back to 4183 * us without being accounted for in the 4184 * journal. Extend our transaction here to be sure we 4185 * can change those blocks. 4186 */ 4187 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4188 if (ret < 0) { 4189 mlog_errno(ret); 4190 goto out; 4191 } 4192 4193 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4194 if (ret < 0) { 4195 mlog_errno(ret); 4196 goto out; 4197 } 4198 } 4199 4200 /* 4201 * Pass both paths to the journal. The majority of inserts 4202 * will be touching all components anyway. 4203 */ 4204 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4205 if (ret < 0) { 4206 mlog_errno(ret); 4207 goto out; 4208 } 4209 4210 if (insert->ins_split != SPLIT_NONE) { 4211 /* 4212 * We could call ocfs2_insert_at_leaf() for some types 4213 * of splits, but it's easier to just let one separate 4214 * function sort it all out. 4215 */ 4216 ocfs2_split_record(et, left_path, right_path, 4217 insert_rec, insert->ins_split); 4218 4219 /* 4220 * Split might have modified either leaf and we don't 4221 * have a guarantee that the later edge insert will 4222 * dirty this for us. 4223 */ 4224 if (left_path) 4225 ocfs2_journal_dirty(handle, 4226 path_leaf_bh(left_path)); 4227 } else 4228 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4229 insert); 4230 4231 ocfs2_journal_dirty(handle, leaf_bh); 4232 4233 if (left_path) { 4234 /* 4235 * The rotate code has indicated that we need to fix 4236 * up portions of the tree after the insert. 4237 * 4238 * XXX: Should we extend the transaction here? 4239 */ 4240 subtree_index = ocfs2_find_subtree_root(et, left_path, 4241 right_path); 4242 ocfs2_complete_edge_insert(handle, left_path, right_path, 4243 subtree_index); 4244 } 4245 4246 ret = 0; 4247 out: 4248 return ret; 4249 } 4250 4251 static int ocfs2_do_insert_extent(handle_t *handle, 4252 struct ocfs2_extent_tree *et, 4253 struct ocfs2_extent_rec *insert_rec, 4254 struct ocfs2_insert_type *type) 4255 { 4256 int ret, rotate = 0; 4257 u32 cpos; 4258 struct ocfs2_path *right_path = NULL; 4259 struct ocfs2_path *left_path = NULL; 4260 struct ocfs2_extent_list *el; 4261 4262 el = et->et_root_el; 4263 4264 ret = ocfs2_et_root_journal_access(handle, et, 4265 OCFS2_JOURNAL_ACCESS_WRITE); 4266 if (ret) { 4267 mlog_errno(ret); 4268 goto out; 4269 } 4270 4271 if (le16_to_cpu(el->l_tree_depth) == 0) { 4272 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4273 goto out_update_clusters; 4274 } 4275 4276 right_path = ocfs2_new_path_from_et(et); 4277 if (!right_path) { 4278 ret = -ENOMEM; 4279 mlog_errno(ret); 4280 goto out; 4281 } 4282 4283 /* 4284 * Determine the path to start with. Rotations need the 4285 * rightmost path, everything else can go directly to the 4286 * target leaf. 4287 */ 4288 cpos = le32_to_cpu(insert_rec->e_cpos); 4289 if (type->ins_appending == APPEND_NONE && 4290 type->ins_contig == CONTIG_NONE) { 4291 rotate = 1; 4292 cpos = UINT_MAX; 4293 } 4294 4295 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4296 if (ret) { 4297 mlog_errno(ret); 4298 goto out; 4299 } 4300 4301 /* 4302 * Rotations and appends need special treatment - they modify 4303 * parts of the tree's above them. 4304 * 4305 * Both might pass back a path immediate to the left of the 4306 * one being inserted to. This will be cause 4307 * ocfs2_insert_path() to modify the rightmost records of 4308 * left_path to account for an edge insert. 4309 * 4310 * XXX: When modifying this code, keep in mind that an insert 4311 * can wind up skipping both of these two special cases... 4312 */ 4313 if (rotate) { 4314 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4315 le32_to_cpu(insert_rec->e_cpos), 4316 right_path, &left_path); 4317 if (ret) { 4318 mlog_errno(ret); 4319 goto out; 4320 } 4321 4322 /* 4323 * ocfs2_rotate_tree_right() might have extended the 4324 * transaction without re-journaling our tree root. 4325 */ 4326 ret = ocfs2_et_root_journal_access(handle, et, 4327 OCFS2_JOURNAL_ACCESS_WRITE); 4328 if (ret) { 4329 mlog_errno(ret); 4330 goto out; 4331 } 4332 } else if (type->ins_appending == APPEND_TAIL 4333 && type->ins_contig != CONTIG_LEFT) { 4334 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4335 right_path, &left_path); 4336 if (ret) { 4337 mlog_errno(ret); 4338 goto out; 4339 } 4340 } 4341 4342 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4343 insert_rec, type); 4344 if (ret) { 4345 mlog_errno(ret); 4346 goto out; 4347 } 4348 4349 out_update_clusters: 4350 if (type->ins_split == SPLIT_NONE) 4351 ocfs2_et_update_clusters(et, 4352 le16_to_cpu(insert_rec->e_leaf_clusters)); 4353 4354 ocfs2_journal_dirty(handle, et->et_root_bh); 4355 4356 out: 4357 ocfs2_free_path(left_path); 4358 ocfs2_free_path(right_path); 4359 4360 return ret; 4361 } 4362 4363 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4364 struct ocfs2_path *path, 4365 struct ocfs2_extent_list *el, int index, 4366 struct ocfs2_extent_rec *split_rec, 4367 struct ocfs2_merge_ctxt *ctxt) 4368 { 4369 int status = 0; 4370 enum ocfs2_contig_type ret = CONTIG_NONE; 4371 u32 left_cpos, right_cpos; 4372 struct ocfs2_extent_rec *rec = NULL; 4373 struct ocfs2_extent_list *new_el; 4374 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4375 struct buffer_head *bh; 4376 struct ocfs2_extent_block *eb; 4377 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4378 4379 if (index > 0) { 4380 rec = &el->l_recs[index - 1]; 4381 } else if (path->p_tree_depth > 0) { 4382 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4383 if (status) 4384 goto exit; 4385 4386 if (left_cpos != 0) { 4387 left_path = ocfs2_new_path_from_path(path); 4388 if (!left_path) { 4389 status = -ENOMEM; 4390 mlog_errno(status); 4391 goto exit; 4392 } 4393 4394 status = ocfs2_find_path(et->et_ci, left_path, 4395 left_cpos); 4396 if (status) 4397 goto free_left_path; 4398 4399 new_el = path_leaf_el(left_path); 4400 4401 if (le16_to_cpu(new_el->l_next_free_rec) != 4402 le16_to_cpu(new_el->l_count)) { 4403 bh = path_leaf_bh(left_path); 4404 eb = (struct ocfs2_extent_block *)bh->b_data; 4405 status = ocfs2_error(sb, 4406 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4407 (unsigned long long)le64_to_cpu(eb->h_blkno), 4408 le16_to_cpu(new_el->l_next_free_rec), 4409 le16_to_cpu(new_el->l_count)); 4410 goto free_left_path; 4411 } 4412 rec = &new_el->l_recs[ 4413 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4414 } 4415 } 4416 4417 /* 4418 * We're careful to check for an empty extent record here - 4419 * the merge code will know what to do if it sees one. 4420 */ 4421 if (rec) { 4422 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4423 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4424 ret = CONTIG_RIGHT; 4425 } else { 4426 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4427 } 4428 } 4429 4430 rec = NULL; 4431 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4432 rec = &el->l_recs[index + 1]; 4433 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4434 path->p_tree_depth > 0) { 4435 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4436 if (status) 4437 goto free_left_path; 4438 4439 if (right_cpos == 0) 4440 goto free_left_path; 4441 4442 right_path = ocfs2_new_path_from_path(path); 4443 if (!right_path) { 4444 status = -ENOMEM; 4445 mlog_errno(status); 4446 goto free_left_path; 4447 } 4448 4449 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4450 if (status) 4451 goto free_right_path; 4452 4453 new_el = path_leaf_el(right_path); 4454 rec = &new_el->l_recs[0]; 4455 if (ocfs2_is_empty_extent(rec)) { 4456 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4457 bh = path_leaf_bh(right_path); 4458 eb = (struct ocfs2_extent_block *)bh->b_data; 4459 status = ocfs2_error(sb, 4460 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4461 (unsigned long long)le64_to_cpu(eb->h_blkno), 4462 le16_to_cpu(new_el->l_next_free_rec)); 4463 goto free_right_path; 4464 } 4465 rec = &new_el->l_recs[1]; 4466 } 4467 } 4468 4469 if (rec) { 4470 enum ocfs2_contig_type contig_type; 4471 4472 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4473 4474 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4475 ret = CONTIG_LEFTRIGHT; 4476 else if (ret == CONTIG_NONE) 4477 ret = contig_type; 4478 } 4479 4480 free_right_path: 4481 ocfs2_free_path(right_path); 4482 free_left_path: 4483 ocfs2_free_path(left_path); 4484 exit: 4485 if (status == 0) 4486 ctxt->c_contig_type = ret; 4487 4488 return status; 4489 } 4490 4491 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4492 struct ocfs2_insert_type *insert, 4493 struct ocfs2_extent_list *el, 4494 struct ocfs2_extent_rec *insert_rec) 4495 { 4496 int i; 4497 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4498 4499 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4500 4501 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4502 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4503 insert_rec); 4504 if (contig_type != CONTIG_NONE) { 4505 insert->ins_contig_index = i; 4506 break; 4507 } 4508 } 4509 insert->ins_contig = contig_type; 4510 4511 if (insert->ins_contig != CONTIG_NONE) { 4512 struct ocfs2_extent_rec *rec = 4513 &el->l_recs[insert->ins_contig_index]; 4514 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4515 le16_to_cpu(insert_rec->e_leaf_clusters); 4516 4517 /* 4518 * Caller might want us to limit the size of extents, don't 4519 * calculate contiguousness if we might exceed that limit. 4520 */ 4521 if (et->et_max_leaf_clusters && 4522 (len > et->et_max_leaf_clusters)) 4523 insert->ins_contig = CONTIG_NONE; 4524 } 4525 } 4526 4527 /* 4528 * This should only be called against the rightmost leaf extent list. 4529 * 4530 * ocfs2_figure_appending_type() will figure out whether we'll have to 4531 * insert at the tail of the rightmost leaf. 4532 * 4533 * This should also work against the root extent list for tree's with 0 4534 * depth. If we consider the root extent list to be the rightmost leaf node 4535 * then the logic here makes sense. 4536 */ 4537 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4538 struct ocfs2_extent_list *el, 4539 struct ocfs2_extent_rec *insert_rec) 4540 { 4541 int i; 4542 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4543 struct ocfs2_extent_rec *rec; 4544 4545 insert->ins_appending = APPEND_NONE; 4546 4547 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4548 4549 if (!el->l_next_free_rec) 4550 goto set_tail_append; 4551 4552 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4553 /* Were all records empty? */ 4554 if (le16_to_cpu(el->l_next_free_rec) == 1) 4555 goto set_tail_append; 4556 } 4557 4558 i = le16_to_cpu(el->l_next_free_rec) - 1; 4559 rec = &el->l_recs[i]; 4560 4561 if (cpos >= 4562 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4563 goto set_tail_append; 4564 4565 return; 4566 4567 set_tail_append: 4568 insert->ins_appending = APPEND_TAIL; 4569 } 4570 4571 /* 4572 * Helper function called at the beginning of an insert. 4573 * 4574 * This computes a few things that are commonly used in the process of 4575 * inserting into the btree: 4576 * - Whether the new extent is contiguous with an existing one. 4577 * - The current tree depth. 4578 * - Whether the insert is an appending one. 4579 * - The total # of free records in the tree. 4580 * 4581 * All of the information is stored on the ocfs2_insert_type 4582 * structure. 4583 */ 4584 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4585 struct buffer_head **last_eb_bh, 4586 struct ocfs2_extent_rec *insert_rec, 4587 int *free_records, 4588 struct ocfs2_insert_type *insert) 4589 { 4590 int ret; 4591 struct ocfs2_extent_block *eb; 4592 struct ocfs2_extent_list *el; 4593 struct ocfs2_path *path = NULL; 4594 struct buffer_head *bh = NULL; 4595 4596 insert->ins_split = SPLIT_NONE; 4597 4598 el = et->et_root_el; 4599 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4600 4601 if (el->l_tree_depth) { 4602 /* 4603 * If we have tree depth, we read in the 4604 * rightmost extent block ahead of time as 4605 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4606 * may want it later. 4607 */ 4608 ret = ocfs2_read_extent_block(et->et_ci, 4609 ocfs2_et_get_last_eb_blk(et), 4610 &bh); 4611 if (ret) { 4612 mlog_errno(ret); 4613 goto out; 4614 } 4615 eb = (struct ocfs2_extent_block *) bh->b_data; 4616 el = &eb->h_list; 4617 } 4618 4619 /* 4620 * Unless we have a contiguous insert, we'll need to know if 4621 * there is room left in our allocation tree for another 4622 * extent record. 4623 * 4624 * XXX: This test is simplistic, we can search for empty 4625 * extent records too. 4626 */ 4627 *free_records = le16_to_cpu(el->l_count) - 4628 le16_to_cpu(el->l_next_free_rec); 4629 4630 if (!insert->ins_tree_depth) { 4631 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4632 ocfs2_figure_appending_type(insert, el, insert_rec); 4633 return 0; 4634 } 4635 4636 path = ocfs2_new_path_from_et(et); 4637 if (!path) { 4638 ret = -ENOMEM; 4639 mlog_errno(ret); 4640 goto out; 4641 } 4642 4643 /* 4644 * In the case that we're inserting past what the tree 4645 * currently accounts for, ocfs2_find_path() will return for 4646 * us the rightmost tree path. This is accounted for below in 4647 * the appending code. 4648 */ 4649 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4650 if (ret) { 4651 mlog_errno(ret); 4652 goto out; 4653 } 4654 4655 el = path_leaf_el(path); 4656 4657 /* 4658 * Now that we have the path, there's two things we want to determine: 4659 * 1) Contiguousness (also set contig_index if this is so) 4660 * 4661 * 2) Are we doing an append? We can trivially break this up 4662 * into two types of appends: simple record append, or a 4663 * rotate inside the tail leaf. 4664 */ 4665 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4666 4667 /* 4668 * The insert code isn't quite ready to deal with all cases of 4669 * left contiguousness. Specifically, if it's an insert into 4670 * the 1st record in a leaf, it will require the adjustment of 4671 * cluster count on the last record of the path directly to it's 4672 * left. For now, just catch that case and fool the layers 4673 * above us. This works just fine for tree_depth == 0, which 4674 * is why we allow that above. 4675 */ 4676 if (insert->ins_contig == CONTIG_LEFT && 4677 insert->ins_contig_index == 0) 4678 insert->ins_contig = CONTIG_NONE; 4679 4680 /* 4681 * Ok, so we can simply compare against last_eb to figure out 4682 * whether the path doesn't exist. This will only happen in 4683 * the case that we're doing a tail append, so maybe we can 4684 * take advantage of that information somehow. 4685 */ 4686 if (ocfs2_et_get_last_eb_blk(et) == 4687 path_leaf_bh(path)->b_blocknr) { 4688 /* 4689 * Ok, ocfs2_find_path() returned us the rightmost 4690 * tree path. This might be an appending insert. There are 4691 * two cases: 4692 * 1) We're doing a true append at the tail: 4693 * -This might even be off the end of the leaf 4694 * 2) We're "appending" by rotating in the tail 4695 */ 4696 ocfs2_figure_appending_type(insert, el, insert_rec); 4697 } 4698 4699 out: 4700 ocfs2_free_path(path); 4701 4702 if (ret == 0) 4703 *last_eb_bh = bh; 4704 else 4705 brelse(bh); 4706 return ret; 4707 } 4708 4709 /* 4710 * Insert an extent into a btree. 4711 * 4712 * The caller needs to update the owning btree's cluster count. 4713 */ 4714 int ocfs2_insert_extent(handle_t *handle, 4715 struct ocfs2_extent_tree *et, 4716 u32 cpos, 4717 u64 start_blk, 4718 u32 new_clusters, 4719 u8 flags, 4720 struct ocfs2_alloc_context *meta_ac) 4721 { 4722 int status; 4723 int free_records; 4724 struct buffer_head *last_eb_bh = NULL; 4725 struct ocfs2_insert_type insert = {0, }; 4726 struct ocfs2_extent_rec rec; 4727 4728 trace_ocfs2_insert_extent_start( 4729 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4730 cpos, new_clusters); 4731 4732 memset(&rec, 0, sizeof(rec)); 4733 rec.e_cpos = cpu_to_le32(cpos); 4734 rec.e_blkno = cpu_to_le64(start_blk); 4735 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4736 rec.e_flags = flags; 4737 status = ocfs2_et_insert_check(et, &rec); 4738 if (status) { 4739 mlog_errno(status); 4740 goto bail; 4741 } 4742 4743 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4744 &free_records, &insert); 4745 if (status < 0) { 4746 mlog_errno(status); 4747 goto bail; 4748 } 4749 4750 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4751 insert.ins_contig_index, free_records, 4752 insert.ins_tree_depth); 4753 4754 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4755 status = ocfs2_grow_tree(handle, et, 4756 &insert.ins_tree_depth, &last_eb_bh, 4757 meta_ac); 4758 if (status) { 4759 mlog_errno(status); 4760 goto bail; 4761 } 4762 } 4763 4764 /* Finally, we can add clusters. This might rotate the tree for us. */ 4765 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4766 if (status < 0) 4767 mlog_errno(status); 4768 else 4769 ocfs2_et_extent_map_insert(et, &rec); 4770 4771 bail: 4772 brelse(last_eb_bh); 4773 4774 return status; 4775 } 4776 4777 /* 4778 * Allocate and add clusters into the extent b-tree. 4779 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4780 * The extent b-tree's root is specified by et, and 4781 * it is not limited to the file storage. Any extent tree can use this 4782 * function if it implements the proper ocfs2_extent_tree. 4783 */ 4784 int ocfs2_add_clusters_in_btree(handle_t *handle, 4785 struct ocfs2_extent_tree *et, 4786 u32 *logical_offset, 4787 u32 clusters_to_add, 4788 int mark_unwritten, 4789 struct ocfs2_alloc_context *data_ac, 4790 struct ocfs2_alloc_context *meta_ac, 4791 enum ocfs2_alloc_restarted *reason_ret) 4792 { 4793 int status = 0, err = 0; 4794 int need_free = 0; 4795 int free_extents; 4796 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4797 u32 bit_off, num_bits; 4798 u64 block; 4799 u8 flags = 0; 4800 struct ocfs2_super *osb = 4801 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4802 4803 BUG_ON(!clusters_to_add); 4804 4805 if (mark_unwritten) 4806 flags = OCFS2_EXT_UNWRITTEN; 4807 4808 free_extents = ocfs2_num_free_extents(et); 4809 if (free_extents < 0) { 4810 status = free_extents; 4811 mlog_errno(status); 4812 goto leave; 4813 } 4814 4815 /* there are two cases which could cause us to EAGAIN in the 4816 * we-need-more-metadata case: 4817 * 1) we haven't reserved *any* 4818 * 2) we are so fragmented, we've needed to add metadata too 4819 * many times. */ 4820 if (!free_extents && !meta_ac) { 4821 err = -1; 4822 status = -EAGAIN; 4823 reason = RESTART_META; 4824 goto leave; 4825 } else if ((!free_extents) 4826 && (ocfs2_alloc_context_bits_left(meta_ac) 4827 < ocfs2_extend_meta_needed(et->et_root_el))) { 4828 err = -2; 4829 status = -EAGAIN; 4830 reason = RESTART_META; 4831 goto leave; 4832 } 4833 4834 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4835 clusters_to_add, &bit_off, &num_bits); 4836 if (status < 0) { 4837 if (status != -ENOSPC) 4838 mlog_errno(status); 4839 goto leave; 4840 } 4841 4842 BUG_ON(num_bits > clusters_to_add); 4843 4844 /* reserve our write early -- insert_extent may update the tree root */ 4845 status = ocfs2_et_root_journal_access(handle, et, 4846 OCFS2_JOURNAL_ACCESS_WRITE); 4847 if (status < 0) { 4848 mlog_errno(status); 4849 need_free = 1; 4850 goto bail; 4851 } 4852 4853 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4854 trace_ocfs2_add_clusters_in_btree( 4855 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4856 bit_off, num_bits); 4857 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4858 num_bits, flags, meta_ac); 4859 if (status < 0) { 4860 mlog_errno(status); 4861 need_free = 1; 4862 goto bail; 4863 } 4864 4865 ocfs2_journal_dirty(handle, et->et_root_bh); 4866 4867 clusters_to_add -= num_bits; 4868 *logical_offset += num_bits; 4869 4870 if (clusters_to_add) { 4871 err = clusters_to_add; 4872 status = -EAGAIN; 4873 reason = RESTART_TRANS; 4874 } 4875 4876 bail: 4877 if (need_free) { 4878 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4879 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4880 bit_off, num_bits); 4881 else 4882 ocfs2_free_clusters(handle, 4883 data_ac->ac_inode, 4884 data_ac->ac_bh, 4885 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4886 num_bits); 4887 } 4888 4889 leave: 4890 if (reason_ret) 4891 *reason_ret = reason; 4892 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4893 return status; 4894 } 4895 4896 static void ocfs2_make_right_split_rec(struct super_block *sb, 4897 struct ocfs2_extent_rec *split_rec, 4898 u32 cpos, 4899 struct ocfs2_extent_rec *rec) 4900 { 4901 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4902 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4903 4904 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4905 4906 split_rec->e_cpos = cpu_to_le32(cpos); 4907 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4908 4909 split_rec->e_blkno = rec->e_blkno; 4910 le64_add_cpu(&split_rec->e_blkno, 4911 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4912 4913 split_rec->e_flags = rec->e_flags; 4914 } 4915 4916 static int ocfs2_split_and_insert(handle_t *handle, 4917 struct ocfs2_extent_tree *et, 4918 struct ocfs2_path *path, 4919 struct buffer_head **last_eb_bh, 4920 int split_index, 4921 struct ocfs2_extent_rec *orig_split_rec, 4922 struct ocfs2_alloc_context *meta_ac) 4923 { 4924 int ret = 0, depth; 4925 unsigned int insert_range, rec_range, do_leftright = 0; 4926 struct ocfs2_extent_rec tmprec; 4927 struct ocfs2_extent_list *rightmost_el; 4928 struct ocfs2_extent_rec rec; 4929 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4930 struct ocfs2_insert_type insert; 4931 struct ocfs2_extent_block *eb; 4932 4933 leftright: 4934 /* 4935 * Store a copy of the record on the stack - it might move 4936 * around as the tree is manipulated below. 4937 */ 4938 rec = path_leaf_el(path)->l_recs[split_index]; 4939 4940 rightmost_el = et->et_root_el; 4941 4942 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4943 if (depth) { 4944 BUG_ON(!(*last_eb_bh)); 4945 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4946 rightmost_el = &eb->h_list; 4947 } 4948 4949 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4950 le16_to_cpu(rightmost_el->l_count)) { 4951 ret = ocfs2_grow_tree(handle, et, 4952 &depth, last_eb_bh, meta_ac); 4953 if (ret) { 4954 mlog_errno(ret); 4955 goto out; 4956 } 4957 } 4958 4959 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4960 insert.ins_appending = APPEND_NONE; 4961 insert.ins_contig = CONTIG_NONE; 4962 insert.ins_tree_depth = depth; 4963 4964 insert_range = le32_to_cpu(split_rec.e_cpos) + 4965 le16_to_cpu(split_rec.e_leaf_clusters); 4966 rec_range = le32_to_cpu(rec.e_cpos) + 4967 le16_to_cpu(rec.e_leaf_clusters); 4968 4969 if (split_rec.e_cpos == rec.e_cpos) { 4970 insert.ins_split = SPLIT_LEFT; 4971 } else if (insert_range == rec_range) { 4972 insert.ins_split = SPLIT_RIGHT; 4973 } else { 4974 /* 4975 * Left/right split. We fake this as a right split 4976 * first and then make a second pass as a left split. 4977 */ 4978 insert.ins_split = SPLIT_RIGHT; 4979 4980 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4981 &tmprec, insert_range, &rec); 4982 4983 split_rec = tmprec; 4984 4985 BUG_ON(do_leftright); 4986 do_leftright = 1; 4987 } 4988 4989 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4990 if (ret) { 4991 mlog_errno(ret); 4992 goto out; 4993 } 4994 4995 if (do_leftright == 1) { 4996 u32 cpos; 4997 struct ocfs2_extent_list *el; 4998 4999 do_leftright++; 5000 split_rec = *orig_split_rec; 5001 5002 ocfs2_reinit_path(path, 1); 5003 5004 cpos = le32_to_cpu(split_rec.e_cpos); 5005 ret = ocfs2_find_path(et->et_ci, path, cpos); 5006 if (ret) { 5007 mlog_errno(ret); 5008 goto out; 5009 } 5010 5011 el = path_leaf_el(path); 5012 split_index = ocfs2_search_extent_list(el, cpos); 5013 if (split_index == -1) { 5014 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5015 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5016 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5017 cpos); 5018 ret = -EROFS; 5019 goto out; 5020 } 5021 goto leftright; 5022 } 5023 out: 5024 5025 return ret; 5026 } 5027 5028 static int ocfs2_replace_extent_rec(handle_t *handle, 5029 struct ocfs2_extent_tree *et, 5030 struct ocfs2_path *path, 5031 struct ocfs2_extent_list *el, 5032 int split_index, 5033 struct ocfs2_extent_rec *split_rec) 5034 { 5035 int ret; 5036 5037 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5038 path_num_items(path) - 1); 5039 if (ret) { 5040 mlog_errno(ret); 5041 goto out; 5042 } 5043 5044 el->l_recs[split_index] = *split_rec; 5045 5046 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5047 out: 5048 return ret; 5049 } 5050 5051 /* 5052 * Split part or all of the extent record at split_index in the leaf 5053 * pointed to by path. Merge with the contiguous extent record if needed. 5054 * 5055 * Care is taken to handle contiguousness so as to not grow the tree. 5056 * 5057 * meta_ac is not strictly necessary - we only truly need it if growth 5058 * of the tree is required. All other cases will degrade into a less 5059 * optimal tree layout. 5060 * 5061 * last_eb_bh should be the rightmost leaf block for any extent 5062 * btree. Since a split may grow the tree or a merge might shrink it, 5063 * the caller cannot trust the contents of that buffer after this call. 5064 * 5065 * This code is optimized for readability - several passes might be 5066 * made over certain portions of the tree. All of those blocks will 5067 * have been brought into cache (and pinned via the journal), so the 5068 * extra overhead is not expressed in terms of disk reads. 5069 */ 5070 int ocfs2_split_extent(handle_t *handle, 5071 struct ocfs2_extent_tree *et, 5072 struct ocfs2_path *path, 5073 int split_index, 5074 struct ocfs2_extent_rec *split_rec, 5075 struct ocfs2_alloc_context *meta_ac, 5076 struct ocfs2_cached_dealloc_ctxt *dealloc) 5077 { 5078 int ret = 0; 5079 struct ocfs2_extent_list *el = path_leaf_el(path); 5080 struct buffer_head *last_eb_bh = NULL; 5081 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5082 struct ocfs2_merge_ctxt ctxt; 5083 5084 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5085 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5086 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5087 ret = -EIO; 5088 mlog_errno(ret); 5089 goto out; 5090 } 5091 5092 ret = ocfs2_figure_merge_contig_type(et, path, el, 5093 split_index, 5094 split_rec, 5095 &ctxt); 5096 if (ret) { 5097 mlog_errno(ret); 5098 goto out; 5099 } 5100 5101 /* 5102 * The core merge / split code wants to know how much room is 5103 * left in this allocation tree, so we pass the 5104 * rightmost extent list. 5105 */ 5106 if (path->p_tree_depth) { 5107 ret = ocfs2_read_extent_block(et->et_ci, 5108 ocfs2_et_get_last_eb_blk(et), 5109 &last_eb_bh); 5110 if (ret) { 5111 mlog_errno(ret); 5112 goto out; 5113 } 5114 } 5115 5116 if (rec->e_cpos == split_rec->e_cpos && 5117 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5118 ctxt.c_split_covers_rec = 1; 5119 else 5120 ctxt.c_split_covers_rec = 0; 5121 5122 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5123 5124 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5125 ctxt.c_has_empty_extent, 5126 ctxt.c_split_covers_rec); 5127 5128 if (ctxt.c_contig_type == CONTIG_NONE) { 5129 if (ctxt.c_split_covers_rec) 5130 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5131 split_index, split_rec); 5132 else 5133 ret = ocfs2_split_and_insert(handle, et, path, 5134 &last_eb_bh, split_index, 5135 split_rec, meta_ac); 5136 if (ret) 5137 mlog_errno(ret); 5138 } else { 5139 ret = ocfs2_try_to_merge_extent(handle, et, path, 5140 split_index, split_rec, 5141 dealloc, &ctxt); 5142 if (ret) 5143 mlog_errno(ret); 5144 } 5145 5146 out: 5147 brelse(last_eb_bh); 5148 return ret; 5149 } 5150 5151 /* 5152 * Change the flags of the already-existing extent at cpos for len clusters. 5153 * 5154 * new_flags: the flags we want to set. 5155 * clear_flags: the flags we want to clear. 5156 * phys: the new physical offset we want this new extent starts from. 5157 * 5158 * If the existing extent is larger than the request, initiate a 5159 * split. An attempt will be made at merging with adjacent extents. 5160 * 5161 * The caller is responsible for passing down meta_ac if we'll need it. 5162 */ 5163 int ocfs2_change_extent_flag(handle_t *handle, 5164 struct ocfs2_extent_tree *et, 5165 u32 cpos, u32 len, u32 phys, 5166 struct ocfs2_alloc_context *meta_ac, 5167 struct ocfs2_cached_dealloc_ctxt *dealloc, 5168 int new_flags, int clear_flags) 5169 { 5170 int ret, index; 5171 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5172 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5173 struct ocfs2_extent_rec split_rec; 5174 struct ocfs2_path *left_path = NULL; 5175 struct ocfs2_extent_list *el; 5176 struct ocfs2_extent_rec *rec; 5177 5178 left_path = ocfs2_new_path_from_et(et); 5179 if (!left_path) { 5180 ret = -ENOMEM; 5181 mlog_errno(ret); 5182 goto out; 5183 } 5184 5185 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5186 if (ret) { 5187 mlog_errno(ret); 5188 goto out; 5189 } 5190 el = path_leaf_el(left_path); 5191 5192 index = ocfs2_search_extent_list(el, cpos); 5193 if (index == -1) { 5194 ocfs2_error(sb, 5195 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5196 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5197 cpos); 5198 ret = -EROFS; 5199 goto out; 5200 } 5201 5202 ret = -EIO; 5203 rec = &el->l_recs[index]; 5204 if (new_flags && (rec->e_flags & new_flags)) { 5205 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5206 "extent that already had them\n", 5207 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5208 new_flags); 5209 goto out; 5210 } 5211 5212 if (clear_flags && !(rec->e_flags & clear_flags)) { 5213 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5214 "extent that didn't have them\n", 5215 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5216 clear_flags); 5217 goto out; 5218 } 5219 5220 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5221 split_rec.e_cpos = cpu_to_le32(cpos); 5222 split_rec.e_leaf_clusters = cpu_to_le16(len); 5223 split_rec.e_blkno = cpu_to_le64(start_blkno); 5224 split_rec.e_flags = rec->e_flags; 5225 if (new_flags) 5226 split_rec.e_flags |= new_flags; 5227 if (clear_flags) 5228 split_rec.e_flags &= ~clear_flags; 5229 5230 ret = ocfs2_split_extent(handle, et, left_path, 5231 index, &split_rec, meta_ac, 5232 dealloc); 5233 if (ret) 5234 mlog_errno(ret); 5235 5236 out: 5237 ocfs2_free_path(left_path); 5238 return ret; 5239 5240 } 5241 5242 /* 5243 * Mark the already-existing extent at cpos as written for len clusters. 5244 * This removes the unwritten extent flag. 5245 * 5246 * If the existing extent is larger than the request, initiate a 5247 * split. An attempt will be made at merging with adjacent extents. 5248 * 5249 * The caller is responsible for passing down meta_ac if we'll need it. 5250 */ 5251 int ocfs2_mark_extent_written(struct inode *inode, 5252 struct ocfs2_extent_tree *et, 5253 handle_t *handle, u32 cpos, u32 len, u32 phys, 5254 struct ocfs2_alloc_context *meta_ac, 5255 struct ocfs2_cached_dealloc_ctxt *dealloc) 5256 { 5257 int ret; 5258 5259 trace_ocfs2_mark_extent_written( 5260 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5261 cpos, len, phys); 5262 5263 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5264 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5265 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5266 ret = -EROFS; 5267 goto out; 5268 } 5269 5270 /* 5271 * XXX: This should be fixed up so that we just re-insert the 5272 * next extent records. 5273 */ 5274 ocfs2_et_extent_map_truncate(et, 0); 5275 5276 ret = ocfs2_change_extent_flag(handle, et, cpos, 5277 len, phys, meta_ac, dealloc, 5278 0, OCFS2_EXT_UNWRITTEN); 5279 if (ret) 5280 mlog_errno(ret); 5281 5282 out: 5283 return ret; 5284 } 5285 5286 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5287 struct ocfs2_path *path, 5288 int index, u32 new_range, 5289 struct ocfs2_alloc_context *meta_ac) 5290 { 5291 int ret, depth, credits; 5292 struct buffer_head *last_eb_bh = NULL; 5293 struct ocfs2_extent_block *eb; 5294 struct ocfs2_extent_list *rightmost_el, *el; 5295 struct ocfs2_extent_rec split_rec; 5296 struct ocfs2_extent_rec *rec; 5297 struct ocfs2_insert_type insert; 5298 5299 /* 5300 * Setup the record to split before we grow the tree. 5301 */ 5302 el = path_leaf_el(path); 5303 rec = &el->l_recs[index]; 5304 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5305 &split_rec, new_range, rec); 5306 5307 depth = path->p_tree_depth; 5308 if (depth > 0) { 5309 ret = ocfs2_read_extent_block(et->et_ci, 5310 ocfs2_et_get_last_eb_blk(et), 5311 &last_eb_bh); 5312 if (ret < 0) { 5313 mlog_errno(ret); 5314 goto out; 5315 } 5316 5317 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5318 rightmost_el = &eb->h_list; 5319 } else 5320 rightmost_el = path_leaf_el(path); 5321 5322 credits = path->p_tree_depth + 5323 ocfs2_extend_meta_needed(et->et_root_el); 5324 ret = ocfs2_extend_trans(handle, credits); 5325 if (ret) { 5326 mlog_errno(ret); 5327 goto out; 5328 } 5329 5330 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5331 le16_to_cpu(rightmost_el->l_count)) { 5332 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5333 meta_ac); 5334 if (ret) { 5335 mlog_errno(ret); 5336 goto out; 5337 } 5338 } 5339 5340 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5341 insert.ins_appending = APPEND_NONE; 5342 insert.ins_contig = CONTIG_NONE; 5343 insert.ins_split = SPLIT_RIGHT; 5344 insert.ins_tree_depth = depth; 5345 5346 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5347 if (ret) 5348 mlog_errno(ret); 5349 5350 out: 5351 brelse(last_eb_bh); 5352 return ret; 5353 } 5354 5355 static int ocfs2_truncate_rec(handle_t *handle, 5356 struct ocfs2_extent_tree *et, 5357 struct ocfs2_path *path, int index, 5358 struct ocfs2_cached_dealloc_ctxt *dealloc, 5359 u32 cpos, u32 len) 5360 { 5361 int ret; 5362 u32 left_cpos, rec_range, trunc_range; 5363 int is_rightmost_tree_rec = 0; 5364 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5365 struct ocfs2_path *left_path = NULL; 5366 struct ocfs2_extent_list *el = path_leaf_el(path); 5367 struct ocfs2_extent_rec *rec; 5368 struct ocfs2_extent_block *eb; 5369 5370 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5371 /* extend credit for ocfs2_remove_rightmost_path */ 5372 ret = ocfs2_extend_rotate_transaction(handle, 0, 5373 jbd2_handle_buffer_credits(handle), 5374 path); 5375 if (ret) { 5376 mlog_errno(ret); 5377 goto out; 5378 } 5379 5380 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5381 if (ret) { 5382 mlog_errno(ret); 5383 goto out; 5384 } 5385 5386 index--; 5387 } 5388 5389 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5390 path->p_tree_depth) { 5391 /* 5392 * Check whether this is the rightmost tree record. If 5393 * we remove all of this record or part of its right 5394 * edge then an update of the record lengths above it 5395 * will be required. 5396 */ 5397 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5398 if (eb->h_next_leaf_blk == 0) 5399 is_rightmost_tree_rec = 1; 5400 } 5401 5402 rec = &el->l_recs[index]; 5403 if (index == 0 && path->p_tree_depth && 5404 le32_to_cpu(rec->e_cpos) == cpos) { 5405 /* 5406 * Changing the leftmost offset (via partial or whole 5407 * record truncate) of an interior (or rightmost) path 5408 * means we have to update the subtree that is formed 5409 * by this leaf and the one to it's left. 5410 * 5411 * There are two cases we can skip: 5412 * 1) Path is the leftmost one in our btree. 5413 * 2) The leaf is rightmost and will be empty after 5414 * we remove the extent record - the rotate code 5415 * knows how to update the newly formed edge. 5416 */ 5417 5418 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5419 if (ret) { 5420 mlog_errno(ret); 5421 goto out; 5422 } 5423 5424 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5425 left_path = ocfs2_new_path_from_path(path); 5426 if (!left_path) { 5427 ret = -ENOMEM; 5428 mlog_errno(ret); 5429 goto out; 5430 } 5431 5432 ret = ocfs2_find_path(et->et_ci, left_path, 5433 left_cpos); 5434 if (ret) { 5435 mlog_errno(ret); 5436 goto out; 5437 } 5438 } 5439 } 5440 5441 ret = ocfs2_extend_rotate_transaction(handle, 0, 5442 jbd2_handle_buffer_credits(handle), 5443 path); 5444 if (ret) { 5445 mlog_errno(ret); 5446 goto out; 5447 } 5448 5449 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5450 if (ret) { 5451 mlog_errno(ret); 5452 goto out; 5453 } 5454 5455 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5456 if (ret) { 5457 mlog_errno(ret); 5458 goto out; 5459 } 5460 5461 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5462 trunc_range = cpos + len; 5463 5464 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5465 int next_free; 5466 5467 memset(rec, 0, sizeof(*rec)); 5468 ocfs2_cleanup_merge(el, index); 5469 5470 next_free = le16_to_cpu(el->l_next_free_rec); 5471 if (is_rightmost_tree_rec && next_free > 1) { 5472 /* 5473 * We skip the edge update if this path will 5474 * be deleted by the rotate code. 5475 */ 5476 rec = &el->l_recs[next_free - 1]; 5477 ocfs2_adjust_rightmost_records(handle, et, path, 5478 rec); 5479 } 5480 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5481 /* Remove leftmost portion of the record. */ 5482 le32_add_cpu(&rec->e_cpos, len); 5483 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5484 le16_add_cpu(&rec->e_leaf_clusters, -len); 5485 } else if (rec_range == trunc_range) { 5486 /* Remove rightmost portion of the record */ 5487 le16_add_cpu(&rec->e_leaf_clusters, -len); 5488 if (is_rightmost_tree_rec) 5489 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5490 } else { 5491 /* Caller should have trapped this. */ 5492 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5493 "(%u, %u)\n", 5494 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5495 le32_to_cpu(rec->e_cpos), 5496 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5497 BUG(); 5498 } 5499 5500 if (left_path) { 5501 int subtree_index; 5502 5503 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5504 ocfs2_complete_edge_insert(handle, left_path, path, 5505 subtree_index); 5506 } 5507 5508 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5509 5510 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5511 if (ret) 5512 mlog_errno(ret); 5513 5514 out: 5515 ocfs2_free_path(left_path); 5516 return ret; 5517 } 5518 5519 int ocfs2_remove_extent(handle_t *handle, 5520 struct ocfs2_extent_tree *et, 5521 u32 cpos, u32 len, 5522 struct ocfs2_alloc_context *meta_ac, 5523 struct ocfs2_cached_dealloc_ctxt *dealloc) 5524 { 5525 int ret, index; 5526 u32 rec_range, trunc_range; 5527 struct ocfs2_extent_rec *rec; 5528 struct ocfs2_extent_list *el; 5529 struct ocfs2_path *path = NULL; 5530 5531 /* 5532 * XXX: Why are we truncating to 0 instead of wherever this 5533 * affects us? 5534 */ 5535 ocfs2_et_extent_map_truncate(et, 0); 5536 5537 path = ocfs2_new_path_from_et(et); 5538 if (!path) { 5539 ret = -ENOMEM; 5540 mlog_errno(ret); 5541 goto out; 5542 } 5543 5544 ret = ocfs2_find_path(et->et_ci, path, cpos); 5545 if (ret) { 5546 mlog_errno(ret); 5547 goto out; 5548 } 5549 5550 el = path_leaf_el(path); 5551 index = ocfs2_search_extent_list(el, cpos); 5552 if (index == -1) { 5553 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5554 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5555 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5556 cpos); 5557 ret = -EROFS; 5558 goto out; 5559 } 5560 5561 /* 5562 * We have 3 cases of extent removal: 5563 * 1) Range covers the entire extent rec 5564 * 2) Range begins or ends on one edge of the extent rec 5565 * 3) Range is in the middle of the extent rec (no shared edges) 5566 * 5567 * For case 1 we remove the extent rec and left rotate to 5568 * fill the hole. 5569 * 5570 * For case 2 we just shrink the existing extent rec, with a 5571 * tree update if the shrinking edge is also the edge of an 5572 * extent block. 5573 * 5574 * For case 3 we do a right split to turn the extent rec into 5575 * something case 2 can handle. 5576 */ 5577 rec = &el->l_recs[index]; 5578 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5579 trunc_range = cpos + len; 5580 5581 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5582 5583 trace_ocfs2_remove_extent( 5584 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5585 cpos, len, index, le32_to_cpu(rec->e_cpos), 5586 ocfs2_rec_clusters(el, rec)); 5587 5588 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5589 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5590 cpos, len); 5591 if (ret) { 5592 mlog_errno(ret); 5593 goto out; 5594 } 5595 } else { 5596 ret = ocfs2_split_tree(handle, et, path, index, 5597 trunc_range, meta_ac); 5598 if (ret) { 5599 mlog_errno(ret); 5600 goto out; 5601 } 5602 5603 /* 5604 * The split could have manipulated the tree enough to 5605 * move the record location, so we have to look for it again. 5606 */ 5607 ocfs2_reinit_path(path, 1); 5608 5609 ret = ocfs2_find_path(et->et_ci, path, cpos); 5610 if (ret) { 5611 mlog_errno(ret); 5612 goto out; 5613 } 5614 5615 el = path_leaf_el(path); 5616 index = ocfs2_search_extent_list(el, cpos); 5617 if (index == -1) { 5618 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5619 "Owner %llu: split at cpos %u lost record\n", 5620 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5621 cpos); 5622 ret = -EROFS; 5623 goto out; 5624 } 5625 5626 /* 5627 * Double check our values here. If anything is fishy, 5628 * it's easier to catch it at the top level. 5629 */ 5630 rec = &el->l_recs[index]; 5631 rec_range = le32_to_cpu(rec->e_cpos) + 5632 ocfs2_rec_clusters(el, rec); 5633 if (rec_range != trunc_range) { 5634 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5635 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5636 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5637 cpos, len, le32_to_cpu(rec->e_cpos), 5638 ocfs2_rec_clusters(el, rec)); 5639 ret = -EROFS; 5640 goto out; 5641 } 5642 5643 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5644 cpos, len); 5645 if (ret) 5646 mlog_errno(ret); 5647 } 5648 5649 out: 5650 ocfs2_free_path(path); 5651 return ret; 5652 } 5653 5654 /* 5655 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5656 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5657 * number to reserve some extra blocks, and it only handles meta 5658 * data allocations. 5659 * 5660 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5661 * and punching holes. 5662 */ 5663 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5664 struct ocfs2_extent_tree *et, 5665 u32 extents_to_split, 5666 struct ocfs2_alloc_context **ac, 5667 int extra_blocks) 5668 { 5669 int ret = 0, num_free_extents; 5670 unsigned int max_recs_needed = 2 * extents_to_split; 5671 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5672 5673 *ac = NULL; 5674 5675 num_free_extents = ocfs2_num_free_extents(et); 5676 if (num_free_extents < 0) { 5677 ret = num_free_extents; 5678 mlog_errno(ret); 5679 goto out; 5680 } 5681 5682 if (!num_free_extents || 5683 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5684 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5685 5686 if (extra_blocks) { 5687 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5688 if (ret < 0) { 5689 if (ret != -ENOSPC) 5690 mlog_errno(ret); 5691 } 5692 } 5693 5694 out: 5695 if (ret) { 5696 if (*ac) { 5697 ocfs2_free_alloc_context(*ac); 5698 *ac = NULL; 5699 } 5700 } 5701 5702 return ret; 5703 } 5704 5705 int ocfs2_remove_btree_range(struct inode *inode, 5706 struct ocfs2_extent_tree *et, 5707 u32 cpos, u32 phys_cpos, u32 len, int flags, 5708 struct ocfs2_cached_dealloc_ctxt *dealloc, 5709 u64 refcount_loc, bool refcount_tree_locked) 5710 { 5711 int ret, credits = 0, extra_blocks = 0; 5712 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5714 struct inode *tl_inode = osb->osb_tl_inode; 5715 handle_t *handle; 5716 struct ocfs2_alloc_context *meta_ac = NULL; 5717 struct ocfs2_refcount_tree *ref_tree = NULL; 5718 5719 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5720 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5721 5722 if (!refcount_tree_locked) { 5723 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5724 &ref_tree, NULL); 5725 if (ret) { 5726 mlog_errno(ret); 5727 goto bail; 5728 } 5729 } 5730 5731 ret = ocfs2_prepare_refcount_change_for_del(inode, 5732 refcount_loc, 5733 phys_blkno, 5734 len, 5735 &credits, 5736 &extra_blocks); 5737 if (ret < 0) { 5738 mlog_errno(ret); 5739 goto bail; 5740 } 5741 } 5742 5743 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5744 extra_blocks); 5745 if (ret) { 5746 mlog_errno(ret); 5747 goto bail; 5748 } 5749 5750 inode_lock(tl_inode); 5751 5752 if (ocfs2_truncate_log_needs_flush(osb)) { 5753 ret = __ocfs2_flush_truncate_log(osb); 5754 if (ret < 0) { 5755 mlog_errno(ret); 5756 goto out; 5757 } 5758 } 5759 5760 handle = ocfs2_start_trans(osb, 5761 ocfs2_remove_extent_credits(osb->sb) + credits); 5762 if (IS_ERR(handle)) { 5763 ret = PTR_ERR(handle); 5764 mlog_errno(ret); 5765 goto out; 5766 } 5767 5768 ret = ocfs2_et_root_journal_access(handle, et, 5769 OCFS2_JOURNAL_ACCESS_WRITE); 5770 if (ret) { 5771 mlog_errno(ret); 5772 goto out_commit; 5773 } 5774 5775 dquot_free_space_nodirty(inode, 5776 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5777 5778 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5779 if (ret) { 5780 mlog_errno(ret); 5781 goto out_commit; 5782 } 5783 5784 ocfs2_et_update_clusters(et, -len); 5785 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5786 5787 ocfs2_journal_dirty(handle, et->et_root_bh); 5788 5789 if (phys_blkno) { 5790 if (flags & OCFS2_EXT_REFCOUNTED) 5791 ret = ocfs2_decrease_refcount(inode, handle, 5792 ocfs2_blocks_to_clusters(osb->sb, 5793 phys_blkno), 5794 len, meta_ac, 5795 dealloc, 1); 5796 else 5797 ret = ocfs2_truncate_log_append(osb, handle, 5798 phys_blkno, len); 5799 if (ret) 5800 mlog_errno(ret); 5801 5802 } 5803 5804 out_commit: 5805 ocfs2_commit_trans(osb, handle); 5806 out: 5807 inode_unlock(tl_inode); 5808 bail: 5809 if (meta_ac) 5810 ocfs2_free_alloc_context(meta_ac); 5811 5812 if (ref_tree) 5813 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5814 5815 return ret; 5816 } 5817 5818 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5819 { 5820 struct buffer_head *tl_bh = osb->osb_tl_bh; 5821 struct ocfs2_dinode *di; 5822 struct ocfs2_truncate_log *tl; 5823 5824 di = (struct ocfs2_dinode *) tl_bh->b_data; 5825 tl = &di->id2.i_dealloc; 5826 5827 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5828 "slot %d, invalid truncate log parameters: used = " 5829 "%u, count = %u\n", osb->slot_num, 5830 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5831 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5832 } 5833 5834 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5835 unsigned int new_start) 5836 { 5837 unsigned int tail_index; 5838 unsigned int current_tail; 5839 5840 /* No records, nothing to coalesce */ 5841 if (!le16_to_cpu(tl->tl_used)) 5842 return 0; 5843 5844 tail_index = le16_to_cpu(tl->tl_used) - 1; 5845 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5846 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5847 5848 return current_tail == new_start; 5849 } 5850 5851 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5852 handle_t *handle, 5853 u64 start_blk, 5854 unsigned int num_clusters) 5855 { 5856 int status, index; 5857 unsigned int start_cluster, tl_count; 5858 struct inode *tl_inode = osb->osb_tl_inode; 5859 struct buffer_head *tl_bh = osb->osb_tl_bh; 5860 struct ocfs2_dinode *di; 5861 struct ocfs2_truncate_log *tl; 5862 5863 BUG_ON(inode_trylock(tl_inode)); 5864 5865 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5866 5867 di = (struct ocfs2_dinode *) tl_bh->b_data; 5868 5869 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5870 * by the underlying call to ocfs2_read_inode_block(), so any 5871 * corruption is a code bug */ 5872 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5873 5874 tl = &di->id2.i_dealloc; 5875 tl_count = le16_to_cpu(tl->tl_count); 5876 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5877 tl_count == 0, 5878 "Truncate record count on #%llu invalid " 5879 "wanted %u, actual %u\n", 5880 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5881 ocfs2_truncate_recs_per_inode(osb->sb), 5882 le16_to_cpu(tl->tl_count)); 5883 5884 /* Caller should have known to flush before calling us. */ 5885 index = le16_to_cpu(tl->tl_used); 5886 if (index >= tl_count) { 5887 status = -ENOSPC; 5888 mlog_errno(status); 5889 goto bail; 5890 } 5891 5892 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5893 OCFS2_JOURNAL_ACCESS_WRITE); 5894 if (status < 0) { 5895 mlog_errno(status); 5896 goto bail; 5897 } 5898 5899 trace_ocfs2_truncate_log_append( 5900 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5901 start_cluster, num_clusters); 5902 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5903 /* 5904 * Move index back to the record we are coalescing with. 5905 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5906 */ 5907 index--; 5908 5909 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5910 trace_ocfs2_truncate_log_append( 5911 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5912 index, le32_to_cpu(tl->tl_recs[index].t_start), 5913 num_clusters); 5914 } else { 5915 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5916 tl->tl_used = cpu_to_le16(index + 1); 5917 } 5918 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5919 5920 ocfs2_journal_dirty(handle, tl_bh); 5921 5922 osb->truncated_clusters += num_clusters; 5923 bail: 5924 return status; 5925 } 5926 5927 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5928 struct inode *data_alloc_inode, 5929 struct buffer_head *data_alloc_bh) 5930 { 5931 int status = 0; 5932 int i; 5933 unsigned int num_clusters; 5934 u64 start_blk; 5935 struct ocfs2_truncate_rec rec; 5936 struct ocfs2_dinode *di; 5937 struct ocfs2_truncate_log *tl; 5938 struct inode *tl_inode = osb->osb_tl_inode; 5939 struct buffer_head *tl_bh = osb->osb_tl_bh; 5940 handle_t *handle; 5941 5942 di = (struct ocfs2_dinode *) tl_bh->b_data; 5943 tl = &di->id2.i_dealloc; 5944 i = le16_to_cpu(tl->tl_used) - 1; 5945 while (i >= 0) { 5946 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5947 if (IS_ERR(handle)) { 5948 status = PTR_ERR(handle); 5949 mlog_errno(status); 5950 goto bail; 5951 } 5952 5953 /* Caller has given us at least enough credits to 5954 * update the truncate log dinode */ 5955 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5956 OCFS2_JOURNAL_ACCESS_WRITE); 5957 if (status < 0) { 5958 ocfs2_commit_trans(osb, handle); 5959 mlog_errno(status); 5960 goto bail; 5961 } 5962 5963 tl->tl_used = cpu_to_le16(i); 5964 5965 ocfs2_journal_dirty(handle, tl_bh); 5966 5967 rec = tl->tl_recs[i]; 5968 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5969 le32_to_cpu(rec.t_start)); 5970 num_clusters = le32_to_cpu(rec.t_clusters); 5971 5972 /* if start_blk is not set, we ignore the record as 5973 * invalid. */ 5974 if (start_blk) { 5975 trace_ocfs2_replay_truncate_records( 5976 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5977 i, le32_to_cpu(rec.t_start), num_clusters); 5978 5979 status = ocfs2_free_clusters(handle, data_alloc_inode, 5980 data_alloc_bh, start_blk, 5981 num_clusters); 5982 if (status < 0) { 5983 ocfs2_commit_trans(osb, handle); 5984 mlog_errno(status); 5985 goto bail; 5986 } 5987 } 5988 5989 ocfs2_commit_trans(osb, handle); 5990 i--; 5991 } 5992 5993 osb->truncated_clusters = 0; 5994 5995 bail: 5996 return status; 5997 } 5998 5999 /* Expects you to already be holding tl_inode->i_rwsem */ 6000 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6001 { 6002 int status; 6003 unsigned int num_to_flush; 6004 struct inode *tl_inode = osb->osb_tl_inode; 6005 struct inode *data_alloc_inode = NULL; 6006 struct buffer_head *tl_bh = osb->osb_tl_bh; 6007 struct buffer_head *data_alloc_bh = NULL; 6008 struct ocfs2_dinode *di; 6009 struct ocfs2_truncate_log *tl; 6010 struct ocfs2_journal *journal = osb->journal; 6011 6012 BUG_ON(inode_trylock(tl_inode)); 6013 6014 di = (struct ocfs2_dinode *) tl_bh->b_data; 6015 6016 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6017 * by the underlying call to ocfs2_read_inode_block(), so any 6018 * corruption is a code bug */ 6019 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6020 6021 tl = &di->id2.i_dealloc; 6022 num_to_flush = le16_to_cpu(tl->tl_used); 6023 trace_ocfs2_flush_truncate_log( 6024 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6025 num_to_flush); 6026 if (!num_to_flush) { 6027 status = 0; 6028 goto out; 6029 } 6030 6031 /* Appending truncate log(TA) and flushing truncate log(TF) are 6032 * two separated transactions. They can be both committed but not 6033 * checkpointed. If crash occurs then, both two transaction will be 6034 * replayed with several already released to global bitmap clusters. 6035 * Then truncate log will be replayed resulting in cluster double free. 6036 */ 6037 jbd2_journal_lock_updates(journal->j_journal); 6038 status = jbd2_journal_flush(journal->j_journal, 0); 6039 jbd2_journal_unlock_updates(journal->j_journal); 6040 if (status < 0) { 6041 mlog_errno(status); 6042 goto out; 6043 } 6044 6045 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6046 GLOBAL_BITMAP_SYSTEM_INODE, 6047 OCFS2_INVALID_SLOT); 6048 if (!data_alloc_inode) { 6049 status = -EINVAL; 6050 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6051 goto out; 6052 } 6053 6054 inode_lock(data_alloc_inode); 6055 6056 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6057 if (status < 0) { 6058 mlog_errno(status); 6059 goto out_mutex; 6060 } 6061 6062 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6063 data_alloc_bh); 6064 if (status < 0) 6065 mlog_errno(status); 6066 6067 brelse(data_alloc_bh); 6068 ocfs2_inode_unlock(data_alloc_inode, 1); 6069 6070 out_mutex: 6071 inode_unlock(data_alloc_inode); 6072 iput(data_alloc_inode); 6073 6074 out: 6075 return status; 6076 } 6077 6078 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6079 { 6080 int status; 6081 struct inode *tl_inode = osb->osb_tl_inode; 6082 6083 inode_lock(tl_inode); 6084 status = __ocfs2_flush_truncate_log(osb); 6085 inode_unlock(tl_inode); 6086 6087 return status; 6088 } 6089 6090 static void ocfs2_truncate_log_worker(struct work_struct *work) 6091 { 6092 int status; 6093 struct ocfs2_super *osb = 6094 container_of(work, struct ocfs2_super, 6095 osb_truncate_log_wq.work); 6096 6097 status = ocfs2_flush_truncate_log(osb); 6098 if (status < 0) 6099 mlog_errno(status); 6100 else 6101 ocfs2_init_steal_slots(osb); 6102 } 6103 6104 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6105 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6106 int cancel) 6107 { 6108 if (osb->osb_tl_inode && 6109 atomic_read(&osb->osb_tl_disable) == 0) { 6110 /* We want to push off log flushes while truncates are 6111 * still running. */ 6112 if (cancel) 6113 cancel_delayed_work(&osb->osb_truncate_log_wq); 6114 6115 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6116 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6117 } 6118 } 6119 6120 /* 6121 * Try to flush truncate logs if we can free enough clusters from it. 6122 * As for return value, "< 0" means error, "0" no space and "1" means 6123 * we have freed enough spaces and let the caller try to allocate again. 6124 */ 6125 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6126 unsigned int needed) 6127 { 6128 tid_t target; 6129 int ret = 0; 6130 unsigned int truncated_clusters; 6131 6132 inode_lock(osb->osb_tl_inode); 6133 truncated_clusters = osb->truncated_clusters; 6134 inode_unlock(osb->osb_tl_inode); 6135 6136 /* 6137 * Check whether we can succeed in allocating if we free 6138 * the truncate log. 6139 */ 6140 if (truncated_clusters < needed) 6141 goto out; 6142 6143 ret = ocfs2_flush_truncate_log(osb); 6144 if (ret) { 6145 mlog_errno(ret); 6146 goto out; 6147 } 6148 6149 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6150 jbd2_log_wait_commit(osb->journal->j_journal, target); 6151 ret = 1; 6152 } 6153 out: 6154 return ret; 6155 } 6156 6157 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6158 int slot_num, 6159 struct inode **tl_inode, 6160 struct buffer_head **tl_bh) 6161 { 6162 int status; 6163 struct inode *inode = NULL; 6164 struct buffer_head *bh = NULL; 6165 struct ocfs2_dinode *di; 6166 struct ocfs2_truncate_log *tl; 6167 unsigned int tl_count, tl_used; 6168 6169 inode = ocfs2_get_system_file_inode(osb, 6170 TRUNCATE_LOG_SYSTEM_INODE, 6171 slot_num); 6172 if (!inode) { 6173 status = -EINVAL; 6174 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6175 goto bail; 6176 } 6177 6178 status = ocfs2_read_inode_block(inode, &bh); 6179 if (status < 0) { 6180 iput(inode); 6181 mlog_errno(status); 6182 goto bail; 6183 } 6184 6185 di = (struct ocfs2_dinode *)bh->b_data; 6186 tl = &di->id2.i_dealloc; 6187 tl_count = le16_to_cpu(tl->tl_count); 6188 tl_used = le16_to_cpu(tl->tl_used); 6189 if (unlikely(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 6190 tl_count == 0 || 6191 tl_used > tl_count)) { 6192 status = -EFSCORRUPTED; 6193 iput(inode); 6194 brelse(bh); 6195 mlog_errno(status); 6196 goto bail; 6197 } 6198 6199 *tl_inode = inode; 6200 *tl_bh = bh; 6201 bail: 6202 return status; 6203 } 6204 6205 /* called during the 1st stage of node recovery. we stamp a clean 6206 * truncate log and pass back a copy for processing later. if the 6207 * truncate log does not require processing, a *tl_copy is set to 6208 * NULL. */ 6209 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6210 int slot_num, 6211 struct ocfs2_dinode **tl_copy) 6212 { 6213 int status; 6214 struct inode *tl_inode = NULL; 6215 struct buffer_head *tl_bh = NULL; 6216 struct ocfs2_dinode *di; 6217 struct ocfs2_truncate_log *tl; 6218 6219 *tl_copy = NULL; 6220 6221 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6222 6223 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6224 if (status < 0) { 6225 mlog_errno(status); 6226 goto bail; 6227 } 6228 6229 di = (struct ocfs2_dinode *) tl_bh->b_data; 6230 6231 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6232 * validated by the underlying call to ocfs2_read_inode_block(), 6233 * so any corruption is a code bug */ 6234 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6235 6236 tl = &di->id2.i_dealloc; 6237 if (le16_to_cpu(tl->tl_used)) { 6238 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6239 6240 /* 6241 * Assuming the write-out below goes well, this copy will be 6242 * passed back to recovery for processing. 6243 */ 6244 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6245 if (!(*tl_copy)) { 6246 status = -ENOMEM; 6247 mlog_errno(status); 6248 goto bail; 6249 } 6250 6251 /* All we need to do to clear the truncate log is set 6252 * tl_used. */ 6253 tl->tl_used = 0; 6254 6255 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6256 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6257 if (status < 0) { 6258 mlog_errno(status); 6259 goto bail; 6260 } 6261 } 6262 6263 bail: 6264 iput(tl_inode); 6265 brelse(tl_bh); 6266 6267 if (status < 0) { 6268 kfree(*tl_copy); 6269 *tl_copy = NULL; 6270 mlog_errno(status); 6271 } 6272 6273 return status; 6274 } 6275 6276 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6277 struct ocfs2_dinode *tl_copy) 6278 { 6279 int status = 0; 6280 int i; 6281 unsigned int clusters, num_recs, start_cluster; 6282 u64 start_blk; 6283 handle_t *handle; 6284 struct inode *tl_inode = osb->osb_tl_inode; 6285 struct ocfs2_truncate_log *tl; 6286 6287 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6288 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6289 return -EINVAL; 6290 } 6291 6292 tl = &tl_copy->id2.i_dealloc; 6293 num_recs = le16_to_cpu(tl->tl_used); 6294 trace_ocfs2_complete_truncate_log_recovery( 6295 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6296 num_recs); 6297 6298 inode_lock(tl_inode); 6299 for(i = 0; i < num_recs; i++) { 6300 if (ocfs2_truncate_log_needs_flush(osb)) { 6301 status = __ocfs2_flush_truncate_log(osb); 6302 if (status < 0) { 6303 mlog_errno(status); 6304 goto bail_up; 6305 } 6306 } 6307 6308 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6309 if (IS_ERR(handle)) { 6310 status = PTR_ERR(handle); 6311 mlog_errno(status); 6312 goto bail_up; 6313 } 6314 6315 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6316 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6317 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6318 6319 status = ocfs2_truncate_log_append(osb, handle, 6320 start_blk, clusters); 6321 ocfs2_commit_trans(osb, handle); 6322 if (status < 0) { 6323 mlog_errno(status); 6324 goto bail_up; 6325 } 6326 } 6327 6328 bail_up: 6329 inode_unlock(tl_inode); 6330 6331 return status; 6332 } 6333 6334 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6335 { 6336 int status; 6337 struct inode *tl_inode = osb->osb_tl_inode; 6338 6339 atomic_set(&osb->osb_tl_disable, 1); 6340 6341 if (tl_inode) { 6342 cancel_delayed_work(&osb->osb_truncate_log_wq); 6343 flush_workqueue(osb->ocfs2_wq); 6344 6345 status = ocfs2_flush_truncate_log(osb); 6346 if (status < 0) 6347 mlog_errno(status); 6348 6349 brelse(osb->osb_tl_bh); 6350 iput(osb->osb_tl_inode); 6351 } 6352 } 6353 6354 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6355 { 6356 int status; 6357 struct inode *tl_inode = NULL; 6358 struct buffer_head *tl_bh = NULL; 6359 6360 status = ocfs2_get_truncate_log_info(osb, 6361 osb->slot_num, 6362 &tl_inode, 6363 &tl_bh); 6364 if (status < 0) 6365 mlog_errno(status); 6366 6367 /* ocfs2_truncate_log_shutdown keys on the existence of 6368 * osb->osb_tl_inode so we don't set any of the osb variables 6369 * until we're sure all is well. */ 6370 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6371 ocfs2_truncate_log_worker); 6372 atomic_set(&osb->osb_tl_disable, 0); 6373 osb->osb_tl_bh = tl_bh; 6374 osb->osb_tl_inode = tl_inode; 6375 6376 return status; 6377 } 6378 6379 /* 6380 * Delayed de-allocation of suballocator blocks. 6381 * 6382 * Some sets of block de-allocations might involve multiple suballocator inodes. 6383 * 6384 * The locking for this can get extremely complicated, especially when 6385 * the suballocator inodes to delete from aren't known until deep 6386 * within an unrelated codepath. 6387 * 6388 * ocfs2_extent_block structures are a good example of this - an inode 6389 * btree could have been grown by any number of nodes each allocating 6390 * out of their own suballoc inode. 6391 * 6392 * These structures allow the delay of block de-allocation until a 6393 * later time, when locking of multiple cluster inodes won't cause 6394 * deadlock. 6395 */ 6396 6397 /* 6398 * Describe a single bit freed from a suballocator. For the block 6399 * suballocators, it represents one block. For the global cluster 6400 * allocator, it represents some clusters and free_bit indicates 6401 * clusters number. 6402 */ 6403 struct ocfs2_cached_block_free { 6404 struct ocfs2_cached_block_free *free_next; 6405 u64 free_bg; 6406 u64 free_blk; 6407 unsigned int free_bit; 6408 }; 6409 6410 struct ocfs2_per_slot_free_list { 6411 struct ocfs2_per_slot_free_list *f_next_suballocator; 6412 int f_inode_type; 6413 int f_slot; 6414 struct ocfs2_cached_block_free *f_first; 6415 }; 6416 6417 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6418 int sysfile_type, 6419 int slot, 6420 struct ocfs2_cached_block_free *head) 6421 { 6422 int ret; 6423 u64 bg_blkno; 6424 handle_t *handle; 6425 struct inode *inode; 6426 struct buffer_head *di_bh = NULL; 6427 struct ocfs2_cached_block_free *tmp; 6428 6429 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6430 if (!inode) { 6431 ret = -EINVAL; 6432 mlog_errno(ret); 6433 goto out; 6434 } 6435 6436 inode_lock(inode); 6437 6438 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6439 if (ret) { 6440 mlog_errno(ret); 6441 goto out_mutex; 6442 } 6443 6444 while (head) { 6445 if (head->free_bg) 6446 bg_blkno = head->free_bg; 6447 else 6448 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6449 head->free_bit); 6450 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6451 if (IS_ERR(handle)) { 6452 ret = PTR_ERR(handle); 6453 mlog_errno(ret); 6454 goto out_unlock; 6455 } 6456 6457 trace_ocfs2_free_cached_blocks( 6458 (unsigned long long)head->free_blk, head->free_bit); 6459 6460 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6461 head->free_bit, bg_blkno, 1); 6462 if (ret) 6463 mlog_errno(ret); 6464 6465 ocfs2_commit_trans(osb, handle); 6466 6467 tmp = head; 6468 head = head->free_next; 6469 kfree(tmp); 6470 } 6471 6472 out_unlock: 6473 ocfs2_inode_unlock(inode, 1); 6474 brelse(di_bh); 6475 out_mutex: 6476 inode_unlock(inode); 6477 iput(inode); 6478 out: 6479 while(head) { 6480 /* Premature exit may have left some dangling items. */ 6481 tmp = head; 6482 head = head->free_next; 6483 kfree(tmp); 6484 } 6485 6486 return ret; 6487 } 6488 6489 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6490 u64 blkno, unsigned int bit) 6491 { 6492 int ret = 0; 6493 struct ocfs2_cached_block_free *item; 6494 6495 item = kzalloc(sizeof(*item), GFP_NOFS); 6496 if (item == NULL) { 6497 ret = -ENOMEM; 6498 mlog_errno(ret); 6499 return ret; 6500 } 6501 6502 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6503 6504 item->free_blk = blkno; 6505 item->free_bit = bit; 6506 item->free_next = ctxt->c_global_allocator; 6507 6508 ctxt->c_global_allocator = item; 6509 return ret; 6510 } 6511 6512 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6513 struct ocfs2_cached_block_free *head) 6514 { 6515 struct ocfs2_cached_block_free *tmp; 6516 struct inode *tl_inode = osb->osb_tl_inode; 6517 handle_t *handle; 6518 int ret = 0; 6519 6520 inode_lock(tl_inode); 6521 6522 while (head) { 6523 if (ocfs2_truncate_log_needs_flush(osb)) { 6524 ret = __ocfs2_flush_truncate_log(osb); 6525 if (ret < 0) { 6526 mlog_errno(ret); 6527 break; 6528 } 6529 } 6530 6531 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6532 if (IS_ERR(handle)) { 6533 ret = PTR_ERR(handle); 6534 mlog_errno(ret); 6535 break; 6536 } 6537 6538 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6539 head->free_bit); 6540 6541 ocfs2_commit_trans(osb, handle); 6542 tmp = head; 6543 head = head->free_next; 6544 kfree(tmp); 6545 6546 if (ret < 0) { 6547 mlog_errno(ret); 6548 break; 6549 } 6550 } 6551 6552 inode_unlock(tl_inode); 6553 6554 while (head) { 6555 /* Premature exit may have left some dangling items. */ 6556 tmp = head; 6557 head = head->free_next; 6558 kfree(tmp); 6559 } 6560 6561 return ret; 6562 } 6563 6564 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6565 struct ocfs2_cached_dealloc_ctxt *ctxt) 6566 { 6567 int ret = 0, ret2; 6568 struct ocfs2_per_slot_free_list *fl; 6569 6570 if (!ctxt) 6571 return 0; 6572 6573 while (ctxt->c_first_suballocator) { 6574 fl = ctxt->c_first_suballocator; 6575 6576 if (fl->f_first) { 6577 trace_ocfs2_run_deallocs(fl->f_inode_type, 6578 fl->f_slot); 6579 ret2 = ocfs2_free_cached_blocks(osb, 6580 fl->f_inode_type, 6581 fl->f_slot, 6582 fl->f_first); 6583 if (ret2) 6584 mlog_errno(ret2); 6585 if (!ret) 6586 ret = ret2; 6587 } 6588 6589 ctxt->c_first_suballocator = fl->f_next_suballocator; 6590 kfree(fl); 6591 } 6592 6593 if (ctxt->c_global_allocator) { 6594 ret2 = ocfs2_free_cached_clusters(osb, 6595 ctxt->c_global_allocator); 6596 if (ret2) 6597 mlog_errno(ret2); 6598 if (!ret) 6599 ret = ret2; 6600 6601 ctxt->c_global_allocator = NULL; 6602 } 6603 6604 return ret; 6605 } 6606 6607 static struct ocfs2_per_slot_free_list * 6608 ocfs2_find_per_slot_free_list(int type, 6609 int slot, 6610 struct ocfs2_cached_dealloc_ctxt *ctxt) 6611 { 6612 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6613 6614 while (fl) { 6615 if (fl->f_inode_type == type && fl->f_slot == slot) 6616 return fl; 6617 6618 fl = fl->f_next_suballocator; 6619 } 6620 6621 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6622 if (fl) { 6623 fl->f_inode_type = type; 6624 fl->f_slot = slot; 6625 fl->f_first = NULL; 6626 fl->f_next_suballocator = ctxt->c_first_suballocator; 6627 6628 ctxt->c_first_suballocator = fl; 6629 } 6630 return fl; 6631 } 6632 6633 static struct ocfs2_per_slot_free_list * 6634 ocfs2_find_preferred_free_list(int type, 6635 int preferred_slot, 6636 int *real_slot, 6637 struct ocfs2_cached_dealloc_ctxt *ctxt) 6638 { 6639 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6640 6641 while (fl) { 6642 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6643 *real_slot = fl->f_slot; 6644 return fl; 6645 } 6646 6647 fl = fl->f_next_suballocator; 6648 } 6649 6650 /* If we can't find any free list matching preferred slot, just use 6651 * the first one. 6652 */ 6653 fl = ctxt->c_first_suballocator; 6654 *real_slot = fl->f_slot; 6655 6656 return fl; 6657 } 6658 6659 /* Return Value 1 indicates empty */ 6660 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6661 { 6662 struct ocfs2_per_slot_free_list *fl = NULL; 6663 6664 if (!et->et_dealloc) 6665 return 1; 6666 6667 fl = et->et_dealloc->c_first_suballocator; 6668 if (!fl) 6669 return 1; 6670 6671 if (!fl->f_first) 6672 return 1; 6673 6674 return 0; 6675 } 6676 6677 /* If extent was deleted from tree due to extent rotation and merging, and 6678 * no metadata is reserved ahead of time. Try to reuse some extents 6679 * just deleted. This is only used to reuse extent blocks. 6680 * It is supposed to find enough extent blocks in dealloc if our estimation 6681 * on metadata is accurate. 6682 */ 6683 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6684 struct ocfs2_extent_tree *et, 6685 struct buffer_head **new_eb_bh, 6686 int blk_wanted, int *blk_given) 6687 { 6688 int i, status = 0, real_slot; 6689 struct ocfs2_cached_dealloc_ctxt *dealloc; 6690 struct ocfs2_per_slot_free_list *fl; 6691 struct ocfs2_cached_block_free *bf; 6692 struct ocfs2_extent_block *eb; 6693 struct ocfs2_super *osb = 6694 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6695 6696 *blk_given = 0; 6697 6698 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6699 * tell upper caller dealloc can't provide any block and it should 6700 * ask for alloc to claim more space. 6701 */ 6702 dealloc = et->et_dealloc; 6703 if (!dealloc) 6704 goto bail; 6705 6706 for (i = 0; i < blk_wanted; i++) { 6707 /* Prefer to use local slot */ 6708 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6709 osb->slot_num, &real_slot, 6710 dealloc); 6711 /* If no more block can be reused, we should claim more 6712 * from alloc. Just return here normally. 6713 */ 6714 if (!fl) { 6715 status = 0; 6716 break; 6717 } 6718 6719 bf = fl->f_first; 6720 fl->f_first = bf->free_next; 6721 6722 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6723 if (new_eb_bh[i] == NULL) { 6724 status = -ENOMEM; 6725 mlog_errno(status); 6726 goto bail; 6727 } 6728 6729 mlog(0, "Reusing block(%llu) from " 6730 "dealloc(local slot:%d, real slot:%d)\n", 6731 bf->free_blk, osb->slot_num, real_slot); 6732 6733 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6734 6735 status = ocfs2_journal_access_eb(handle, et->et_ci, 6736 new_eb_bh[i], 6737 OCFS2_JOURNAL_ACCESS_CREATE); 6738 if (status < 0) { 6739 mlog_errno(status); 6740 goto bail; 6741 } 6742 6743 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6744 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6745 6746 /* We can't guarantee that buffer head is still cached, so 6747 * polutlate the extent block again. 6748 */ 6749 strscpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6750 eb->h_blkno = cpu_to_le64(bf->free_blk); 6751 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6752 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6753 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6754 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6755 eb->h_list.l_count = 6756 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6757 6758 /* We'll also be dirtied by the caller, so 6759 * this isn't absolutely necessary. 6760 */ 6761 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6762 6763 if (!fl->f_first) { 6764 dealloc->c_first_suballocator = fl->f_next_suballocator; 6765 kfree(fl); 6766 } 6767 kfree(bf); 6768 } 6769 6770 *blk_given = i; 6771 6772 bail: 6773 if (unlikely(status < 0)) { 6774 for (i = 0; i < blk_wanted; i++) 6775 brelse(new_eb_bh[i]); 6776 } 6777 6778 return status; 6779 } 6780 6781 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6782 int type, int slot, u64 suballoc, 6783 u64 blkno, unsigned int bit) 6784 { 6785 int ret; 6786 struct ocfs2_per_slot_free_list *fl; 6787 struct ocfs2_cached_block_free *item; 6788 6789 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6790 if (fl == NULL) { 6791 ret = -ENOMEM; 6792 mlog_errno(ret); 6793 goto out; 6794 } 6795 6796 item = kzalloc(sizeof(*item), GFP_NOFS); 6797 if (item == NULL) { 6798 ret = -ENOMEM; 6799 mlog_errno(ret); 6800 goto out; 6801 } 6802 6803 trace_ocfs2_cache_block_dealloc(type, slot, 6804 (unsigned long long)suballoc, 6805 (unsigned long long)blkno, bit); 6806 6807 item->free_bg = suballoc; 6808 item->free_blk = blkno; 6809 item->free_bit = bit; 6810 item->free_next = fl->f_first; 6811 6812 fl->f_first = item; 6813 6814 ret = 0; 6815 out: 6816 return ret; 6817 } 6818 6819 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6820 struct ocfs2_extent_block *eb) 6821 { 6822 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6823 le16_to_cpu(eb->h_suballoc_slot), 6824 le64_to_cpu(eb->h_suballoc_loc), 6825 le64_to_cpu(eb->h_blkno), 6826 le16_to_cpu(eb->h_suballoc_bit)); 6827 } 6828 6829 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6830 { 6831 set_buffer_uptodate(bh); 6832 mark_buffer_dirty(bh); 6833 return 0; 6834 } 6835 6836 void ocfs2_map_and_dirty_folio(struct inode *inode, handle_t *handle, 6837 size_t from, size_t to, struct folio *folio, int zero, 6838 u64 *phys) 6839 { 6840 int ret, partial = 0; 6841 loff_t start_byte = folio_pos(folio) + from; 6842 loff_t length = to - from; 6843 6844 ret = ocfs2_map_folio_blocks(folio, phys, inode, from, to, 0); 6845 if (ret) 6846 mlog_errno(ret); 6847 6848 if (zero) 6849 folio_zero_segment(folio, from, to); 6850 6851 /* 6852 * Need to set the buffers we zero'd into uptodate 6853 * here if they aren't - ocfs2_map_page_blocks() 6854 * might've skipped some 6855 */ 6856 ret = walk_page_buffers(handle, folio_buffers(folio), 6857 from, to, &partial, 6858 ocfs2_zero_func); 6859 if (ret < 0) 6860 mlog_errno(ret); 6861 else if (ocfs2_should_order_data(inode)) { 6862 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6863 start_byte, length); 6864 if (ret < 0) 6865 mlog_errno(ret); 6866 } 6867 6868 if (!partial) 6869 folio_mark_uptodate(folio); 6870 6871 flush_dcache_folio(folio); 6872 } 6873 6874 static void ocfs2_zero_cluster_folios(struct inode *inode, loff_t start, 6875 loff_t end, struct folio **folios, int numfolios, 6876 u64 phys, handle_t *handle) 6877 { 6878 int i; 6879 struct super_block *sb = inode->i_sb; 6880 6881 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6882 6883 if (numfolios == 0) 6884 goto out; 6885 6886 for (i = 0; i < numfolios; i++) { 6887 struct folio *folio = folios[i]; 6888 size_t to = folio_size(folio); 6889 size_t from = offset_in_folio(folio, start); 6890 6891 if (to > end - folio_pos(folio)) 6892 to = end - folio_pos(folio); 6893 6894 ocfs2_map_and_dirty_folio(inode, handle, from, to, folio, 1, 6895 &phys); 6896 6897 start = folio_next_pos(folio); 6898 } 6899 out: 6900 if (folios) 6901 ocfs2_unlock_and_free_folios(folios, numfolios); 6902 } 6903 6904 static int ocfs2_grab_folios(struct inode *inode, loff_t start, loff_t end, 6905 struct folio **folios, int *num) 6906 { 6907 int numfolios, ret = 0; 6908 struct address_space *mapping = inode->i_mapping; 6909 unsigned long index; 6910 loff_t last_page_bytes; 6911 6912 BUG_ON(start > end); 6913 6914 numfolios = 0; 6915 last_page_bytes = PAGE_ALIGN(end); 6916 index = start >> PAGE_SHIFT; 6917 do { 6918 folios[numfolios] = __filemap_get_folio(mapping, index, 6919 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS); 6920 if (IS_ERR(folios[numfolios])) { 6921 ret = PTR_ERR(folios[numfolios]); 6922 mlog_errno(ret); 6923 folios[numfolios] = NULL; 6924 goto out; 6925 } 6926 6927 index = folio_next_index(folios[numfolios]); 6928 numfolios++; 6929 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6930 6931 out: 6932 if (ret != 0) { 6933 ocfs2_unlock_and_free_folios(folios, numfolios); 6934 numfolios = 0; 6935 } 6936 6937 *num = numfolios; 6938 6939 return ret; 6940 } 6941 6942 static int ocfs2_grab_eof_folios(struct inode *inode, loff_t start, loff_t end, 6943 struct folio **folios, int *num) 6944 { 6945 struct super_block *sb = inode->i_sb; 6946 6947 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6948 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6949 6950 return ocfs2_grab_folios(inode, start, end, folios, num); 6951 } 6952 6953 /* 6954 * Zero partial cluster for a hole punch or truncate. This avoids exposing 6955 * nonzero data on subsequent file extends. 6956 * 6957 * We need to call this before i_size is updated on the inode because 6958 * otherwise block_write_full_folio() will skip writeout of pages past 6959 * i_size. 6960 */ 6961 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6962 u64 range_start, u64 range_end) 6963 { 6964 int ret = 0, numfolios; 6965 struct folio **folios = NULL; 6966 u64 phys; 6967 unsigned int ext_flags; 6968 struct super_block *sb = inode->i_sb; 6969 6970 /* 6971 * File systems which don't support sparse files zero on every 6972 * extend. 6973 */ 6974 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6975 return 0; 6976 6977 /* 6978 * Avoid zeroing folios fully beyond current i_size. It is pointless as 6979 * underlying blocks of those folios should be already zeroed out and 6980 * page writeback will skip them anyway. 6981 */ 6982 range_end = min_t(u64, range_end, i_size_read(inode)); 6983 if (range_start >= range_end) 6984 return 0; 6985 6986 folios = kcalloc(ocfs2_pages_per_cluster(sb), 6987 sizeof(struct folio *), GFP_NOFS); 6988 if (folios == NULL) { 6989 ret = -ENOMEM; 6990 mlog_errno(ret); 6991 goto out; 6992 } 6993 6994 ret = ocfs2_extent_map_get_blocks(inode, 6995 range_start >> sb->s_blocksize_bits, 6996 &phys, NULL, &ext_flags); 6997 if (ret) { 6998 mlog_errno(ret); 6999 goto out; 7000 } 7001 7002 /* 7003 * Tail is a hole, or is marked unwritten. In either case, we 7004 * can count on read and write to return/push zero's. 7005 */ 7006 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 7007 goto out; 7008 7009 ret = ocfs2_grab_eof_folios(inode, range_start, range_end, folios, 7010 &numfolios); 7011 if (ret) { 7012 mlog_errno(ret); 7013 goto out; 7014 } 7015 7016 ocfs2_zero_cluster_folios(inode, range_start, range_end, folios, 7017 numfolios, phys, handle); 7018 7019 /* 7020 * Initiate writeout of the folios we zero'd here. We don't 7021 * wait on them - the truncate_inode_pages() call later will 7022 * do that for us. 7023 */ 7024 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 7025 range_end - 1); 7026 if (ret) 7027 mlog_errno(ret); 7028 7029 out: 7030 kfree(folios); 7031 7032 return ret; 7033 } 7034 7035 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7036 struct ocfs2_dinode *di) 7037 { 7038 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7039 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7040 7041 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7042 memset(&di->id2, 0, blocksize - 7043 offsetof(struct ocfs2_dinode, id2) - 7044 xattrsize); 7045 else 7046 memset(&di->id2, 0, blocksize - 7047 offsetof(struct ocfs2_dinode, id2)); 7048 } 7049 7050 void ocfs2_dinode_new_extent_list(struct inode *inode, 7051 struct ocfs2_dinode *di) 7052 { 7053 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7054 di->id2.i_list.l_tree_depth = 0; 7055 di->id2.i_list.l_next_free_rec = 0; 7056 di->id2.i_list.l_count = cpu_to_le16( 7057 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7058 } 7059 7060 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7061 { 7062 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7063 struct ocfs2_inline_data *idata = &di->id2.i_data; 7064 7065 spin_lock(&oi->ip_lock); 7066 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7067 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7068 spin_unlock(&oi->ip_lock); 7069 7070 /* 7071 * We clear the entire i_data structure here so that all 7072 * fields can be properly initialized. 7073 */ 7074 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7075 7076 idata->id_count = cpu_to_le16( 7077 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7078 } 7079 7080 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7081 struct buffer_head *di_bh) 7082 { 7083 int ret, has_data, num_folios = 0; 7084 int need_free = 0; 7085 u32 bit_off, num; 7086 handle_t *handle; 7087 u64 block; 7088 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7089 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7090 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7091 struct ocfs2_alloc_context *data_ac = NULL; 7092 struct folio *folio = NULL; 7093 struct ocfs2_extent_tree et; 7094 int did_quota = 0; 7095 7096 has_data = i_size_read(inode) ? 1 : 0; 7097 7098 if (has_data) { 7099 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7100 if (ret) { 7101 mlog_errno(ret); 7102 goto out; 7103 } 7104 } 7105 7106 handle = ocfs2_start_trans(osb, 7107 ocfs2_inline_to_extents_credits(osb->sb)); 7108 if (IS_ERR(handle)) { 7109 ret = PTR_ERR(handle); 7110 mlog_errno(ret); 7111 goto out; 7112 } 7113 7114 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7115 OCFS2_JOURNAL_ACCESS_WRITE); 7116 if (ret) { 7117 mlog_errno(ret); 7118 goto out_commit; 7119 } 7120 7121 if (has_data) { 7122 unsigned int page_end = min_t(unsigned, PAGE_SIZE, 7123 osb->s_clustersize); 7124 u64 phys; 7125 7126 ret = dquot_alloc_space_nodirty(inode, 7127 ocfs2_clusters_to_bytes(osb->sb, 1)); 7128 if (ret) 7129 goto out_commit; 7130 did_quota = 1; 7131 7132 data_ac->ac_resv = &oi->ip_la_data_resv; 7133 7134 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7135 &num); 7136 if (ret) { 7137 mlog_errno(ret); 7138 goto out_commit; 7139 } 7140 7141 /* 7142 * Save two copies, one for insert, and one that can 7143 * be changed by ocfs2_map_and_dirty_folio() below. 7144 */ 7145 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7146 7147 ret = ocfs2_grab_eof_folios(inode, 0, page_end, &folio, 7148 &num_folios); 7149 if (ret) { 7150 mlog_errno(ret); 7151 need_free = 1; 7152 goto out_commit; 7153 } 7154 7155 /* 7156 * This should populate the 1st page for us and mark 7157 * it up to date. 7158 */ 7159 ret = ocfs2_read_inline_data(inode, folio, di_bh); 7160 if (ret) { 7161 mlog_errno(ret); 7162 need_free = 1; 7163 goto out_unlock; 7164 } 7165 7166 ocfs2_map_and_dirty_folio(inode, handle, 0, page_end, folio, 0, 7167 &phys); 7168 } 7169 7170 spin_lock(&oi->ip_lock); 7171 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7172 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7173 spin_unlock(&oi->ip_lock); 7174 7175 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7176 ocfs2_dinode_new_extent_list(inode, di); 7177 7178 ocfs2_journal_dirty(handle, di_bh); 7179 7180 if (has_data) { 7181 /* 7182 * An error at this point should be extremely rare. If 7183 * this proves to be false, we could always re-build 7184 * the in-inode data from our pages. 7185 */ 7186 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7187 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7188 if (ret) { 7189 mlog_errno(ret); 7190 need_free = 1; 7191 goto out_unlock; 7192 } 7193 7194 inode->i_blocks = ocfs2_inode_sector_count(inode); 7195 } 7196 7197 out_unlock: 7198 if (folio) 7199 ocfs2_unlock_and_free_folios(&folio, num_folios); 7200 7201 out_commit: 7202 if (ret < 0 && did_quota) 7203 dquot_free_space_nodirty(inode, 7204 ocfs2_clusters_to_bytes(osb->sb, 1)); 7205 7206 if (need_free) { 7207 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7208 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7209 bit_off, num); 7210 else 7211 ocfs2_free_clusters(handle, 7212 data_ac->ac_inode, 7213 data_ac->ac_bh, 7214 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7215 num); 7216 } 7217 7218 ocfs2_commit_trans(osb, handle); 7219 7220 out: 7221 if (data_ac) 7222 ocfs2_free_alloc_context(data_ac); 7223 return ret; 7224 } 7225 7226 /* 7227 * It is expected, that by the time you call this function, 7228 * inode->i_size and fe->i_size have been adjusted. 7229 * 7230 * WARNING: This will kfree the truncate context 7231 */ 7232 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7233 struct inode *inode, 7234 struct buffer_head *di_bh) 7235 { 7236 int status = 0, i, flags = 0; 7237 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7238 u64 blkno = 0; 7239 struct ocfs2_extent_list *el; 7240 struct ocfs2_extent_rec *rec; 7241 struct ocfs2_path *path = NULL; 7242 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7243 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7244 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7245 struct ocfs2_extent_tree et; 7246 struct ocfs2_cached_dealloc_ctxt dealloc; 7247 struct ocfs2_refcount_tree *ref_tree = NULL; 7248 7249 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7250 ocfs2_init_dealloc_ctxt(&dealloc); 7251 7252 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7253 i_size_read(inode)); 7254 7255 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7256 ocfs2_journal_access_di); 7257 if (!path) { 7258 status = -ENOMEM; 7259 mlog_errno(status); 7260 goto bail; 7261 } 7262 7263 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7264 7265 start: 7266 /* 7267 * Check that we still have allocation to delete. 7268 */ 7269 if (OCFS2_I(inode)->ip_clusters == 0) { 7270 status = 0; 7271 goto bail; 7272 } 7273 7274 /* 7275 * Truncate always works against the rightmost tree branch. 7276 */ 7277 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7278 if (status) { 7279 mlog_errno(status); 7280 goto bail; 7281 } 7282 7283 trace_ocfs2_commit_truncate( 7284 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7285 new_highest_cpos, 7286 OCFS2_I(inode)->ip_clusters, 7287 path->p_tree_depth); 7288 7289 /* 7290 * By now, el will point to the extent list on the bottom most 7291 * portion of this tree. Only the tail record is considered in 7292 * each pass. 7293 * 7294 * We handle the following cases, in order: 7295 * - empty extent: delete the remaining branch 7296 * - remove the entire record 7297 * - remove a partial record 7298 * - no record needs to be removed (truncate has completed) 7299 */ 7300 el = path_leaf_el(path); 7301 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7302 ocfs2_error(inode->i_sb, 7303 "Inode %llu has empty extent block at %llu\n", 7304 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7305 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7306 status = -EROFS; 7307 goto bail; 7308 } 7309 7310 i = le16_to_cpu(el->l_next_free_rec) - 1; 7311 rec = &el->l_recs[i]; 7312 flags = rec->e_flags; 7313 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7314 7315 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7316 /* 7317 * Lower levels depend on this never happening, but it's best 7318 * to check it up here before changing the tree. 7319 */ 7320 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7321 mlog(ML_ERROR, "Inode %lu has an empty " 7322 "extent record, depth %u\n", inode->i_ino, 7323 le16_to_cpu(root_el->l_tree_depth)); 7324 status = ocfs2_remove_rightmost_empty_extent(osb, 7325 &et, path, &dealloc); 7326 if (status) { 7327 mlog_errno(status); 7328 goto bail; 7329 } 7330 7331 ocfs2_reinit_path(path, 1); 7332 goto start; 7333 } else { 7334 trunc_cpos = le32_to_cpu(rec->e_cpos); 7335 trunc_len = 0; 7336 blkno = 0; 7337 } 7338 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7339 /* 7340 * Truncate entire record. 7341 */ 7342 trunc_cpos = le32_to_cpu(rec->e_cpos); 7343 trunc_len = ocfs2_rec_clusters(el, rec); 7344 blkno = le64_to_cpu(rec->e_blkno); 7345 } else if (range > new_highest_cpos) { 7346 /* 7347 * Partial truncate. it also should be 7348 * the last truncate we're doing. 7349 */ 7350 trunc_cpos = new_highest_cpos; 7351 trunc_len = range - new_highest_cpos; 7352 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7353 blkno = le64_to_cpu(rec->e_blkno) + 7354 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7355 } else { 7356 /* 7357 * Truncate completed, leave happily. 7358 */ 7359 status = 0; 7360 goto bail; 7361 } 7362 7363 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7364 7365 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7366 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7367 &ref_tree, NULL); 7368 if (status) { 7369 mlog_errno(status); 7370 goto bail; 7371 } 7372 } 7373 7374 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7375 phys_cpos, trunc_len, flags, &dealloc, 7376 refcount_loc, true); 7377 if (status < 0) { 7378 mlog_errno(status); 7379 goto bail; 7380 } 7381 7382 ocfs2_reinit_path(path, 1); 7383 7384 /* 7385 * The check above will catch the case where we've truncated 7386 * away all allocation. 7387 */ 7388 goto start; 7389 7390 bail: 7391 if (ref_tree) 7392 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7393 7394 ocfs2_schedule_truncate_log_flush(osb, 1); 7395 7396 ocfs2_run_deallocs(osb, &dealloc); 7397 7398 ocfs2_free_path(path); 7399 7400 return status; 7401 } 7402 7403 /* 7404 * 'start' is inclusive, 'end' is not. 7405 */ 7406 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7407 unsigned int start, unsigned int end, int trunc) 7408 { 7409 int ret; 7410 unsigned int numbytes; 7411 handle_t *handle; 7412 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7413 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7414 struct ocfs2_inline_data *idata = &di->id2.i_data; 7415 7416 /* No need to punch hole beyond i_size. */ 7417 if (start >= i_size_read(inode)) 7418 return 0; 7419 7420 if (end > i_size_read(inode)) 7421 end = i_size_read(inode); 7422 7423 BUG_ON(start > end); 7424 7425 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7426 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7427 !ocfs2_supports_inline_data(osb)) { 7428 ocfs2_error(inode->i_sb, 7429 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7430 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7431 le16_to_cpu(di->i_dyn_features), 7432 OCFS2_I(inode)->ip_dyn_features, 7433 osb->s_feature_incompat); 7434 ret = -EROFS; 7435 goto out; 7436 } 7437 7438 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7439 if (IS_ERR(handle)) { 7440 ret = PTR_ERR(handle); 7441 mlog_errno(ret); 7442 goto out; 7443 } 7444 7445 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7446 OCFS2_JOURNAL_ACCESS_WRITE); 7447 if (ret) { 7448 mlog_errno(ret); 7449 goto out_commit; 7450 } 7451 7452 numbytes = end - start; 7453 memset(idata->id_data + start, 0, numbytes); 7454 7455 /* 7456 * No need to worry about the data page here - it's been 7457 * truncated already and inline data doesn't need it for 7458 * pushing zero's to disk, so we'll let read_folio pick it up 7459 * later. 7460 */ 7461 if (trunc) { 7462 i_size_write(inode, start); 7463 di->i_size = cpu_to_le64(start); 7464 } 7465 7466 inode->i_blocks = ocfs2_inode_sector_count(inode); 7467 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7468 7469 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode)); 7470 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 7471 7472 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7473 ocfs2_journal_dirty(handle, di_bh); 7474 7475 out_commit: 7476 ocfs2_commit_trans(osb, handle); 7477 7478 out: 7479 return ret; 7480 } 7481 7482 static int ocfs2_trim_extent(struct super_block *sb, 7483 struct ocfs2_group_desc *gd, 7484 u64 group, u32 start, u32 count) 7485 { 7486 u64 discard, bcount; 7487 struct ocfs2_super *osb = OCFS2_SB(sb); 7488 7489 bcount = ocfs2_clusters_to_blocks(sb, count); 7490 discard = ocfs2_clusters_to_blocks(sb, start); 7491 7492 /* 7493 * For the first cluster group, the gd->bg_blkno is not at the start 7494 * of the group, but at an offset from the start. If we add it while 7495 * calculating discard for first group, we will wrongly start fstrim a 7496 * few blocks after the desried start block and the range can cross 7497 * over into the next cluster group. So, add it only if this is not 7498 * the first cluster group. 7499 */ 7500 if (group != osb->first_cluster_group_blkno) 7501 discard += le64_to_cpu(gd->bg_blkno); 7502 7503 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7504 7505 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7506 } 7507 7508 static int ocfs2_trim_group(struct super_block *sb, 7509 struct ocfs2_group_desc *gd, u64 group, 7510 u32 start, u32 max, u32 minbits) 7511 { 7512 int ret = 0, count = 0, next; 7513 void *bitmap = gd->bg_bitmap; 7514 7515 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7516 return 0; 7517 7518 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7519 start, max, minbits); 7520 7521 while (start < max) { 7522 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7523 if (start >= max) 7524 break; 7525 next = ocfs2_find_next_bit(bitmap, max, start); 7526 7527 if ((next - start) >= minbits) { 7528 ret = ocfs2_trim_extent(sb, gd, group, 7529 start, next - start); 7530 if (ret < 0) { 7531 mlog_errno(ret); 7532 break; 7533 } 7534 count += next - start; 7535 } 7536 start = next + 1; 7537 7538 if (fatal_signal_pending(current)) { 7539 count = -ERESTARTSYS; 7540 break; 7541 } 7542 7543 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7544 break; 7545 } 7546 7547 if (ret < 0) 7548 count = ret; 7549 7550 return count; 7551 } 7552 7553 static 7554 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7555 { 7556 struct ocfs2_super *osb = OCFS2_SB(sb); 7557 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7558 int ret, cnt; 7559 u32 first_bit, last_bit, minlen; 7560 struct buffer_head *main_bm_bh = NULL; 7561 struct inode *main_bm_inode = NULL; 7562 struct buffer_head *gd_bh = NULL; 7563 struct ocfs2_dinode *main_bm; 7564 struct ocfs2_group_desc *gd = NULL; 7565 7566 start = range->start >> osb->s_clustersize_bits; 7567 len = range->len >> osb->s_clustersize_bits; 7568 minlen = range->minlen >> osb->s_clustersize_bits; 7569 7570 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7571 return -EINVAL; 7572 7573 trace_ocfs2_trim_mainbm(start, len, minlen); 7574 7575 next_group: 7576 main_bm_inode = ocfs2_get_system_file_inode(osb, 7577 GLOBAL_BITMAP_SYSTEM_INODE, 7578 OCFS2_INVALID_SLOT); 7579 if (!main_bm_inode) { 7580 ret = -EIO; 7581 mlog_errno(ret); 7582 goto out; 7583 } 7584 7585 inode_lock(main_bm_inode); 7586 7587 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7588 if (ret < 0) { 7589 mlog_errno(ret); 7590 goto out_mutex; 7591 } 7592 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7593 7594 /* 7595 * Do some check before trim the first group. 7596 */ 7597 if (!group) { 7598 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7599 ret = -EINVAL; 7600 goto out_unlock; 7601 } 7602 7603 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7604 len = le32_to_cpu(main_bm->i_clusters) - start; 7605 7606 /* 7607 * Determine first and last group to examine based on 7608 * start and len 7609 */ 7610 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7611 if (first_group == osb->first_cluster_group_blkno) 7612 first_bit = start; 7613 else 7614 first_bit = start - ocfs2_blocks_to_clusters(sb, 7615 first_group); 7616 last_group = ocfs2_which_cluster_group(main_bm_inode, 7617 start + len - 1); 7618 group = first_group; 7619 } 7620 7621 do { 7622 if (first_bit + len >= osb->bitmap_cpg) 7623 last_bit = osb->bitmap_cpg; 7624 else 7625 last_bit = first_bit + len; 7626 7627 ret = ocfs2_read_group_descriptor(main_bm_inode, 7628 main_bm, group, 7629 &gd_bh); 7630 if (ret < 0) { 7631 mlog_errno(ret); 7632 break; 7633 } 7634 7635 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7636 cnt = ocfs2_trim_group(sb, gd, group, 7637 first_bit, last_bit, minlen); 7638 brelse(gd_bh); 7639 gd_bh = NULL; 7640 if (cnt < 0) { 7641 ret = cnt; 7642 mlog_errno(ret); 7643 break; 7644 } 7645 7646 trimmed += cnt; 7647 len -= osb->bitmap_cpg - first_bit; 7648 first_bit = 0; 7649 if (group == osb->first_cluster_group_blkno) 7650 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7651 else 7652 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7653 } while (0); 7654 7655 out_unlock: 7656 ocfs2_inode_unlock(main_bm_inode, 0); 7657 brelse(main_bm_bh); 7658 main_bm_bh = NULL; 7659 out_mutex: 7660 inode_unlock(main_bm_inode); 7661 iput(main_bm_inode); 7662 7663 /* 7664 * If all the groups trim are not done or failed, but we should release 7665 * main_bm related locks for avoiding the current IO starve, then go to 7666 * trim the next group 7667 */ 7668 if (ret >= 0 && group <= last_group) { 7669 cond_resched(); 7670 goto next_group; 7671 } 7672 out: 7673 range->len = trimmed * osb->s_clustersize; 7674 return ret; 7675 } 7676 7677 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7678 { 7679 int ret; 7680 struct ocfs2_super *osb = OCFS2_SB(sb); 7681 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7682 7683 ocfs2_trim_fs_lock_res_init(osb); 7684 7685 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7686 7687 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7688 if (ret < 0) { 7689 if (ret != -EAGAIN) { 7690 mlog_errno(ret); 7691 ocfs2_trim_fs_lock_res_uninit(osb); 7692 return ret; 7693 } 7694 7695 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7696 "finish, which is running from another node.\n", 7697 osb->dev_str); 7698 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7699 if (ret < 0) { 7700 mlog_errno(ret); 7701 ocfs2_trim_fs_lock_res_uninit(osb); 7702 return ret; 7703 } 7704 7705 if (info.tf_valid && info.tf_success && 7706 info.tf_start == range->start && 7707 info.tf_len == range->len && 7708 info.tf_minlen == range->minlen) { 7709 /* Avoid sending duplicated trim to a shared device */ 7710 mlog(ML_NOTICE, "The same trim on device (%s) was " 7711 "just done from node (%u), return.\n", 7712 osb->dev_str, info.tf_nodenum); 7713 range->len = info.tf_trimlen; 7714 goto out; 7715 } 7716 } 7717 7718 info.tf_nodenum = osb->node_num; 7719 info.tf_start = range->start; 7720 info.tf_len = range->len; 7721 info.tf_minlen = range->minlen; 7722 7723 ret = ocfs2_trim_mainbm(sb, range); 7724 7725 info.tf_trimlen = range->len; 7726 info.tf_success = (ret < 0 ? 0 : 1); 7727 pinfo = &info; 7728 out: 7729 ocfs2_trim_fs_unlock(osb, pinfo); 7730 ocfs2_trim_fs_lock_res_uninit(osb); 7731 return ret; 7732 } 7733