xref: /linux/fs/ocfs2/alloc.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters != rec->e_cpos),
180 			"Device %s, asking for sparse allocation: inode %llu, "
181 			"cpos %u, clusters %u\n",
182 			osb->dev_str,
183 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
184 			rec->e_cpos,
185 			OCFS2_I(inode)->ip_clusters);
186 
187 	return 0;
188 }
189 
190 static int ocfs2_dinode_sanity_check(struct inode *inode,
191 				     struct ocfs2_extent_tree *et)
192 {
193 	struct ocfs2_dinode *di = et->et_object;
194 
195 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
196 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
197 
198 	return 0;
199 }
200 
201 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
202 {
203 	struct ocfs2_dinode *di = et->et_object;
204 
205 	et->et_root_el = &di->id2.i_list;
206 }
207 
208 
209 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
210 {
211 	struct ocfs2_xattr_value_buf *vb = et->et_object;
212 
213 	et->et_root_el = &vb->vb_xv->xr_list;
214 }
215 
216 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
217 					      u64 blkno)
218 {
219 	struct ocfs2_xattr_value_buf *vb = et->et_object;
220 
221 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
222 }
223 
224 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
225 {
226 	struct ocfs2_xattr_value_buf *vb = et->et_object;
227 
228 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
229 }
230 
231 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
232 					      struct ocfs2_extent_tree *et,
233 					      u32 clusters)
234 {
235 	struct ocfs2_xattr_value_buf *vb = et->et_object;
236 
237 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
238 }
239 
240 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
241 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
242 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
243 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
244 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
245 };
246 
247 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
248 {
249 	struct ocfs2_xattr_block *xb = et->et_object;
250 
251 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
252 }
253 
254 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
255 						    struct ocfs2_extent_tree *et)
256 {
257 	et->et_max_leaf_clusters =
258 		ocfs2_clusters_for_bytes(inode->i_sb,
259 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
260 }
261 
262 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
263 					     u64 blkno)
264 {
265 	struct ocfs2_xattr_block *xb = et->et_object;
266 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
267 
268 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
269 }
270 
271 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
272 {
273 	struct ocfs2_xattr_block *xb = et->et_object;
274 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
275 
276 	return le64_to_cpu(xt->xt_last_eb_blk);
277 }
278 
279 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
280 					     struct ocfs2_extent_tree *et,
281 					     u32 clusters)
282 {
283 	struct ocfs2_xattr_block *xb = et->et_object;
284 
285 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
286 }
287 
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
289 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
290 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
291 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
292 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
293 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
294 };
295 
296 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
297 				     struct inode *inode,
298 				     struct buffer_head *bh,
299 				     ocfs2_journal_access_func access,
300 				     void *obj,
301 				     struct ocfs2_extent_tree_operations *ops)
302 {
303 	et->et_ops = ops;
304 	et->et_root_bh = bh;
305 	et->et_root_journal_access = access;
306 	if (!obj)
307 		obj = (void *)bh->b_data;
308 	et->et_object = obj;
309 
310 	et->et_ops->eo_fill_root_el(et);
311 	if (!et->et_ops->eo_fill_max_leaf_clusters)
312 		et->et_max_leaf_clusters = 0;
313 	else
314 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
315 }
316 
317 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
318 				   struct inode *inode,
319 				   struct buffer_head *bh)
320 {
321 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
322 				 NULL, &ocfs2_dinode_et_ops);
323 }
324 
325 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
326 				       struct inode *inode,
327 				       struct buffer_head *bh)
328 {
329 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
330 				 NULL, &ocfs2_xattr_tree_et_ops);
331 }
332 
333 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
334 					struct inode *inode,
335 					struct ocfs2_xattr_value_buf *vb)
336 {
337 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
338 				 &ocfs2_xattr_value_et_ops);
339 }
340 
341 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
342 					    u64 new_last_eb_blk)
343 {
344 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
345 }
346 
347 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
348 {
349 	return et->et_ops->eo_get_last_eb_blk(et);
350 }
351 
352 static inline void ocfs2_et_update_clusters(struct inode *inode,
353 					    struct ocfs2_extent_tree *et,
354 					    u32 clusters)
355 {
356 	et->et_ops->eo_update_clusters(inode, et, clusters);
357 }
358 
359 static inline int ocfs2_et_root_journal_access(handle_t *handle,
360 					       struct inode *inode,
361 					       struct ocfs2_extent_tree *et,
362 					       int type)
363 {
364 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
365 					  type);
366 }
367 
368 static inline int ocfs2_et_insert_check(struct inode *inode,
369 					struct ocfs2_extent_tree *et,
370 					struct ocfs2_extent_rec *rec)
371 {
372 	int ret = 0;
373 
374 	if (et->et_ops->eo_insert_check)
375 		ret = et->et_ops->eo_insert_check(inode, et, rec);
376 	return ret;
377 }
378 
379 static inline int ocfs2_et_sanity_check(struct inode *inode,
380 					struct ocfs2_extent_tree *et)
381 {
382 	int ret = 0;
383 
384 	if (et->et_ops->eo_sanity_check)
385 		ret = et->et_ops->eo_sanity_check(inode, et);
386 	return ret;
387 }
388 
389 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
390 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
391 					 struct ocfs2_extent_block *eb);
392 
393 /*
394  * Structures which describe a path through a btree, and functions to
395  * manipulate them.
396  *
397  * The idea here is to be as generic as possible with the tree
398  * manipulation code.
399  */
400 struct ocfs2_path_item {
401 	struct buffer_head		*bh;
402 	struct ocfs2_extent_list	*el;
403 };
404 
405 #define OCFS2_MAX_PATH_DEPTH	5
406 
407 struct ocfs2_path {
408 	int				p_tree_depth;
409 	ocfs2_journal_access_func	p_root_access;
410 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
411 };
412 
413 #define path_root_bh(_path) ((_path)->p_node[0].bh)
414 #define path_root_el(_path) ((_path)->p_node[0].el)
415 #define path_root_access(_path)((_path)->p_root_access)
416 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
417 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
418 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
419 
420 /*
421  * Reset the actual path elements so that we can re-use the structure
422  * to build another path. Generally, this involves freeing the buffer
423  * heads.
424  */
425 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
426 {
427 	int i, start = 0, depth = 0;
428 	struct ocfs2_path_item *node;
429 
430 	if (keep_root)
431 		start = 1;
432 
433 	for(i = start; i < path_num_items(path); i++) {
434 		node = &path->p_node[i];
435 
436 		brelse(node->bh);
437 		node->bh = NULL;
438 		node->el = NULL;
439 	}
440 
441 	/*
442 	 * Tree depth may change during truncate, or insert. If we're
443 	 * keeping the root extent list, then make sure that our path
444 	 * structure reflects the proper depth.
445 	 */
446 	if (keep_root)
447 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
448 	else
449 		path_root_access(path) = NULL;
450 
451 	path->p_tree_depth = depth;
452 }
453 
454 static void ocfs2_free_path(struct ocfs2_path *path)
455 {
456 	if (path) {
457 		ocfs2_reinit_path(path, 0);
458 		kfree(path);
459 	}
460 }
461 
462 /*
463  * All the elements of src into dest. After this call, src could be freed
464  * without affecting dest.
465  *
466  * Both paths should have the same root. Any non-root elements of dest
467  * will be freed.
468  */
469 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
470 {
471 	int i;
472 
473 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
474 	BUG_ON(path_root_el(dest) != path_root_el(src));
475 	BUG_ON(path_root_access(dest) != path_root_access(src));
476 
477 	ocfs2_reinit_path(dest, 1);
478 
479 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
480 		dest->p_node[i].bh = src->p_node[i].bh;
481 		dest->p_node[i].el = src->p_node[i].el;
482 
483 		if (dest->p_node[i].bh)
484 			get_bh(dest->p_node[i].bh);
485 	}
486 }
487 
488 /*
489  * Make the *dest path the same as src and re-initialize src path to
490  * have a root only.
491  */
492 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
493 {
494 	int i;
495 
496 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
497 	BUG_ON(path_root_access(dest) != path_root_access(src));
498 
499 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
500 		brelse(dest->p_node[i].bh);
501 
502 		dest->p_node[i].bh = src->p_node[i].bh;
503 		dest->p_node[i].el = src->p_node[i].el;
504 
505 		src->p_node[i].bh = NULL;
506 		src->p_node[i].el = NULL;
507 	}
508 }
509 
510 /*
511  * Insert an extent block at given index.
512  *
513  * This will not take an additional reference on eb_bh.
514  */
515 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
516 					struct buffer_head *eb_bh)
517 {
518 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
519 
520 	/*
521 	 * Right now, no root bh is an extent block, so this helps
522 	 * catch code errors with dinode trees. The assertion can be
523 	 * safely removed if we ever need to insert extent block
524 	 * structures at the root.
525 	 */
526 	BUG_ON(index == 0);
527 
528 	path->p_node[index].bh = eb_bh;
529 	path->p_node[index].el = &eb->h_list;
530 }
531 
532 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
533 					 struct ocfs2_extent_list *root_el,
534 					 ocfs2_journal_access_func access)
535 {
536 	struct ocfs2_path *path;
537 
538 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
539 
540 	path = kzalloc(sizeof(*path), GFP_NOFS);
541 	if (path) {
542 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
543 		get_bh(root_bh);
544 		path_root_bh(path) = root_bh;
545 		path_root_el(path) = root_el;
546 		path_root_access(path) = access;
547 	}
548 
549 	return path;
550 }
551 
552 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
553 {
554 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
555 			      path_root_access(path));
556 }
557 
558 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
559 {
560 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
561 			      et->et_root_journal_access);
562 }
563 
564 /*
565  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
566  * otherwise it's the root_access function.
567  *
568  * I don't like the way this function's name looks next to
569  * ocfs2_journal_access_path(), but I don't have a better one.
570  */
571 static int ocfs2_path_bh_journal_access(handle_t *handle,
572 					struct inode *inode,
573 					struct ocfs2_path *path,
574 					int idx)
575 {
576 	ocfs2_journal_access_func access = path_root_access(path);
577 
578 	if (!access)
579 		access = ocfs2_journal_access;
580 
581 	if (idx)
582 		access = ocfs2_journal_access_eb;
583 
584 	return access(handle, inode, path->p_node[idx].bh,
585 		      OCFS2_JOURNAL_ACCESS_WRITE);
586 }
587 
588 /*
589  * Convenience function to journal all components in a path.
590  */
591 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
592 				     struct ocfs2_path *path)
593 {
594 	int i, ret = 0;
595 
596 	if (!path)
597 		goto out;
598 
599 	for(i = 0; i < path_num_items(path); i++) {
600 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
601 		if (ret < 0) {
602 			mlog_errno(ret);
603 			goto out;
604 		}
605 	}
606 
607 out:
608 	return ret;
609 }
610 
611 /*
612  * Return the index of the extent record which contains cluster #v_cluster.
613  * -1 is returned if it was not found.
614  *
615  * Should work fine on interior and exterior nodes.
616  */
617 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
618 {
619 	int ret = -1;
620 	int i;
621 	struct ocfs2_extent_rec *rec;
622 	u32 rec_end, rec_start, clusters;
623 
624 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
625 		rec = &el->l_recs[i];
626 
627 		rec_start = le32_to_cpu(rec->e_cpos);
628 		clusters = ocfs2_rec_clusters(el, rec);
629 
630 		rec_end = rec_start + clusters;
631 
632 		if (v_cluster >= rec_start && v_cluster < rec_end) {
633 			ret = i;
634 			break;
635 		}
636 	}
637 
638 	return ret;
639 }
640 
641 enum ocfs2_contig_type {
642 	CONTIG_NONE = 0,
643 	CONTIG_LEFT,
644 	CONTIG_RIGHT,
645 	CONTIG_LEFTRIGHT,
646 };
647 
648 
649 /*
650  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
651  * ocfs2_extent_contig only work properly against leaf nodes!
652  */
653 static int ocfs2_block_extent_contig(struct super_block *sb,
654 				     struct ocfs2_extent_rec *ext,
655 				     u64 blkno)
656 {
657 	u64 blk_end = le64_to_cpu(ext->e_blkno);
658 
659 	blk_end += ocfs2_clusters_to_blocks(sb,
660 				    le16_to_cpu(ext->e_leaf_clusters));
661 
662 	return blkno == blk_end;
663 }
664 
665 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
666 				  struct ocfs2_extent_rec *right)
667 {
668 	u32 left_range;
669 
670 	left_range = le32_to_cpu(left->e_cpos) +
671 		le16_to_cpu(left->e_leaf_clusters);
672 
673 	return (left_range == le32_to_cpu(right->e_cpos));
674 }
675 
676 static enum ocfs2_contig_type
677 	ocfs2_extent_contig(struct inode *inode,
678 			    struct ocfs2_extent_rec *ext,
679 			    struct ocfs2_extent_rec *insert_rec)
680 {
681 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
682 
683 	/*
684 	 * Refuse to coalesce extent records with different flag
685 	 * fields - we don't want to mix unwritten extents with user
686 	 * data.
687 	 */
688 	if (ext->e_flags != insert_rec->e_flags)
689 		return CONTIG_NONE;
690 
691 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
692 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
693 			return CONTIG_RIGHT;
694 
695 	blkno = le64_to_cpu(ext->e_blkno);
696 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
697 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
698 		return CONTIG_LEFT;
699 
700 	return CONTIG_NONE;
701 }
702 
703 /*
704  * NOTE: We can have pretty much any combination of contiguousness and
705  * appending.
706  *
707  * The usefulness of APPEND_TAIL is more in that it lets us know that
708  * we'll have to update the path to that leaf.
709  */
710 enum ocfs2_append_type {
711 	APPEND_NONE = 0,
712 	APPEND_TAIL,
713 };
714 
715 enum ocfs2_split_type {
716 	SPLIT_NONE = 0,
717 	SPLIT_LEFT,
718 	SPLIT_RIGHT,
719 };
720 
721 struct ocfs2_insert_type {
722 	enum ocfs2_split_type	ins_split;
723 	enum ocfs2_append_type	ins_appending;
724 	enum ocfs2_contig_type	ins_contig;
725 	int			ins_contig_index;
726 	int			ins_tree_depth;
727 };
728 
729 struct ocfs2_merge_ctxt {
730 	enum ocfs2_contig_type	c_contig_type;
731 	int			c_has_empty_extent;
732 	int			c_split_covers_rec;
733 };
734 
735 static int ocfs2_validate_extent_block(struct super_block *sb,
736 				       struct buffer_head *bh)
737 {
738 	int rc;
739 	struct ocfs2_extent_block *eb =
740 		(struct ocfs2_extent_block *)bh->b_data;
741 
742 	mlog(0, "Validating extent block %llu\n",
743 	     (unsigned long long)bh->b_blocknr);
744 
745 	BUG_ON(!buffer_uptodate(bh));
746 
747 	/*
748 	 * If the ecc fails, we return the error but otherwise
749 	 * leave the filesystem running.  We know any error is
750 	 * local to this block.
751 	 */
752 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
753 	if (rc) {
754 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
755 		     (unsigned long long)bh->b_blocknr);
756 		return rc;
757 	}
758 
759 	/*
760 	 * Errors after here are fatal.
761 	 */
762 
763 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
764 		ocfs2_error(sb,
765 			    "Extent block #%llu has bad signature %.*s",
766 			    (unsigned long long)bh->b_blocknr, 7,
767 			    eb->h_signature);
768 		return -EINVAL;
769 	}
770 
771 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
772 		ocfs2_error(sb,
773 			    "Extent block #%llu has an invalid h_blkno "
774 			    "of %llu",
775 			    (unsigned long long)bh->b_blocknr,
776 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
777 		return -EINVAL;
778 	}
779 
780 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
781 		ocfs2_error(sb,
782 			    "Extent block #%llu has an invalid "
783 			    "h_fs_generation of #%u",
784 			    (unsigned long long)bh->b_blocknr,
785 			    le32_to_cpu(eb->h_fs_generation));
786 		return -EINVAL;
787 	}
788 
789 	return 0;
790 }
791 
792 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
793 			    struct buffer_head **bh)
794 {
795 	int rc;
796 	struct buffer_head *tmp = *bh;
797 
798 	rc = ocfs2_read_block(inode, eb_blkno, &tmp,
799 			      ocfs2_validate_extent_block);
800 
801 	/* If ocfs2_read_block() got us a new bh, pass it up. */
802 	if (!rc && !*bh)
803 		*bh = tmp;
804 
805 	return rc;
806 }
807 
808 
809 /*
810  * How many free extents have we got before we need more meta data?
811  */
812 int ocfs2_num_free_extents(struct ocfs2_super *osb,
813 			   struct inode *inode,
814 			   struct ocfs2_extent_tree *et)
815 {
816 	int retval;
817 	struct ocfs2_extent_list *el = NULL;
818 	struct ocfs2_extent_block *eb;
819 	struct buffer_head *eb_bh = NULL;
820 	u64 last_eb_blk = 0;
821 
822 	mlog_entry_void();
823 
824 	el = et->et_root_el;
825 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
826 
827 	if (last_eb_blk) {
828 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
829 		if (retval < 0) {
830 			mlog_errno(retval);
831 			goto bail;
832 		}
833 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
834 		el = &eb->h_list;
835 	}
836 
837 	BUG_ON(el->l_tree_depth != 0);
838 
839 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
840 bail:
841 	brelse(eb_bh);
842 
843 	mlog_exit(retval);
844 	return retval;
845 }
846 
847 /* expects array to already be allocated
848  *
849  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
850  * l_count for you
851  */
852 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
853 				     handle_t *handle,
854 				     struct inode *inode,
855 				     int wanted,
856 				     struct ocfs2_alloc_context *meta_ac,
857 				     struct buffer_head *bhs[])
858 {
859 	int count, status, i;
860 	u16 suballoc_bit_start;
861 	u32 num_got;
862 	u64 first_blkno;
863 	struct ocfs2_extent_block *eb;
864 
865 	mlog_entry_void();
866 
867 	count = 0;
868 	while (count < wanted) {
869 		status = ocfs2_claim_metadata(osb,
870 					      handle,
871 					      meta_ac,
872 					      wanted - count,
873 					      &suballoc_bit_start,
874 					      &num_got,
875 					      &first_blkno);
876 		if (status < 0) {
877 			mlog_errno(status);
878 			goto bail;
879 		}
880 
881 		for(i = count;  i < (num_got + count); i++) {
882 			bhs[i] = sb_getblk(osb->sb, first_blkno);
883 			if (bhs[i] == NULL) {
884 				status = -EIO;
885 				mlog_errno(status);
886 				goto bail;
887 			}
888 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
889 
890 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
891 							 OCFS2_JOURNAL_ACCESS_CREATE);
892 			if (status < 0) {
893 				mlog_errno(status);
894 				goto bail;
895 			}
896 
897 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
898 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
899 			/* Ok, setup the minimal stuff here. */
900 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
901 			eb->h_blkno = cpu_to_le64(first_blkno);
902 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
903 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
904 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
905 			eb->h_list.l_count =
906 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
907 
908 			suballoc_bit_start++;
909 			first_blkno++;
910 
911 			/* We'll also be dirtied by the caller, so
912 			 * this isn't absolutely necessary. */
913 			status = ocfs2_journal_dirty(handle, bhs[i]);
914 			if (status < 0) {
915 				mlog_errno(status);
916 				goto bail;
917 			}
918 		}
919 
920 		count += num_got;
921 	}
922 
923 	status = 0;
924 bail:
925 	if (status < 0) {
926 		for(i = 0; i < wanted; i++) {
927 			brelse(bhs[i]);
928 			bhs[i] = NULL;
929 		}
930 	}
931 	mlog_exit(status);
932 	return status;
933 }
934 
935 /*
936  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
937  *
938  * Returns the sum of the rightmost extent rec logical offset and
939  * cluster count.
940  *
941  * ocfs2_add_branch() uses this to determine what logical cluster
942  * value should be populated into the leftmost new branch records.
943  *
944  * ocfs2_shift_tree_depth() uses this to determine the # clusters
945  * value for the new topmost tree record.
946  */
947 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
948 {
949 	int i;
950 
951 	i = le16_to_cpu(el->l_next_free_rec) - 1;
952 
953 	return le32_to_cpu(el->l_recs[i].e_cpos) +
954 		ocfs2_rec_clusters(el, &el->l_recs[i]);
955 }
956 
957 /*
958  * Add an entire tree branch to our inode. eb_bh is the extent block
959  * to start at, if we don't want to start the branch at the dinode
960  * structure.
961  *
962  * last_eb_bh is required as we have to update it's next_leaf pointer
963  * for the new last extent block.
964  *
965  * the new branch will be 'empty' in the sense that every block will
966  * contain a single record with cluster count == 0.
967  */
968 static int ocfs2_add_branch(struct ocfs2_super *osb,
969 			    handle_t *handle,
970 			    struct inode *inode,
971 			    struct ocfs2_extent_tree *et,
972 			    struct buffer_head *eb_bh,
973 			    struct buffer_head **last_eb_bh,
974 			    struct ocfs2_alloc_context *meta_ac)
975 {
976 	int status, new_blocks, i;
977 	u64 next_blkno, new_last_eb_blk;
978 	struct buffer_head *bh;
979 	struct buffer_head **new_eb_bhs = NULL;
980 	struct ocfs2_extent_block *eb;
981 	struct ocfs2_extent_list  *eb_el;
982 	struct ocfs2_extent_list  *el;
983 	u32 new_cpos;
984 
985 	mlog_entry_void();
986 
987 	BUG_ON(!last_eb_bh || !*last_eb_bh);
988 
989 	if (eb_bh) {
990 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
991 		el = &eb->h_list;
992 	} else
993 		el = et->et_root_el;
994 
995 	/* we never add a branch to a leaf. */
996 	BUG_ON(!el->l_tree_depth);
997 
998 	new_blocks = le16_to_cpu(el->l_tree_depth);
999 
1000 	/* allocate the number of new eb blocks we need */
1001 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1002 			     GFP_KERNEL);
1003 	if (!new_eb_bhs) {
1004 		status = -ENOMEM;
1005 		mlog_errno(status);
1006 		goto bail;
1007 	}
1008 
1009 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1010 					   meta_ac, new_eb_bhs);
1011 	if (status < 0) {
1012 		mlog_errno(status);
1013 		goto bail;
1014 	}
1015 
1016 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1017 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1018 
1019 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1020 	 * linked with the rest of the tree.
1021 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1022 	 *
1023 	 * when we leave the loop, new_last_eb_blk will point to the
1024 	 * newest leaf, and next_blkno will point to the topmost extent
1025 	 * block. */
1026 	next_blkno = new_last_eb_blk = 0;
1027 	for(i = 0; i < new_blocks; i++) {
1028 		bh = new_eb_bhs[i];
1029 		eb = (struct ocfs2_extent_block *) bh->b_data;
1030 		/* ocfs2_create_new_meta_bhs() should create it right! */
1031 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1032 		eb_el = &eb->h_list;
1033 
1034 		status = ocfs2_journal_access_eb(handle, inode, bh,
1035 						 OCFS2_JOURNAL_ACCESS_CREATE);
1036 		if (status < 0) {
1037 			mlog_errno(status);
1038 			goto bail;
1039 		}
1040 
1041 		eb->h_next_leaf_blk = 0;
1042 		eb_el->l_tree_depth = cpu_to_le16(i);
1043 		eb_el->l_next_free_rec = cpu_to_le16(1);
1044 		/*
1045 		 * This actually counts as an empty extent as
1046 		 * c_clusters == 0
1047 		 */
1048 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1049 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1050 		/*
1051 		 * eb_el isn't always an interior node, but even leaf
1052 		 * nodes want a zero'd flags and reserved field so
1053 		 * this gets the whole 32 bits regardless of use.
1054 		 */
1055 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1056 		if (!eb_el->l_tree_depth)
1057 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1058 
1059 		status = ocfs2_journal_dirty(handle, bh);
1060 		if (status < 0) {
1061 			mlog_errno(status);
1062 			goto bail;
1063 		}
1064 
1065 		next_blkno = le64_to_cpu(eb->h_blkno);
1066 	}
1067 
1068 	/* This is a bit hairy. We want to update up to three blocks
1069 	 * here without leaving any of them in an inconsistent state
1070 	 * in case of error. We don't have to worry about
1071 	 * journal_dirty erroring as it won't unless we've aborted the
1072 	 * handle (in which case we would never be here) so reserving
1073 	 * the write with journal_access is all we need to do. */
1074 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1075 					 OCFS2_JOURNAL_ACCESS_WRITE);
1076 	if (status < 0) {
1077 		mlog_errno(status);
1078 		goto bail;
1079 	}
1080 	status = ocfs2_et_root_journal_access(handle, inode, et,
1081 					      OCFS2_JOURNAL_ACCESS_WRITE);
1082 	if (status < 0) {
1083 		mlog_errno(status);
1084 		goto bail;
1085 	}
1086 	if (eb_bh) {
1087 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1088 						 OCFS2_JOURNAL_ACCESS_WRITE);
1089 		if (status < 0) {
1090 			mlog_errno(status);
1091 			goto bail;
1092 		}
1093 	}
1094 
1095 	/* Link the new branch into the rest of the tree (el will
1096 	 * either be on the root_bh, or the extent block passed in. */
1097 	i = le16_to_cpu(el->l_next_free_rec);
1098 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1099 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1100 	el->l_recs[i].e_int_clusters = 0;
1101 	le16_add_cpu(&el->l_next_free_rec, 1);
1102 
1103 	/* fe needs a new last extent block pointer, as does the
1104 	 * next_leaf on the previously last-extent-block. */
1105 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1106 
1107 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1108 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1109 
1110 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1111 	if (status < 0)
1112 		mlog_errno(status);
1113 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1114 	if (status < 0)
1115 		mlog_errno(status);
1116 	if (eb_bh) {
1117 		status = ocfs2_journal_dirty(handle, eb_bh);
1118 		if (status < 0)
1119 			mlog_errno(status);
1120 	}
1121 
1122 	/*
1123 	 * Some callers want to track the rightmost leaf so pass it
1124 	 * back here.
1125 	 */
1126 	brelse(*last_eb_bh);
1127 	get_bh(new_eb_bhs[0]);
1128 	*last_eb_bh = new_eb_bhs[0];
1129 
1130 	status = 0;
1131 bail:
1132 	if (new_eb_bhs) {
1133 		for (i = 0; i < new_blocks; i++)
1134 			brelse(new_eb_bhs[i]);
1135 		kfree(new_eb_bhs);
1136 	}
1137 
1138 	mlog_exit(status);
1139 	return status;
1140 }
1141 
1142 /*
1143  * adds another level to the allocation tree.
1144  * returns back the new extent block so you can add a branch to it
1145  * after this call.
1146  */
1147 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1148 				  handle_t *handle,
1149 				  struct inode *inode,
1150 				  struct ocfs2_extent_tree *et,
1151 				  struct ocfs2_alloc_context *meta_ac,
1152 				  struct buffer_head **ret_new_eb_bh)
1153 {
1154 	int status, i;
1155 	u32 new_clusters;
1156 	struct buffer_head *new_eb_bh = NULL;
1157 	struct ocfs2_extent_block *eb;
1158 	struct ocfs2_extent_list  *root_el;
1159 	struct ocfs2_extent_list  *eb_el;
1160 
1161 	mlog_entry_void();
1162 
1163 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1164 					   &new_eb_bh);
1165 	if (status < 0) {
1166 		mlog_errno(status);
1167 		goto bail;
1168 	}
1169 
1170 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1171 	/* ocfs2_create_new_meta_bhs() should create it right! */
1172 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1173 
1174 	eb_el = &eb->h_list;
1175 	root_el = et->et_root_el;
1176 
1177 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1178 					 OCFS2_JOURNAL_ACCESS_CREATE);
1179 	if (status < 0) {
1180 		mlog_errno(status);
1181 		goto bail;
1182 	}
1183 
1184 	/* copy the root extent list data into the new extent block */
1185 	eb_el->l_tree_depth = root_el->l_tree_depth;
1186 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1187 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1188 		eb_el->l_recs[i] = root_el->l_recs[i];
1189 
1190 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1191 	if (status < 0) {
1192 		mlog_errno(status);
1193 		goto bail;
1194 	}
1195 
1196 	status = ocfs2_et_root_journal_access(handle, inode, et,
1197 					      OCFS2_JOURNAL_ACCESS_WRITE);
1198 	if (status < 0) {
1199 		mlog_errno(status);
1200 		goto bail;
1201 	}
1202 
1203 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1204 
1205 	/* update root_bh now */
1206 	le16_add_cpu(&root_el->l_tree_depth, 1);
1207 	root_el->l_recs[0].e_cpos = 0;
1208 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1209 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1210 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1211 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1212 	root_el->l_next_free_rec = cpu_to_le16(1);
1213 
1214 	/* If this is our 1st tree depth shift, then last_eb_blk
1215 	 * becomes the allocated extent block */
1216 	if (root_el->l_tree_depth == cpu_to_le16(1))
1217 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1218 
1219 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1220 	if (status < 0) {
1221 		mlog_errno(status);
1222 		goto bail;
1223 	}
1224 
1225 	*ret_new_eb_bh = new_eb_bh;
1226 	new_eb_bh = NULL;
1227 	status = 0;
1228 bail:
1229 	brelse(new_eb_bh);
1230 
1231 	mlog_exit(status);
1232 	return status;
1233 }
1234 
1235 /*
1236  * Should only be called when there is no space left in any of the
1237  * leaf nodes. What we want to do is find the lowest tree depth
1238  * non-leaf extent block with room for new records. There are three
1239  * valid results of this search:
1240  *
1241  * 1) a lowest extent block is found, then we pass it back in
1242  *    *lowest_eb_bh and return '0'
1243  *
1244  * 2) the search fails to find anything, but the root_el has room. We
1245  *    pass NULL back in *lowest_eb_bh, but still return '0'
1246  *
1247  * 3) the search fails to find anything AND the root_el is full, in
1248  *    which case we return > 0
1249  *
1250  * return status < 0 indicates an error.
1251  */
1252 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1253 				    struct inode *inode,
1254 				    struct ocfs2_extent_tree *et,
1255 				    struct buffer_head **target_bh)
1256 {
1257 	int status = 0, i;
1258 	u64 blkno;
1259 	struct ocfs2_extent_block *eb;
1260 	struct ocfs2_extent_list  *el;
1261 	struct buffer_head *bh = NULL;
1262 	struct buffer_head *lowest_bh = NULL;
1263 
1264 	mlog_entry_void();
1265 
1266 	*target_bh = NULL;
1267 
1268 	el = et->et_root_el;
1269 
1270 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1271 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1272 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1273 				    "extent list (next_free_rec == 0)",
1274 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1275 			status = -EIO;
1276 			goto bail;
1277 		}
1278 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1279 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1280 		if (!blkno) {
1281 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1282 				    "list where extent # %d has no physical "
1283 				    "block start",
1284 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1285 			status = -EIO;
1286 			goto bail;
1287 		}
1288 
1289 		brelse(bh);
1290 		bh = NULL;
1291 
1292 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1293 		if (status < 0) {
1294 			mlog_errno(status);
1295 			goto bail;
1296 		}
1297 
1298 		eb = (struct ocfs2_extent_block *) bh->b_data;
1299 		el = &eb->h_list;
1300 
1301 		if (le16_to_cpu(el->l_next_free_rec) <
1302 		    le16_to_cpu(el->l_count)) {
1303 			brelse(lowest_bh);
1304 			lowest_bh = bh;
1305 			get_bh(lowest_bh);
1306 		}
1307 	}
1308 
1309 	/* If we didn't find one and the fe doesn't have any room,
1310 	 * then return '1' */
1311 	el = et->et_root_el;
1312 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1313 		status = 1;
1314 
1315 	*target_bh = lowest_bh;
1316 bail:
1317 	brelse(bh);
1318 
1319 	mlog_exit(status);
1320 	return status;
1321 }
1322 
1323 /*
1324  * Grow a b-tree so that it has more records.
1325  *
1326  * We might shift the tree depth in which case existing paths should
1327  * be considered invalid.
1328  *
1329  * Tree depth after the grow is returned via *final_depth.
1330  *
1331  * *last_eb_bh will be updated by ocfs2_add_branch().
1332  */
1333 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1334 			   struct ocfs2_extent_tree *et, int *final_depth,
1335 			   struct buffer_head **last_eb_bh,
1336 			   struct ocfs2_alloc_context *meta_ac)
1337 {
1338 	int ret, shift;
1339 	struct ocfs2_extent_list *el = et->et_root_el;
1340 	int depth = le16_to_cpu(el->l_tree_depth);
1341 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1342 	struct buffer_head *bh = NULL;
1343 
1344 	BUG_ON(meta_ac == NULL);
1345 
1346 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1347 	if (shift < 0) {
1348 		ret = shift;
1349 		mlog_errno(ret);
1350 		goto out;
1351 	}
1352 
1353 	/* We traveled all the way to the bottom of the allocation tree
1354 	 * and didn't find room for any more extents - we need to add
1355 	 * another tree level */
1356 	if (shift) {
1357 		BUG_ON(bh);
1358 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1359 
1360 		/* ocfs2_shift_tree_depth will return us a buffer with
1361 		 * the new extent block (so we can pass that to
1362 		 * ocfs2_add_branch). */
1363 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1364 					     meta_ac, &bh);
1365 		if (ret < 0) {
1366 			mlog_errno(ret);
1367 			goto out;
1368 		}
1369 		depth++;
1370 		if (depth == 1) {
1371 			/*
1372 			 * Special case: we have room now if we shifted from
1373 			 * tree_depth 0, so no more work needs to be done.
1374 			 *
1375 			 * We won't be calling add_branch, so pass
1376 			 * back *last_eb_bh as the new leaf. At depth
1377 			 * zero, it should always be null so there's
1378 			 * no reason to brelse.
1379 			 */
1380 			BUG_ON(*last_eb_bh);
1381 			get_bh(bh);
1382 			*last_eb_bh = bh;
1383 			goto out;
1384 		}
1385 	}
1386 
1387 	/* call ocfs2_add_branch to add the final part of the tree with
1388 	 * the new data. */
1389 	mlog(0, "add branch. bh = %p\n", bh);
1390 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1391 			       meta_ac);
1392 	if (ret < 0) {
1393 		mlog_errno(ret);
1394 		goto out;
1395 	}
1396 
1397 out:
1398 	if (final_depth)
1399 		*final_depth = depth;
1400 	brelse(bh);
1401 	return ret;
1402 }
1403 
1404 /*
1405  * This function will discard the rightmost extent record.
1406  */
1407 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1408 {
1409 	int next_free = le16_to_cpu(el->l_next_free_rec);
1410 	int count = le16_to_cpu(el->l_count);
1411 	unsigned int num_bytes;
1412 
1413 	BUG_ON(!next_free);
1414 	/* This will cause us to go off the end of our extent list. */
1415 	BUG_ON(next_free >= count);
1416 
1417 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1418 
1419 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1420 }
1421 
1422 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1423 			      struct ocfs2_extent_rec *insert_rec)
1424 {
1425 	int i, insert_index, next_free, has_empty, num_bytes;
1426 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1427 	struct ocfs2_extent_rec *rec;
1428 
1429 	next_free = le16_to_cpu(el->l_next_free_rec);
1430 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1431 
1432 	BUG_ON(!next_free);
1433 
1434 	/* The tree code before us didn't allow enough room in the leaf. */
1435 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1436 
1437 	/*
1438 	 * The easiest way to approach this is to just remove the
1439 	 * empty extent and temporarily decrement next_free.
1440 	 */
1441 	if (has_empty) {
1442 		/*
1443 		 * If next_free was 1 (only an empty extent), this
1444 		 * loop won't execute, which is fine. We still want
1445 		 * the decrement above to happen.
1446 		 */
1447 		for(i = 0; i < (next_free - 1); i++)
1448 			el->l_recs[i] = el->l_recs[i+1];
1449 
1450 		next_free--;
1451 	}
1452 
1453 	/*
1454 	 * Figure out what the new record index should be.
1455 	 */
1456 	for(i = 0; i < next_free; i++) {
1457 		rec = &el->l_recs[i];
1458 
1459 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1460 			break;
1461 	}
1462 	insert_index = i;
1463 
1464 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1465 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1466 
1467 	BUG_ON(insert_index < 0);
1468 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1469 	BUG_ON(insert_index > next_free);
1470 
1471 	/*
1472 	 * No need to memmove if we're just adding to the tail.
1473 	 */
1474 	if (insert_index != next_free) {
1475 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1476 
1477 		num_bytes = next_free - insert_index;
1478 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1479 		memmove(&el->l_recs[insert_index + 1],
1480 			&el->l_recs[insert_index],
1481 			num_bytes);
1482 	}
1483 
1484 	/*
1485 	 * Either we had an empty extent, and need to re-increment or
1486 	 * there was no empty extent on a non full rightmost leaf node,
1487 	 * in which case we still need to increment.
1488 	 */
1489 	next_free++;
1490 	el->l_next_free_rec = cpu_to_le16(next_free);
1491 	/*
1492 	 * Make sure none of the math above just messed up our tree.
1493 	 */
1494 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1495 
1496 	el->l_recs[insert_index] = *insert_rec;
1497 
1498 }
1499 
1500 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1501 {
1502 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1503 
1504 	BUG_ON(num_recs == 0);
1505 
1506 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1507 		num_recs--;
1508 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1509 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1510 		memset(&el->l_recs[num_recs], 0,
1511 		       sizeof(struct ocfs2_extent_rec));
1512 		el->l_next_free_rec = cpu_to_le16(num_recs);
1513 	}
1514 }
1515 
1516 /*
1517  * Create an empty extent record .
1518  *
1519  * l_next_free_rec may be updated.
1520  *
1521  * If an empty extent already exists do nothing.
1522  */
1523 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1524 {
1525 	int next_free = le16_to_cpu(el->l_next_free_rec);
1526 
1527 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1528 
1529 	if (next_free == 0)
1530 		goto set_and_inc;
1531 
1532 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1533 		return;
1534 
1535 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1536 			"Asked to create an empty extent in a full list:\n"
1537 			"count = %u, tree depth = %u",
1538 			le16_to_cpu(el->l_count),
1539 			le16_to_cpu(el->l_tree_depth));
1540 
1541 	ocfs2_shift_records_right(el);
1542 
1543 set_and_inc:
1544 	le16_add_cpu(&el->l_next_free_rec, 1);
1545 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1546 }
1547 
1548 /*
1549  * For a rotation which involves two leaf nodes, the "root node" is
1550  * the lowest level tree node which contains a path to both leafs. This
1551  * resulting set of information can be used to form a complete "subtree"
1552  *
1553  * This function is passed two full paths from the dinode down to a
1554  * pair of adjacent leaves. It's task is to figure out which path
1555  * index contains the subtree root - this can be the root index itself
1556  * in a worst-case rotation.
1557  *
1558  * The array index of the subtree root is passed back.
1559  */
1560 static int ocfs2_find_subtree_root(struct inode *inode,
1561 				   struct ocfs2_path *left,
1562 				   struct ocfs2_path *right)
1563 {
1564 	int i = 0;
1565 
1566 	/*
1567 	 * Check that the caller passed in two paths from the same tree.
1568 	 */
1569 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1570 
1571 	do {
1572 		i++;
1573 
1574 		/*
1575 		 * The caller didn't pass two adjacent paths.
1576 		 */
1577 		mlog_bug_on_msg(i > left->p_tree_depth,
1578 				"Inode %lu, left depth %u, right depth %u\n"
1579 				"left leaf blk %llu, right leaf blk %llu\n",
1580 				inode->i_ino, left->p_tree_depth,
1581 				right->p_tree_depth,
1582 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1583 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1584 	} while (left->p_node[i].bh->b_blocknr ==
1585 		 right->p_node[i].bh->b_blocknr);
1586 
1587 	return i - 1;
1588 }
1589 
1590 typedef void (path_insert_t)(void *, struct buffer_head *);
1591 
1592 /*
1593  * Traverse a btree path in search of cpos, starting at root_el.
1594  *
1595  * This code can be called with a cpos larger than the tree, in which
1596  * case it will return the rightmost path.
1597  */
1598 static int __ocfs2_find_path(struct inode *inode,
1599 			     struct ocfs2_extent_list *root_el, u32 cpos,
1600 			     path_insert_t *func, void *data)
1601 {
1602 	int i, ret = 0;
1603 	u32 range;
1604 	u64 blkno;
1605 	struct buffer_head *bh = NULL;
1606 	struct ocfs2_extent_block *eb;
1607 	struct ocfs2_extent_list *el;
1608 	struct ocfs2_extent_rec *rec;
1609 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1610 
1611 	el = root_el;
1612 	while (el->l_tree_depth) {
1613 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1614 			ocfs2_error(inode->i_sb,
1615 				    "Inode %llu has empty extent list at "
1616 				    "depth %u\n",
1617 				    (unsigned long long)oi->ip_blkno,
1618 				    le16_to_cpu(el->l_tree_depth));
1619 			ret = -EROFS;
1620 			goto out;
1621 
1622 		}
1623 
1624 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1625 			rec = &el->l_recs[i];
1626 
1627 			/*
1628 			 * In the case that cpos is off the allocation
1629 			 * tree, this should just wind up returning the
1630 			 * rightmost record.
1631 			 */
1632 			range = le32_to_cpu(rec->e_cpos) +
1633 				ocfs2_rec_clusters(el, rec);
1634 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1635 			    break;
1636 		}
1637 
1638 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1639 		if (blkno == 0) {
1640 			ocfs2_error(inode->i_sb,
1641 				    "Inode %llu has bad blkno in extent list "
1642 				    "at depth %u (index %d)\n",
1643 				    (unsigned long long)oi->ip_blkno,
1644 				    le16_to_cpu(el->l_tree_depth), i);
1645 			ret = -EROFS;
1646 			goto out;
1647 		}
1648 
1649 		brelse(bh);
1650 		bh = NULL;
1651 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1652 		if (ret) {
1653 			mlog_errno(ret);
1654 			goto out;
1655 		}
1656 
1657 		eb = (struct ocfs2_extent_block *) bh->b_data;
1658 		el = &eb->h_list;
1659 
1660 		if (le16_to_cpu(el->l_next_free_rec) >
1661 		    le16_to_cpu(el->l_count)) {
1662 			ocfs2_error(inode->i_sb,
1663 				    "Inode %llu has bad count in extent list "
1664 				    "at block %llu (next free=%u, count=%u)\n",
1665 				    (unsigned long long)oi->ip_blkno,
1666 				    (unsigned long long)bh->b_blocknr,
1667 				    le16_to_cpu(el->l_next_free_rec),
1668 				    le16_to_cpu(el->l_count));
1669 			ret = -EROFS;
1670 			goto out;
1671 		}
1672 
1673 		if (func)
1674 			func(data, bh);
1675 	}
1676 
1677 out:
1678 	/*
1679 	 * Catch any trailing bh that the loop didn't handle.
1680 	 */
1681 	brelse(bh);
1682 
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Given an initialized path (that is, it has a valid root extent
1688  * list), this function will traverse the btree in search of the path
1689  * which would contain cpos.
1690  *
1691  * The path traveled is recorded in the path structure.
1692  *
1693  * Note that this will not do any comparisons on leaf node extent
1694  * records, so it will work fine in the case that we just added a tree
1695  * branch.
1696  */
1697 struct find_path_data {
1698 	int index;
1699 	struct ocfs2_path *path;
1700 };
1701 static void find_path_ins(void *data, struct buffer_head *bh)
1702 {
1703 	struct find_path_data *fp = data;
1704 
1705 	get_bh(bh);
1706 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1707 	fp->index++;
1708 }
1709 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1710 			   u32 cpos)
1711 {
1712 	struct find_path_data data;
1713 
1714 	data.index = 1;
1715 	data.path = path;
1716 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1717 				 find_path_ins, &data);
1718 }
1719 
1720 static void find_leaf_ins(void *data, struct buffer_head *bh)
1721 {
1722 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1723 	struct ocfs2_extent_list *el = &eb->h_list;
1724 	struct buffer_head **ret = data;
1725 
1726 	/* We want to retain only the leaf block. */
1727 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1728 		get_bh(bh);
1729 		*ret = bh;
1730 	}
1731 }
1732 /*
1733  * Find the leaf block in the tree which would contain cpos. No
1734  * checking of the actual leaf is done.
1735  *
1736  * Some paths want to call this instead of allocating a path structure
1737  * and calling ocfs2_find_path().
1738  *
1739  * This function doesn't handle non btree extent lists.
1740  */
1741 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1742 		    u32 cpos, struct buffer_head **leaf_bh)
1743 {
1744 	int ret;
1745 	struct buffer_head *bh = NULL;
1746 
1747 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1748 	if (ret) {
1749 		mlog_errno(ret);
1750 		goto out;
1751 	}
1752 
1753 	*leaf_bh = bh;
1754 out:
1755 	return ret;
1756 }
1757 
1758 /*
1759  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1760  *
1761  * Basically, we've moved stuff around at the bottom of the tree and
1762  * we need to fix up the extent records above the changes to reflect
1763  * the new changes.
1764  *
1765  * left_rec: the record on the left.
1766  * left_child_el: is the child list pointed to by left_rec
1767  * right_rec: the record to the right of left_rec
1768  * right_child_el: is the child list pointed to by right_rec
1769  *
1770  * By definition, this only works on interior nodes.
1771  */
1772 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1773 				  struct ocfs2_extent_list *left_child_el,
1774 				  struct ocfs2_extent_rec *right_rec,
1775 				  struct ocfs2_extent_list *right_child_el)
1776 {
1777 	u32 left_clusters, right_end;
1778 
1779 	/*
1780 	 * Interior nodes never have holes. Their cpos is the cpos of
1781 	 * the leftmost record in their child list. Their cluster
1782 	 * count covers the full theoretical range of their child list
1783 	 * - the range between their cpos and the cpos of the record
1784 	 * immediately to their right.
1785 	 */
1786 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1787 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1788 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1789 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1790 	}
1791 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1792 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1793 
1794 	/*
1795 	 * Calculate the rightmost cluster count boundary before
1796 	 * moving cpos - we will need to adjust clusters after
1797 	 * updating e_cpos to keep the same highest cluster count.
1798 	 */
1799 	right_end = le32_to_cpu(right_rec->e_cpos);
1800 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1801 
1802 	right_rec->e_cpos = left_rec->e_cpos;
1803 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1804 
1805 	right_end -= le32_to_cpu(right_rec->e_cpos);
1806 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1807 }
1808 
1809 /*
1810  * Adjust the adjacent root node records involved in a
1811  * rotation. left_el_blkno is passed in as a key so that we can easily
1812  * find it's index in the root list.
1813  */
1814 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1815 				      struct ocfs2_extent_list *left_el,
1816 				      struct ocfs2_extent_list *right_el,
1817 				      u64 left_el_blkno)
1818 {
1819 	int i;
1820 
1821 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1822 	       le16_to_cpu(left_el->l_tree_depth));
1823 
1824 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1825 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1826 			break;
1827 	}
1828 
1829 	/*
1830 	 * The path walking code should have never returned a root and
1831 	 * two paths which are not adjacent.
1832 	 */
1833 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1834 
1835 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1836 				      &root_el->l_recs[i + 1], right_el);
1837 }
1838 
1839 /*
1840  * We've changed a leaf block (in right_path) and need to reflect that
1841  * change back up the subtree.
1842  *
1843  * This happens in multiple places:
1844  *   - When we've moved an extent record from the left path leaf to the right
1845  *     path leaf to make room for an empty extent in the left path leaf.
1846  *   - When our insert into the right path leaf is at the leftmost edge
1847  *     and requires an update of the path immediately to it's left. This
1848  *     can occur at the end of some types of rotation and appending inserts.
1849  *   - When we've adjusted the last extent record in the left path leaf and the
1850  *     1st extent record in the right path leaf during cross extent block merge.
1851  */
1852 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1853 				       struct ocfs2_path *left_path,
1854 				       struct ocfs2_path *right_path,
1855 				       int subtree_index)
1856 {
1857 	int ret, i, idx;
1858 	struct ocfs2_extent_list *el, *left_el, *right_el;
1859 	struct ocfs2_extent_rec *left_rec, *right_rec;
1860 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1861 
1862 	/*
1863 	 * Update the counts and position values within all the
1864 	 * interior nodes to reflect the leaf rotation we just did.
1865 	 *
1866 	 * The root node is handled below the loop.
1867 	 *
1868 	 * We begin the loop with right_el and left_el pointing to the
1869 	 * leaf lists and work our way up.
1870 	 *
1871 	 * NOTE: within this loop, left_el and right_el always refer
1872 	 * to the *child* lists.
1873 	 */
1874 	left_el = path_leaf_el(left_path);
1875 	right_el = path_leaf_el(right_path);
1876 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1877 		mlog(0, "Adjust records at index %u\n", i);
1878 
1879 		/*
1880 		 * One nice property of knowing that all of these
1881 		 * nodes are below the root is that we only deal with
1882 		 * the leftmost right node record and the rightmost
1883 		 * left node record.
1884 		 */
1885 		el = left_path->p_node[i].el;
1886 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1887 		left_rec = &el->l_recs[idx];
1888 
1889 		el = right_path->p_node[i].el;
1890 		right_rec = &el->l_recs[0];
1891 
1892 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1893 					      right_el);
1894 
1895 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1896 		if (ret)
1897 			mlog_errno(ret);
1898 
1899 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1900 		if (ret)
1901 			mlog_errno(ret);
1902 
1903 		/*
1904 		 * Setup our list pointers now so that the current
1905 		 * parents become children in the next iteration.
1906 		 */
1907 		left_el = left_path->p_node[i].el;
1908 		right_el = right_path->p_node[i].el;
1909 	}
1910 
1911 	/*
1912 	 * At the root node, adjust the two adjacent records which
1913 	 * begin our path to the leaves.
1914 	 */
1915 
1916 	el = left_path->p_node[subtree_index].el;
1917 	left_el = left_path->p_node[subtree_index + 1].el;
1918 	right_el = right_path->p_node[subtree_index + 1].el;
1919 
1920 	ocfs2_adjust_root_records(el, left_el, right_el,
1921 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1922 
1923 	root_bh = left_path->p_node[subtree_index].bh;
1924 
1925 	ret = ocfs2_journal_dirty(handle, root_bh);
1926 	if (ret)
1927 		mlog_errno(ret);
1928 }
1929 
1930 static int ocfs2_rotate_subtree_right(struct inode *inode,
1931 				      handle_t *handle,
1932 				      struct ocfs2_path *left_path,
1933 				      struct ocfs2_path *right_path,
1934 				      int subtree_index)
1935 {
1936 	int ret, i;
1937 	struct buffer_head *right_leaf_bh;
1938 	struct buffer_head *left_leaf_bh = NULL;
1939 	struct buffer_head *root_bh;
1940 	struct ocfs2_extent_list *right_el, *left_el;
1941 	struct ocfs2_extent_rec move_rec;
1942 
1943 	left_leaf_bh = path_leaf_bh(left_path);
1944 	left_el = path_leaf_el(left_path);
1945 
1946 	if (left_el->l_next_free_rec != left_el->l_count) {
1947 		ocfs2_error(inode->i_sb,
1948 			    "Inode %llu has non-full interior leaf node %llu"
1949 			    "(next free = %u)",
1950 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1951 			    (unsigned long long)left_leaf_bh->b_blocknr,
1952 			    le16_to_cpu(left_el->l_next_free_rec));
1953 		return -EROFS;
1954 	}
1955 
1956 	/*
1957 	 * This extent block may already have an empty record, so we
1958 	 * return early if so.
1959 	 */
1960 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1961 		return 0;
1962 
1963 	root_bh = left_path->p_node[subtree_index].bh;
1964 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1965 
1966 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
1967 					   subtree_index);
1968 	if (ret) {
1969 		mlog_errno(ret);
1970 		goto out;
1971 	}
1972 
1973 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1974 		ret = ocfs2_path_bh_journal_access(handle, inode,
1975 						   right_path, i);
1976 		if (ret) {
1977 			mlog_errno(ret);
1978 			goto out;
1979 		}
1980 
1981 		ret = ocfs2_path_bh_journal_access(handle, inode,
1982 						   left_path, i);
1983 		if (ret) {
1984 			mlog_errno(ret);
1985 			goto out;
1986 		}
1987 	}
1988 
1989 	right_leaf_bh = path_leaf_bh(right_path);
1990 	right_el = path_leaf_el(right_path);
1991 
1992 	/* This is a code error, not a disk corruption. */
1993 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1994 			"because rightmost leaf block %llu is empty\n",
1995 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1996 			(unsigned long long)right_leaf_bh->b_blocknr);
1997 
1998 	ocfs2_create_empty_extent(right_el);
1999 
2000 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2001 	if (ret) {
2002 		mlog_errno(ret);
2003 		goto out;
2004 	}
2005 
2006 	/* Do the copy now. */
2007 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2008 	move_rec = left_el->l_recs[i];
2009 	right_el->l_recs[0] = move_rec;
2010 
2011 	/*
2012 	 * Clear out the record we just copied and shift everything
2013 	 * over, leaving an empty extent in the left leaf.
2014 	 *
2015 	 * We temporarily subtract from next_free_rec so that the
2016 	 * shift will lose the tail record (which is now defunct).
2017 	 */
2018 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2019 	ocfs2_shift_records_right(left_el);
2020 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2021 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2022 
2023 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2024 	if (ret) {
2025 		mlog_errno(ret);
2026 		goto out;
2027 	}
2028 
2029 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2030 				subtree_index);
2031 
2032 out:
2033 	return ret;
2034 }
2035 
2036 /*
2037  * Given a full path, determine what cpos value would return us a path
2038  * containing the leaf immediately to the left of the current one.
2039  *
2040  * Will return zero if the path passed in is already the leftmost path.
2041  */
2042 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2043 					 struct ocfs2_path *path, u32 *cpos)
2044 {
2045 	int i, j, ret = 0;
2046 	u64 blkno;
2047 	struct ocfs2_extent_list *el;
2048 
2049 	BUG_ON(path->p_tree_depth == 0);
2050 
2051 	*cpos = 0;
2052 
2053 	blkno = path_leaf_bh(path)->b_blocknr;
2054 
2055 	/* Start at the tree node just above the leaf and work our way up. */
2056 	i = path->p_tree_depth - 1;
2057 	while (i >= 0) {
2058 		el = path->p_node[i].el;
2059 
2060 		/*
2061 		 * Find the extent record just before the one in our
2062 		 * path.
2063 		 */
2064 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2065 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2066 				if (j == 0) {
2067 					if (i == 0) {
2068 						/*
2069 						 * We've determined that the
2070 						 * path specified is already
2071 						 * the leftmost one - return a
2072 						 * cpos of zero.
2073 						 */
2074 						goto out;
2075 					}
2076 					/*
2077 					 * The leftmost record points to our
2078 					 * leaf - we need to travel up the
2079 					 * tree one level.
2080 					 */
2081 					goto next_node;
2082 				}
2083 
2084 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2085 				*cpos = *cpos + ocfs2_rec_clusters(el,
2086 							   &el->l_recs[j - 1]);
2087 				*cpos = *cpos - 1;
2088 				goto out;
2089 			}
2090 		}
2091 
2092 		/*
2093 		 * If we got here, we never found a valid node where
2094 		 * the tree indicated one should be.
2095 		 */
2096 		ocfs2_error(sb,
2097 			    "Invalid extent tree at extent block %llu\n",
2098 			    (unsigned long long)blkno);
2099 		ret = -EROFS;
2100 		goto out;
2101 
2102 next_node:
2103 		blkno = path->p_node[i].bh->b_blocknr;
2104 		i--;
2105 	}
2106 
2107 out:
2108 	return ret;
2109 }
2110 
2111 /*
2112  * Extend the transaction by enough credits to complete the rotation,
2113  * and still leave at least the original number of credits allocated
2114  * to this transaction.
2115  */
2116 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2117 					   int op_credits,
2118 					   struct ocfs2_path *path)
2119 {
2120 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2121 
2122 	if (handle->h_buffer_credits < credits)
2123 		return ocfs2_extend_trans(handle, credits);
2124 
2125 	return 0;
2126 }
2127 
2128 /*
2129  * Trap the case where we're inserting into the theoretical range past
2130  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2131  * whose cpos is less than ours into the right leaf.
2132  *
2133  * It's only necessary to look at the rightmost record of the left
2134  * leaf because the logic that calls us should ensure that the
2135  * theoretical ranges in the path components above the leaves are
2136  * correct.
2137  */
2138 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2139 						 u32 insert_cpos)
2140 {
2141 	struct ocfs2_extent_list *left_el;
2142 	struct ocfs2_extent_rec *rec;
2143 	int next_free;
2144 
2145 	left_el = path_leaf_el(left_path);
2146 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2147 	rec = &left_el->l_recs[next_free - 1];
2148 
2149 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2150 		return 1;
2151 	return 0;
2152 }
2153 
2154 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2155 {
2156 	int next_free = le16_to_cpu(el->l_next_free_rec);
2157 	unsigned int range;
2158 	struct ocfs2_extent_rec *rec;
2159 
2160 	if (next_free == 0)
2161 		return 0;
2162 
2163 	rec = &el->l_recs[0];
2164 	if (ocfs2_is_empty_extent(rec)) {
2165 		/* Empty list. */
2166 		if (next_free == 1)
2167 			return 0;
2168 		rec = &el->l_recs[1];
2169 	}
2170 
2171 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2172 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2173 		return 1;
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Rotate all the records in a btree right one record, starting at insert_cpos.
2179  *
2180  * The path to the rightmost leaf should be passed in.
2181  *
2182  * The array is assumed to be large enough to hold an entire path (tree depth).
2183  *
2184  * Upon succesful return from this function:
2185  *
2186  * - The 'right_path' array will contain a path to the leaf block
2187  *   whose range contains e_cpos.
2188  * - That leaf block will have a single empty extent in list index 0.
2189  * - In the case that the rotation requires a post-insert update,
2190  *   *ret_left_path will contain a valid path which can be passed to
2191  *   ocfs2_insert_path().
2192  */
2193 static int ocfs2_rotate_tree_right(struct inode *inode,
2194 				   handle_t *handle,
2195 				   enum ocfs2_split_type split,
2196 				   u32 insert_cpos,
2197 				   struct ocfs2_path *right_path,
2198 				   struct ocfs2_path **ret_left_path)
2199 {
2200 	int ret, start, orig_credits = handle->h_buffer_credits;
2201 	u32 cpos;
2202 	struct ocfs2_path *left_path = NULL;
2203 
2204 	*ret_left_path = NULL;
2205 
2206 	left_path = ocfs2_new_path_from_path(right_path);
2207 	if (!left_path) {
2208 		ret = -ENOMEM;
2209 		mlog_errno(ret);
2210 		goto out;
2211 	}
2212 
2213 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2214 	if (ret) {
2215 		mlog_errno(ret);
2216 		goto out;
2217 	}
2218 
2219 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2220 
2221 	/*
2222 	 * What we want to do here is:
2223 	 *
2224 	 * 1) Start with the rightmost path.
2225 	 *
2226 	 * 2) Determine a path to the leaf block directly to the left
2227 	 *    of that leaf.
2228 	 *
2229 	 * 3) Determine the 'subtree root' - the lowest level tree node
2230 	 *    which contains a path to both leaves.
2231 	 *
2232 	 * 4) Rotate the subtree.
2233 	 *
2234 	 * 5) Find the next subtree by considering the left path to be
2235 	 *    the new right path.
2236 	 *
2237 	 * The check at the top of this while loop also accepts
2238 	 * insert_cpos == cpos because cpos is only a _theoretical_
2239 	 * value to get us the left path - insert_cpos might very well
2240 	 * be filling that hole.
2241 	 *
2242 	 * Stop at a cpos of '0' because we either started at the
2243 	 * leftmost branch (i.e., a tree with one branch and a
2244 	 * rotation inside of it), or we've gone as far as we can in
2245 	 * rotating subtrees.
2246 	 */
2247 	while (cpos && insert_cpos <= cpos) {
2248 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2249 		     insert_cpos, cpos);
2250 
2251 		ret = ocfs2_find_path(inode, left_path, cpos);
2252 		if (ret) {
2253 			mlog_errno(ret);
2254 			goto out;
2255 		}
2256 
2257 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2258 				path_leaf_bh(right_path),
2259 				"Inode %lu: error during insert of %u "
2260 				"(left path cpos %u) results in two identical "
2261 				"paths ending at %llu\n",
2262 				inode->i_ino, insert_cpos, cpos,
2263 				(unsigned long long)
2264 				path_leaf_bh(left_path)->b_blocknr);
2265 
2266 		if (split == SPLIT_NONE &&
2267 		    ocfs2_rotate_requires_path_adjustment(left_path,
2268 							  insert_cpos)) {
2269 
2270 			/*
2271 			 * We've rotated the tree as much as we
2272 			 * should. The rest is up to
2273 			 * ocfs2_insert_path() to complete, after the
2274 			 * record insertion. We indicate this
2275 			 * situation by returning the left path.
2276 			 *
2277 			 * The reason we don't adjust the records here
2278 			 * before the record insert is that an error
2279 			 * later might break the rule where a parent
2280 			 * record e_cpos will reflect the actual
2281 			 * e_cpos of the 1st nonempty record of the
2282 			 * child list.
2283 			 */
2284 			*ret_left_path = left_path;
2285 			goto out_ret_path;
2286 		}
2287 
2288 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2289 
2290 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2291 		     start,
2292 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2293 		     right_path->p_tree_depth);
2294 
2295 		ret = ocfs2_extend_rotate_transaction(handle, start,
2296 						      orig_credits, right_path);
2297 		if (ret) {
2298 			mlog_errno(ret);
2299 			goto out;
2300 		}
2301 
2302 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2303 						 right_path, start);
2304 		if (ret) {
2305 			mlog_errno(ret);
2306 			goto out;
2307 		}
2308 
2309 		if (split != SPLIT_NONE &&
2310 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2311 						insert_cpos)) {
2312 			/*
2313 			 * A rotate moves the rightmost left leaf
2314 			 * record over to the leftmost right leaf
2315 			 * slot. If we're doing an extent split
2316 			 * instead of a real insert, then we have to
2317 			 * check that the extent to be split wasn't
2318 			 * just moved over. If it was, then we can
2319 			 * exit here, passing left_path back -
2320 			 * ocfs2_split_extent() is smart enough to
2321 			 * search both leaves.
2322 			 */
2323 			*ret_left_path = left_path;
2324 			goto out_ret_path;
2325 		}
2326 
2327 		/*
2328 		 * There is no need to re-read the next right path
2329 		 * as we know that it'll be our current left
2330 		 * path. Optimize by copying values instead.
2331 		 */
2332 		ocfs2_mv_path(right_path, left_path);
2333 
2334 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2335 						    &cpos);
2336 		if (ret) {
2337 			mlog_errno(ret);
2338 			goto out;
2339 		}
2340 	}
2341 
2342 out:
2343 	ocfs2_free_path(left_path);
2344 
2345 out_ret_path:
2346 	return ret;
2347 }
2348 
2349 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2350 				      struct ocfs2_path *path)
2351 {
2352 	int i, idx;
2353 	struct ocfs2_extent_rec *rec;
2354 	struct ocfs2_extent_list *el;
2355 	struct ocfs2_extent_block *eb;
2356 	u32 range;
2357 
2358 	/* Path should always be rightmost. */
2359 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2360 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2361 
2362 	el = &eb->h_list;
2363 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2364 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2365 	rec = &el->l_recs[idx];
2366 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2367 
2368 	for (i = 0; i < path->p_tree_depth; i++) {
2369 		el = path->p_node[i].el;
2370 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2371 		rec = &el->l_recs[idx];
2372 
2373 		rec->e_int_clusters = cpu_to_le32(range);
2374 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2375 
2376 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2377 	}
2378 }
2379 
2380 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2381 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2382 			      struct ocfs2_path *path, int unlink_start)
2383 {
2384 	int ret, i;
2385 	struct ocfs2_extent_block *eb;
2386 	struct ocfs2_extent_list *el;
2387 	struct buffer_head *bh;
2388 
2389 	for(i = unlink_start; i < path_num_items(path); i++) {
2390 		bh = path->p_node[i].bh;
2391 
2392 		eb = (struct ocfs2_extent_block *)bh->b_data;
2393 		/*
2394 		 * Not all nodes might have had their final count
2395 		 * decremented by the caller - handle this here.
2396 		 */
2397 		el = &eb->h_list;
2398 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2399 			mlog(ML_ERROR,
2400 			     "Inode %llu, attempted to remove extent block "
2401 			     "%llu with %u records\n",
2402 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2403 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2404 			     le16_to_cpu(el->l_next_free_rec));
2405 
2406 			ocfs2_journal_dirty(handle, bh);
2407 			ocfs2_remove_from_cache(inode, bh);
2408 			continue;
2409 		}
2410 
2411 		el->l_next_free_rec = 0;
2412 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2413 
2414 		ocfs2_journal_dirty(handle, bh);
2415 
2416 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2417 		if (ret)
2418 			mlog_errno(ret);
2419 
2420 		ocfs2_remove_from_cache(inode, bh);
2421 	}
2422 }
2423 
2424 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2425 				 struct ocfs2_path *left_path,
2426 				 struct ocfs2_path *right_path,
2427 				 int subtree_index,
2428 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2429 {
2430 	int i;
2431 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2432 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2433 	struct ocfs2_extent_list *el;
2434 	struct ocfs2_extent_block *eb;
2435 
2436 	el = path_leaf_el(left_path);
2437 
2438 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2439 
2440 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2441 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2442 			break;
2443 
2444 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2445 
2446 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2447 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2448 
2449 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2450 	eb->h_next_leaf_blk = 0;
2451 
2452 	ocfs2_journal_dirty(handle, root_bh);
2453 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2454 
2455 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2456 			  subtree_index + 1);
2457 }
2458 
2459 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2460 				     struct ocfs2_path *left_path,
2461 				     struct ocfs2_path *right_path,
2462 				     int subtree_index,
2463 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2464 				     int *deleted,
2465 				     struct ocfs2_extent_tree *et)
2466 {
2467 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2468 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2469 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2470 	struct ocfs2_extent_block *eb;
2471 
2472 	*deleted = 0;
2473 
2474 	right_leaf_el = path_leaf_el(right_path);
2475 	left_leaf_el = path_leaf_el(left_path);
2476 	root_bh = left_path->p_node[subtree_index].bh;
2477 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2478 
2479 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2480 		return 0;
2481 
2482 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2483 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2484 		/*
2485 		 * It's legal for us to proceed if the right leaf is
2486 		 * the rightmost one and it has an empty extent. There
2487 		 * are two cases to handle - whether the leaf will be
2488 		 * empty after removal or not. If the leaf isn't empty
2489 		 * then just remove the empty extent up front. The
2490 		 * next block will handle empty leaves by flagging
2491 		 * them for unlink.
2492 		 *
2493 		 * Non rightmost leaves will throw -EAGAIN and the
2494 		 * caller can manually move the subtree and retry.
2495 		 */
2496 
2497 		if (eb->h_next_leaf_blk != 0ULL)
2498 			return -EAGAIN;
2499 
2500 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2501 			ret = ocfs2_journal_access_eb(handle, inode,
2502 						      path_leaf_bh(right_path),
2503 						      OCFS2_JOURNAL_ACCESS_WRITE);
2504 			if (ret) {
2505 				mlog_errno(ret);
2506 				goto out;
2507 			}
2508 
2509 			ocfs2_remove_empty_extent(right_leaf_el);
2510 		} else
2511 			right_has_empty = 1;
2512 	}
2513 
2514 	if (eb->h_next_leaf_blk == 0ULL &&
2515 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2516 		/*
2517 		 * We have to update i_last_eb_blk during the meta
2518 		 * data delete.
2519 		 */
2520 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2521 						   OCFS2_JOURNAL_ACCESS_WRITE);
2522 		if (ret) {
2523 			mlog_errno(ret);
2524 			goto out;
2525 		}
2526 
2527 		del_right_subtree = 1;
2528 	}
2529 
2530 	/*
2531 	 * Getting here with an empty extent in the right path implies
2532 	 * that it's the rightmost path and will be deleted.
2533 	 */
2534 	BUG_ON(right_has_empty && !del_right_subtree);
2535 
2536 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2537 					   subtree_index);
2538 	if (ret) {
2539 		mlog_errno(ret);
2540 		goto out;
2541 	}
2542 
2543 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2544 		ret = ocfs2_path_bh_journal_access(handle, inode,
2545 						   right_path, i);
2546 		if (ret) {
2547 			mlog_errno(ret);
2548 			goto out;
2549 		}
2550 
2551 		ret = ocfs2_path_bh_journal_access(handle, inode,
2552 						   left_path, i);
2553 		if (ret) {
2554 			mlog_errno(ret);
2555 			goto out;
2556 		}
2557 	}
2558 
2559 	if (!right_has_empty) {
2560 		/*
2561 		 * Only do this if we're moving a real
2562 		 * record. Otherwise, the action is delayed until
2563 		 * after removal of the right path in which case we
2564 		 * can do a simple shift to remove the empty extent.
2565 		 */
2566 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2567 		memset(&right_leaf_el->l_recs[0], 0,
2568 		       sizeof(struct ocfs2_extent_rec));
2569 	}
2570 	if (eb->h_next_leaf_blk == 0ULL) {
2571 		/*
2572 		 * Move recs over to get rid of empty extent, decrease
2573 		 * next_free. This is allowed to remove the last
2574 		 * extent in our leaf (setting l_next_free_rec to
2575 		 * zero) - the delete code below won't care.
2576 		 */
2577 		ocfs2_remove_empty_extent(right_leaf_el);
2578 	}
2579 
2580 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2581 	if (ret)
2582 		mlog_errno(ret);
2583 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2584 	if (ret)
2585 		mlog_errno(ret);
2586 
2587 	if (del_right_subtree) {
2588 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2589 				     subtree_index, dealloc);
2590 		ocfs2_update_edge_lengths(inode, handle, left_path);
2591 
2592 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2593 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2594 
2595 		/*
2596 		 * Removal of the extent in the left leaf was skipped
2597 		 * above so we could delete the right path
2598 		 * 1st.
2599 		 */
2600 		if (right_has_empty)
2601 			ocfs2_remove_empty_extent(left_leaf_el);
2602 
2603 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2604 		if (ret)
2605 			mlog_errno(ret);
2606 
2607 		*deleted = 1;
2608 	} else
2609 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2610 					   subtree_index);
2611 
2612 out:
2613 	return ret;
2614 }
2615 
2616 /*
2617  * Given a full path, determine what cpos value would return us a path
2618  * containing the leaf immediately to the right of the current one.
2619  *
2620  * Will return zero if the path passed in is already the rightmost path.
2621  *
2622  * This looks similar, but is subtly different to
2623  * ocfs2_find_cpos_for_left_leaf().
2624  */
2625 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2626 					  struct ocfs2_path *path, u32 *cpos)
2627 {
2628 	int i, j, ret = 0;
2629 	u64 blkno;
2630 	struct ocfs2_extent_list *el;
2631 
2632 	*cpos = 0;
2633 
2634 	if (path->p_tree_depth == 0)
2635 		return 0;
2636 
2637 	blkno = path_leaf_bh(path)->b_blocknr;
2638 
2639 	/* Start at the tree node just above the leaf and work our way up. */
2640 	i = path->p_tree_depth - 1;
2641 	while (i >= 0) {
2642 		int next_free;
2643 
2644 		el = path->p_node[i].el;
2645 
2646 		/*
2647 		 * Find the extent record just after the one in our
2648 		 * path.
2649 		 */
2650 		next_free = le16_to_cpu(el->l_next_free_rec);
2651 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2652 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2653 				if (j == (next_free - 1)) {
2654 					if (i == 0) {
2655 						/*
2656 						 * We've determined that the
2657 						 * path specified is already
2658 						 * the rightmost one - return a
2659 						 * cpos of zero.
2660 						 */
2661 						goto out;
2662 					}
2663 					/*
2664 					 * The rightmost record points to our
2665 					 * leaf - we need to travel up the
2666 					 * tree one level.
2667 					 */
2668 					goto next_node;
2669 				}
2670 
2671 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2672 				goto out;
2673 			}
2674 		}
2675 
2676 		/*
2677 		 * If we got here, we never found a valid node where
2678 		 * the tree indicated one should be.
2679 		 */
2680 		ocfs2_error(sb,
2681 			    "Invalid extent tree at extent block %llu\n",
2682 			    (unsigned long long)blkno);
2683 		ret = -EROFS;
2684 		goto out;
2685 
2686 next_node:
2687 		blkno = path->p_node[i].bh->b_blocknr;
2688 		i--;
2689 	}
2690 
2691 out:
2692 	return ret;
2693 }
2694 
2695 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2696 					    handle_t *handle,
2697 					    struct ocfs2_path *path)
2698 {
2699 	int ret;
2700 	struct buffer_head *bh = path_leaf_bh(path);
2701 	struct ocfs2_extent_list *el = path_leaf_el(path);
2702 
2703 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2704 		return 0;
2705 
2706 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2707 					   path_num_items(path) - 1);
2708 	if (ret) {
2709 		mlog_errno(ret);
2710 		goto out;
2711 	}
2712 
2713 	ocfs2_remove_empty_extent(el);
2714 
2715 	ret = ocfs2_journal_dirty(handle, bh);
2716 	if (ret)
2717 		mlog_errno(ret);
2718 
2719 out:
2720 	return ret;
2721 }
2722 
2723 static int __ocfs2_rotate_tree_left(struct inode *inode,
2724 				    handle_t *handle, int orig_credits,
2725 				    struct ocfs2_path *path,
2726 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2727 				    struct ocfs2_path **empty_extent_path,
2728 				    struct ocfs2_extent_tree *et)
2729 {
2730 	int ret, subtree_root, deleted;
2731 	u32 right_cpos;
2732 	struct ocfs2_path *left_path = NULL;
2733 	struct ocfs2_path *right_path = NULL;
2734 
2735 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2736 
2737 	*empty_extent_path = NULL;
2738 
2739 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2740 					     &right_cpos);
2741 	if (ret) {
2742 		mlog_errno(ret);
2743 		goto out;
2744 	}
2745 
2746 	left_path = ocfs2_new_path_from_path(path);
2747 	if (!left_path) {
2748 		ret = -ENOMEM;
2749 		mlog_errno(ret);
2750 		goto out;
2751 	}
2752 
2753 	ocfs2_cp_path(left_path, path);
2754 
2755 	right_path = ocfs2_new_path_from_path(path);
2756 	if (!right_path) {
2757 		ret = -ENOMEM;
2758 		mlog_errno(ret);
2759 		goto out;
2760 	}
2761 
2762 	while (right_cpos) {
2763 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2764 		if (ret) {
2765 			mlog_errno(ret);
2766 			goto out;
2767 		}
2768 
2769 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2770 						       right_path);
2771 
2772 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2773 		     subtree_root,
2774 		     (unsigned long long)
2775 		     right_path->p_node[subtree_root].bh->b_blocknr,
2776 		     right_path->p_tree_depth);
2777 
2778 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2779 						      orig_credits, left_path);
2780 		if (ret) {
2781 			mlog_errno(ret);
2782 			goto out;
2783 		}
2784 
2785 		/*
2786 		 * Caller might still want to make changes to the
2787 		 * tree root, so re-add it to the journal here.
2788 		 */
2789 		ret = ocfs2_path_bh_journal_access(handle, inode,
2790 						   left_path, 0);
2791 		if (ret) {
2792 			mlog_errno(ret);
2793 			goto out;
2794 		}
2795 
2796 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2797 						right_path, subtree_root,
2798 						dealloc, &deleted, et);
2799 		if (ret == -EAGAIN) {
2800 			/*
2801 			 * The rotation has to temporarily stop due to
2802 			 * the right subtree having an empty
2803 			 * extent. Pass it back to the caller for a
2804 			 * fixup.
2805 			 */
2806 			*empty_extent_path = right_path;
2807 			right_path = NULL;
2808 			goto out;
2809 		}
2810 		if (ret) {
2811 			mlog_errno(ret);
2812 			goto out;
2813 		}
2814 
2815 		/*
2816 		 * The subtree rotate might have removed records on
2817 		 * the rightmost edge. If so, then rotation is
2818 		 * complete.
2819 		 */
2820 		if (deleted)
2821 			break;
2822 
2823 		ocfs2_mv_path(left_path, right_path);
2824 
2825 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2826 						     &right_cpos);
2827 		if (ret) {
2828 			mlog_errno(ret);
2829 			goto out;
2830 		}
2831 	}
2832 
2833 out:
2834 	ocfs2_free_path(right_path);
2835 	ocfs2_free_path(left_path);
2836 
2837 	return ret;
2838 }
2839 
2840 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2841 				struct ocfs2_path *path,
2842 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2843 				struct ocfs2_extent_tree *et)
2844 {
2845 	int ret, subtree_index;
2846 	u32 cpos;
2847 	struct ocfs2_path *left_path = NULL;
2848 	struct ocfs2_extent_block *eb;
2849 	struct ocfs2_extent_list *el;
2850 
2851 
2852 	ret = ocfs2_et_sanity_check(inode, et);
2853 	if (ret)
2854 		goto out;
2855 	/*
2856 	 * There's two ways we handle this depending on
2857 	 * whether path is the only existing one.
2858 	 */
2859 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2860 					      handle->h_buffer_credits,
2861 					      path);
2862 	if (ret) {
2863 		mlog_errno(ret);
2864 		goto out;
2865 	}
2866 
2867 	ret = ocfs2_journal_access_path(inode, handle, path);
2868 	if (ret) {
2869 		mlog_errno(ret);
2870 		goto out;
2871 	}
2872 
2873 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2874 	if (ret) {
2875 		mlog_errno(ret);
2876 		goto out;
2877 	}
2878 
2879 	if (cpos) {
2880 		/*
2881 		 * We have a path to the left of this one - it needs
2882 		 * an update too.
2883 		 */
2884 		left_path = ocfs2_new_path_from_path(path);
2885 		if (!left_path) {
2886 			ret = -ENOMEM;
2887 			mlog_errno(ret);
2888 			goto out;
2889 		}
2890 
2891 		ret = ocfs2_find_path(inode, left_path, cpos);
2892 		if (ret) {
2893 			mlog_errno(ret);
2894 			goto out;
2895 		}
2896 
2897 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2898 		if (ret) {
2899 			mlog_errno(ret);
2900 			goto out;
2901 		}
2902 
2903 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2904 
2905 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2906 				     subtree_index, dealloc);
2907 		ocfs2_update_edge_lengths(inode, handle, left_path);
2908 
2909 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2910 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2911 	} else {
2912 		/*
2913 		 * 'path' is also the leftmost path which
2914 		 * means it must be the only one. This gets
2915 		 * handled differently because we want to
2916 		 * revert the inode back to having extents
2917 		 * in-line.
2918 		 */
2919 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2920 
2921 		el = et->et_root_el;
2922 		el->l_tree_depth = 0;
2923 		el->l_next_free_rec = 0;
2924 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2925 
2926 		ocfs2_et_set_last_eb_blk(et, 0);
2927 	}
2928 
2929 	ocfs2_journal_dirty(handle, path_root_bh(path));
2930 
2931 out:
2932 	ocfs2_free_path(left_path);
2933 	return ret;
2934 }
2935 
2936 /*
2937  * Left rotation of btree records.
2938  *
2939  * In many ways, this is (unsurprisingly) the opposite of right
2940  * rotation. We start at some non-rightmost path containing an empty
2941  * extent in the leaf block. The code works its way to the rightmost
2942  * path by rotating records to the left in every subtree.
2943  *
2944  * This is used by any code which reduces the number of extent records
2945  * in a leaf. After removal, an empty record should be placed in the
2946  * leftmost list position.
2947  *
2948  * This won't handle a length update of the rightmost path records if
2949  * the rightmost tree leaf record is removed so the caller is
2950  * responsible for detecting and correcting that.
2951  */
2952 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2953 				  struct ocfs2_path *path,
2954 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
2955 				  struct ocfs2_extent_tree *et)
2956 {
2957 	int ret, orig_credits = handle->h_buffer_credits;
2958 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2959 	struct ocfs2_extent_block *eb;
2960 	struct ocfs2_extent_list *el;
2961 
2962 	el = path_leaf_el(path);
2963 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2964 		return 0;
2965 
2966 	if (path->p_tree_depth == 0) {
2967 rightmost_no_delete:
2968 		/*
2969 		 * Inline extents. This is trivially handled, so do
2970 		 * it up front.
2971 		 */
2972 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2973 						       path);
2974 		if (ret)
2975 			mlog_errno(ret);
2976 		goto out;
2977 	}
2978 
2979 	/*
2980 	 * Handle rightmost branch now. There's several cases:
2981 	 *  1) simple rotation leaving records in there. That's trivial.
2982 	 *  2) rotation requiring a branch delete - there's no more
2983 	 *     records left. Two cases of this:
2984 	 *     a) There are branches to the left.
2985 	 *     b) This is also the leftmost (the only) branch.
2986 	 *
2987 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2988 	 *  2a) we need the left branch so that we can update it with the unlink
2989 	 *  2b) we need to bring the inode back to inline extents.
2990 	 */
2991 
2992 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2993 	el = &eb->h_list;
2994 	if (eb->h_next_leaf_blk == 0) {
2995 		/*
2996 		 * This gets a bit tricky if we're going to delete the
2997 		 * rightmost path. Get the other cases out of the way
2998 		 * 1st.
2999 		 */
3000 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3001 			goto rightmost_no_delete;
3002 
3003 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3004 			ret = -EIO;
3005 			ocfs2_error(inode->i_sb,
3006 				    "Inode %llu has empty extent block at %llu",
3007 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3008 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3009 			goto out;
3010 		}
3011 
3012 		/*
3013 		 * XXX: The caller can not trust "path" any more after
3014 		 * this as it will have been deleted. What do we do?
3015 		 *
3016 		 * In theory the rotate-for-merge code will never get
3017 		 * here because it'll always ask for a rotate in a
3018 		 * nonempty list.
3019 		 */
3020 
3021 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3022 						  dealloc, et);
3023 		if (ret)
3024 			mlog_errno(ret);
3025 		goto out;
3026 	}
3027 
3028 	/*
3029 	 * Now we can loop, remembering the path we get from -EAGAIN
3030 	 * and restarting from there.
3031 	 */
3032 try_rotate:
3033 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3034 				       dealloc, &restart_path, et);
3035 	if (ret && ret != -EAGAIN) {
3036 		mlog_errno(ret);
3037 		goto out;
3038 	}
3039 
3040 	while (ret == -EAGAIN) {
3041 		tmp_path = restart_path;
3042 		restart_path = NULL;
3043 
3044 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3045 					       tmp_path, dealloc,
3046 					       &restart_path, et);
3047 		if (ret && ret != -EAGAIN) {
3048 			mlog_errno(ret);
3049 			goto out;
3050 		}
3051 
3052 		ocfs2_free_path(tmp_path);
3053 		tmp_path = NULL;
3054 
3055 		if (ret == 0)
3056 			goto try_rotate;
3057 	}
3058 
3059 out:
3060 	ocfs2_free_path(tmp_path);
3061 	ocfs2_free_path(restart_path);
3062 	return ret;
3063 }
3064 
3065 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3066 				int index)
3067 {
3068 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3069 	unsigned int size;
3070 
3071 	if (rec->e_leaf_clusters == 0) {
3072 		/*
3073 		 * We consumed all of the merged-from record. An empty
3074 		 * extent cannot exist anywhere but the 1st array
3075 		 * position, so move things over if the merged-from
3076 		 * record doesn't occupy that position.
3077 		 *
3078 		 * This creates a new empty extent so the caller
3079 		 * should be smart enough to have removed any existing
3080 		 * ones.
3081 		 */
3082 		if (index > 0) {
3083 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3084 			size = index * sizeof(struct ocfs2_extent_rec);
3085 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3086 		}
3087 
3088 		/*
3089 		 * Always memset - the caller doesn't check whether it
3090 		 * created an empty extent, so there could be junk in
3091 		 * the other fields.
3092 		 */
3093 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3094 	}
3095 }
3096 
3097 static int ocfs2_get_right_path(struct inode *inode,
3098 				struct ocfs2_path *left_path,
3099 				struct ocfs2_path **ret_right_path)
3100 {
3101 	int ret;
3102 	u32 right_cpos;
3103 	struct ocfs2_path *right_path = NULL;
3104 	struct ocfs2_extent_list *left_el;
3105 
3106 	*ret_right_path = NULL;
3107 
3108 	/* This function shouldn't be called for non-trees. */
3109 	BUG_ON(left_path->p_tree_depth == 0);
3110 
3111 	left_el = path_leaf_el(left_path);
3112 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3113 
3114 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3115 					     &right_cpos);
3116 	if (ret) {
3117 		mlog_errno(ret);
3118 		goto out;
3119 	}
3120 
3121 	/* This function shouldn't be called for the rightmost leaf. */
3122 	BUG_ON(right_cpos == 0);
3123 
3124 	right_path = ocfs2_new_path_from_path(left_path);
3125 	if (!right_path) {
3126 		ret = -ENOMEM;
3127 		mlog_errno(ret);
3128 		goto out;
3129 	}
3130 
3131 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3132 	if (ret) {
3133 		mlog_errno(ret);
3134 		goto out;
3135 	}
3136 
3137 	*ret_right_path = right_path;
3138 out:
3139 	if (ret)
3140 		ocfs2_free_path(right_path);
3141 	return ret;
3142 }
3143 
3144 /*
3145  * Remove split_rec clusters from the record at index and merge them
3146  * onto the beginning of the record "next" to it.
3147  * For index < l_count - 1, the next means the extent rec at index + 1.
3148  * For index == l_count - 1, the "next" means the 1st extent rec of the
3149  * next extent block.
3150  */
3151 static int ocfs2_merge_rec_right(struct inode *inode,
3152 				 struct ocfs2_path *left_path,
3153 				 handle_t *handle,
3154 				 struct ocfs2_extent_rec *split_rec,
3155 				 int index)
3156 {
3157 	int ret, next_free, i;
3158 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3159 	struct ocfs2_extent_rec *left_rec;
3160 	struct ocfs2_extent_rec *right_rec;
3161 	struct ocfs2_extent_list *right_el;
3162 	struct ocfs2_path *right_path = NULL;
3163 	int subtree_index = 0;
3164 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3165 	struct buffer_head *bh = path_leaf_bh(left_path);
3166 	struct buffer_head *root_bh = NULL;
3167 
3168 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3169 	left_rec = &el->l_recs[index];
3170 
3171 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3172 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3173 		/* we meet with a cross extent block merge. */
3174 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3175 		if (ret) {
3176 			mlog_errno(ret);
3177 			goto out;
3178 		}
3179 
3180 		right_el = path_leaf_el(right_path);
3181 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3182 		BUG_ON(next_free <= 0);
3183 		right_rec = &right_el->l_recs[0];
3184 		if (ocfs2_is_empty_extent(right_rec)) {
3185 			BUG_ON(next_free <= 1);
3186 			right_rec = &right_el->l_recs[1];
3187 		}
3188 
3189 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3190 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3191 		       le32_to_cpu(right_rec->e_cpos));
3192 
3193 		subtree_index = ocfs2_find_subtree_root(inode,
3194 							left_path, right_path);
3195 
3196 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3197 						      handle->h_buffer_credits,
3198 						      right_path);
3199 		if (ret) {
3200 			mlog_errno(ret);
3201 			goto out;
3202 		}
3203 
3204 		root_bh = left_path->p_node[subtree_index].bh;
3205 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3206 
3207 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3208 						   subtree_index);
3209 		if (ret) {
3210 			mlog_errno(ret);
3211 			goto out;
3212 		}
3213 
3214 		for (i = subtree_index + 1;
3215 		     i < path_num_items(right_path); i++) {
3216 			ret = ocfs2_path_bh_journal_access(handle, inode,
3217 							   right_path, i);
3218 			if (ret) {
3219 				mlog_errno(ret);
3220 				goto out;
3221 			}
3222 
3223 			ret = ocfs2_path_bh_journal_access(handle, inode,
3224 							   left_path, i);
3225 			if (ret) {
3226 				mlog_errno(ret);
3227 				goto out;
3228 			}
3229 		}
3230 
3231 	} else {
3232 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3233 		right_rec = &el->l_recs[index + 1];
3234 	}
3235 
3236 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3237 					   path_num_items(left_path) - 1);
3238 	if (ret) {
3239 		mlog_errno(ret);
3240 		goto out;
3241 	}
3242 
3243 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3244 
3245 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3246 	le64_add_cpu(&right_rec->e_blkno,
3247 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3248 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3249 
3250 	ocfs2_cleanup_merge(el, index);
3251 
3252 	ret = ocfs2_journal_dirty(handle, bh);
3253 	if (ret)
3254 		mlog_errno(ret);
3255 
3256 	if (right_path) {
3257 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3258 		if (ret)
3259 			mlog_errno(ret);
3260 
3261 		ocfs2_complete_edge_insert(inode, handle, left_path,
3262 					   right_path, subtree_index);
3263 	}
3264 out:
3265 	if (right_path)
3266 		ocfs2_free_path(right_path);
3267 	return ret;
3268 }
3269 
3270 static int ocfs2_get_left_path(struct inode *inode,
3271 			       struct ocfs2_path *right_path,
3272 			       struct ocfs2_path **ret_left_path)
3273 {
3274 	int ret;
3275 	u32 left_cpos;
3276 	struct ocfs2_path *left_path = NULL;
3277 
3278 	*ret_left_path = NULL;
3279 
3280 	/* This function shouldn't be called for non-trees. */
3281 	BUG_ON(right_path->p_tree_depth == 0);
3282 
3283 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3284 					    right_path, &left_cpos);
3285 	if (ret) {
3286 		mlog_errno(ret);
3287 		goto out;
3288 	}
3289 
3290 	/* This function shouldn't be called for the leftmost leaf. */
3291 	BUG_ON(left_cpos == 0);
3292 
3293 	left_path = ocfs2_new_path_from_path(right_path);
3294 	if (!left_path) {
3295 		ret = -ENOMEM;
3296 		mlog_errno(ret);
3297 		goto out;
3298 	}
3299 
3300 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3301 	if (ret) {
3302 		mlog_errno(ret);
3303 		goto out;
3304 	}
3305 
3306 	*ret_left_path = left_path;
3307 out:
3308 	if (ret)
3309 		ocfs2_free_path(left_path);
3310 	return ret;
3311 }
3312 
3313 /*
3314  * Remove split_rec clusters from the record at index and merge them
3315  * onto the tail of the record "before" it.
3316  * For index > 0, the "before" means the extent rec at index - 1.
3317  *
3318  * For index == 0, the "before" means the last record of the previous
3319  * extent block. And there is also a situation that we may need to
3320  * remove the rightmost leaf extent block in the right_path and change
3321  * the right path to indicate the new rightmost path.
3322  */
3323 static int ocfs2_merge_rec_left(struct inode *inode,
3324 				struct ocfs2_path *right_path,
3325 				handle_t *handle,
3326 				struct ocfs2_extent_rec *split_rec,
3327 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3328 				struct ocfs2_extent_tree *et,
3329 				int index)
3330 {
3331 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3332 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3333 	struct ocfs2_extent_rec *left_rec;
3334 	struct ocfs2_extent_rec *right_rec;
3335 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3336 	struct buffer_head *bh = path_leaf_bh(right_path);
3337 	struct buffer_head *root_bh = NULL;
3338 	struct ocfs2_path *left_path = NULL;
3339 	struct ocfs2_extent_list *left_el;
3340 
3341 	BUG_ON(index < 0);
3342 
3343 	right_rec = &el->l_recs[index];
3344 	if (index == 0) {
3345 		/* we meet with a cross extent block merge. */
3346 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3347 		if (ret) {
3348 			mlog_errno(ret);
3349 			goto out;
3350 		}
3351 
3352 		left_el = path_leaf_el(left_path);
3353 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3354 		       le16_to_cpu(left_el->l_count));
3355 
3356 		left_rec = &left_el->l_recs[
3357 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3358 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3359 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3360 		       le32_to_cpu(split_rec->e_cpos));
3361 
3362 		subtree_index = ocfs2_find_subtree_root(inode,
3363 							left_path, right_path);
3364 
3365 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3366 						      handle->h_buffer_credits,
3367 						      left_path);
3368 		if (ret) {
3369 			mlog_errno(ret);
3370 			goto out;
3371 		}
3372 
3373 		root_bh = left_path->p_node[subtree_index].bh;
3374 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3375 
3376 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3377 						   subtree_index);
3378 		if (ret) {
3379 			mlog_errno(ret);
3380 			goto out;
3381 		}
3382 
3383 		for (i = subtree_index + 1;
3384 		     i < path_num_items(right_path); i++) {
3385 			ret = ocfs2_path_bh_journal_access(handle, inode,
3386 							   right_path, i);
3387 			if (ret) {
3388 				mlog_errno(ret);
3389 				goto out;
3390 			}
3391 
3392 			ret = ocfs2_path_bh_journal_access(handle, inode,
3393 							   left_path, i);
3394 			if (ret) {
3395 				mlog_errno(ret);
3396 				goto out;
3397 			}
3398 		}
3399 	} else {
3400 		left_rec = &el->l_recs[index - 1];
3401 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3402 			has_empty_extent = 1;
3403 	}
3404 
3405 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3406 					   path_num_items(right_path) - 1);
3407 	if (ret) {
3408 		mlog_errno(ret);
3409 		goto out;
3410 	}
3411 
3412 	if (has_empty_extent && index == 1) {
3413 		/*
3414 		 * The easy case - we can just plop the record right in.
3415 		 */
3416 		*left_rec = *split_rec;
3417 
3418 		has_empty_extent = 0;
3419 	} else
3420 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3421 
3422 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3423 	le64_add_cpu(&right_rec->e_blkno,
3424 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3425 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3426 
3427 	ocfs2_cleanup_merge(el, index);
3428 
3429 	ret = ocfs2_journal_dirty(handle, bh);
3430 	if (ret)
3431 		mlog_errno(ret);
3432 
3433 	if (left_path) {
3434 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3435 		if (ret)
3436 			mlog_errno(ret);
3437 
3438 		/*
3439 		 * In the situation that the right_rec is empty and the extent
3440 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3441 		 * it and we need to delete the right extent block.
3442 		 */
3443 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3444 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3445 
3446 			ret = ocfs2_remove_rightmost_path(inode, handle,
3447 							  right_path,
3448 							  dealloc, et);
3449 			if (ret) {
3450 				mlog_errno(ret);
3451 				goto out;
3452 			}
3453 
3454 			/* Now the rightmost extent block has been deleted.
3455 			 * So we use the new rightmost path.
3456 			 */
3457 			ocfs2_mv_path(right_path, left_path);
3458 			left_path = NULL;
3459 		} else
3460 			ocfs2_complete_edge_insert(inode, handle, left_path,
3461 						   right_path, subtree_index);
3462 	}
3463 out:
3464 	if (left_path)
3465 		ocfs2_free_path(left_path);
3466 	return ret;
3467 }
3468 
3469 static int ocfs2_try_to_merge_extent(struct inode *inode,
3470 				     handle_t *handle,
3471 				     struct ocfs2_path *path,
3472 				     int split_index,
3473 				     struct ocfs2_extent_rec *split_rec,
3474 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3475 				     struct ocfs2_merge_ctxt *ctxt,
3476 				     struct ocfs2_extent_tree *et)
3477 
3478 {
3479 	int ret = 0;
3480 	struct ocfs2_extent_list *el = path_leaf_el(path);
3481 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3482 
3483 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3484 
3485 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3486 		/*
3487 		 * The merge code will need to create an empty
3488 		 * extent to take the place of the newly
3489 		 * emptied slot. Remove any pre-existing empty
3490 		 * extents - having more than one in a leaf is
3491 		 * illegal.
3492 		 */
3493 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3494 					     dealloc, et);
3495 		if (ret) {
3496 			mlog_errno(ret);
3497 			goto out;
3498 		}
3499 		split_index--;
3500 		rec = &el->l_recs[split_index];
3501 	}
3502 
3503 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3504 		/*
3505 		 * Left-right contig implies this.
3506 		 */
3507 		BUG_ON(!ctxt->c_split_covers_rec);
3508 
3509 		/*
3510 		 * Since the leftright insert always covers the entire
3511 		 * extent, this call will delete the insert record
3512 		 * entirely, resulting in an empty extent record added to
3513 		 * the extent block.
3514 		 *
3515 		 * Since the adding of an empty extent shifts
3516 		 * everything back to the right, there's no need to
3517 		 * update split_index here.
3518 		 *
3519 		 * When the split_index is zero, we need to merge it to the
3520 		 * prevoius extent block. It is more efficient and easier
3521 		 * if we do merge_right first and merge_left later.
3522 		 */
3523 		ret = ocfs2_merge_rec_right(inode, path,
3524 					    handle, split_rec,
3525 					    split_index);
3526 		if (ret) {
3527 			mlog_errno(ret);
3528 			goto out;
3529 		}
3530 
3531 		/*
3532 		 * We can only get this from logic error above.
3533 		 */
3534 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3535 
3536 		/* The merge left us with an empty extent, remove it. */
3537 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3538 					     dealloc, et);
3539 		if (ret) {
3540 			mlog_errno(ret);
3541 			goto out;
3542 		}
3543 
3544 		rec = &el->l_recs[split_index];
3545 
3546 		/*
3547 		 * Note that we don't pass split_rec here on purpose -
3548 		 * we've merged it into the rec already.
3549 		 */
3550 		ret = ocfs2_merge_rec_left(inode, path,
3551 					   handle, rec,
3552 					   dealloc, et,
3553 					   split_index);
3554 
3555 		if (ret) {
3556 			mlog_errno(ret);
3557 			goto out;
3558 		}
3559 
3560 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3561 					     dealloc, et);
3562 		/*
3563 		 * Error from this last rotate is not critical, so
3564 		 * print but don't bubble it up.
3565 		 */
3566 		if (ret)
3567 			mlog_errno(ret);
3568 		ret = 0;
3569 	} else {
3570 		/*
3571 		 * Merge a record to the left or right.
3572 		 *
3573 		 * 'contig_type' is relative to the existing record,
3574 		 * so for example, if we're "right contig", it's to
3575 		 * the record on the left (hence the left merge).
3576 		 */
3577 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3578 			ret = ocfs2_merge_rec_left(inode,
3579 						   path,
3580 						   handle, split_rec,
3581 						   dealloc, et,
3582 						   split_index);
3583 			if (ret) {
3584 				mlog_errno(ret);
3585 				goto out;
3586 			}
3587 		} else {
3588 			ret = ocfs2_merge_rec_right(inode,
3589 						    path,
3590 						    handle, split_rec,
3591 						    split_index);
3592 			if (ret) {
3593 				mlog_errno(ret);
3594 				goto out;
3595 			}
3596 		}
3597 
3598 		if (ctxt->c_split_covers_rec) {
3599 			/*
3600 			 * The merge may have left an empty extent in
3601 			 * our leaf. Try to rotate it away.
3602 			 */
3603 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3604 						     dealloc, et);
3605 			if (ret)
3606 				mlog_errno(ret);
3607 			ret = 0;
3608 		}
3609 	}
3610 
3611 out:
3612 	return ret;
3613 }
3614 
3615 static void ocfs2_subtract_from_rec(struct super_block *sb,
3616 				    enum ocfs2_split_type split,
3617 				    struct ocfs2_extent_rec *rec,
3618 				    struct ocfs2_extent_rec *split_rec)
3619 {
3620 	u64 len_blocks;
3621 
3622 	len_blocks = ocfs2_clusters_to_blocks(sb,
3623 				le16_to_cpu(split_rec->e_leaf_clusters));
3624 
3625 	if (split == SPLIT_LEFT) {
3626 		/*
3627 		 * Region is on the left edge of the existing
3628 		 * record.
3629 		 */
3630 		le32_add_cpu(&rec->e_cpos,
3631 			     le16_to_cpu(split_rec->e_leaf_clusters));
3632 		le64_add_cpu(&rec->e_blkno, len_blocks);
3633 		le16_add_cpu(&rec->e_leaf_clusters,
3634 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3635 	} else {
3636 		/*
3637 		 * Region is on the right edge of the existing
3638 		 * record.
3639 		 */
3640 		le16_add_cpu(&rec->e_leaf_clusters,
3641 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3642 	}
3643 }
3644 
3645 /*
3646  * Do the final bits of extent record insertion at the target leaf
3647  * list. If this leaf is part of an allocation tree, it is assumed
3648  * that the tree above has been prepared.
3649  */
3650 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3651 				 struct ocfs2_extent_list *el,
3652 				 struct ocfs2_insert_type *insert,
3653 				 struct inode *inode)
3654 {
3655 	int i = insert->ins_contig_index;
3656 	unsigned int range;
3657 	struct ocfs2_extent_rec *rec;
3658 
3659 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3660 
3661 	if (insert->ins_split != SPLIT_NONE) {
3662 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3663 		BUG_ON(i == -1);
3664 		rec = &el->l_recs[i];
3665 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3666 					insert_rec);
3667 		goto rotate;
3668 	}
3669 
3670 	/*
3671 	 * Contiguous insert - either left or right.
3672 	 */
3673 	if (insert->ins_contig != CONTIG_NONE) {
3674 		rec = &el->l_recs[i];
3675 		if (insert->ins_contig == CONTIG_LEFT) {
3676 			rec->e_blkno = insert_rec->e_blkno;
3677 			rec->e_cpos = insert_rec->e_cpos;
3678 		}
3679 		le16_add_cpu(&rec->e_leaf_clusters,
3680 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3681 		return;
3682 	}
3683 
3684 	/*
3685 	 * Handle insert into an empty leaf.
3686 	 */
3687 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3688 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3689 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3690 		el->l_recs[0] = *insert_rec;
3691 		el->l_next_free_rec = cpu_to_le16(1);
3692 		return;
3693 	}
3694 
3695 	/*
3696 	 * Appending insert.
3697 	 */
3698 	if (insert->ins_appending == APPEND_TAIL) {
3699 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3700 		rec = &el->l_recs[i];
3701 		range = le32_to_cpu(rec->e_cpos)
3702 			+ le16_to_cpu(rec->e_leaf_clusters);
3703 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3704 
3705 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3706 				le16_to_cpu(el->l_count),
3707 				"inode %lu, depth %u, count %u, next free %u, "
3708 				"rec.cpos %u, rec.clusters %u, "
3709 				"insert.cpos %u, insert.clusters %u\n",
3710 				inode->i_ino,
3711 				le16_to_cpu(el->l_tree_depth),
3712 				le16_to_cpu(el->l_count),
3713 				le16_to_cpu(el->l_next_free_rec),
3714 				le32_to_cpu(el->l_recs[i].e_cpos),
3715 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3716 				le32_to_cpu(insert_rec->e_cpos),
3717 				le16_to_cpu(insert_rec->e_leaf_clusters));
3718 		i++;
3719 		el->l_recs[i] = *insert_rec;
3720 		le16_add_cpu(&el->l_next_free_rec, 1);
3721 		return;
3722 	}
3723 
3724 rotate:
3725 	/*
3726 	 * Ok, we have to rotate.
3727 	 *
3728 	 * At this point, it is safe to assume that inserting into an
3729 	 * empty leaf and appending to a leaf have both been handled
3730 	 * above.
3731 	 *
3732 	 * This leaf needs to have space, either by the empty 1st
3733 	 * extent record, or by virtue of an l_next_rec < l_count.
3734 	 */
3735 	ocfs2_rotate_leaf(el, insert_rec);
3736 }
3737 
3738 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3739 					   handle_t *handle,
3740 					   struct ocfs2_path *path,
3741 					   struct ocfs2_extent_rec *insert_rec)
3742 {
3743 	int ret, i, next_free;
3744 	struct buffer_head *bh;
3745 	struct ocfs2_extent_list *el;
3746 	struct ocfs2_extent_rec *rec;
3747 
3748 	/*
3749 	 * Update everything except the leaf block.
3750 	 */
3751 	for (i = 0; i < path->p_tree_depth; i++) {
3752 		bh = path->p_node[i].bh;
3753 		el = path->p_node[i].el;
3754 
3755 		next_free = le16_to_cpu(el->l_next_free_rec);
3756 		if (next_free == 0) {
3757 			ocfs2_error(inode->i_sb,
3758 				    "Dinode %llu has a bad extent list",
3759 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3760 			ret = -EIO;
3761 			return;
3762 		}
3763 
3764 		rec = &el->l_recs[next_free - 1];
3765 
3766 		rec->e_int_clusters = insert_rec->e_cpos;
3767 		le32_add_cpu(&rec->e_int_clusters,
3768 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3769 		le32_add_cpu(&rec->e_int_clusters,
3770 			     -le32_to_cpu(rec->e_cpos));
3771 
3772 		ret = ocfs2_journal_dirty(handle, bh);
3773 		if (ret)
3774 			mlog_errno(ret);
3775 
3776 	}
3777 }
3778 
3779 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3780 				    struct ocfs2_extent_rec *insert_rec,
3781 				    struct ocfs2_path *right_path,
3782 				    struct ocfs2_path **ret_left_path)
3783 {
3784 	int ret, next_free;
3785 	struct ocfs2_extent_list *el;
3786 	struct ocfs2_path *left_path = NULL;
3787 
3788 	*ret_left_path = NULL;
3789 
3790 	/*
3791 	 * This shouldn't happen for non-trees. The extent rec cluster
3792 	 * count manipulation below only works for interior nodes.
3793 	 */
3794 	BUG_ON(right_path->p_tree_depth == 0);
3795 
3796 	/*
3797 	 * If our appending insert is at the leftmost edge of a leaf,
3798 	 * then we might need to update the rightmost records of the
3799 	 * neighboring path.
3800 	 */
3801 	el = path_leaf_el(right_path);
3802 	next_free = le16_to_cpu(el->l_next_free_rec);
3803 	if (next_free == 0 ||
3804 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3805 		u32 left_cpos;
3806 
3807 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3808 						    &left_cpos);
3809 		if (ret) {
3810 			mlog_errno(ret);
3811 			goto out;
3812 		}
3813 
3814 		mlog(0, "Append may need a left path update. cpos: %u, "
3815 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3816 		     left_cpos);
3817 
3818 		/*
3819 		 * No need to worry if the append is already in the
3820 		 * leftmost leaf.
3821 		 */
3822 		if (left_cpos) {
3823 			left_path = ocfs2_new_path_from_path(right_path);
3824 			if (!left_path) {
3825 				ret = -ENOMEM;
3826 				mlog_errno(ret);
3827 				goto out;
3828 			}
3829 
3830 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3831 			if (ret) {
3832 				mlog_errno(ret);
3833 				goto out;
3834 			}
3835 
3836 			/*
3837 			 * ocfs2_insert_path() will pass the left_path to the
3838 			 * journal for us.
3839 			 */
3840 		}
3841 	}
3842 
3843 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3844 	if (ret) {
3845 		mlog_errno(ret);
3846 		goto out;
3847 	}
3848 
3849 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3850 
3851 	*ret_left_path = left_path;
3852 	ret = 0;
3853 out:
3854 	if (ret != 0)
3855 		ocfs2_free_path(left_path);
3856 
3857 	return ret;
3858 }
3859 
3860 static void ocfs2_split_record(struct inode *inode,
3861 			       struct ocfs2_path *left_path,
3862 			       struct ocfs2_path *right_path,
3863 			       struct ocfs2_extent_rec *split_rec,
3864 			       enum ocfs2_split_type split)
3865 {
3866 	int index;
3867 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3868 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3869 	struct ocfs2_extent_rec *rec, *tmprec;
3870 
3871 	right_el = path_leaf_el(right_path);
3872 	if (left_path)
3873 		left_el = path_leaf_el(left_path);
3874 
3875 	el = right_el;
3876 	insert_el = right_el;
3877 	index = ocfs2_search_extent_list(el, cpos);
3878 	if (index != -1) {
3879 		if (index == 0 && left_path) {
3880 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3881 
3882 			/*
3883 			 * This typically means that the record
3884 			 * started in the left path but moved to the
3885 			 * right as a result of rotation. We either
3886 			 * move the existing record to the left, or we
3887 			 * do the later insert there.
3888 			 *
3889 			 * In this case, the left path should always
3890 			 * exist as the rotate code will have passed
3891 			 * it back for a post-insert update.
3892 			 */
3893 
3894 			if (split == SPLIT_LEFT) {
3895 				/*
3896 				 * It's a left split. Since we know
3897 				 * that the rotate code gave us an
3898 				 * empty extent in the left path, we
3899 				 * can just do the insert there.
3900 				 */
3901 				insert_el = left_el;
3902 			} else {
3903 				/*
3904 				 * Right split - we have to move the
3905 				 * existing record over to the left
3906 				 * leaf. The insert will be into the
3907 				 * newly created empty extent in the
3908 				 * right leaf.
3909 				 */
3910 				tmprec = &right_el->l_recs[index];
3911 				ocfs2_rotate_leaf(left_el, tmprec);
3912 				el = left_el;
3913 
3914 				memset(tmprec, 0, sizeof(*tmprec));
3915 				index = ocfs2_search_extent_list(left_el, cpos);
3916 				BUG_ON(index == -1);
3917 			}
3918 		}
3919 	} else {
3920 		BUG_ON(!left_path);
3921 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3922 		/*
3923 		 * Left path is easy - we can just allow the insert to
3924 		 * happen.
3925 		 */
3926 		el = left_el;
3927 		insert_el = left_el;
3928 		index = ocfs2_search_extent_list(el, cpos);
3929 		BUG_ON(index == -1);
3930 	}
3931 
3932 	rec = &el->l_recs[index];
3933 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3934 	ocfs2_rotate_leaf(insert_el, split_rec);
3935 }
3936 
3937 /*
3938  * This function only does inserts on an allocation b-tree. For tree
3939  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3940  *
3941  * right_path is the path we want to do the actual insert
3942  * in. left_path should only be passed in if we need to update that
3943  * portion of the tree after an edge insert.
3944  */
3945 static int ocfs2_insert_path(struct inode *inode,
3946 			     handle_t *handle,
3947 			     struct ocfs2_path *left_path,
3948 			     struct ocfs2_path *right_path,
3949 			     struct ocfs2_extent_rec *insert_rec,
3950 			     struct ocfs2_insert_type *insert)
3951 {
3952 	int ret, subtree_index;
3953 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3954 
3955 	if (left_path) {
3956 		int credits = handle->h_buffer_credits;
3957 
3958 		/*
3959 		 * There's a chance that left_path got passed back to
3960 		 * us without being accounted for in the
3961 		 * journal. Extend our transaction here to be sure we
3962 		 * can change those blocks.
3963 		 */
3964 		credits += left_path->p_tree_depth;
3965 
3966 		ret = ocfs2_extend_trans(handle, credits);
3967 		if (ret < 0) {
3968 			mlog_errno(ret);
3969 			goto out;
3970 		}
3971 
3972 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3973 		if (ret < 0) {
3974 			mlog_errno(ret);
3975 			goto out;
3976 		}
3977 	}
3978 
3979 	/*
3980 	 * Pass both paths to the journal. The majority of inserts
3981 	 * will be touching all components anyway.
3982 	 */
3983 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3984 	if (ret < 0) {
3985 		mlog_errno(ret);
3986 		goto out;
3987 	}
3988 
3989 	if (insert->ins_split != SPLIT_NONE) {
3990 		/*
3991 		 * We could call ocfs2_insert_at_leaf() for some types
3992 		 * of splits, but it's easier to just let one separate
3993 		 * function sort it all out.
3994 		 */
3995 		ocfs2_split_record(inode, left_path, right_path,
3996 				   insert_rec, insert->ins_split);
3997 
3998 		/*
3999 		 * Split might have modified either leaf and we don't
4000 		 * have a guarantee that the later edge insert will
4001 		 * dirty this for us.
4002 		 */
4003 		if (left_path)
4004 			ret = ocfs2_journal_dirty(handle,
4005 						  path_leaf_bh(left_path));
4006 			if (ret)
4007 				mlog_errno(ret);
4008 	} else
4009 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4010 				     insert, inode);
4011 
4012 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4013 	if (ret)
4014 		mlog_errno(ret);
4015 
4016 	if (left_path) {
4017 		/*
4018 		 * The rotate code has indicated that we need to fix
4019 		 * up portions of the tree after the insert.
4020 		 *
4021 		 * XXX: Should we extend the transaction here?
4022 		 */
4023 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4024 							right_path);
4025 		ocfs2_complete_edge_insert(inode, handle, left_path,
4026 					   right_path, subtree_index);
4027 	}
4028 
4029 	ret = 0;
4030 out:
4031 	return ret;
4032 }
4033 
4034 static int ocfs2_do_insert_extent(struct inode *inode,
4035 				  handle_t *handle,
4036 				  struct ocfs2_extent_tree *et,
4037 				  struct ocfs2_extent_rec *insert_rec,
4038 				  struct ocfs2_insert_type *type)
4039 {
4040 	int ret, rotate = 0;
4041 	u32 cpos;
4042 	struct ocfs2_path *right_path = NULL;
4043 	struct ocfs2_path *left_path = NULL;
4044 	struct ocfs2_extent_list *el;
4045 
4046 	el = et->et_root_el;
4047 
4048 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4049 					   OCFS2_JOURNAL_ACCESS_WRITE);
4050 	if (ret) {
4051 		mlog_errno(ret);
4052 		goto out;
4053 	}
4054 
4055 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4056 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4057 		goto out_update_clusters;
4058 	}
4059 
4060 	right_path = ocfs2_new_path_from_et(et);
4061 	if (!right_path) {
4062 		ret = -ENOMEM;
4063 		mlog_errno(ret);
4064 		goto out;
4065 	}
4066 
4067 	/*
4068 	 * Determine the path to start with. Rotations need the
4069 	 * rightmost path, everything else can go directly to the
4070 	 * target leaf.
4071 	 */
4072 	cpos = le32_to_cpu(insert_rec->e_cpos);
4073 	if (type->ins_appending == APPEND_NONE &&
4074 	    type->ins_contig == CONTIG_NONE) {
4075 		rotate = 1;
4076 		cpos = UINT_MAX;
4077 	}
4078 
4079 	ret = ocfs2_find_path(inode, right_path, cpos);
4080 	if (ret) {
4081 		mlog_errno(ret);
4082 		goto out;
4083 	}
4084 
4085 	/*
4086 	 * Rotations and appends need special treatment - they modify
4087 	 * parts of the tree's above them.
4088 	 *
4089 	 * Both might pass back a path immediate to the left of the
4090 	 * one being inserted to. This will be cause
4091 	 * ocfs2_insert_path() to modify the rightmost records of
4092 	 * left_path to account for an edge insert.
4093 	 *
4094 	 * XXX: When modifying this code, keep in mind that an insert
4095 	 * can wind up skipping both of these two special cases...
4096 	 */
4097 	if (rotate) {
4098 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4099 					      le32_to_cpu(insert_rec->e_cpos),
4100 					      right_path, &left_path);
4101 		if (ret) {
4102 			mlog_errno(ret);
4103 			goto out;
4104 		}
4105 
4106 		/*
4107 		 * ocfs2_rotate_tree_right() might have extended the
4108 		 * transaction without re-journaling our tree root.
4109 		 */
4110 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4111 						   OCFS2_JOURNAL_ACCESS_WRITE);
4112 		if (ret) {
4113 			mlog_errno(ret);
4114 			goto out;
4115 		}
4116 	} else if (type->ins_appending == APPEND_TAIL
4117 		   && type->ins_contig != CONTIG_LEFT) {
4118 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4119 					       right_path, &left_path);
4120 		if (ret) {
4121 			mlog_errno(ret);
4122 			goto out;
4123 		}
4124 	}
4125 
4126 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4127 				insert_rec, type);
4128 	if (ret) {
4129 		mlog_errno(ret);
4130 		goto out;
4131 	}
4132 
4133 out_update_clusters:
4134 	if (type->ins_split == SPLIT_NONE)
4135 		ocfs2_et_update_clusters(inode, et,
4136 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4137 
4138 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4139 	if (ret)
4140 		mlog_errno(ret);
4141 
4142 out:
4143 	ocfs2_free_path(left_path);
4144 	ocfs2_free_path(right_path);
4145 
4146 	return ret;
4147 }
4148 
4149 static enum ocfs2_contig_type
4150 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4151 			       struct ocfs2_extent_list *el, int index,
4152 			       struct ocfs2_extent_rec *split_rec)
4153 {
4154 	int status;
4155 	enum ocfs2_contig_type ret = CONTIG_NONE;
4156 	u32 left_cpos, right_cpos;
4157 	struct ocfs2_extent_rec *rec = NULL;
4158 	struct ocfs2_extent_list *new_el;
4159 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4160 	struct buffer_head *bh;
4161 	struct ocfs2_extent_block *eb;
4162 
4163 	if (index > 0) {
4164 		rec = &el->l_recs[index - 1];
4165 	} else if (path->p_tree_depth > 0) {
4166 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4167 						       path, &left_cpos);
4168 		if (status)
4169 			goto out;
4170 
4171 		if (left_cpos != 0) {
4172 			left_path = ocfs2_new_path_from_path(path);
4173 			if (!left_path)
4174 				goto out;
4175 
4176 			status = ocfs2_find_path(inode, left_path, left_cpos);
4177 			if (status)
4178 				goto out;
4179 
4180 			new_el = path_leaf_el(left_path);
4181 
4182 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4183 			    le16_to_cpu(new_el->l_count)) {
4184 				bh = path_leaf_bh(left_path);
4185 				eb = (struct ocfs2_extent_block *)bh->b_data;
4186 				ocfs2_error(inode->i_sb,
4187 					    "Extent block #%llu has an "
4188 					    "invalid l_next_free_rec of "
4189 					    "%d.  It should have "
4190 					    "matched the l_count of %d",
4191 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4192 					    le16_to_cpu(new_el->l_next_free_rec),
4193 					    le16_to_cpu(new_el->l_count));
4194 				status = -EINVAL;
4195 				goto out;
4196 			}
4197 			rec = &new_el->l_recs[
4198 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4199 		}
4200 	}
4201 
4202 	/*
4203 	 * We're careful to check for an empty extent record here -
4204 	 * the merge code will know what to do if it sees one.
4205 	 */
4206 	if (rec) {
4207 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4208 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4209 				ret = CONTIG_RIGHT;
4210 		} else {
4211 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4212 		}
4213 	}
4214 
4215 	rec = NULL;
4216 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4217 		rec = &el->l_recs[index + 1];
4218 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4219 		 path->p_tree_depth > 0) {
4220 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4221 							path, &right_cpos);
4222 		if (status)
4223 			goto out;
4224 
4225 		if (right_cpos == 0)
4226 			goto out;
4227 
4228 		right_path = ocfs2_new_path_from_path(path);
4229 		if (!right_path)
4230 			goto out;
4231 
4232 		status = ocfs2_find_path(inode, right_path, right_cpos);
4233 		if (status)
4234 			goto out;
4235 
4236 		new_el = path_leaf_el(right_path);
4237 		rec = &new_el->l_recs[0];
4238 		if (ocfs2_is_empty_extent(rec)) {
4239 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4240 				bh = path_leaf_bh(right_path);
4241 				eb = (struct ocfs2_extent_block *)bh->b_data;
4242 				ocfs2_error(inode->i_sb,
4243 					    "Extent block #%llu has an "
4244 					    "invalid l_next_free_rec of %d",
4245 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4246 					    le16_to_cpu(new_el->l_next_free_rec));
4247 				status = -EINVAL;
4248 				goto out;
4249 			}
4250 			rec = &new_el->l_recs[1];
4251 		}
4252 	}
4253 
4254 	if (rec) {
4255 		enum ocfs2_contig_type contig_type;
4256 
4257 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4258 
4259 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4260 			ret = CONTIG_LEFTRIGHT;
4261 		else if (ret == CONTIG_NONE)
4262 			ret = contig_type;
4263 	}
4264 
4265 out:
4266 	if (left_path)
4267 		ocfs2_free_path(left_path);
4268 	if (right_path)
4269 		ocfs2_free_path(right_path);
4270 
4271 	return ret;
4272 }
4273 
4274 static void ocfs2_figure_contig_type(struct inode *inode,
4275 				     struct ocfs2_insert_type *insert,
4276 				     struct ocfs2_extent_list *el,
4277 				     struct ocfs2_extent_rec *insert_rec,
4278 				     struct ocfs2_extent_tree *et)
4279 {
4280 	int i;
4281 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4282 
4283 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4284 
4285 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4286 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4287 						  insert_rec);
4288 		if (contig_type != CONTIG_NONE) {
4289 			insert->ins_contig_index = i;
4290 			break;
4291 		}
4292 	}
4293 	insert->ins_contig = contig_type;
4294 
4295 	if (insert->ins_contig != CONTIG_NONE) {
4296 		struct ocfs2_extent_rec *rec =
4297 				&el->l_recs[insert->ins_contig_index];
4298 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4299 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4300 
4301 		/*
4302 		 * Caller might want us to limit the size of extents, don't
4303 		 * calculate contiguousness if we might exceed that limit.
4304 		 */
4305 		if (et->et_max_leaf_clusters &&
4306 		    (len > et->et_max_leaf_clusters))
4307 			insert->ins_contig = CONTIG_NONE;
4308 	}
4309 }
4310 
4311 /*
4312  * This should only be called against the righmost leaf extent list.
4313  *
4314  * ocfs2_figure_appending_type() will figure out whether we'll have to
4315  * insert at the tail of the rightmost leaf.
4316  *
4317  * This should also work against the root extent list for tree's with 0
4318  * depth. If we consider the root extent list to be the rightmost leaf node
4319  * then the logic here makes sense.
4320  */
4321 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4322 					struct ocfs2_extent_list *el,
4323 					struct ocfs2_extent_rec *insert_rec)
4324 {
4325 	int i;
4326 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4327 	struct ocfs2_extent_rec *rec;
4328 
4329 	insert->ins_appending = APPEND_NONE;
4330 
4331 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4332 
4333 	if (!el->l_next_free_rec)
4334 		goto set_tail_append;
4335 
4336 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4337 		/* Were all records empty? */
4338 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4339 			goto set_tail_append;
4340 	}
4341 
4342 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4343 	rec = &el->l_recs[i];
4344 
4345 	if (cpos >=
4346 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4347 		goto set_tail_append;
4348 
4349 	return;
4350 
4351 set_tail_append:
4352 	insert->ins_appending = APPEND_TAIL;
4353 }
4354 
4355 /*
4356  * Helper function called at the begining of an insert.
4357  *
4358  * This computes a few things that are commonly used in the process of
4359  * inserting into the btree:
4360  *   - Whether the new extent is contiguous with an existing one.
4361  *   - The current tree depth.
4362  *   - Whether the insert is an appending one.
4363  *   - The total # of free records in the tree.
4364  *
4365  * All of the information is stored on the ocfs2_insert_type
4366  * structure.
4367  */
4368 static int ocfs2_figure_insert_type(struct inode *inode,
4369 				    struct ocfs2_extent_tree *et,
4370 				    struct buffer_head **last_eb_bh,
4371 				    struct ocfs2_extent_rec *insert_rec,
4372 				    int *free_records,
4373 				    struct ocfs2_insert_type *insert)
4374 {
4375 	int ret;
4376 	struct ocfs2_extent_block *eb;
4377 	struct ocfs2_extent_list *el;
4378 	struct ocfs2_path *path = NULL;
4379 	struct buffer_head *bh = NULL;
4380 
4381 	insert->ins_split = SPLIT_NONE;
4382 
4383 	el = et->et_root_el;
4384 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4385 
4386 	if (el->l_tree_depth) {
4387 		/*
4388 		 * If we have tree depth, we read in the
4389 		 * rightmost extent block ahead of time as
4390 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4391 		 * may want it later.
4392 		 */
4393 		ret = ocfs2_read_extent_block(inode,
4394 					      ocfs2_et_get_last_eb_blk(et),
4395 					      &bh);
4396 		if (ret) {
4397 			mlog_exit(ret);
4398 			goto out;
4399 		}
4400 		eb = (struct ocfs2_extent_block *) bh->b_data;
4401 		el = &eb->h_list;
4402 	}
4403 
4404 	/*
4405 	 * Unless we have a contiguous insert, we'll need to know if
4406 	 * there is room left in our allocation tree for another
4407 	 * extent record.
4408 	 *
4409 	 * XXX: This test is simplistic, we can search for empty
4410 	 * extent records too.
4411 	 */
4412 	*free_records = le16_to_cpu(el->l_count) -
4413 		le16_to_cpu(el->l_next_free_rec);
4414 
4415 	if (!insert->ins_tree_depth) {
4416 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4417 		ocfs2_figure_appending_type(insert, el, insert_rec);
4418 		return 0;
4419 	}
4420 
4421 	path = ocfs2_new_path_from_et(et);
4422 	if (!path) {
4423 		ret = -ENOMEM;
4424 		mlog_errno(ret);
4425 		goto out;
4426 	}
4427 
4428 	/*
4429 	 * In the case that we're inserting past what the tree
4430 	 * currently accounts for, ocfs2_find_path() will return for
4431 	 * us the rightmost tree path. This is accounted for below in
4432 	 * the appending code.
4433 	 */
4434 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4435 	if (ret) {
4436 		mlog_errno(ret);
4437 		goto out;
4438 	}
4439 
4440 	el = path_leaf_el(path);
4441 
4442 	/*
4443 	 * Now that we have the path, there's two things we want to determine:
4444 	 * 1) Contiguousness (also set contig_index if this is so)
4445 	 *
4446 	 * 2) Are we doing an append? We can trivially break this up
4447          *     into two types of appends: simple record append, or a
4448          *     rotate inside the tail leaf.
4449 	 */
4450 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4451 
4452 	/*
4453 	 * The insert code isn't quite ready to deal with all cases of
4454 	 * left contiguousness. Specifically, if it's an insert into
4455 	 * the 1st record in a leaf, it will require the adjustment of
4456 	 * cluster count on the last record of the path directly to it's
4457 	 * left. For now, just catch that case and fool the layers
4458 	 * above us. This works just fine for tree_depth == 0, which
4459 	 * is why we allow that above.
4460 	 */
4461 	if (insert->ins_contig == CONTIG_LEFT &&
4462 	    insert->ins_contig_index == 0)
4463 		insert->ins_contig = CONTIG_NONE;
4464 
4465 	/*
4466 	 * Ok, so we can simply compare against last_eb to figure out
4467 	 * whether the path doesn't exist. This will only happen in
4468 	 * the case that we're doing a tail append, so maybe we can
4469 	 * take advantage of that information somehow.
4470 	 */
4471 	if (ocfs2_et_get_last_eb_blk(et) ==
4472 	    path_leaf_bh(path)->b_blocknr) {
4473 		/*
4474 		 * Ok, ocfs2_find_path() returned us the rightmost
4475 		 * tree path. This might be an appending insert. There are
4476 		 * two cases:
4477 		 *    1) We're doing a true append at the tail:
4478 		 *	-This might even be off the end of the leaf
4479 		 *    2) We're "appending" by rotating in the tail
4480 		 */
4481 		ocfs2_figure_appending_type(insert, el, insert_rec);
4482 	}
4483 
4484 out:
4485 	ocfs2_free_path(path);
4486 
4487 	if (ret == 0)
4488 		*last_eb_bh = bh;
4489 	else
4490 		brelse(bh);
4491 	return ret;
4492 }
4493 
4494 /*
4495  * Insert an extent into an inode btree.
4496  *
4497  * The caller needs to update fe->i_clusters
4498  */
4499 int ocfs2_insert_extent(struct ocfs2_super *osb,
4500 			handle_t *handle,
4501 			struct inode *inode,
4502 			struct ocfs2_extent_tree *et,
4503 			u32 cpos,
4504 			u64 start_blk,
4505 			u32 new_clusters,
4506 			u8 flags,
4507 			struct ocfs2_alloc_context *meta_ac)
4508 {
4509 	int status;
4510 	int uninitialized_var(free_records);
4511 	struct buffer_head *last_eb_bh = NULL;
4512 	struct ocfs2_insert_type insert = {0, };
4513 	struct ocfs2_extent_rec rec;
4514 
4515 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4516 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4517 
4518 	memset(&rec, 0, sizeof(rec));
4519 	rec.e_cpos = cpu_to_le32(cpos);
4520 	rec.e_blkno = cpu_to_le64(start_blk);
4521 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4522 	rec.e_flags = flags;
4523 	status = ocfs2_et_insert_check(inode, et, &rec);
4524 	if (status) {
4525 		mlog_errno(status);
4526 		goto bail;
4527 	}
4528 
4529 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4530 					  &free_records, &insert);
4531 	if (status < 0) {
4532 		mlog_errno(status);
4533 		goto bail;
4534 	}
4535 
4536 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4537 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4538 	     "Insert.tree_depth: %d\n",
4539 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4540 	     free_records, insert.ins_tree_depth);
4541 
4542 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4543 		status = ocfs2_grow_tree(inode, handle, et,
4544 					 &insert.ins_tree_depth, &last_eb_bh,
4545 					 meta_ac);
4546 		if (status) {
4547 			mlog_errno(status);
4548 			goto bail;
4549 		}
4550 	}
4551 
4552 	/* Finally, we can add clusters. This might rotate the tree for us. */
4553 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4554 	if (status < 0)
4555 		mlog_errno(status);
4556 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4557 		ocfs2_extent_map_insert_rec(inode, &rec);
4558 
4559 bail:
4560 	brelse(last_eb_bh);
4561 
4562 	mlog_exit(status);
4563 	return status;
4564 }
4565 
4566 /*
4567  * Allcate and add clusters into the extent b-tree.
4568  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4569  * The extent b-tree's root is specified by et, and
4570  * it is not limited to the file storage. Any extent tree can use this
4571  * function if it implements the proper ocfs2_extent_tree.
4572  */
4573 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4574 				struct inode *inode,
4575 				u32 *logical_offset,
4576 				u32 clusters_to_add,
4577 				int mark_unwritten,
4578 				struct ocfs2_extent_tree *et,
4579 				handle_t *handle,
4580 				struct ocfs2_alloc_context *data_ac,
4581 				struct ocfs2_alloc_context *meta_ac,
4582 				enum ocfs2_alloc_restarted *reason_ret)
4583 {
4584 	int status = 0;
4585 	int free_extents;
4586 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4587 	u32 bit_off, num_bits;
4588 	u64 block;
4589 	u8 flags = 0;
4590 
4591 	BUG_ON(!clusters_to_add);
4592 
4593 	if (mark_unwritten)
4594 		flags = OCFS2_EXT_UNWRITTEN;
4595 
4596 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4597 	if (free_extents < 0) {
4598 		status = free_extents;
4599 		mlog_errno(status);
4600 		goto leave;
4601 	}
4602 
4603 	/* there are two cases which could cause us to EAGAIN in the
4604 	 * we-need-more-metadata case:
4605 	 * 1) we haven't reserved *any*
4606 	 * 2) we are so fragmented, we've needed to add metadata too
4607 	 *    many times. */
4608 	if (!free_extents && !meta_ac) {
4609 		mlog(0, "we haven't reserved any metadata!\n");
4610 		status = -EAGAIN;
4611 		reason = RESTART_META;
4612 		goto leave;
4613 	} else if ((!free_extents)
4614 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4615 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4616 		mlog(0, "filesystem is really fragmented...\n");
4617 		status = -EAGAIN;
4618 		reason = RESTART_META;
4619 		goto leave;
4620 	}
4621 
4622 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4623 					clusters_to_add, &bit_off, &num_bits);
4624 	if (status < 0) {
4625 		if (status != -ENOSPC)
4626 			mlog_errno(status);
4627 		goto leave;
4628 	}
4629 
4630 	BUG_ON(num_bits > clusters_to_add);
4631 
4632 	/* reserve our write early -- insert_extent may update the tree root */
4633 	status = ocfs2_et_root_journal_access(handle, inode, et,
4634 					      OCFS2_JOURNAL_ACCESS_WRITE);
4635 	if (status < 0) {
4636 		mlog_errno(status);
4637 		goto leave;
4638 	}
4639 
4640 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4641 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4642 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4643 	status = ocfs2_insert_extent(osb, handle, inode, et,
4644 				     *logical_offset, block,
4645 				     num_bits, flags, meta_ac);
4646 	if (status < 0) {
4647 		mlog_errno(status);
4648 		goto leave;
4649 	}
4650 
4651 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4652 	if (status < 0) {
4653 		mlog_errno(status);
4654 		goto leave;
4655 	}
4656 
4657 	clusters_to_add -= num_bits;
4658 	*logical_offset += num_bits;
4659 
4660 	if (clusters_to_add) {
4661 		mlog(0, "need to alloc once more, wanted = %u\n",
4662 		     clusters_to_add);
4663 		status = -EAGAIN;
4664 		reason = RESTART_TRANS;
4665 	}
4666 
4667 leave:
4668 	mlog_exit(status);
4669 	if (reason_ret)
4670 		*reason_ret = reason;
4671 	return status;
4672 }
4673 
4674 static void ocfs2_make_right_split_rec(struct super_block *sb,
4675 				       struct ocfs2_extent_rec *split_rec,
4676 				       u32 cpos,
4677 				       struct ocfs2_extent_rec *rec)
4678 {
4679 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4680 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4681 
4682 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4683 
4684 	split_rec->e_cpos = cpu_to_le32(cpos);
4685 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4686 
4687 	split_rec->e_blkno = rec->e_blkno;
4688 	le64_add_cpu(&split_rec->e_blkno,
4689 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4690 
4691 	split_rec->e_flags = rec->e_flags;
4692 }
4693 
4694 static int ocfs2_split_and_insert(struct inode *inode,
4695 				  handle_t *handle,
4696 				  struct ocfs2_path *path,
4697 				  struct ocfs2_extent_tree *et,
4698 				  struct buffer_head **last_eb_bh,
4699 				  int split_index,
4700 				  struct ocfs2_extent_rec *orig_split_rec,
4701 				  struct ocfs2_alloc_context *meta_ac)
4702 {
4703 	int ret = 0, depth;
4704 	unsigned int insert_range, rec_range, do_leftright = 0;
4705 	struct ocfs2_extent_rec tmprec;
4706 	struct ocfs2_extent_list *rightmost_el;
4707 	struct ocfs2_extent_rec rec;
4708 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4709 	struct ocfs2_insert_type insert;
4710 	struct ocfs2_extent_block *eb;
4711 
4712 leftright:
4713 	/*
4714 	 * Store a copy of the record on the stack - it might move
4715 	 * around as the tree is manipulated below.
4716 	 */
4717 	rec = path_leaf_el(path)->l_recs[split_index];
4718 
4719 	rightmost_el = et->et_root_el;
4720 
4721 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4722 	if (depth) {
4723 		BUG_ON(!(*last_eb_bh));
4724 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4725 		rightmost_el = &eb->h_list;
4726 	}
4727 
4728 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4729 	    le16_to_cpu(rightmost_el->l_count)) {
4730 		ret = ocfs2_grow_tree(inode, handle, et,
4731 				      &depth, last_eb_bh, meta_ac);
4732 		if (ret) {
4733 			mlog_errno(ret);
4734 			goto out;
4735 		}
4736 	}
4737 
4738 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4739 	insert.ins_appending = APPEND_NONE;
4740 	insert.ins_contig = CONTIG_NONE;
4741 	insert.ins_tree_depth = depth;
4742 
4743 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4744 		le16_to_cpu(split_rec.e_leaf_clusters);
4745 	rec_range = le32_to_cpu(rec.e_cpos) +
4746 		le16_to_cpu(rec.e_leaf_clusters);
4747 
4748 	if (split_rec.e_cpos == rec.e_cpos) {
4749 		insert.ins_split = SPLIT_LEFT;
4750 	} else if (insert_range == rec_range) {
4751 		insert.ins_split = SPLIT_RIGHT;
4752 	} else {
4753 		/*
4754 		 * Left/right split. We fake this as a right split
4755 		 * first and then make a second pass as a left split.
4756 		 */
4757 		insert.ins_split = SPLIT_RIGHT;
4758 
4759 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4760 					   &rec);
4761 
4762 		split_rec = tmprec;
4763 
4764 		BUG_ON(do_leftright);
4765 		do_leftright = 1;
4766 	}
4767 
4768 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4769 	if (ret) {
4770 		mlog_errno(ret);
4771 		goto out;
4772 	}
4773 
4774 	if (do_leftright == 1) {
4775 		u32 cpos;
4776 		struct ocfs2_extent_list *el;
4777 
4778 		do_leftright++;
4779 		split_rec = *orig_split_rec;
4780 
4781 		ocfs2_reinit_path(path, 1);
4782 
4783 		cpos = le32_to_cpu(split_rec.e_cpos);
4784 		ret = ocfs2_find_path(inode, path, cpos);
4785 		if (ret) {
4786 			mlog_errno(ret);
4787 			goto out;
4788 		}
4789 
4790 		el = path_leaf_el(path);
4791 		split_index = ocfs2_search_extent_list(el, cpos);
4792 		goto leftright;
4793 	}
4794 out:
4795 
4796 	return ret;
4797 }
4798 
4799 /*
4800  * Mark part or all of the extent record at split_index in the leaf
4801  * pointed to by path as written. This removes the unwritten
4802  * extent flag.
4803  *
4804  * Care is taken to handle contiguousness so as to not grow the tree.
4805  *
4806  * meta_ac is not strictly necessary - we only truly need it if growth
4807  * of the tree is required. All other cases will degrade into a less
4808  * optimal tree layout.
4809  *
4810  * last_eb_bh should be the rightmost leaf block for any extent
4811  * btree. Since a split may grow the tree or a merge might shrink it,
4812  * the caller cannot trust the contents of that buffer after this call.
4813  *
4814  * This code is optimized for readability - several passes might be
4815  * made over certain portions of the tree. All of those blocks will
4816  * have been brought into cache (and pinned via the journal), so the
4817  * extra overhead is not expressed in terms of disk reads.
4818  */
4819 static int __ocfs2_mark_extent_written(struct inode *inode,
4820 				       struct ocfs2_extent_tree *et,
4821 				       handle_t *handle,
4822 				       struct ocfs2_path *path,
4823 				       int split_index,
4824 				       struct ocfs2_extent_rec *split_rec,
4825 				       struct ocfs2_alloc_context *meta_ac,
4826 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4827 {
4828 	int ret = 0;
4829 	struct ocfs2_extent_list *el = path_leaf_el(path);
4830 	struct buffer_head *last_eb_bh = NULL;
4831 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4832 	struct ocfs2_merge_ctxt ctxt;
4833 	struct ocfs2_extent_list *rightmost_el;
4834 
4835 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4836 		ret = -EIO;
4837 		mlog_errno(ret);
4838 		goto out;
4839 	}
4840 
4841 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4842 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4843 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4844 		ret = -EIO;
4845 		mlog_errno(ret);
4846 		goto out;
4847 	}
4848 
4849 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4850 							    split_index,
4851 							    split_rec);
4852 
4853 	/*
4854 	 * The core merge / split code wants to know how much room is
4855 	 * left in this inodes allocation tree, so we pass the
4856 	 * rightmost extent list.
4857 	 */
4858 	if (path->p_tree_depth) {
4859 		struct ocfs2_extent_block *eb;
4860 
4861 		ret = ocfs2_read_extent_block(inode,
4862 					      ocfs2_et_get_last_eb_blk(et),
4863 					      &last_eb_bh);
4864 		if (ret) {
4865 			mlog_exit(ret);
4866 			goto out;
4867 		}
4868 
4869 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4870 		rightmost_el = &eb->h_list;
4871 	} else
4872 		rightmost_el = path_root_el(path);
4873 
4874 	if (rec->e_cpos == split_rec->e_cpos &&
4875 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4876 		ctxt.c_split_covers_rec = 1;
4877 	else
4878 		ctxt.c_split_covers_rec = 0;
4879 
4880 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4881 
4882 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4883 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4884 	     ctxt.c_split_covers_rec);
4885 
4886 	if (ctxt.c_contig_type == CONTIG_NONE) {
4887 		if (ctxt.c_split_covers_rec)
4888 			el->l_recs[split_index] = *split_rec;
4889 		else
4890 			ret = ocfs2_split_and_insert(inode, handle, path, et,
4891 						     &last_eb_bh, split_index,
4892 						     split_rec, meta_ac);
4893 		if (ret)
4894 			mlog_errno(ret);
4895 	} else {
4896 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4897 						split_index, split_rec,
4898 						dealloc, &ctxt, et);
4899 		if (ret)
4900 			mlog_errno(ret);
4901 	}
4902 
4903 out:
4904 	brelse(last_eb_bh);
4905 	return ret;
4906 }
4907 
4908 /*
4909  * Mark the already-existing extent at cpos as written for len clusters.
4910  *
4911  * If the existing extent is larger than the request, initiate a
4912  * split. An attempt will be made at merging with adjacent extents.
4913  *
4914  * The caller is responsible for passing down meta_ac if we'll need it.
4915  */
4916 int ocfs2_mark_extent_written(struct inode *inode,
4917 			      struct ocfs2_extent_tree *et,
4918 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4919 			      struct ocfs2_alloc_context *meta_ac,
4920 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4921 {
4922 	int ret, index;
4923 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4924 	struct ocfs2_extent_rec split_rec;
4925 	struct ocfs2_path *left_path = NULL;
4926 	struct ocfs2_extent_list *el;
4927 
4928 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4929 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4930 
4931 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4932 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4933 			    "that are being written to, but the feature bit "
4934 			    "is not set in the super block.",
4935 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4936 		ret = -EROFS;
4937 		goto out;
4938 	}
4939 
4940 	/*
4941 	 * XXX: This should be fixed up so that we just re-insert the
4942 	 * next extent records.
4943 	 *
4944 	 * XXX: This is a hack on the extent tree, maybe it should be
4945 	 * an op?
4946 	 */
4947 	if (et->et_ops == &ocfs2_dinode_et_ops)
4948 		ocfs2_extent_map_trunc(inode, 0);
4949 
4950 	left_path = ocfs2_new_path_from_et(et);
4951 	if (!left_path) {
4952 		ret = -ENOMEM;
4953 		mlog_errno(ret);
4954 		goto out;
4955 	}
4956 
4957 	ret = ocfs2_find_path(inode, left_path, cpos);
4958 	if (ret) {
4959 		mlog_errno(ret);
4960 		goto out;
4961 	}
4962 	el = path_leaf_el(left_path);
4963 
4964 	index = ocfs2_search_extent_list(el, cpos);
4965 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4966 		ocfs2_error(inode->i_sb,
4967 			    "Inode %llu has an extent at cpos %u which can no "
4968 			    "longer be found.\n",
4969 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4970 		ret = -EROFS;
4971 		goto out;
4972 	}
4973 
4974 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4975 	split_rec.e_cpos = cpu_to_le32(cpos);
4976 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4977 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4978 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4979 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4980 
4981 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4982 					  index, &split_rec, meta_ac,
4983 					  dealloc);
4984 	if (ret)
4985 		mlog_errno(ret);
4986 
4987 out:
4988 	ocfs2_free_path(left_path);
4989 	return ret;
4990 }
4991 
4992 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4993 			    handle_t *handle, struct ocfs2_path *path,
4994 			    int index, u32 new_range,
4995 			    struct ocfs2_alloc_context *meta_ac)
4996 {
4997 	int ret, depth, credits = handle->h_buffer_credits;
4998 	struct buffer_head *last_eb_bh = NULL;
4999 	struct ocfs2_extent_block *eb;
5000 	struct ocfs2_extent_list *rightmost_el, *el;
5001 	struct ocfs2_extent_rec split_rec;
5002 	struct ocfs2_extent_rec *rec;
5003 	struct ocfs2_insert_type insert;
5004 
5005 	/*
5006 	 * Setup the record to split before we grow the tree.
5007 	 */
5008 	el = path_leaf_el(path);
5009 	rec = &el->l_recs[index];
5010 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5011 
5012 	depth = path->p_tree_depth;
5013 	if (depth > 0) {
5014 		ret = ocfs2_read_extent_block(inode,
5015 					      ocfs2_et_get_last_eb_blk(et),
5016 					      &last_eb_bh);
5017 		if (ret < 0) {
5018 			mlog_errno(ret);
5019 			goto out;
5020 		}
5021 
5022 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5023 		rightmost_el = &eb->h_list;
5024 	} else
5025 		rightmost_el = path_leaf_el(path);
5026 
5027 	credits += path->p_tree_depth +
5028 		   ocfs2_extend_meta_needed(et->et_root_el);
5029 	ret = ocfs2_extend_trans(handle, credits);
5030 	if (ret) {
5031 		mlog_errno(ret);
5032 		goto out;
5033 	}
5034 
5035 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5036 	    le16_to_cpu(rightmost_el->l_count)) {
5037 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5038 				      meta_ac);
5039 		if (ret) {
5040 			mlog_errno(ret);
5041 			goto out;
5042 		}
5043 	}
5044 
5045 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5046 	insert.ins_appending = APPEND_NONE;
5047 	insert.ins_contig = CONTIG_NONE;
5048 	insert.ins_split = SPLIT_RIGHT;
5049 	insert.ins_tree_depth = depth;
5050 
5051 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5052 	if (ret)
5053 		mlog_errno(ret);
5054 
5055 out:
5056 	brelse(last_eb_bh);
5057 	return ret;
5058 }
5059 
5060 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5061 			      struct ocfs2_path *path, int index,
5062 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5063 			      u32 cpos, u32 len,
5064 			      struct ocfs2_extent_tree *et)
5065 {
5066 	int ret;
5067 	u32 left_cpos, rec_range, trunc_range;
5068 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5069 	struct super_block *sb = inode->i_sb;
5070 	struct ocfs2_path *left_path = NULL;
5071 	struct ocfs2_extent_list *el = path_leaf_el(path);
5072 	struct ocfs2_extent_rec *rec;
5073 	struct ocfs2_extent_block *eb;
5074 
5075 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5076 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5077 		if (ret) {
5078 			mlog_errno(ret);
5079 			goto out;
5080 		}
5081 
5082 		index--;
5083 	}
5084 
5085 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5086 	    path->p_tree_depth) {
5087 		/*
5088 		 * Check whether this is the rightmost tree record. If
5089 		 * we remove all of this record or part of its right
5090 		 * edge then an update of the record lengths above it
5091 		 * will be required.
5092 		 */
5093 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5094 		if (eb->h_next_leaf_blk == 0)
5095 			is_rightmost_tree_rec = 1;
5096 	}
5097 
5098 	rec = &el->l_recs[index];
5099 	if (index == 0 && path->p_tree_depth &&
5100 	    le32_to_cpu(rec->e_cpos) == cpos) {
5101 		/*
5102 		 * Changing the leftmost offset (via partial or whole
5103 		 * record truncate) of an interior (or rightmost) path
5104 		 * means we have to update the subtree that is formed
5105 		 * by this leaf and the one to it's left.
5106 		 *
5107 		 * There are two cases we can skip:
5108 		 *   1) Path is the leftmost one in our inode tree.
5109 		 *   2) The leaf is rightmost and will be empty after
5110 		 *      we remove the extent record - the rotate code
5111 		 *      knows how to update the newly formed edge.
5112 		 */
5113 
5114 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5115 						    &left_cpos);
5116 		if (ret) {
5117 			mlog_errno(ret);
5118 			goto out;
5119 		}
5120 
5121 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5122 			left_path = ocfs2_new_path_from_path(path);
5123 			if (!left_path) {
5124 				ret = -ENOMEM;
5125 				mlog_errno(ret);
5126 				goto out;
5127 			}
5128 
5129 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5130 			if (ret) {
5131 				mlog_errno(ret);
5132 				goto out;
5133 			}
5134 		}
5135 	}
5136 
5137 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5138 					      handle->h_buffer_credits,
5139 					      path);
5140 	if (ret) {
5141 		mlog_errno(ret);
5142 		goto out;
5143 	}
5144 
5145 	ret = ocfs2_journal_access_path(inode, handle, path);
5146 	if (ret) {
5147 		mlog_errno(ret);
5148 		goto out;
5149 	}
5150 
5151 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5152 	if (ret) {
5153 		mlog_errno(ret);
5154 		goto out;
5155 	}
5156 
5157 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5158 	trunc_range = cpos + len;
5159 
5160 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5161 		int next_free;
5162 
5163 		memset(rec, 0, sizeof(*rec));
5164 		ocfs2_cleanup_merge(el, index);
5165 		wants_rotate = 1;
5166 
5167 		next_free = le16_to_cpu(el->l_next_free_rec);
5168 		if (is_rightmost_tree_rec && next_free > 1) {
5169 			/*
5170 			 * We skip the edge update if this path will
5171 			 * be deleted by the rotate code.
5172 			 */
5173 			rec = &el->l_recs[next_free - 1];
5174 			ocfs2_adjust_rightmost_records(inode, handle, path,
5175 						       rec);
5176 		}
5177 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5178 		/* Remove leftmost portion of the record. */
5179 		le32_add_cpu(&rec->e_cpos, len);
5180 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5181 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5182 	} else if (rec_range == trunc_range) {
5183 		/* Remove rightmost portion of the record */
5184 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5185 		if (is_rightmost_tree_rec)
5186 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5187 	} else {
5188 		/* Caller should have trapped this. */
5189 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5190 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5191 		     le32_to_cpu(rec->e_cpos),
5192 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5193 		BUG();
5194 	}
5195 
5196 	if (left_path) {
5197 		int subtree_index;
5198 
5199 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5200 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5201 					   subtree_index);
5202 	}
5203 
5204 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5205 
5206 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5207 	if (ret) {
5208 		mlog_errno(ret);
5209 		goto out;
5210 	}
5211 
5212 out:
5213 	ocfs2_free_path(left_path);
5214 	return ret;
5215 }
5216 
5217 int ocfs2_remove_extent(struct inode *inode,
5218 			struct ocfs2_extent_tree *et,
5219 			u32 cpos, u32 len, handle_t *handle,
5220 			struct ocfs2_alloc_context *meta_ac,
5221 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5222 {
5223 	int ret, index;
5224 	u32 rec_range, trunc_range;
5225 	struct ocfs2_extent_rec *rec;
5226 	struct ocfs2_extent_list *el;
5227 	struct ocfs2_path *path = NULL;
5228 
5229 	ocfs2_extent_map_trunc(inode, 0);
5230 
5231 	path = ocfs2_new_path_from_et(et);
5232 	if (!path) {
5233 		ret = -ENOMEM;
5234 		mlog_errno(ret);
5235 		goto out;
5236 	}
5237 
5238 	ret = ocfs2_find_path(inode, path, cpos);
5239 	if (ret) {
5240 		mlog_errno(ret);
5241 		goto out;
5242 	}
5243 
5244 	el = path_leaf_el(path);
5245 	index = ocfs2_search_extent_list(el, cpos);
5246 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5247 		ocfs2_error(inode->i_sb,
5248 			    "Inode %llu has an extent at cpos %u which can no "
5249 			    "longer be found.\n",
5250 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5251 		ret = -EROFS;
5252 		goto out;
5253 	}
5254 
5255 	/*
5256 	 * We have 3 cases of extent removal:
5257 	 *   1) Range covers the entire extent rec
5258 	 *   2) Range begins or ends on one edge of the extent rec
5259 	 *   3) Range is in the middle of the extent rec (no shared edges)
5260 	 *
5261 	 * For case 1 we remove the extent rec and left rotate to
5262 	 * fill the hole.
5263 	 *
5264 	 * For case 2 we just shrink the existing extent rec, with a
5265 	 * tree update if the shrinking edge is also the edge of an
5266 	 * extent block.
5267 	 *
5268 	 * For case 3 we do a right split to turn the extent rec into
5269 	 * something case 2 can handle.
5270 	 */
5271 	rec = &el->l_recs[index];
5272 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5273 	trunc_range = cpos + len;
5274 
5275 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5276 
5277 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5278 	     "(cpos %u, len %u)\n",
5279 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5280 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5281 
5282 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5283 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5284 					 cpos, len, et);
5285 		if (ret) {
5286 			mlog_errno(ret);
5287 			goto out;
5288 		}
5289 	} else {
5290 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5291 				       trunc_range, meta_ac);
5292 		if (ret) {
5293 			mlog_errno(ret);
5294 			goto out;
5295 		}
5296 
5297 		/*
5298 		 * The split could have manipulated the tree enough to
5299 		 * move the record location, so we have to look for it again.
5300 		 */
5301 		ocfs2_reinit_path(path, 1);
5302 
5303 		ret = ocfs2_find_path(inode, path, cpos);
5304 		if (ret) {
5305 			mlog_errno(ret);
5306 			goto out;
5307 		}
5308 
5309 		el = path_leaf_el(path);
5310 		index = ocfs2_search_extent_list(el, cpos);
5311 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5312 			ocfs2_error(inode->i_sb,
5313 				    "Inode %llu: split at cpos %u lost record.",
5314 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5315 				    cpos);
5316 			ret = -EROFS;
5317 			goto out;
5318 		}
5319 
5320 		/*
5321 		 * Double check our values here. If anything is fishy,
5322 		 * it's easier to catch it at the top level.
5323 		 */
5324 		rec = &el->l_recs[index];
5325 		rec_range = le32_to_cpu(rec->e_cpos) +
5326 			ocfs2_rec_clusters(el, rec);
5327 		if (rec_range != trunc_range) {
5328 			ocfs2_error(inode->i_sb,
5329 				    "Inode %llu: error after split at cpos %u"
5330 				    "trunc len %u, existing record is (%u,%u)",
5331 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5332 				    cpos, len, le32_to_cpu(rec->e_cpos),
5333 				    ocfs2_rec_clusters(el, rec));
5334 			ret = -EROFS;
5335 			goto out;
5336 		}
5337 
5338 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5339 					 cpos, len, et);
5340 		if (ret) {
5341 			mlog_errno(ret);
5342 			goto out;
5343 		}
5344 	}
5345 
5346 out:
5347 	ocfs2_free_path(path);
5348 	return ret;
5349 }
5350 
5351 int ocfs2_remove_btree_range(struct inode *inode,
5352 			     struct ocfs2_extent_tree *et,
5353 			     u32 cpos, u32 phys_cpos, u32 len,
5354 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5355 {
5356 	int ret;
5357 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5358 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5359 	struct inode *tl_inode = osb->osb_tl_inode;
5360 	handle_t *handle;
5361 	struct ocfs2_alloc_context *meta_ac = NULL;
5362 
5363 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5364 	if (ret) {
5365 		mlog_errno(ret);
5366 		return ret;
5367 	}
5368 
5369 	mutex_lock(&tl_inode->i_mutex);
5370 
5371 	if (ocfs2_truncate_log_needs_flush(osb)) {
5372 		ret = __ocfs2_flush_truncate_log(osb);
5373 		if (ret < 0) {
5374 			mlog_errno(ret);
5375 			goto out;
5376 		}
5377 	}
5378 
5379 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5380 	if (IS_ERR(handle)) {
5381 		ret = PTR_ERR(handle);
5382 		mlog_errno(ret);
5383 		goto out;
5384 	}
5385 
5386 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5387 					   OCFS2_JOURNAL_ACCESS_WRITE);
5388 	if (ret) {
5389 		mlog_errno(ret);
5390 		goto out;
5391 	}
5392 
5393 	vfs_dq_free_space_nodirty(inode,
5394 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5395 
5396 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5397 				  dealloc);
5398 	if (ret) {
5399 		mlog_errno(ret);
5400 		goto out_commit;
5401 	}
5402 
5403 	ocfs2_et_update_clusters(inode, et, -len);
5404 
5405 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5406 	if (ret) {
5407 		mlog_errno(ret);
5408 		goto out_commit;
5409 	}
5410 
5411 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5412 	if (ret)
5413 		mlog_errno(ret);
5414 
5415 out_commit:
5416 	ocfs2_commit_trans(osb, handle);
5417 out:
5418 	mutex_unlock(&tl_inode->i_mutex);
5419 
5420 	if (meta_ac)
5421 		ocfs2_free_alloc_context(meta_ac);
5422 
5423 	return ret;
5424 }
5425 
5426 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5427 {
5428 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5429 	struct ocfs2_dinode *di;
5430 	struct ocfs2_truncate_log *tl;
5431 
5432 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5433 	tl = &di->id2.i_dealloc;
5434 
5435 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5436 			"slot %d, invalid truncate log parameters: used = "
5437 			"%u, count = %u\n", osb->slot_num,
5438 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5439 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5440 }
5441 
5442 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5443 					   unsigned int new_start)
5444 {
5445 	unsigned int tail_index;
5446 	unsigned int current_tail;
5447 
5448 	/* No records, nothing to coalesce */
5449 	if (!le16_to_cpu(tl->tl_used))
5450 		return 0;
5451 
5452 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5453 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5454 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5455 
5456 	return current_tail == new_start;
5457 }
5458 
5459 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5460 			      handle_t *handle,
5461 			      u64 start_blk,
5462 			      unsigned int num_clusters)
5463 {
5464 	int status, index;
5465 	unsigned int start_cluster, tl_count;
5466 	struct inode *tl_inode = osb->osb_tl_inode;
5467 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5468 	struct ocfs2_dinode *di;
5469 	struct ocfs2_truncate_log *tl;
5470 
5471 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5472 		   (unsigned long long)start_blk, num_clusters);
5473 
5474 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5475 
5476 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5477 
5478 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5479 
5480 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5481 	 * by the underlying call to ocfs2_read_inode_block(), so any
5482 	 * corruption is a code bug */
5483 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5484 
5485 	tl = &di->id2.i_dealloc;
5486 	tl_count = le16_to_cpu(tl->tl_count);
5487 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5488 			tl_count == 0,
5489 			"Truncate record count on #%llu invalid "
5490 			"wanted %u, actual %u\n",
5491 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5492 			ocfs2_truncate_recs_per_inode(osb->sb),
5493 			le16_to_cpu(tl->tl_count));
5494 
5495 	/* Caller should have known to flush before calling us. */
5496 	index = le16_to_cpu(tl->tl_used);
5497 	if (index >= tl_count) {
5498 		status = -ENOSPC;
5499 		mlog_errno(status);
5500 		goto bail;
5501 	}
5502 
5503 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5504 					 OCFS2_JOURNAL_ACCESS_WRITE);
5505 	if (status < 0) {
5506 		mlog_errno(status);
5507 		goto bail;
5508 	}
5509 
5510 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5511 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5512 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5513 
5514 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5515 		/*
5516 		 * Move index back to the record we are coalescing with.
5517 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5518 		 */
5519 		index--;
5520 
5521 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5522 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5523 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5524 		     num_clusters);
5525 	} else {
5526 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5527 		tl->tl_used = cpu_to_le16(index + 1);
5528 	}
5529 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5530 
5531 	status = ocfs2_journal_dirty(handle, tl_bh);
5532 	if (status < 0) {
5533 		mlog_errno(status);
5534 		goto bail;
5535 	}
5536 
5537 bail:
5538 	mlog_exit(status);
5539 	return status;
5540 }
5541 
5542 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5543 					 handle_t *handle,
5544 					 struct inode *data_alloc_inode,
5545 					 struct buffer_head *data_alloc_bh)
5546 {
5547 	int status = 0;
5548 	int i;
5549 	unsigned int num_clusters;
5550 	u64 start_blk;
5551 	struct ocfs2_truncate_rec rec;
5552 	struct ocfs2_dinode *di;
5553 	struct ocfs2_truncate_log *tl;
5554 	struct inode *tl_inode = osb->osb_tl_inode;
5555 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5556 
5557 	mlog_entry_void();
5558 
5559 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5560 	tl = &di->id2.i_dealloc;
5561 	i = le16_to_cpu(tl->tl_used) - 1;
5562 	while (i >= 0) {
5563 		/* Caller has given us at least enough credits to
5564 		 * update the truncate log dinode */
5565 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5566 						 OCFS2_JOURNAL_ACCESS_WRITE);
5567 		if (status < 0) {
5568 			mlog_errno(status);
5569 			goto bail;
5570 		}
5571 
5572 		tl->tl_used = cpu_to_le16(i);
5573 
5574 		status = ocfs2_journal_dirty(handle, tl_bh);
5575 		if (status < 0) {
5576 			mlog_errno(status);
5577 			goto bail;
5578 		}
5579 
5580 		/* TODO: Perhaps we can calculate the bulk of the
5581 		 * credits up front rather than extending like
5582 		 * this. */
5583 		status = ocfs2_extend_trans(handle,
5584 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5585 		if (status < 0) {
5586 			mlog_errno(status);
5587 			goto bail;
5588 		}
5589 
5590 		rec = tl->tl_recs[i];
5591 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5592 						    le32_to_cpu(rec.t_start));
5593 		num_clusters = le32_to_cpu(rec.t_clusters);
5594 
5595 		/* if start_blk is not set, we ignore the record as
5596 		 * invalid. */
5597 		if (start_blk) {
5598 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5599 			     i, le32_to_cpu(rec.t_start), num_clusters);
5600 
5601 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5602 						     data_alloc_bh, start_blk,
5603 						     num_clusters);
5604 			if (status < 0) {
5605 				mlog_errno(status);
5606 				goto bail;
5607 			}
5608 		}
5609 		i--;
5610 	}
5611 
5612 bail:
5613 	mlog_exit(status);
5614 	return status;
5615 }
5616 
5617 /* Expects you to already be holding tl_inode->i_mutex */
5618 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5619 {
5620 	int status;
5621 	unsigned int num_to_flush;
5622 	handle_t *handle;
5623 	struct inode *tl_inode = osb->osb_tl_inode;
5624 	struct inode *data_alloc_inode = NULL;
5625 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5626 	struct buffer_head *data_alloc_bh = NULL;
5627 	struct ocfs2_dinode *di;
5628 	struct ocfs2_truncate_log *tl;
5629 
5630 	mlog_entry_void();
5631 
5632 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5633 
5634 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5635 
5636 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5637 	 * by the underlying call to ocfs2_read_inode_block(), so any
5638 	 * corruption is a code bug */
5639 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5640 
5641 	tl = &di->id2.i_dealloc;
5642 	num_to_flush = le16_to_cpu(tl->tl_used);
5643 	mlog(0, "Flush %u records from truncate log #%llu\n",
5644 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5645 	if (!num_to_flush) {
5646 		status = 0;
5647 		goto out;
5648 	}
5649 
5650 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5651 						       GLOBAL_BITMAP_SYSTEM_INODE,
5652 						       OCFS2_INVALID_SLOT);
5653 	if (!data_alloc_inode) {
5654 		status = -EINVAL;
5655 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5656 		goto out;
5657 	}
5658 
5659 	mutex_lock(&data_alloc_inode->i_mutex);
5660 
5661 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5662 	if (status < 0) {
5663 		mlog_errno(status);
5664 		goto out_mutex;
5665 	}
5666 
5667 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5668 	if (IS_ERR(handle)) {
5669 		status = PTR_ERR(handle);
5670 		mlog_errno(status);
5671 		goto out_unlock;
5672 	}
5673 
5674 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5675 					       data_alloc_bh);
5676 	if (status < 0)
5677 		mlog_errno(status);
5678 
5679 	ocfs2_commit_trans(osb, handle);
5680 
5681 out_unlock:
5682 	brelse(data_alloc_bh);
5683 	ocfs2_inode_unlock(data_alloc_inode, 1);
5684 
5685 out_mutex:
5686 	mutex_unlock(&data_alloc_inode->i_mutex);
5687 	iput(data_alloc_inode);
5688 
5689 out:
5690 	mlog_exit(status);
5691 	return status;
5692 }
5693 
5694 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5695 {
5696 	int status;
5697 	struct inode *tl_inode = osb->osb_tl_inode;
5698 
5699 	mutex_lock(&tl_inode->i_mutex);
5700 	status = __ocfs2_flush_truncate_log(osb);
5701 	mutex_unlock(&tl_inode->i_mutex);
5702 
5703 	return status;
5704 }
5705 
5706 static void ocfs2_truncate_log_worker(struct work_struct *work)
5707 {
5708 	int status;
5709 	struct ocfs2_super *osb =
5710 		container_of(work, struct ocfs2_super,
5711 			     osb_truncate_log_wq.work);
5712 
5713 	mlog_entry_void();
5714 
5715 	status = ocfs2_flush_truncate_log(osb);
5716 	if (status < 0)
5717 		mlog_errno(status);
5718 	else
5719 		ocfs2_init_inode_steal_slot(osb);
5720 
5721 	mlog_exit(status);
5722 }
5723 
5724 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5725 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5726 				       int cancel)
5727 {
5728 	if (osb->osb_tl_inode) {
5729 		/* We want to push off log flushes while truncates are
5730 		 * still running. */
5731 		if (cancel)
5732 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5733 
5734 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5735 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5736 	}
5737 }
5738 
5739 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5740 				       int slot_num,
5741 				       struct inode **tl_inode,
5742 				       struct buffer_head **tl_bh)
5743 {
5744 	int status;
5745 	struct inode *inode = NULL;
5746 	struct buffer_head *bh = NULL;
5747 
5748 	inode = ocfs2_get_system_file_inode(osb,
5749 					   TRUNCATE_LOG_SYSTEM_INODE,
5750 					   slot_num);
5751 	if (!inode) {
5752 		status = -EINVAL;
5753 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5754 		goto bail;
5755 	}
5756 
5757 	status = ocfs2_read_inode_block(inode, &bh);
5758 	if (status < 0) {
5759 		iput(inode);
5760 		mlog_errno(status);
5761 		goto bail;
5762 	}
5763 
5764 	*tl_inode = inode;
5765 	*tl_bh    = bh;
5766 bail:
5767 	mlog_exit(status);
5768 	return status;
5769 }
5770 
5771 /* called during the 1st stage of node recovery. we stamp a clean
5772  * truncate log and pass back a copy for processing later. if the
5773  * truncate log does not require processing, a *tl_copy is set to
5774  * NULL. */
5775 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5776 				      int slot_num,
5777 				      struct ocfs2_dinode **tl_copy)
5778 {
5779 	int status;
5780 	struct inode *tl_inode = NULL;
5781 	struct buffer_head *tl_bh = NULL;
5782 	struct ocfs2_dinode *di;
5783 	struct ocfs2_truncate_log *tl;
5784 
5785 	*tl_copy = NULL;
5786 
5787 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5788 
5789 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5790 	if (status < 0) {
5791 		mlog_errno(status);
5792 		goto bail;
5793 	}
5794 
5795 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5796 
5797 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5798 	 * validated by the underlying call to ocfs2_read_inode_block(),
5799 	 * so any corruption is a code bug */
5800 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5801 
5802 	tl = &di->id2.i_dealloc;
5803 	if (le16_to_cpu(tl->tl_used)) {
5804 		mlog(0, "We'll have %u logs to recover\n",
5805 		     le16_to_cpu(tl->tl_used));
5806 
5807 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5808 		if (!(*tl_copy)) {
5809 			status = -ENOMEM;
5810 			mlog_errno(status);
5811 			goto bail;
5812 		}
5813 
5814 		/* Assuming the write-out below goes well, this copy
5815 		 * will be passed back to recovery for processing. */
5816 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5817 
5818 		/* All we need to do to clear the truncate log is set
5819 		 * tl_used. */
5820 		tl->tl_used = 0;
5821 
5822 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5823 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5824 		if (status < 0) {
5825 			mlog_errno(status);
5826 			goto bail;
5827 		}
5828 	}
5829 
5830 bail:
5831 	if (tl_inode)
5832 		iput(tl_inode);
5833 	brelse(tl_bh);
5834 
5835 	if (status < 0 && (*tl_copy)) {
5836 		kfree(*tl_copy);
5837 		*tl_copy = NULL;
5838 	}
5839 
5840 	mlog_exit(status);
5841 	return status;
5842 }
5843 
5844 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5845 					 struct ocfs2_dinode *tl_copy)
5846 {
5847 	int status = 0;
5848 	int i;
5849 	unsigned int clusters, num_recs, start_cluster;
5850 	u64 start_blk;
5851 	handle_t *handle;
5852 	struct inode *tl_inode = osb->osb_tl_inode;
5853 	struct ocfs2_truncate_log *tl;
5854 
5855 	mlog_entry_void();
5856 
5857 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5858 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5859 		return -EINVAL;
5860 	}
5861 
5862 	tl = &tl_copy->id2.i_dealloc;
5863 	num_recs = le16_to_cpu(tl->tl_used);
5864 	mlog(0, "cleanup %u records from %llu\n", num_recs,
5865 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5866 
5867 	mutex_lock(&tl_inode->i_mutex);
5868 	for(i = 0; i < num_recs; i++) {
5869 		if (ocfs2_truncate_log_needs_flush(osb)) {
5870 			status = __ocfs2_flush_truncate_log(osb);
5871 			if (status < 0) {
5872 				mlog_errno(status);
5873 				goto bail_up;
5874 			}
5875 		}
5876 
5877 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5878 		if (IS_ERR(handle)) {
5879 			status = PTR_ERR(handle);
5880 			mlog_errno(status);
5881 			goto bail_up;
5882 		}
5883 
5884 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5885 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5886 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5887 
5888 		status = ocfs2_truncate_log_append(osb, handle,
5889 						   start_blk, clusters);
5890 		ocfs2_commit_trans(osb, handle);
5891 		if (status < 0) {
5892 			mlog_errno(status);
5893 			goto bail_up;
5894 		}
5895 	}
5896 
5897 bail_up:
5898 	mutex_unlock(&tl_inode->i_mutex);
5899 
5900 	mlog_exit(status);
5901 	return status;
5902 }
5903 
5904 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5905 {
5906 	int status;
5907 	struct inode *tl_inode = osb->osb_tl_inode;
5908 
5909 	mlog_entry_void();
5910 
5911 	if (tl_inode) {
5912 		cancel_delayed_work(&osb->osb_truncate_log_wq);
5913 		flush_workqueue(ocfs2_wq);
5914 
5915 		status = ocfs2_flush_truncate_log(osb);
5916 		if (status < 0)
5917 			mlog_errno(status);
5918 
5919 		brelse(osb->osb_tl_bh);
5920 		iput(osb->osb_tl_inode);
5921 	}
5922 
5923 	mlog_exit_void();
5924 }
5925 
5926 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5927 {
5928 	int status;
5929 	struct inode *tl_inode = NULL;
5930 	struct buffer_head *tl_bh = NULL;
5931 
5932 	mlog_entry_void();
5933 
5934 	status = ocfs2_get_truncate_log_info(osb,
5935 					     osb->slot_num,
5936 					     &tl_inode,
5937 					     &tl_bh);
5938 	if (status < 0)
5939 		mlog_errno(status);
5940 
5941 	/* ocfs2_truncate_log_shutdown keys on the existence of
5942 	 * osb->osb_tl_inode so we don't set any of the osb variables
5943 	 * until we're sure all is well. */
5944 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5945 			  ocfs2_truncate_log_worker);
5946 	osb->osb_tl_bh    = tl_bh;
5947 	osb->osb_tl_inode = tl_inode;
5948 
5949 	mlog_exit(status);
5950 	return status;
5951 }
5952 
5953 /*
5954  * Delayed de-allocation of suballocator blocks.
5955  *
5956  * Some sets of block de-allocations might involve multiple suballocator inodes.
5957  *
5958  * The locking for this can get extremely complicated, especially when
5959  * the suballocator inodes to delete from aren't known until deep
5960  * within an unrelated codepath.
5961  *
5962  * ocfs2_extent_block structures are a good example of this - an inode
5963  * btree could have been grown by any number of nodes each allocating
5964  * out of their own suballoc inode.
5965  *
5966  * These structures allow the delay of block de-allocation until a
5967  * later time, when locking of multiple cluster inodes won't cause
5968  * deadlock.
5969  */
5970 
5971 /*
5972  * Describe a single bit freed from a suballocator.  For the block
5973  * suballocators, it represents one block.  For the global cluster
5974  * allocator, it represents some clusters and free_bit indicates
5975  * clusters number.
5976  */
5977 struct ocfs2_cached_block_free {
5978 	struct ocfs2_cached_block_free		*free_next;
5979 	u64					free_blk;
5980 	unsigned int				free_bit;
5981 };
5982 
5983 struct ocfs2_per_slot_free_list {
5984 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5985 	int					f_inode_type;
5986 	int					f_slot;
5987 	struct ocfs2_cached_block_free		*f_first;
5988 };
5989 
5990 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
5991 				    int sysfile_type,
5992 				    int slot,
5993 				    struct ocfs2_cached_block_free *head)
5994 {
5995 	int ret;
5996 	u64 bg_blkno;
5997 	handle_t *handle;
5998 	struct inode *inode;
5999 	struct buffer_head *di_bh = NULL;
6000 	struct ocfs2_cached_block_free *tmp;
6001 
6002 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6003 	if (!inode) {
6004 		ret = -EINVAL;
6005 		mlog_errno(ret);
6006 		goto out;
6007 	}
6008 
6009 	mutex_lock(&inode->i_mutex);
6010 
6011 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6012 	if (ret) {
6013 		mlog_errno(ret);
6014 		goto out_mutex;
6015 	}
6016 
6017 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6018 	if (IS_ERR(handle)) {
6019 		ret = PTR_ERR(handle);
6020 		mlog_errno(ret);
6021 		goto out_unlock;
6022 	}
6023 
6024 	while (head) {
6025 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6026 						      head->free_bit);
6027 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6028 		     head->free_bit, (unsigned long long)head->free_blk);
6029 
6030 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6031 					       head->free_bit, bg_blkno, 1);
6032 		if (ret) {
6033 			mlog_errno(ret);
6034 			goto out_journal;
6035 		}
6036 
6037 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6038 		if (ret) {
6039 			mlog_errno(ret);
6040 			goto out_journal;
6041 		}
6042 
6043 		tmp = head;
6044 		head = head->free_next;
6045 		kfree(tmp);
6046 	}
6047 
6048 out_journal:
6049 	ocfs2_commit_trans(osb, handle);
6050 
6051 out_unlock:
6052 	ocfs2_inode_unlock(inode, 1);
6053 	brelse(di_bh);
6054 out_mutex:
6055 	mutex_unlock(&inode->i_mutex);
6056 	iput(inode);
6057 out:
6058 	while(head) {
6059 		/* Premature exit may have left some dangling items. */
6060 		tmp = head;
6061 		head = head->free_next;
6062 		kfree(tmp);
6063 	}
6064 
6065 	return ret;
6066 }
6067 
6068 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6069 				u64 blkno, unsigned int bit)
6070 {
6071 	int ret = 0;
6072 	struct ocfs2_cached_block_free *item;
6073 
6074 	item = kmalloc(sizeof(*item), GFP_NOFS);
6075 	if (item == NULL) {
6076 		ret = -ENOMEM;
6077 		mlog_errno(ret);
6078 		return ret;
6079 	}
6080 
6081 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6082 	     bit, (unsigned long long)blkno);
6083 
6084 	item->free_blk = blkno;
6085 	item->free_bit = bit;
6086 	item->free_next = ctxt->c_global_allocator;
6087 
6088 	ctxt->c_global_allocator = item;
6089 	return ret;
6090 }
6091 
6092 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6093 				      struct ocfs2_cached_block_free *head)
6094 {
6095 	struct ocfs2_cached_block_free *tmp;
6096 	struct inode *tl_inode = osb->osb_tl_inode;
6097 	handle_t *handle;
6098 	int ret = 0;
6099 
6100 	mutex_lock(&tl_inode->i_mutex);
6101 
6102 	while (head) {
6103 		if (ocfs2_truncate_log_needs_flush(osb)) {
6104 			ret = __ocfs2_flush_truncate_log(osb);
6105 			if (ret < 0) {
6106 				mlog_errno(ret);
6107 				break;
6108 			}
6109 		}
6110 
6111 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6112 		if (IS_ERR(handle)) {
6113 			ret = PTR_ERR(handle);
6114 			mlog_errno(ret);
6115 			break;
6116 		}
6117 
6118 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6119 						head->free_bit);
6120 
6121 		ocfs2_commit_trans(osb, handle);
6122 		tmp = head;
6123 		head = head->free_next;
6124 		kfree(tmp);
6125 
6126 		if (ret < 0) {
6127 			mlog_errno(ret);
6128 			break;
6129 		}
6130 	}
6131 
6132 	mutex_unlock(&tl_inode->i_mutex);
6133 
6134 	while (head) {
6135 		/* Premature exit may have left some dangling items. */
6136 		tmp = head;
6137 		head = head->free_next;
6138 		kfree(tmp);
6139 	}
6140 
6141 	return ret;
6142 }
6143 
6144 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6145 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6146 {
6147 	int ret = 0, ret2;
6148 	struct ocfs2_per_slot_free_list *fl;
6149 
6150 	if (!ctxt)
6151 		return 0;
6152 
6153 	while (ctxt->c_first_suballocator) {
6154 		fl = ctxt->c_first_suballocator;
6155 
6156 		if (fl->f_first) {
6157 			mlog(0, "Free items: (type %u, slot %d)\n",
6158 			     fl->f_inode_type, fl->f_slot);
6159 			ret2 = ocfs2_free_cached_blocks(osb,
6160 							fl->f_inode_type,
6161 							fl->f_slot,
6162 							fl->f_first);
6163 			if (ret2)
6164 				mlog_errno(ret2);
6165 			if (!ret)
6166 				ret = ret2;
6167 		}
6168 
6169 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6170 		kfree(fl);
6171 	}
6172 
6173 	if (ctxt->c_global_allocator) {
6174 		ret2 = ocfs2_free_cached_clusters(osb,
6175 						  ctxt->c_global_allocator);
6176 		if (ret2)
6177 			mlog_errno(ret2);
6178 		if (!ret)
6179 			ret = ret2;
6180 
6181 		ctxt->c_global_allocator = NULL;
6182 	}
6183 
6184 	return ret;
6185 }
6186 
6187 static struct ocfs2_per_slot_free_list *
6188 ocfs2_find_per_slot_free_list(int type,
6189 			      int slot,
6190 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6191 {
6192 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6193 
6194 	while (fl) {
6195 		if (fl->f_inode_type == type && fl->f_slot == slot)
6196 			return fl;
6197 
6198 		fl = fl->f_next_suballocator;
6199 	}
6200 
6201 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6202 	if (fl) {
6203 		fl->f_inode_type = type;
6204 		fl->f_slot = slot;
6205 		fl->f_first = NULL;
6206 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6207 
6208 		ctxt->c_first_suballocator = fl;
6209 	}
6210 	return fl;
6211 }
6212 
6213 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6214 				     int type, int slot, u64 blkno,
6215 				     unsigned int bit)
6216 {
6217 	int ret;
6218 	struct ocfs2_per_slot_free_list *fl;
6219 	struct ocfs2_cached_block_free *item;
6220 
6221 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6222 	if (fl == NULL) {
6223 		ret = -ENOMEM;
6224 		mlog_errno(ret);
6225 		goto out;
6226 	}
6227 
6228 	item = kmalloc(sizeof(*item), GFP_NOFS);
6229 	if (item == NULL) {
6230 		ret = -ENOMEM;
6231 		mlog_errno(ret);
6232 		goto out;
6233 	}
6234 
6235 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6236 	     type, slot, bit, (unsigned long long)blkno);
6237 
6238 	item->free_blk = blkno;
6239 	item->free_bit = bit;
6240 	item->free_next = fl->f_first;
6241 
6242 	fl->f_first = item;
6243 
6244 	ret = 0;
6245 out:
6246 	return ret;
6247 }
6248 
6249 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6250 					 struct ocfs2_extent_block *eb)
6251 {
6252 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6253 					 le16_to_cpu(eb->h_suballoc_slot),
6254 					 le64_to_cpu(eb->h_blkno),
6255 					 le16_to_cpu(eb->h_suballoc_bit));
6256 }
6257 
6258 /* This function will figure out whether the currently last extent
6259  * block will be deleted, and if it will, what the new last extent
6260  * block will be so we can update his h_next_leaf_blk field, as well
6261  * as the dinodes i_last_eb_blk */
6262 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6263 				       unsigned int clusters_to_del,
6264 				       struct ocfs2_path *path,
6265 				       struct buffer_head **new_last_eb)
6266 {
6267 	int next_free, ret = 0;
6268 	u32 cpos;
6269 	struct ocfs2_extent_rec *rec;
6270 	struct ocfs2_extent_block *eb;
6271 	struct ocfs2_extent_list *el;
6272 	struct buffer_head *bh = NULL;
6273 
6274 	*new_last_eb = NULL;
6275 
6276 	/* we have no tree, so of course, no last_eb. */
6277 	if (!path->p_tree_depth)
6278 		goto out;
6279 
6280 	/* trunc to zero special case - this makes tree_depth = 0
6281 	 * regardless of what it is.  */
6282 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6283 		goto out;
6284 
6285 	el = path_leaf_el(path);
6286 	BUG_ON(!el->l_next_free_rec);
6287 
6288 	/*
6289 	 * Make sure that this extent list will actually be empty
6290 	 * after we clear away the data. We can shortcut out if
6291 	 * there's more than one non-empty extent in the
6292 	 * list. Otherwise, a check of the remaining extent is
6293 	 * necessary.
6294 	 */
6295 	next_free = le16_to_cpu(el->l_next_free_rec);
6296 	rec = NULL;
6297 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6298 		if (next_free > 2)
6299 			goto out;
6300 
6301 		/* We may have a valid extent in index 1, check it. */
6302 		if (next_free == 2)
6303 			rec = &el->l_recs[1];
6304 
6305 		/*
6306 		 * Fall through - no more nonempty extents, so we want
6307 		 * to delete this leaf.
6308 		 */
6309 	} else {
6310 		if (next_free > 1)
6311 			goto out;
6312 
6313 		rec = &el->l_recs[0];
6314 	}
6315 
6316 	if (rec) {
6317 		/*
6318 		 * Check it we'll only be trimming off the end of this
6319 		 * cluster.
6320 		 */
6321 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6322 			goto out;
6323 	}
6324 
6325 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6326 	if (ret) {
6327 		mlog_errno(ret);
6328 		goto out;
6329 	}
6330 
6331 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6332 	if (ret) {
6333 		mlog_errno(ret);
6334 		goto out;
6335 	}
6336 
6337 	eb = (struct ocfs2_extent_block *) bh->b_data;
6338 	el = &eb->h_list;
6339 
6340 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6341 	 * Any corruption is a code bug. */
6342 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6343 
6344 	*new_last_eb = bh;
6345 	get_bh(*new_last_eb);
6346 	mlog(0, "returning block %llu, (cpos: %u)\n",
6347 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6348 out:
6349 	brelse(bh);
6350 
6351 	return ret;
6352 }
6353 
6354 /*
6355  * Trim some clusters off the rightmost edge of a tree. Only called
6356  * during truncate.
6357  *
6358  * The caller needs to:
6359  *   - start journaling of each path component.
6360  *   - compute and fully set up any new last ext block
6361  */
6362 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6363 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6364 			   u32 clusters_to_del, u64 *delete_start)
6365 {
6366 	int ret, i, index = path->p_tree_depth;
6367 	u32 new_edge = 0;
6368 	u64 deleted_eb = 0;
6369 	struct buffer_head *bh;
6370 	struct ocfs2_extent_list *el;
6371 	struct ocfs2_extent_rec *rec;
6372 
6373 	*delete_start = 0;
6374 
6375 	while (index >= 0) {
6376 		bh = path->p_node[index].bh;
6377 		el = path->p_node[index].el;
6378 
6379 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6380 		     index,  (unsigned long long)bh->b_blocknr);
6381 
6382 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6383 
6384 		if (index !=
6385 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6386 			ocfs2_error(inode->i_sb,
6387 				    "Inode %lu has invalid ext. block %llu",
6388 				    inode->i_ino,
6389 				    (unsigned long long)bh->b_blocknr);
6390 			ret = -EROFS;
6391 			goto out;
6392 		}
6393 
6394 find_tail_record:
6395 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6396 		rec = &el->l_recs[i];
6397 
6398 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6399 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6400 		     ocfs2_rec_clusters(el, rec),
6401 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6402 		     le16_to_cpu(el->l_next_free_rec));
6403 
6404 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6405 
6406 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6407 			/*
6408 			 * If the leaf block contains a single empty
6409 			 * extent and no records, we can just remove
6410 			 * the block.
6411 			 */
6412 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6413 				memset(rec, 0,
6414 				       sizeof(struct ocfs2_extent_rec));
6415 				el->l_next_free_rec = cpu_to_le16(0);
6416 
6417 				goto delete;
6418 			}
6419 
6420 			/*
6421 			 * Remove any empty extents by shifting things
6422 			 * left. That should make life much easier on
6423 			 * the code below. This condition is rare
6424 			 * enough that we shouldn't see a performance
6425 			 * hit.
6426 			 */
6427 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6428 				le16_add_cpu(&el->l_next_free_rec, -1);
6429 
6430 				for(i = 0;
6431 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6432 					el->l_recs[i] = el->l_recs[i + 1];
6433 
6434 				memset(&el->l_recs[i], 0,
6435 				       sizeof(struct ocfs2_extent_rec));
6436 
6437 				/*
6438 				 * We've modified our extent list. The
6439 				 * simplest way to handle this change
6440 				 * is to being the search from the
6441 				 * start again.
6442 				 */
6443 				goto find_tail_record;
6444 			}
6445 
6446 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6447 
6448 			/*
6449 			 * We'll use "new_edge" on our way back up the
6450 			 * tree to know what our rightmost cpos is.
6451 			 */
6452 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6453 			new_edge += le32_to_cpu(rec->e_cpos);
6454 
6455 			/*
6456 			 * The caller will use this to delete data blocks.
6457 			 */
6458 			*delete_start = le64_to_cpu(rec->e_blkno)
6459 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6460 					le16_to_cpu(rec->e_leaf_clusters));
6461 
6462 			/*
6463 			 * If it's now empty, remove this record.
6464 			 */
6465 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6466 				memset(rec, 0,
6467 				       sizeof(struct ocfs2_extent_rec));
6468 				le16_add_cpu(&el->l_next_free_rec, -1);
6469 			}
6470 		} else {
6471 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6472 				memset(rec, 0,
6473 				       sizeof(struct ocfs2_extent_rec));
6474 				le16_add_cpu(&el->l_next_free_rec, -1);
6475 
6476 				goto delete;
6477 			}
6478 
6479 			/* Can this actually happen? */
6480 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6481 				goto delete;
6482 
6483 			/*
6484 			 * We never actually deleted any clusters
6485 			 * because our leaf was empty. There's no
6486 			 * reason to adjust the rightmost edge then.
6487 			 */
6488 			if (new_edge == 0)
6489 				goto delete;
6490 
6491 			rec->e_int_clusters = cpu_to_le32(new_edge);
6492 			le32_add_cpu(&rec->e_int_clusters,
6493 				     -le32_to_cpu(rec->e_cpos));
6494 
6495 			 /*
6496 			  * A deleted child record should have been
6497 			  * caught above.
6498 			  */
6499 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6500 		}
6501 
6502 delete:
6503 		ret = ocfs2_journal_dirty(handle, bh);
6504 		if (ret) {
6505 			mlog_errno(ret);
6506 			goto out;
6507 		}
6508 
6509 		mlog(0, "extent list container %llu, after: record %d: "
6510 		     "(%u, %u, %llu), next = %u.\n",
6511 		     (unsigned long long)bh->b_blocknr, i,
6512 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6513 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6514 		     le16_to_cpu(el->l_next_free_rec));
6515 
6516 		/*
6517 		 * We must be careful to only attempt delete of an
6518 		 * extent block (and not the root inode block).
6519 		 */
6520 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6521 			struct ocfs2_extent_block *eb =
6522 				(struct ocfs2_extent_block *)bh->b_data;
6523 
6524 			/*
6525 			 * Save this for use when processing the
6526 			 * parent block.
6527 			 */
6528 			deleted_eb = le64_to_cpu(eb->h_blkno);
6529 
6530 			mlog(0, "deleting this extent block.\n");
6531 
6532 			ocfs2_remove_from_cache(inode, bh);
6533 
6534 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6535 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6536 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6537 
6538 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6539 			/* An error here is not fatal. */
6540 			if (ret < 0)
6541 				mlog_errno(ret);
6542 		} else {
6543 			deleted_eb = 0;
6544 		}
6545 
6546 		index--;
6547 	}
6548 
6549 	ret = 0;
6550 out:
6551 	return ret;
6552 }
6553 
6554 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6555 			     unsigned int clusters_to_del,
6556 			     struct inode *inode,
6557 			     struct buffer_head *fe_bh,
6558 			     handle_t *handle,
6559 			     struct ocfs2_truncate_context *tc,
6560 			     struct ocfs2_path *path)
6561 {
6562 	int status;
6563 	struct ocfs2_dinode *fe;
6564 	struct ocfs2_extent_block *last_eb = NULL;
6565 	struct ocfs2_extent_list *el;
6566 	struct buffer_head *last_eb_bh = NULL;
6567 	u64 delete_blk = 0;
6568 
6569 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6570 
6571 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6572 					     path, &last_eb_bh);
6573 	if (status < 0) {
6574 		mlog_errno(status);
6575 		goto bail;
6576 	}
6577 
6578 	/*
6579 	 * Each component will be touched, so we might as well journal
6580 	 * here to avoid having to handle errors later.
6581 	 */
6582 	status = ocfs2_journal_access_path(inode, handle, path);
6583 	if (status < 0) {
6584 		mlog_errno(status);
6585 		goto bail;
6586 	}
6587 
6588 	if (last_eb_bh) {
6589 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6590 						 OCFS2_JOURNAL_ACCESS_WRITE);
6591 		if (status < 0) {
6592 			mlog_errno(status);
6593 			goto bail;
6594 		}
6595 
6596 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6597 	}
6598 
6599 	el = &(fe->id2.i_list);
6600 
6601 	/*
6602 	 * Lower levels depend on this never happening, but it's best
6603 	 * to check it up here before changing the tree.
6604 	 */
6605 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6606 		ocfs2_error(inode->i_sb,
6607 			    "Inode %lu has an empty extent record, depth %u\n",
6608 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6609 		status = -EROFS;
6610 		goto bail;
6611 	}
6612 
6613 	vfs_dq_free_space_nodirty(inode,
6614 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6615 	spin_lock(&OCFS2_I(inode)->ip_lock);
6616 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6617 				      clusters_to_del;
6618 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6619 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6620 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6621 
6622 	status = ocfs2_trim_tree(inode, path, handle, tc,
6623 				 clusters_to_del, &delete_blk);
6624 	if (status) {
6625 		mlog_errno(status);
6626 		goto bail;
6627 	}
6628 
6629 	if (le32_to_cpu(fe->i_clusters) == 0) {
6630 		/* trunc to zero is a special case. */
6631 		el->l_tree_depth = 0;
6632 		fe->i_last_eb_blk = 0;
6633 	} else if (last_eb)
6634 		fe->i_last_eb_blk = last_eb->h_blkno;
6635 
6636 	status = ocfs2_journal_dirty(handle, fe_bh);
6637 	if (status < 0) {
6638 		mlog_errno(status);
6639 		goto bail;
6640 	}
6641 
6642 	if (last_eb) {
6643 		/* If there will be a new last extent block, then by
6644 		 * definition, there cannot be any leaves to the right of
6645 		 * him. */
6646 		last_eb->h_next_leaf_blk = 0;
6647 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6648 		if (status < 0) {
6649 			mlog_errno(status);
6650 			goto bail;
6651 		}
6652 	}
6653 
6654 	if (delete_blk) {
6655 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6656 						   clusters_to_del);
6657 		if (status < 0) {
6658 			mlog_errno(status);
6659 			goto bail;
6660 		}
6661 	}
6662 	status = 0;
6663 bail:
6664 
6665 	mlog_exit(status);
6666 	return status;
6667 }
6668 
6669 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6670 {
6671 	set_buffer_uptodate(bh);
6672 	mark_buffer_dirty(bh);
6673 	return 0;
6674 }
6675 
6676 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6677 				     unsigned int from, unsigned int to,
6678 				     struct page *page, int zero, u64 *phys)
6679 {
6680 	int ret, partial = 0;
6681 
6682 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6683 	if (ret)
6684 		mlog_errno(ret);
6685 
6686 	if (zero)
6687 		zero_user_segment(page, from, to);
6688 
6689 	/*
6690 	 * Need to set the buffers we zero'd into uptodate
6691 	 * here if they aren't - ocfs2_map_page_blocks()
6692 	 * might've skipped some
6693 	 */
6694 	ret = walk_page_buffers(handle, page_buffers(page),
6695 				from, to, &partial,
6696 				ocfs2_zero_func);
6697 	if (ret < 0)
6698 		mlog_errno(ret);
6699 	else if (ocfs2_should_order_data(inode)) {
6700 		ret = ocfs2_jbd2_file_inode(handle, inode);
6701 		if (ret < 0)
6702 			mlog_errno(ret);
6703 	}
6704 
6705 	if (!partial)
6706 		SetPageUptodate(page);
6707 
6708 	flush_dcache_page(page);
6709 }
6710 
6711 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6712 				     loff_t end, struct page **pages,
6713 				     int numpages, u64 phys, handle_t *handle)
6714 {
6715 	int i;
6716 	struct page *page;
6717 	unsigned int from, to = PAGE_CACHE_SIZE;
6718 	struct super_block *sb = inode->i_sb;
6719 
6720 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6721 
6722 	if (numpages == 0)
6723 		goto out;
6724 
6725 	to = PAGE_CACHE_SIZE;
6726 	for(i = 0; i < numpages; i++) {
6727 		page = pages[i];
6728 
6729 		from = start & (PAGE_CACHE_SIZE - 1);
6730 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6731 			to = end & (PAGE_CACHE_SIZE - 1);
6732 
6733 		BUG_ON(from > PAGE_CACHE_SIZE);
6734 		BUG_ON(to > PAGE_CACHE_SIZE);
6735 
6736 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6737 					 &phys);
6738 
6739 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6740 	}
6741 out:
6742 	if (pages)
6743 		ocfs2_unlock_and_free_pages(pages, numpages);
6744 }
6745 
6746 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6747 				struct page **pages, int *num)
6748 {
6749 	int numpages, ret = 0;
6750 	struct super_block *sb = inode->i_sb;
6751 	struct address_space *mapping = inode->i_mapping;
6752 	unsigned long index;
6753 	loff_t last_page_bytes;
6754 
6755 	BUG_ON(start > end);
6756 
6757 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6758 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6759 
6760 	numpages = 0;
6761 	last_page_bytes = PAGE_ALIGN(end);
6762 	index = start >> PAGE_CACHE_SHIFT;
6763 	do {
6764 		pages[numpages] = grab_cache_page(mapping, index);
6765 		if (!pages[numpages]) {
6766 			ret = -ENOMEM;
6767 			mlog_errno(ret);
6768 			goto out;
6769 		}
6770 
6771 		numpages++;
6772 		index++;
6773 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6774 
6775 out:
6776 	if (ret != 0) {
6777 		if (pages)
6778 			ocfs2_unlock_and_free_pages(pages, numpages);
6779 		numpages = 0;
6780 	}
6781 
6782 	*num = numpages;
6783 
6784 	return ret;
6785 }
6786 
6787 /*
6788  * Zero the area past i_size but still within an allocated
6789  * cluster. This avoids exposing nonzero data on subsequent file
6790  * extends.
6791  *
6792  * We need to call this before i_size is updated on the inode because
6793  * otherwise block_write_full_page() will skip writeout of pages past
6794  * i_size. The new_i_size parameter is passed for this reason.
6795  */
6796 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6797 				  u64 range_start, u64 range_end)
6798 {
6799 	int ret = 0, numpages;
6800 	struct page **pages = NULL;
6801 	u64 phys;
6802 	unsigned int ext_flags;
6803 	struct super_block *sb = inode->i_sb;
6804 
6805 	/*
6806 	 * File systems which don't support sparse files zero on every
6807 	 * extend.
6808 	 */
6809 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6810 		return 0;
6811 
6812 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6813 			sizeof(struct page *), GFP_NOFS);
6814 	if (pages == NULL) {
6815 		ret = -ENOMEM;
6816 		mlog_errno(ret);
6817 		goto out;
6818 	}
6819 
6820 	if (range_start == range_end)
6821 		goto out;
6822 
6823 	ret = ocfs2_extent_map_get_blocks(inode,
6824 					  range_start >> sb->s_blocksize_bits,
6825 					  &phys, NULL, &ext_flags);
6826 	if (ret) {
6827 		mlog_errno(ret);
6828 		goto out;
6829 	}
6830 
6831 	/*
6832 	 * Tail is a hole, or is marked unwritten. In either case, we
6833 	 * can count on read and write to return/push zero's.
6834 	 */
6835 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6836 		goto out;
6837 
6838 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6839 				   &numpages);
6840 	if (ret) {
6841 		mlog_errno(ret);
6842 		goto out;
6843 	}
6844 
6845 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6846 				 numpages, phys, handle);
6847 
6848 	/*
6849 	 * Initiate writeout of the pages we zero'd here. We don't
6850 	 * wait on them - the truncate_inode_pages() call later will
6851 	 * do that for us.
6852 	 */
6853 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
6854 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
6855 	if (ret)
6856 		mlog_errno(ret);
6857 
6858 out:
6859 	if (pages)
6860 		kfree(pages);
6861 
6862 	return ret;
6863 }
6864 
6865 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6866 					     struct ocfs2_dinode *di)
6867 {
6868 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6869 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6870 
6871 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6872 		memset(&di->id2, 0, blocksize -
6873 				    offsetof(struct ocfs2_dinode, id2) -
6874 				    xattrsize);
6875 	else
6876 		memset(&di->id2, 0, blocksize -
6877 				    offsetof(struct ocfs2_dinode, id2));
6878 }
6879 
6880 void ocfs2_dinode_new_extent_list(struct inode *inode,
6881 				  struct ocfs2_dinode *di)
6882 {
6883 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6884 	di->id2.i_list.l_tree_depth = 0;
6885 	di->id2.i_list.l_next_free_rec = 0;
6886 	di->id2.i_list.l_count = cpu_to_le16(
6887 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6888 }
6889 
6890 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6891 {
6892 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6893 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6894 
6895 	spin_lock(&oi->ip_lock);
6896 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6897 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6898 	spin_unlock(&oi->ip_lock);
6899 
6900 	/*
6901 	 * We clear the entire i_data structure here so that all
6902 	 * fields can be properly initialized.
6903 	 */
6904 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6905 
6906 	idata->id_count = cpu_to_le16(
6907 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6908 }
6909 
6910 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6911 					 struct buffer_head *di_bh)
6912 {
6913 	int ret, i, has_data, num_pages = 0;
6914 	handle_t *handle;
6915 	u64 uninitialized_var(block);
6916 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6917 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6918 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6919 	struct ocfs2_alloc_context *data_ac = NULL;
6920 	struct page **pages = NULL;
6921 	loff_t end = osb->s_clustersize;
6922 	struct ocfs2_extent_tree et;
6923 	int did_quota = 0;
6924 
6925 	has_data = i_size_read(inode) ? 1 : 0;
6926 
6927 	if (has_data) {
6928 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6929 				sizeof(struct page *), GFP_NOFS);
6930 		if (pages == NULL) {
6931 			ret = -ENOMEM;
6932 			mlog_errno(ret);
6933 			goto out;
6934 		}
6935 
6936 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6937 		if (ret) {
6938 			mlog_errno(ret);
6939 			goto out;
6940 		}
6941 	}
6942 
6943 	handle = ocfs2_start_trans(osb,
6944 				   ocfs2_inline_to_extents_credits(osb->sb));
6945 	if (IS_ERR(handle)) {
6946 		ret = PTR_ERR(handle);
6947 		mlog_errno(ret);
6948 		goto out_unlock;
6949 	}
6950 
6951 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
6952 				      OCFS2_JOURNAL_ACCESS_WRITE);
6953 	if (ret) {
6954 		mlog_errno(ret);
6955 		goto out_commit;
6956 	}
6957 
6958 	if (has_data) {
6959 		u32 bit_off, num;
6960 		unsigned int page_end;
6961 		u64 phys;
6962 
6963 		if (vfs_dq_alloc_space_nodirty(inode,
6964 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
6965 			ret = -EDQUOT;
6966 			goto out_commit;
6967 		}
6968 		did_quota = 1;
6969 
6970 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6971 					   &num);
6972 		if (ret) {
6973 			mlog_errno(ret);
6974 			goto out_commit;
6975 		}
6976 
6977 		/*
6978 		 * Save two copies, one for insert, and one that can
6979 		 * be changed by ocfs2_map_and_dirty_page() below.
6980 		 */
6981 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6982 
6983 		/*
6984 		 * Non sparse file systems zero on extend, so no need
6985 		 * to do that now.
6986 		 */
6987 		if (!ocfs2_sparse_alloc(osb) &&
6988 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6989 			end = PAGE_CACHE_SIZE;
6990 
6991 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6992 		if (ret) {
6993 			mlog_errno(ret);
6994 			goto out_commit;
6995 		}
6996 
6997 		/*
6998 		 * This should populate the 1st page for us and mark
6999 		 * it up to date.
7000 		 */
7001 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7002 		if (ret) {
7003 			mlog_errno(ret);
7004 			goto out_commit;
7005 		}
7006 
7007 		page_end = PAGE_CACHE_SIZE;
7008 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7009 			page_end = osb->s_clustersize;
7010 
7011 		for (i = 0; i < num_pages; i++)
7012 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7013 						 pages[i], i > 0, &phys);
7014 	}
7015 
7016 	spin_lock(&oi->ip_lock);
7017 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7018 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7019 	spin_unlock(&oi->ip_lock);
7020 
7021 	ocfs2_dinode_new_extent_list(inode, di);
7022 
7023 	ocfs2_journal_dirty(handle, di_bh);
7024 
7025 	if (has_data) {
7026 		/*
7027 		 * An error at this point should be extremely rare. If
7028 		 * this proves to be false, we could always re-build
7029 		 * the in-inode data from our pages.
7030 		 */
7031 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7032 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7033 					  0, block, 1, 0, NULL);
7034 		if (ret) {
7035 			mlog_errno(ret);
7036 			goto out_commit;
7037 		}
7038 
7039 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7040 	}
7041 
7042 out_commit:
7043 	if (ret < 0 && did_quota)
7044 		vfs_dq_free_space_nodirty(inode,
7045 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7046 
7047 	ocfs2_commit_trans(osb, handle);
7048 
7049 out_unlock:
7050 	if (data_ac)
7051 		ocfs2_free_alloc_context(data_ac);
7052 
7053 out:
7054 	if (pages) {
7055 		ocfs2_unlock_and_free_pages(pages, num_pages);
7056 		kfree(pages);
7057 	}
7058 
7059 	return ret;
7060 }
7061 
7062 /*
7063  * It is expected, that by the time you call this function,
7064  * inode->i_size and fe->i_size have been adjusted.
7065  *
7066  * WARNING: This will kfree the truncate context
7067  */
7068 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7069 			  struct inode *inode,
7070 			  struct buffer_head *fe_bh,
7071 			  struct ocfs2_truncate_context *tc)
7072 {
7073 	int status, i, credits, tl_sem = 0;
7074 	u32 clusters_to_del, new_highest_cpos, range;
7075 	struct ocfs2_extent_list *el;
7076 	handle_t *handle = NULL;
7077 	struct inode *tl_inode = osb->osb_tl_inode;
7078 	struct ocfs2_path *path = NULL;
7079 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7080 
7081 	mlog_entry_void();
7082 
7083 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7084 						     i_size_read(inode));
7085 
7086 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7087 			      ocfs2_journal_access_di);
7088 	if (!path) {
7089 		status = -ENOMEM;
7090 		mlog_errno(status);
7091 		goto bail;
7092 	}
7093 
7094 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7095 
7096 start:
7097 	/*
7098 	 * Check that we still have allocation to delete.
7099 	 */
7100 	if (OCFS2_I(inode)->ip_clusters == 0) {
7101 		status = 0;
7102 		goto bail;
7103 	}
7104 
7105 	/*
7106 	 * Truncate always works against the rightmost tree branch.
7107 	 */
7108 	status = ocfs2_find_path(inode, path, UINT_MAX);
7109 	if (status) {
7110 		mlog_errno(status);
7111 		goto bail;
7112 	}
7113 
7114 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7115 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7116 
7117 	/*
7118 	 * By now, el will point to the extent list on the bottom most
7119 	 * portion of this tree. Only the tail record is considered in
7120 	 * each pass.
7121 	 *
7122 	 * We handle the following cases, in order:
7123 	 * - empty extent: delete the remaining branch
7124 	 * - remove the entire record
7125 	 * - remove a partial record
7126 	 * - no record needs to be removed (truncate has completed)
7127 	 */
7128 	el = path_leaf_el(path);
7129 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7130 		ocfs2_error(inode->i_sb,
7131 			    "Inode %llu has empty extent block at %llu\n",
7132 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7133 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7134 		status = -EROFS;
7135 		goto bail;
7136 	}
7137 
7138 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7139 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7140 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7141 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7142 		clusters_to_del = 0;
7143 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7144 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7145 	} else if (range > new_highest_cpos) {
7146 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7147 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7148 				  new_highest_cpos;
7149 	} else {
7150 		status = 0;
7151 		goto bail;
7152 	}
7153 
7154 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7155 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7156 
7157 	mutex_lock(&tl_inode->i_mutex);
7158 	tl_sem = 1;
7159 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7160 	 * record is free for use. If there isn't any, we flush to get
7161 	 * an empty truncate log.  */
7162 	if (ocfs2_truncate_log_needs_flush(osb)) {
7163 		status = __ocfs2_flush_truncate_log(osb);
7164 		if (status < 0) {
7165 			mlog_errno(status);
7166 			goto bail;
7167 		}
7168 	}
7169 
7170 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7171 						(struct ocfs2_dinode *)fe_bh->b_data,
7172 						el);
7173 	handle = ocfs2_start_trans(osb, credits);
7174 	if (IS_ERR(handle)) {
7175 		status = PTR_ERR(handle);
7176 		handle = NULL;
7177 		mlog_errno(status);
7178 		goto bail;
7179 	}
7180 
7181 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7182 				   tc, path);
7183 	if (status < 0) {
7184 		mlog_errno(status);
7185 		goto bail;
7186 	}
7187 
7188 	mutex_unlock(&tl_inode->i_mutex);
7189 	tl_sem = 0;
7190 
7191 	ocfs2_commit_trans(osb, handle);
7192 	handle = NULL;
7193 
7194 	ocfs2_reinit_path(path, 1);
7195 
7196 	/*
7197 	 * The check above will catch the case where we've truncated
7198 	 * away all allocation.
7199 	 */
7200 	goto start;
7201 
7202 bail:
7203 
7204 	ocfs2_schedule_truncate_log_flush(osb, 1);
7205 
7206 	if (tl_sem)
7207 		mutex_unlock(&tl_inode->i_mutex);
7208 
7209 	if (handle)
7210 		ocfs2_commit_trans(osb, handle);
7211 
7212 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7213 
7214 	ocfs2_free_path(path);
7215 
7216 	/* This will drop the ext_alloc cluster lock for us */
7217 	ocfs2_free_truncate_context(tc);
7218 
7219 	mlog_exit(status);
7220 	return status;
7221 }
7222 
7223 /*
7224  * Expects the inode to already be locked.
7225  */
7226 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7227 			   struct inode *inode,
7228 			   struct buffer_head *fe_bh,
7229 			   struct ocfs2_truncate_context **tc)
7230 {
7231 	int status;
7232 	unsigned int new_i_clusters;
7233 	struct ocfs2_dinode *fe;
7234 	struct ocfs2_extent_block *eb;
7235 	struct buffer_head *last_eb_bh = NULL;
7236 
7237 	mlog_entry_void();
7238 
7239 	*tc = NULL;
7240 
7241 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7242 						  i_size_read(inode));
7243 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7244 
7245 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7246 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7247 	     (unsigned long long)le64_to_cpu(fe->i_size));
7248 
7249 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7250 	if (!(*tc)) {
7251 		status = -ENOMEM;
7252 		mlog_errno(status);
7253 		goto bail;
7254 	}
7255 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7256 
7257 	if (fe->id2.i_list.l_tree_depth) {
7258 		status = ocfs2_read_extent_block(inode,
7259 						 le64_to_cpu(fe->i_last_eb_blk),
7260 						 &last_eb_bh);
7261 		if (status < 0) {
7262 			mlog_errno(status);
7263 			goto bail;
7264 		}
7265 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7266 	}
7267 
7268 	(*tc)->tc_last_eb_bh = last_eb_bh;
7269 
7270 	status = 0;
7271 bail:
7272 	if (status < 0) {
7273 		if (*tc)
7274 			ocfs2_free_truncate_context(*tc);
7275 		*tc = NULL;
7276 	}
7277 	mlog_exit_void();
7278 	return status;
7279 }
7280 
7281 /*
7282  * 'start' is inclusive, 'end' is not.
7283  */
7284 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7285 			  unsigned int start, unsigned int end, int trunc)
7286 {
7287 	int ret;
7288 	unsigned int numbytes;
7289 	handle_t *handle;
7290 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7291 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7292 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7293 
7294 	if (end > i_size_read(inode))
7295 		end = i_size_read(inode);
7296 
7297 	BUG_ON(start >= end);
7298 
7299 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7300 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7301 	    !ocfs2_supports_inline_data(osb)) {
7302 		ocfs2_error(inode->i_sb,
7303 			    "Inline data flags for inode %llu don't agree! "
7304 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7305 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7306 			    le16_to_cpu(di->i_dyn_features),
7307 			    OCFS2_I(inode)->ip_dyn_features,
7308 			    osb->s_feature_incompat);
7309 		ret = -EROFS;
7310 		goto out;
7311 	}
7312 
7313 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7314 	if (IS_ERR(handle)) {
7315 		ret = PTR_ERR(handle);
7316 		mlog_errno(ret);
7317 		goto out;
7318 	}
7319 
7320 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7321 				      OCFS2_JOURNAL_ACCESS_WRITE);
7322 	if (ret) {
7323 		mlog_errno(ret);
7324 		goto out_commit;
7325 	}
7326 
7327 	numbytes = end - start;
7328 	memset(idata->id_data + start, 0, numbytes);
7329 
7330 	/*
7331 	 * No need to worry about the data page here - it's been
7332 	 * truncated already and inline data doesn't need it for
7333 	 * pushing zero's to disk, so we'll let readpage pick it up
7334 	 * later.
7335 	 */
7336 	if (trunc) {
7337 		i_size_write(inode, start);
7338 		di->i_size = cpu_to_le64(start);
7339 	}
7340 
7341 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7342 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7343 
7344 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7345 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7346 
7347 	ocfs2_journal_dirty(handle, di_bh);
7348 
7349 out_commit:
7350 	ocfs2_commit_trans(osb, handle);
7351 
7352 out:
7353 	return ret;
7354 }
7355 
7356 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7357 {
7358 	/*
7359 	 * The caller is responsible for completing deallocation
7360 	 * before freeing the context.
7361 	 */
7362 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7363 		mlog(ML_NOTICE,
7364 		     "Truncate completion has non-empty dealloc context\n");
7365 
7366 	brelse(tc->tc_last_eb_bh);
7367 
7368 	kfree(tc);
7369 }
7370