1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != rec->e_cpos), 180 "Device %s, asking for sparse allocation: inode %llu, " 181 "cpos %u, clusters %u\n", 182 osb->dev_str, 183 (unsigned long long)OCFS2_I(inode)->ip_blkno, 184 rec->e_cpos, 185 OCFS2_I(inode)->ip_clusters); 186 187 return 0; 188 } 189 190 static int ocfs2_dinode_sanity_check(struct inode *inode, 191 struct ocfs2_extent_tree *et) 192 { 193 struct ocfs2_dinode *di = et->et_object; 194 195 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 196 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 197 198 return 0; 199 } 200 201 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 202 { 203 struct ocfs2_dinode *di = et->et_object; 204 205 et->et_root_el = &di->id2.i_list; 206 } 207 208 209 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 210 { 211 struct ocfs2_xattr_value_buf *vb = et->et_object; 212 213 et->et_root_el = &vb->vb_xv->xr_list; 214 } 215 216 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 217 u64 blkno) 218 { 219 struct ocfs2_xattr_value_buf *vb = et->et_object; 220 221 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 222 } 223 224 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 225 { 226 struct ocfs2_xattr_value_buf *vb = et->et_object; 227 228 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 229 } 230 231 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 232 struct ocfs2_extent_tree *et, 233 u32 clusters) 234 { 235 struct ocfs2_xattr_value_buf *vb = et->et_object; 236 237 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 238 } 239 240 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 241 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 242 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 243 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 244 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 245 }; 246 247 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 248 { 249 struct ocfs2_xattr_block *xb = et->et_object; 250 251 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 252 } 253 254 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 255 struct ocfs2_extent_tree *et) 256 { 257 et->et_max_leaf_clusters = 258 ocfs2_clusters_for_bytes(inode->i_sb, 259 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 260 } 261 262 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 263 u64 blkno) 264 { 265 struct ocfs2_xattr_block *xb = et->et_object; 266 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 267 268 xt->xt_last_eb_blk = cpu_to_le64(blkno); 269 } 270 271 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 272 { 273 struct ocfs2_xattr_block *xb = et->et_object; 274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 275 276 return le64_to_cpu(xt->xt_last_eb_blk); 277 } 278 279 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 280 struct ocfs2_extent_tree *et, 281 u32 clusters) 282 { 283 struct ocfs2_xattr_block *xb = et->et_object; 284 285 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 286 } 287 288 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 289 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 290 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 291 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 292 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 293 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 294 }; 295 296 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 297 struct inode *inode, 298 struct buffer_head *bh, 299 ocfs2_journal_access_func access, 300 void *obj, 301 struct ocfs2_extent_tree_operations *ops) 302 { 303 et->et_ops = ops; 304 et->et_root_bh = bh; 305 et->et_root_journal_access = access; 306 if (!obj) 307 obj = (void *)bh->b_data; 308 et->et_object = obj; 309 310 et->et_ops->eo_fill_root_el(et); 311 if (!et->et_ops->eo_fill_max_leaf_clusters) 312 et->et_max_leaf_clusters = 0; 313 else 314 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 315 } 316 317 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 318 struct inode *inode, 319 struct buffer_head *bh) 320 { 321 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 322 NULL, &ocfs2_dinode_et_ops); 323 } 324 325 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 326 struct inode *inode, 327 struct buffer_head *bh) 328 { 329 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 330 NULL, &ocfs2_xattr_tree_et_ops); 331 } 332 333 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 334 struct inode *inode, 335 struct ocfs2_xattr_value_buf *vb) 336 { 337 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 338 &ocfs2_xattr_value_et_ops); 339 } 340 341 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 342 u64 new_last_eb_blk) 343 { 344 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 345 } 346 347 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 348 { 349 return et->et_ops->eo_get_last_eb_blk(et); 350 } 351 352 static inline void ocfs2_et_update_clusters(struct inode *inode, 353 struct ocfs2_extent_tree *et, 354 u32 clusters) 355 { 356 et->et_ops->eo_update_clusters(inode, et, clusters); 357 } 358 359 static inline int ocfs2_et_root_journal_access(handle_t *handle, 360 struct inode *inode, 361 struct ocfs2_extent_tree *et, 362 int type) 363 { 364 return et->et_root_journal_access(handle, inode, et->et_root_bh, 365 type); 366 } 367 368 static inline int ocfs2_et_insert_check(struct inode *inode, 369 struct ocfs2_extent_tree *et, 370 struct ocfs2_extent_rec *rec) 371 { 372 int ret = 0; 373 374 if (et->et_ops->eo_insert_check) 375 ret = et->et_ops->eo_insert_check(inode, et, rec); 376 return ret; 377 } 378 379 static inline int ocfs2_et_sanity_check(struct inode *inode, 380 struct ocfs2_extent_tree *et) 381 { 382 int ret = 0; 383 384 if (et->et_ops->eo_sanity_check) 385 ret = et->et_ops->eo_sanity_check(inode, et); 386 return ret; 387 } 388 389 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 390 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 391 struct ocfs2_extent_block *eb); 392 393 /* 394 * Structures which describe a path through a btree, and functions to 395 * manipulate them. 396 * 397 * The idea here is to be as generic as possible with the tree 398 * manipulation code. 399 */ 400 struct ocfs2_path_item { 401 struct buffer_head *bh; 402 struct ocfs2_extent_list *el; 403 }; 404 405 #define OCFS2_MAX_PATH_DEPTH 5 406 407 struct ocfs2_path { 408 int p_tree_depth; 409 ocfs2_journal_access_func p_root_access; 410 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 411 }; 412 413 #define path_root_bh(_path) ((_path)->p_node[0].bh) 414 #define path_root_el(_path) ((_path)->p_node[0].el) 415 #define path_root_access(_path)((_path)->p_root_access) 416 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 417 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 418 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 419 420 /* 421 * Reset the actual path elements so that we can re-use the structure 422 * to build another path. Generally, this involves freeing the buffer 423 * heads. 424 */ 425 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 426 { 427 int i, start = 0, depth = 0; 428 struct ocfs2_path_item *node; 429 430 if (keep_root) 431 start = 1; 432 433 for(i = start; i < path_num_items(path); i++) { 434 node = &path->p_node[i]; 435 436 brelse(node->bh); 437 node->bh = NULL; 438 node->el = NULL; 439 } 440 441 /* 442 * Tree depth may change during truncate, or insert. If we're 443 * keeping the root extent list, then make sure that our path 444 * structure reflects the proper depth. 445 */ 446 if (keep_root) 447 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 448 else 449 path_root_access(path) = NULL; 450 451 path->p_tree_depth = depth; 452 } 453 454 static void ocfs2_free_path(struct ocfs2_path *path) 455 { 456 if (path) { 457 ocfs2_reinit_path(path, 0); 458 kfree(path); 459 } 460 } 461 462 /* 463 * All the elements of src into dest. After this call, src could be freed 464 * without affecting dest. 465 * 466 * Both paths should have the same root. Any non-root elements of dest 467 * will be freed. 468 */ 469 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 470 { 471 int i; 472 473 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 474 BUG_ON(path_root_el(dest) != path_root_el(src)); 475 BUG_ON(path_root_access(dest) != path_root_access(src)); 476 477 ocfs2_reinit_path(dest, 1); 478 479 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 480 dest->p_node[i].bh = src->p_node[i].bh; 481 dest->p_node[i].el = src->p_node[i].el; 482 483 if (dest->p_node[i].bh) 484 get_bh(dest->p_node[i].bh); 485 } 486 } 487 488 /* 489 * Make the *dest path the same as src and re-initialize src path to 490 * have a root only. 491 */ 492 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 493 { 494 int i; 495 496 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 497 BUG_ON(path_root_access(dest) != path_root_access(src)); 498 499 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 500 brelse(dest->p_node[i].bh); 501 502 dest->p_node[i].bh = src->p_node[i].bh; 503 dest->p_node[i].el = src->p_node[i].el; 504 505 src->p_node[i].bh = NULL; 506 src->p_node[i].el = NULL; 507 } 508 } 509 510 /* 511 * Insert an extent block at given index. 512 * 513 * This will not take an additional reference on eb_bh. 514 */ 515 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 516 struct buffer_head *eb_bh) 517 { 518 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 519 520 /* 521 * Right now, no root bh is an extent block, so this helps 522 * catch code errors with dinode trees. The assertion can be 523 * safely removed if we ever need to insert extent block 524 * structures at the root. 525 */ 526 BUG_ON(index == 0); 527 528 path->p_node[index].bh = eb_bh; 529 path->p_node[index].el = &eb->h_list; 530 } 531 532 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 533 struct ocfs2_extent_list *root_el, 534 ocfs2_journal_access_func access) 535 { 536 struct ocfs2_path *path; 537 538 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 539 540 path = kzalloc(sizeof(*path), GFP_NOFS); 541 if (path) { 542 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 543 get_bh(root_bh); 544 path_root_bh(path) = root_bh; 545 path_root_el(path) = root_el; 546 path_root_access(path) = access; 547 } 548 549 return path; 550 } 551 552 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 553 { 554 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 555 path_root_access(path)); 556 } 557 558 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 559 { 560 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 561 et->et_root_journal_access); 562 } 563 564 /* 565 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 566 * otherwise it's the root_access function. 567 * 568 * I don't like the way this function's name looks next to 569 * ocfs2_journal_access_path(), but I don't have a better one. 570 */ 571 static int ocfs2_path_bh_journal_access(handle_t *handle, 572 struct inode *inode, 573 struct ocfs2_path *path, 574 int idx) 575 { 576 ocfs2_journal_access_func access = path_root_access(path); 577 578 if (!access) 579 access = ocfs2_journal_access; 580 581 if (idx) 582 access = ocfs2_journal_access_eb; 583 584 return access(handle, inode, path->p_node[idx].bh, 585 OCFS2_JOURNAL_ACCESS_WRITE); 586 } 587 588 /* 589 * Convenience function to journal all components in a path. 590 */ 591 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 592 struct ocfs2_path *path) 593 { 594 int i, ret = 0; 595 596 if (!path) 597 goto out; 598 599 for(i = 0; i < path_num_items(path); i++) { 600 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 601 if (ret < 0) { 602 mlog_errno(ret); 603 goto out; 604 } 605 } 606 607 out: 608 return ret; 609 } 610 611 /* 612 * Return the index of the extent record which contains cluster #v_cluster. 613 * -1 is returned if it was not found. 614 * 615 * Should work fine on interior and exterior nodes. 616 */ 617 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 618 { 619 int ret = -1; 620 int i; 621 struct ocfs2_extent_rec *rec; 622 u32 rec_end, rec_start, clusters; 623 624 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 625 rec = &el->l_recs[i]; 626 627 rec_start = le32_to_cpu(rec->e_cpos); 628 clusters = ocfs2_rec_clusters(el, rec); 629 630 rec_end = rec_start + clusters; 631 632 if (v_cluster >= rec_start && v_cluster < rec_end) { 633 ret = i; 634 break; 635 } 636 } 637 638 return ret; 639 } 640 641 enum ocfs2_contig_type { 642 CONTIG_NONE = 0, 643 CONTIG_LEFT, 644 CONTIG_RIGHT, 645 CONTIG_LEFTRIGHT, 646 }; 647 648 649 /* 650 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 651 * ocfs2_extent_contig only work properly against leaf nodes! 652 */ 653 static int ocfs2_block_extent_contig(struct super_block *sb, 654 struct ocfs2_extent_rec *ext, 655 u64 blkno) 656 { 657 u64 blk_end = le64_to_cpu(ext->e_blkno); 658 659 blk_end += ocfs2_clusters_to_blocks(sb, 660 le16_to_cpu(ext->e_leaf_clusters)); 661 662 return blkno == blk_end; 663 } 664 665 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 666 struct ocfs2_extent_rec *right) 667 { 668 u32 left_range; 669 670 left_range = le32_to_cpu(left->e_cpos) + 671 le16_to_cpu(left->e_leaf_clusters); 672 673 return (left_range == le32_to_cpu(right->e_cpos)); 674 } 675 676 static enum ocfs2_contig_type 677 ocfs2_extent_contig(struct inode *inode, 678 struct ocfs2_extent_rec *ext, 679 struct ocfs2_extent_rec *insert_rec) 680 { 681 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 682 683 /* 684 * Refuse to coalesce extent records with different flag 685 * fields - we don't want to mix unwritten extents with user 686 * data. 687 */ 688 if (ext->e_flags != insert_rec->e_flags) 689 return CONTIG_NONE; 690 691 if (ocfs2_extents_adjacent(ext, insert_rec) && 692 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 693 return CONTIG_RIGHT; 694 695 blkno = le64_to_cpu(ext->e_blkno); 696 if (ocfs2_extents_adjacent(insert_rec, ext) && 697 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 698 return CONTIG_LEFT; 699 700 return CONTIG_NONE; 701 } 702 703 /* 704 * NOTE: We can have pretty much any combination of contiguousness and 705 * appending. 706 * 707 * The usefulness of APPEND_TAIL is more in that it lets us know that 708 * we'll have to update the path to that leaf. 709 */ 710 enum ocfs2_append_type { 711 APPEND_NONE = 0, 712 APPEND_TAIL, 713 }; 714 715 enum ocfs2_split_type { 716 SPLIT_NONE = 0, 717 SPLIT_LEFT, 718 SPLIT_RIGHT, 719 }; 720 721 struct ocfs2_insert_type { 722 enum ocfs2_split_type ins_split; 723 enum ocfs2_append_type ins_appending; 724 enum ocfs2_contig_type ins_contig; 725 int ins_contig_index; 726 int ins_tree_depth; 727 }; 728 729 struct ocfs2_merge_ctxt { 730 enum ocfs2_contig_type c_contig_type; 731 int c_has_empty_extent; 732 int c_split_covers_rec; 733 }; 734 735 static int ocfs2_validate_extent_block(struct super_block *sb, 736 struct buffer_head *bh) 737 { 738 int rc; 739 struct ocfs2_extent_block *eb = 740 (struct ocfs2_extent_block *)bh->b_data; 741 742 mlog(0, "Validating extent block %llu\n", 743 (unsigned long long)bh->b_blocknr); 744 745 BUG_ON(!buffer_uptodate(bh)); 746 747 /* 748 * If the ecc fails, we return the error but otherwise 749 * leave the filesystem running. We know any error is 750 * local to this block. 751 */ 752 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 753 if (rc) { 754 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 755 (unsigned long long)bh->b_blocknr); 756 return rc; 757 } 758 759 /* 760 * Errors after here are fatal. 761 */ 762 763 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 764 ocfs2_error(sb, 765 "Extent block #%llu has bad signature %.*s", 766 (unsigned long long)bh->b_blocknr, 7, 767 eb->h_signature); 768 return -EINVAL; 769 } 770 771 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 772 ocfs2_error(sb, 773 "Extent block #%llu has an invalid h_blkno " 774 "of %llu", 775 (unsigned long long)bh->b_blocknr, 776 (unsigned long long)le64_to_cpu(eb->h_blkno)); 777 return -EINVAL; 778 } 779 780 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 781 ocfs2_error(sb, 782 "Extent block #%llu has an invalid " 783 "h_fs_generation of #%u", 784 (unsigned long long)bh->b_blocknr, 785 le32_to_cpu(eb->h_fs_generation)); 786 return -EINVAL; 787 } 788 789 return 0; 790 } 791 792 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 793 struct buffer_head **bh) 794 { 795 int rc; 796 struct buffer_head *tmp = *bh; 797 798 rc = ocfs2_read_block(inode, eb_blkno, &tmp, 799 ocfs2_validate_extent_block); 800 801 /* If ocfs2_read_block() got us a new bh, pass it up. */ 802 if (!rc && !*bh) 803 *bh = tmp; 804 805 return rc; 806 } 807 808 809 /* 810 * How many free extents have we got before we need more meta data? 811 */ 812 int ocfs2_num_free_extents(struct ocfs2_super *osb, 813 struct inode *inode, 814 struct ocfs2_extent_tree *et) 815 { 816 int retval; 817 struct ocfs2_extent_list *el = NULL; 818 struct ocfs2_extent_block *eb; 819 struct buffer_head *eb_bh = NULL; 820 u64 last_eb_blk = 0; 821 822 mlog_entry_void(); 823 824 el = et->et_root_el; 825 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 826 827 if (last_eb_blk) { 828 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 829 if (retval < 0) { 830 mlog_errno(retval); 831 goto bail; 832 } 833 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 834 el = &eb->h_list; 835 } 836 837 BUG_ON(el->l_tree_depth != 0); 838 839 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 840 bail: 841 brelse(eb_bh); 842 843 mlog_exit(retval); 844 return retval; 845 } 846 847 /* expects array to already be allocated 848 * 849 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 850 * l_count for you 851 */ 852 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 853 handle_t *handle, 854 struct inode *inode, 855 int wanted, 856 struct ocfs2_alloc_context *meta_ac, 857 struct buffer_head *bhs[]) 858 { 859 int count, status, i; 860 u16 suballoc_bit_start; 861 u32 num_got; 862 u64 first_blkno; 863 struct ocfs2_extent_block *eb; 864 865 mlog_entry_void(); 866 867 count = 0; 868 while (count < wanted) { 869 status = ocfs2_claim_metadata(osb, 870 handle, 871 meta_ac, 872 wanted - count, 873 &suballoc_bit_start, 874 &num_got, 875 &first_blkno); 876 if (status < 0) { 877 mlog_errno(status); 878 goto bail; 879 } 880 881 for(i = count; i < (num_got + count); i++) { 882 bhs[i] = sb_getblk(osb->sb, first_blkno); 883 if (bhs[i] == NULL) { 884 status = -EIO; 885 mlog_errno(status); 886 goto bail; 887 } 888 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 889 890 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 891 OCFS2_JOURNAL_ACCESS_CREATE); 892 if (status < 0) { 893 mlog_errno(status); 894 goto bail; 895 } 896 897 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 898 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 899 /* Ok, setup the minimal stuff here. */ 900 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 901 eb->h_blkno = cpu_to_le64(first_blkno); 902 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 903 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 904 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 905 eb->h_list.l_count = 906 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 907 908 suballoc_bit_start++; 909 first_blkno++; 910 911 /* We'll also be dirtied by the caller, so 912 * this isn't absolutely necessary. */ 913 status = ocfs2_journal_dirty(handle, bhs[i]); 914 if (status < 0) { 915 mlog_errno(status); 916 goto bail; 917 } 918 } 919 920 count += num_got; 921 } 922 923 status = 0; 924 bail: 925 if (status < 0) { 926 for(i = 0; i < wanted; i++) { 927 brelse(bhs[i]); 928 bhs[i] = NULL; 929 } 930 } 931 mlog_exit(status); 932 return status; 933 } 934 935 /* 936 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 937 * 938 * Returns the sum of the rightmost extent rec logical offset and 939 * cluster count. 940 * 941 * ocfs2_add_branch() uses this to determine what logical cluster 942 * value should be populated into the leftmost new branch records. 943 * 944 * ocfs2_shift_tree_depth() uses this to determine the # clusters 945 * value for the new topmost tree record. 946 */ 947 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 948 { 949 int i; 950 951 i = le16_to_cpu(el->l_next_free_rec) - 1; 952 953 return le32_to_cpu(el->l_recs[i].e_cpos) + 954 ocfs2_rec_clusters(el, &el->l_recs[i]); 955 } 956 957 /* 958 * Add an entire tree branch to our inode. eb_bh is the extent block 959 * to start at, if we don't want to start the branch at the dinode 960 * structure. 961 * 962 * last_eb_bh is required as we have to update it's next_leaf pointer 963 * for the new last extent block. 964 * 965 * the new branch will be 'empty' in the sense that every block will 966 * contain a single record with cluster count == 0. 967 */ 968 static int ocfs2_add_branch(struct ocfs2_super *osb, 969 handle_t *handle, 970 struct inode *inode, 971 struct ocfs2_extent_tree *et, 972 struct buffer_head *eb_bh, 973 struct buffer_head **last_eb_bh, 974 struct ocfs2_alloc_context *meta_ac) 975 { 976 int status, new_blocks, i; 977 u64 next_blkno, new_last_eb_blk; 978 struct buffer_head *bh; 979 struct buffer_head **new_eb_bhs = NULL; 980 struct ocfs2_extent_block *eb; 981 struct ocfs2_extent_list *eb_el; 982 struct ocfs2_extent_list *el; 983 u32 new_cpos; 984 985 mlog_entry_void(); 986 987 BUG_ON(!last_eb_bh || !*last_eb_bh); 988 989 if (eb_bh) { 990 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 991 el = &eb->h_list; 992 } else 993 el = et->et_root_el; 994 995 /* we never add a branch to a leaf. */ 996 BUG_ON(!el->l_tree_depth); 997 998 new_blocks = le16_to_cpu(el->l_tree_depth); 999 1000 /* allocate the number of new eb blocks we need */ 1001 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1002 GFP_KERNEL); 1003 if (!new_eb_bhs) { 1004 status = -ENOMEM; 1005 mlog_errno(status); 1006 goto bail; 1007 } 1008 1009 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1010 meta_ac, new_eb_bhs); 1011 if (status < 0) { 1012 mlog_errno(status); 1013 goto bail; 1014 } 1015 1016 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1017 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1018 1019 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1020 * linked with the rest of the tree. 1021 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1022 * 1023 * when we leave the loop, new_last_eb_blk will point to the 1024 * newest leaf, and next_blkno will point to the topmost extent 1025 * block. */ 1026 next_blkno = new_last_eb_blk = 0; 1027 for(i = 0; i < new_blocks; i++) { 1028 bh = new_eb_bhs[i]; 1029 eb = (struct ocfs2_extent_block *) bh->b_data; 1030 /* ocfs2_create_new_meta_bhs() should create it right! */ 1031 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1032 eb_el = &eb->h_list; 1033 1034 status = ocfs2_journal_access_eb(handle, inode, bh, 1035 OCFS2_JOURNAL_ACCESS_CREATE); 1036 if (status < 0) { 1037 mlog_errno(status); 1038 goto bail; 1039 } 1040 1041 eb->h_next_leaf_blk = 0; 1042 eb_el->l_tree_depth = cpu_to_le16(i); 1043 eb_el->l_next_free_rec = cpu_to_le16(1); 1044 /* 1045 * This actually counts as an empty extent as 1046 * c_clusters == 0 1047 */ 1048 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1049 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1050 /* 1051 * eb_el isn't always an interior node, but even leaf 1052 * nodes want a zero'd flags and reserved field so 1053 * this gets the whole 32 bits regardless of use. 1054 */ 1055 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1056 if (!eb_el->l_tree_depth) 1057 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1058 1059 status = ocfs2_journal_dirty(handle, bh); 1060 if (status < 0) { 1061 mlog_errno(status); 1062 goto bail; 1063 } 1064 1065 next_blkno = le64_to_cpu(eb->h_blkno); 1066 } 1067 1068 /* This is a bit hairy. We want to update up to three blocks 1069 * here without leaving any of them in an inconsistent state 1070 * in case of error. We don't have to worry about 1071 * journal_dirty erroring as it won't unless we've aborted the 1072 * handle (in which case we would never be here) so reserving 1073 * the write with journal_access is all we need to do. */ 1074 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1075 OCFS2_JOURNAL_ACCESS_WRITE); 1076 if (status < 0) { 1077 mlog_errno(status); 1078 goto bail; 1079 } 1080 status = ocfs2_et_root_journal_access(handle, inode, et, 1081 OCFS2_JOURNAL_ACCESS_WRITE); 1082 if (status < 0) { 1083 mlog_errno(status); 1084 goto bail; 1085 } 1086 if (eb_bh) { 1087 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1088 OCFS2_JOURNAL_ACCESS_WRITE); 1089 if (status < 0) { 1090 mlog_errno(status); 1091 goto bail; 1092 } 1093 } 1094 1095 /* Link the new branch into the rest of the tree (el will 1096 * either be on the root_bh, or the extent block passed in. */ 1097 i = le16_to_cpu(el->l_next_free_rec); 1098 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1099 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1100 el->l_recs[i].e_int_clusters = 0; 1101 le16_add_cpu(&el->l_next_free_rec, 1); 1102 1103 /* fe needs a new last extent block pointer, as does the 1104 * next_leaf on the previously last-extent-block. */ 1105 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1106 1107 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1108 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1109 1110 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1111 if (status < 0) 1112 mlog_errno(status); 1113 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1114 if (status < 0) 1115 mlog_errno(status); 1116 if (eb_bh) { 1117 status = ocfs2_journal_dirty(handle, eb_bh); 1118 if (status < 0) 1119 mlog_errno(status); 1120 } 1121 1122 /* 1123 * Some callers want to track the rightmost leaf so pass it 1124 * back here. 1125 */ 1126 brelse(*last_eb_bh); 1127 get_bh(new_eb_bhs[0]); 1128 *last_eb_bh = new_eb_bhs[0]; 1129 1130 status = 0; 1131 bail: 1132 if (new_eb_bhs) { 1133 for (i = 0; i < new_blocks; i++) 1134 brelse(new_eb_bhs[i]); 1135 kfree(new_eb_bhs); 1136 } 1137 1138 mlog_exit(status); 1139 return status; 1140 } 1141 1142 /* 1143 * adds another level to the allocation tree. 1144 * returns back the new extent block so you can add a branch to it 1145 * after this call. 1146 */ 1147 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1148 handle_t *handle, 1149 struct inode *inode, 1150 struct ocfs2_extent_tree *et, 1151 struct ocfs2_alloc_context *meta_ac, 1152 struct buffer_head **ret_new_eb_bh) 1153 { 1154 int status, i; 1155 u32 new_clusters; 1156 struct buffer_head *new_eb_bh = NULL; 1157 struct ocfs2_extent_block *eb; 1158 struct ocfs2_extent_list *root_el; 1159 struct ocfs2_extent_list *eb_el; 1160 1161 mlog_entry_void(); 1162 1163 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1164 &new_eb_bh); 1165 if (status < 0) { 1166 mlog_errno(status); 1167 goto bail; 1168 } 1169 1170 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1171 /* ocfs2_create_new_meta_bhs() should create it right! */ 1172 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1173 1174 eb_el = &eb->h_list; 1175 root_el = et->et_root_el; 1176 1177 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1178 OCFS2_JOURNAL_ACCESS_CREATE); 1179 if (status < 0) { 1180 mlog_errno(status); 1181 goto bail; 1182 } 1183 1184 /* copy the root extent list data into the new extent block */ 1185 eb_el->l_tree_depth = root_el->l_tree_depth; 1186 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1187 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1188 eb_el->l_recs[i] = root_el->l_recs[i]; 1189 1190 status = ocfs2_journal_dirty(handle, new_eb_bh); 1191 if (status < 0) { 1192 mlog_errno(status); 1193 goto bail; 1194 } 1195 1196 status = ocfs2_et_root_journal_access(handle, inode, et, 1197 OCFS2_JOURNAL_ACCESS_WRITE); 1198 if (status < 0) { 1199 mlog_errno(status); 1200 goto bail; 1201 } 1202 1203 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1204 1205 /* update root_bh now */ 1206 le16_add_cpu(&root_el->l_tree_depth, 1); 1207 root_el->l_recs[0].e_cpos = 0; 1208 root_el->l_recs[0].e_blkno = eb->h_blkno; 1209 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1210 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1211 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1212 root_el->l_next_free_rec = cpu_to_le16(1); 1213 1214 /* If this is our 1st tree depth shift, then last_eb_blk 1215 * becomes the allocated extent block */ 1216 if (root_el->l_tree_depth == cpu_to_le16(1)) 1217 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1218 1219 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1220 if (status < 0) { 1221 mlog_errno(status); 1222 goto bail; 1223 } 1224 1225 *ret_new_eb_bh = new_eb_bh; 1226 new_eb_bh = NULL; 1227 status = 0; 1228 bail: 1229 brelse(new_eb_bh); 1230 1231 mlog_exit(status); 1232 return status; 1233 } 1234 1235 /* 1236 * Should only be called when there is no space left in any of the 1237 * leaf nodes. What we want to do is find the lowest tree depth 1238 * non-leaf extent block with room for new records. There are three 1239 * valid results of this search: 1240 * 1241 * 1) a lowest extent block is found, then we pass it back in 1242 * *lowest_eb_bh and return '0' 1243 * 1244 * 2) the search fails to find anything, but the root_el has room. We 1245 * pass NULL back in *lowest_eb_bh, but still return '0' 1246 * 1247 * 3) the search fails to find anything AND the root_el is full, in 1248 * which case we return > 0 1249 * 1250 * return status < 0 indicates an error. 1251 */ 1252 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1253 struct inode *inode, 1254 struct ocfs2_extent_tree *et, 1255 struct buffer_head **target_bh) 1256 { 1257 int status = 0, i; 1258 u64 blkno; 1259 struct ocfs2_extent_block *eb; 1260 struct ocfs2_extent_list *el; 1261 struct buffer_head *bh = NULL; 1262 struct buffer_head *lowest_bh = NULL; 1263 1264 mlog_entry_void(); 1265 1266 *target_bh = NULL; 1267 1268 el = et->et_root_el; 1269 1270 while(le16_to_cpu(el->l_tree_depth) > 1) { 1271 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1272 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1273 "extent list (next_free_rec == 0)", 1274 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1275 status = -EIO; 1276 goto bail; 1277 } 1278 i = le16_to_cpu(el->l_next_free_rec) - 1; 1279 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1280 if (!blkno) { 1281 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1282 "list where extent # %d has no physical " 1283 "block start", 1284 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1285 status = -EIO; 1286 goto bail; 1287 } 1288 1289 brelse(bh); 1290 bh = NULL; 1291 1292 status = ocfs2_read_extent_block(inode, blkno, &bh); 1293 if (status < 0) { 1294 mlog_errno(status); 1295 goto bail; 1296 } 1297 1298 eb = (struct ocfs2_extent_block *) bh->b_data; 1299 el = &eb->h_list; 1300 1301 if (le16_to_cpu(el->l_next_free_rec) < 1302 le16_to_cpu(el->l_count)) { 1303 brelse(lowest_bh); 1304 lowest_bh = bh; 1305 get_bh(lowest_bh); 1306 } 1307 } 1308 1309 /* If we didn't find one and the fe doesn't have any room, 1310 * then return '1' */ 1311 el = et->et_root_el; 1312 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1313 status = 1; 1314 1315 *target_bh = lowest_bh; 1316 bail: 1317 brelse(bh); 1318 1319 mlog_exit(status); 1320 return status; 1321 } 1322 1323 /* 1324 * Grow a b-tree so that it has more records. 1325 * 1326 * We might shift the tree depth in which case existing paths should 1327 * be considered invalid. 1328 * 1329 * Tree depth after the grow is returned via *final_depth. 1330 * 1331 * *last_eb_bh will be updated by ocfs2_add_branch(). 1332 */ 1333 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1334 struct ocfs2_extent_tree *et, int *final_depth, 1335 struct buffer_head **last_eb_bh, 1336 struct ocfs2_alloc_context *meta_ac) 1337 { 1338 int ret, shift; 1339 struct ocfs2_extent_list *el = et->et_root_el; 1340 int depth = le16_to_cpu(el->l_tree_depth); 1341 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1342 struct buffer_head *bh = NULL; 1343 1344 BUG_ON(meta_ac == NULL); 1345 1346 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1347 if (shift < 0) { 1348 ret = shift; 1349 mlog_errno(ret); 1350 goto out; 1351 } 1352 1353 /* We traveled all the way to the bottom of the allocation tree 1354 * and didn't find room for any more extents - we need to add 1355 * another tree level */ 1356 if (shift) { 1357 BUG_ON(bh); 1358 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1359 1360 /* ocfs2_shift_tree_depth will return us a buffer with 1361 * the new extent block (so we can pass that to 1362 * ocfs2_add_branch). */ 1363 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1364 meta_ac, &bh); 1365 if (ret < 0) { 1366 mlog_errno(ret); 1367 goto out; 1368 } 1369 depth++; 1370 if (depth == 1) { 1371 /* 1372 * Special case: we have room now if we shifted from 1373 * tree_depth 0, so no more work needs to be done. 1374 * 1375 * We won't be calling add_branch, so pass 1376 * back *last_eb_bh as the new leaf. At depth 1377 * zero, it should always be null so there's 1378 * no reason to brelse. 1379 */ 1380 BUG_ON(*last_eb_bh); 1381 get_bh(bh); 1382 *last_eb_bh = bh; 1383 goto out; 1384 } 1385 } 1386 1387 /* call ocfs2_add_branch to add the final part of the tree with 1388 * the new data. */ 1389 mlog(0, "add branch. bh = %p\n", bh); 1390 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1391 meta_ac); 1392 if (ret < 0) { 1393 mlog_errno(ret); 1394 goto out; 1395 } 1396 1397 out: 1398 if (final_depth) 1399 *final_depth = depth; 1400 brelse(bh); 1401 return ret; 1402 } 1403 1404 /* 1405 * This function will discard the rightmost extent record. 1406 */ 1407 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1408 { 1409 int next_free = le16_to_cpu(el->l_next_free_rec); 1410 int count = le16_to_cpu(el->l_count); 1411 unsigned int num_bytes; 1412 1413 BUG_ON(!next_free); 1414 /* This will cause us to go off the end of our extent list. */ 1415 BUG_ON(next_free >= count); 1416 1417 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1418 1419 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1420 } 1421 1422 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1423 struct ocfs2_extent_rec *insert_rec) 1424 { 1425 int i, insert_index, next_free, has_empty, num_bytes; 1426 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1427 struct ocfs2_extent_rec *rec; 1428 1429 next_free = le16_to_cpu(el->l_next_free_rec); 1430 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1431 1432 BUG_ON(!next_free); 1433 1434 /* The tree code before us didn't allow enough room in the leaf. */ 1435 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1436 1437 /* 1438 * The easiest way to approach this is to just remove the 1439 * empty extent and temporarily decrement next_free. 1440 */ 1441 if (has_empty) { 1442 /* 1443 * If next_free was 1 (only an empty extent), this 1444 * loop won't execute, which is fine. We still want 1445 * the decrement above to happen. 1446 */ 1447 for(i = 0; i < (next_free - 1); i++) 1448 el->l_recs[i] = el->l_recs[i+1]; 1449 1450 next_free--; 1451 } 1452 1453 /* 1454 * Figure out what the new record index should be. 1455 */ 1456 for(i = 0; i < next_free; i++) { 1457 rec = &el->l_recs[i]; 1458 1459 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1460 break; 1461 } 1462 insert_index = i; 1463 1464 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1465 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1466 1467 BUG_ON(insert_index < 0); 1468 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1469 BUG_ON(insert_index > next_free); 1470 1471 /* 1472 * No need to memmove if we're just adding to the tail. 1473 */ 1474 if (insert_index != next_free) { 1475 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1476 1477 num_bytes = next_free - insert_index; 1478 num_bytes *= sizeof(struct ocfs2_extent_rec); 1479 memmove(&el->l_recs[insert_index + 1], 1480 &el->l_recs[insert_index], 1481 num_bytes); 1482 } 1483 1484 /* 1485 * Either we had an empty extent, and need to re-increment or 1486 * there was no empty extent on a non full rightmost leaf node, 1487 * in which case we still need to increment. 1488 */ 1489 next_free++; 1490 el->l_next_free_rec = cpu_to_le16(next_free); 1491 /* 1492 * Make sure none of the math above just messed up our tree. 1493 */ 1494 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1495 1496 el->l_recs[insert_index] = *insert_rec; 1497 1498 } 1499 1500 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1501 { 1502 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1503 1504 BUG_ON(num_recs == 0); 1505 1506 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1507 num_recs--; 1508 size = num_recs * sizeof(struct ocfs2_extent_rec); 1509 memmove(&el->l_recs[0], &el->l_recs[1], size); 1510 memset(&el->l_recs[num_recs], 0, 1511 sizeof(struct ocfs2_extent_rec)); 1512 el->l_next_free_rec = cpu_to_le16(num_recs); 1513 } 1514 } 1515 1516 /* 1517 * Create an empty extent record . 1518 * 1519 * l_next_free_rec may be updated. 1520 * 1521 * If an empty extent already exists do nothing. 1522 */ 1523 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1524 { 1525 int next_free = le16_to_cpu(el->l_next_free_rec); 1526 1527 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1528 1529 if (next_free == 0) 1530 goto set_and_inc; 1531 1532 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1533 return; 1534 1535 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1536 "Asked to create an empty extent in a full list:\n" 1537 "count = %u, tree depth = %u", 1538 le16_to_cpu(el->l_count), 1539 le16_to_cpu(el->l_tree_depth)); 1540 1541 ocfs2_shift_records_right(el); 1542 1543 set_and_inc: 1544 le16_add_cpu(&el->l_next_free_rec, 1); 1545 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1546 } 1547 1548 /* 1549 * For a rotation which involves two leaf nodes, the "root node" is 1550 * the lowest level tree node which contains a path to both leafs. This 1551 * resulting set of information can be used to form a complete "subtree" 1552 * 1553 * This function is passed two full paths from the dinode down to a 1554 * pair of adjacent leaves. It's task is to figure out which path 1555 * index contains the subtree root - this can be the root index itself 1556 * in a worst-case rotation. 1557 * 1558 * The array index of the subtree root is passed back. 1559 */ 1560 static int ocfs2_find_subtree_root(struct inode *inode, 1561 struct ocfs2_path *left, 1562 struct ocfs2_path *right) 1563 { 1564 int i = 0; 1565 1566 /* 1567 * Check that the caller passed in two paths from the same tree. 1568 */ 1569 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1570 1571 do { 1572 i++; 1573 1574 /* 1575 * The caller didn't pass two adjacent paths. 1576 */ 1577 mlog_bug_on_msg(i > left->p_tree_depth, 1578 "Inode %lu, left depth %u, right depth %u\n" 1579 "left leaf blk %llu, right leaf blk %llu\n", 1580 inode->i_ino, left->p_tree_depth, 1581 right->p_tree_depth, 1582 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1583 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1584 } while (left->p_node[i].bh->b_blocknr == 1585 right->p_node[i].bh->b_blocknr); 1586 1587 return i - 1; 1588 } 1589 1590 typedef void (path_insert_t)(void *, struct buffer_head *); 1591 1592 /* 1593 * Traverse a btree path in search of cpos, starting at root_el. 1594 * 1595 * This code can be called with a cpos larger than the tree, in which 1596 * case it will return the rightmost path. 1597 */ 1598 static int __ocfs2_find_path(struct inode *inode, 1599 struct ocfs2_extent_list *root_el, u32 cpos, 1600 path_insert_t *func, void *data) 1601 { 1602 int i, ret = 0; 1603 u32 range; 1604 u64 blkno; 1605 struct buffer_head *bh = NULL; 1606 struct ocfs2_extent_block *eb; 1607 struct ocfs2_extent_list *el; 1608 struct ocfs2_extent_rec *rec; 1609 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1610 1611 el = root_el; 1612 while (el->l_tree_depth) { 1613 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1614 ocfs2_error(inode->i_sb, 1615 "Inode %llu has empty extent list at " 1616 "depth %u\n", 1617 (unsigned long long)oi->ip_blkno, 1618 le16_to_cpu(el->l_tree_depth)); 1619 ret = -EROFS; 1620 goto out; 1621 1622 } 1623 1624 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1625 rec = &el->l_recs[i]; 1626 1627 /* 1628 * In the case that cpos is off the allocation 1629 * tree, this should just wind up returning the 1630 * rightmost record. 1631 */ 1632 range = le32_to_cpu(rec->e_cpos) + 1633 ocfs2_rec_clusters(el, rec); 1634 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1635 break; 1636 } 1637 1638 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1639 if (blkno == 0) { 1640 ocfs2_error(inode->i_sb, 1641 "Inode %llu has bad blkno in extent list " 1642 "at depth %u (index %d)\n", 1643 (unsigned long long)oi->ip_blkno, 1644 le16_to_cpu(el->l_tree_depth), i); 1645 ret = -EROFS; 1646 goto out; 1647 } 1648 1649 brelse(bh); 1650 bh = NULL; 1651 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1652 if (ret) { 1653 mlog_errno(ret); 1654 goto out; 1655 } 1656 1657 eb = (struct ocfs2_extent_block *) bh->b_data; 1658 el = &eb->h_list; 1659 1660 if (le16_to_cpu(el->l_next_free_rec) > 1661 le16_to_cpu(el->l_count)) { 1662 ocfs2_error(inode->i_sb, 1663 "Inode %llu has bad count in extent list " 1664 "at block %llu (next free=%u, count=%u)\n", 1665 (unsigned long long)oi->ip_blkno, 1666 (unsigned long long)bh->b_blocknr, 1667 le16_to_cpu(el->l_next_free_rec), 1668 le16_to_cpu(el->l_count)); 1669 ret = -EROFS; 1670 goto out; 1671 } 1672 1673 if (func) 1674 func(data, bh); 1675 } 1676 1677 out: 1678 /* 1679 * Catch any trailing bh that the loop didn't handle. 1680 */ 1681 brelse(bh); 1682 1683 return ret; 1684 } 1685 1686 /* 1687 * Given an initialized path (that is, it has a valid root extent 1688 * list), this function will traverse the btree in search of the path 1689 * which would contain cpos. 1690 * 1691 * The path traveled is recorded in the path structure. 1692 * 1693 * Note that this will not do any comparisons on leaf node extent 1694 * records, so it will work fine in the case that we just added a tree 1695 * branch. 1696 */ 1697 struct find_path_data { 1698 int index; 1699 struct ocfs2_path *path; 1700 }; 1701 static void find_path_ins(void *data, struct buffer_head *bh) 1702 { 1703 struct find_path_data *fp = data; 1704 1705 get_bh(bh); 1706 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1707 fp->index++; 1708 } 1709 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1710 u32 cpos) 1711 { 1712 struct find_path_data data; 1713 1714 data.index = 1; 1715 data.path = path; 1716 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1717 find_path_ins, &data); 1718 } 1719 1720 static void find_leaf_ins(void *data, struct buffer_head *bh) 1721 { 1722 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1723 struct ocfs2_extent_list *el = &eb->h_list; 1724 struct buffer_head **ret = data; 1725 1726 /* We want to retain only the leaf block. */ 1727 if (le16_to_cpu(el->l_tree_depth) == 0) { 1728 get_bh(bh); 1729 *ret = bh; 1730 } 1731 } 1732 /* 1733 * Find the leaf block in the tree which would contain cpos. No 1734 * checking of the actual leaf is done. 1735 * 1736 * Some paths want to call this instead of allocating a path structure 1737 * and calling ocfs2_find_path(). 1738 * 1739 * This function doesn't handle non btree extent lists. 1740 */ 1741 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1742 u32 cpos, struct buffer_head **leaf_bh) 1743 { 1744 int ret; 1745 struct buffer_head *bh = NULL; 1746 1747 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1748 if (ret) { 1749 mlog_errno(ret); 1750 goto out; 1751 } 1752 1753 *leaf_bh = bh; 1754 out: 1755 return ret; 1756 } 1757 1758 /* 1759 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1760 * 1761 * Basically, we've moved stuff around at the bottom of the tree and 1762 * we need to fix up the extent records above the changes to reflect 1763 * the new changes. 1764 * 1765 * left_rec: the record on the left. 1766 * left_child_el: is the child list pointed to by left_rec 1767 * right_rec: the record to the right of left_rec 1768 * right_child_el: is the child list pointed to by right_rec 1769 * 1770 * By definition, this only works on interior nodes. 1771 */ 1772 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1773 struct ocfs2_extent_list *left_child_el, 1774 struct ocfs2_extent_rec *right_rec, 1775 struct ocfs2_extent_list *right_child_el) 1776 { 1777 u32 left_clusters, right_end; 1778 1779 /* 1780 * Interior nodes never have holes. Their cpos is the cpos of 1781 * the leftmost record in their child list. Their cluster 1782 * count covers the full theoretical range of their child list 1783 * - the range between their cpos and the cpos of the record 1784 * immediately to their right. 1785 */ 1786 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1787 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1788 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1789 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1790 } 1791 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1792 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1793 1794 /* 1795 * Calculate the rightmost cluster count boundary before 1796 * moving cpos - we will need to adjust clusters after 1797 * updating e_cpos to keep the same highest cluster count. 1798 */ 1799 right_end = le32_to_cpu(right_rec->e_cpos); 1800 right_end += le32_to_cpu(right_rec->e_int_clusters); 1801 1802 right_rec->e_cpos = left_rec->e_cpos; 1803 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1804 1805 right_end -= le32_to_cpu(right_rec->e_cpos); 1806 right_rec->e_int_clusters = cpu_to_le32(right_end); 1807 } 1808 1809 /* 1810 * Adjust the adjacent root node records involved in a 1811 * rotation. left_el_blkno is passed in as a key so that we can easily 1812 * find it's index in the root list. 1813 */ 1814 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1815 struct ocfs2_extent_list *left_el, 1816 struct ocfs2_extent_list *right_el, 1817 u64 left_el_blkno) 1818 { 1819 int i; 1820 1821 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1822 le16_to_cpu(left_el->l_tree_depth)); 1823 1824 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1825 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1826 break; 1827 } 1828 1829 /* 1830 * The path walking code should have never returned a root and 1831 * two paths which are not adjacent. 1832 */ 1833 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1834 1835 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1836 &root_el->l_recs[i + 1], right_el); 1837 } 1838 1839 /* 1840 * We've changed a leaf block (in right_path) and need to reflect that 1841 * change back up the subtree. 1842 * 1843 * This happens in multiple places: 1844 * - When we've moved an extent record from the left path leaf to the right 1845 * path leaf to make room for an empty extent in the left path leaf. 1846 * - When our insert into the right path leaf is at the leftmost edge 1847 * and requires an update of the path immediately to it's left. This 1848 * can occur at the end of some types of rotation and appending inserts. 1849 * - When we've adjusted the last extent record in the left path leaf and the 1850 * 1st extent record in the right path leaf during cross extent block merge. 1851 */ 1852 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1853 struct ocfs2_path *left_path, 1854 struct ocfs2_path *right_path, 1855 int subtree_index) 1856 { 1857 int ret, i, idx; 1858 struct ocfs2_extent_list *el, *left_el, *right_el; 1859 struct ocfs2_extent_rec *left_rec, *right_rec; 1860 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1861 1862 /* 1863 * Update the counts and position values within all the 1864 * interior nodes to reflect the leaf rotation we just did. 1865 * 1866 * The root node is handled below the loop. 1867 * 1868 * We begin the loop with right_el and left_el pointing to the 1869 * leaf lists and work our way up. 1870 * 1871 * NOTE: within this loop, left_el and right_el always refer 1872 * to the *child* lists. 1873 */ 1874 left_el = path_leaf_el(left_path); 1875 right_el = path_leaf_el(right_path); 1876 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1877 mlog(0, "Adjust records at index %u\n", i); 1878 1879 /* 1880 * One nice property of knowing that all of these 1881 * nodes are below the root is that we only deal with 1882 * the leftmost right node record and the rightmost 1883 * left node record. 1884 */ 1885 el = left_path->p_node[i].el; 1886 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1887 left_rec = &el->l_recs[idx]; 1888 1889 el = right_path->p_node[i].el; 1890 right_rec = &el->l_recs[0]; 1891 1892 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1893 right_el); 1894 1895 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1896 if (ret) 1897 mlog_errno(ret); 1898 1899 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1900 if (ret) 1901 mlog_errno(ret); 1902 1903 /* 1904 * Setup our list pointers now so that the current 1905 * parents become children in the next iteration. 1906 */ 1907 left_el = left_path->p_node[i].el; 1908 right_el = right_path->p_node[i].el; 1909 } 1910 1911 /* 1912 * At the root node, adjust the two adjacent records which 1913 * begin our path to the leaves. 1914 */ 1915 1916 el = left_path->p_node[subtree_index].el; 1917 left_el = left_path->p_node[subtree_index + 1].el; 1918 right_el = right_path->p_node[subtree_index + 1].el; 1919 1920 ocfs2_adjust_root_records(el, left_el, right_el, 1921 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1922 1923 root_bh = left_path->p_node[subtree_index].bh; 1924 1925 ret = ocfs2_journal_dirty(handle, root_bh); 1926 if (ret) 1927 mlog_errno(ret); 1928 } 1929 1930 static int ocfs2_rotate_subtree_right(struct inode *inode, 1931 handle_t *handle, 1932 struct ocfs2_path *left_path, 1933 struct ocfs2_path *right_path, 1934 int subtree_index) 1935 { 1936 int ret, i; 1937 struct buffer_head *right_leaf_bh; 1938 struct buffer_head *left_leaf_bh = NULL; 1939 struct buffer_head *root_bh; 1940 struct ocfs2_extent_list *right_el, *left_el; 1941 struct ocfs2_extent_rec move_rec; 1942 1943 left_leaf_bh = path_leaf_bh(left_path); 1944 left_el = path_leaf_el(left_path); 1945 1946 if (left_el->l_next_free_rec != left_el->l_count) { 1947 ocfs2_error(inode->i_sb, 1948 "Inode %llu has non-full interior leaf node %llu" 1949 "(next free = %u)", 1950 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1951 (unsigned long long)left_leaf_bh->b_blocknr, 1952 le16_to_cpu(left_el->l_next_free_rec)); 1953 return -EROFS; 1954 } 1955 1956 /* 1957 * This extent block may already have an empty record, so we 1958 * return early if so. 1959 */ 1960 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1961 return 0; 1962 1963 root_bh = left_path->p_node[subtree_index].bh; 1964 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1965 1966 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 1967 subtree_index); 1968 if (ret) { 1969 mlog_errno(ret); 1970 goto out; 1971 } 1972 1973 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1974 ret = ocfs2_path_bh_journal_access(handle, inode, 1975 right_path, i); 1976 if (ret) { 1977 mlog_errno(ret); 1978 goto out; 1979 } 1980 1981 ret = ocfs2_path_bh_journal_access(handle, inode, 1982 left_path, i); 1983 if (ret) { 1984 mlog_errno(ret); 1985 goto out; 1986 } 1987 } 1988 1989 right_leaf_bh = path_leaf_bh(right_path); 1990 right_el = path_leaf_el(right_path); 1991 1992 /* This is a code error, not a disk corruption. */ 1993 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1994 "because rightmost leaf block %llu is empty\n", 1995 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1996 (unsigned long long)right_leaf_bh->b_blocknr); 1997 1998 ocfs2_create_empty_extent(right_el); 1999 2000 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2001 if (ret) { 2002 mlog_errno(ret); 2003 goto out; 2004 } 2005 2006 /* Do the copy now. */ 2007 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2008 move_rec = left_el->l_recs[i]; 2009 right_el->l_recs[0] = move_rec; 2010 2011 /* 2012 * Clear out the record we just copied and shift everything 2013 * over, leaving an empty extent in the left leaf. 2014 * 2015 * We temporarily subtract from next_free_rec so that the 2016 * shift will lose the tail record (which is now defunct). 2017 */ 2018 le16_add_cpu(&left_el->l_next_free_rec, -1); 2019 ocfs2_shift_records_right(left_el); 2020 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2021 le16_add_cpu(&left_el->l_next_free_rec, 1); 2022 2023 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2024 if (ret) { 2025 mlog_errno(ret); 2026 goto out; 2027 } 2028 2029 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2030 subtree_index); 2031 2032 out: 2033 return ret; 2034 } 2035 2036 /* 2037 * Given a full path, determine what cpos value would return us a path 2038 * containing the leaf immediately to the left of the current one. 2039 * 2040 * Will return zero if the path passed in is already the leftmost path. 2041 */ 2042 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2043 struct ocfs2_path *path, u32 *cpos) 2044 { 2045 int i, j, ret = 0; 2046 u64 blkno; 2047 struct ocfs2_extent_list *el; 2048 2049 BUG_ON(path->p_tree_depth == 0); 2050 2051 *cpos = 0; 2052 2053 blkno = path_leaf_bh(path)->b_blocknr; 2054 2055 /* Start at the tree node just above the leaf and work our way up. */ 2056 i = path->p_tree_depth - 1; 2057 while (i >= 0) { 2058 el = path->p_node[i].el; 2059 2060 /* 2061 * Find the extent record just before the one in our 2062 * path. 2063 */ 2064 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2065 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2066 if (j == 0) { 2067 if (i == 0) { 2068 /* 2069 * We've determined that the 2070 * path specified is already 2071 * the leftmost one - return a 2072 * cpos of zero. 2073 */ 2074 goto out; 2075 } 2076 /* 2077 * The leftmost record points to our 2078 * leaf - we need to travel up the 2079 * tree one level. 2080 */ 2081 goto next_node; 2082 } 2083 2084 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2085 *cpos = *cpos + ocfs2_rec_clusters(el, 2086 &el->l_recs[j - 1]); 2087 *cpos = *cpos - 1; 2088 goto out; 2089 } 2090 } 2091 2092 /* 2093 * If we got here, we never found a valid node where 2094 * the tree indicated one should be. 2095 */ 2096 ocfs2_error(sb, 2097 "Invalid extent tree at extent block %llu\n", 2098 (unsigned long long)blkno); 2099 ret = -EROFS; 2100 goto out; 2101 2102 next_node: 2103 blkno = path->p_node[i].bh->b_blocknr; 2104 i--; 2105 } 2106 2107 out: 2108 return ret; 2109 } 2110 2111 /* 2112 * Extend the transaction by enough credits to complete the rotation, 2113 * and still leave at least the original number of credits allocated 2114 * to this transaction. 2115 */ 2116 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2117 int op_credits, 2118 struct ocfs2_path *path) 2119 { 2120 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2121 2122 if (handle->h_buffer_credits < credits) 2123 return ocfs2_extend_trans(handle, credits); 2124 2125 return 0; 2126 } 2127 2128 /* 2129 * Trap the case where we're inserting into the theoretical range past 2130 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2131 * whose cpos is less than ours into the right leaf. 2132 * 2133 * It's only necessary to look at the rightmost record of the left 2134 * leaf because the logic that calls us should ensure that the 2135 * theoretical ranges in the path components above the leaves are 2136 * correct. 2137 */ 2138 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2139 u32 insert_cpos) 2140 { 2141 struct ocfs2_extent_list *left_el; 2142 struct ocfs2_extent_rec *rec; 2143 int next_free; 2144 2145 left_el = path_leaf_el(left_path); 2146 next_free = le16_to_cpu(left_el->l_next_free_rec); 2147 rec = &left_el->l_recs[next_free - 1]; 2148 2149 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2150 return 1; 2151 return 0; 2152 } 2153 2154 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2155 { 2156 int next_free = le16_to_cpu(el->l_next_free_rec); 2157 unsigned int range; 2158 struct ocfs2_extent_rec *rec; 2159 2160 if (next_free == 0) 2161 return 0; 2162 2163 rec = &el->l_recs[0]; 2164 if (ocfs2_is_empty_extent(rec)) { 2165 /* Empty list. */ 2166 if (next_free == 1) 2167 return 0; 2168 rec = &el->l_recs[1]; 2169 } 2170 2171 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2172 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2173 return 1; 2174 return 0; 2175 } 2176 2177 /* 2178 * Rotate all the records in a btree right one record, starting at insert_cpos. 2179 * 2180 * The path to the rightmost leaf should be passed in. 2181 * 2182 * The array is assumed to be large enough to hold an entire path (tree depth). 2183 * 2184 * Upon succesful return from this function: 2185 * 2186 * - The 'right_path' array will contain a path to the leaf block 2187 * whose range contains e_cpos. 2188 * - That leaf block will have a single empty extent in list index 0. 2189 * - In the case that the rotation requires a post-insert update, 2190 * *ret_left_path will contain a valid path which can be passed to 2191 * ocfs2_insert_path(). 2192 */ 2193 static int ocfs2_rotate_tree_right(struct inode *inode, 2194 handle_t *handle, 2195 enum ocfs2_split_type split, 2196 u32 insert_cpos, 2197 struct ocfs2_path *right_path, 2198 struct ocfs2_path **ret_left_path) 2199 { 2200 int ret, start, orig_credits = handle->h_buffer_credits; 2201 u32 cpos; 2202 struct ocfs2_path *left_path = NULL; 2203 2204 *ret_left_path = NULL; 2205 2206 left_path = ocfs2_new_path_from_path(right_path); 2207 if (!left_path) { 2208 ret = -ENOMEM; 2209 mlog_errno(ret); 2210 goto out; 2211 } 2212 2213 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2214 if (ret) { 2215 mlog_errno(ret); 2216 goto out; 2217 } 2218 2219 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2220 2221 /* 2222 * What we want to do here is: 2223 * 2224 * 1) Start with the rightmost path. 2225 * 2226 * 2) Determine a path to the leaf block directly to the left 2227 * of that leaf. 2228 * 2229 * 3) Determine the 'subtree root' - the lowest level tree node 2230 * which contains a path to both leaves. 2231 * 2232 * 4) Rotate the subtree. 2233 * 2234 * 5) Find the next subtree by considering the left path to be 2235 * the new right path. 2236 * 2237 * The check at the top of this while loop also accepts 2238 * insert_cpos == cpos because cpos is only a _theoretical_ 2239 * value to get us the left path - insert_cpos might very well 2240 * be filling that hole. 2241 * 2242 * Stop at a cpos of '0' because we either started at the 2243 * leftmost branch (i.e., a tree with one branch and a 2244 * rotation inside of it), or we've gone as far as we can in 2245 * rotating subtrees. 2246 */ 2247 while (cpos && insert_cpos <= cpos) { 2248 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2249 insert_cpos, cpos); 2250 2251 ret = ocfs2_find_path(inode, left_path, cpos); 2252 if (ret) { 2253 mlog_errno(ret); 2254 goto out; 2255 } 2256 2257 mlog_bug_on_msg(path_leaf_bh(left_path) == 2258 path_leaf_bh(right_path), 2259 "Inode %lu: error during insert of %u " 2260 "(left path cpos %u) results in two identical " 2261 "paths ending at %llu\n", 2262 inode->i_ino, insert_cpos, cpos, 2263 (unsigned long long) 2264 path_leaf_bh(left_path)->b_blocknr); 2265 2266 if (split == SPLIT_NONE && 2267 ocfs2_rotate_requires_path_adjustment(left_path, 2268 insert_cpos)) { 2269 2270 /* 2271 * We've rotated the tree as much as we 2272 * should. The rest is up to 2273 * ocfs2_insert_path() to complete, after the 2274 * record insertion. We indicate this 2275 * situation by returning the left path. 2276 * 2277 * The reason we don't adjust the records here 2278 * before the record insert is that an error 2279 * later might break the rule where a parent 2280 * record e_cpos will reflect the actual 2281 * e_cpos of the 1st nonempty record of the 2282 * child list. 2283 */ 2284 *ret_left_path = left_path; 2285 goto out_ret_path; 2286 } 2287 2288 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2289 2290 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2291 start, 2292 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2293 right_path->p_tree_depth); 2294 2295 ret = ocfs2_extend_rotate_transaction(handle, start, 2296 orig_credits, right_path); 2297 if (ret) { 2298 mlog_errno(ret); 2299 goto out; 2300 } 2301 2302 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2303 right_path, start); 2304 if (ret) { 2305 mlog_errno(ret); 2306 goto out; 2307 } 2308 2309 if (split != SPLIT_NONE && 2310 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2311 insert_cpos)) { 2312 /* 2313 * A rotate moves the rightmost left leaf 2314 * record over to the leftmost right leaf 2315 * slot. If we're doing an extent split 2316 * instead of a real insert, then we have to 2317 * check that the extent to be split wasn't 2318 * just moved over. If it was, then we can 2319 * exit here, passing left_path back - 2320 * ocfs2_split_extent() is smart enough to 2321 * search both leaves. 2322 */ 2323 *ret_left_path = left_path; 2324 goto out_ret_path; 2325 } 2326 2327 /* 2328 * There is no need to re-read the next right path 2329 * as we know that it'll be our current left 2330 * path. Optimize by copying values instead. 2331 */ 2332 ocfs2_mv_path(right_path, left_path); 2333 2334 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2335 &cpos); 2336 if (ret) { 2337 mlog_errno(ret); 2338 goto out; 2339 } 2340 } 2341 2342 out: 2343 ocfs2_free_path(left_path); 2344 2345 out_ret_path: 2346 return ret; 2347 } 2348 2349 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2350 struct ocfs2_path *path) 2351 { 2352 int i, idx; 2353 struct ocfs2_extent_rec *rec; 2354 struct ocfs2_extent_list *el; 2355 struct ocfs2_extent_block *eb; 2356 u32 range; 2357 2358 /* Path should always be rightmost. */ 2359 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2360 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2361 2362 el = &eb->h_list; 2363 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2364 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2365 rec = &el->l_recs[idx]; 2366 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2367 2368 for (i = 0; i < path->p_tree_depth; i++) { 2369 el = path->p_node[i].el; 2370 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2371 rec = &el->l_recs[idx]; 2372 2373 rec->e_int_clusters = cpu_to_le32(range); 2374 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2375 2376 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2377 } 2378 } 2379 2380 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2381 struct ocfs2_cached_dealloc_ctxt *dealloc, 2382 struct ocfs2_path *path, int unlink_start) 2383 { 2384 int ret, i; 2385 struct ocfs2_extent_block *eb; 2386 struct ocfs2_extent_list *el; 2387 struct buffer_head *bh; 2388 2389 for(i = unlink_start; i < path_num_items(path); i++) { 2390 bh = path->p_node[i].bh; 2391 2392 eb = (struct ocfs2_extent_block *)bh->b_data; 2393 /* 2394 * Not all nodes might have had their final count 2395 * decremented by the caller - handle this here. 2396 */ 2397 el = &eb->h_list; 2398 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2399 mlog(ML_ERROR, 2400 "Inode %llu, attempted to remove extent block " 2401 "%llu with %u records\n", 2402 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2403 (unsigned long long)le64_to_cpu(eb->h_blkno), 2404 le16_to_cpu(el->l_next_free_rec)); 2405 2406 ocfs2_journal_dirty(handle, bh); 2407 ocfs2_remove_from_cache(inode, bh); 2408 continue; 2409 } 2410 2411 el->l_next_free_rec = 0; 2412 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2413 2414 ocfs2_journal_dirty(handle, bh); 2415 2416 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2417 if (ret) 2418 mlog_errno(ret); 2419 2420 ocfs2_remove_from_cache(inode, bh); 2421 } 2422 } 2423 2424 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2425 struct ocfs2_path *left_path, 2426 struct ocfs2_path *right_path, 2427 int subtree_index, 2428 struct ocfs2_cached_dealloc_ctxt *dealloc) 2429 { 2430 int i; 2431 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2432 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2433 struct ocfs2_extent_list *el; 2434 struct ocfs2_extent_block *eb; 2435 2436 el = path_leaf_el(left_path); 2437 2438 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2439 2440 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2441 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2442 break; 2443 2444 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2445 2446 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2447 le16_add_cpu(&root_el->l_next_free_rec, -1); 2448 2449 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2450 eb->h_next_leaf_blk = 0; 2451 2452 ocfs2_journal_dirty(handle, root_bh); 2453 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2454 2455 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2456 subtree_index + 1); 2457 } 2458 2459 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2460 struct ocfs2_path *left_path, 2461 struct ocfs2_path *right_path, 2462 int subtree_index, 2463 struct ocfs2_cached_dealloc_ctxt *dealloc, 2464 int *deleted, 2465 struct ocfs2_extent_tree *et) 2466 { 2467 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2468 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2469 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2470 struct ocfs2_extent_block *eb; 2471 2472 *deleted = 0; 2473 2474 right_leaf_el = path_leaf_el(right_path); 2475 left_leaf_el = path_leaf_el(left_path); 2476 root_bh = left_path->p_node[subtree_index].bh; 2477 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2478 2479 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2480 return 0; 2481 2482 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2483 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2484 /* 2485 * It's legal for us to proceed if the right leaf is 2486 * the rightmost one and it has an empty extent. There 2487 * are two cases to handle - whether the leaf will be 2488 * empty after removal or not. If the leaf isn't empty 2489 * then just remove the empty extent up front. The 2490 * next block will handle empty leaves by flagging 2491 * them for unlink. 2492 * 2493 * Non rightmost leaves will throw -EAGAIN and the 2494 * caller can manually move the subtree and retry. 2495 */ 2496 2497 if (eb->h_next_leaf_blk != 0ULL) 2498 return -EAGAIN; 2499 2500 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2501 ret = ocfs2_journal_access_eb(handle, inode, 2502 path_leaf_bh(right_path), 2503 OCFS2_JOURNAL_ACCESS_WRITE); 2504 if (ret) { 2505 mlog_errno(ret); 2506 goto out; 2507 } 2508 2509 ocfs2_remove_empty_extent(right_leaf_el); 2510 } else 2511 right_has_empty = 1; 2512 } 2513 2514 if (eb->h_next_leaf_blk == 0ULL && 2515 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2516 /* 2517 * We have to update i_last_eb_blk during the meta 2518 * data delete. 2519 */ 2520 ret = ocfs2_et_root_journal_access(handle, inode, et, 2521 OCFS2_JOURNAL_ACCESS_WRITE); 2522 if (ret) { 2523 mlog_errno(ret); 2524 goto out; 2525 } 2526 2527 del_right_subtree = 1; 2528 } 2529 2530 /* 2531 * Getting here with an empty extent in the right path implies 2532 * that it's the rightmost path and will be deleted. 2533 */ 2534 BUG_ON(right_has_empty && !del_right_subtree); 2535 2536 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2537 subtree_index); 2538 if (ret) { 2539 mlog_errno(ret); 2540 goto out; 2541 } 2542 2543 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2544 ret = ocfs2_path_bh_journal_access(handle, inode, 2545 right_path, i); 2546 if (ret) { 2547 mlog_errno(ret); 2548 goto out; 2549 } 2550 2551 ret = ocfs2_path_bh_journal_access(handle, inode, 2552 left_path, i); 2553 if (ret) { 2554 mlog_errno(ret); 2555 goto out; 2556 } 2557 } 2558 2559 if (!right_has_empty) { 2560 /* 2561 * Only do this if we're moving a real 2562 * record. Otherwise, the action is delayed until 2563 * after removal of the right path in which case we 2564 * can do a simple shift to remove the empty extent. 2565 */ 2566 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2567 memset(&right_leaf_el->l_recs[0], 0, 2568 sizeof(struct ocfs2_extent_rec)); 2569 } 2570 if (eb->h_next_leaf_blk == 0ULL) { 2571 /* 2572 * Move recs over to get rid of empty extent, decrease 2573 * next_free. This is allowed to remove the last 2574 * extent in our leaf (setting l_next_free_rec to 2575 * zero) - the delete code below won't care. 2576 */ 2577 ocfs2_remove_empty_extent(right_leaf_el); 2578 } 2579 2580 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2581 if (ret) 2582 mlog_errno(ret); 2583 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2584 if (ret) 2585 mlog_errno(ret); 2586 2587 if (del_right_subtree) { 2588 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2589 subtree_index, dealloc); 2590 ocfs2_update_edge_lengths(inode, handle, left_path); 2591 2592 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2593 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2594 2595 /* 2596 * Removal of the extent in the left leaf was skipped 2597 * above so we could delete the right path 2598 * 1st. 2599 */ 2600 if (right_has_empty) 2601 ocfs2_remove_empty_extent(left_leaf_el); 2602 2603 ret = ocfs2_journal_dirty(handle, et_root_bh); 2604 if (ret) 2605 mlog_errno(ret); 2606 2607 *deleted = 1; 2608 } else 2609 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2610 subtree_index); 2611 2612 out: 2613 return ret; 2614 } 2615 2616 /* 2617 * Given a full path, determine what cpos value would return us a path 2618 * containing the leaf immediately to the right of the current one. 2619 * 2620 * Will return zero if the path passed in is already the rightmost path. 2621 * 2622 * This looks similar, but is subtly different to 2623 * ocfs2_find_cpos_for_left_leaf(). 2624 */ 2625 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2626 struct ocfs2_path *path, u32 *cpos) 2627 { 2628 int i, j, ret = 0; 2629 u64 blkno; 2630 struct ocfs2_extent_list *el; 2631 2632 *cpos = 0; 2633 2634 if (path->p_tree_depth == 0) 2635 return 0; 2636 2637 blkno = path_leaf_bh(path)->b_blocknr; 2638 2639 /* Start at the tree node just above the leaf and work our way up. */ 2640 i = path->p_tree_depth - 1; 2641 while (i >= 0) { 2642 int next_free; 2643 2644 el = path->p_node[i].el; 2645 2646 /* 2647 * Find the extent record just after the one in our 2648 * path. 2649 */ 2650 next_free = le16_to_cpu(el->l_next_free_rec); 2651 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2652 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2653 if (j == (next_free - 1)) { 2654 if (i == 0) { 2655 /* 2656 * We've determined that the 2657 * path specified is already 2658 * the rightmost one - return a 2659 * cpos of zero. 2660 */ 2661 goto out; 2662 } 2663 /* 2664 * The rightmost record points to our 2665 * leaf - we need to travel up the 2666 * tree one level. 2667 */ 2668 goto next_node; 2669 } 2670 2671 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2672 goto out; 2673 } 2674 } 2675 2676 /* 2677 * If we got here, we never found a valid node where 2678 * the tree indicated one should be. 2679 */ 2680 ocfs2_error(sb, 2681 "Invalid extent tree at extent block %llu\n", 2682 (unsigned long long)blkno); 2683 ret = -EROFS; 2684 goto out; 2685 2686 next_node: 2687 blkno = path->p_node[i].bh->b_blocknr; 2688 i--; 2689 } 2690 2691 out: 2692 return ret; 2693 } 2694 2695 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2696 handle_t *handle, 2697 struct ocfs2_path *path) 2698 { 2699 int ret; 2700 struct buffer_head *bh = path_leaf_bh(path); 2701 struct ocfs2_extent_list *el = path_leaf_el(path); 2702 2703 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2704 return 0; 2705 2706 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2707 path_num_items(path) - 1); 2708 if (ret) { 2709 mlog_errno(ret); 2710 goto out; 2711 } 2712 2713 ocfs2_remove_empty_extent(el); 2714 2715 ret = ocfs2_journal_dirty(handle, bh); 2716 if (ret) 2717 mlog_errno(ret); 2718 2719 out: 2720 return ret; 2721 } 2722 2723 static int __ocfs2_rotate_tree_left(struct inode *inode, 2724 handle_t *handle, int orig_credits, 2725 struct ocfs2_path *path, 2726 struct ocfs2_cached_dealloc_ctxt *dealloc, 2727 struct ocfs2_path **empty_extent_path, 2728 struct ocfs2_extent_tree *et) 2729 { 2730 int ret, subtree_root, deleted; 2731 u32 right_cpos; 2732 struct ocfs2_path *left_path = NULL; 2733 struct ocfs2_path *right_path = NULL; 2734 2735 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2736 2737 *empty_extent_path = NULL; 2738 2739 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2740 &right_cpos); 2741 if (ret) { 2742 mlog_errno(ret); 2743 goto out; 2744 } 2745 2746 left_path = ocfs2_new_path_from_path(path); 2747 if (!left_path) { 2748 ret = -ENOMEM; 2749 mlog_errno(ret); 2750 goto out; 2751 } 2752 2753 ocfs2_cp_path(left_path, path); 2754 2755 right_path = ocfs2_new_path_from_path(path); 2756 if (!right_path) { 2757 ret = -ENOMEM; 2758 mlog_errno(ret); 2759 goto out; 2760 } 2761 2762 while (right_cpos) { 2763 ret = ocfs2_find_path(inode, right_path, right_cpos); 2764 if (ret) { 2765 mlog_errno(ret); 2766 goto out; 2767 } 2768 2769 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2770 right_path); 2771 2772 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2773 subtree_root, 2774 (unsigned long long) 2775 right_path->p_node[subtree_root].bh->b_blocknr, 2776 right_path->p_tree_depth); 2777 2778 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2779 orig_credits, left_path); 2780 if (ret) { 2781 mlog_errno(ret); 2782 goto out; 2783 } 2784 2785 /* 2786 * Caller might still want to make changes to the 2787 * tree root, so re-add it to the journal here. 2788 */ 2789 ret = ocfs2_path_bh_journal_access(handle, inode, 2790 left_path, 0); 2791 if (ret) { 2792 mlog_errno(ret); 2793 goto out; 2794 } 2795 2796 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2797 right_path, subtree_root, 2798 dealloc, &deleted, et); 2799 if (ret == -EAGAIN) { 2800 /* 2801 * The rotation has to temporarily stop due to 2802 * the right subtree having an empty 2803 * extent. Pass it back to the caller for a 2804 * fixup. 2805 */ 2806 *empty_extent_path = right_path; 2807 right_path = NULL; 2808 goto out; 2809 } 2810 if (ret) { 2811 mlog_errno(ret); 2812 goto out; 2813 } 2814 2815 /* 2816 * The subtree rotate might have removed records on 2817 * the rightmost edge. If so, then rotation is 2818 * complete. 2819 */ 2820 if (deleted) 2821 break; 2822 2823 ocfs2_mv_path(left_path, right_path); 2824 2825 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2826 &right_cpos); 2827 if (ret) { 2828 mlog_errno(ret); 2829 goto out; 2830 } 2831 } 2832 2833 out: 2834 ocfs2_free_path(right_path); 2835 ocfs2_free_path(left_path); 2836 2837 return ret; 2838 } 2839 2840 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2841 struct ocfs2_path *path, 2842 struct ocfs2_cached_dealloc_ctxt *dealloc, 2843 struct ocfs2_extent_tree *et) 2844 { 2845 int ret, subtree_index; 2846 u32 cpos; 2847 struct ocfs2_path *left_path = NULL; 2848 struct ocfs2_extent_block *eb; 2849 struct ocfs2_extent_list *el; 2850 2851 2852 ret = ocfs2_et_sanity_check(inode, et); 2853 if (ret) 2854 goto out; 2855 /* 2856 * There's two ways we handle this depending on 2857 * whether path is the only existing one. 2858 */ 2859 ret = ocfs2_extend_rotate_transaction(handle, 0, 2860 handle->h_buffer_credits, 2861 path); 2862 if (ret) { 2863 mlog_errno(ret); 2864 goto out; 2865 } 2866 2867 ret = ocfs2_journal_access_path(inode, handle, path); 2868 if (ret) { 2869 mlog_errno(ret); 2870 goto out; 2871 } 2872 2873 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2874 if (ret) { 2875 mlog_errno(ret); 2876 goto out; 2877 } 2878 2879 if (cpos) { 2880 /* 2881 * We have a path to the left of this one - it needs 2882 * an update too. 2883 */ 2884 left_path = ocfs2_new_path_from_path(path); 2885 if (!left_path) { 2886 ret = -ENOMEM; 2887 mlog_errno(ret); 2888 goto out; 2889 } 2890 2891 ret = ocfs2_find_path(inode, left_path, cpos); 2892 if (ret) { 2893 mlog_errno(ret); 2894 goto out; 2895 } 2896 2897 ret = ocfs2_journal_access_path(inode, handle, left_path); 2898 if (ret) { 2899 mlog_errno(ret); 2900 goto out; 2901 } 2902 2903 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2904 2905 ocfs2_unlink_subtree(inode, handle, left_path, path, 2906 subtree_index, dealloc); 2907 ocfs2_update_edge_lengths(inode, handle, left_path); 2908 2909 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2910 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2911 } else { 2912 /* 2913 * 'path' is also the leftmost path which 2914 * means it must be the only one. This gets 2915 * handled differently because we want to 2916 * revert the inode back to having extents 2917 * in-line. 2918 */ 2919 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2920 2921 el = et->et_root_el; 2922 el->l_tree_depth = 0; 2923 el->l_next_free_rec = 0; 2924 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2925 2926 ocfs2_et_set_last_eb_blk(et, 0); 2927 } 2928 2929 ocfs2_journal_dirty(handle, path_root_bh(path)); 2930 2931 out: 2932 ocfs2_free_path(left_path); 2933 return ret; 2934 } 2935 2936 /* 2937 * Left rotation of btree records. 2938 * 2939 * In many ways, this is (unsurprisingly) the opposite of right 2940 * rotation. We start at some non-rightmost path containing an empty 2941 * extent in the leaf block. The code works its way to the rightmost 2942 * path by rotating records to the left in every subtree. 2943 * 2944 * This is used by any code which reduces the number of extent records 2945 * in a leaf. After removal, an empty record should be placed in the 2946 * leftmost list position. 2947 * 2948 * This won't handle a length update of the rightmost path records if 2949 * the rightmost tree leaf record is removed so the caller is 2950 * responsible for detecting and correcting that. 2951 */ 2952 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2953 struct ocfs2_path *path, 2954 struct ocfs2_cached_dealloc_ctxt *dealloc, 2955 struct ocfs2_extent_tree *et) 2956 { 2957 int ret, orig_credits = handle->h_buffer_credits; 2958 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2959 struct ocfs2_extent_block *eb; 2960 struct ocfs2_extent_list *el; 2961 2962 el = path_leaf_el(path); 2963 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2964 return 0; 2965 2966 if (path->p_tree_depth == 0) { 2967 rightmost_no_delete: 2968 /* 2969 * Inline extents. This is trivially handled, so do 2970 * it up front. 2971 */ 2972 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2973 path); 2974 if (ret) 2975 mlog_errno(ret); 2976 goto out; 2977 } 2978 2979 /* 2980 * Handle rightmost branch now. There's several cases: 2981 * 1) simple rotation leaving records in there. That's trivial. 2982 * 2) rotation requiring a branch delete - there's no more 2983 * records left. Two cases of this: 2984 * a) There are branches to the left. 2985 * b) This is also the leftmost (the only) branch. 2986 * 2987 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2988 * 2a) we need the left branch so that we can update it with the unlink 2989 * 2b) we need to bring the inode back to inline extents. 2990 */ 2991 2992 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2993 el = &eb->h_list; 2994 if (eb->h_next_leaf_blk == 0) { 2995 /* 2996 * This gets a bit tricky if we're going to delete the 2997 * rightmost path. Get the other cases out of the way 2998 * 1st. 2999 */ 3000 if (le16_to_cpu(el->l_next_free_rec) > 1) 3001 goto rightmost_no_delete; 3002 3003 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3004 ret = -EIO; 3005 ocfs2_error(inode->i_sb, 3006 "Inode %llu has empty extent block at %llu", 3007 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3008 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3009 goto out; 3010 } 3011 3012 /* 3013 * XXX: The caller can not trust "path" any more after 3014 * this as it will have been deleted. What do we do? 3015 * 3016 * In theory the rotate-for-merge code will never get 3017 * here because it'll always ask for a rotate in a 3018 * nonempty list. 3019 */ 3020 3021 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3022 dealloc, et); 3023 if (ret) 3024 mlog_errno(ret); 3025 goto out; 3026 } 3027 3028 /* 3029 * Now we can loop, remembering the path we get from -EAGAIN 3030 * and restarting from there. 3031 */ 3032 try_rotate: 3033 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3034 dealloc, &restart_path, et); 3035 if (ret && ret != -EAGAIN) { 3036 mlog_errno(ret); 3037 goto out; 3038 } 3039 3040 while (ret == -EAGAIN) { 3041 tmp_path = restart_path; 3042 restart_path = NULL; 3043 3044 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3045 tmp_path, dealloc, 3046 &restart_path, et); 3047 if (ret && ret != -EAGAIN) { 3048 mlog_errno(ret); 3049 goto out; 3050 } 3051 3052 ocfs2_free_path(tmp_path); 3053 tmp_path = NULL; 3054 3055 if (ret == 0) 3056 goto try_rotate; 3057 } 3058 3059 out: 3060 ocfs2_free_path(tmp_path); 3061 ocfs2_free_path(restart_path); 3062 return ret; 3063 } 3064 3065 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3066 int index) 3067 { 3068 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3069 unsigned int size; 3070 3071 if (rec->e_leaf_clusters == 0) { 3072 /* 3073 * We consumed all of the merged-from record. An empty 3074 * extent cannot exist anywhere but the 1st array 3075 * position, so move things over if the merged-from 3076 * record doesn't occupy that position. 3077 * 3078 * This creates a new empty extent so the caller 3079 * should be smart enough to have removed any existing 3080 * ones. 3081 */ 3082 if (index > 0) { 3083 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3084 size = index * sizeof(struct ocfs2_extent_rec); 3085 memmove(&el->l_recs[1], &el->l_recs[0], size); 3086 } 3087 3088 /* 3089 * Always memset - the caller doesn't check whether it 3090 * created an empty extent, so there could be junk in 3091 * the other fields. 3092 */ 3093 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3094 } 3095 } 3096 3097 static int ocfs2_get_right_path(struct inode *inode, 3098 struct ocfs2_path *left_path, 3099 struct ocfs2_path **ret_right_path) 3100 { 3101 int ret; 3102 u32 right_cpos; 3103 struct ocfs2_path *right_path = NULL; 3104 struct ocfs2_extent_list *left_el; 3105 3106 *ret_right_path = NULL; 3107 3108 /* This function shouldn't be called for non-trees. */ 3109 BUG_ON(left_path->p_tree_depth == 0); 3110 3111 left_el = path_leaf_el(left_path); 3112 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3113 3114 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3115 &right_cpos); 3116 if (ret) { 3117 mlog_errno(ret); 3118 goto out; 3119 } 3120 3121 /* This function shouldn't be called for the rightmost leaf. */ 3122 BUG_ON(right_cpos == 0); 3123 3124 right_path = ocfs2_new_path_from_path(left_path); 3125 if (!right_path) { 3126 ret = -ENOMEM; 3127 mlog_errno(ret); 3128 goto out; 3129 } 3130 3131 ret = ocfs2_find_path(inode, right_path, right_cpos); 3132 if (ret) { 3133 mlog_errno(ret); 3134 goto out; 3135 } 3136 3137 *ret_right_path = right_path; 3138 out: 3139 if (ret) 3140 ocfs2_free_path(right_path); 3141 return ret; 3142 } 3143 3144 /* 3145 * Remove split_rec clusters from the record at index and merge them 3146 * onto the beginning of the record "next" to it. 3147 * For index < l_count - 1, the next means the extent rec at index + 1. 3148 * For index == l_count - 1, the "next" means the 1st extent rec of the 3149 * next extent block. 3150 */ 3151 static int ocfs2_merge_rec_right(struct inode *inode, 3152 struct ocfs2_path *left_path, 3153 handle_t *handle, 3154 struct ocfs2_extent_rec *split_rec, 3155 int index) 3156 { 3157 int ret, next_free, i; 3158 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3159 struct ocfs2_extent_rec *left_rec; 3160 struct ocfs2_extent_rec *right_rec; 3161 struct ocfs2_extent_list *right_el; 3162 struct ocfs2_path *right_path = NULL; 3163 int subtree_index = 0; 3164 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3165 struct buffer_head *bh = path_leaf_bh(left_path); 3166 struct buffer_head *root_bh = NULL; 3167 3168 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3169 left_rec = &el->l_recs[index]; 3170 3171 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3172 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3173 /* we meet with a cross extent block merge. */ 3174 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3175 if (ret) { 3176 mlog_errno(ret); 3177 goto out; 3178 } 3179 3180 right_el = path_leaf_el(right_path); 3181 next_free = le16_to_cpu(right_el->l_next_free_rec); 3182 BUG_ON(next_free <= 0); 3183 right_rec = &right_el->l_recs[0]; 3184 if (ocfs2_is_empty_extent(right_rec)) { 3185 BUG_ON(next_free <= 1); 3186 right_rec = &right_el->l_recs[1]; 3187 } 3188 3189 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3190 le16_to_cpu(left_rec->e_leaf_clusters) != 3191 le32_to_cpu(right_rec->e_cpos)); 3192 3193 subtree_index = ocfs2_find_subtree_root(inode, 3194 left_path, right_path); 3195 3196 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3197 handle->h_buffer_credits, 3198 right_path); 3199 if (ret) { 3200 mlog_errno(ret); 3201 goto out; 3202 } 3203 3204 root_bh = left_path->p_node[subtree_index].bh; 3205 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3206 3207 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3208 subtree_index); 3209 if (ret) { 3210 mlog_errno(ret); 3211 goto out; 3212 } 3213 3214 for (i = subtree_index + 1; 3215 i < path_num_items(right_path); i++) { 3216 ret = ocfs2_path_bh_journal_access(handle, inode, 3217 right_path, i); 3218 if (ret) { 3219 mlog_errno(ret); 3220 goto out; 3221 } 3222 3223 ret = ocfs2_path_bh_journal_access(handle, inode, 3224 left_path, i); 3225 if (ret) { 3226 mlog_errno(ret); 3227 goto out; 3228 } 3229 } 3230 3231 } else { 3232 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3233 right_rec = &el->l_recs[index + 1]; 3234 } 3235 3236 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3237 path_num_items(left_path) - 1); 3238 if (ret) { 3239 mlog_errno(ret); 3240 goto out; 3241 } 3242 3243 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3244 3245 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3246 le64_add_cpu(&right_rec->e_blkno, 3247 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3248 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3249 3250 ocfs2_cleanup_merge(el, index); 3251 3252 ret = ocfs2_journal_dirty(handle, bh); 3253 if (ret) 3254 mlog_errno(ret); 3255 3256 if (right_path) { 3257 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3258 if (ret) 3259 mlog_errno(ret); 3260 3261 ocfs2_complete_edge_insert(inode, handle, left_path, 3262 right_path, subtree_index); 3263 } 3264 out: 3265 if (right_path) 3266 ocfs2_free_path(right_path); 3267 return ret; 3268 } 3269 3270 static int ocfs2_get_left_path(struct inode *inode, 3271 struct ocfs2_path *right_path, 3272 struct ocfs2_path **ret_left_path) 3273 { 3274 int ret; 3275 u32 left_cpos; 3276 struct ocfs2_path *left_path = NULL; 3277 3278 *ret_left_path = NULL; 3279 3280 /* This function shouldn't be called for non-trees. */ 3281 BUG_ON(right_path->p_tree_depth == 0); 3282 3283 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3284 right_path, &left_cpos); 3285 if (ret) { 3286 mlog_errno(ret); 3287 goto out; 3288 } 3289 3290 /* This function shouldn't be called for the leftmost leaf. */ 3291 BUG_ON(left_cpos == 0); 3292 3293 left_path = ocfs2_new_path_from_path(right_path); 3294 if (!left_path) { 3295 ret = -ENOMEM; 3296 mlog_errno(ret); 3297 goto out; 3298 } 3299 3300 ret = ocfs2_find_path(inode, left_path, left_cpos); 3301 if (ret) { 3302 mlog_errno(ret); 3303 goto out; 3304 } 3305 3306 *ret_left_path = left_path; 3307 out: 3308 if (ret) 3309 ocfs2_free_path(left_path); 3310 return ret; 3311 } 3312 3313 /* 3314 * Remove split_rec clusters from the record at index and merge them 3315 * onto the tail of the record "before" it. 3316 * For index > 0, the "before" means the extent rec at index - 1. 3317 * 3318 * For index == 0, the "before" means the last record of the previous 3319 * extent block. And there is also a situation that we may need to 3320 * remove the rightmost leaf extent block in the right_path and change 3321 * the right path to indicate the new rightmost path. 3322 */ 3323 static int ocfs2_merge_rec_left(struct inode *inode, 3324 struct ocfs2_path *right_path, 3325 handle_t *handle, 3326 struct ocfs2_extent_rec *split_rec, 3327 struct ocfs2_cached_dealloc_ctxt *dealloc, 3328 struct ocfs2_extent_tree *et, 3329 int index) 3330 { 3331 int ret, i, subtree_index = 0, has_empty_extent = 0; 3332 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3333 struct ocfs2_extent_rec *left_rec; 3334 struct ocfs2_extent_rec *right_rec; 3335 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3336 struct buffer_head *bh = path_leaf_bh(right_path); 3337 struct buffer_head *root_bh = NULL; 3338 struct ocfs2_path *left_path = NULL; 3339 struct ocfs2_extent_list *left_el; 3340 3341 BUG_ON(index < 0); 3342 3343 right_rec = &el->l_recs[index]; 3344 if (index == 0) { 3345 /* we meet with a cross extent block merge. */ 3346 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3347 if (ret) { 3348 mlog_errno(ret); 3349 goto out; 3350 } 3351 3352 left_el = path_leaf_el(left_path); 3353 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3354 le16_to_cpu(left_el->l_count)); 3355 3356 left_rec = &left_el->l_recs[ 3357 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3358 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3359 le16_to_cpu(left_rec->e_leaf_clusters) != 3360 le32_to_cpu(split_rec->e_cpos)); 3361 3362 subtree_index = ocfs2_find_subtree_root(inode, 3363 left_path, right_path); 3364 3365 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3366 handle->h_buffer_credits, 3367 left_path); 3368 if (ret) { 3369 mlog_errno(ret); 3370 goto out; 3371 } 3372 3373 root_bh = left_path->p_node[subtree_index].bh; 3374 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3375 3376 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3377 subtree_index); 3378 if (ret) { 3379 mlog_errno(ret); 3380 goto out; 3381 } 3382 3383 for (i = subtree_index + 1; 3384 i < path_num_items(right_path); i++) { 3385 ret = ocfs2_path_bh_journal_access(handle, inode, 3386 right_path, i); 3387 if (ret) { 3388 mlog_errno(ret); 3389 goto out; 3390 } 3391 3392 ret = ocfs2_path_bh_journal_access(handle, inode, 3393 left_path, i); 3394 if (ret) { 3395 mlog_errno(ret); 3396 goto out; 3397 } 3398 } 3399 } else { 3400 left_rec = &el->l_recs[index - 1]; 3401 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3402 has_empty_extent = 1; 3403 } 3404 3405 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3406 path_num_items(right_path) - 1); 3407 if (ret) { 3408 mlog_errno(ret); 3409 goto out; 3410 } 3411 3412 if (has_empty_extent && index == 1) { 3413 /* 3414 * The easy case - we can just plop the record right in. 3415 */ 3416 *left_rec = *split_rec; 3417 3418 has_empty_extent = 0; 3419 } else 3420 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3421 3422 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3423 le64_add_cpu(&right_rec->e_blkno, 3424 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3425 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3426 3427 ocfs2_cleanup_merge(el, index); 3428 3429 ret = ocfs2_journal_dirty(handle, bh); 3430 if (ret) 3431 mlog_errno(ret); 3432 3433 if (left_path) { 3434 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3435 if (ret) 3436 mlog_errno(ret); 3437 3438 /* 3439 * In the situation that the right_rec is empty and the extent 3440 * block is empty also, ocfs2_complete_edge_insert can't handle 3441 * it and we need to delete the right extent block. 3442 */ 3443 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3444 le16_to_cpu(el->l_next_free_rec) == 1) { 3445 3446 ret = ocfs2_remove_rightmost_path(inode, handle, 3447 right_path, 3448 dealloc, et); 3449 if (ret) { 3450 mlog_errno(ret); 3451 goto out; 3452 } 3453 3454 /* Now the rightmost extent block has been deleted. 3455 * So we use the new rightmost path. 3456 */ 3457 ocfs2_mv_path(right_path, left_path); 3458 left_path = NULL; 3459 } else 3460 ocfs2_complete_edge_insert(inode, handle, left_path, 3461 right_path, subtree_index); 3462 } 3463 out: 3464 if (left_path) 3465 ocfs2_free_path(left_path); 3466 return ret; 3467 } 3468 3469 static int ocfs2_try_to_merge_extent(struct inode *inode, 3470 handle_t *handle, 3471 struct ocfs2_path *path, 3472 int split_index, 3473 struct ocfs2_extent_rec *split_rec, 3474 struct ocfs2_cached_dealloc_ctxt *dealloc, 3475 struct ocfs2_merge_ctxt *ctxt, 3476 struct ocfs2_extent_tree *et) 3477 3478 { 3479 int ret = 0; 3480 struct ocfs2_extent_list *el = path_leaf_el(path); 3481 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3482 3483 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3484 3485 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3486 /* 3487 * The merge code will need to create an empty 3488 * extent to take the place of the newly 3489 * emptied slot. Remove any pre-existing empty 3490 * extents - having more than one in a leaf is 3491 * illegal. 3492 */ 3493 ret = ocfs2_rotate_tree_left(inode, handle, path, 3494 dealloc, et); 3495 if (ret) { 3496 mlog_errno(ret); 3497 goto out; 3498 } 3499 split_index--; 3500 rec = &el->l_recs[split_index]; 3501 } 3502 3503 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3504 /* 3505 * Left-right contig implies this. 3506 */ 3507 BUG_ON(!ctxt->c_split_covers_rec); 3508 3509 /* 3510 * Since the leftright insert always covers the entire 3511 * extent, this call will delete the insert record 3512 * entirely, resulting in an empty extent record added to 3513 * the extent block. 3514 * 3515 * Since the adding of an empty extent shifts 3516 * everything back to the right, there's no need to 3517 * update split_index here. 3518 * 3519 * When the split_index is zero, we need to merge it to the 3520 * prevoius extent block. It is more efficient and easier 3521 * if we do merge_right first and merge_left later. 3522 */ 3523 ret = ocfs2_merge_rec_right(inode, path, 3524 handle, split_rec, 3525 split_index); 3526 if (ret) { 3527 mlog_errno(ret); 3528 goto out; 3529 } 3530 3531 /* 3532 * We can only get this from logic error above. 3533 */ 3534 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3535 3536 /* The merge left us with an empty extent, remove it. */ 3537 ret = ocfs2_rotate_tree_left(inode, handle, path, 3538 dealloc, et); 3539 if (ret) { 3540 mlog_errno(ret); 3541 goto out; 3542 } 3543 3544 rec = &el->l_recs[split_index]; 3545 3546 /* 3547 * Note that we don't pass split_rec here on purpose - 3548 * we've merged it into the rec already. 3549 */ 3550 ret = ocfs2_merge_rec_left(inode, path, 3551 handle, rec, 3552 dealloc, et, 3553 split_index); 3554 3555 if (ret) { 3556 mlog_errno(ret); 3557 goto out; 3558 } 3559 3560 ret = ocfs2_rotate_tree_left(inode, handle, path, 3561 dealloc, et); 3562 /* 3563 * Error from this last rotate is not critical, so 3564 * print but don't bubble it up. 3565 */ 3566 if (ret) 3567 mlog_errno(ret); 3568 ret = 0; 3569 } else { 3570 /* 3571 * Merge a record to the left or right. 3572 * 3573 * 'contig_type' is relative to the existing record, 3574 * so for example, if we're "right contig", it's to 3575 * the record on the left (hence the left merge). 3576 */ 3577 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3578 ret = ocfs2_merge_rec_left(inode, 3579 path, 3580 handle, split_rec, 3581 dealloc, et, 3582 split_index); 3583 if (ret) { 3584 mlog_errno(ret); 3585 goto out; 3586 } 3587 } else { 3588 ret = ocfs2_merge_rec_right(inode, 3589 path, 3590 handle, split_rec, 3591 split_index); 3592 if (ret) { 3593 mlog_errno(ret); 3594 goto out; 3595 } 3596 } 3597 3598 if (ctxt->c_split_covers_rec) { 3599 /* 3600 * The merge may have left an empty extent in 3601 * our leaf. Try to rotate it away. 3602 */ 3603 ret = ocfs2_rotate_tree_left(inode, handle, path, 3604 dealloc, et); 3605 if (ret) 3606 mlog_errno(ret); 3607 ret = 0; 3608 } 3609 } 3610 3611 out: 3612 return ret; 3613 } 3614 3615 static void ocfs2_subtract_from_rec(struct super_block *sb, 3616 enum ocfs2_split_type split, 3617 struct ocfs2_extent_rec *rec, 3618 struct ocfs2_extent_rec *split_rec) 3619 { 3620 u64 len_blocks; 3621 3622 len_blocks = ocfs2_clusters_to_blocks(sb, 3623 le16_to_cpu(split_rec->e_leaf_clusters)); 3624 3625 if (split == SPLIT_LEFT) { 3626 /* 3627 * Region is on the left edge of the existing 3628 * record. 3629 */ 3630 le32_add_cpu(&rec->e_cpos, 3631 le16_to_cpu(split_rec->e_leaf_clusters)); 3632 le64_add_cpu(&rec->e_blkno, len_blocks); 3633 le16_add_cpu(&rec->e_leaf_clusters, 3634 -le16_to_cpu(split_rec->e_leaf_clusters)); 3635 } else { 3636 /* 3637 * Region is on the right edge of the existing 3638 * record. 3639 */ 3640 le16_add_cpu(&rec->e_leaf_clusters, 3641 -le16_to_cpu(split_rec->e_leaf_clusters)); 3642 } 3643 } 3644 3645 /* 3646 * Do the final bits of extent record insertion at the target leaf 3647 * list. If this leaf is part of an allocation tree, it is assumed 3648 * that the tree above has been prepared. 3649 */ 3650 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3651 struct ocfs2_extent_list *el, 3652 struct ocfs2_insert_type *insert, 3653 struct inode *inode) 3654 { 3655 int i = insert->ins_contig_index; 3656 unsigned int range; 3657 struct ocfs2_extent_rec *rec; 3658 3659 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3660 3661 if (insert->ins_split != SPLIT_NONE) { 3662 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3663 BUG_ON(i == -1); 3664 rec = &el->l_recs[i]; 3665 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3666 insert_rec); 3667 goto rotate; 3668 } 3669 3670 /* 3671 * Contiguous insert - either left or right. 3672 */ 3673 if (insert->ins_contig != CONTIG_NONE) { 3674 rec = &el->l_recs[i]; 3675 if (insert->ins_contig == CONTIG_LEFT) { 3676 rec->e_blkno = insert_rec->e_blkno; 3677 rec->e_cpos = insert_rec->e_cpos; 3678 } 3679 le16_add_cpu(&rec->e_leaf_clusters, 3680 le16_to_cpu(insert_rec->e_leaf_clusters)); 3681 return; 3682 } 3683 3684 /* 3685 * Handle insert into an empty leaf. 3686 */ 3687 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3688 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3689 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3690 el->l_recs[0] = *insert_rec; 3691 el->l_next_free_rec = cpu_to_le16(1); 3692 return; 3693 } 3694 3695 /* 3696 * Appending insert. 3697 */ 3698 if (insert->ins_appending == APPEND_TAIL) { 3699 i = le16_to_cpu(el->l_next_free_rec) - 1; 3700 rec = &el->l_recs[i]; 3701 range = le32_to_cpu(rec->e_cpos) 3702 + le16_to_cpu(rec->e_leaf_clusters); 3703 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3704 3705 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3706 le16_to_cpu(el->l_count), 3707 "inode %lu, depth %u, count %u, next free %u, " 3708 "rec.cpos %u, rec.clusters %u, " 3709 "insert.cpos %u, insert.clusters %u\n", 3710 inode->i_ino, 3711 le16_to_cpu(el->l_tree_depth), 3712 le16_to_cpu(el->l_count), 3713 le16_to_cpu(el->l_next_free_rec), 3714 le32_to_cpu(el->l_recs[i].e_cpos), 3715 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3716 le32_to_cpu(insert_rec->e_cpos), 3717 le16_to_cpu(insert_rec->e_leaf_clusters)); 3718 i++; 3719 el->l_recs[i] = *insert_rec; 3720 le16_add_cpu(&el->l_next_free_rec, 1); 3721 return; 3722 } 3723 3724 rotate: 3725 /* 3726 * Ok, we have to rotate. 3727 * 3728 * At this point, it is safe to assume that inserting into an 3729 * empty leaf and appending to a leaf have both been handled 3730 * above. 3731 * 3732 * This leaf needs to have space, either by the empty 1st 3733 * extent record, or by virtue of an l_next_rec < l_count. 3734 */ 3735 ocfs2_rotate_leaf(el, insert_rec); 3736 } 3737 3738 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3739 handle_t *handle, 3740 struct ocfs2_path *path, 3741 struct ocfs2_extent_rec *insert_rec) 3742 { 3743 int ret, i, next_free; 3744 struct buffer_head *bh; 3745 struct ocfs2_extent_list *el; 3746 struct ocfs2_extent_rec *rec; 3747 3748 /* 3749 * Update everything except the leaf block. 3750 */ 3751 for (i = 0; i < path->p_tree_depth; i++) { 3752 bh = path->p_node[i].bh; 3753 el = path->p_node[i].el; 3754 3755 next_free = le16_to_cpu(el->l_next_free_rec); 3756 if (next_free == 0) { 3757 ocfs2_error(inode->i_sb, 3758 "Dinode %llu has a bad extent list", 3759 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3760 ret = -EIO; 3761 return; 3762 } 3763 3764 rec = &el->l_recs[next_free - 1]; 3765 3766 rec->e_int_clusters = insert_rec->e_cpos; 3767 le32_add_cpu(&rec->e_int_clusters, 3768 le16_to_cpu(insert_rec->e_leaf_clusters)); 3769 le32_add_cpu(&rec->e_int_clusters, 3770 -le32_to_cpu(rec->e_cpos)); 3771 3772 ret = ocfs2_journal_dirty(handle, bh); 3773 if (ret) 3774 mlog_errno(ret); 3775 3776 } 3777 } 3778 3779 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3780 struct ocfs2_extent_rec *insert_rec, 3781 struct ocfs2_path *right_path, 3782 struct ocfs2_path **ret_left_path) 3783 { 3784 int ret, next_free; 3785 struct ocfs2_extent_list *el; 3786 struct ocfs2_path *left_path = NULL; 3787 3788 *ret_left_path = NULL; 3789 3790 /* 3791 * This shouldn't happen for non-trees. The extent rec cluster 3792 * count manipulation below only works for interior nodes. 3793 */ 3794 BUG_ON(right_path->p_tree_depth == 0); 3795 3796 /* 3797 * If our appending insert is at the leftmost edge of a leaf, 3798 * then we might need to update the rightmost records of the 3799 * neighboring path. 3800 */ 3801 el = path_leaf_el(right_path); 3802 next_free = le16_to_cpu(el->l_next_free_rec); 3803 if (next_free == 0 || 3804 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3805 u32 left_cpos; 3806 3807 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3808 &left_cpos); 3809 if (ret) { 3810 mlog_errno(ret); 3811 goto out; 3812 } 3813 3814 mlog(0, "Append may need a left path update. cpos: %u, " 3815 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3816 left_cpos); 3817 3818 /* 3819 * No need to worry if the append is already in the 3820 * leftmost leaf. 3821 */ 3822 if (left_cpos) { 3823 left_path = ocfs2_new_path_from_path(right_path); 3824 if (!left_path) { 3825 ret = -ENOMEM; 3826 mlog_errno(ret); 3827 goto out; 3828 } 3829 3830 ret = ocfs2_find_path(inode, left_path, left_cpos); 3831 if (ret) { 3832 mlog_errno(ret); 3833 goto out; 3834 } 3835 3836 /* 3837 * ocfs2_insert_path() will pass the left_path to the 3838 * journal for us. 3839 */ 3840 } 3841 } 3842 3843 ret = ocfs2_journal_access_path(inode, handle, right_path); 3844 if (ret) { 3845 mlog_errno(ret); 3846 goto out; 3847 } 3848 3849 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3850 3851 *ret_left_path = left_path; 3852 ret = 0; 3853 out: 3854 if (ret != 0) 3855 ocfs2_free_path(left_path); 3856 3857 return ret; 3858 } 3859 3860 static void ocfs2_split_record(struct inode *inode, 3861 struct ocfs2_path *left_path, 3862 struct ocfs2_path *right_path, 3863 struct ocfs2_extent_rec *split_rec, 3864 enum ocfs2_split_type split) 3865 { 3866 int index; 3867 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3868 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3869 struct ocfs2_extent_rec *rec, *tmprec; 3870 3871 right_el = path_leaf_el(right_path); 3872 if (left_path) 3873 left_el = path_leaf_el(left_path); 3874 3875 el = right_el; 3876 insert_el = right_el; 3877 index = ocfs2_search_extent_list(el, cpos); 3878 if (index != -1) { 3879 if (index == 0 && left_path) { 3880 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3881 3882 /* 3883 * This typically means that the record 3884 * started in the left path but moved to the 3885 * right as a result of rotation. We either 3886 * move the existing record to the left, or we 3887 * do the later insert there. 3888 * 3889 * In this case, the left path should always 3890 * exist as the rotate code will have passed 3891 * it back for a post-insert update. 3892 */ 3893 3894 if (split == SPLIT_LEFT) { 3895 /* 3896 * It's a left split. Since we know 3897 * that the rotate code gave us an 3898 * empty extent in the left path, we 3899 * can just do the insert there. 3900 */ 3901 insert_el = left_el; 3902 } else { 3903 /* 3904 * Right split - we have to move the 3905 * existing record over to the left 3906 * leaf. The insert will be into the 3907 * newly created empty extent in the 3908 * right leaf. 3909 */ 3910 tmprec = &right_el->l_recs[index]; 3911 ocfs2_rotate_leaf(left_el, tmprec); 3912 el = left_el; 3913 3914 memset(tmprec, 0, sizeof(*tmprec)); 3915 index = ocfs2_search_extent_list(left_el, cpos); 3916 BUG_ON(index == -1); 3917 } 3918 } 3919 } else { 3920 BUG_ON(!left_path); 3921 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3922 /* 3923 * Left path is easy - we can just allow the insert to 3924 * happen. 3925 */ 3926 el = left_el; 3927 insert_el = left_el; 3928 index = ocfs2_search_extent_list(el, cpos); 3929 BUG_ON(index == -1); 3930 } 3931 3932 rec = &el->l_recs[index]; 3933 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3934 ocfs2_rotate_leaf(insert_el, split_rec); 3935 } 3936 3937 /* 3938 * This function only does inserts on an allocation b-tree. For tree 3939 * depth = 0, ocfs2_insert_at_leaf() is called directly. 3940 * 3941 * right_path is the path we want to do the actual insert 3942 * in. left_path should only be passed in if we need to update that 3943 * portion of the tree after an edge insert. 3944 */ 3945 static int ocfs2_insert_path(struct inode *inode, 3946 handle_t *handle, 3947 struct ocfs2_path *left_path, 3948 struct ocfs2_path *right_path, 3949 struct ocfs2_extent_rec *insert_rec, 3950 struct ocfs2_insert_type *insert) 3951 { 3952 int ret, subtree_index; 3953 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3954 3955 if (left_path) { 3956 int credits = handle->h_buffer_credits; 3957 3958 /* 3959 * There's a chance that left_path got passed back to 3960 * us without being accounted for in the 3961 * journal. Extend our transaction here to be sure we 3962 * can change those blocks. 3963 */ 3964 credits += left_path->p_tree_depth; 3965 3966 ret = ocfs2_extend_trans(handle, credits); 3967 if (ret < 0) { 3968 mlog_errno(ret); 3969 goto out; 3970 } 3971 3972 ret = ocfs2_journal_access_path(inode, handle, left_path); 3973 if (ret < 0) { 3974 mlog_errno(ret); 3975 goto out; 3976 } 3977 } 3978 3979 /* 3980 * Pass both paths to the journal. The majority of inserts 3981 * will be touching all components anyway. 3982 */ 3983 ret = ocfs2_journal_access_path(inode, handle, right_path); 3984 if (ret < 0) { 3985 mlog_errno(ret); 3986 goto out; 3987 } 3988 3989 if (insert->ins_split != SPLIT_NONE) { 3990 /* 3991 * We could call ocfs2_insert_at_leaf() for some types 3992 * of splits, but it's easier to just let one separate 3993 * function sort it all out. 3994 */ 3995 ocfs2_split_record(inode, left_path, right_path, 3996 insert_rec, insert->ins_split); 3997 3998 /* 3999 * Split might have modified either leaf and we don't 4000 * have a guarantee that the later edge insert will 4001 * dirty this for us. 4002 */ 4003 if (left_path) 4004 ret = ocfs2_journal_dirty(handle, 4005 path_leaf_bh(left_path)); 4006 if (ret) 4007 mlog_errno(ret); 4008 } else 4009 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4010 insert, inode); 4011 4012 ret = ocfs2_journal_dirty(handle, leaf_bh); 4013 if (ret) 4014 mlog_errno(ret); 4015 4016 if (left_path) { 4017 /* 4018 * The rotate code has indicated that we need to fix 4019 * up portions of the tree after the insert. 4020 * 4021 * XXX: Should we extend the transaction here? 4022 */ 4023 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4024 right_path); 4025 ocfs2_complete_edge_insert(inode, handle, left_path, 4026 right_path, subtree_index); 4027 } 4028 4029 ret = 0; 4030 out: 4031 return ret; 4032 } 4033 4034 static int ocfs2_do_insert_extent(struct inode *inode, 4035 handle_t *handle, 4036 struct ocfs2_extent_tree *et, 4037 struct ocfs2_extent_rec *insert_rec, 4038 struct ocfs2_insert_type *type) 4039 { 4040 int ret, rotate = 0; 4041 u32 cpos; 4042 struct ocfs2_path *right_path = NULL; 4043 struct ocfs2_path *left_path = NULL; 4044 struct ocfs2_extent_list *el; 4045 4046 el = et->et_root_el; 4047 4048 ret = ocfs2_et_root_journal_access(handle, inode, et, 4049 OCFS2_JOURNAL_ACCESS_WRITE); 4050 if (ret) { 4051 mlog_errno(ret); 4052 goto out; 4053 } 4054 4055 if (le16_to_cpu(el->l_tree_depth) == 0) { 4056 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4057 goto out_update_clusters; 4058 } 4059 4060 right_path = ocfs2_new_path_from_et(et); 4061 if (!right_path) { 4062 ret = -ENOMEM; 4063 mlog_errno(ret); 4064 goto out; 4065 } 4066 4067 /* 4068 * Determine the path to start with. Rotations need the 4069 * rightmost path, everything else can go directly to the 4070 * target leaf. 4071 */ 4072 cpos = le32_to_cpu(insert_rec->e_cpos); 4073 if (type->ins_appending == APPEND_NONE && 4074 type->ins_contig == CONTIG_NONE) { 4075 rotate = 1; 4076 cpos = UINT_MAX; 4077 } 4078 4079 ret = ocfs2_find_path(inode, right_path, cpos); 4080 if (ret) { 4081 mlog_errno(ret); 4082 goto out; 4083 } 4084 4085 /* 4086 * Rotations and appends need special treatment - they modify 4087 * parts of the tree's above them. 4088 * 4089 * Both might pass back a path immediate to the left of the 4090 * one being inserted to. This will be cause 4091 * ocfs2_insert_path() to modify the rightmost records of 4092 * left_path to account for an edge insert. 4093 * 4094 * XXX: When modifying this code, keep in mind that an insert 4095 * can wind up skipping both of these two special cases... 4096 */ 4097 if (rotate) { 4098 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4099 le32_to_cpu(insert_rec->e_cpos), 4100 right_path, &left_path); 4101 if (ret) { 4102 mlog_errno(ret); 4103 goto out; 4104 } 4105 4106 /* 4107 * ocfs2_rotate_tree_right() might have extended the 4108 * transaction without re-journaling our tree root. 4109 */ 4110 ret = ocfs2_et_root_journal_access(handle, inode, et, 4111 OCFS2_JOURNAL_ACCESS_WRITE); 4112 if (ret) { 4113 mlog_errno(ret); 4114 goto out; 4115 } 4116 } else if (type->ins_appending == APPEND_TAIL 4117 && type->ins_contig != CONTIG_LEFT) { 4118 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4119 right_path, &left_path); 4120 if (ret) { 4121 mlog_errno(ret); 4122 goto out; 4123 } 4124 } 4125 4126 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4127 insert_rec, type); 4128 if (ret) { 4129 mlog_errno(ret); 4130 goto out; 4131 } 4132 4133 out_update_clusters: 4134 if (type->ins_split == SPLIT_NONE) 4135 ocfs2_et_update_clusters(inode, et, 4136 le16_to_cpu(insert_rec->e_leaf_clusters)); 4137 4138 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4139 if (ret) 4140 mlog_errno(ret); 4141 4142 out: 4143 ocfs2_free_path(left_path); 4144 ocfs2_free_path(right_path); 4145 4146 return ret; 4147 } 4148 4149 static enum ocfs2_contig_type 4150 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4151 struct ocfs2_extent_list *el, int index, 4152 struct ocfs2_extent_rec *split_rec) 4153 { 4154 int status; 4155 enum ocfs2_contig_type ret = CONTIG_NONE; 4156 u32 left_cpos, right_cpos; 4157 struct ocfs2_extent_rec *rec = NULL; 4158 struct ocfs2_extent_list *new_el; 4159 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4160 struct buffer_head *bh; 4161 struct ocfs2_extent_block *eb; 4162 4163 if (index > 0) { 4164 rec = &el->l_recs[index - 1]; 4165 } else if (path->p_tree_depth > 0) { 4166 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4167 path, &left_cpos); 4168 if (status) 4169 goto out; 4170 4171 if (left_cpos != 0) { 4172 left_path = ocfs2_new_path_from_path(path); 4173 if (!left_path) 4174 goto out; 4175 4176 status = ocfs2_find_path(inode, left_path, left_cpos); 4177 if (status) 4178 goto out; 4179 4180 new_el = path_leaf_el(left_path); 4181 4182 if (le16_to_cpu(new_el->l_next_free_rec) != 4183 le16_to_cpu(new_el->l_count)) { 4184 bh = path_leaf_bh(left_path); 4185 eb = (struct ocfs2_extent_block *)bh->b_data; 4186 ocfs2_error(inode->i_sb, 4187 "Extent block #%llu has an " 4188 "invalid l_next_free_rec of " 4189 "%d. It should have " 4190 "matched the l_count of %d", 4191 (unsigned long long)le64_to_cpu(eb->h_blkno), 4192 le16_to_cpu(new_el->l_next_free_rec), 4193 le16_to_cpu(new_el->l_count)); 4194 status = -EINVAL; 4195 goto out; 4196 } 4197 rec = &new_el->l_recs[ 4198 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4199 } 4200 } 4201 4202 /* 4203 * We're careful to check for an empty extent record here - 4204 * the merge code will know what to do if it sees one. 4205 */ 4206 if (rec) { 4207 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4208 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4209 ret = CONTIG_RIGHT; 4210 } else { 4211 ret = ocfs2_extent_contig(inode, rec, split_rec); 4212 } 4213 } 4214 4215 rec = NULL; 4216 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4217 rec = &el->l_recs[index + 1]; 4218 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4219 path->p_tree_depth > 0) { 4220 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4221 path, &right_cpos); 4222 if (status) 4223 goto out; 4224 4225 if (right_cpos == 0) 4226 goto out; 4227 4228 right_path = ocfs2_new_path_from_path(path); 4229 if (!right_path) 4230 goto out; 4231 4232 status = ocfs2_find_path(inode, right_path, right_cpos); 4233 if (status) 4234 goto out; 4235 4236 new_el = path_leaf_el(right_path); 4237 rec = &new_el->l_recs[0]; 4238 if (ocfs2_is_empty_extent(rec)) { 4239 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4240 bh = path_leaf_bh(right_path); 4241 eb = (struct ocfs2_extent_block *)bh->b_data; 4242 ocfs2_error(inode->i_sb, 4243 "Extent block #%llu has an " 4244 "invalid l_next_free_rec of %d", 4245 (unsigned long long)le64_to_cpu(eb->h_blkno), 4246 le16_to_cpu(new_el->l_next_free_rec)); 4247 status = -EINVAL; 4248 goto out; 4249 } 4250 rec = &new_el->l_recs[1]; 4251 } 4252 } 4253 4254 if (rec) { 4255 enum ocfs2_contig_type contig_type; 4256 4257 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4258 4259 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4260 ret = CONTIG_LEFTRIGHT; 4261 else if (ret == CONTIG_NONE) 4262 ret = contig_type; 4263 } 4264 4265 out: 4266 if (left_path) 4267 ocfs2_free_path(left_path); 4268 if (right_path) 4269 ocfs2_free_path(right_path); 4270 4271 return ret; 4272 } 4273 4274 static void ocfs2_figure_contig_type(struct inode *inode, 4275 struct ocfs2_insert_type *insert, 4276 struct ocfs2_extent_list *el, 4277 struct ocfs2_extent_rec *insert_rec, 4278 struct ocfs2_extent_tree *et) 4279 { 4280 int i; 4281 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4282 4283 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4284 4285 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4286 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4287 insert_rec); 4288 if (contig_type != CONTIG_NONE) { 4289 insert->ins_contig_index = i; 4290 break; 4291 } 4292 } 4293 insert->ins_contig = contig_type; 4294 4295 if (insert->ins_contig != CONTIG_NONE) { 4296 struct ocfs2_extent_rec *rec = 4297 &el->l_recs[insert->ins_contig_index]; 4298 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4299 le16_to_cpu(insert_rec->e_leaf_clusters); 4300 4301 /* 4302 * Caller might want us to limit the size of extents, don't 4303 * calculate contiguousness if we might exceed that limit. 4304 */ 4305 if (et->et_max_leaf_clusters && 4306 (len > et->et_max_leaf_clusters)) 4307 insert->ins_contig = CONTIG_NONE; 4308 } 4309 } 4310 4311 /* 4312 * This should only be called against the righmost leaf extent list. 4313 * 4314 * ocfs2_figure_appending_type() will figure out whether we'll have to 4315 * insert at the tail of the rightmost leaf. 4316 * 4317 * This should also work against the root extent list for tree's with 0 4318 * depth. If we consider the root extent list to be the rightmost leaf node 4319 * then the logic here makes sense. 4320 */ 4321 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4322 struct ocfs2_extent_list *el, 4323 struct ocfs2_extent_rec *insert_rec) 4324 { 4325 int i; 4326 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4327 struct ocfs2_extent_rec *rec; 4328 4329 insert->ins_appending = APPEND_NONE; 4330 4331 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4332 4333 if (!el->l_next_free_rec) 4334 goto set_tail_append; 4335 4336 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4337 /* Were all records empty? */ 4338 if (le16_to_cpu(el->l_next_free_rec) == 1) 4339 goto set_tail_append; 4340 } 4341 4342 i = le16_to_cpu(el->l_next_free_rec) - 1; 4343 rec = &el->l_recs[i]; 4344 4345 if (cpos >= 4346 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4347 goto set_tail_append; 4348 4349 return; 4350 4351 set_tail_append: 4352 insert->ins_appending = APPEND_TAIL; 4353 } 4354 4355 /* 4356 * Helper function called at the begining of an insert. 4357 * 4358 * This computes a few things that are commonly used in the process of 4359 * inserting into the btree: 4360 * - Whether the new extent is contiguous with an existing one. 4361 * - The current tree depth. 4362 * - Whether the insert is an appending one. 4363 * - The total # of free records in the tree. 4364 * 4365 * All of the information is stored on the ocfs2_insert_type 4366 * structure. 4367 */ 4368 static int ocfs2_figure_insert_type(struct inode *inode, 4369 struct ocfs2_extent_tree *et, 4370 struct buffer_head **last_eb_bh, 4371 struct ocfs2_extent_rec *insert_rec, 4372 int *free_records, 4373 struct ocfs2_insert_type *insert) 4374 { 4375 int ret; 4376 struct ocfs2_extent_block *eb; 4377 struct ocfs2_extent_list *el; 4378 struct ocfs2_path *path = NULL; 4379 struct buffer_head *bh = NULL; 4380 4381 insert->ins_split = SPLIT_NONE; 4382 4383 el = et->et_root_el; 4384 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4385 4386 if (el->l_tree_depth) { 4387 /* 4388 * If we have tree depth, we read in the 4389 * rightmost extent block ahead of time as 4390 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4391 * may want it later. 4392 */ 4393 ret = ocfs2_read_extent_block(inode, 4394 ocfs2_et_get_last_eb_blk(et), 4395 &bh); 4396 if (ret) { 4397 mlog_exit(ret); 4398 goto out; 4399 } 4400 eb = (struct ocfs2_extent_block *) bh->b_data; 4401 el = &eb->h_list; 4402 } 4403 4404 /* 4405 * Unless we have a contiguous insert, we'll need to know if 4406 * there is room left in our allocation tree for another 4407 * extent record. 4408 * 4409 * XXX: This test is simplistic, we can search for empty 4410 * extent records too. 4411 */ 4412 *free_records = le16_to_cpu(el->l_count) - 4413 le16_to_cpu(el->l_next_free_rec); 4414 4415 if (!insert->ins_tree_depth) { 4416 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4417 ocfs2_figure_appending_type(insert, el, insert_rec); 4418 return 0; 4419 } 4420 4421 path = ocfs2_new_path_from_et(et); 4422 if (!path) { 4423 ret = -ENOMEM; 4424 mlog_errno(ret); 4425 goto out; 4426 } 4427 4428 /* 4429 * In the case that we're inserting past what the tree 4430 * currently accounts for, ocfs2_find_path() will return for 4431 * us the rightmost tree path. This is accounted for below in 4432 * the appending code. 4433 */ 4434 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4435 if (ret) { 4436 mlog_errno(ret); 4437 goto out; 4438 } 4439 4440 el = path_leaf_el(path); 4441 4442 /* 4443 * Now that we have the path, there's two things we want to determine: 4444 * 1) Contiguousness (also set contig_index if this is so) 4445 * 4446 * 2) Are we doing an append? We can trivially break this up 4447 * into two types of appends: simple record append, or a 4448 * rotate inside the tail leaf. 4449 */ 4450 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4451 4452 /* 4453 * The insert code isn't quite ready to deal with all cases of 4454 * left contiguousness. Specifically, if it's an insert into 4455 * the 1st record in a leaf, it will require the adjustment of 4456 * cluster count on the last record of the path directly to it's 4457 * left. For now, just catch that case and fool the layers 4458 * above us. This works just fine for tree_depth == 0, which 4459 * is why we allow that above. 4460 */ 4461 if (insert->ins_contig == CONTIG_LEFT && 4462 insert->ins_contig_index == 0) 4463 insert->ins_contig = CONTIG_NONE; 4464 4465 /* 4466 * Ok, so we can simply compare against last_eb to figure out 4467 * whether the path doesn't exist. This will only happen in 4468 * the case that we're doing a tail append, so maybe we can 4469 * take advantage of that information somehow. 4470 */ 4471 if (ocfs2_et_get_last_eb_blk(et) == 4472 path_leaf_bh(path)->b_blocknr) { 4473 /* 4474 * Ok, ocfs2_find_path() returned us the rightmost 4475 * tree path. This might be an appending insert. There are 4476 * two cases: 4477 * 1) We're doing a true append at the tail: 4478 * -This might even be off the end of the leaf 4479 * 2) We're "appending" by rotating in the tail 4480 */ 4481 ocfs2_figure_appending_type(insert, el, insert_rec); 4482 } 4483 4484 out: 4485 ocfs2_free_path(path); 4486 4487 if (ret == 0) 4488 *last_eb_bh = bh; 4489 else 4490 brelse(bh); 4491 return ret; 4492 } 4493 4494 /* 4495 * Insert an extent into an inode btree. 4496 * 4497 * The caller needs to update fe->i_clusters 4498 */ 4499 int ocfs2_insert_extent(struct ocfs2_super *osb, 4500 handle_t *handle, 4501 struct inode *inode, 4502 struct ocfs2_extent_tree *et, 4503 u32 cpos, 4504 u64 start_blk, 4505 u32 new_clusters, 4506 u8 flags, 4507 struct ocfs2_alloc_context *meta_ac) 4508 { 4509 int status; 4510 int uninitialized_var(free_records); 4511 struct buffer_head *last_eb_bh = NULL; 4512 struct ocfs2_insert_type insert = {0, }; 4513 struct ocfs2_extent_rec rec; 4514 4515 mlog(0, "add %u clusters at position %u to inode %llu\n", 4516 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4517 4518 memset(&rec, 0, sizeof(rec)); 4519 rec.e_cpos = cpu_to_le32(cpos); 4520 rec.e_blkno = cpu_to_le64(start_blk); 4521 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4522 rec.e_flags = flags; 4523 status = ocfs2_et_insert_check(inode, et, &rec); 4524 if (status) { 4525 mlog_errno(status); 4526 goto bail; 4527 } 4528 4529 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4530 &free_records, &insert); 4531 if (status < 0) { 4532 mlog_errno(status); 4533 goto bail; 4534 } 4535 4536 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4537 "Insert.contig_index: %d, Insert.free_records: %d, " 4538 "Insert.tree_depth: %d\n", 4539 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4540 free_records, insert.ins_tree_depth); 4541 4542 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4543 status = ocfs2_grow_tree(inode, handle, et, 4544 &insert.ins_tree_depth, &last_eb_bh, 4545 meta_ac); 4546 if (status) { 4547 mlog_errno(status); 4548 goto bail; 4549 } 4550 } 4551 4552 /* Finally, we can add clusters. This might rotate the tree for us. */ 4553 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4554 if (status < 0) 4555 mlog_errno(status); 4556 else if (et->et_ops == &ocfs2_dinode_et_ops) 4557 ocfs2_extent_map_insert_rec(inode, &rec); 4558 4559 bail: 4560 brelse(last_eb_bh); 4561 4562 mlog_exit(status); 4563 return status; 4564 } 4565 4566 /* 4567 * Allcate and add clusters into the extent b-tree. 4568 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4569 * The extent b-tree's root is specified by et, and 4570 * it is not limited to the file storage. Any extent tree can use this 4571 * function if it implements the proper ocfs2_extent_tree. 4572 */ 4573 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4574 struct inode *inode, 4575 u32 *logical_offset, 4576 u32 clusters_to_add, 4577 int mark_unwritten, 4578 struct ocfs2_extent_tree *et, 4579 handle_t *handle, 4580 struct ocfs2_alloc_context *data_ac, 4581 struct ocfs2_alloc_context *meta_ac, 4582 enum ocfs2_alloc_restarted *reason_ret) 4583 { 4584 int status = 0; 4585 int free_extents; 4586 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4587 u32 bit_off, num_bits; 4588 u64 block; 4589 u8 flags = 0; 4590 4591 BUG_ON(!clusters_to_add); 4592 4593 if (mark_unwritten) 4594 flags = OCFS2_EXT_UNWRITTEN; 4595 4596 free_extents = ocfs2_num_free_extents(osb, inode, et); 4597 if (free_extents < 0) { 4598 status = free_extents; 4599 mlog_errno(status); 4600 goto leave; 4601 } 4602 4603 /* there are two cases which could cause us to EAGAIN in the 4604 * we-need-more-metadata case: 4605 * 1) we haven't reserved *any* 4606 * 2) we are so fragmented, we've needed to add metadata too 4607 * many times. */ 4608 if (!free_extents && !meta_ac) { 4609 mlog(0, "we haven't reserved any metadata!\n"); 4610 status = -EAGAIN; 4611 reason = RESTART_META; 4612 goto leave; 4613 } else if ((!free_extents) 4614 && (ocfs2_alloc_context_bits_left(meta_ac) 4615 < ocfs2_extend_meta_needed(et->et_root_el))) { 4616 mlog(0, "filesystem is really fragmented...\n"); 4617 status = -EAGAIN; 4618 reason = RESTART_META; 4619 goto leave; 4620 } 4621 4622 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4623 clusters_to_add, &bit_off, &num_bits); 4624 if (status < 0) { 4625 if (status != -ENOSPC) 4626 mlog_errno(status); 4627 goto leave; 4628 } 4629 4630 BUG_ON(num_bits > clusters_to_add); 4631 4632 /* reserve our write early -- insert_extent may update the tree root */ 4633 status = ocfs2_et_root_journal_access(handle, inode, et, 4634 OCFS2_JOURNAL_ACCESS_WRITE); 4635 if (status < 0) { 4636 mlog_errno(status); 4637 goto leave; 4638 } 4639 4640 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4641 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4642 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4643 status = ocfs2_insert_extent(osb, handle, inode, et, 4644 *logical_offset, block, 4645 num_bits, flags, meta_ac); 4646 if (status < 0) { 4647 mlog_errno(status); 4648 goto leave; 4649 } 4650 4651 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4652 if (status < 0) { 4653 mlog_errno(status); 4654 goto leave; 4655 } 4656 4657 clusters_to_add -= num_bits; 4658 *logical_offset += num_bits; 4659 4660 if (clusters_to_add) { 4661 mlog(0, "need to alloc once more, wanted = %u\n", 4662 clusters_to_add); 4663 status = -EAGAIN; 4664 reason = RESTART_TRANS; 4665 } 4666 4667 leave: 4668 mlog_exit(status); 4669 if (reason_ret) 4670 *reason_ret = reason; 4671 return status; 4672 } 4673 4674 static void ocfs2_make_right_split_rec(struct super_block *sb, 4675 struct ocfs2_extent_rec *split_rec, 4676 u32 cpos, 4677 struct ocfs2_extent_rec *rec) 4678 { 4679 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4680 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4681 4682 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4683 4684 split_rec->e_cpos = cpu_to_le32(cpos); 4685 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4686 4687 split_rec->e_blkno = rec->e_blkno; 4688 le64_add_cpu(&split_rec->e_blkno, 4689 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4690 4691 split_rec->e_flags = rec->e_flags; 4692 } 4693 4694 static int ocfs2_split_and_insert(struct inode *inode, 4695 handle_t *handle, 4696 struct ocfs2_path *path, 4697 struct ocfs2_extent_tree *et, 4698 struct buffer_head **last_eb_bh, 4699 int split_index, 4700 struct ocfs2_extent_rec *orig_split_rec, 4701 struct ocfs2_alloc_context *meta_ac) 4702 { 4703 int ret = 0, depth; 4704 unsigned int insert_range, rec_range, do_leftright = 0; 4705 struct ocfs2_extent_rec tmprec; 4706 struct ocfs2_extent_list *rightmost_el; 4707 struct ocfs2_extent_rec rec; 4708 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4709 struct ocfs2_insert_type insert; 4710 struct ocfs2_extent_block *eb; 4711 4712 leftright: 4713 /* 4714 * Store a copy of the record on the stack - it might move 4715 * around as the tree is manipulated below. 4716 */ 4717 rec = path_leaf_el(path)->l_recs[split_index]; 4718 4719 rightmost_el = et->et_root_el; 4720 4721 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4722 if (depth) { 4723 BUG_ON(!(*last_eb_bh)); 4724 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4725 rightmost_el = &eb->h_list; 4726 } 4727 4728 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4729 le16_to_cpu(rightmost_el->l_count)) { 4730 ret = ocfs2_grow_tree(inode, handle, et, 4731 &depth, last_eb_bh, meta_ac); 4732 if (ret) { 4733 mlog_errno(ret); 4734 goto out; 4735 } 4736 } 4737 4738 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4739 insert.ins_appending = APPEND_NONE; 4740 insert.ins_contig = CONTIG_NONE; 4741 insert.ins_tree_depth = depth; 4742 4743 insert_range = le32_to_cpu(split_rec.e_cpos) + 4744 le16_to_cpu(split_rec.e_leaf_clusters); 4745 rec_range = le32_to_cpu(rec.e_cpos) + 4746 le16_to_cpu(rec.e_leaf_clusters); 4747 4748 if (split_rec.e_cpos == rec.e_cpos) { 4749 insert.ins_split = SPLIT_LEFT; 4750 } else if (insert_range == rec_range) { 4751 insert.ins_split = SPLIT_RIGHT; 4752 } else { 4753 /* 4754 * Left/right split. We fake this as a right split 4755 * first and then make a second pass as a left split. 4756 */ 4757 insert.ins_split = SPLIT_RIGHT; 4758 4759 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4760 &rec); 4761 4762 split_rec = tmprec; 4763 4764 BUG_ON(do_leftright); 4765 do_leftright = 1; 4766 } 4767 4768 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4769 if (ret) { 4770 mlog_errno(ret); 4771 goto out; 4772 } 4773 4774 if (do_leftright == 1) { 4775 u32 cpos; 4776 struct ocfs2_extent_list *el; 4777 4778 do_leftright++; 4779 split_rec = *orig_split_rec; 4780 4781 ocfs2_reinit_path(path, 1); 4782 4783 cpos = le32_to_cpu(split_rec.e_cpos); 4784 ret = ocfs2_find_path(inode, path, cpos); 4785 if (ret) { 4786 mlog_errno(ret); 4787 goto out; 4788 } 4789 4790 el = path_leaf_el(path); 4791 split_index = ocfs2_search_extent_list(el, cpos); 4792 goto leftright; 4793 } 4794 out: 4795 4796 return ret; 4797 } 4798 4799 /* 4800 * Mark part or all of the extent record at split_index in the leaf 4801 * pointed to by path as written. This removes the unwritten 4802 * extent flag. 4803 * 4804 * Care is taken to handle contiguousness so as to not grow the tree. 4805 * 4806 * meta_ac is not strictly necessary - we only truly need it if growth 4807 * of the tree is required. All other cases will degrade into a less 4808 * optimal tree layout. 4809 * 4810 * last_eb_bh should be the rightmost leaf block for any extent 4811 * btree. Since a split may grow the tree or a merge might shrink it, 4812 * the caller cannot trust the contents of that buffer after this call. 4813 * 4814 * This code is optimized for readability - several passes might be 4815 * made over certain portions of the tree. All of those blocks will 4816 * have been brought into cache (and pinned via the journal), so the 4817 * extra overhead is not expressed in terms of disk reads. 4818 */ 4819 static int __ocfs2_mark_extent_written(struct inode *inode, 4820 struct ocfs2_extent_tree *et, 4821 handle_t *handle, 4822 struct ocfs2_path *path, 4823 int split_index, 4824 struct ocfs2_extent_rec *split_rec, 4825 struct ocfs2_alloc_context *meta_ac, 4826 struct ocfs2_cached_dealloc_ctxt *dealloc) 4827 { 4828 int ret = 0; 4829 struct ocfs2_extent_list *el = path_leaf_el(path); 4830 struct buffer_head *last_eb_bh = NULL; 4831 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4832 struct ocfs2_merge_ctxt ctxt; 4833 struct ocfs2_extent_list *rightmost_el; 4834 4835 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4836 ret = -EIO; 4837 mlog_errno(ret); 4838 goto out; 4839 } 4840 4841 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4842 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4843 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4844 ret = -EIO; 4845 mlog_errno(ret); 4846 goto out; 4847 } 4848 4849 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 4850 split_index, 4851 split_rec); 4852 4853 /* 4854 * The core merge / split code wants to know how much room is 4855 * left in this inodes allocation tree, so we pass the 4856 * rightmost extent list. 4857 */ 4858 if (path->p_tree_depth) { 4859 struct ocfs2_extent_block *eb; 4860 4861 ret = ocfs2_read_extent_block(inode, 4862 ocfs2_et_get_last_eb_blk(et), 4863 &last_eb_bh); 4864 if (ret) { 4865 mlog_exit(ret); 4866 goto out; 4867 } 4868 4869 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4870 rightmost_el = &eb->h_list; 4871 } else 4872 rightmost_el = path_root_el(path); 4873 4874 if (rec->e_cpos == split_rec->e_cpos && 4875 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4876 ctxt.c_split_covers_rec = 1; 4877 else 4878 ctxt.c_split_covers_rec = 0; 4879 4880 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4881 4882 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4883 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4884 ctxt.c_split_covers_rec); 4885 4886 if (ctxt.c_contig_type == CONTIG_NONE) { 4887 if (ctxt.c_split_covers_rec) 4888 el->l_recs[split_index] = *split_rec; 4889 else 4890 ret = ocfs2_split_and_insert(inode, handle, path, et, 4891 &last_eb_bh, split_index, 4892 split_rec, meta_ac); 4893 if (ret) 4894 mlog_errno(ret); 4895 } else { 4896 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4897 split_index, split_rec, 4898 dealloc, &ctxt, et); 4899 if (ret) 4900 mlog_errno(ret); 4901 } 4902 4903 out: 4904 brelse(last_eb_bh); 4905 return ret; 4906 } 4907 4908 /* 4909 * Mark the already-existing extent at cpos as written for len clusters. 4910 * 4911 * If the existing extent is larger than the request, initiate a 4912 * split. An attempt will be made at merging with adjacent extents. 4913 * 4914 * The caller is responsible for passing down meta_ac if we'll need it. 4915 */ 4916 int ocfs2_mark_extent_written(struct inode *inode, 4917 struct ocfs2_extent_tree *et, 4918 handle_t *handle, u32 cpos, u32 len, u32 phys, 4919 struct ocfs2_alloc_context *meta_ac, 4920 struct ocfs2_cached_dealloc_ctxt *dealloc) 4921 { 4922 int ret, index; 4923 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4924 struct ocfs2_extent_rec split_rec; 4925 struct ocfs2_path *left_path = NULL; 4926 struct ocfs2_extent_list *el; 4927 4928 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4929 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4930 4931 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4932 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4933 "that are being written to, but the feature bit " 4934 "is not set in the super block.", 4935 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4936 ret = -EROFS; 4937 goto out; 4938 } 4939 4940 /* 4941 * XXX: This should be fixed up so that we just re-insert the 4942 * next extent records. 4943 * 4944 * XXX: This is a hack on the extent tree, maybe it should be 4945 * an op? 4946 */ 4947 if (et->et_ops == &ocfs2_dinode_et_ops) 4948 ocfs2_extent_map_trunc(inode, 0); 4949 4950 left_path = ocfs2_new_path_from_et(et); 4951 if (!left_path) { 4952 ret = -ENOMEM; 4953 mlog_errno(ret); 4954 goto out; 4955 } 4956 4957 ret = ocfs2_find_path(inode, left_path, cpos); 4958 if (ret) { 4959 mlog_errno(ret); 4960 goto out; 4961 } 4962 el = path_leaf_el(left_path); 4963 4964 index = ocfs2_search_extent_list(el, cpos); 4965 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4966 ocfs2_error(inode->i_sb, 4967 "Inode %llu has an extent at cpos %u which can no " 4968 "longer be found.\n", 4969 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4970 ret = -EROFS; 4971 goto out; 4972 } 4973 4974 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4975 split_rec.e_cpos = cpu_to_le32(cpos); 4976 split_rec.e_leaf_clusters = cpu_to_le16(len); 4977 split_rec.e_blkno = cpu_to_le64(start_blkno); 4978 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4979 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4980 4981 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 4982 index, &split_rec, meta_ac, 4983 dealloc); 4984 if (ret) 4985 mlog_errno(ret); 4986 4987 out: 4988 ocfs2_free_path(left_path); 4989 return ret; 4990 } 4991 4992 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 4993 handle_t *handle, struct ocfs2_path *path, 4994 int index, u32 new_range, 4995 struct ocfs2_alloc_context *meta_ac) 4996 { 4997 int ret, depth, credits = handle->h_buffer_credits; 4998 struct buffer_head *last_eb_bh = NULL; 4999 struct ocfs2_extent_block *eb; 5000 struct ocfs2_extent_list *rightmost_el, *el; 5001 struct ocfs2_extent_rec split_rec; 5002 struct ocfs2_extent_rec *rec; 5003 struct ocfs2_insert_type insert; 5004 5005 /* 5006 * Setup the record to split before we grow the tree. 5007 */ 5008 el = path_leaf_el(path); 5009 rec = &el->l_recs[index]; 5010 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5011 5012 depth = path->p_tree_depth; 5013 if (depth > 0) { 5014 ret = ocfs2_read_extent_block(inode, 5015 ocfs2_et_get_last_eb_blk(et), 5016 &last_eb_bh); 5017 if (ret < 0) { 5018 mlog_errno(ret); 5019 goto out; 5020 } 5021 5022 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5023 rightmost_el = &eb->h_list; 5024 } else 5025 rightmost_el = path_leaf_el(path); 5026 5027 credits += path->p_tree_depth + 5028 ocfs2_extend_meta_needed(et->et_root_el); 5029 ret = ocfs2_extend_trans(handle, credits); 5030 if (ret) { 5031 mlog_errno(ret); 5032 goto out; 5033 } 5034 5035 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5036 le16_to_cpu(rightmost_el->l_count)) { 5037 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5038 meta_ac); 5039 if (ret) { 5040 mlog_errno(ret); 5041 goto out; 5042 } 5043 } 5044 5045 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5046 insert.ins_appending = APPEND_NONE; 5047 insert.ins_contig = CONTIG_NONE; 5048 insert.ins_split = SPLIT_RIGHT; 5049 insert.ins_tree_depth = depth; 5050 5051 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5052 if (ret) 5053 mlog_errno(ret); 5054 5055 out: 5056 brelse(last_eb_bh); 5057 return ret; 5058 } 5059 5060 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5061 struct ocfs2_path *path, int index, 5062 struct ocfs2_cached_dealloc_ctxt *dealloc, 5063 u32 cpos, u32 len, 5064 struct ocfs2_extent_tree *et) 5065 { 5066 int ret; 5067 u32 left_cpos, rec_range, trunc_range; 5068 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5069 struct super_block *sb = inode->i_sb; 5070 struct ocfs2_path *left_path = NULL; 5071 struct ocfs2_extent_list *el = path_leaf_el(path); 5072 struct ocfs2_extent_rec *rec; 5073 struct ocfs2_extent_block *eb; 5074 5075 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5076 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5077 if (ret) { 5078 mlog_errno(ret); 5079 goto out; 5080 } 5081 5082 index--; 5083 } 5084 5085 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5086 path->p_tree_depth) { 5087 /* 5088 * Check whether this is the rightmost tree record. If 5089 * we remove all of this record or part of its right 5090 * edge then an update of the record lengths above it 5091 * will be required. 5092 */ 5093 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5094 if (eb->h_next_leaf_blk == 0) 5095 is_rightmost_tree_rec = 1; 5096 } 5097 5098 rec = &el->l_recs[index]; 5099 if (index == 0 && path->p_tree_depth && 5100 le32_to_cpu(rec->e_cpos) == cpos) { 5101 /* 5102 * Changing the leftmost offset (via partial or whole 5103 * record truncate) of an interior (or rightmost) path 5104 * means we have to update the subtree that is formed 5105 * by this leaf and the one to it's left. 5106 * 5107 * There are two cases we can skip: 5108 * 1) Path is the leftmost one in our inode tree. 5109 * 2) The leaf is rightmost and will be empty after 5110 * we remove the extent record - the rotate code 5111 * knows how to update the newly formed edge. 5112 */ 5113 5114 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5115 &left_cpos); 5116 if (ret) { 5117 mlog_errno(ret); 5118 goto out; 5119 } 5120 5121 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5122 left_path = ocfs2_new_path_from_path(path); 5123 if (!left_path) { 5124 ret = -ENOMEM; 5125 mlog_errno(ret); 5126 goto out; 5127 } 5128 5129 ret = ocfs2_find_path(inode, left_path, left_cpos); 5130 if (ret) { 5131 mlog_errno(ret); 5132 goto out; 5133 } 5134 } 5135 } 5136 5137 ret = ocfs2_extend_rotate_transaction(handle, 0, 5138 handle->h_buffer_credits, 5139 path); 5140 if (ret) { 5141 mlog_errno(ret); 5142 goto out; 5143 } 5144 5145 ret = ocfs2_journal_access_path(inode, handle, path); 5146 if (ret) { 5147 mlog_errno(ret); 5148 goto out; 5149 } 5150 5151 ret = ocfs2_journal_access_path(inode, handle, left_path); 5152 if (ret) { 5153 mlog_errno(ret); 5154 goto out; 5155 } 5156 5157 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5158 trunc_range = cpos + len; 5159 5160 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5161 int next_free; 5162 5163 memset(rec, 0, sizeof(*rec)); 5164 ocfs2_cleanup_merge(el, index); 5165 wants_rotate = 1; 5166 5167 next_free = le16_to_cpu(el->l_next_free_rec); 5168 if (is_rightmost_tree_rec && next_free > 1) { 5169 /* 5170 * We skip the edge update if this path will 5171 * be deleted by the rotate code. 5172 */ 5173 rec = &el->l_recs[next_free - 1]; 5174 ocfs2_adjust_rightmost_records(inode, handle, path, 5175 rec); 5176 } 5177 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5178 /* Remove leftmost portion of the record. */ 5179 le32_add_cpu(&rec->e_cpos, len); 5180 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5181 le16_add_cpu(&rec->e_leaf_clusters, -len); 5182 } else if (rec_range == trunc_range) { 5183 /* Remove rightmost portion of the record */ 5184 le16_add_cpu(&rec->e_leaf_clusters, -len); 5185 if (is_rightmost_tree_rec) 5186 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5187 } else { 5188 /* Caller should have trapped this. */ 5189 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5190 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5191 le32_to_cpu(rec->e_cpos), 5192 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5193 BUG(); 5194 } 5195 5196 if (left_path) { 5197 int subtree_index; 5198 5199 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5200 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5201 subtree_index); 5202 } 5203 5204 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5205 5206 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5207 if (ret) { 5208 mlog_errno(ret); 5209 goto out; 5210 } 5211 5212 out: 5213 ocfs2_free_path(left_path); 5214 return ret; 5215 } 5216 5217 int ocfs2_remove_extent(struct inode *inode, 5218 struct ocfs2_extent_tree *et, 5219 u32 cpos, u32 len, handle_t *handle, 5220 struct ocfs2_alloc_context *meta_ac, 5221 struct ocfs2_cached_dealloc_ctxt *dealloc) 5222 { 5223 int ret, index; 5224 u32 rec_range, trunc_range; 5225 struct ocfs2_extent_rec *rec; 5226 struct ocfs2_extent_list *el; 5227 struct ocfs2_path *path = NULL; 5228 5229 ocfs2_extent_map_trunc(inode, 0); 5230 5231 path = ocfs2_new_path_from_et(et); 5232 if (!path) { 5233 ret = -ENOMEM; 5234 mlog_errno(ret); 5235 goto out; 5236 } 5237 5238 ret = ocfs2_find_path(inode, path, cpos); 5239 if (ret) { 5240 mlog_errno(ret); 5241 goto out; 5242 } 5243 5244 el = path_leaf_el(path); 5245 index = ocfs2_search_extent_list(el, cpos); 5246 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5247 ocfs2_error(inode->i_sb, 5248 "Inode %llu has an extent at cpos %u which can no " 5249 "longer be found.\n", 5250 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5251 ret = -EROFS; 5252 goto out; 5253 } 5254 5255 /* 5256 * We have 3 cases of extent removal: 5257 * 1) Range covers the entire extent rec 5258 * 2) Range begins or ends on one edge of the extent rec 5259 * 3) Range is in the middle of the extent rec (no shared edges) 5260 * 5261 * For case 1 we remove the extent rec and left rotate to 5262 * fill the hole. 5263 * 5264 * For case 2 we just shrink the existing extent rec, with a 5265 * tree update if the shrinking edge is also the edge of an 5266 * extent block. 5267 * 5268 * For case 3 we do a right split to turn the extent rec into 5269 * something case 2 can handle. 5270 */ 5271 rec = &el->l_recs[index]; 5272 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5273 trunc_range = cpos + len; 5274 5275 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5276 5277 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5278 "(cpos %u, len %u)\n", 5279 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5280 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5281 5282 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5283 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5284 cpos, len, et); 5285 if (ret) { 5286 mlog_errno(ret); 5287 goto out; 5288 } 5289 } else { 5290 ret = ocfs2_split_tree(inode, et, handle, path, index, 5291 trunc_range, meta_ac); 5292 if (ret) { 5293 mlog_errno(ret); 5294 goto out; 5295 } 5296 5297 /* 5298 * The split could have manipulated the tree enough to 5299 * move the record location, so we have to look for it again. 5300 */ 5301 ocfs2_reinit_path(path, 1); 5302 5303 ret = ocfs2_find_path(inode, path, cpos); 5304 if (ret) { 5305 mlog_errno(ret); 5306 goto out; 5307 } 5308 5309 el = path_leaf_el(path); 5310 index = ocfs2_search_extent_list(el, cpos); 5311 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5312 ocfs2_error(inode->i_sb, 5313 "Inode %llu: split at cpos %u lost record.", 5314 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5315 cpos); 5316 ret = -EROFS; 5317 goto out; 5318 } 5319 5320 /* 5321 * Double check our values here. If anything is fishy, 5322 * it's easier to catch it at the top level. 5323 */ 5324 rec = &el->l_recs[index]; 5325 rec_range = le32_to_cpu(rec->e_cpos) + 5326 ocfs2_rec_clusters(el, rec); 5327 if (rec_range != trunc_range) { 5328 ocfs2_error(inode->i_sb, 5329 "Inode %llu: error after split at cpos %u" 5330 "trunc len %u, existing record is (%u,%u)", 5331 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5332 cpos, len, le32_to_cpu(rec->e_cpos), 5333 ocfs2_rec_clusters(el, rec)); 5334 ret = -EROFS; 5335 goto out; 5336 } 5337 5338 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5339 cpos, len, et); 5340 if (ret) { 5341 mlog_errno(ret); 5342 goto out; 5343 } 5344 } 5345 5346 out: 5347 ocfs2_free_path(path); 5348 return ret; 5349 } 5350 5351 int ocfs2_remove_btree_range(struct inode *inode, 5352 struct ocfs2_extent_tree *et, 5353 u32 cpos, u32 phys_cpos, u32 len, 5354 struct ocfs2_cached_dealloc_ctxt *dealloc) 5355 { 5356 int ret; 5357 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5359 struct inode *tl_inode = osb->osb_tl_inode; 5360 handle_t *handle; 5361 struct ocfs2_alloc_context *meta_ac = NULL; 5362 5363 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5364 if (ret) { 5365 mlog_errno(ret); 5366 return ret; 5367 } 5368 5369 mutex_lock(&tl_inode->i_mutex); 5370 5371 if (ocfs2_truncate_log_needs_flush(osb)) { 5372 ret = __ocfs2_flush_truncate_log(osb); 5373 if (ret < 0) { 5374 mlog_errno(ret); 5375 goto out; 5376 } 5377 } 5378 5379 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5380 if (IS_ERR(handle)) { 5381 ret = PTR_ERR(handle); 5382 mlog_errno(ret); 5383 goto out; 5384 } 5385 5386 ret = ocfs2_et_root_journal_access(handle, inode, et, 5387 OCFS2_JOURNAL_ACCESS_WRITE); 5388 if (ret) { 5389 mlog_errno(ret); 5390 goto out; 5391 } 5392 5393 vfs_dq_free_space_nodirty(inode, 5394 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5395 5396 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5397 dealloc); 5398 if (ret) { 5399 mlog_errno(ret); 5400 goto out_commit; 5401 } 5402 5403 ocfs2_et_update_clusters(inode, et, -len); 5404 5405 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5406 if (ret) { 5407 mlog_errno(ret); 5408 goto out_commit; 5409 } 5410 5411 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5412 if (ret) 5413 mlog_errno(ret); 5414 5415 out_commit: 5416 ocfs2_commit_trans(osb, handle); 5417 out: 5418 mutex_unlock(&tl_inode->i_mutex); 5419 5420 if (meta_ac) 5421 ocfs2_free_alloc_context(meta_ac); 5422 5423 return ret; 5424 } 5425 5426 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5427 { 5428 struct buffer_head *tl_bh = osb->osb_tl_bh; 5429 struct ocfs2_dinode *di; 5430 struct ocfs2_truncate_log *tl; 5431 5432 di = (struct ocfs2_dinode *) tl_bh->b_data; 5433 tl = &di->id2.i_dealloc; 5434 5435 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5436 "slot %d, invalid truncate log parameters: used = " 5437 "%u, count = %u\n", osb->slot_num, 5438 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5439 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5440 } 5441 5442 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5443 unsigned int new_start) 5444 { 5445 unsigned int tail_index; 5446 unsigned int current_tail; 5447 5448 /* No records, nothing to coalesce */ 5449 if (!le16_to_cpu(tl->tl_used)) 5450 return 0; 5451 5452 tail_index = le16_to_cpu(tl->tl_used) - 1; 5453 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5454 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5455 5456 return current_tail == new_start; 5457 } 5458 5459 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5460 handle_t *handle, 5461 u64 start_blk, 5462 unsigned int num_clusters) 5463 { 5464 int status, index; 5465 unsigned int start_cluster, tl_count; 5466 struct inode *tl_inode = osb->osb_tl_inode; 5467 struct buffer_head *tl_bh = osb->osb_tl_bh; 5468 struct ocfs2_dinode *di; 5469 struct ocfs2_truncate_log *tl; 5470 5471 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5472 (unsigned long long)start_blk, num_clusters); 5473 5474 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5475 5476 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5477 5478 di = (struct ocfs2_dinode *) tl_bh->b_data; 5479 5480 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5481 * by the underlying call to ocfs2_read_inode_block(), so any 5482 * corruption is a code bug */ 5483 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5484 5485 tl = &di->id2.i_dealloc; 5486 tl_count = le16_to_cpu(tl->tl_count); 5487 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5488 tl_count == 0, 5489 "Truncate record count on #%llu invalid " 5490 "wanted %u, actual %u\n", 5491 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5492 ocfs2_truncate_recs_per_inode(osb->sb), 5493 le16_to_cpu(tl->tl_count)); 5494 5495 /* Caller should have known to flush before calling us. */ 5496 index = le16_to_cpu(tl->tl_used); 5497 if (index >= tl_count) { 5498 status = -ENOSPC; 5499 mlog_errno(status); 5500 goto bail; 5501 } 5502 5503 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5504 OCFS2_JOURNAL_ACCESS_WRITE); 5505 if (status < 0) { 5506 mlog_errno(status); 5507 goto bail; 5508 } 5509 5510 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5511 "%llu (index = %d)\n", num_clusters, start_cluster, 5512 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5513 5514 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5515 /* 5516 * Move index back to the record we are coalescing with. 5517 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5518 */ 5519 index--; 5520 5521 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5522 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5523 index, le32_to_cpu(tl->tl_recs[index].t_start), 5524 num_clusters); 5525 } else { 5526 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5527 tl->tl_used = cpu_to_le16(index + 1); 5528 } 5529 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5530 5531 status = ocfs2_journal_dirty(handle, tl_bh); 5532 if (status < 0) { 5533 mlog_errno(status); 5534 goto bail; 5535 } 5536 5537 bail: 5538 mlog_exit(status); 5539 return status; 5540 } 5541 5542 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5543 handle_t *handle, 5544 struct inode *data_alloc_inode, 5545 struct buffer_head *data_alloc_bh) 5546 { 5547 int status = 0; 5548 int i; 5549 unsigned int num_clusters; 5550 u64 start_blk; 5551 struct ocfs2_truncate_rec rec; 5552 struct ocfs2_dinode *di; 5553 struct ocfs2_truncate_log *tl; 5554 struct inode *tl_inode = osb->osb_tl_inode; 5555 struct buffer_head *tl_bh = osb->osb_tl_bh; 5556 5557 mlog_entry_void(); 5558 5559 di = (struct ocfs2_dinode *) tl_bh->b_data; 5560 tl = &di->id2.i_dealloc; 5561 i = le16_to_cpu(tl->tl_used) - 1; 5562 while (i >= 0) { 5563 /* Caller has given us at least enough credits to 5564 * update the truncate log dinode */ 5565 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5566 OCFS2_JOURNAL_ACCESS_WRITE); 5567 if (status < 0) { 5568 mlog_errno(status); 5569 goto bail; 5570 } 5571 5572 tl->tl_used = cpu_to_le16(i); 5573 5574 status = ocfs2_journal_dirty(handle, tl_bh); 5575 if (status < 0) { 5576 mlog_errno(status); 5577 goto bail; 5578 } 5579 5580 /* TODO: Perhaps we can calculate the bulk of the 5581 * credits up front rather than extending like 5582 * this. */ 5583 status = ocfs2_extend_trans(handle, 5584 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5585 if (status < 0) { 5586 mlog_errno(status); 5587 goto bail; 5588 } 5589 5590 rec = tl->tl_recs[i]; 5591 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5592 le32_to_cpu(rec.t_start)); 5593 num_clusters = le32_to_cpu(rec.t_clusters); 5594 5595 /* if start_blk is not set, we ignore the record as 5596 * invalid. */ 5597 if (start_blk) { 5598 mlog(0, "free record %d, start = %u, clusters = %u\n", 5599 i, le32_to_cpu(rec.t_start), num_clusters); 5600 5601 status = ocfs2_free_clusters(handle, data_alloc_inode, 5602 data_alloc_bh, start_blk, 5603 num_clusters); 5604 if (status < 0) { 5605 mlog_errno(status); 5606 goto bail; 5607 } 5608 } 5609 i--; 5610 } 5611 5612 bail: 5613 mlog_exit(status); 5614 return status; 5615 } 5616 5617 /* Expects you to already be holding tl_inode->i_mutex */ 5618 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5619 { 5620 int status; 5621 unsigned int num_to_flush; 5622 handle_t *handle; 5623 struct inode *tl_inode = osb->osb_tl_inode; 5624 struct inode *data_alloc_inode = NULL; 5625 struct buffer_head *tl_bh = osb->osb_tl_bh; 5626 struct buffer_head *data_alloc_bh = NULL; 5627 struct ocfs2_dinode *di; 5628 struct ocfs2_truncate_log *tl; 5629 5630 mlog_entry_void(); 5631 5632 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5633 5634 di = (struct ocfs2_dinode *) tl_bh->b_data; 5635 5636 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5637 * by the underlying call to ocfs2_read_inode_block(), so any 5638 * corruption is a code bug */ 5639 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5640 5641 tl = &di->id2.i_dealloc; 5642 num_to_flush = le16_to_cpu(tl->tl_used); 5643 mlog(0, "Flush %u records from truncate log #%llu\n", 5644 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5645 if (!num_to_flush) { 5646 status = 0; 5647 goto out; 5648 } 5649 5650 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5651 GLOBAL_BITMAP_SYSTEM_INODE, 5652 OCFS2_INVALID_SLOT); 5653 if (!data_alloc_inode) { 5654 status = -EINVAL; 5655 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5656 goto out; 5657 } 5658 5659 mutex_lock(&data_alloc_inode->i_mutex); 5660 5661 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5662 if (status < 0) { 5663 mlog_errno(status); 5664 goto out_mutex; 5665 } 5666 5667 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5668 if (IS_ERR(handle)) { 5669 status = PTR_ERR(handle); 5670 mlog_errno(status); 5671 goto out_unlock; 5672 } 5673 5674 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5675 data_alloc_bh); 5676 if (status < 0) 5677 mlog_errno(status); 5678 5679 ocfs2_commit_trans(osb, handle); 5680 5681 out_unlock: 5682 brelse(data_alloc_bh); 5683 ocfs2_inode_unlock(data_alloc_inode, 1); 5684 5685 out_mutex: 5686 mutex_unlock(&data_alloc_inode->i_mutex); 5687 iput(data_alloc_inode); 5688 5689 out: 5690 mlog_exit(status); 5691 return status; 5692 } 5693 5694 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5695 { 5696 int status; 5697 struct inode *tl_inode = osb->osb_tl_inode; 5698 5699 mutex_lock(&tl_inode->i_mutex); 5700 status = __ocfs2_flush_truncate_log(osb); 5701 mutex_unlock(&tl_inode->i_mutex); 5702 5703 return status; 5704 } 5705 5706 static void ocfs2_truncate_log_worker(struct work_struct *work) 5707 { 5708 int status; 5709 struct ocfs2_super *osb = 5710 container_of(work, struct ocfs2_super, 5711 osb_truncate_log_wq.work); 5712 5713 mlog_entry_void(); 5714 5715 status = ocfs2_flush_truncate_log(osb); 5716 if (status < 0) 5717 mlog_errno(status); 5718 else 5719 ocfs2_init_inode_steal_slot(osb); 5720 5721 mlog_exit(status); 5722 } 5723 5724 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5725 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5726 int cancel) 5727 { 5728 if (osb->osb_tl_inode) { 5729 /* We want to push off log flushes while truncates are 5730 * still running. */ 5731 if (cancel) 5732 cancel_delayed_work(&osb->osb_truncate_log_wq); 5733 5734 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5735 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5736 } 5737 } 5738 5739 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5740 int slot_num, 5741 struct inode **tl_inode, 5742 struct buffer_head **tl_bh) 5743 { 5744 int status; 5745 struct inode *inode = NULL; 5746 struct buffer_head *bh = NULL; 5747 5748 inode = ocfs2_get_system_file_inode(osb, 5749 TRUNCATE_LOG_SYSTEM_INODE, 5750 slot_num); 5751 if (!inode) { 5752 status = -EINVAL; 5753 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5754 goto bail; 5755 } 5756 5757 status = ocfs2_read_inode_block(inode, &bh); 5758 if (status < 0) { 5759 iput(inode); 5760 mlog_errno(status); 5761 goto bail; 5762 } 5763 5764 *tl_inode = inode; 5765 *tl_bh = bh; 5766 bail: 5767 mlog_exit(status); 5768 return status; 5769 } 5770 5771 /* called during the 1st stage of node recovery. we stamp a clean 5772 * truncate log and pass back a copy for processing later. if the 5773 * truncate log does not require processing, a *tl_copy is set to 5774 * NULL. */ 5775 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5776 int slot_num, 5777 struct ocfs2_dinode **tl_copy) 5778 { 5779 int status; 5780 struct inode *tl_inode = NULL; 5781 struct buffer_head *tl_bh = NULL; 5782 struct ocfs2_dinode *di; 5783 struct ocfs2_truncate_log *tl; 5784 5785 *tl_copy = NULL; 5786 5787 mlog(0, "recover truncate log from slot %d\n", slot_num); 5788 5789 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5790 if (status < 0) { 5791 mlog_errno(status); 5792 goto bail; 5793 } 5794 5795 di = (struct ocfs2_dinode *) tl_bh->b_data; 5796 5797 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5798 * validated by the underlying call to ocfs2_read_inode_block(), 5799 * so any corruption is a code bug */ 5800 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5801 5802 tl = &di->id2.i_dealloc; 5803 if (le16_to_cpu(tl->tl_used)) { 5804 mlog(0, "We'll have %u logs to recover\n", 5805 le16_to_cpu(tl->tl_used)); 5806 5807 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5808 if (!(*tl_copy)) { 5809 status = -ENOMEM; 5810 mlog_errno(status); 5811 goto bail; 5812 } 5813 5814 /* Assuming the write-out below goes well, this copy 5815 * will be passed back to recovery for processing. */ 5816 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5817 5818 /* All we need to do to clear the truncate log is set 5819 * tl_used. */ 5820 tl->tl_used = 0; 5821 5822 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 5823 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5824 if (status < 0) { 5825 mlog_errno(status); 5826 goto bail; 5827 } 5828 } 5829 5830 bail: 5831 if (tl_inode) 5832 iput(tl_inode); 5833 brelse(tl_bh); 5834 5835 if (status < 0 && (*tl_copy)) { 5836 kfree(*tl_copy); 5837 *tl_copy = NULL; 5838 } 5839 5840 mlog_exit(status); 5841 return status; 5842 } 5843 5844 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 5845 struct ocfs2_dinode *tl_copy) 5846 { 5847 int status = 0; 5848 int i; 5849 unsigned int clusters, num_recs, start_cluster; 5850 u64 start_blk; 5851 handle_t *handle; 5852 struct inode *tl_inode = osb->osb_tl_inode; 5853 struct ocfs2_truncate_log *tl; 5854 5855 mlog_entry_void(); 5856 5857 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 5858 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 5859 return -EINVAL; 5860 } 5861 5862 tl = &tl_copy->id2.i_dealloc; 5863 num_recs = le16_to_cpu(tl->tl_used); 5864 mlog(0, "cleanup %u records from %llu\n", num_recs, 5865 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 5866 5867 mutex_lock(&tl_inode->i_mutex); 5868 for(i = 0; i < num_recs; i++) { 5869 if (ocfs2_truncate_log_needs_flush(osb)) { 5870 status = __ocfs2_flush_truncate_log(osb); 5871 if (status < 0) { 5872 mlog_errno(status); 5873 goto bail_up; 5874 } 5875 } 5876 5877 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5878 if (IS_ERR(handle)) { 5879 status = PTR_ERR(handle); 5880 mlog_errno(status); 5881 goto bail_up; 5882 } 5883 5884 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 5885 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 5886 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 5887 5888 status = ocfs2_truncate_log_append(osb, handle, 5889 start_blk, clusters); 5890 ocfs2_commit_trans(osb, handle); 5891 if (status < 0) { 5892 mlog_errno(status); 5893 goto bail_up; 5894 } 5895 } 5896 5897 bail_up: 5898 mutex_unlock(&tl_inode->i_mutex); 5899 5900 mlog_exit(status); 5901 return status; 5902 } 5903 5904 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 5905 { 5906 int status; 5907 struct inode *tl_inode = osb->osb_tl_inode; 5908 5909 mlog_entry_void(); 5910 5911 if (tl_inode) { 5912 cancel_delayed_work(&osb->osb_truncate_log_wq); 5913 flush_workqueue(ocfs2_wq); 5914 5915 status = ocfs2_flush_truncate_log(osb); 5916 if (status < 0) 5917 mlog_errno(status); 5918 5919 brelse(osb->osb_tl_bh); 5920 iput(osb->osb_tl_inode); 5921 } 5922 5923 mlog_exit_void(); 5924 } 5925 5926 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 5927 { 5928 int status; 5929 struct inode *tl_inode = NULL; 5930 struct buffer_head *tl_bh = NULL; 5931 5932 mlog_entry_void(); 5933 5934 status = ocfs2_get_truncate_log_info(osb, 5935 osb->slot_num, 5936 &tl_inode, 5937 &tl_bh); 5938 if (status < 0) 5939 mlog_errno(status); 5940 5941 /* ocfs2_truncate_log_shutdown keys on the existence of 5942 * osb->osb_tl_inode so we don't set any of the osb variables 5943 * until we're sure all is well. */ 5944 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5945 ocfs2_truncate_log_worker); 5946 osb->osb_tl_bh = tl_bh; 5947 osb->osb_tl_inode = tl_inode; 5948 5949 mlog_exit(status); 5950 return status; 5951 } 5952 5953 /* 5954 * Delayed de-allocation of suballocator blocks. 5955 * 5956 * Some sets of block de-allocations might involve multiple suballocator inodes. 5957 * 5958 * The locking for this can get extremely complicated, especially when 5959 * the suballocator inodes to delete from aren't known until deep 5960 * within an unrelated codepath. 5961 * 5962 * ocfs2_extent_block structures are a good example of this - an inode 5963 * btree could have been grown by any number of nodes each allocating 5964 * out of their own suballoc inode. 5965 * 5966 * These structures allow the delay of block de-allocation until a 5967 * later time, when locking of multiple cluster inodes won't cause 5968 * deadlock. 5969 */ 5970 5971 /* 5972 * Describe a single bit freed from a suballocator. For the block 5973 * suballocators, it represents one block. For the global cluster 5974 * allocator, it represents some clusters and free_bit indicates 5975 * clusters number. 5976 */ 5977 struct ocfs2_cached_block_free { 5978 struct ocfs2_cached_block_free *free_next; 5979 u64 free_blk; 5980 unsigned int free_bit; 5981 }; 5982 5983 struct ocfs2_per_slot_free_list { 5984 struct ocfs2_per_slot_free_list *f_next_suballocator; 5985 int f_inode_type; 5986 int f_slot; 5987 struct ocfs2_cached_block_free *f_first; 5988 }; 5989 5990 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 5991 int sysfile_type, 5992 int slot, 5993 struct ocfs2_cached_block_free *head) 5994 { 5995 int ret; 5996 u64 bg_blkno; 5997 handle_t *handle; 5998 struct inode *inode; 5999 struct buffer_head *di_bh = NULL; 6000 struct ocfs2_cached_block_free *tmp; 6001 6002 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6003 if (!inode) { 6004 ret = -EINVAL; 6005 mlog_errno(ret); 6006 goto out; 6007 } 6008 6009 mutex_lock(&inode->i_mutex); 6010 6011 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6012 if (ret) { 6013 mlog_errno(ret); 6014 goto out_mutex; 6015 } 6016 6017 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6018 if (IS_ERR(handle)) { 6019 ret = PTR_ERR(handle); 6020 mlog_errno(ret); 6021 goto out_unlock; 6022 } 6023 6024 while (head) { 6025 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6026 head->free_bit); 6027 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6028 head->free_bit, (unsigned long long)head->free_blk); 6029 6030 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6031 head->free_bit, bg_blkno, 1); 6032 if (ret) { 6033 mlog_errno(ret); 6034 goto out_journal; 6035 } 6036 6037 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6038 if (ret) { 6039 mlog_errno(ret); 6040 goto out_journal; 6041 } 6042 6043 tmp = head; 6044 head = head->free_next; 6045 kfree(tmp); 6046 } 6047 6048 out_journal: 6049 ocfs2_commit_trans(osb, handle); 6050 6051 out_unlock: 6052 ocfs2_inode_unlock(inode, 1); 6053 brelse(di_bh); 6054 out_mutex: 6055 mutex_unlock(&inode->i_mutex); 6056 iput(inode); 6057 out: 6058 while(head) { 6059 /* Premature exit may have left some dangling items. */ 6060 tmp = head; 6061 head = head->free_next; 6062 kfree(tmp); 6063 } 6064 6065 return ret; 6066 } 6067 6068 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6069 u64 blkno, unsigned int bit) 6070 { 6071 int ret = 0; 6072 struct ocfs2_cached_block_free *item; 6073 6074 item = kmalloc(sizeof(*item), GFP_NOFS); 6075 if (item == NULL) { 6076 ret = -ENOMEM; 6077 mlog_errno(ret); 6078 return ret; 6079 } 6080 6081 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6082 bit, (unsigned long long)blkno); 6083 6084 item->free_blk = blkno; 6085 item->free_bit = bit; 6086 item->free_next = ctxt->c_global_allocator; 6087 6088 ctxt->c_global_allocator = item; 6089 return ret; 6090 } 6091 6092 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6093 struct ocfs2_cached_block_free *head) 6094 { 6095 struct ocfs2_cached_block_free *tmp; 6096 struct inode *tl_inode = osb->osb_tl_inode; 6097 handle_t *handle; 6098 int ret = 0; 6099 6100 mutex_lock(&tl_inode->i_mutex); 6101 6102 while (head) { 6103 if (ocfs2_truncate_log_needs_flush(osb)) { 6104 ret = __ocfs2_flush_truncate_log(osb); 6105 if (ret < 0) { 6106 mlog_errno(ret); 6107 break; 6108 } 6109 } 6110 6111 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6112 if (IS_ERR(handle)) { 6113 ret = PTR_ERR(handle); 6114 mlog_errno(ret); 6115 break; 6116 } 6117 6118 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6119 head->free_bit); 6120 6121 ocfs2_commit_trans(osb, handle); 6122 tmp = head; 6123 head = head->free_next; 6124 kfree(tmp); 6125 6126 if (ret < 0) { 6127 mlog_errno(ret); 6128 break; 6129 } 6130 } 6131 6132 mutex_unlock(&tl_inode->i_mutex); 6133 6134 while (head) { 6135 /* Premature exit may have left some dangling items. */ 6136 tmp = head; 6137 head = head->free_next; 6138 kfree(tmp); 6139 } 6140 6141 return ret; 6142 } 6143 6144 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6145 struct ocfs2_cached_dealloc_ctxt *ctxt) 6146 { 6147 int ret = 0, ret2; 6148 struct ocfs2_per_slot_free_list *fl; 6149 6150 if (!ctxt) 6151 return 0; 6152 6153 while (ctxt->c_first_suballocator) { 6154 fl = ctxt->c_first_suballocator; 6155 6156 if (fl->f_first) { 6157 mlog(0, "Free items: (type %u, slot %d)\n", 6158 fl->f_inode_type, fl->f_slot); 6159 ret2 = ocfs2_free_cached_blocks(osb, 6160 fl->f_inode_type, 6161 fl->f_slot, 6162 fl->f_first); 6163 if (ret2) 6164 mlog_errno(ret2); 6165 if (!ret) 6166 ret = ret2; 6167 } 6168 6169 ctxt->c_first_suballocator = fl->f_next_suballocator; 6170 kfree(fl); 6171 } 6172 6173 if (ctxt->c_global_allocator) { 6174 ret2 = ocfs2_free_cached_clusters(osb, 6175 ctxt->c_global_allocator); 6176 if (ret2) 6177 mlog_errno(ret2); 6178 if (!ret) 6179 ret = ret2; 6180 6181 ctxt->c_global_allocator = NULL; 6182 } 6183 6184 return ret; 6185 } 6186 6187 static struct ocfs2_per_slot_free_list * 6188 ocfs2_find_per_slot_free_list(int type, 6189 int slot, 6190 struct ocfs2_cached_dealloc_ctxt *ctxt) 6191 { 6192 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6193 6194 while (fl) { 6195 if (fl->f_inode_type == type && fl->f_slot == slot) 6196 return fl; 6197 6198 fl = fl->f_next_suballocator; 6199 } 6200 6201 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6202 if (fl) { 6203 fl->f_inode_type = type; 6204 fl->f_slot = slot; 6205 fl->f_first = NULL; 6206 fl->f_next_suballocator = ctxt->c_first_suballocator; 6207 6208 ctxt->c_first_suballocator = fl; 6209 } 6210 return fl; 6211 } 6212 6213 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6214 int type, int slot, u64 blkno, 6215 unsigned int bit) 6216 { 6217 int ret; 6218 struct ocfs2_per_slot_free_list *fl; 6219 struct ocfs2_cached_block_free *item; 6220 6221 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6222 if (fl == NULL) { 6223 ret = -ENOMEM; 6224 mlog_errno(ret); 6225 goto out; 6226 } 6227 6228 item = kmalloc(sizeof(*item), GFP_NOFS); 6229 if (item == NULL) { 6230 ret = -ENOMEM; 6231 mlog_errno(ret); 6232 goto out; 6233 } 6234 6235 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6236 type, slot, bit, (unsigned long long)blkno); 6237 6238 item->free_blk = blkno; 6239 item->free_bit = bit; 6240 item->free_next = fl->f_first; 6241 6242 fl->f_first = item; 6243 6244 ret = 0; 6245 out: 6246 return ret; 6247 } 6248 6249 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6250 struct ocfs2_extent_block *eb) 6251 { 6252 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6253 le16_to_cpu(eb->h_suballoc_slot), 6254 le64_to_cpu(eb->h_blkno), 6255 le16_to_cpu(eb->h_suballoc_bit)); 6256 } 6257 6258 /* This function will figure out whether the currently last extent 6259 * block will be deleted, and if it will, what the new last extent 6260 * block will be so we can update his h_next_leaf_blk field, as well 6261 * as the dinodes i_last_eb_blk */ 6262 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6263 unsigned int clusters_to_del, 6264 struct ocfs2_path *path, 6265 struct buffer_head **new_last_eb) 6266 { 6267 int next_free, ret = 0; 6268 u32 cpos; 6269 struct ocfs2_extent_rec *rec; 6270 struct ocfs2_extent_block *eb; 6271 struct ocfs2_extent_list *el; 6272 struct buffer_head *bh = NULL; 6273 6274 *new_last_eb = NULL; 6275 6276 /* we have no tree, so of course, no last_eb. */ 6277 if (!path->p_tree_depth) 6278 goto out; 6279 6280 /* trunc to zero special case - this makes tree_depth = 0 6281 * regardless of what it is. */ 6282 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6283 goto out; 6284 6285 el = path_leaf_el(path); 6286 BUG_ON(!el->l_next_free_rec); 6287 6288 /* 6289 * Make sure that this extent list will actually be empty 6290 * after we clear away the data. We can shortcut out if 6291 * there's more than one non-empty extent in the 6292 * list. Otherwise, a check of the remaining extent is 6293 * necessary. 6294 */ 6295 next_free = le16_to_cpu(el->l_next_free_rec); 6296 rec = NULL; 6297 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6298 if (next_free > 2) 6299 goto out; 6300 6301 /* We may have a valid extent in index 1, check it. */ 6302 if (next_free == 2) 6303 rec = &el->l_recs[1]; 6304 6305 /* 6306 * Fall through - no more nonempty extents, so we want 6307 * to delete this leaf. 6308 */ 6309 } else { 6310 if (next_free > 1) 6311 goto out; 6312 6313 rec = &el->l_recs[0]; 6314 } 6315 6316 if (rec) { 6317 /* 6318 * Check it we'll only be trimming off the end of this 6319 * cluster. 6320 */ 6321 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6322 goto out; 6323 } 6324 6325 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6326 if (ret) { 6327 mlog_errno(ret); 6328 goto out; 6329 } 6330 6331 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6332 if (ret) { 6333 mlog_errno(ret); 6334 goto out; 6335 } 6336 6337 eb = (struct ocfs2_extent_block *) bh->b_data; 6338 el = &eb->h_list; 6339 6340 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6341 * Any corruption is a code bug. */ 6342 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6343 6344 *new_last_eb = bh; 6345 get_bh(*new_last_eb); 6346 mlog(0, "returning block %llu, (cpos: %u)\n", 6347 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6348 out: 6349 brelse(bh); 6350 6351 return ret; 6352 } 6353 6354 /* 6355 * Trim some clusters off the rightmost edge of a tree. Only called 6356 * during truncate. 6357 * 6358 * The caller needs to: 6359 * - start journaling of each path component. 6360 * - compute and fully set up any new last ext block 6361 */ 6362 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6363 handle_t *handle, struct ocfs2_truncate_context *tc, 6364 u32 clusters_to_del, u64 *delete_start) 6365 { 6366 int ret, i, index = path->p_tree_depth; 6367 u32 new_edge = 0; 6368 u64 deleted_eb = 0; 6369 struct buffer_head *bh; 6370 struct ocfs2_extent_list *el; 6371 struct ocfs2_extent_rec *rec; 6372 6373 *delete_start = 0; 6374 6375 while (index >= 0) { 6376 bh = path->p_node[index].bh; 6377 el = path->p_node[index].el; 6378 6379 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6380 index, (unsigned long long)bh->b_blocknr); 6381 6382 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6383 6384 if (index != 6385 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6386 ocfs2_error(inode->i_sb, 6387 "Inode %lu has invalid ext. block %llu", 6388 inode->i_ino, 6389 (unsigned long long)bh->b_blocknr); 6390 ret = -EROFS; 6391 goto out; 6392 } 6393 6394 find_tail_record: 6395 i = le16_to_cpu(el->l_next_free_rec) - 1; 6396 rec = &el->l_recs[i]; 6397 6398 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6399 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6400 ocfs2_rec_clusters(el, rec), 6401 (unsigned long long)le64_to_cpu(rec->e_blkno), 6402 le16_to_cpu(el->l_next_free_rec)); 6403 6404 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6405 6406 if (le16_to_cpu(el->l_tree_depth) == 0) { 6407 /* 6408 * If the leaf block contains a single empty 6409 * extent and no records, we can just remove 6410 * the block. 6411 */ 6412 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6413 memset(rec, 0, 6414 sizeof(struct ocfs2_extent_rec)); 6415 el->l_next_free_rec = cpu_to_le16(0); 6416 6417 goto delete; 6418 } 6419 6420 /* 6421 * Remove any empty extents by shifting things 6422 * left. That should make life much easier on 6423 * the code below. This condition is rare 6424 * enough that we shouldn't see a performance 6425 * hit. 6426 */ 6427 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6428 le16_add_cpu(&el->l_next_free_rec, -1); 6429 6430 for(i = 0; 6431 i < le16_to_cpu(el->l_next_free_rec); i++) 6432 el->l_recs[i] = el->l_recs[i + 1]; 6433 6434 memset(&el->l_recs[i], 0, 6435 sizeof(struct ocfs2_extent_rec)); 6436 6437 /* 6438 * We've modified our extent list. The 6439 * simplest way to handle this change 6440 * is to being the search from the 6441 * start again. 6442 */ 6443 goto find_tail_record; 6444 } 6445 6446 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6447 6448 /* 6449 * We'll use "new_edge" on our way back up the 6450 * tree to know what our rightmost cpos is. 6451 */ 6452 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6453 new_edge += le32_to_cpu(rec->e_cpos); 6454 6455 /* 6456 * The caller will use this to delete data blocks. 6457 */ 6458 *delete_start = le64_to_cpu(rec->e_blkno) 6459 + ocfs2_clusters_to_blocks(inode->i_sb, 6460 le16_to_cpu(rec->e_leaf_clusters)); 6461 6462 /* 6463 * If it's now empty, remove this record. 6464 */ 6465 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6466 memset(rec, 0, 6467 sizeof(struct ocfs2_extent_rec)); 6468 le16_add_cpu(&el->l_next_free_rec, -1); 6469 } 6470 } else { 6471 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6472 memset(rec, 0, 6473 sizeof(struct ocfs2_extent_rec)); 6474 le16_add_cpu(&el->l_next_free_rec, -1); 6475 6476 goto delete; 6477 } 6478 6479 /* Can this actually happen? */ 6480 if (le16_to_cpu(el->l_next_free_rec) == 0) 6481 goto delete; 6482 6483 /* 6484 * We never actually deleted any clusters 6485 * because our leaf was empty. There's no 6486 * reason to adjust the rightmost edge then. 6487 */ 6488 if (new_edge == 0) 6489 goto delete; 6490 6491 rec->e_int_clusters = cpu_to_le32(new_edge); 6492 le32_add_cpu(&rec->e_int_clusters, 6493 -le32_to_cpu(rec->e_cpos)); 6494 6495 /* 6496 * A deleted child record should have been 6497 * caught above. 6498 */ 6499 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6500 } 6501 6502 delete: 6503 ret = ocfs2_journal_dirty(handle, bh); 6504 if (ret) { 6505 mlog_errno(ret); 6506 goto out; 6507 } 6508 6509 mlog(0, "extent list container %llu, after: record %d: " 6510 "(%u, %u, %llu), next = %u.\n", 6511 (unsigned long long)bh->b_blocknr, i, 6512 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6513 (unsigned long long)le64_to_cpu(rec->e_blkno), 6514 le16_to_cpu(el->l_next_free_rec)); 6515 6516 /* 6517 * We must be careful to only attempt delete of an 6518 * extent block (and not the root inode block). 6519 */ 6520 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6521 struct ocfs2_extent_block *eb = 6522 (struct ocfs2_extent_block *)bh->b_data; 6523 6524 /* 6525 * Save this for use when processing the 6526 * parent block. 6527 */ 6528 deleted_eb = le64_to_cpu(eb->h_blkno); 6529 6530 mlog(0, "deleting this extent block.\n"); 6531 6532 ocfs2_remove_from_cache(inode, bh); 6533 6534 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6535 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6536 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6537 6538 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6539 /* An error here is not fatal. */ 6540 if (ret < 0) 6541 mlog_errno(ret); 6542 } else { 6543 deleted_eb = 0; 6544 } 6545 6546 index--; 6547 } 6548 6549 ret = 0; 6550 out: 6551 return ret; 6552 } 6553 6554 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6555 unsigned int clusters_to_del, 6556 struct inode *inode, 6557 struct buffer_head *fe_bh, 6558 handle_t *handle, 6559 struct ocfs2_truncate_context *tc, 6560 struct ocfs2_path *path) 6561 { 6562 int status; 6563 struct ocfs2_dinode *fe; 6564 struct ocfs2_extent_block *last_eb = NULL; 6565 struct ocfs2_extent_list *el; 6566 struct buffer_head *last_eb_bh = NULL; 6567 u64 delete_blk = 0; 6568 6569 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6570 6571 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6572 path, &last_eb_bh); 6573 if (status < 0) { 6574 mlog_errno(status); 6575 goto bail; 6576 } 6577 6578 /* 6579 * Each component will be touched, so we might as well journal 6580 * here to avoid having to handle errors later. 6581 */ 6582 status = ocfs2_journal_access_path(inode, handle, path); 6583 if (status < 0) { 6584 mlog_errno(status); 6585 goto bail; 6586 } 6587 6588 if (last_eb_bh) { 6589 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6590 OCFS2_JOURNAL_ACCESS_WRITE); 6591 if (status < 0) { 6592 mlog_errno(status); 6593 goto bail; 6594 } 6595 6596 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6597 } 6598 6599 el = &(fe->id2.i_list); 6600 6601 /* 6602 * Lower levels depend on this never happening, but it's best 6603 * to check it up here before changing the tree. 6604 */ 6605 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6606 ocfs2_error(inode->i_sb, 6607 "Inode %lu has an empty extent record, depth %u\n", 6608 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6609 status = -EROFS; 6610 goto bail; 6611 } 6612 6613 vfs_dq_free_space_nodirty(inode, 6614 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6615 spin_lock(&OCFS2_I(inode)->ip_lock); 6616 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6617 clusters_to_del; 6618 spin_unlock(&OCFS2_I(inode)->ip_lock); 6619 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6620 inode->i_blocks = ocfs2_inode_sector_count(inode); 6621 6622 status = ocfs2_trim_tree(inode, path, handle, tc, 6623 clusters_to_del, &delete_blk); 6624 if (status) { 6625 mlog_errno(status); 6626 goto bail; 6627 } 6628 6629 if (le32_to_cpu(fe->i_clusters) == 0) { 6630 /* trunc to zero is a special case. */ 6631 el->l_tree_depth = 0; 6632 fe->i_last_eb_blk = 0; 6633 } else if (last_eb) 6634 fe->i_last_eb_blk = last_eb->h_blkno; 6635 6636 status = ocfs2_journal_dirty(handle, fe_bh); 6637 if (status < 0) { 6638 mlog_errno(status); 6639 goto bail; 6640 } 6641 6642 if (last_eb) { 6643 /* If there will be a new last extent block, then by 6644 * definition, there cannot be any leaves to the right of 6645 * him. */ 6646 last_eb->h_next_leaf_blk = 0; 6647 status = ocfs2_journal_dirty(handle, last_eb_bh); 6648 if (status < 0) { 6649 mlog_errno(status); 6650 goto bail; 6651 } 6652 } 6653 6654 if (delete_blk) { 6655 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6656 clusters_to_del); 6657 if (status < 0) { 6658 mlog_errno(status); 6659 goto bail; 6660 } 6661 } 6662 status = 0; 6663 bail: 6664 6665 mlog_exit(status); 6666 return status; 6667 } 6668 6669 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6670 { 6671 set_buffer_uptodate(bh); 6672 mark_buffer_dirty(bh); 6673 return 0; 6674 } 6675 6676 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6677 unsigned int from, unsigned int to, 6678 struct page *page, int zero, u64 *phys) 6679 { 6680 int ret, partial = 0; 6681 6682 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6683 if (ret) 6684 mlog_errno(ret); 6685 6686 if (zero) 6687 zero_user_segment(page, from, to); 6688 6689 /* 6690 * Need to set the buffers we zero'd into uptodate 6691 * here if they aren't - ocfs2_map_page_blocks() 6692 * might've skipped some 6693 */ 6694 ret = walk_page_buffers(handle, page_buffers(page), 6695 from, to, &partial, 6696 ocfs2_zero_func); 6697 if (ret < 0) 6698 mlog_errno(ret); 6699 else if (ocfs2_should_order_data(inode)) { 6700 ret = ocfs2_jbd2_file_inode(handle, inode); 6701 if (ret < 0) 6702 mlog_errno(ret); 6703 } 6704 6705 if (!partial) 6706 SetPageUptodate(page); 6707 6708 flush_dcache_page(page); 6709 } 6710 6711 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6712 loff_t end, struct page **pages, 6713 int numpages, u64 phys, handle_t *handle) 6714 { 6715 int i; 6716 struct page *page; 6717 unsigned int from, to = PAGE_CACHE_SIZE; 6718 struct super_block *sb = inode->i_sb; 6719 6720 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6721 6722 if (numpages == 0) 6723 goto out; 6724 6725 to = PAGE_CACHE_SIZE; 6726 for(i = 0; i < numpages; i++) { 6727 page = pages[i]; 6728 6729 from = start & (PAGE_CACHE_SIZE - 1); 6730 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6731 to = end & (PAGE_CACHE_SIZE - 1); 6732 6733 BUG_ON(from > PAGE_CACHE_SIZE); 6734 BUG_ON(to > PAGE_CACHE_SIZE); 6735 6736 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6737 &phys); 6738 6739 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6740 } 6741 out: 6742 if (pages) 6743 ocfs2_unlock_and_free_pages(pages, numpages); 6744 } 6745 6746 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6747 struct page **pages, int *num) 6748 { 6749 int numpages, ret = 0; 6750 struct super_block *sb = inode->i_sb; 6751 struct address_space *mapping = inode->i_mapping; 6752 unsigned long index; 6753 loff_t last_page_bytes; 6754 6755 BUG_ON(start > end); 6756 6757 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6758 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6759 6760 numpages = 0; 6761 last_page_bytes = PAGE_ALIGN(end); 6762 index = start >> PAGE_CACHE_SHIFT; 6763 do { 6764 pages[numpages] = grab_cache_page(mapping, index); 6765 if (!pages[numpages]) { 6766 ret = -ENOMEM; 6767 mlog_errno(ret); 6768 goto out; 6769 } 6770 6771 numpages++; 6772 index++; 6773 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6774 6775 out: 6776 if (ret != 0) { 6777 if (pages) 6778 ocfs2_unlock_and_free_pages(pages, numpages); 6779 numpages = 0; 6780 } 6781 6782 *num = numpages; 6783 6784 return ret; 6785 } 6786 6787 /* 6788 * Zero the area past i_size but still within an allocated 6789 * cluster. This avoids exposing nonzero data on subsequent file 6790 * extends. 6791 * 6792 * We need to call this before i_size is updated on the inode because 6793 * otherwise block_write_full_page() will skip writeout of pages past 6794 * i_size. The new_i_size parameter is passed for this reason. 6795 */ 6796 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6797 u64 range_start, u64 range_end) 6798 { 6799 int ret = 0, numpages; 6800 struct page **pages = NULL; 6801 u64 phys; 6802 unsigned int ext_flags; 6803 struct super_block *sb = inode->i_sb; 6804 6805 /* 6806 * File systems which don't support sparse files zero on every 6807 * extend. 6808 */ 6809 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6810 return 0; 6811 6812 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6813 sizeof(struct page *), GFP_NOFS); 6814 if (pages == NULL) { 6815 ret = -ENOMEM; 6816 mlog_errno(ret); 6817 goto out; 6818 } 6819 6820 if (range_start == range_end) 6821 goto out; 6822 6823 ret = ocfs2_extent_map_get_blocks(inode, 6824 range_start >> sb->s_blocksize_bits, 6825 &phys, NULL, &ext_flags); 6826 if (ret) { 6827 mlog_errno(ret); 6828 goto out; 6829 } 6830 6831 /* 6832 * Tail is a hole, or is marked unwritten. In either case, we 6833 * can count on read and write to return/push zero's. 6834 */ 6835 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6836 goto out; 6837 6838 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6839 &numpages); 6840 if (ret) { 6841 mlog_errno(ret); 6842 goto out; 6843 } 6844 6845 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6846 numpages, phys, handle); 6847 6848 /* 6849 * Initiate writeout of the pages we zero'd here. We don't 6850 * wait on them - the truncate_inode_pages() call later will 6851 * do that for us. 6852 */ 6853 ret = do_sync_mapping_range(inode->i_mapping, range_start, 6854 range_end - 1, SYNC_FILE_RANGE_WRITE); 6855 if (ret) 6856 mlog_errno(ret); 6857 6858 out: 6859 if (pages) 6860 kfree(pages); 6861 6862 return ret; 6863 } 6864 6865 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6866 struct ocfs2_dinode *di) 6867 { 6868 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6869 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6870 6871 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6872 memset(&di->id2, 0, blocksize - 6873 offsetof(struct ocfs2_dinode, id2) - 6874 xattrsize); 6875 else 6876 memset(&di->id2, 0, blocksize - 6877 offsetof(struct ocfs2_dinode, id2)); 6878 } 6879 6880 void ocfs2_dinode_new_extent_list(struct inode *inode, 6881 struct ocfs2_dinode *di) 6882 { 6883 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6884 di->id2.i_list.l_tree_depth = 0; 6885 di->id2.i_list.l_next_free_rec = 0; 6886 di->id2.i_list.l_count = cpu_to_le16( 6887 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6888 } 6889 6890 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6891 { 6892 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6893 struct ocfs2_inline_data *idata = &di->id2.i_data; 6894 6895 spin_lock(&oi->ip_lock); 6896 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6897 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6898 spin_unlock(&oi->ip_lock); 6899 6900 /* 6901 * We clear the entire i_data structure here so that all 6902 * fields can be properly initialized. 6903 */ 6904 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6905 6906 idata->id_count = cpu_to_le16( 6907 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6908 } 6909 6910 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6911 struct buffer_head *di_bh) 6912 { 6913 int ret, i, has_data, num_pages = 0; 6914 handle_t *handle; 6915 u64 uninitialized_var(block); 6916 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6917 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6918 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6919 struct ocfs2_alloc_context *data_ac = NULL; 6920 struct page **pages = NULL; 6921 loff_t end = osb->s_clustersize; 6922 struct ocfs2_extent_tree et; 6923 int did_quota = 0; 6924 6925 has_data = i_size_read(inode) ? 1 : 0; 6926 6927 if (has_data) { 6928 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6929 sizeof(struct page *), GFP_NOFS); 6930 if (pages == NULL) { 6931 ret = -ENOMEM; 6932 mlog_errno(ret); 6933 goto out; 6934 } 6935 6936 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6937 if (ret) { 6938 mlog_errno(ret); 6939 goto out; 6940 } 6941 } 6942 6943 handle = ocfs2_start_trans(osb, 6944 ocfs2_inline_to_extents_credits(osb->sb)); 6945 if (IS_ERR(handle)) { 6946 ret = PTR_ERR(handle); 6947 mlog_errno(ret); 6948 goto out_unlock; 6949 } 6950 6951 ret = ocfs2_journal_access_di(handle, inode, di_bh, 6952 OCFS2_JOURNAL_ACCESS_WRITE); 6953 if (ret) { 6954 mlog_errno(ret); 6955 goto out_commit; 6956 } 6957 6958 if (has_data) { 6959 u32 bit_off, num; 6960 unsigned int page_end; 6961 u64 phys; 6962 6963 if (vfs_dq_alloc_space_nodirty(inode, 6964 ocfs2_clusters_to_bytes(osb->sb, 1))) { 6965 ret = -EDQUOT; 6966 goto out_commit; 6967 } 6968 did_quota = 1; 6969 6970 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 6971 &num); 6972 if (ret) { 6973 mlog_errno(ret); 6974 goto out_commit; 6975 } 6976 6977 /* 6978 * Save two copies, one for insert, and one that can 6979 * be changed by ocfs2_map_and_dirty_page() below. 6980 */ 6981 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6982 6983 /* 6984 * Non sparse file systems zero on extend, so no need 6985 * to do that now. 6986 */ 6987 if (!ocfs2_sparse_alloc(osb) && 6988 PAGE_CACHE_SIZE < osb->s_clustersize) 6989 end = PAGE_CACHE_SIZE; 6990 6991 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6992 if (ret) { 6993 mlog_errno(ret); 6994 goto out_commit; 6995 } 6996 6997 /* 6998 * This should populate the 1st page for us and mark 6999 * it up to date. 7000 */ 7001 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7002 if (ret) { 7003 mlog_errno(ret); 7004 goto out_commit; 7005 } 7006 7007 page_end = PAGE_CACHE_SIZE; 7008 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7009 page_end = osb->s_clustersize; 7010 7011 for (i = 0; i < num_pages; i++) 7012 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7013 pages[i], i > 0, &phys); 7014 } 7015 7016 spin_lock(&oi->ip_lock); 7017 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7018 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7019 spin_unlock(&oi->ip_lock); 7020 7021 ocfs2_dinode_new_extent_list(inode, di); 7022 7023 ocfs2_journal_dirty(handle, di_bh); 7024 7025 if (has_data) { 7026 /* 7027 * An error at this point should be extremely rare. If 7028 * this proves to be false, we could always re-build 7029 * the in-inode data from our pages. 7030 */ 7031 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7032 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7033 0, block, 1, 0, NULL); 7034 if (ret) { 7035 mlog_errno(ret); 7036 goto out_commit; 7037 } 7038 7039 inode->i_blocks = ocfs2_inode_sector_count(inode); 7040 } 7041 7042 out_commit: 7043 if (ret < 0 && did_quota) 7044 vfs_dq_free_space_nodirty(inode, 7045 ocfs2_clusters_to_bytes(osb->sb, 1)); 7046 7047 ocfs2_commit_trans(osb, handle); 7048 7049 out_unlock: 7050 if (data_ac) 7051 ocfs2_free_alloc_context(data_ac); 7052 7053 out: 7054 if (pages) { 7055 ocfs2_unlock_and_free_pages(pages, num_pages); 7056 kfree(pages); 7057 } 7058 7059 return ret; 7060 } 7061 7062 /* 7063 * It is expected, that by the time you call this function, 7064 * inode->i_size and fe->i_size have been adjusted. 7065 * 7066 * WARNING: This will kfree the truncate context 7067 */ 7068 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7069 struct inode *inode, 7070 struct buffer_head *fe_bh, 7071 struct ocfs2_truncate_context *tc) 7072 { 7073 int status, i, credits, tl_sem = 0; 7074 u32 clusters_to_del, new_highest_cpos, range; 7075 struct ocfs2_extent_list *el; 7076 handle_t *handle = NULL; 7077 struct inode *tl_inode = osb->osb_tl_inode; 7078 struct ocfs2_path *path = NULL; 7079 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7080 7081 mlog_entry_void(); 7082 7083 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7084 i_size_read(inode)); 7085 7086 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7087 ocfs2_journal_access_di); 7088 if (!path) { 7089 status = -ENOMEM; 7090 mlog_errno(status); 7091 goto bail; 7092 } 7093 7094 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7095 7096 start: 7097 /* 7098 * Check that we still have allocation to delete. 7099 */ 7100 if (OCFS2_I(inode)->ip_clusters == 0) { 7101 status = 0; 7102 goto bail; 7103 } 7104 7105 /* 7106 * Truncate always works against the rightmost tree branch. 7107 */ 7108 status = ocfs2_find_path(inode, path, UINT_MAX); 7109 if (status) { 7110 mlog_errno(status); 7111 goto bail; 7112 } 7113 7114 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7115 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7116 7117 /* 7118 * By now, el will point to the extent list on the bottom most 7119 * portion of this tree. Only the tail record is considered in 7120 * each pass. 7121 * 7122 * We handle the following cases, in order: 7123 * - empty extent: delete the remaining branch 7124 * - remove the entire record 7125 * - remove a partial record 7126 * - no record needs to be removed (truncate has completed) 7127 */ 7128 el = path_leaf_el(path); 7129 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7130 ocfs2_error(inode->i_sb, 7131 "Inode %llu has empty extent block at %llu\n", 7132 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7133 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7134 status = -EROFS; 7135 goto bail; 7136 } 7137 7138 i = le16_to_cpu(el->l_next_free_rec) - 1; 7139 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7140 ocfs2_rec_clusters(el, &el->l_recs[i]); 7141 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7142 clusters_to_del = 0; 7143 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7144 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7145 } else if (range > new_highest_cpos) { 7146 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7147 le32_to_cpu(el->l_recs[i].e_cpos)) - 7148 new_highest_cpos; 7149 } else { 7150 status = 0; 7151 goto bail; 7152 } 7153 7154 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7155 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7156 7157 mutex_lock(&tl_inode->i_mutex); 7158 tl_sem = 1; 7159 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7160 * record is free for use. If there isn't any, we flush to get 7161 * an empty truncate log. */ 7162 if (ocfs2_truncate_log_needs_flush(osb)) { 7163 status = __ocfs2_flush_truncate_log(osb); 7164 if (status < 0) { 7165 mlog_errno(status); 7166 goto bail; 7167 } 7168 } 7169 7170 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7171 (struct ocfs2_dinode *)fe_bh->b_data, 7172 el); 7173 handle = ocfs2_start_trans(osb, credits); 7174 if (IS_ERR(handle)) { 7175 status = PTR_ERR(handle); 7176 handle = NULL; 7177 mlog_errno(status); 7178 goto bail; 7179 } 7180 7181 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7182 tc, path); 7183 if (status < 0) { 7184 mlog_errno(status); 7185 goto bail; 7186 } 7187 7188 mutex_unlock(&tl_inode->i_mutex); 7189 tl_sem = 0; 7190 7191 ocfs2_commit_trans(osb, handle); 7192 handle = NULL; 7193 7194 ocfs2_reinit_path(path, 1); 7195 7196 /* 7197 * The check above will catch the case where we've truncated 7198 * away all allocation. 7199 */ 7200 goto start; 7201 7202 bail: 7203 7204 ocfs2_schedule_truncate_log_flush(osb, 1); 7205 7206 if (tl_sem) 7207 mutex_unlock(&tl_inode->i_mutex); 7208 7209 if (handle) 7210 ocfs2_commit_trans(osb, handle); 7211 7212 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7213 7214 ocfs2_free_path(path); 7215 7216 /* This will drop the ext_alloc cluster lock for us */ 7217 ocfs2_free_truncate_context(tc); 7218 7219 mlog_exit(status); 7220 return status; 7221 } 7222 7223 /* 7224 * Expects the inode to already be locked. 7225 */ 7226 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7227 struct inode *inode, 7228 struct buffer_head *fe_bh, 7229 struct ocfs2_truncate_context **tc) 7230 { 7231 int status; 7232 unsigned int new_i_clusters; 7233 struct ocfs2_dinode *fe; 7234 struct ocfs2_extent_block *eb; 7235 struct buffer_head *last_eb_bh = NULL; 7236 7237 mlog_entry_void(); 7238 7239 *tc = NULL; 7240 7241 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7242 i_size_read(inode)); 7243 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7244 7245 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7246 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7247 (unsigned long long)le64_to_cpu(fe->i_size)); 7248 7249 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7250 if (!(*tc)) { 7251 status = -ENOMEM; 7252 mlog_errno(status); 7253 goto bail; 7254 } 7255 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7256 7257 if (fe->id2.i_list.l_tree_depth) { 7258 status = ocfs2_read_extent_block(inode, 7259 le64_to_cpu(fe->i_last_eb_blk), 7260 &last_eb_bh); 7261 if (status < 0) { 7262 mlog_errno(status); 7263 goto bail; 7264 } 7265 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7266 } 7267 7268 (*tc)->tc_last_eb_bh = last_eb_bh; 7269 7270 status = 0; 7271 bail: 7272 if (status < 0) { 7273 if (*tc) 7274 ocfs2_free_truncate_context(*tc); 7275 *tc = NULL; 7276 } 7277 mlog_exit_void(); 7278 return status; 7279 } 7280 7281 /* 7282 * 'start' is inclusive, 'end' is not. 7283 */ 7284 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7285 unsigned int start, unsigned int end, int trunc) 7286 { 7287 int ret; 7288 unsigned int numbytes; 7289 handle_t *handle; 7290 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7291 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7292 struct ocfs2_inline_data *idata = &di->id2.i_data; 7293 7294 if (end > i_size_read(inode)) 7295 end = i_size_read(inode); 7296 7297 BUG_ON(start >= end); 7298 7299 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7300 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7301 !ocfs2_supports_inline_data(osb)) { 7302 ocfs2_error(inode->i_sb, 7303 "Inline data flags for inode %llu don't agree! " 7304 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7305 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7306 le16_to_cpu(di->i_dyn_features), 7307 OCFS2_I(inode)->ip_dyn_features, 7308 osb->s_feature_incompat); 7309 ret = -EROFS; 7310 goto out; 7311 } 7312 7313 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7314 if (IS_ERR(handle)) { 7315 ret = PTR_ERR(handle); 7316 mlog_errno(ret); 7317 goto out; 7318 } 7319 7320 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7321 OCFS2_JOURNAL_ACCESS_WRITE); 7322 if (ret) { 7323 mlog_errno(ret); 7324 goto out_commit; 7325 } 7326 7327 numbytes = end - start; 7328 memset(idata->id_data + start, 0, numbytes); 7329 7330 /* 7331 * No need to worry about the data page here - it's been 7332 * truncated already and inline data doesn't need it for 7333 * pushing zero's to disk, so we'll let readpage pick it up 7334 * later. 7335 */ 7336 if (trunc) { 7337 i_size_write(inode, start); 7338 di->i_size = cpu_to_le64(start); 7339 } 7340 7341 inode->i_blocks = ocfs2_inode_sector_count(inode); 7342 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7343 7344 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7345 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7346 7347 ocfs2_journal_dirty(handle, di_bh); 7348 7349 out_commit: 7350 ocfs2_commit_trans(osb, handle); 7351 7352 out: 7353 return ret; 7354 } 7355 7356 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7357 { 7358 /* 7359 * The caller is responsible for completing deallocation 7360 * before freeing the context. 7361 */ 7362 if (tc->tc_dealloc.c_first_suballocator != NULL) 7363 mlog(ML_NOTICE, 7364 "Truncate completion has non-empty dealloc context\n"); 7365 7366 brelse(tc->tc_last_eb_bh); 7367 7368 kfree(tc); 7369 } 7370