xref: /linux/fs/ocfs2/alloc.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49 
50 #include "buffer_head_io.h"
51 
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 					 struct ocfs2_extent_block *eb);
55 
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64 	struct buffer_head		*bh;
65 	struct ocfs2_extent_list	*el;
66 };
67 
68 #define OCFS2_MAX_PATH_DEPTH	5
69 
70 struct ocfs2_path {
71 	int			p_tree_depth;
72 	struct ocfs2_path_item	p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74 
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 	int i, start = 0, depth = 0;
89 	struct ocfs2_path_item *node;
90 
91 	if (keep_root)
92 		start = 1;
93 
94 	for(i = start; i < path_num_items(path); i++) {
95 		node = &path->p_node[i];
96 
97 		brelse(node->bh);
98 		node->bh = NULL;
99 		node->el = NULL;
100 	}
101 
102 	/*
103 	 * Tree depth may change during truncate, or insert. If we're
104 	 * keeping the root extent list, then make sure that our path
105 	 * structure reflects the proper depth.
106 	 */
107 	if (keep_root)
108 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109 
110 	path->p_tree_depth = depth;
111 }
112 
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 	if (path) {
116 		ocfs2_reinit_path(path, 0);
117 		kfree(path);
118 	}
119 }
120 
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 	int i;
131 
132 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 	BUG_ON(path_root_el(dest) != path_root_el(src));
134 
135 	ocfs2_reinit_path(dest, 1);
136 
137 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 		dest->p_node[i].bh = src->p_node[i].bh;
139 		dest->p_node[i].el = src->p_node[i].el;
140 
141 		if (dest->p_node[i].bh)
142 			get_bh(dest->p_node[i].bh);
143 	}
144 }
145 
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 	int i;
153 
154 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
155 
156 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 		brelse(dest->p_node[i].bh);
158 
159 		dest->p_node[i].bh = src->p_node[i].bh;
160 		dest->p_node[i].el = src->p_node[i].el;
161 
162 		src->p_node[i].bh = NULL;
163 		src->p_node[i].el = NULL;
164 	}
165 }
166 
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 					struct buffer_head *eb_bh)
174 {
175 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176 
177 	/*
178 	 * Right now, no root bh is an extent block, so this helps
179 	 * catch code errors with dinode trees. The assertion can be
180 	 * safely removed if we ever need to insert extent block
181 	 * structures at the root.
182 	 */
183 	BUG_ON(index == 0);
184 
185 	path->p_node[index].bh = eb_bh;
186 	path->p_node[index].el = &eb->h_list;
187 }
188 
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 					 struct ocfs2_extent_list *root_el)
191 {
192 	struct ocfs2_path *path;
193 
194 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195 
196 	path = kzalloc(sizeof(*path), GFP_NOFS);
197 	if (path) {
198 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 		get_bh(root_bh);
200 		path_root_bh(path) = root_bh;
201 		path_root_el(path) = root_el;
202 	}
203 
204 	return path;
205 }
206 
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 	struct ocfs2_extent_list *el = &di->id2.i_list;
214 
215 	return ocfs2_new_path(di_bh, el);
216 }
217 
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 				     struct ocfs2_path *path)
223 {
224 	int i, ret = 0;
225 
226 	if (!path)
227 		goto out;
228 
229 	for(i = 0; i < path_num_items(path); i++) {
230 		ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 					   OCFS2_JOURNAL_ACCESS_WRITE);
232 		if (ret < 0) {
233 			mlog_errno(ret);
234 			goto out;
235 		}
236 	}
237 
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 	int ret = -1;
251 	int i;
252 	struct ocfs2_extent_rec *rec;
253 	u32 rec_end, rec_start, clusters;
254 
255 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 		rec = &el->l_recs[i];
257 
258 		rec_start = le32_to_cpu(rec->e_cpos);
259 		clusters = ocfs2_rec_clusters(el, rec);
260 
261 		rec_end = rec_start + clusters;
262 
263 		if (v_cluster >= rec_start && v_cluster < rec_end) {
264 			ret = i;
265 			break;
266 		}
267 	}
268 
269 	return ret;
270 }
271 
272 enum ocfs2_contig_type {
273 	CONTIG_NONE = 0,
274 	CONTIG_LEFT,
275 	CONTIG_RIGHT,
276 	CONTIG_LEFTRIGHT,
277 };
278 
279 
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 				     struct ocfs2_extent_rec *ext,
286 				     u64 blkno)
287 {
288 	u64 blk_end = le64_to_cpu(ext->e_blkno);
289 
290 	blk_end += ocfs2_clusters_to_blocks(sb,
291 				    le16_to_cpu(ext->e_leaf_clusters));
292 
293 	return blkno == blk_end;
294 }
295 
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 				  struct ocfs2_extent_rec *right)
298 {
299 	u32 left_range;
300 
301 	left_range = le32_to_cpu(left->e_cpos) +
302 		le16_to_cpu(left->e_leaf_clusters);
303 
304 	return (left_range == le32_to_cpu(right->e_cpos));
305 }
306 
307 static enum ocfs2_contig_type
308 	ocfs2_extent_contig(struct inode *inode,
309 			    struct ocfs2_extent_rec *ext,
310 			    struct ocfs2_extent_rec *insert_rec)
311 {
312 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313 
314 	/*
315 	 * Refuse to coalesce extent records with different flag
316 	 * fields - we don't want to mix unwritten extents with user
317 	 * data.
318 	 */
319 	if (ext->e_flags != insert_rec->e_flags)
320 		return CONTIG_NONE;
321 
322 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 			return CONTIG_RIGHT;
325 
326 	blkno = le64_to_cpu(ext->e_blkno);
327 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 		return CONTIG_LEFT;
330 
331 	return CONTIG_NONE;
332 }
333 
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342 	APPEND_NONE = 0,
343 	APPEND_TAIL,
344 };
345 
346 enum ocfs2_split_type {
347 	SPLIT_NONE = 0,
348 	SPLIT_LEFT,
349 	SPLIT_RIGHT,
350 };
351 
352 struct ocfs2_insert_type {
353 	enum ocfs2_split_type	ins_split;
354 	enum ocfs2_append_type	ins_appending;
355 	enum ocfs2_contig_type	ins_contig;
356 	int			ins_contig_index;
357 	int			ins_tree_depth;
358 };
359 
360 struct ocfs2_merge_ctxt {
361 	enum ocfs2_contig_type	c_contig_type;
362 	int			c_has_empty_extent;
363 	int			c_split_covers_rec;
364 };
365 
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370 			   struct inode *inode,
371 			   struct ocfs2_dinode *fe)
372 {
373 	int retval;
374 	struct ocfs2_extent_list *el;
375 	struct ocfs2_extent_block *eb;
376 	struct buffer_head *eb_bh = NULL;
377 
378 	mlog_entry_void();
379 
380 	if (!OCFS2_IS_VALID_DINODE(fe)) {
381 		OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382 		retval = -EIO;
383 		goto bail;
384 	}
385 
386 	if (fe->i_last_eb_blk) {
387 		retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388 					  &eb_bh, OCFS2_BH_CACHED, inode);
389 		if (retval < 0) {
390 			mlog_errno(retval);
391 			goto bail;
392 		}
393 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394 		el = &eb->h_list;
395 	} else
396 		el = &fe->id2.i_list;
397 
398 	BUG_ON(el->l_tree_depth != 0);
399 
400 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402 	if (eb_bh)
403 		brelse(eb_bh);
404 
405 	mlog_exit(retval);
406 	return retval;
407 }
408 
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415 				     handle_t *handle,
416 				     struct inode *inode,
417 				     int wanted,
418 				     struct ocfs2_alloc_context *meta_ac,
419 				     struct buffer_head *bhs[])
420 {
421 	int count, status, i;
422 	u16 suballoc_bit_start;
423 	u32 num_got;
424 	u64 first_blkno;
425 	struct ocfs2_extent_block *eb;
426 
427 	mlog_entry_void();
428 
429 	count = 0;
430 	while (count < wanted) {
431 		status = ocfs2_claim_metadata(osb,
432 					      handle,
433 					      meta_ac,
434 					      wanted - count,
435 					      &suballoc_bit_start,
436 					      &num_got,
437 					      &first_blkno);
438 		if (status < 0) {
439 			mlog_errno(status);
440 			goto bail;
441 		}
442 
443 		for(i = count;  i < (num_got + count); i++) {
444 			bhs[i] = sb_getblk(osb->sb, first_blkno);
445 			if (bhs[i] == NULL) {
446 				status = -EIO;
447 				mlog_errno(status);
448 				goto bail;
449 			}
450 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451 
452 			status = ocfs2_journal_access(handle, inode, bhs[i],
453 						      OCFS2_JOURNAL_ACCESS_CREATE);
454 			if (status < 0) {
455 				mlog_errno(status);
456 				goto bail;
457 			}
458 
459 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461 			/* Ok, setup the minimal stuff here. */
462 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463 			eb->h_blkno = cpu_to_le64(first_blkno);
464 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467 			eb->h_list.l_count =
468 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469 
470 			suballoc_bit_start++;
471 			first_blkno++;
472 
473 			/* We'll also be dirtied by the caller, so
474 			 * this isn't absolutely necessary. */
475 			status = ocfs2_journal_dirty(handle, bhs[i]);
476 			if (status < 0) {
477 				mlog_errno(status);
478 				goto bail;
479 			}
480 		}
481 
482 		count += num_got;
483 	}
484 
485 	status = 0;
486 bail:
487 	if (status < 0) {
488 		for(i = 0; i < wanted; i++) {
489 			if (bhs[i])
490 				brelse(bhs[i]);
491 			bhs[i] = NULL;
492 		}
493 	}
494 	mlog_exit(status);
495 	return status;
496 }
497 
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512 	int i;
513 
514 	i = le16_to_cpu(el->l_next_free_rec) - 1;
515 
516 	return le32_to_cpu(el->l_recs[i].e_cpos) +
517 		ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519 
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532 			    handle_t *handle,
533 			    struct inode *inode,
534 			    struct buffer_head *fe_bh,
535 			    struct buffer_head *eb_bh,
536 			    struct buffer_head **last_eb_bh,
537 			    struct ocfs2_alloc_context *meta_ac)
538 {
539 	int status, new_blocks, i;
540 	u64 next_blkno, new_last_eb_blk;
541 	struct buffer_head *bh;
542 	struct buffer_head **new_eb_bhs = NULL;
543 	struct ocfs2_dinode *fe;
544 	struct ocfs2_extent_block *eb;
545 	struct ocfs2_extent_list  *eb_el;
546 	struct ocfs2_extent_list  *el;
547 	u32 new_cpos;
548 
549 	mlog_entry_void();
550 
551 	BUG_ON(!last_eb_bh || !*last_eb_bh);
552 
553 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
554 
555 	if (eb_bh) {
556 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557 		el = &eb->h_list;
558 	} else
559 		el = &fe->id2.i_list;
560 
561 	/* we never add a branch to a leaf. */
562 	BUG_ON(!el->l_tree_depth);
563 
564 	new_blocks = le16_to_cpu(el->l_tree_depth);
565 
566 	/* allocate the number of new eb blocks we need */
567 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568 			     GFP_KERNEL);
569 	if (!new_eb_bhs) {
570 		status = -ENOMEM;
571 		mlog_errno(status);
572 		goto bail;
573 	}
574 
575 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576 					   meta_ac, new_eb_bhs);
577 	if (status < 0) {
578 		mlog_errno(status);
579 		goto bail;
580 	}
581 
582 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584 
585 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 	 * linked with the rest of the tree.
587 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
588 	 *
589 	 * when we leave the loop, new_last_eb_blk will point to the
590 	 * newest leaf, and next_blkno will point to the topmost extent
591 	 * block. */
592 	next_blkno = new_last_eb_blk = 0;
593 	for(i = 0; i < new_blocks; i++) {
594 		bh = new_eb_bhs[i];
595 		eb = (struct ocfs2_extent_block *) bh->b_data;
596 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598 			status = -EIO;
599 			goto bail;
600 		}
601 		eb_el = &eb->h_list;
602 
603 		status = ocfs2_journal_access(handle, inode, bh,
604 					      OCFS2_JOURNAL_ACCESS_CREATE);
605 		if (status < 0) {
606 			mlog_errno(status);
607 			goto bail;
608 		}
609 
610 		eb->h_next_leaf_blk = 0;
611 		eb_el->l_tree_depth = cpu_to_le16(i);
612 		eb_el->l_next_free_rec = cpu_to_le16(1);
613 		/*
614 		 * This actually counts as an empty extent as
615 		 * c_clusters == 0
616 		 */
617 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619 		/*
620 		 * eb_el isn't always an interior node, but even leaf
621 		 * nodes want a zero'd flags and reserved field so
622 		 * this gets the whole 32 bits regardless of use.
623 		 */
624 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625 		if (!eb_el->l_tree_depth)
626 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627 
628 		status = ocfs2_journal_dirty(handle, bh);
629 		if (status < 0) {
630 			mlog_errno(status);
631 			goto bail;
632 		}
633 
634 		next_blkno = le64_to_cpu(eb->h_blkno);
635 	}
636 
637 	/* This is a bit hairy. We want to update up to three blocks
638 	 * here without leaving any of them in an inconsistent state
639 	 * in case of error. We don't have to worry about
640 	 * journal_dirty erroring as it won't unless we've aborted the
641 	 * handle (in which case we would never be here) so reserving
642 	 * the write with journal_access is all we need to do. */
643 	status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644 				      OCFS2_JOURNAL_ACCESS_WRITE);
645 	if (status < 0) {
646 		mlog_errno(status);
647 		goto bail;
648 	}
649 	status = ocfs2_journal_access(handle, inode, fe_bh,
650 				      OCFS2_JOURNAL_ACCESS_WRITE);
651 	if (status < 0) {
652 		mlog_errno(status);
653 		goto bail;
654 	}
655 	if (eb_bh) {
656 		status = ocfs2_journal_access(handle, inode, eb_bh,
657 					      OCFS2_JOURNAL_ACCESS_WRITE);
658 		if (status < 0) {
659 			mlog_errno(status);
660 			goto bail;
661 		}
662 	}
663 
664 	/* Link the new branch into the rest of the tree (el will
665 	 * either be on the fe, or the extent block passed in. */
666 	i = le16_to_cpu(el->l_next_free_rec);
667 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669 	el->l_recs[i].e_int_clusters = 0;
670 	le16_add_cpu(&el->l_next_free_rec, 1);
671 
672 	/* fe needs a new last extent block pointer, as does the
673 	 * next_leaf on the previously last-extent-block. */
674 	fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675 
676 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678 
679 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
680 	if (status < 0)
681 		mlog_errno(status);
682 	status = ocfs2_journal_dirty(handle, fe_bh);
683 	if (status < 0)
684 		mlog_errno(status);
685 	if (eb_bh) {
686 		status = ocfs2_journal_dirty(handle, eb_bh);
687 		if (status < 0)
688 			mlog_errno(status);
689 	}
690 
691 	/*
692 	 * Some callers want to track the rightmost leaf so pass it
693 	 * back here.
694 	 */
695 	brelse(*last_eb_bh);
696 	get_bh(new_eb_bhs[0]);
697 	*last_eb_bh = new_eb_bhs[0];
698 
699 	status = 0;
700 bail:
701 	if (new_eb_bhs) {
702 		for (i = 0; i < new_blocks; i++)
703 			if (new_eb_bhs[i])
704 				brelse(new_eb_bhs[i]);
705 		kfree(new_eb_bhs);
706 	}
707 
708 	mlog_exit(status);
709 	return status;
710 }
711 
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718 				  handle_t *handle,
719 				  struct inode *inode,
720 				  struct buffer_head *fe_bh,
721 				  struct ocfs2_alloc_context *meta_ac,
722 				  struct buffer_head **ret_new_eb_bh)
723 {
724 	int status, i;
725 	u32 new_clusters;
726 	struct buffer_head *new_eb_bh = NULL;
727 	struct ocfs2_dinode *fe;
728 	struct ocfs2_extent_block *eb;
729 	struct ocfs2_extent_list  *fe_el;
730 	struct ocfs2_extent_list  *eb_el;
731 
732 	mlog_entry_void();
733 
734 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735 					   &new_eb_bh);
736 	if (status < 0) {
737 		mlog_errno(status);
738 		goto bail;
739 	}
740 
741 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744 		status = -EIO;
745 		goto bail;
746 	}
747 
748 	eb_el = &eb->h_list;
749 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
750 	fe_el = &fe->id2.i_list;
751 
752 	status = ocfs2_journal_access(handle, inode, new_eb_bh,
753 				      OCFS2_JOURNAL_ACCESS_CREATE);
754 	if (status < 0) {
755 		mlog_errno(status);
756 		goto bail;
757 	}
758 
759 	/* copy the fe data into the new extent block */
760 	eb_el->l_tree_depth = fe_el->l_tree_depth;
761 	eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762 	for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763 		eb_el->l_recs[i] = fe_el->l_recs[i];
764 
765 	status = ocfs2_journal_dirty(handle, new_eb_bh);
766 	if (status < 0) {
767 		mlog_errno(status);
768 		goto bail;
769 	}
770 
771 	status = ocfs2_journal_access(handle, inode, fe_bh,
772 				      OCFS2_JOURNAL_ACCESS_WRITE);
773 	if (status < 0) {
774 		mlog_errno(status);
775 		goto bail;
776 	}
777 
778 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779 
780 	/* update fe now */
781 	le16_add_cpu(&fe_el->l_tree_depth, 1);
782 	fe_el->l_recs[0].e_cpos = 0;
783 	fe_el->l_recs[0].e_blkno = eb->h_blkno;
784 	fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785 	for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786 		memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787 	fe_el->l_next_free_rec = cpu_to_le16(1);
788 
789 	/* If this is our 1st tree depth shift, then last_eb_blk
790 	 * becomes the allocated extent block */
791 	if (fe_el->l_tree_depth == cpu_to_le16(1))
792 		fe->i_last_eb_blk = eb->h_blkno;
793 
794 	status = ocfs2_journal_dirty(handle, fe_bh);
795 	if (status < 0) {
796 		mlog_errno(status);
797 		goto bail;
798 	}
799 
800 	*ret_new_eb_bh = new_eb_bh;
801 	new_eb_bh = NULL;
802 	status = 0;
803 bail:
804 	if (new_eb_bh)
805 		brelse(new_eb_bh);
806 
807 	mlog_exit(status);
808 	return status;
809 }
810 
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829 				    struct inode *inode,
830 				    struct buffer_head *fe_bh,
831 				    struct buffer_head **target_bh)
832 {
833 	int status = 0, i;
834 	u64 blkno;
835 	struct ocfs2_dinode *fe;
836 	struct ocfs2_extent_block *eb;
837 	struct ocfs2_extent_list  *el;
838 	struct buffer_head *bh = NULL;
839 	struct buffer_head *lowest_bh = NULL;
840 
841 	mlog_entry_void();
842 
843 	*target_bh = NULL;
844 
845 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
846 	el = &fe->id2.i_list;
847 
848 	while(le16_to_cpu(el->l_tree_depth) > 1) {
849 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
850 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851 				    "extent list (next_free_rec == 0)",
852 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
853 			status = -EIO;
854 			goto bail;
855 		}
856 		i = le16_to_cpu(el->l_next_free_rec) - 1;
857 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858 		if (!blkno) {
859 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860 				    "list where extent # %d has no physical "
861 				    "block start",
862 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863 			status = -EIO;
864 			goto bail;
865 		}
866 
867 		if (bh) {
868 			brelse(bh);
869 			bh = NULL;
870 		}
871 
872 		status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873 					  inode);
874 		if (status < 0) {
875 			mlog_errno(status);
876 			goto bail;
877 		}
878 
879 		eb = (struct ocfs2_extent_block *) bh->b_data;
880 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882 			status = -EIO;
883 			goto bail;
884 		}
885 		el = &eb->h_list;
886 
887 		if (le16_to_cpu(el->l_next_free_rec) <
888 		    le16_to_cpu(el->l_count)) {
889 			if (lowest_bh)
890 				brelse(lowest_bh);
891 			lowest_bh = bh;
892 			get_bh(lowest_bh);
893 		}
894 	}
895 
896 	/* If we didn't find one and the fe doesn't have any room,
897 	 * then return '1' */
898 	if (!lowest_bh
899 	    && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900 		status = 1;
901 
902 	*target_bh = lowest_bh;
903 bail:
904 	if (bh)
905 		brelse(bh);
906 
907 	mlog_exit(status);
908 	return status;
909 }
910 
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922 			   struct buffer_head *di_bh, int *final_depth,
923 			   struct buffer_head **last_eb_bh,
924 			   struct ocfs2_alloc_context *meta_ac)
925 {
926 	int ret, shift;
927 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928 	int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930 	struct buffer_head *bh = NULL;
931 
932 	BUG_ON(meta_ac == NULL);
933 
934 	shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935 	if (shift < 0) {
936 		ret = shift;
937 		mlog_errno(ret);
938 		goto out;
939 	}
940 
941 	/* We traveled all the way to the bottom of the allocation tree
942 	 * and didn't find room for any more extents - we need to add
943 	 * another tree level */
944 	if (shift) {
945 		BUG_ON(bh);
946 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
947 
948 		/* ocfs2_shift_tree_depth will return us a buffer with
949 		 * the new extent block (so we can pass that to
950 		 * ocfs2_add_branch). */
951 		ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952 					     meta_ac, &bh);
953 		if (ret < 0) {
954 			mlog_errno(ret);
955 			goto out;
956 		}
957 		depth++;
958 		if (depth == 1) {
959 			/*
960 			 * Special case: we have room now if we shifted from
961 			 * tree_depth 0, so no more work needs to be done.
962 			 *
963 			 * We won't be calling add_branch, so pass
964 			 * back *last_eb_bh as the new leaf. At depth
965 			 * zero, it should always be null so there's
966 			 * no reason to brelse.
967 			 */
968 			BUG_ON(*last_eb_bh);
969 			get_bh(bh);
970 			*last_eb_bh = bh;
971 			goto out;
972 		}
973 	}
974 
975 	/* call ocfs2_add_branch to add the final part of the tree with
976 	 * the new data. */
977 	mlog(0, "add branch. bh = %p\n", bh);
978 	ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979 			       meta_ac);
980 	if (ret < 0) {
981 		mlog_errno(ret);
982 		goto out;
983 	}
984 
985 out:
986 	if (final_depth)
987 		*final_depth = depth;
988 	brelse(bh);
989 	return ret;
990 }
991 
992 /*
993  * This function will discard the rightmost extent record.
994  */
995 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
996 {
997 	int next_free = le16_to_cpu(el->l_next_free_rec);
998 	int count = le16_to_cpu(el->l_count);
999 	unsigned int num_bytes;
1000 
1001 	BUG_ON(!next_free);
1002 	/* This will cause us to go off the end of our extent list. */
1003 	BUG_ON(next_free >= count);
1004 
1005 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1006 
1007 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1008 }
1009 
1010 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1011 			      struct ocfs2_extent_rec *insert_rec)
1012 {
1013 	int i, insert_index, next_free, has_empty, num_bytes;
1014 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1015 	struct ocfs2_extent_rec *rec;
1016 
1017 	next_free = le16_to_cpu(el->l_next_free_rec);
1018 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1019 
1020 	BUG_ON(!next_free);
1021 
1022 	/* The tree code before us didn't allow enough room in the leaf. */
1023 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1024 
1025 	/*
1026 	 * The easiest way to approach this is to just remove the
1027 	 * empty extent and temporarily decrement next_free.
1028 	 */
1029 	if (has_empty) {
1030 		/*
1031 		 * If next_free was 1 (only an empty extent), this
1032 		 * loop won't execute, which is fine. We still want
1033 		 * the decrement above to happen.
1034 		 */
1035 		for(i = 0; i < (next_free - 1); i++)
1036 			el->l_recs[i] = el->l_recs[i+1];
1037 
1038 		next_free--;
1039 	}
1040 
1041 	/*
1042 	 * Figure out what the new record index should be.
1043 	 */
1044 	for(i = 0; i < next_free; i++) {
1045 		rec = &el->l_recs[i];
1046 
1047 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1048 			break;
1049 	}
1050 	insert_index = i;
1051 
1052 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1053 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1054 
1055 	BUG_ON(insert_index < 0);
1056 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1057 	BUG_ON(insert_index > next_free);
1058 
1059 	/*
1060 	 * No need to memmove if we're just adding to the tail.
1061 	 */
1062 	if (insert_index != next_free) {
1063 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1064 
1065 		num_bytes = next_free - insert_index;
1066 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1067 		memmove(&el->l_recs[insert_index + 1],
1068 			&el->l_recs[insert_index],
1069 			num_bytes);
1070 	}
1071 
1072 	/*
1073 	 * Either we had an empty extent, and need to re-increment or
1074 	 * there was no empty extent on a non full rightmost leaf node,
1075 	 * in which case we still need to increment.
1076 	 */
1077 	next_free++;
1078 	el->l_next_free_rec = cpu_to_le16(next_free);
1079 	/*
1080 	 * Make sure none of the math above just messed up our tree.
1081 	 */
1082 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1083 
1084 	el->l_recs[insert_index] = *insert_rec;
1085 
1086 }
1087 
1088 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1089 {
1090 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1091 
1092 	BUG_ON(num_recs == 0);
1093 
1094 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1095 		num_recs--;
1096 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1097 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1098 		memset(&el->l_recs[num_recs], 0,
1099 		       sizeof(struct ocfs2_extent_rec));
1100 		el->l_next_free_rec = cpu_to_le16(num_recs);
1101 	}
1102 }
1103 
1104 /*
1105  * Create an empty extent record .
1106  *
1107  * l_next_free_rec may be updated.
1108  *
1109  * If an empty extent already exists do nothing.
1110  */
1111 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1112 {
1113 	int next_free = le16_to_cpu(el->l_next_free_rec);
1114 
1115 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1116 
1117 	if (next_free == 0)
1118 		goto set_and_inc;
1119 
1120 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1121 		return;
1122 
1123 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1124 			"Asked to create an empty extent in a full list:\n"
1125 			"count = %u, tree depth = %u",
1126 			le16_to_cpu(el->l_count),
1127 			le16_to_cpu(el->l_tree_depth));
1128 
1129 	ocfs2_shift_records_right(el);
1130 
1131 set_and_inc:
1132 	le16_add_cpu(&el->l_next_free_rec, 1);
1133 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1134 }
1135 
1136 /*
1137  * For a rotation which involves two leaf nodes, the "root node" is
1138  * the lowest level tree node which contains a path to both leafs. This
1139  * resulting set of information can be used to form a complete "subtree"
1140  *
1141  * This function is passed two full paths from the dinode down to a
1142  * pair of adjacent leaves. It's task is to figure out which path
1143  * index contains the subtree root - this can be the root index itself
1144  * in a worst-case rotation.
1145  *
1146  * The array index of the subtree root is passed back.
1147  */
1148 static int ocfs2_find_subtree_root(struct inode *inode,
1149 				   struct ocfs2_path *left,
1150 				   struct ocfs2_path *right)
1151 {
1152 	int i = 0;
1153 
1154 	/*
1155 	 * Check that the caller passed in two paths from the same tree.
1156 	 */
1157 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1158 
1159 	do {
1160 		i++;
1161 
1162 		/*
1163 		 * The caller didn't pass two adjacent paths.
1164 		 */
1165 		mlog_bug_on_msg(i > left->p_tree_depth,
1166 				"Inode %lu, left depth %u, right depth %u\n"
1167 				"left leaf blk %llu, right leaf blk %llu\n",
1168 				inode->i_ino, left->p_tree_depth,
1169 				right->p_tree_depth,
1170 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1171 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1172 	} while (left->p_node[i].bh->b_blocknr ==
1173 		 right->p_node[i].bh->b_blocknr);
1174 
1175 	return i - 1;
1176 }
1177 
1178 typedef void (path_insert_t)(void *, struct buffer_head *);
1179 
1180 /*
1181  * Traverse a btree path in search of cpos, starting at root_el.
1182  *
1183  * This code can be called with a cpos larger than the tree, in which
1184  * case it will return the rightmost path.
1185  */
1186 static int __ocfs2_find_path(struct inode *inode,
1187 			     struct ocfs2_extent_list *root_el, u32 cpos,
1188 			     path_insert_t *func, void *data)
1189 {
1190 	int i, ret = 0;
1191 	u32 range;
1192 	u64 blkno;
1193 	struct buffer_head *bh = NULL;
1194 	struct ocfs2_extent_block *eb;
1195 	struct ocfs2_extent_list *el;
1196 	struct ocfs2_extent_rec *rec;
1197 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1198 
1199 	el = root_el;
1200 	while (el->l_tree_depth) {
1201 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1202 			ocfs2_error(inode->i_sb,
1203 				    "Inode %llu has empty extent list at "
1204 				    "depth %u\n",
1205 				    (unsigned long long)oi->ip_blkno,
1206 				    le16_to_cpu(el->l_tree_depth));
1207 			ret = -EROFS;
1208 			goto out;
1209 
1210 		}
1211 
1212 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1213 			rec = &el->l_recs[i];
1214 
1215 			/*
1216 			 * In the case that cpos is off the allocation
1217 			 * tree, this should just wind up returning the
1218 			 * rightmost record.
1219 			 */
1220 			range = le32_to_cpu(rec->e_cpos) +
1221 				ocfs2_rec_clusters(el, rec);
1222 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1223 			    break;
1224 		}
1225 
1226 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1227 		if (blkno == 0) {
1228 			ocfs2_error(inode->i_sb,
1229 				    "Inode %llu has bad blkno in extent list "
1230 				    "at depth %u (index %d)\n",
1231 				    (unsigned long long)oi->ip_blkno,
1232 				    le16_to_cpu(el->l_tree_depth), i);
1233 			ret = -EROFS;
1234 			goto out;
1235 		}
1236 
1237 		brelse(bh);
1238 		bh = NULL;
1239 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1240 				       &bh, OCFS2_BH_CACHED, inode);
1241 		if (ret) {
1242 			mlog_errno(ret);
1243 			goto out;
1244 		}
1245 
1246 		eb = (struct ocfs2_extent_block *) bh->b_data;
1247 		el = &eb->h_list;
1248 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1249 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1250 			ret = -EIO;
1251 			goto out;
1252 		}
1253 
1254 		if (le16_to_cpu(el->l_next_free_rec) >
1255 		    le16_to_cpu(el->l_count)) {
1256 			ocfs2_error(inode->i_sb,
1257 				    "Inode %llu has bad count in extent list "
1258 				    "at block %llu (next free=%u, count=%u)\n",
1259 				    (unsigned long long)oi->ip_blkno,
1260 				    (unsigned long long)bh->b_blocknr,
1261 				    le16_to_cpu(el->l_next_free_rec),
1262 				    le16_to_cpu(el->l_count));
1263 			ret = -EROFS;
1264 			goto out;
1265 		}
1266 
1267 		if (func)
1268 			func(data, bh);
1269 	}
1270 
1271 out:
1272 	/*
1273 	 * Catch any trailing bh that the loop didn't handle.
1274 	 */
1275 	brelse(bh);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * Given an initialized path (that is, it has a valid root extent
1282  * list), this function will traverse the btree in search of the path
1283  * which would contain cpos.
1284  *
1285  * The path traveled is recorded in the path structure.
1286  *
1287  * Note that this will not do any comparisons on leaf node extent
1288  * records, so it will work fine in the case that we just added a tree
1289  * branch.
1290  */
1291 struct find_path_data {
1292 	int index;
1293 	struct ocfs2_path *path;
1294 };
1295 static void find_path_ins(void *data, struct buffer_head *bh)
1296 {
1297 	struct find_path_data *fp = data;
1298 
1299 	get_bh(bh);
1300 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1301 	fp->index++;
1302 }
1303 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1304 			   u32 cpos)
1305 {
1306 	struct find_path_data data;
1307 
1308 	data.index = 1;
1309 	data.path = path;
1310 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1311 				 find_path_ins, &data);
1312 }
1313 
1314 static void find_leaf_ins(void *data, struct buffer_head *bh)
1315 {
1316 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1317 	struct ocfs2_extent_list *el = &eb->h_list;
1318 	struct buffer_head **ret = data;
1319 
1320 	/* We want to retain only the leaf block. */
1321 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1322 		get_bh(bh);
1323 		*ret = bh;
1324 	}
1325 }
1326 /*
1327  * Find the leaf block in the tree which would contain cpos. No
1328  * checking of the actual leaf is done.
1329  *
1330  * Some paths want to call this instead of allocating a path structure
1331  * and calling ocfs2_find_path().
1332  *
1333  * This function doesn't handle non btree extent lists.
1334  */
1335 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1336 		    u32 cpos, struct buffer_head **leaf_bh)
1337 {
1338 	int ret;
1339 	struct buffer_head *bh = NULL;
1340 
1341 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1342 	if (ret) {
1343 		mlog_errno(ret);
1344 		goto out;
1345 	}
1346 
1347 	*leaf_bh = bh;
1348 out:
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1354  *
1355  * Basically, we've moved stuff around at the bottom of the tree and
1356  * we need to fix up the extent records above the changes to reflect
1357  * the new changes.
1358  *
1359  * left_rec: the record on the left.
1360  * left_child_el: is the child list pointed to by left_rec
1361  * right_rec: the record to the right of left_rec
1362  * right_child_el: is the child list pointed to by right_rec
1363  *
1364  * By definition, this only works on interior nodes.
1365  */
1366 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1367 				  struct ocfs2_extent_list *left_child_el,
1368 				  struct ocfs2_extent_rec *right_rec,
1369 				  struct ocfs2_extent_list *right_child_el)
1370 {
1371 	u32 left_clusters, right_end;
1372 
1373 	/*
1374 	 * Interior nodes never have holes. Their cpos is the cpos of
1375 	 * the leftmost record in their child list. Their cluster
1376 	 * count covers the full theoretical range of their child list
1377 	 * - the range between their cpos and the cpos of the record
1378 	 * immediately to their right.
1379 	 */
1380 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1381 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1382 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1383 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1384 	}
1385 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1386 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1387 
1388 	/*
1389 	 * Calculate the rightmost cluster count boundary before
1390 	 * moving cpos - we will need to adjust clusters after
1391 	 * updating e_cpos to keep the same highest cluster count.
1392 	 */
1393 	right_end = le32_to_cpu(right_rec->e_cpos);
1394 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1395 
1396 	right_rec->e_cpos = left_rec->e_cpos;
1397 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1398 
1399 	right_end -= le32_to_cpu(right_rec->e_cpos);
1400 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1401 }
1402 
1403 /*
1404  * Adjust the adjacent root node records involved in a
1405  * rotation. left_el_blkno is passed in as a key so that we can easily
1406  * find it's index in the root list.
1407  */
1408 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1409 				      struct ocfs2_extent_list *left_el,
1410 				      struct ocfs2_extent_list *right_el,
1411 				      u64 left_el_blkno)
1412 {
1413 	int i;
1414 
1415 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1416 	       le16_to_cpu(left_el->l_tree_depth));
1417 
1418 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1419 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1420 			break;
1421 	}
1422 
1423 	/*
1424 	 * The path walking code should have never returned a root and
1425 	 * two paths which are not adjacent.
1426 	 */
1427 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1428 
1429 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1430 				      &root_el->l_recs[i + 1], right_el);
1431 }
1432 
1433 /*
1434  * We've changed a leaf block (in right_path) and need to reflect that
1435  * change back up the subtree.
1436  *
1437  * This happens in multiple places:
1438  *   - When we've moved an extent record from the left path leaf to the right
1439  *     path leaf to make room for an empty extent in the left path leaf.
1440  *   - When our insert into the right path leaf is at the leftmost edge
1441  *     and requires an update of the path immediately to it's left. This
1442  *     can occur at the end of some types of rotation and appending inserts.
1443  *   - When we've adjusted the last extent record in the left path leaf and the
1444  *     1st extent record in the right path leaf during cross extent block merge.
1445  */
1446 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1447 				       struct ocfs2_path *left_path,
1448 				       struct ocfs2_path *right_path,
1449 				       int subtree_index)
1450 {
1451 	int ret, i, idx;
1452 	struct ocfs2_extent_list *el, *left_el, *right_el;
1453 	struct ocfs2_extent_rec *left_rec, *right_rec;
1454 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1455 
1456 	/*
1457 	 * Update the counts and position values within all the
1458 	 * interior nodes to reflect the leaf rotation we just did.
1459 	 *
1460 	 * The root node is handled below the loop.
1461 	 *
1462 	 * We begin the loop with right_el and left_el pointing to the
1463 	 * leaf lists and work our way up.
1464 	 *
1465 	 * NOTE: within this loop, left_el and right_el always refer
1466 	 * to the *child* lists.
1467 	 */
1468 	left_el = path_leaf_el(left_path);
1469 	right_el = path_leaf_el(right_path);
1470 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1471 		mlog(0, "Adjust records at index %u\n", i);
1472 
1473 		/*
1474 		 * One nice property of knowing that all of these
1475 		 * nodes are below the root is that we only deal with
1476 		 * the leftmost right node record and the rightmost
1477 		 * left node record.
1478 		 */
1479 		el = left_path->p_node[i].el;
1480 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1481 		left_rec = &el->l_recs[idx];
1482 
1483 		el = right_path->p_node[i].el;
1484 		right_rec = &el->l_recs[0];
1485 
1486 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1487 					      right_el);
1488 
1489 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1490 		if (ret)
1491 			mlog_errno(ret);
1492 
1493 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1494 		if (ret)
1495 			mlog_errno(ret);
1496 
1497 		/*
1498 		 * Setup our list pointers now so that the current
1499 		 * parents become children in the next iteration.
1500 		 */
1501 		left_el = left_path->p_node[i].el;
1502 		right_el = right_path->p_node[i].el;
1503 	}
1504 
1505 	/*
1506 	 * At the root node, adjust the two adjacent records which
1507 	 * begin our path to the leaves.
1508 	 */
1509 
1510 	el = left_path->p_node[subtree_index].el;
1511 	left_el = left_path->p_node[subtree_index + 1].el;
1512 	right_el = right_path->p_node[subtree_index + 1].el;
1513 
1514 	ocfs2_adjust_root_records(el, left_el, right_el,
1515 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1516 
1517 	root_bh = left_path->p_node[subtree_index].bh;
1518 
1519 	ret = ocfs2_journal_dirty(handle, root_bh);
1520 	if (ret)
1521 		mlog_errno(ret);
1522 }
1523 
1524 static int ocfs2_rotate_subtree_right(struct inode *inode,
1525 				      handle_t *handle,
1526 				      struct ocfs2_path *left_path,
1527 				      struct ocfs2_path *right_path,
1528 				      int subtree_index)
1529 {
1530 	int ret, i;
1531 	struct buffer_head *right_leaf_bh;
1532 	struct buffer_head *left_leaf_bh = NULL;
1533 	struct buffer_head *root_bh;
1534 	struct ocfs2_extent_list *right_el, *left_el;
1535 	struct ocfs2_extent_rec move_rec;
1536 
1537 	left_leaf_bh = path_leaf_bh(left_path);
1538 	left_el = path_leaf_el(left_path);
1539 
1540 	if (left_el->l_next_free_rec != left_el->l_count) {
1541 		ocfs2_error(inode->i_sb,
1542 			    "Inode %llu has non-full interior leaf node %llu"
1543 			    "(next free = %u)",
1544 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1545 			    (unsigned long long)left_leaf_bh->b_blocknr,
1546 			    le16_to_cpu(left_el->l_next_free_rec));
1547 		return -EROFS;
1548 	}
1549 
1550 	/*
1551 	 * This extent block may already have an empty record, so we
1552 	 * return early if so.
1553 	 */
1554 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1555 		return 0;
1556 
1557 	root_bh = left_path->p_node[subtree_index].bh;
1558 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1559 
1560 	ret = ocfs2_journal_access(handle, inode, root_bh,
1561 				   OCFS2_JOURNAL_ACCESS_WRITE);
1562 	if (ret) {
1563 		mlog_errno(ret);
1564 		goto out;
1565 	}
1566 
1567 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1568 		ret = ocfs2_journal_access(handle, inode,
1569 					   right_path->p_node[i].bh,
1570 					   OCFS2_JOURNAL_ACCESS_WRITE);
1571 		if (ret) {
1572 			mlog_errno(ret);
1573 			goto out;
1574 		}
1575 
1576 		ret = ocfs2_journal_access(handle, inode,
1577 					   left_path->p_node[i].bh,
1578 					   OCFS2_JOURNAL_ACCESS_WRITE);
1579 		if (ret) {
1580 			mlog_errno(ret);
1581 			goto out;
1582 		}
1583 	}
1584 
1585 	right_leaf_bh = path_leaf_bh(right_path);
1586 	right_el = path_leaf_el(right_path);
1587 
1588 	/* This is a code error, not a disk corruption. */
1589 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1590 			"because rightmost leaf block %llu is empty\n",
1591 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1592 			(unsigned long long)right_leaf_bh->b_blocknr);
1593 
1594 	ocfs2_create_empty_extent(right_el);
1595 
1596 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1597 	if (ret) {
1598 		mlog_errno(ret);
1599 		goto out;
1600 	}
1601 
1602 	/* Do the copy now. */
1603 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1604 	move_rec = left_el->l_recs[i];
1605 	right_el->l_recs[0] = move_rec;
1606 
1607 	/*
1608 	 * Clear out the record we just copied and shift everything
1609 	 * over, leaving an empty extent in the left leaf.
1610 	 *
1611 	 * We temporarily subtract from next_free_rec so that the
1612 	 * shift will lose the tail record (which is now defunct).
1613 	 */
1614 	le16_add_cpu(&left_el->l_next_free_rec, -1);
1615 	ocfs2_shift_records_right(left_el);
1616 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1617 	le16_add_cpu(&left_el->l_next_free_rec, 1);
1618 
1619 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1620 	if (ret) {
1621 		mlog_errno(ret);
1622 		goto out;
1623 	}
1624 
1625 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1626 				subtree_index);
1627 
1628 out:
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Given a full path, determine what cpos value would return us a path
1634  * containing the leaf immediately to the left of the current one.
1635  *
1636  * Will return zero if the path passed in is already the leftmost path.
1637  */
1638 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1639 					 struct ocfs2_path *path, u32 *cpos)
1640 {
1641 	int i, j, ret = 0;
1642 	u64 blkno;
1643 	struct ocfs2_extent_list *el;
1644 
1645 	BUG_ON(path->p_tree_depth == 0);
1646 
1647 	*cpos = 0;
1648 
1649 	blkno = path_leaf_bh(path)->b_blocknr;
1650 
1651 	/* Start at the tree node just above the leaf and work our way up. */
1652 	i = path->p_tree_depth - 1;
1653 	while (i >= 0) {
1654 		el = path->p_node[i].el;
1655 
1656 		/*
1657 		 * Find the extent record just before the one in our
1658 		 * path.
1659 		 */
1660 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1661 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1662 				if (j == 0) {
1663 					if (i == 0) {
1664 						/*
1665 						 * We've determined that the
1666 						 * path specified is already
1667 						 * the leftmost one - return a
1668 						 * cpos of zero.
1669 						 */
1670 						goto out;
1671 					}
1672 					/*
1673 					 * The leftmost record points to our
1674 					 * leaf - we need to travel up the
1675 					 * tree one level.
1676 					 */
1677 					goto next_node;
1678 				}
1679 
1680 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1681 				*cpos = *cpos + ocfs2_rec_clusters(el,
1682 							   &el->l_recs[j - 1]);
1683 				*cpos = *cpos - 1;
1684 				goto out;
1685 			}
1686 		}
1687 
1688 		/*
1689 		 * If we got here, we never found a valid node where
1690 		 * the tree indicated one should be.
1691 		 */
1692 		ocfs2_error(sb,
1693 			    "Invalid extent tree at extent block %llu\n",
1694 			    (unsigned long long)blkno);
1695 		ret = -EROFS;
1696 		goto out;
1697 
1698 next_node:
1699 		blkno = path->p_node[i].bh->b_blocknr;
1700 		i--;
1701 	}
1702 
1703 out:
1704 	return ret;
1705 }
1706 
1707 /*
1708  * Extend the transaction by enough credits to complete the rotation,
1709  * and still leave at least the original number of credits allocated
1710  * to this transaction.
1711  */
1712 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1713 					   int op_credits,
1714 					   struct ocfs2_path *path)
1715 {
1716 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1717 
1718 	if (handle->h_buffer_credits < credits)
1719 		return ocfs2_extend_trans(handle, credits);
1720 
1721 	return 0;
1722 }
1723 
1724 /*
1725  * Trap the case where we're inserting into the theoretical range past
1726  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1727  * whose cpos is less than ours into the right leaf.
1728  *
1729  * It's only necessary to look at the rightmost record of the left
1730  * leaf because the logic that calls us should ensure that the
1731  * theoretical ranges in the path components above the leaves are
1732  * correct.
1733  */
1734 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1735 						 u32 insert_cpos)
1736 {
1737 	struct ocfs2_extent_list *left_el;
1738 	struct ocfs2_extent_rec *rec;
1739 	int next_free;
1740 
1741 	left_el = path_leaf_el(left_path);
1742 	next_free = le16_to_cpu(left_el->l_next_free_rec);
1743 	rec = &left_el->l_recs[next_free - 1];
1744 
1745 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
1746 		return 1;
1747 	return 0;
1748 }
1749 
1750 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1751 {
1752 	int next_free = le16_to_cpu(el->l_next_free_rec);
1753 	unsigned int range;
1754 	struct ocfs2_extent_rec *rec;
1755 
1756 	if (next_free == 0)
1757 		return 0;
1758 
1759 	rec = &el->l_recs[0];
1760 	if (ocfs2_is_empty_extent(rec)) {
1761 		/* Empty list. */
1762 		if (next_free == 1)
1763 			return 0;
1764 		rec = &el->l_recs[1];
1765 	}
1766 
1767 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1768 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1769 		return 1;
1770 	return 0;
1771 }
1772 
1773 /*
1774  * Rotate all the records in a btree right one record, starting at insert_cpos.
1775  *
1776  * The path to the rightmost leaf should be passed in.
1777  *
1778  * The array is assumed to be large enough to hold an entire path (tree depth).
1779  *
1780  * Upon succesful return from this function:
1781  *
1782  * - The 'right_path' array will contain a path to the leaf block
1783  *   whose range contains e_cpos.
1784  * - That leaf block will have a single empty extent in list index 0.
1785  * - In the case that the rotation requires a post-insert update,
1786  *   *ret_left_path will contain a valid path which can be passed to
1787  *   ocfs2_insert_path().
1788  */
1789 static int ocfs2_rotate_tree_right(struct inode *inode,
1790 				   handle_t *handle,
1791 				   enum ocfs2_split_type split,
1792 				   u32 insert_cpos,
1793 				   struct ocfs2_path *right_path,
1794 				   struct ocfs2_path **ret_left_path)
1795 {
1796 	int ret, start, orig_credits = handle->h_buffer_credits;
1797 	u32 cpos;
1798 	struct ocfs2_path *left_path = NULL;
1799 
1800 	*ret_left_path = NULL;
1801 
1802 	left_path = ocfs2_new_path(path_root_bh(right_path),
1803 				   path_root_el(right_path));
1804 	if (!left_path) {
1805 		ret = -ENOMEM;
1806 		mlog_errno(ret);
1807 		goto out;
1808 	}
1809 
1810 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1811 	if (ret) {
1812 		mlog_errno(ret);
1813 		goto out;
1814 	}
1815 
1816 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1817 
1818 	/*
1819 	 * What we want to do here is:
1820 	 *
1821 	 * 1) Start with the rightmost path.
1822 	 *
1823 	 * 2) Determine a path to the leaf block directly to the left
1824 	 *    of that leaf.
1825 	 *
1826 	 * 3) Determine the 'subtree root' - the lowest level tree node
1827 	 *    which contains a path to both leaves.
1828 	 *
1829 	 * 4) Rotate the subtree.
1830 	 *
1831 	 * 5) Find the next subtree by considering the left path to be
1832 	 *    the new right path.
1833 	 *
1834 	 * The check at the top of this while loop also accepts
1835 	 * insert_cpos == cpos because cpos is only a _theoretical_
1836 	 * value to get us the left path - insert_cpos might very well
1837 	 * be filling that hole.
1838 	 *
1839 	 * Stop at a cpos of '0' because we either started at the
1840 	 * leftmost branch (i.e., a tree with one branch and a
1841 	 * rotation inside of it), or we've gone as far as we can in
1842 	 * rotating subtrees.
1843 	 */
1844 	while (cpos && insert_cpos <= cpos) {
1845 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1846 		     insert_cpos, cpos);
1847 
1848 		ret = ocfs2_find_path(inode, left_path, cpos);
1849 		if (ret) {
1850 			mlog_errno(ret);
1851 			goto out;
1852 		}
1853 
1854 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
1855 				path_leaf_bh(right_path),
1856 				"Inode %lu: error during insert of %u "
1857 				"(left path cpos %u) results in two identical "
1858 				"paths ending at %llu\n",
1859 				inode->i_ino, insert_cpos, cpos,
1860 				(unsigned long long)
1861 				path_leaf_bh(left_path)->b_blocknr);
1862 
1863 		if (split == SPLIT_NONE &&
1864 		    ocfs2_rotate_requires_path_adjustment(left_path,
1865 							  insert_cpos)) {
1866 
1867 			/*
1868 			 * We've rotated the tree as much as we
1869 			 * should. The rest is up to
1870 			 * ocfs2_insert_path() to complete, after the
1871 			 * record insertion. We indicate this
1872 			 * situation by returning the left path.
1873 			 *
1874 			 * The reason we don't adjust the records here
1875 			 * before the record insert is that an error
1876 			 * later might break the rule where a parent
1877 			 * record e_cpos will reflect the actual
1878 			 * e_cpos of the 1st nonempty record of the
1879 			 * child list.
1880 			 */
1881 			*ret_left_path = left_path;
1882 			goto out_ret_path;
1883 		}
1884 
1885 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
1886 
1887 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1888 		     start,
1889 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1890 		     right_path->p_tree_depth);
1891 
1892 		ret = ocfs2_extend_rotate_transaction(handle, start,
1893 						      orig_credits, right_path);
1894 		if (ret) {
1895 			mlog_errno(ret);
1896 			goto out;
1897 		}
1898 
1899 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1900 						 right_path, start);
1901 		if (ret) {
1902 			mlog_errno(ret);
1903 			goto out;
1904 		}
1905 
1906 		if (split != SPLIT_NONE &&
1907 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1908 						insert_cpos)) {
1909 			/*
1910 			 * A rotate moves the rightmost left leaf
1911 			 * record over to the leftmost right leaf
1912 			 * slot. If we're doing an extent split
1913 			 * instead of a real insert, then we have to
1914 			 * check that the extent to be split wasn't
1915 			 * just moved over. If it was, then we can
1916 			 * exit here, passing left_path back -
1917 			 * ocfs2_split_extent() is smart enough to
1918 			 * search both leaves.
1919 			 */
1920 			*ret_left_path = left_path;
1921 			goto out_ret_path;
1922 		}
1923 
1924 		/*
1925 		 * There is no need to re-read the next right path
1926 		 * as we know that it'll be our current left
1927 		 * path. Optimize by copying values instead.
1928 		 */
1929 		ocfs2_mv_path(right_path, left_path);
1930 
1931 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1932 						    &cpos);
1933 		if (ret) {
1934 			mlog_errno(ret);
1935 			goto out;
1936 		}
1937 	}
1938 
1939 out:
1940 	ocfs2_free_path(left_path);
1941 
1942 out_ret_path:
1943 	return ret;
1944 }
1945 
1946 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1947 				      struct ocfs2_path *path)
1948 {
1949 	int i, idx;
1950 	struct ocfs2_extent_rec *rec;
1951 	struct ocfs2_extent_list *el;
1952 	struct ocfs2_extent_block *eb;
1953 	u32 range;
1954 
1955 	/* Path should always be rightmost. */
1956 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1957 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
1958 
1959 	el = &eb->h_list;
1960 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1961 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
1962 	rec = &el->l_recs[idx];
1963 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1964 
1965 	for (i = 0; i < path->p_tree_depth; i++) {
1966 		el = path->p_node[i].el;
1967 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
1968 		rec = &el->l_recs[idx];
1969 
1970 		rec->e_int_clusters = cpu_to_le32(range);
1971 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1972 
1973 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
1974 	}
1975 }
1976 
1977 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1978 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
1979 			      struct ocfs2_path *path, int unlink_start)
1980 {
1981 	int ret, i;
1982 	struct ocfs2_extent_block *eb;
1983 	struct ocfs2_extent_list *el;
1984 	struct buffer_head *bh;
1985 
1986 	for(i = unlink_start; i < path_num_items(path); i++) {
1987 		bh = path->p_node[i].bh;
1988 
1989 		eb = (struct ocfs2_extent_block *)bh->b_data;
1990 		/*
1991 		 * Not all nodes might have had their final count
1992 		 * decremented by the caller - handle this here.
1993 		 */
1994 		el = &eb->h_list;
1995 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
1996 			mlog(ML_ERROR,
1997 			     "Inode %llu, attempted to remove extent block "
1998 			     "%llu with %u records\n",
1999 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2000 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2001 			     le16_to_cpu(el->l_next_free_rec));
2002 
2003 			ocfs2_journal_dirty(handle, bh);
2004 			ocfs2_remove_from_cache(inode, bh);
2005 			continue;
2006 		}
2007 
2008 		el->l_next_free_rec = 0;
2009 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2010 
2011 		ocfs2_journal_dirty(handle, bh);
2012 
2013 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2014 		if (ret)
2015 			mlog_errno(ret);
2016 
2017 		ocfs2_remove_from_cache(inode, bh);
2018 	}
2019 }
2020 
2021 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2022 				 struct ocfs2_path *left_path,
2023 				 struct ocfs2_path *right_path,
2024 				 int subtree_index,
2025 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2026 {
2027 	int i;
2028 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2029 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2030 	struct ocfs2_extent_list *el;
2031 	struct ocfs2_extent_block *eb;
2032 
2033 	el = path_leaf_el(left_path);
2034 
2035 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2036 
2037 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2038 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2039 			break;
2040 
2041 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2042 
2043 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2044 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2045 
2046 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2047 	eb->h_next_leaf_blk = 0;
2048 
2049 	ocfs2_journal_dirty(handle, root_bh);
2050 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2051 
2052 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2053 			  subtree_index + 1);
2054 }
2055 
2056 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2057 				     struct ocfs2_path *left_path,
2058 				     struct ocfs2_path *right_path,
2059 				     int subtree_index,
2060 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2061 				     int *deleted)
2062 {
2063 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2064 	struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2065 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2066 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2067 	struct ocfs2_extent_block *eb;
2068 
2069 	*deleted = 0;
2070 
2071 	right_leaf_el = path_leaf_el(right_path);
2072 	left_leaf_el = path_leaf_el(left_path);
2073 	root_bh = left_path->p_node[subtree_index].bh;
2074 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2075 
2076 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2077 		return 0;
2078 
2079 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2080 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2081 		/*
2082 		 * It's legal for us to proceed if the right leaf is
2083 		 * the rightmost one and it has an empty extent. There
2084 		 * are two cases to handle - whether the leaf will be
2085 		 * empty after removal or not. If the leaf isn't empty
2086 		 * then just remove the empty extent up front. The
2087 		 * next block will handle empty leaves by flagging
2088 		 * them for unlink.
2089 		 *
2090 		 * Non rightmost leaves will throw -EAGAIN and the
2091 		 * caller can manually move the subtree and retry.
2092 		 */
2093 
2094 		if (eb->h_next_leaf_blk != 0ULL)
2095 			return -EAGAIN;
2096 
2097 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2098 			ret = ocfs2_journal_access(handle, inode,
2099 						   path_leaf_bh(right_path),
2100 						   OCFS2_JOURNAL_ACCESS_WRITE);
2101 			if (ret) {
2102 				mlog_errno(ret);
2103 				goto out;
2104 			}
2105 
2106 			ocfs2_remove_empty_extent(right_leaf_el);
2107 		} else
2108 			right_has_empty = 1;
2109 	}
2110 
2111 	if (eb->h_next_leaf_blk == 0ULL &&
2112 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2113 		/*
2114 		 * We have to update i_last_eb_blk during the meta
2115 		 * data delete.
2116 		 */
2117 		ret = ocfs2_journal_access(handle, inode, di_bh,
2118 					   OCFS2_JOURNAL_ACCESS_WRITE);
2119 		if (ret) {
2120 			mlog_errno(ret);
2121 			goto out;
2122 		}
2123 
2124 		del_right_subtree = 1;
2125 	}
2126 
2127 	/*
2128 	 * Getting here with an empty extent in the right path implies
2129 	 * that it's the rightmost path and will be deleted.
2130 	 */
2131 	BUG_ON(right_has_empty && !del_right_subtree);
2132 
2133 	ret = ocfs2_journal_access(handle, inode, root_bh,
2134 				   OCFS2_JOURNAL_ACCESS_WRITE);
2135 	if (ret) {
2136 		mlog_errno(ret);
2137 		goto out;
2138 	}
2139 
2140 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2141 		ret = ocfs2_journal_access(handle, inode,
2142 					   right_path->p_node[i].bh,
2143 					   OCFS2_JOURNAL_ACCESS_WRITE);
2144 		if (ret) {
2145 			mlog_errno(ret);
2146 			goto out;
2147 		}
2148 
2149 		ret = ocfs2_journal_access(handle, inode,
2150 					   left_path->p_node[i].bh,
2151 					   OCFS2_JOURNAL_ACCESS_WRITE);
2152 		if (ret) {
2153 			mlog_errno(ret);
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	if (!right_has_empty) {
2159 		/*
2160 		 * Only do this if we're moving a real
2161 		 * record. Otherwise, the action is delayed until
2162 		 * after removal of the right path in which case we
2163 		 * can do a simple shift to remove the empty extent.
2164 		 */
2165 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2166 		memset(&right_leaf_el->l_recs[0], 0,
2167 		       sizeof(struct ocfs2_extent_rec));
2168 	}
2169 	if (eb->h_next_leaf_blk == 0ULL) {
2170 		/*
2171 		 * Move recs over to get rid of empty extent, decrease
2172 		 * next_free. This is allowed to remove the last
2173 		 * extent in our leaf (setting l_next_free_rec to
2174 		 * zero) - the delete code below won't care.
2175 		 */
2176 		ocfs2_remove_empty_extent(right_leaf_el);
2177 	}
2178 
2179 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2180 	if (ret)
2181 		mlog_errno(ret);
2182 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2183 	if (ret)
2184 		mlog_errno(ret);
2185 
2186 	if (del_right_subtree) {
2187 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2188 				     subtree_index, dealloc);
2189 		ocfs2_update_edge_lengths(inode, handle, left_path);
2190 
2191 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2192 		di->i_last_eb_blk = eb->h_blkno;
2193 
2194 		/*
2195 		 * Removal of the extent in the left leaf was skipped
2196 		 * above so we could delete the right path
2197 		 * 1st.
2198 		 */
2199 		if (right_has_empty)
2200 			ocfs2_remove_empty_extent(left_leaf_el);
2201 
2202 		ret = ocfs2_journal_dirty(handle, di_bh);
2203 		if (ret)
2204 			mlog_errno(ret);
2205 
2206 		*deleted = 1;
2207 	} else
2208 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2209 					   subtree_index);
2210 
2211 out:
2212 	return ret;
2213 }
2214 
2215 /*
2216  * Given a full path, determine what cpos value would return us a path
2217  * containing the leaf immediately to the right of the current one.
2218  *
2219  * Will return zero if the path passed in is already the rightmost path.
2220  *
2221  * This looks similar, but is subtly different to
2222  * ocfs2_find_cpos_for_left_leaf().
2223  */
2224 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2225 					  struct ocfs2_path *path, u32 *cpos)
2226 {
2227 	int i, j, ret = 0;
2228 	u64 blkno;
2229 	struct ocfs2_extent_list *el;
2230 
2231 	*cpos = 0;
2232 
2233 	if (path->p_tree_depth == 0)
2234 		return 0;
2235 
2236 	blkno = path_leaf_bh(path)->b_blocknr;
2237 
2238 	/* Start at the tree node just above the leaf and work our way up. */
2239 	i = path->p_tree_depth - 1;
2240 	while (i >= 0) {
2241 		int next_free;
2242 
2243 		el = path->p_node[i].el;
2244 
2245 		/*
2246 		 * Find the extent record just after the one in our
2247 		 * path.
2248 		 */
2249 		next_free = le16_to_cpu(el->l_next_free_rec);
2250 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2251 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2252 				if (j == (next_free - 1)) {
2253 					if (i == 0) {
2254 						/*
2255 						 * We've determined that the
2256 						 * path specified is already
2257 						 * the rightmost one - return a
2258 						 * cpos of zero.
2259 						 */
2260 						goto out;
2261 					}
2262 					/*
2263 					 * The rightmost record points to our
2264 					 * leaf - we need to travel up the
2265 					 * tree one level.
2266 					 */
2267 					goto next_node;
2268 				}
2269 
2270 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2271 				goto out;
2272 			}
2273 		}
2274 
2275 		/*
2276 		 * If we got here, we never found a valid node where
2277 		 * the tree indicated one should be.
2278 		 */
2279 		ocfs2_error(sb,
2280 			    "Invalid extent tree at extent block %llu\n",
2281 			    (unsigned long long)blkno);
2282 		ret = -EROFS;
2283 		goto out;
2284 
2285 next_node:
2286 		blkno = path->p_node[i].bh->b_blocknr;
2287 		i--;
2288 	}
2289 
2290 out:
2291 	return ret;
2292 }
2293 
2294 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2295 					    handle_t *handle,
2296 					    struct buffer_head *bh,
2297 					    struct ocfs2_extent_list *el)
2298 {
2299 	int ret;
2300 
2301 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2302 		return 0;
2303 
2304 	ret = ocfs2_journal_access(handle, inode, bh,
2305 				   OCFS2_JOURNAL_ACCESS_WRITE);
2306 	if (ret) {
2307 		mlog_errno(ret);
2308 		goto out;
2309 	}
2310 
2311 	ocfs2_remove_empty_extent(el);
2312 
2313 	ret = ocfs2_journal_dirty(handle, bh);
2314 	if (ret)
2315 		mlog_errno(ret);
2316 
2317 out:
2318 	return ret;
2319 }
2320 
2321 static int __ocfs2_rotate_tree_left(struct inode *inode,
2322 				    handle_t *handle, int orig_credits,
2323 				    struct ocfs2_path *path,
2324 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2325 				    struct ocfs2_path **empty_extent_path)
2326 {
2327 	int ret, subtree_root, deleted;
2328 	u32 right_cpos;
2329 	struct ocfs2_path *left_path = NULL;
2330 	struct ocfs2_path *right_path = NULL;
2331 
2332 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2333 
2334 	*empty_extent_path = NULL;
2335 
2336 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2337 					     &right_cpos);
2338 	if (ret) {
2339 		mlog_errno(ret);
2340 		goto out;
2341 	}
2342 
2343 	left_path = ocfs2_new_path(path_root_bh(path),
2344 				   path_root_el(path));
2345 	if (!left_path) {
2346 		ret = -ENOMEM;
2347 		mlog_errno(ret);
2348 		goto out;
2349 	}
2350 
2351 	ocfs2_cp_path(left_path, path);
2352 
2353 	right_path = ocfs2_new_path(path_root_bh(path),
2354 				    path_root_el(path));
2355 	if (!right_path) {
2356 		ret = -ENOMEM;
2357 		mlog_errno(ret);
2358 		goto out;
2359 	}
2360 
2361 	while (right_cpos) {
2362 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2363 		if (ret) {
2364 			mlog_errno(ret);
2365 			goto out;
2366 		}
2367 
2368 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2369 						       right_path);
2370 
2371 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2372 		     subtree_root,
2373 		     (unsigned long long)
2374 		     right_path->p_node[subtree_root].bh->b_blocknr,
2375 		     right_path->p_tree_depth);
2376 
2377 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2378 						      orig_credits, left_path);
2379 		if (ret) {
2380 			mlog_errno(ret);
2381 			goto out;
2382 		}
2383 
2384 		/*
2385 		 * Caller might still want to make changes to the
2386 		 * tree root, so re-add it to the journal here.
2387 		 */
2388 		ret = ocfs2_journal_access(handle, inode,
2389 					   path_root_bh(left_path),
2390 					   OCFS2_JOURNAL_ACCESS_WRITE);
2391 		if (ret) {
2392 			mlog_errno(ret);
2393 			goto out;
2394 		}
2395 
2396 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2397 						right_path, subtree_root,
2398 						dealloc, &deleted);
2399 		if (ret == -EAGAIN) {
2400 			/*
2401 			 * The rotation has to temporarily stop due to
2402 			 * the right subtree having an empty
2403 			 * extent. Pass it back to the caller for a
2404 			 * fixup.
2405 			 */
2406 			*empty_extent_path = right_path;
2407 			right_path = NULL;
2408 			goto out;
2409 		}
2410 		if (ret) {
2411 			mlog_errno(ret);
2412 			goto out;
2413 		}
2414 
2415 		/*
2416 		 * The subtree rotate might have removed records on
2417 		 * the rightmost edge. If so, then rotation is
2418 		 * complete.
2419 		 */
2420 		if (deleted)
2421 			break;
2422 
2423 		ocfs2_mv_path(left_path, right_path);
2424 
2425 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2426 						     &right_cpos);
2427 		if (ret) {
2428 			mlog_errno(ret);
2429 			goto out;
2430 		}
2431 	}
2432 
2433 out:
2434 	ocfs2_free_path(right_path);
2435 	ocfs2_free_path(left_path);
2436 
2437 	return ret;
2438 }
2439 
2440 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2441 				       struct ocfs2_path *path,
2442 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
2443 {
2444 	int ret, subtree_index;
2445 	u32 cpos;
2446 	struct ocfs2_path *left_path = NULL;
2447 	struct ocfs2_dinode *di;
2448 	struct ocfs2_extent_block *eb;
2449 	struct ocfs2_extent_list *el;
2450 
2451 	/*
2452 	 * XXX: This code assumes that the root is an inode, which is
2453 	 * true for now but may change as tree code gets generic.
2454 	 */
2455 	di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2456 	if (!OCFS2_IS_VALID_DINODE(di)) {
2457 		ret = -EIO;
2458 		ocfs2_error(inode->i_sb,
2459 			    "Inode %llu has invalid path root",
2460 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
2461 		goto out;
2462 	}
2463 
2464 	/*
2465 	 * There's two ways we handle this depending on
2466 	 * whether path is the only existing one.
2467 	 */
2468 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2469 					      handle->h_buffer_credits,
2470 					      path);
2471 	if (ret) {
2472 		mlog_errno(ret);
2473 		goto out;
2474 	}
2475 
2476 	ret = ocfs2_journal_access_path(inode, handle, path);
2477 	if (ret) {
2478 		mlog_errno(ret);
2479 		goto out;
2480 	}
2481 
2482 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2483 	if (ret) {
2484 		mlog_errno(ret);
2485 		goto out;
2486 	}
2487 
2488 	if (cpos) {
2489 		/*
2490 		 * We have a path to the left of this one - it needs
2491 		 * an update too.
2492 		 */
2493 		left_path = ocfs2_new_path(path_root_bh(path),
2494 					   path_root_el(path));
2495 		if (!left_path) {
2496 			ret = -ENOMEM;
2497 			mlog_errno(ret);
2498 			goto out;
2499 		}
2500 
2501 		ret = ocfs2_find_path(inode, left_path, cpos);
2502 		if (ret) {
2503 			mlog_errno(ret);
2504 			goto out;
2505 		}
2506 
2507 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2508 		if (ret) {
2509 			mlog_errno(ret);
2510 			goto out;
2511 		}
2512 
2513 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2514 
2515 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2516 				     subtree_index, dealloc);
2517 		ocfs2_update_edge_lengths(inode, handle, left_path);
2518 
2519 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2520 		di->i_last_eb_blk = eb->h_blkno;
2521 	} else {
2522 		/*
2523 		 * 'path' is also the leftmost path which
2524 		 * means it must be the only one. This gets
2525 		 * handled differently because we want to
2526 		 * revert the inode back to having extents
2527 		 * in-line.
2528 		 */
2529 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2530 
2531 		el = &di->id2.i_list;
2532 		el->l_tree_depth = 0;
2533 		el->l_next_free_rec = 0;
2534 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2535 
2536 		di->i_last_eb_blk = 0;
2537 	}
2538 
2539 	ocfs2_journal_dirty(handle, path_root_bh(path));
2540 
2541 out:
2542 	ocfs2_free_path(left_path);
2543 	return ret;
2544 }
2545 
2546 /*
2547  * Left rotation of btree records.
2548  *
2549  * In many ways, this is (unsurprisingly) the opposite of right
2550  * rotation. We start at some non-rightmost path containing an empty
2551  * extent in the leaf block. The code works its way to the rightmost
2552  * path by rotating records to the left in every subtree.
2553  *
2554  * This is used by any code which reduces the number of extent records
2555  * in a leaf. After removal, an empty record should be placed in the
2556  * leftmost list position.
2557  *
2558  * This won't handle a length update of the rightmost path records if
2559  * the rightmost tree leaf record is removed so the caller is
2560  * responsible for detecting and correcting that.
2561  */
2562 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2563 				  struct ocfs2_path *path,
2564 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
2565 {
2566 	int ret, orig_credits = handle->h_buffer_credits;
2567 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2568 	struct ocfs2_extent_block *eb;
2569 	struct ocfs2_extent_list *el;
2570 
2571 	el = path_leaf_el(path);
2572 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2573 		return 0;
2574 
2575 	if (path->p_tree_depth == 0) {
2576 rightmost_no_delete:
2577 		/*
2578 		 * In-inode extents. This is trivially handled, so do
2579 		 * it up front.
2580 		 */
2581 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2582 						       path_leaf_bh(path),
2583 						       path_leaf_el(path));
2584 		if (ret)
2585 			mlog_errno(ret);
2586 		goto out;
2587 	}
2588 
2589 	/*
2590 	 * Handle rightmost branch now. There's several cases:
2591 	 *  1) simple rotation leaving records in there. That's trivial.
2592 	 *  2) rotation requiring a branch delete - there's no more
2593 	 *     records left. Two cases of this:
2594 	 *     a) There are branches to the left.
2595 	 *     b) This is also the leftmost (the only) branch.
2596 	 *
2597 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2598 	 *  2a) we need the left branch so that we can update it with the unlink
2599 	 *  2b) we need to bring the inode back to inline extents.
2600 	 */
2601 
2602 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2603 	el = &eb->h_list;
2604 	if (eb->h_next_leaf_blk == 0) {
2605 		/*
2606 		 * This gets a bit tricky if we're going to delete the
2607 		 * rightmost path. Get the other cases out of the way
2608 		 * 1st.
2609 		 */
2610 		if (le16_to_cpu(el->l_next_free_rec) > 1)
2611 			goto rightmost_no_delete;
2612 
2613 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
2614 			ret = -EIO;
2615 			ocfs2_error(inode->i_sb,
2616 				    "Inode %llu has empty extent block at %llu",
2617 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2618 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
2619 			goto out;
2620 		}
2621 
2622 		/*
2623 		 * XXX: The caller can not trust "path" any more after
2624 		 * this as it will have been deleted. What do we do?
2625 		 *
2626 		 * In theory the rotate-for-merge code will never get
2627 		 * here because it'll always ask for a rotate in a
2628 		 * nonempty list.
2629 		 */
2630 
2631 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
2632 						  dealloc);
2633 		if (ret)
2634 			mlog_errno(ret);
2635 		goto out;
2636 	}
2637 
2638 	/*
2639 	 * Now we can loop, remembering the path we get from -EAGAIN
2640 	 * and restarting from there.
2641 	 */
2642 try_rotate:
2643 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2644 				       dealloc, &restart_path);
2645 	if (ret && ret != -EAGAIN) {
2646 		mlog_errno(ret);
2647 		goto out;
2648 	}
2649 
2650 	while (ret == -EAGAIN) {
2651 		tmp_path = restart_path;
2652 		restart_path = NULL;
2653 
2654 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2655 					       tmp_path, dealloc,
2656 					       &restart_path);
2657 		if (ret && ret != -EAGAIN) {
2658 			mlog_errno(ret);
2659 			goto out;
2660 		}
2661 
2662 		ocfs2_free_path(tmp_path);
2663 		tmp_path = NULL;
2664 
2665 		if (ret == 0)
2666 			goto try_rotate;
2667 	}
2668 
2669 out:
2670 	ocfs2_free_path(tmp_path);
2671 	ocfs2_free_path(restart_path);
2672 	return ret;
2673 }
2674 
2675 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2676 				int index)
2677 {
2678 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
2679 	unsigned int size;
2680 
2681 	if (rec->e_leaf_clusters == 0) {
2682 		/*
2683 		 * We consumed all of the merged-from record. An empty
2684 		 * extent cannot exist anywhere but the 1st array
2685 		 * position, so move things over if the merged-from
2686 		 * record doesn't occupy that position.
2687 		 *
2688 		 * This creates a new empty extent so the caller
2689 		 * should be smart enough to have removed any existing
2690 		 * ones.
2691 		 */
2692 		if (index > 0) {
2693 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2694 			size = index * sizeof(struct ocfs2_extent_rec);
2695 			memmove(&el->l_recs[1], &el->l_recs[0], size);
2696 		}
2697 
2698 		/*
2699 		 * Always memset - the caller doesn't check whether it
2700 		 * created an empty extent, so there could be junk in
2701 		 * the other fields.
2702 		 */
2703 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2704 	}
2705 }
2706 
2707 static int ocfs2_get_right_path(struct inode *inode,
2708 				struct ocfs2_path *left_path,
2709 				struct ocfs2_path **ret_right_path)
2710 {
2711 	int ret;
2712 	u32 right_cpos;
2713 	struct ocfs2_path *right_path = NULL;
2714 	struct ocfs2_extent_list *left_el;
2715 
2716 	*ret_right_path = NULL;
2717 
2718 	/* This function shouldn't be called for non-trees. */
2719 	BUG_ON(left_path->p_tree_depth == 0);
2720 
2721 	left_el = path_leaf_el(left_path);
2722 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2723 
2724 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2725 					     &right_cpos);
2726 	if (ret) {
2727 		mlog_errno(ret);
2728 		goto out;
2729 	}
2730 
2731 	/* This function shouldn't be called for the rightmost leaf. */
2732 	BUG_ON(right_cpos == 0);
2733 
2734 	right_path = ocfs2_new_path(path_root_bh(left_path),
2735 				    path_root_el(left_path));
2736 	if (!right_path) {
2737 		ret = -ENOMEM;
2738 		mlog_errno(ret);
2739 		goto out;
2740 	}
2741 
2742 	ret = ocfs2_find_path(inode, right_path, right_cpos);
2743 	if (ret) {
2744 		mlog_errno(ret);
2745 		goto out;
2746 	}
2747 
2748 	*ret_right_path = right_path;
2749 out:
2750 	if (ret)
2751 		ocfs2_free_path(right_path);
2752 	return ret;
2753 }
2754 
2755 /*
2756  * Remove split_rec clusters from the record at index and merge them
2757  * onto the beginning of the record "next" to it.
2758  * For index < l_count - 1, the next means the extent rec at index + 1.
2759  * For index == l_count - 1, the "next" means the 1st extent rec of the
2760  * next extent block.
2761  */
2762 static int ocfs2_merge_rec_right(struct inode *inode,
2763 				 struct ocfs2_path *left_path,
2764 				 handle_t *handle,
2765 				 struct ocfs2_extent_rec *split_rec,
2766 				 int index)
2767 {
2768 	int ret, next_free, i;
2769 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2770 	struct ocfs2_extent_rec *left_rec;
2771 	struct ocfs2_extent_rec *right_rec;
2772 	struct ocfs2_extent_list *right_el;
2773 	struct ocfs2_path *right_path = NULL;
2774 	int subtree_index = 0;
2775 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
2776 	struct buffer_head *bh = path_leaf_bh(left_path);
2777 	struct buffer_head *root_bh = NULL;
2778 
2779 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2780 	left_rec = &el->l_recs[index];
2781 
2782 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
2783 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2784 		/* we meet with a cross extent block merge. */
2785 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
2786 		if (ret) {
2787 			mlog_errno(ret);
2788 			goto out;
2789 		}
2790 
2791 		right_el = path_leaf_el(right_path);
2792 		next_free = le16_to_cpu(right_el->l_next_free_rec);
2793 		BUG_ON(next_free <= 0);
2794 		right_rec = &right_el->l_recs[0];
2795 		if (ocfs2_is_empty_extent(right_rec)) {
2796 			BUG_ON(next_free <= 1);
2797 			right_rec = &right_el->l_recs[1];
2798 		}
2799 
2800 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2801 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
2802 		       le32_to_cpu(right_rec->e_cpos));
2803 
2804 		subtree_index = ocfs2_find_subtree_root(inode,
2805 							left_path, right_path);
2806 
2807 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2808 						      handle->h_buffer_credits,
2809 						      right_path);
2810 		if (ret) {
2811 			mlog_errno(ret);
2812 			goto out;
2813 		}
2814 
2815 		root_bh = left_path->p_node[subtree_index].bh;
2816 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2817 
2818 		ret = ocfs2_journal_access(handle, inode, root_bh,
2819 					   OCFS2_JOURNAL_ACCESS_WRITE);
2820 		if (ret) {
2821 			mlog_errno(ret);
2822 			goto out;
2823 		}
2824 
2825 		for (i = subtree_index + 1;
2826 		     i < path_num_items(right_path); i++) {
2827 			ret = ocfs2_journal_access(handle, inode,
2828 						   right_path->p_node[i].bh,
2829 						   OCFS2_JOURNAL_ACCESS_WRITE);
2830 			if (ret) {
2831 				mlog_errno(ret);
2832 				goto out;
2833 			}
2834 
2835 			ret = ocfs2_journal_access(handle, inode,
2836 						   left_path->p_node[i].bh,
2837 						   OCFS2_JOURNAL_ACCESS_WRITE);
2838 			if (ret) {
2839 				mlog_errno(ret);
2840 				goto out;
2841 			}
2842 		}
2843 
2844 	} else {
2845 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2846 		right_rec = &el->l_recs[index + 1];
2847 	}
2848 
2849 	ret = ocfs2_journal_access(handle, inode, bh,
2850 				   OCFS2_JOURNAL_ACCESS_WRITE);
2851 	if (ret) {
2852 		mlog_errno(ret);
2853 		goto out;
2854 	}
2855 
2856 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2857 
2858 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2859 	le64_add_cpu(&right_rec->e_blkno,
2860 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2861 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2862 
2863 	ocfs2_cleanup_merge(el, index);
2864 
2865 	ret = ocfs2_journal_dirty(handle, bh);
2866 	if (ret)
2867 		mlog_errno(ret);
2868 
2869 	if (right_path) {
2870 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2871 		if (ret)
2872 			mlog_errno(ret);
2873 
2874 		ocfs2_complete_edge_insert(inode, handle, left_path,
2875 					   right_path, subtree_index);
2876 	}
2877 out:
2878 	if (right_path)
2879 		ocfs2_free_path(right_path);
2880 	return ret;
2881 }
2882 
2883 static int ocfs2_get_left_path(struct inode *inode,
2884 			       struct ocfs2_path *right_path,
2885 			       struct ocfs2_path **ret_left_path)
2886 {
2887 	int ret;
2888 	u32 left_cpos;
2889 	struct ocfs2_path *left_path = NULL;
2890 
2891 	*ret_left_path = NULL;
2892 
2893 	/* This function shouldn't be called for non-trees. */
2894 	BUG_ON(right_path->p_tree_depth == 0);
2895 
2896 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2897 					    right_path, &left_cpos);
2898 	if (ret) {
2899 		mlog_errno(ret);
2900 		goto out;
2901 	}
2902 
2903 	/* This function shouldn't be called for the leftmost leaf. */
2904 	BUG_ON(left_cpos == 0);
2905 
2906 	left_path = ocfs2_new_path(path_root_bh(right_path),
2907 				   path_root_el(right_path));
2908 	if (!left_path) {
2909 		ret = -ENOMEM;
2910 		mlog_errno(ret);
2911 		goto out;
2912 	}
2913 
2914 	ret = ocfs2_find_path(inode, left_path, left_cpos);
2915 	if (ret) {
2916 		mlog_errno(ret);
2917 		goto out;
2918 	}
2919 
2920 	*ret_left_path = left_path;
2921 out:
2922 	if (ret)
2923 		ocfs2_free_path(left_path);
2924 	return ret;
2925 }
2926 
2927 /*
2928  * Remove split_rec clusters from the record at index and merge them
2929  * onto the tail of the record "before" it.
2930  * For index > 0, the "before" means the extent rec at index - 1.
2931  *
2932  * For index == 0, the "before" means the last record of the previous
2933  * extent block. And there is also a situation that we may need to
2934  * remove the rightmost leaf extent block in the right_path and change
2935  * the right path to indicate the new rightmost path.
2936  */
2937 static int ocfs2_merge_rec_left(struct inode *inode,
2938 				struct ocfs2_path *right_path,
2939 				handle_t *handle,
2940 				struct ocfs2_extent_rec *split_rec,
2941 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2942 				int index)
2943 {
2944 	int ret, i, subtree_index = 0, has_empty_extent = 0;
2945 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2946 	struct ocfs2_extent_rec *left_rec;
2947 	struct ocfs2_extent_rec *right_rec;
2948 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
2949 	struct buffer_head *bh = path_leaf_bh(right_path);
2950 	struct buffer_head *root_bh = NULL;
2951 	struct ocfs2_path *left_path = NULL;
2952 	struct ocfs2_extent_list *left_el;
2953 
2954 	BUG_ON(index < 0);
2955 
2956 	right_rec = &el->l_recs[index];
2957 	if (index == 0) {
2958 		/* we meet with a cross extent block merge. */
2959 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
2960 		if (ret) {
2961 			mlog_errno(ret);
2962 			goto out;
2963 		}
2964 
2965 		left_el = path_leaf_el(left_path);
2966 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2967 		       le16_to_cpu(left_el->l_count));
2968 
2969 		left_rec = &left_el->l_recs[
2970 				le16_to_cpu(left_el->l_next_free_rec) - 1];
2971 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2972 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
2973 		       le32_to_cpu(split_rec->e_cpos));
2974 
2975 		subtree_index = ocfs2_find_subtree_root(inode,
2976 							left_path, right_path);
2977 
2978 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2979 						      handle->h_buffer_credits,
2980 						      left_path);
2981 		if (ret) {
2982 			mlog_errno(ret);
2983 			goto out;
2984 		}
2985 
2986 		root_bh = left_path->p_node[subtree_index].bh;
2987 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2988 
2989 		ret = ocfs2_journal_access(handle, inode, root_bh,
2990 					   OCFS2_JOURNAL_ACCESS_WRITE);
2991 		if (ret) {
2992 			mlog_errno(ret);
2993 			goto out;
2994 		}
2995 
2996 		for (i = subtree_index + 1;
2997 		     i < path_num_items(right_path); i++) {
2998 			ret = ocfs2_journal_access(handle, inode,
2999 						   right_path->p_node[i].bh,
3000 						   OCFS2_JOURNAL_ACCESS_WRITE);
3001 			if (ret) {
3002 				mlog_errno(ret);
3003 				goto out;
3004 			}
3005 
3006 			ret = ocfs2_journal_access(handle, inode,
3007 						   left_path->p_node[i].bh,
3008 						   OCFS2_JOURNAL_ACCESS_WRITE);
3009 			if (ret) {
3010 				mlog_errno(ret);
3011 				goto out;
3012 			}
3013 		}
3014 	} else {
3015 		left_rec = &el->l_recs[index - 1];
3016 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3017 			has_empty_extent = 1;
3018 	}
3019 
3020 	ret = ocfs2_journal_access(handle, inode, bh,
3021 				   OCFS2_JOURNAL_ACCESS_WRITE);
3022 	if (ret) {
3023 		mlog_errno(ret);
3024 		goto out;
3025 	}
3026 
3027 	if (has_empty_extent && index == 1) {
3028 		/*
3029 		 * The easy case - we can just plop the record right in.
3030 		 */
3031 		*left_rec = *split_rec;
3032 
3033 		has_empty_extent = 0;
3034 	} else
3035 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3036 
3037 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3038 	le64_add_cpu(&right_rec->e_blkno,
3039 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3040 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3041 
3042 	ocfs2_cleanup_merge(el, index);
3043 
3044 	ret = ocfs2_journal_dirty(handle, bh);
3045 	if (ret)
3046 		mlog_errno(ret);
3047 
3048 	if (left_path) {
3049 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3050 		if (ret)
3051 			mlog_errno(ret);
3052 
3053 		/*
3054 		 * In the situation that the right_rec is empty and the extent
3055 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3056 		 * it and we need to delete the right extent block.
3057 		 */
3058 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3059 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3060 
3061 			ret = ocfs2_remove_rightmost_path(inode, handle,
3062 							  right_path, dealloc);
3063 			if (ret) {
3064 				mlog_errno(ret);
3065 				goto out;
3066 			}
3067 
3068 			/* Now the rightmost extent block has been deleted.
3069 			 * So we use the new rightmost path.
3070 			 */
3071 			ocfs2_mv_path(right_path, left_path);
3072 			left_path = NULL;
3073 		} else
3074 			ocfs2_complete_edge_insert(inode, handle, left_path,
3075 						   right_path, subtree_index);
3076 	}
3077 out:
3078 	if (left_path)
3079 		ocfs2_free_path(left_path);
3080 	return ret;
3081 }
3082 
3083 static int ocfs2_try_to_merge_extent(struct inode *inode,
3084 				     handle_t *handle,
3085 				     struct ocfs2_path *path,
3086 				     int split_index,
3087 				     struct ocfs2_extent_rec *split_rec,
3088 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3089 				     struct ocfs2_merge_ctxt *ctxt)
3090 
3091 {
3092 	int ret = 0;
3093 	struct ocfs2_extent_list *el = path_leaf_el(path);
3094 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3095 
3096 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3097 
3098 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3099 		/*
3100 		 * The merge code will need to create an empty
3101 		 * extent to take the place of the newly
3102 		 * emptied slot. Remove any pre-existing empty
3103 		 * extents - having more than one in a leaf is
3104 		 * illegal.
3105 		 */
3106 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3107 					     dealloc);
3108 		if (ret) {
3109 			mlog_errno(ret);
3110 			goto out;
3111 		}
3112 		split_index--;
3113 		rec = &el->l_recs[split_index];
3114 	}
3115 
3116 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3117 		/*
3118 		 * Left-right contig implies this.
3119 		 */
3120 		BUG_ON(!ctxt->c_split_covers_rec);
3121 
3122 		/*
3123 		 * Since the leftright insert always covers the entire
3124 		 * extent, this call will delete the insert record
3125 		 * entirely, resulting in an empty extent record added to
3126 		 * the extent block.
3127 		 *
3128 		 * Since the adding of an empty extent shifts
3129 		 * everything back to the right, there's no need to
3130 		 * update split_index here.
3131 		 *
3132 		 * When the split_index is zero, we need to merge it to the
3133 		 * prevoius extent block. It is more efficient and easier
3134 		 * if we do merge_right first and merge_left later.
3135 		 */
3136 		ret = ocfs2_merge_rec_right(inode, path,
3137 					    handle, split_rec,
3138 					    split_index);
3139 		if (ret) {
3140 			mlog_errno(ret);
3141 			goto out;
3142 		}
3143 
3144 		/*
3145 		 * We can only get this from logic error above.
3146 		 */
3147 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3148 
3149 		/* The merge left us with an empty extent, remove it. */
3150 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3151 		if (ret) {
3152 			mlog_errno(ret);
3153 			goto out;
3154 		}
3155 
3156 		rec = &el->l_recs[split_index];
3157 
3158 		/*
3159 		 * Note that we don't pass split_rec here on purpose -
3160 		 * we've merged it into the rec already.
3161 		 */
3162 		ret = ocfs2_merge_rec_left(inode, path,
3163 					   handle, rec,
3164 					   dealloc,
3165 					   split_index);
3166 
3167 		if (ret) {
3168 			mlog_errno(ret);
3169 			goto out;
3170 		}
3171 
3172 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3173 					     dealloc);
3174 		/*
3175 		 * Error from this last rotate is not critical, so
3176 		 * print but don't bubble it up.
3177 		 */
3178 		if (ret)
3179 			mlog_errno(ret);
3180 		ret = 0;
3181 	} else {
3182 		/*
3183 		 * Merge a record to the left or right.
3184 		 *
3185 		 * 'contig_type' is relative to the existing record,
3186 		 * so for example, if we're "right contig", it's to
3187 		 * the record on the left (hence the left merge).
3188 		 */
3189 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3190 			ret = ocfs2_merge_rec_left(inode,
3191 						   path,
3192 						   handle, split_rec,
3193 						   dealloc,
3194 						   split_index);
3195 			if (ret) {
3196 				mlog_errno(ret);
3197 				goto out;
3198 			}
3199 		} else {
3200 			ret = ocfs2_merge_rec_right(inode,
3201 						    path,
3202 						    handle, split_rec,
3203 						    split_index);
3204 			if (ret) {
3205 				mlog_errno(ret);
3206 				goto out;
3207 			}
3208 		}
3209 
3210 		if (ctxt->c_split_covers_rec) {
3211 			/*
3212 			 * The merge may have left an empty extent in
3213 			 * our leaf. Try to rotate it away.
3214 			 */
3215 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3216 						     dealloc);
3217 			if (ret)
3218 				mlog_errno(ret);
3219 			ret = 0;
3220 		}
3221 	}
3222 
3223 out:
3224 	return ret;
3225 }
3226 
3227 static void ocfs2_subtract_from_rec(struct super_block *sb,
3228 				    enum ocfs2_split_type split,
3229 				    struct ocfs2_extent_rec *rec,
3230 				    struct ocfs2_extent_rec *split_rec)
3231 {
3232 	u64 len_blocks;
3233 
3234 	len_blocks = ocfs2_clusters_to_blocks(sb,
3235 				le16_to_cpu(split_rec->e_leaf_clusters));
3236 
3237 	if (split == SPLIT_LEFT) {
3238 		/*
3239 		 * Region is on the left edge of the existing
3240 		 * record.
3241 		 */
3242 		le32_add_cpu(&rec->e_cpos,
3243 			     le16_to_cpu(split_rec->e_leaf_clusters));
3244 		le64_add_cpu(&rec->e_blkno, len_blocks);
3245 		le16_add_cpu(&rec->e_leaf_clusters,
3246 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3247 	} else {
3248 		/*
3249 		 * Region is on the right edge of the existing
3250 		 * record.
3251 		 */
3252 		le16_add_cpu(&rec->e_leaf_clusters,
3253 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3254 	}
3255 }
3256 
3257 /*
3258  * Do the final bits of extent record insertion at the target leaf
3259  * list. If this leaf is part of an allocation tree, it is assumed
3260  * that the tree above has been prepared.
3261  */
3262 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3263 				 struct ocfs2_extent_list *el,
3264 				 struct ocfs2_insert_type *insert,
3265 				 struct inode *inode)
3266 {
3267 	int i = insert->ins_contig_index;
3268 	unsigned int range;
3269 	struct ocfs2_extent_rec *rec;
3270 
3271 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3272 
3273 	if (insert->ins_split != SPLIT_NONE) {
3274 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3275 		BUG_ON(i == -1);
3276 		rec = &el->l_recs[i];
3277 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3278 					insert_rec);
3279 		goto rotate;
3280 	}
3281 
3282 	/*
3283 	 * Contiguous insert - either left or right.
3284 	 */
3285 	if (insert->ins_contig != CONTIG_NONE) {
3286 		rec = &el->l_recs[i];
3287 		if (insert->ins_contig == CONTIG_LEFT) {
3288 			rec->e_blkno = insert_rec->e_blkno;
3289 			rec->e_cpos = insert_rec->e_cpos;
3290 		}
3291 		le16_add_cpu(&rec->e_leaf_clusters,
3292 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3293 		return;
3294 	}
3295 
3296 	/*
3297 	 * Handle insert into an empty leaf.
3298 	 */
3299 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3300 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3301 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3302 		el->l_recs[0] = *insert_rec;
3303 		el->l_next_free_rec = cpu_to_le16(1);
3304 		return;
3305 	}
3306 
3307 	/*
3308 	 * Appending insert.
3309 	 */
3310 	if (insert->ins_appending == APPEND_TAIL) {
3311 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3312 		rec = &el->l_recs[i];
3313 		range = le32_to_cpu(rec->e_cpos)
3314 			+ le16_to_cpu(rec->e_leaf_clusters);
3315 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3316 
3317 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3318 				le16_to_cpu(el->l_count),
3319 				"inode %lu, depth %u, count %u, next free %u, "
3320 				"rec.cpos %u, rec.clusters %u, "
3321 				"insert.cpos %u, insert.clusters %u\n",
3322 				inode->i_ino,
3323 				le16_to_cpu(el->l_tree_depth),
3324 				le16_to_cpu(el->l_count),
3325 				le16_to_cpu(el->l_next_free_rec),
3326 				le32_to_cpu(el->l_recs[i].e_cpos),
3327 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3328 				le32_to_cpu(insert_rec->e_cpos),
3329 				le16_to_cpu(insert_rec->e_leaf_clusters));
3330 		i++;
3331 		el->l_recs[i] = *insert_rec;
3332 		le16_add_cpu(&el->l_next_free_rec, 1);
3333 		return;
3334 	}
3335 
3336 rotate:
3337 	/*
3338 	 * Ok, we have to rotate.
3339 	 *
3340 	 * At this point, it is safe to assume that inserting into an
3341 	 * empty leaf and appending to a leaf have both been handled
3342 	 * above.
3343 	 *
3344 	 * This leaf needs to have space, either by the empty 1st
3345 	 * extent record, or by virtue of an l_next_rec < l_count.
3346 	 */
3347 	ocfs2_rotate_leaf(el, insert_rec);
3348 }
3349 
3350 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3351 						struct ocfs2_dinode *di,
3352 						u32 clusters)
3353 {
3354 	le32_add_cpu(&di->i_clusters, clusters);
3355 	spin_lock(&OCFS2_I(inode)->ip_lock);
3356 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3357 	spin_unlock(&OCFS2_I(inode)->ip_lock);
3358 }
3359 
3360 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3361 					   handle_t *handle,
3362 					   struct ocfs2_path *path,
3363 					   struct ocfs2_extent_rec *insert_rec)
3364 {
3365 	int ret, i, next_free;
3366 	struct buffer_head *bh;
3367 	struct ocfs2_extent_list *el;
3368 	struct ocfs2_extent_rec *rec;
3369 
3370 	/*
3371 	 * Update everything except the leaf block.
3372 	 */
3373 	for (i = 0; i < path->p_tree_depth; i++) {
3374 		bh = path->p_node[i].bh;
3375 		el = path->p_node[i].el;
3376 
3377 		next_free = le16_to_cpu(el->l_next_free_rec);
3378 		if (next_free == 0) {
3379 			ocfs2_error(inode->i_sb,
3380 				    "Dinode %llu has a bad extent list",
3381 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3382 			ret = -EIO;
3383 			return;
3384 		}
3385 
3386 		rec = &el->l_recs[next_free - 1];
3387 
3388 		rec->e_int_clusters = insert_rec->e_cpos;
3389 		le32_add_cpu(&rec->e_int_clusters,
3390 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3391 		le32_add_cpu(&rec->e_int_clusters,
3392 			     -le32_to_cpu(rec->e_cpos));
3393 
3394 		ret = ocfs2_journal_dirty(handle, bh);
3395 		if (ret)
3396 			mlog_errno(ret);
3397 
3398 	}
3399 }
3400 
3401 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3402 				    struct ocfs2_extent_rec *insert_rec,
3403 				    struct ocfs2_path *right_path,
3404 				    struct ocfs2_path **ret_left_path)
3405 {
3406 	int ret, next_free;
3407 	struct ocfs2_extent_list *el;
3408 	struct ocfs2_path *left_path = NULL;
3409 
3410 	*ret_left_path = NULL;
3411 
3412 	/*
3413 	 * This shouldn't happen for non-trees. The extent rec cluster
3414 	 * count manipulation below only works for interior nodes.
3415 	 */
3416 	BUG_ON(right_path->p_tree_depth == 0);
3417 
3418 	/*
3419 	 * If our appending insert is at the leftmost edge of a leaf,
3420 	 * then we might need to update the rightmost records of the
3421 	 * neighboring path.
3422 	 */
3423 	el = path_leaf_el(right_path);
3424 	next_free = le16_to_cpu(el->l_next_free_rec);
3425 	if (next_free == 0 ||
3426 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3427 		u32 left_cpos;
3428 
3429 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3430 						    &left_cpos);
3431 		if (ret) {
3432 			mlog_errno(ret);
3433 			goto out;
3434 		}
3435 
3436 		mlog(0, "Append may need a left path update. cpos: %u, "
3437 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3438 		     left_cpos);
3439 
3440 		/*
3441 		 * No need to worry if the append is already in the
3442 		 * leftmost leaf.
3443 		 */
3444 		if (left_cpos) {
3445 			left_path = ocfs2_new_path(path_root_bh(right_path),
3446 						   path_root_el(right_path));
3447 			if (!left_path) {
3448 				ret = -ENOMEM;
3449 				mlog_errno(ret);
3450 				goto out;
3451 			}
3452 
3453 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3454 			if (ret) {
3455 				mlog_errno(ret);
3456 				goto out;
3457 			}
3458 
3459 			/*
3460 			 * ocfs2_insert_path() will pass the left_path to the
3461 			 * journal for us.
3462 			 */
3463 		}
3464 	}
3465 
3466 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3467 	if (ret) {
3468 		mlog_errno(ret);
3469 		goto out;
3470 	}
3471 
3472 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3473 
3474 	*ret_left_path = left_path;
3475 	ret = 0;
3476 out:
3477 	if (ret != 0)
3478 		ocfs2_free_path(left_path);
3479 
3480 	return ret;
3481 }
3482 
3483 static void ocfs2_split_record(struct inode *inode,
3484 			       struct ocfs2_path *left_path,
3485 			       struct ocfs2_path *right_path,
3486 			       struct ocfs2_extent_rec *split_rec,
3487 			       enum ocfs2_split_type split)
3488 {
3489 	int index;
3490 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3491 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3492 	struct ocfs2_extent_rec *rec, *tmprec;
3493 
3494 	right_el = path_leaf_el(right_path);;
3495 	if (left_path)
3496 		left_el = path_leaf_el(left_path);
3497 
3498 	el = right_el;
3499 	insert_el = right_el;
3500 	index = ocfs2_search_extent_list(el, cpos);
3501 	if (index != -1) {
3502 		if (index == 0 && left_path) {
3503 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3504 
3505 			/*
3506 			 * This typically means that the record
3507 			 * started in the left path but moved to the
3508 			 * right as a result of rotation. We either
3509 			 * move the existing record to the left, or we
3510 			 * do the later insert there.
3511 			 *
3512 			 * In this case, the left path should always
3513 			 * exist as the rotate code will have passed
3514 			 * it back for a post-insert update.
3515 			 */
3516 
3517 			if (split == SPLIT_LEFT) {
3518 				/*
3519 				 * It's a left split. Since we know
3520 				 * that the rotate code gave us an
3521 				 * empty extent in the left path, we
3522 				 * can just do the insert there.
3523 				 */
3524 				insert_el = left_el;
3525 			} else {
3526 				/*
3527 				 * Right split - we have to move the
3528 				 * existing record over to the left
3529 				 * leaf. The insert will be into the
3530 				 * newly created empty extent in the
3531 				 * right leaf.
3532 				 */
3533 				tmprec = &right_el->l_recs[index];
3534 				ocfs2_rotate_leaf(left_el, tmprec);
3535 				el = left_el;
3536 
3537 				memset(tmprec, 0, sizeof(*tmprec));
3538 				index = ocfs2_search_extent_list(left_el, cpos);
3539 				BUG_ON(index == -1);
3540 			}
3541 		}
3542 	} else {
3543 		BUG_ON(!left_path);
3544 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3545 		/*
3546 		 * Left path is easy - we can just allow the insert to
3547 		 * happen.
3548 		 */
3549 		el = left_el;
3550 		insert_el = left_el;
3551 		index = ocfs2_search_extent_list(el, cpos);
3552 		BUG_ON(index == -1);
3553 	}
3554 
3555 	rec = &el->l_recs[index];
3556 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3557 	ocfs2_rotate_leaf(insert_el, split_rec);
3558 }
3559 
3560 /*
3561  * This function only does inserts on an allocation b-tree. For dinode
3562  * lists, ocfs2_insert_at_leaf() is called directly.
3563  *
3564  * right_path is the path we want to do the actual insert
3565  * in. left_path should only be passed in if we need to update that
3566  * portion of the tree after an edge insert.
3567  */
3568 static int ocfs2_insert_path(struct inode *inode,
3569 			     handle_t *handle,
3570 			     struct ocfs2_path *left_path,
3571 			     struct ocfs2_path *right_path,
3572 			     struct ocfs2_extent_rec *insert_rec,
3573 			     struct ocfs2_insert_type *insert)
3574 {
3575 	int ret, subtree_index;
3576 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3577 
3578 	if (left_path) {
3579 		int credits = handle->h_buffer_credits;
3580 
3581 		/*
3582 		 * There's a chance that left_path got passed back to
3583 		 * us without being accounted for in the
3584 		 * journal. Extend our transaction here to be sure we
3585 		 * can change those blocks.
3586 		 */
3587 		credits += left_path->p_tree_depth;
3588 
3589 		ret = ocfs2_extend_trans(handle, credits);
3590 		if (ret < 0) {
3591 			mlog_errno(ret);
3592 			goto out;
3593 		}
3594 
3595 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3596 		if (ret < 0) {
3597 			mlog_errno(ret);
3598 			goto out;
3599 		}
3600 	}
3601 
3602 	/*
3603 	 * Pass both paths to the journal. The majority of inserts
3604 	 * will be touching all components anyway.
3605 	 */
3606 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3607 	if (ret < 0) {
3608 		mlog_errno(ret);
3609 		goto out;
3610 	}
3611 
3612 	if (insert->ins_split != SPLIT_NONE) {
3613 		/*
3614 		 * We could call ocfs2_insert_at_leaf() for some types
3615 		 * of splits, but it's easier to just let one separate
3616 		 * function sort it all out.
3617 		 */
3618 		ocfs2_split_record(inode, left_path, right_path,
3619 				   insert_rec, insert->ins_split);
3620 
3621 		/*
3622 		 * Split might have modified either leaf and we don't
3623 		 * have a guarantee that the later edge insert will
3624 		 * dirty this for us.
3625 		 */
3626 		if (left_path)
3627 			ret = ocfs2_journal_dirty(handle,
3628 						  path_leaf_bh(left_path));
3629 			if (ret)
3630 				mlog_errno(ret);
3631 	} else
3632 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3633 				     insert, inode);
3634 
3635 	ret = ocfs2_journal_dirty(handle, leaf_bh);
3636 	if (ret)
3637 		mlog_errno(ret);
3638 
3639 	if (left_path) {
3640 		/*
3641 		 * The rotate code has indicated that we need to fix
3642 		 * up portions of the tree after the insert.
3643 		 *
3644 		 * XXX: Should we extend the transaction here?
3645 		 */
3646 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
3647 							right_path);
3648 		ocfs2_complete_edge_insert(inode, handle, left_path,
3649 					   right_path, subtree_index);
3650 	}
3651 
3652 	ret = 0;
3653 out:
3654 	return ret;
3655 }
3656 
3657 static int ocfs2_do_insert_extent(struct inode *inode,
3658 				  handle_t *handle,
3659 				  struct buffer_head *di_bh,
3660 				  struct ocfs2_extent_rec *insert_rec,
3661 				  struct ocfs2_insert_type *type)
3662 {
3663 	int ret, rotate = 0;
3664 	u32 cpos;
3665 	struct ocfs2_path *right_path = NULL;
3666 	struct ocfs2_path *left_path = NULL;
3667 	struct ocfs2_dinode *di;
3668 	struct ocfs2_extent_list *el;
3669 
3670 	di = (struct ocfs2_dinode *) di_bh->b_data;
3671 	el = &di->id2.i_list;
3672 
3673 	ret = ocfs2_journal_access(handle, inode, di_bh,
3674 				   OCFS2_JOURNAL_ACCESS_WRITE);
3675 	if (ret) {
3676 		mlog_errno(ret);
3677 		goto out;
3678 	}
3679 
3680 	if (le16_to_cpu(el->l_tree_depth) == 0) {
3681 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3682 		goto out_update_clusters;
3683 	}
3684 
3685 	right_path = ocfs2_new_inode_path(di_bh);
3686 	if (!right_path) {
3687 		ret = -ENOMEM;
3688 		mlog_errno(ret);
3689 		goto out;
3690 	}
3691 
3692 	/*
3693 	 * Determine the path to start with. Rotations need the
3694 	 * rightmost path, everything else can go directly to the
3695 	 * target leaf.
3696 	 */
3697 	cpos = le32_to_cpu(insert_rec->e_cpos);
3698 	if (type->ins_appending == APPEND_NONE &&
3699 	    type->ins_contig == CONTIG_NONE) {
3700 		rotate = 1;
3701 		cpos = UINT_MAX;
3702 	}
3703 
3704 	ret = ocfs2_find_path(inode, right_path, cpos);
3705 	if (ret) {
3706 		mlog_errno(ret);
3707 		goto out;
3708 	}
3709 
3710 	/*
3711 	 * Rotations and appends need special treatment - they modify
3712 	 * parts of the tree's above them.
3713 	 *
3714 	 * Both might pass back a path immediate to the left of the
3715 	 * one being inserted to. This will be cause
3716 	 * ocfs2_insert_path() to modify the rightmost records of
3717 	 * left_path to account for an edge insert.
3718 	 *
3719 	 * XXX: When modifying this code, keep in mind that an insert
3720 	 * can wind up skipping both of these two special cases...
3721 	 */
3722 	if (rotate) {
3723 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3724 					      le32_to_cpu(insert_rec->e_cpos),
3725 					      right_path, &left_path);
3726 		if (ret) {
3727 			mlog_errno(ret);
3728 			goto out;
3729 		}
3730 
3731 		/*
3732 		 * ocfs2_rotate_tree_right() might have extended the
3733 		 * transaction without re-journaling our tree root.
3734 		 */
3735 		ret = ocfs2_journal_access(handle, inode, di_bh,
3736 					   OCFS2_JOURNAL_ACCESS_WRITE);
3737 		if (ret) {
3738 			mlog_errno(ret);
3739 			goto out;
3740 		}
3741 	} else if (type->ins_appending == APPEND_TAIL
3742 		   && type->ins_contig != CONTIG_LEFT) {
3743 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3744 					       right_path, &left_path);
3745 		if (ret) {
3746 			mlog_errno(ret);
3747 			goto out;
3748 		}
3749 	}
3750 
3751 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3752 				insert_rec, type);
3753 	if (ret) {
3754 		mlog_errno(ret);
3755 		goto out;
3756 	}
3757 
3758 out_update_clusters:
3759 	if (type->ins_split == SPLIT_NONE)
3760 		ocfs2_update_dinode_clusters(inode, di,
3761 					     le16_to_cpu(insert_rec->e_leaf_clusters));
3762 
3763 	ret = ocfs2_journal_dirty(handle, di_bh);
3764 	if (ret)
3765 		mlog_errno(ret);
3766 
3767 out:
3768 	ocfs2_free_path(left_path);
3769 	ocfs2_free_path(right_path);
3770 
3771 	return ret;
3772 }
3773 
3774 static enum ocfs2_contig_type
3775 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3776 			       struct ocfs2_extent_list *el, int index,
3777 			       struct ocfs2_extent_rec *split_rec)
3778 {
3779 	int status;
3780 	enum ocfs2_contig_type ret = CONTIG_NONE;
3781 	u32 left_cpos, right_cpos;
3782 	struct ocfs2_extent_rec *rec = NULL;
3783 	struct ocfs2_extent_list *new_el;
3784 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
3785 	struct buffer_head *bh;
3786 	struct ocfs2_extent_block *eb;
3787 
3788 	if (index > 0) {
3789 		rec = &el->l_recs[index - 1];
3790 	} else if (path->p_tree_depth > 0) {
3791 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3792 						       path, &left_cpos);
3793 		if (status)
3794 			goto out;
3795 
3796 		if (left_cpos != 0) {
3797 			left_path = ocfs2_new_path(path_root_bh(path),
3798 						   path_root_el(path));
3799 			if (!left_path)
3800 				goto out;
3801 
3802 			status = ocfs2_find_path(inode, left_path, left_cpos);
3803 			if (status)
3804 				goto out;
3805 
3806 			new_el = path_leaf_el(left_path);
3807 
3808 			if (le16_to_cpu(new_el->l_next_free_rec) !=
3809 			    le16_to_cpu(new_el->l_count)) {
3810 				bh = path_leaf_bh(left_path);
3811 				eb = (struct ocfs2_extent_block *)bh->b_data;
3812 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3813 								 eb);
3814 				goto out;
3815 			}
3816 			rec = &new_el->l_recs[
3817 				le16_to_cpu(new_el->l_next_free_rec) - 1];
3818 		}
3819 	}
3820 
3821 	/*
3822 	 * We're careful to check for an empty extent record here -
3823 	 * the merge code will know what to do if it sees one.
3824 	 */
3825 	if (rec) {
3826 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
3827 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3828 				ret = CONTIG_RIGHT;
3829 		} else {
3830 			ret = ocfs2_extent_contig(inode, rec, split_rec);
3831 		}
3832 	}
3833 
3834 	rec = NULL;
3835 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3836 		rec = &el->l_recs[index + 1];
3837 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3838 		 path->p_tree_depth > 0) {
3839 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3840 							path, &right_cpos);
3841 		if (status)
3842 			goto out;
3843 
3844 		if (right_cpos == 0)
3845 			goto out;
3846 
3847 		right_path = ocfs2_new_path(path_root_bh(path),
3848 					    path_root_el(path));
3849 		if (!right_path)
3850 			goto out;
3851 
3852 		status = ocfs2_find_path(inode, right_path, right_cpos);
3853 		if (status)
3854 			goto out;
3855 
3856 		new_el = path_leaf_el(right_path);
3857 		rec = &new_el->l_recs[0];
3858 		if (ocfs2_is_empty_extent(rec)) {
3859 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3860 				bh = path_leaf_bh(right_path);
3861 				eb = (struct ocfs2_extent_block *)bh->b_data;
3862 				OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3863 								 eb);
3864 				goto out;
3865 			}
3866 			rec = &new_el->l_recs[1];
3867 		}
3868 	}
3869 
3870 	if (rec) {
3871 		enum ocfs2_contig_type contig_type;
3872 
3873 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3874 
3875 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3876 			ret = CONTIG_LEFTRIGHT;
3877 		else if (ret == CONTIG_NONE)
3878 			ret = contig_type;
3879 	}
3880 
3881 out:
3882 	if (left_path)
3883 		ocfs2_free_path(left_path);
3884 	if (right_path)
3885 		ocfs2_free_path(right_path);
3886 
3887 	return ret;
3888 }
3889 
3890 static void ocfs2_figure_contig_type(struct inode *inode,
3891 				     struct ocfs2_insert_type *insert,
3892 				     struct ocfs2_extent_list *el,
3893 				     struct ocfs2_extent_rec *insert_rec)
3894 {
3895 	int i;
3896 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
3897 
3898 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3899 
3900 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3901 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3902 						  insert_rec);
3903 		if (contig_type != CONTIG_NONE) {
3904 			insert->ins_contig_index = i;
3905 			break;
3906 		}
3907 	}
3908 	insert->ins_contig = contig_type;
3909 }
3910 
3911 /*
3912  * This should only be called against the righmost leaf extent list.
3913  *
3914  * ocfs2_figure_appending_type() will figure out whether we'll have to
3915  * insert at the tail of the rightmost leaf.
3916  *
3917  * This should also work against the dinode list for tree's with 0
3918  * depth. If we consider the dinode list to be the rightmost leaf node
3919  * then the logic here makes sense.
3920  */
3921 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3922 					struct ocfs2_extent_list *el,
3923 					struct ocfs2_extent_rec *insert_rec)
3924 {
3925 	int i;
3926 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3927 	struct ocfs2_extent_rec *rec;
3928 
3929 	insert->ins_appending = APPEND_NONE;
3930 
3931 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3932 
3933 	if (!el->l_next_free_rec)
3934 		goto set_tail_append;
3935 
3936 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3937 		/* Were all records empty? */
3938 		if (le16_to_cpu(el->l_next_free_rec) == 1)
3939 			goto set_tail_append;
3940 	}
3941 
3942 	i = le16_to_cpu(el->l_next_free_rec) - 1;
3943 	rec = &el->l_recs[i];
3944 
3945 	if (cpos >=
3946 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3947 		goto set_tail_append;
3948 
3949 	return;
3950 
3951 set_tail_append:
3952 	insert->ins_appending = APPEND_TAIL;
3953 }
3954 
3955 /*
3956  * Helper function called at the begining of an insert.
3957  *
3958  * This computes a few things that are commonly used in the process of
3959  * inserting into the btree:
3960  *   - Whether the new extent is contiguous with an existing one.
3961  *   - The current tree depth.
3962  *   - Whether the insert is an appending one.
3963  *   - The total # of free records in the tree.
3964  *
3965  * All of the information is stored on the ocfs2_insert_type
3966  * structure.
3967  */
3968 static int ocfs2_figure_insert_type(struct inode *inode,
3969 				    struct buffer_head *di_bh,
3970 				    struct buffer_head **last_eb_bh,
3971 				    struct ocfs2_extent_rec *insert_rec,
3972 				    int *free_records,
3973 				    struct ocfs2_insert_type *insert)
3974 {
3975 	int ret;
3976 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3977 	struct ocfs2_extent_block *eb;
3978 	struct ocfs2_extent_list *el;
3979 	struct ocfs2_path *path = NULL;
3980 	struct buffer_head *bh = NULL;
3981 
3982 	insert->ins_split = SPLIT_NONE;
3983 
3984 	el = &di->id2.i_list;
3985 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3986 
3987 	if (el->l_tree_depth) {
3988 		/*
3989 		 * If we have tree depth, we read in the
3990 		 * rightmost extent block ahead of time as
3991 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3992 		 * may want it later.
3993 		 */
3994 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3995 				       le64_to_cpu(di->i_last_eb_blk), &bh,
3996 				       OCFS2_BH_CACHED, inode);
3997 		if (ret) {
3998 			mlog_exit(ret);
3999 			goto out;
4000 		}
4001 		eb = (struct ocfs2_extent_block *) bh->b_data;
4002 		el = &eb->h_list;
4003 	}
4004 
4005 	/*
4006 	 * Unless we have a contiguous insert, we'll need to know if
4007 	 * there is room left in our allocation tree for another
4008 	 * extent record.
4009 	 *
4010 	 * XXX: This test is simplistic, we can search for empty
4011 	 * extent records too.
4012 	 */
4013 	*free_records = le16_to_cpu(el->l_count) -
4014 		le16_to_cpu(el->l_next_free_rec);
4015 
4016 	if (!insert->ins_tree_depth) {
4017 		ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4018 		ocfs2_figure_appending_type(insert, el, insert_rec);
4019 		return 0;
4020 	}
4021 
4022 	path = ocfs2_new_inode_path(di_bh);
4023 	if (!path) {
4024 		ret = -ENOMEM;
4025 		mlog_errno(ret);
4026 		goto out;
4027 	}
4028 
4029 	/*
4030 	 * In the case that we're inserting past what the tree
4031 	 * currently accounts for, ocfs2_find_path() will return for
4032 	 * us the rightmost tree path. This is accounted for below in
4033 	 * the appending code.
4034 	 */
4035 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4036 	if (ret) {
4037 		mlog_errno(ret);
4038 		goto out;
4039 	}
4040 
4041 	el = path_leaf_el(path);
4042 
4043 	/*
4044 	 * Now that we have the path, there's two things we want to determine:
4045 	 * 1) Contiguousness (also set contig_index if this is so)
4046 	 *
4047 	 * 2) Are we doing an append? We can trivially break this up
4048          *     into two types of appends: simple record append, or a
4049          *     rotate inside the tail leaf.
4050 	 */
4051 	ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4052 
4053 	/*
4054 	 * The insert code isn't quite ready to deal with all cases of
4055 	 * left contiguousness. Specifically, if it's an insert into
4056 	 * the 1st record in a leaf, it will require the adjustment of
4057 	 * cluster count on the last record of the path directly to it's
4058 	 * left. For now, just catch that case and fool the layers
4059 	 * above us. This works just fine for tree_depth == 0, which
4060 	 * is why we allow that above.
4061 	 */
4062 	if (insert->ins_contig == CONTIG_LEFT &&
4063 	    insert->ins_contig_index == 0)
4064 		insert->ins_contig = CONTIG_NONE;
4065 
4066 	/*
4067 	 * Ok, so we can simply compare against last_eb to figure out
4068 	 * whether the path doesn't exist. This will only happen in
4069 	 * the case that we're doing a tail append, so maybe we can
4070 	 * take advantage of that information somehow.
4071 	 */
4072 	if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4073 		/*
4074 		 * Ok, ocfs2_find_path() returned us the rightmost
4075 		 * tree path. This might be an appending insert. There are
4076 		 * two cases:
4077 		 *    1) We're doing a true append at the tail:
4078 		 *	-This might even be off the end of the leaf
4079 		 *    2) We're "appending" by rotating in the tail
4080 		 */
4081 		ocfs2_figure_appending_type(insert, el, insert_rec);
4082 	}
4083 
4084 out:
4085 	ocfs2_free_path(path);
4086 
4087 	if (ret == 0)
4088 		*last_eb_bh = bh;
4089 	else
4090 		brelse(bh);
4091 	return ret;
4092 }
4093 
4094 /*
4095  * Insert an extent into an inode btree.
4096  *
4097  * The caller needs to update fe->i_clusters
4098  */
4099 int ocfs2_insert_extent(struct ocfs2_super *osb,
4100 			handle_t *handle,
4101 			struct inode *inode,
4102 			struct buffer_head *fe_bh,
4103 			u32 cpos,
4104 			u64 start_blk,
4105 			u32 new_clusters,
4106 			u8 flags,
4107 			struct ocfs2_alloc_context *meta_ac)
4108 {
4109 	int status;
4110 	int uninitialized_var(free_records);
4111 	struct buffer_head *last_eb_bh = NULL;
4112 	struct ocfs2_insert_type insert = {0, };
4113 	struct ocfs2_extent_rec rec;
4114 
4115 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4116 
4117 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4118 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4119 
4120 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4121 			(OCFS2_I(inode)->ip_clusters != cpos),
4122 			"Device %s, asking for sparse allocation: inode %llu, "
4123 			"cpos %u, clusters %u\n",
4124 			osb->dev_str,
4125 			(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4126 			OCFS2_I(inode)->ip_clusters);
4127 
4128 	memset(&rec, 0, sizeof(rec));
4129 	rec.e_cpos = cpu_to_le32(cpos);
4130 	rec.e_blkno = cpu_to_le64(start_blk);
4131 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4132 	rec.e_flags = flags;
4133 
4134 	status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4135 					  &free_records, &insert);
4136 	if (status < 0) {
4137 		mlog_errno(status);
4138 		goto bail;
4139 	}
4140 
4141 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4142 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4143 	     "Insert.tree_depth: %d\n",
4144 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4145 	     free_records, insert.ins_tree_depth);
4146 
4147 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4148 		status = ocfs2_grow_tree(inode, handle, fe_bh,
4149 					 &insert.ins_tree_depth, &last_eb_bh,
4150 					 meta_ac);
4151 		if (status) {
4152 			mlog_errno(status);
4153 			goto bail;
4154 		}
4155 	}
4156 
4157 	/* Finally, we can add clusters. This might rotate the tree for us. */
4158 	status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4159 	if (status < 0)
4160 		mlog_errno(status);
4161 	else
4162 		ocfs2_extent_map_insert_rec(inode, &rec);
4163 
4164 bail:
4165 	if (last_eb_bh)
4166 		brelse(last_eb_bh);
4167 
4168 	mlog_exit(status);
4169 	return status;
4170 }
4171 
4172 static void ocfs2_make_right_split_rec(struct super_block *sb,
4173 				       struct ocfs2_extent_rec *split_rec,
4174 				       u32 cpos,
4175 				       struct ocfs2_extent_rec *rec)
4176 {
4177 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4178 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4179 
4180 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4181 
4182 	split_rec->e_cpos = cpu_to_le32(cpos);
4183 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4184 
4185 	split_rec->e_blkno = rec->e_blkno;
4186 	le64_add_cpu(&split_rec->e_blkno,
4187 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4188 
4189 	split_rec->e_flags = rec->e_flags;
4190 }
4191 
4192 static int ocfs2_split_and_insert(struct inode *inode,
4193 				  handle_t *handle,
4194 				  struct ocfs2_path *path,
4195 				  struct buffer_head *di_bh,
4196 				  struct buffer_head **last_eb_bh,
4197 				  int split_index,
4198 				  struct ocfs2_extent_rec *orig_split_rec,
4199 				  struct ocfs2_alloc_context *meta_ac)
4200 {
4201 	int ret = 0, depth;
4202 	unsigned int insert_range, rec_range, do_leftright = 0;
4203 	struct ocfs2_extent_rec tmprec;
4204 	struct ocfs2_extent_list *rightmost_el;
4205 	struct ocfs2_extent_rec rec;
4206 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4207 	struct ocfs2_insert_type insert;
4208 	struct ocfs2_extent_block *eb;
4209 	struct ocfs2_dinode *di;
4210 
4211 leftright:
4212 	/*
4213 	 * Store a copy of the record on the stack - it might move
4214 	 * around as the tree is manipulated below.
4215 	 */
4216 	rec = path_leaf_el(path)->l_recs[split_index];
4217 
4218 	di = (struct ocfs2_dinode *)di_bh->b_data;
4219 	rightmost_el = &di->id2.i_list;
4220 
4221 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4222 	if (depth) {
4223 		BUG_ON(!(*last_eb_bh));
4224 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4225 		rightmost_el = &eb->h_list;
4226 	}
4227 
4228 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4229 	    le16_to_cpu(rightmost_el->l_count)) {
4230 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4231 				      meta_ac);
4232 		if (ret) {
4233 			mlog_errno(ret);
4234 			goto out;
4235 		}
4236 	}
4237 
4238 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4239 	insert.ins_appending = APPEND_NONE;
4240 	insert.ins_contig = CONTIG_NONE;
4241 	insert.ins_tree_depth = depth;
4242 
4243 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4244 		le16_to_cpu(split_rec.e_leaf_clusters);
4245 	rec_range = le32_to_cpu(rec.e_cpos) +
4246 		le16_to_cpu(rec.e_leaf_clusters);
4247 
4248 	if (split_rec.e_cpos == rec.e_cpos) {
4249 		insert.ins_split = SPLIT_LEFT;
4250 	} else if (insert_range == rec_range) {
4251 		insert.ins_split = SPLIT_RIGHT;
4252 	} else {
4253 		/*
4254 		 * Left/right split. We fake this as a right split
4255 		 * first and then make a second pass as a left split.
4256 		 */
4257 		insert.ins_split = SPLIT_RIGHT;
4258 
4259 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4260 					   &rec);
4261 
4262 		split_rec = tmprec;
4263 
4264 		BUG_ON(do_leftright);
4265 		do_leftright = 1;
4266 	}
4267 
4268 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4269 				     &insert);
4270 	if (ret) {
4271 		mlog_errno(ret);
4272 		goto out;
4273 	}
4274 
4275 	if (do_leftright == 1) {
4276 		u32 cpos;
4277 		struct ocfs2_extent_list *el;
4278 
4279 		do_leftright++;
4280 		split_rec = *orig_split_rec;
4281 
4282 		ocfs2_reinit_path(path, 1);
4283 
4284 		cpos = le32_to_cpu(split_rec.e_cpos);
4285 		ret = ocfs2_find_path(inode, path, cpos);
4286 		if (ret) {
4287 			mlog_errno(ret);
4288 			goto out;
4289 		}
4290 
4291 		el = path_leaf_el(path);
4292 		split_index = ocfs2_search_extent_list(el, cpos);
4293 		goto leftright;
4294 	}
4295 out:
4296 
4297 	return ret;
4298 }
4299 
4300 /*
4301  * Mark part or all of the extent record at split_index in the leaf
4302  * pointed to by path as written. This removes the unwritten
4303  * extent flag.
4304  *
4305  * Care is taken to handle contiguousness so as to not grow the tree.
4306  *
4307  * meta_ac is not strictly necessary - we only truly need it if growth
4308  * of the tree is required. All other cases will degrade into a less
4309  * optimal tree layout.
4310  *
4311  * last_eb_bh should be the rightmost leaf block for any inode with a
4312  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4313  *
4314  * This code is optimized for readability - several passes might be
4315  * made over certain portions of the tree. All of those blocks will
4316  * have been brought into cache (and pinned via the journal), so the
4317  * extra overhead is not expressed in terms of disk reads.
4318  */
4319 static int __ocfs2_mark_extent_written(struct inode *inode,
4320 				       struct buffer_head *di_bh,
4321 				       handle_t *handle,
4322 				       struct ocfs2_path *path,
4323 				       int split_index,
4324 				       struct ocfs2_extent_rec *split_rec,
4325 				       struct ocfs2_alloc_context *meta_ac,
4326 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4327 {
4328 	int ret = 0;
4329 	struct ocfs2_extent_list *el = path_leaf_el(path);
4330 	struct buffer_head *last_eb_bh = NULL;
4331 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4332 	struct ocfs2_merge_ctxt ctxt;
4333 	struct ocfs2_extent_list *rightmost_el;
4334 
4335 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4336 		ret = -EIO;
4337 		mlog_errno(ret);
4338 		goto out;
4339 	}
4340 
4341 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4342 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4343 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4344 		ret = -EIO;
4345 		mlog_errno(ret);
4346 		goto out;
4347 	}
4348 
4349 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4350 							    split_index,
4351 							    split_rec);
4352 
4353 	/*
4354 	 * The core merge / split code wants to know how much room is
4355 	 * left in this inodes allocation tree, so we pass the
4356 	 * rightmost extent list.
4357 	 */
4358 	if (path->p_tree_depth) {
4359 		struct ocfs2_extent_block *eb;
4360 		struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4361 
4362 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4363 				       le64_to_cpu(di->i_last_eb_blk),
4364 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4365 		if (ret) {
4366 			mlog_exit(ret);
4367 			goto out;
4368 		}
4369 
4370 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4371 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4372 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4373 			ret = -EROFS;
4374 			goto out;
4375 		}
4376 
4377 		rightmost_el = &eb->h_list;
4378 	} else
4379 		rightmost_el = path_root_el(path);
4380 
4381 	if (rec->e_cpos == split_rec->e_cpos &&
4382 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4383 		ctxt.c_split_covers_rec = 1;
4384 	else
4385 		ctxt.c_split_covers_rec = 0;
4386 
4387 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4388 
4389 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4390 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4391 	     ctxt.c_split_covers_rec);
4392 
4393 	if (ctxt.c_contig_type == CONTIG_NONE) {
4394 		if (ctxt.c_split_covers_rec)
4395 			el->l_recs[split_index] = *split_rec;
4396 		else
4397 			ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4398 						     &last_eb_bh, split_index,
4399 						     split_rec, meta_ac);
4400 		if (ret)
4401 			mlog_errno(ret);
4402 	} else {
4403 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4404 						split_index, split_rec,
4405 						dealloc, &ctxt);
4406 		if (ret)
4407 			mlog_errno(ret);
4408 	}
4409 
4410 out:
4411 	brelse(last_eb_bh);
4412 	return ret;
4413 }
4414 
4415 /*
4416  * Mark the already-existing extent at cpos as written for len clusters.
4417  *
4418  * If the existing extent is larger than the request, initiate a
4419  * split. An attempt will be made at merging with adjacent extents.
4420  *
4421  * The caller is responsible for passing down meta_ac if we'll need it.
4422  */
4423 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4424 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4425 			      struct ocfs2_alloc_context *meta_ac,
4426 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4427 {
4428 	int ret, index;
4429 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4430 	struct ocfs2_extent_rec split_rec;
4431 	struct ocfs2_path *left_path = NULL;
4432 	struct ocfs2_extent_list *el;
4433 
4434 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4435 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4436 
4437 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4438 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4439 			    "that are being written to, but the feature bit "
4440 			    "is not set in the super block.",
4441 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4442 		ret = -EROFS;
4443 		goto out;
4444 	}
4445 
4446 	/*
4447 	 * XXX: This should be fixed up so that we just re-insert the
4448 	 * next extent records.
4449 	 */
4450 	ocfs2_extent_map_trunc(inode, 0);
4451 
4452 	left_path = ocfs2_new_inode_path(di_bh);
4453 	if (!left_path) {
4454 		ret = -ENOMEM;
4455 		mlog_errno(ret);
4456 		goto out;
4457 	}
4458 
4459 	ret = ocfs2_find_path(inode, left_path, cpos);
4460 	if (ret) {
4461 		mlog_errno(ret);
4462 		goto out;
4463 	}
4464 	el = path_leaf_el(left_path);
4465 
4466 	index = ocfs2_search_extent_list(el, cpos);
4467 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4468 		ocfs2_error(inode->i_sb,
4469 			    "Inode %llu has an extent at cpos %u which can no "
4470 			    "longer be found.\n",
4471 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4472 		ret = -EROFS;
4473 		goto out;
4474 	}
4475 
4476 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4477 	split_rec.e_cpos = cpu_to_le32(cpos);
4478 	split_rec.e_leaf_clusters = cpu_to_le16(len);
4479 	split_rec.e_blkno = cpu_to_le64(start_blkno);
4480 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4481 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4482 
4483 	ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4484 					  index, &split_rec, meta_ac, dealloc);
4485 	if (ret)
4486 		mlog_errno(ret);
4487 
4488 out:
4489 	ocfs2_free_path(left_path);
4490 	return ret;
4491 }
4492 
4493 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4494 			    handle_t *handle, struct ocfs2_path *path,
4495 			    int index, u32 new_range,
4496 			    struct ocfs2_alloc_context *meta_ac)
4497 {
4498 	int ret, depth, credits = handle->h_buffer_credits;
4499 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4500 	struct buffer_head *last_eb_bh = NULL;
4501 	struct ocfs2_extent_block *eb;
4502 	struct ocfs2_extent_list *rightmost_el, *el;
4503 	struct ocfs2_extent_rec split_rec;
4504 	struct ocfs2_extent_rec *rec;
4505 	struct ocfs2_insert_type insert;
4506 
4507 	/*
4508 	 * Setup the record to split before we grow the tree.
4509 	 */
4510 	el = path_leaf_el(path);
4511 	rec = &el->l_recs[index];
4512 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4513 
4514 	depth = path->p_tree_depth;
4515 	if (depth > 0) {
4516 		ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4517 				       le64_to_cpu(di->i_last_eb_blk),
4518 				       &last_eb_bh, OCFS2_BH_CACHED, inode);
4519 		if (ret < 0) {
4520 			mlog_errno(ret);
4521 			goto out;
4522 		}
4523 
4524 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4525 		rightmost_el = &eb->h_list;
4526 	} else
4527 		rightmost_el = path_leaf_el(path);
4528 
4529 	credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4530 	ret = ocfs2_extend_trans(handle, credits);
4531 	if (ret) {
4532 		mlog_errno(ret);
4533 		goto out;
4534 	}
4535 
4536 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4537 	    le16_to_cpu(rightmost_el->l_count)) {
4538 		ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4539 				      meta_ac);
4540 		if (ret) {
4541 			mlog_errno(ret);
4542 			goto out;
4543 		}
4544 	}
4545 
4546 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4547 	insert.ins_appending = APPEND_NONE;
4548 	insert.ins_contig = CONTIG_NONE;
4549 	insert.ins_split = SPLIT_RIGHT;
4550 	insert.ins_tree_depth = depth;
4551 
4552 	ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4553 	if (ret)
4554 		mlog_errno(ret);
4555 
4556 out:
4557 	brelse(last_eb_bh);
4558 	return ret;
4559 }
4560 
4561 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4562 			      struct ocfs2_path *path, int index,
4563 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
4564 			      u32 cpos, u32 len)
4565 {
4566 	int ret;
4567 	u32 left_cpos, rec_range, trunc_range;
4568 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
4569 	struct super_block *sb = inode->i_sb;
4570 	struct ocfs2_path *left_path = NULL;
4571 	struct ocfs2_extent_list *el = path_leaf_el(path);
4572 	struct ocfs2_extent_rec *rec;
4573 	struct ocfs2_extent_block *eb;
4574 
4575 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4576 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4577 		if (ret) {
4578 			mlog_errno(ret);
4579 			goto out;
4580 		}
4581 
4582 		index--;
4583 	}
4584 
4585 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4586 	    path->p_tree_depth) {
4587 		/*
4588 		 * Check whether this is the rightmost tree record. If
4589 		 * we remove all of this record or part of its right
4590 		 * edge then an update of the record lengths above it
4591 		 * will be required.
4592 		 */
4593 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4594 		if (eb->h_next_leaf_blk == 0)
4595 			is_rightmost_tree_rec = 1;
4596 	}
4597 
4598 	rec = &el->l_recs[index];
4599 	if (index == 0 && path->p_tree_depth &&
4600 	    le32_to_cpu(rec->e_cpos) == cpos) {
4601 		/*
4602 		 * Changing the leftmost offset (via partial or whole
4603 		 * record truncate) of an interior (or rightmost) path
4604 		 * means we have to update the subtree that is formed
4605 		 * by this leaf and the one to it's left.
4606 		 *
4607 		 * There are two cases we can skip:
4608 		 *   1) Path is the leftmost one in our inode tree.
4609 		 *   2) The leaf is rightmost and will be empty after
4610 		 *      we remove the extent record - the rotate code
4611 		 *      knows how to update the newly formed edge.
4612 		 */
4613 
4614 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4615 						    &left_cpos);
4616 		if (ret) {
4617 			mlog_errno(ret);
4618 			goto out;
4619 		}
4620 
4621 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4622 			left_path = ocfs2_new_path(path_root_bh(path),
4623 						   path_root_el(path));
4624 			if (!left_path) {
4625 				ret = -ENOMEM;
4626 				mlog_errno(ret);
4627 				goto out;
4628 			}
4629 
4630 			ret = ocfs2_find_path(inode, left_path, left_cpos);
4631 			if (ret) {
4632 				mlog_errno(ret);
4633 				goto out;
4634 			}
4635 		}
4636 	}
4637 
4638 	ret = ocfs2_extend_rotate_transaction(handle, 0,
4639 					      handle->h_buffer_credits,
4640 					      path);
4641 	if (ret) {
4642 		mlog_errno(ret);
4643 		goto out;
4644 	}
4645 
4646 	ret = ocfs2_journal_access_path(inode, handle, path);
4647 	if (ret) {
4648 		mlog_errno(ret);
4649 		goto out;
4650 	}
4651 
4652 	ret = ocfs2_journal_access_path(inode, handle, left_path);
4653 	if (ret) {
4654 		mlog_errno(ret);
4655 		goto out;
4656 	}
4657 
4658 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4659 	trunc_range = cpos + len;
4660 
4661 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4662 		int next_free;
4663 
4664 		memset(rec, 0, sizeof(*rec));
4665 		ocfs2_cleanup_merge(el, index);
4666 		wants_rotate = 1;
4667 
4668 		next_free = le16_to_cpu(el->l_next_free_rec);
4669 		if (is_rightmost_tree_rec && next_free > 1) {
4670 			/*
4671 			 * We skip the edge update if this path will
4672 			 * be deleted by the rotate code.
4673 			 */
4674 			rec = &el->l_recs[next_free - 1];
4675 			ocfs2_adjust_rightmost_records(inode, handle, path,
4676 						       rec);
4677 		}
4678 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
4679 		/* Remove leftmost portion of the record. */
4680 		le32_add_cpu(&rec->e_cpos, len);
4681 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4682 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4683 	} else if (rec_range == trunc_range) {
4684 		/* Remove rightmost portion of the record */
4685 		le16_add_cpu(&rec->e_leaf_clusters, -len);
4686 		if (is_rightmost_tree_rec)
4687 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4688 	} else {
4689 		/* Caller should have trapped this. */
4690 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4691 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4692 		     le32_to_cpu(rec->e_cpos),
4693 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4694 		BUG();
4695 	}
4696 
4697 	if (left_path) {
4698 		int subtree_index;
4699 
4700 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4701 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
4702 					   subtree_index);
4703 	}
4704 
4705 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4706 
4707 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4708 	if (ret) {
4709 		mlog_errno(ret);
4710 		goto out;
4711 	}
4712 
4713 out:
4714 	ocfs2_free_path(left_path);
4715 	return ret;
4716 }
4717 
4718 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4719 			u32 cpos, u32 len, handle_t *handle,
4720 			struct ocfs2_alloc_context *meta_ac,
4721 			struct ocfs2_cached_dealloc_ctxt *dealloc)
4722 {
4723 	int ret, index;
4724 	u32 rec_range, trunc_range;
4725 	struct ocfs2_extent_rec *rec;
4726 	struct ocfs2_extent_list *el;
4727 	struct ocfs2_path *path;
4728 
4729 	ocfs2_extent_map_trunc(inode, 0);
4730 
4731 	path = ocfs2_new_inode_path(di_bh);
4732 	if (!path) {
4733 		ret = -ENOMEM;
4734 		mlog_errno(ret);
4735 		goto out;
4736 	}
4737 
4738 	ret = ocfs2_find_path(inode, path, cpos);
4739 	if (ret) {
4740 		mlog_errno(ret);
4741 		goto out;
4742 	}
4743 
4744 	el = path_leaf_el(path);
4745 	index = ocfs2_search_extent_list(el, cpos);
4746 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4747 		ocfs2_error(inode->i_sb,
4748 			    "Inode %llu has an extent at cpos %u which can no "
4749 			    "longer be found.\n",
4750 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4751 		ret = -EROFS;
4752 		goto out;
4753 	}
4754 
4755 	/*
4756 	 * We have 3 cases of extent removal:
4757 	 *   1) Range covers the entire extent rec
4758 	 *   2) Range begins or ends on one edge of the extent rec
4759 	 *   3) Range is in the middle of the extent rec (no shared edges)
4760 	 *
4761 	 * For case 1 we remove the extent rec and left rotate to
4762 	 * fill the hole.
4763 	 *
4764 	 * For case 2 we just shrink the existing extent rec, with a
4765 	 * tree update if the shrinking edge is also the edge of an
4766 	 * extent block.
4767 	 *
4768 	 * For case 3 we do a right split to turn the extent rec into
4769 	 * something case 2 can handle.
4770 	 */
4771 	rec = &el->l_recs[index];
4772 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4773 	trunc_range = cpos + len;
4774 
4775 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4776 
4777 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4778 	     "(cpos %u, len %u)\n",
4779 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4780 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4781 
4782 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4783 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4784 					 cpos, len);
4785 		if (ret) {
4786 			mlog_errno(ret);
4787 			goto out;
4788 		}
4789 	} else {
4790 		ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4791 				       trunc_range, meta_ac);
4792 		if (ret) {
4793 			mlog_errno(ret);
4794 			goto out;
4795 		}
4796 
4797 		/*
4798 		 * The split could have manipulated the tree enough to
4799 		 * move the record location, so we have to look for it again.
4800 		 */
4801 		ocfs2_reinit_path(path, 1);
4802 
4803 		ret = ocfs2_find_path(inode, path, cpos);
4804 		if (ret) {
4805 			mlog_errno(ret);
4806 			goto out;
4807 		}
4808 
4809 		el = path_leaf_el(path);
4810 		index = ocfs2_search_extent_list(el, cpos);
4811 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4812 			ocfs2_error(inode->i_sb,
4813 				    "Inode %llu: split at cpos %u lost record.",
4814 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4815 				    cpos);
4816 			ret = -EROFS;
4817 			goto out;
4818 		}
4819 
4820 		/*
4821 		 * Double check our values here. If anything is fishy,
4822 		 * it's easier to catch it at the top level.
4823 		 */
4824 		rec = &el->l_recs[index];
4825 		rec_range = le32_to_cpu(rec->e_cpos) +
4826 			ocfs2_rec_clusters(el, rec);
4827 		if (rec_range != trunc_range) {
4828 			ocfs2_error(inode->i_sb,
4829 				    "Inode %llu: error after split at cpos %u"
4830 				    "trunc len %u, existing record is (%u,%u)",
4831 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
4832 				    cpos, len, le32_to_cpu(rec->e_cpos),
4833 				    ocfs2_rec_clusters(el, rec));
4834 			ret = -EROFS;
4835 			goto out;
4836 		}
4837 
4838 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4839 					 cpos, len);
4840 		if (ret) {
4841 			mlog_errno(ret);
4842 			goto out;
4843 		}
4844 	}
4845 
4846 out:
4847 	ocfs2_free_path(path);
4848 	return ret;
4849 }
4850 
4851 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4852 {
4853 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4854 	struct ocfs2_dinode *di;
4855 	struct ocfs2_truncate_log *tl;
4856 
4857 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4858 	tl = &di->id2.i_dealloc;
4859 
4860 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4861 			"slot %d, invalid truncate log parameters: used = "
4862 			"%u, count = %u\n", osb->slot_num,
4863 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4864 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4865 }
4866 
4867 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4868 					   unsigned int new_start)
4869 {
4870 	unsigned int tail_index;
4871 	unsigned int current_tail;
4872 
4873 	/* No records, nothing to coalesce */
4874 	if (!le16_to_cpu(tl->tl_used))
4875 		return 0;
4876 
4877 	tail_index = le16_to_cpu(tl->tl_used) - 1;
4878 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4879 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4880 
4881 	return current_tail == new_start;
4882 }
4883 
4884 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4885 			      handle_t *handle,
4886 			      u64 start_blk,
4887 			      unsigned int num_clusters)
4888 {
4889 	int status, index;
4890 	unsigned int start_cluster, tl_count;
4891 	struct inode *tl_inode = osb->osb_tl_inode;
4892 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4893 	struct ocfs2_dinode *di;
4894 	struct ocfs2_truncate_log *tl;
4895 
4896 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
4897 		   (unsigned long long)start_blk, num_clusters);
4898 
4899 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4900 
4901 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4902 
4903 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4904 	tl = &di->id2.i_dealloc;
4905 	if (!OCFS2_IS_VALID_DINODE(di)) {
4906 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4907 		status = -EIO;
4908 		goto bail;
4909 	}
4910 
4911 	tl_count = le16_to_cpu(tl->tl_count);
4912 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4913 			tl_count == 0,
4914 			"Truncate record count on #%llu invalid "
4915 			"wanted %u, actual %u\n",
4916 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4917 			ocfs2_truncate_recs_per_inode(osb->sb),
4918 			le16_to_cpu(tl->tl_count));
4919 
4920 	/* Caller should have known to flush before calling us. */
4921 	index = le16_to_cpu(tl->tl_used);
4922 	if (index >= tl_count) {
4923 		status = -ENOSPC;
4924 		mlog_errno(status);
4925 		goto bail;
4926 	}
4927 
4928 	status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4929 				      OCFS2_JOURNAL_ACCESS_WRITE);
4930 	if (status < 0) {
4931 		mlog_errno(status);
4932 		goto bail;
4933 	}
4934 
4935 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4936 	     "%llu (index = %d)\n", num_clusters, start_cluster,
4937 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4938 
4939 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4940 		/*
4941 		 * Move index back to the record we are coalescing with.
4942 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4943 		 */
4944 		index--;
4945 
4946 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4947 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4948 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
4949 		     num_clusters);
4950 	} else {
4951 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4952 		tl->tl_used = cpu_to_le16(index + 1);
4953 	}
4954 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4955 
4956 	status = ocfs2_journal_dirty(handle, tl_bh);
4957 	if (status < 0) {
4958 		mlog_errno(status);
4959 		goto bail;
4960 	}
4961 
4962 bail:
4963 	mlog_exit(status);
4964 	return status;
4965 }
4966 
4967 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4968 					 handle_t *handle,
4969 					 struct inode *data_alloc_inode,
4970 					 struct buffer_head *data_alloc_bh)
4971 {
4972 	int status = 0;
4973 	int i;
4974 	unsigned int num_clusters;
4975 	u64 start_blk;
4976 	struct ocfs2_truncate_rec rec;
4977 	struct ocfs2_dinode *di;
4978 	struct ocfs2_truncate_log *tl;
4979 	struct inode *tl_inode = osb->osb_tl_inode;
4980 	struct buffer_head *tl_bh = osb->osb_tl_bh;
4981 
4982 	mlog_entry_void();
4983 
4984 	di = (struct ocfs2_dinode *) tl_bh->b_data;
4985 	tl = &di->id2.i_dealloc;
4986 	i = le16_to_cpu(tl->tl_used) - 1;
4987 	while (i >= 0) {
4988 		/* Caller has given us at least enough credits to
4989 		 * update the truncate log dinode */
4990 		status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4991 					      OCFS2_JOURNAL_ACCESS_WRITE);
4992 		if (status < 0) {
4993 			mlog_errno(status);
4994 			goto bail;
4995 		}
4996 
4997 		tl->tl_used = cpu_to_le16(i);
4998 
4999 		status = ocfs2_journal_dirty(handle, tl_bh);
5000 		if (status < 0) {
5001 			mlog_errno(status);
5002 			goto bail;
5003 		}
5004 
5005 		/* TODO: Perhaps we can calculate the bulk of the
5006 		 * credits up front rather than extending like
5007 		 * this. */
5008 		status = ocfs2_extend_trans(handle,
5009 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5010 		if (status < 0) {
5011 			mlog_errno(status);
5012 			goto bail;
5013 		}
5014 
5015 		rec = tl->tl_recs[i];
5016 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5017 						    le32_to_cpu(rec.t_start));
5018 		num_clusters = le32_to_cpu(rec.t_clusters);
5019 
5020 		/* if start_blk is not set, we ignore the record as
5021 		 * invalid. */
5022 		if (start_blk) {
5023 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5024 			     i, le32_to_cpu(rec.t_start), num_clusters);
5025 
5026 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5027 						     data_alloc_bh, start_blk,
5028 						     num_clusters);
5029 			if (status < 0) {
5030 				mlog_errno(status);
5031 				goto bail;
5032 			}
5033 		}
5034 		i--;
5035 	}
5036 
5037 bail:
5038 	mlog_exit(status);
5039 	return status;
5040 }
5041 
5042 /* Expects you to already be holding tl_inode->i_mutex */
5043 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5044 {
5045 	int status;
5046 	unsigned int num_to_flush;
5047 	handle_t *handle;
5048 	struct inode *tl_inode = osb->osb_tl_inode;
5049 	struct inode *data_alloc_inode = NULL;
5050 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5051 	struct buffer_head *data_alloc_bh = NULL;
5052 	struct ocfs2_dinode *di;
5053 	struct ocfs2_truncate_log *tl;
5054 
5055 	mlog_entry_void();
5056 
5057 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5058 
5059 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5060 	tl = &di->id2.i_dealloc;
5061 	if (!OCFS2_IS_VALID_DINODE(di)) {
5062 		OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5063 		status = -EIO;
5064 		goto out;
5065 	}
5066 
5067 	num_to_flush = le16_to_cpu(tl->tl_used);
5068 	mlog(0, "Flush %u records from truncate log #%llu\n",
5069 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5070 	if (!num_to_flush) {
5071 		status = 0;
5072 		goto out;
5073 	}
5074 
5075 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5076 						       GLOBAL_BITMAP_SYSTEM_INODE,
5077 						       OCFS2_INVALID_SLOT);
5078 	if (!data_alloc_inode) {
5079 		status = -EINVAL;
5080 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5081 		goto out;
5082 	}
5083 
5084 	mutex_lock(&data_alloc_inode->i_mutex);
5085 
5086 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5087 	if (status < 0) {
5088 		mlog_errno(status);
5089 		goto out_mutex;
5090 	}
5091 
5092 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5093 	if (IS_ERR(handle)) {
5094 		status = PTR_ERR(handle);
5095 		mlog_errno(status);
5096 		goto out_unlock;
5097 	}
5098 
5099 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5100 					       data_alloc_bh);
5101 	if (status < 0)
5102 		mlog_errno(status);
5103 
5104 	ocfs2_commit_trans(osb, handle);
5105 
5106 out_unlock:
5107 	brelse(data_alloc_bh);
5108 	ocfs2_inode_unlock(data_alloc_inode, 1);
5109 
5110 out_mutex:
5111 	mutex_unlock(&data_alloc_inode->i_mutex);
5112 	iput(data_alloc_inode);
5113 
5114 out:
5115 	mlog_exit(status);
5116 	return status;
5117 }
5118 
5119 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5120 {
5121 	int status;
5122 	struct inode *tl_inode = osb->osb_tl_inode;
5123 
5124 	mutex_lock(&tl_inode->i_mutex);
5125 	status = __ocfs2_flush_truncate_log(osb);
5126 	mutex_unlock(&tl_inode->i_mutex);
5127 
5128 	return status;
5129 }
5130 
5131 static void ocfs2_truncate_log_worker(struct work_struct *work)
5132 {
5133 	int status;
5134 	struct ocfs2_super *osb =
5135 		container_of(work, struct ocfs2_super,
5136 			     osb_truncate_log_wq.work);
5137 
5138 	mlog_entry_void();
5139 
5140 	status = ocfs2_flush_truncate_log(osb);
5141 	if (status < 0)
5142 		mlog_errno(status);
5143 	else
5144 		ocfs2_init_inode_steal_slot(osb);
5145 
5146 	mlog_exit(status);
5147 }
5148 
5149 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5150 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5151 				       int cancel)
5152 {
5153 	if (osb->osb_tl_inode) {
5154 		/* We want to push off log flushes while truncates are
5155 		 * still running. */
5156 		if (cancel)
5157 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5158 
5159 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5160 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5161 	}
5162 }
5163 
5164 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5165 				       int slot_num,
5166 				       struct inode **tl_inode,
5167 				       struct buffer_head **tl_bh)
5168 {
5169 	int status;
5170 	struct inode *inode = NULL;
5171 	struct buffer_head *bh = NULL;
5172 
5173 	inode = ocfs2_get_system_file_inode(osb,
5174 					   TRUNCATE_LOG_SYSTEM_INODE,
5175 					   slot_num);
5176 	if (!inode) {
5177 		status = -EINVAL;
5178 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5179 		goto bail;
5180 	}
5181 
5182 	status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5183 				  OCFS2_BH_CACHED, inode);
5184 	if (status < 0) {
5185 		iput(inode);
5186 		mlog_errno(status);
5187 		goto bail;
5188 	}
5189 
5190 	*tl_inode = inode;
5191 	*tl_bh    = bh;
5192 bail:
5193 	mlog_exit(status);
5194 	return status;
5195 }
5196 
5197 /* called during the 1st stage of node recovery. we stamp a clean
5198  * truncate log and pass back a copy for processing later. if the
5199  * truncate log does not require processing, a *tl_copy is set to
5200  * NULL. */
5201 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5202 				      int slot_num,
5203 				      struct ocfs2_dinode **tl_copy)
5204 {
5205 	int status;
5206 	struct inode *tl_inode = NULL;
5207 	struct buffer_head *tl_bh = NULL;
5208 	struct ocfs2_dinode *di;
5209 	struct ocfs2_truncate_log *tl;
5210 
5211 	*tl_copy = NULL;
5212 
5213 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5214 
5215 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5216 	if (status < 0) {
5217 		mlog_errno(status);
5218 		goto bail;
5219 	}
5220 
5221 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5222 	tl = &di->id2.i_dealloc;
5223 	if (!OCFS2_IS_VALID_DINODE(di)) {
5224 		OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5225 		status = -EIO;
5226 		goto bail;
5227 	}
5228 
5229 	if (le16_to_cpu(tl->tl_used)) {
5230 		mlog(0, "We'll have %u logs to recover\n",
5231 		     le16_to_cpu(tl->tl_used));
5232 
5233 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5234 		if (!(*tl_copy)) {
5235 			status = -ENOMEM;
5236 			mlog_errno(status);
5237 			goto bail;
5238 		}
5239 
5240 		/* Assuming the write-out below goes well, this copy
5241 		 * will be passed back to recovery for processing. */
5242 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5243 
5244 		/* All we need to do to clear the truncate log is set
5245 		 * tl_used. */
5246 		tl->tl_used = 0;
5247 
5248 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5249 		if (status < 0) {
5250 			mlog_errno(status);
5251 			goto bail;
5252 		}
5253 	}
5254 
5255 bail:
5256 	if (tl_inode)
5257 		iput(tl_inode);
5258 	if (tl_bh)
5259 		brelse(tl_bh);
5260 
5261 	if (status < 0 && (*tl_copy)) {
5262 		kfree(*tl_copy);
5263 		*tl_copy = NULL;
5264 	}
5265 
5266 	mlog_exit(status);
5267 	return status;
5268 }
5269 
5270 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5271 					 struct ocfs2_dinode *tl_copy)
5272 {
5273 	int status = 0;
5274 	int i;
5275 	unsigned int clusters, num_recs, start_cluster;
5276 	u64 start_blk;
5277 	handle_t *handle;
5278 	struct inode *tl_inode = osb->osb_tl_inode;
5279 	struct ocfs2_truncate_log *tl;
5280 
5281 	mlog_entry_void();
5282 
5283 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5284 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5285 		return -EINVAL;
5286 	}
5287 
5288 	tl = &tl_copy->id2.i_dealloc;
5289 	num_recs = le16_to_cpu(tl->tl_used);
5290 	mlog(0, "cleanup %u records from %llu\n", num_recs,
5291 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5292 
5293 	mutex_lock(&tl_inode->i_mutex);
5294 	for(i = 0; i < num_recs; i++) {
5295 		if (ocfs2_truncate_log_needs_flush(osb)) {
5296 			status = __ocfs2_flush_truncate_log(osb);
5297 			if (status < 0) {
5298 				mlog_errno(status);
5299 				goto bail_up;
5300 			}
5301 		}
5302 
5303 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5304 		if (IS_ERR(handle)) {
5305 			status = PTR_ERR(handle);
5306 			mlog_errno(status);
5307 			goto bail_up;
5308 		}
5309 
5310 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5311 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5312 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5313 
5314 		status = ocfs2_truncate_log_append(osb, handle,
5315 						   start_blk, clusters);
5316 		ocfs2_commit_trans(osb, handle);
5317 		if (status < 0) {
5318 			mlog_errno(status);
5319 			goto bail_up;
5320 		}
5321 	}
5322 
5323 bail_up:
5324 	mutex_unlock(&tl_inode->i_mutex);
5325 
5326 	mlog_exit(status);
5327 	return status;
5328 }
5329 
5330 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5331 {
5332 	int status;
5333 	struct inode *tl_inode = osb->osb_tl_inode;
5334 
5335 	mlog_entry_void();
5336 
5337 	if (tl_inode) {
5338 		cancel_delayed_work(&osb->osb_truncate_log_wq);
5339 		flush_workqueue(ocfs2_wq);
5340 
5341 		status = ocfs2_flush_truncate_log(osb);
5342 		if (status < 0)
5343 			mlog_errno(status);
5344 
5345 		brelse(osb->osb_tl_bh);
5346 		iput(osb->osb_tl_inode);
5347 	}
5348 
5349 	mlog_exit_void();
5350 }
5351 
5352 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5353 {
5354 	int status;
5355 	struct inode *tl_inode = NULL;
5356 	struct buffer_head *tl_bh = NULL;
5357 
5358 	mlog_entry_void();
5359 
5360 	status = ocfs2_get_truncate_log_info(osb,
5361 					     osb->slot_num,
5362 					     &tl_inode,
5363 					     &tl_bh);
5364 	if (status < 0)
5365 		mlog_errno(status);
5366 
5367 	/* ocfs2_truncate_log_shutdown keys on the existence of
5368 	 * osb->osb_tl_inode so we don't set any of the osb variables
5369 	 * until we're sure all is well. */
5370 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5371 			  ocfs2_truncate_log_worker);
5372 	osb->osb_tl_bh    = tl_bh;
5373 	osb->osb_tl_inode = tl_inode;
5374 
5375 	mlog_exit(status);
5376 	return status;
5377 }
5378 
5379 /*
5380  * Delayed de-allocation of suballocator blocks.
5381  *
5382  * Some sets of block de-allocations might involve multiple suballocator inodes.
5383  *
5384  * The locking for this can get extremely complicated, especially when
5385  * the suballocator inodes to delete from aren't known until deep
5386  * within an unrelated codepath.
5387  *
5388  * ocfs2_extent_block structures are a good example of this - an inode
5389  * btree could have been grown by any number of nodes each allocating
5390  * out of their own suballoc inode.
5391  *
5392  * These structures allow the delay of block de-allocation until a
5393  * later time, when locking of multiple cluster inodes won't cause
5394  * deadlock.
5395  */
5396 
5397 /*
5398  * Describes a single block free from a suballocator
5399  */
5400 struct ocfs2_cached_block_free {
5401 	struct ocfs2_cached_block_free		*free_next;
5402 	u64					free_blk;
5403 	unsigned int				free_bit;
5404 };
5405 
5406 struct ocfs2_per_slot_free_list {
5407 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
5408 	int					f_inode_type;
5409 	int					f_slot;
5410 	struct ocfs2_cached_block_free		*f_first;
5411 };
5412 
5413 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5414 				   int sysfile_type,
5415 				   int slot,
5416 				   struct ocfs2_cached_block_free *head)
5417 {
5418 	int ret;
5419 	u64 bg_blkno;
5420 	handle_t *handle;
5421 	struct inode *inode;
5422 	struct buffer_head *di_bh = NULL;
5423 	struct ocfs2_cached_block_free *tmp;
5424 
5425 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5426 	if (!inode) {
5427 		ret = -EINVAL;
5428 		mlog_errno(ret);
5429 		goto out;
5430 	}
5431 
5432 	mutex_lock(&inode->i_mutex);
5433 
5434 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
5435 	if (ret) {
5436 		mlog_errno(ret);
5437 		goto out_mutex;
5438 	}
5439 
5440 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5441 	if (IS_ERR(handle)) {
5442 		ret = PTR_ERR(handle);
5443 		mlog_errno(ret);
5444 		goto out_unlock;
5445 	}
5446 
5447 	while (head) {
5448 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5449 						      head->free_bit);
5450 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5451 		     head->free_bit, (unsigned long long)head->free_blk);
5452 
5453 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5454 					       head->free_bit, bg_blkno, 1);
5455 		if (ret) {
5456 			mlog_errno(ret);
5457 			goto out_journal;
5458 		}
5459 
5460 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5461 		if (ret) {
5462 			mlog_errno(ret);
5463 			goto out_journal;
5464 		}
5465 
5466 		tmp = head;
5467 		head = head->free_next;
5468 		kfree(tmp);
5469 	}
5470 
5471 out_journal:
5472 	ocfs2_commit_trans(osb, handle);
5473 
5474 out_unlock:
5475 	ocfs2_inode_unlock(inode, 1);
5476 	brelse(di_bh);
5477 out_mutex:
5478 	mutex_unlock(&inode->i_mutex);
5479 	iput(inode);
5480 out:
5481 	while(head) {
5482 		/* Premature exit may have left some dangling items. */
5483 		tmp = head;
5484 		head = head->free_next;
5485 		kfree(tmp);
5486 	}
5487 
5488 	return ret;
5489 }
5490 
5491 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5492 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
5493 {
5494 	int ret = 0, ret2;
5495 	struct ocfs2_per_slot_free_list *fl;
5496 
5497 	if (!ctxt)
5498 		return 0;
5499 
5500 	while (ctxt->c_first_suballocator) {
5501 		fl = ctxt->c_first_suballocator;
5502 
5503 		if (fl->f_first) {
5504 			mlog(0, "Free items: (type %u, slot %d)\n",
5505 			     fl->f_inode_type, fl->f_slot);
5506 			ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5507 						       fl->f_slot, fl->f_first);
5508 			if (ret2)
5509 				mlog_errno(ret2);
5510 			if (!ret)
5511 				ret = ret2;
5512 		}
5513 
5514 		ctxt->c_first_suballocator = fl->f_next_suballocator;
5515 		kfree(fl);
5516 	}
5517 
5518 	return ret;
5519 }
5520 
5521 static struct ocfs2_per_slot_free_list *
5522 ocfs2_find_per_slot_free_list(int type,
5523 			      int slot,
5524 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
5525 {
5526 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5527 
5528 	while (fl) {
5529 		if (fl->f_inode_type == type && fl->f_slot == slot)
5530 			return fl;
5531 
5532 		fl = fl->f_next_suballocator;
5533 	}
5534 
5535 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
5536 	if (fl) {
5537 		fl->f_inode_type = type;
5538 		fl->f_slot = slot;
5539 		fl->f_first = NULL;
5540 		fl->f_next_suballocator = ctxt->c_first_suballocator;
5541 
5542 		ctxt->c_first_suballocator = fl;
5543 	}
5544 	return fl;
5545 }
5546 
5547 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5548 				     int type, int slot, u64 blkno,
5549 				     unsigned int bit)
5550 {
5551 	int ret;
5552 	struct ocfs2_per_slot_free_list *fl;
5553 	struct ocfs2_cached_block_free *item;
5554 
5555 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5556 	if (fl == NULL) {
5557 		ret = -ENOMEM;
5558 		mlog_errno(ret);
5559 		goto out;
5560 	}
5561 
5562 	item = kmalloc(sizeof(*item), GFP_NOFS);
5563 	if (item == NULL) {
5564 		ret = -ENOMEM;
5565 		mlog_errno(ret);
5566 		goto out;
5567 	}
5568 
5569 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5570 	     type, slot, bit, (unsigned long long)blkno);
5571 
5572 	item->free_blk = blkno;
5573 	item->free_bit = bit;
5574 	item->free_next = fl->f_first;
5575 
5576 	fl->f_first = item;
5577 
5578 	ret = 0;
5579 out:
5580 	return ret;
5581 }
5582 
5583 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5584 					 struct ocfs2_extent_block *eb)
5585 {
5586 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5587 					 le16_to_cpu(eb->h_suballoc_slot),
5588 					 le64_to_cpu(eb->h_blkno),
5589 					 le16_to_cpu(eb->h_suballoc_bit));
5590 }
5591 
5592 /* This function will figure out whether the currently last extent
5593  * block will be deleted, and if it will, what the new last extent
5594  * block will be so we can update his h_next_leaf_blk field, as well
5595  * as the dinodes i_last_eb_blk */
5596 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5597 				       unsigned int clusters_to_del,
5598 				       struct ocfs2_path *path,
5599 				       struct buffer_head **new_last_eb)
5600 {
5601 	int next_free, ret = 0;
5602 	u32 cpos;
5603 	struct ocfs2_extent_rec *rec;
5604 	struct ocfs2_extent_block *eb;
5605 	struct ocfs2_extent_list *el;
5606 	struct buffer_head *bh = NULL;
5607 
5608 	*new_last_eb = NULL;
5609 
5610 	/* we have no tree, so of course, no last_eb. */
5611 	if (!path->p_tree_depth)
5612 		goto out;
5613 
5614 	/* trunc to zero special case - this makes tree_depth = 0
5615 	 * regardless of what it is.  */
5616 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5617 		goto out;
5618 
5619 	el = path_leaf_el(path);
5620 	BUG_ON(!el->l_next_free_rec);
5621 
5622 	/*
5623 	 * Make sure that this extent list will actually be empty
5624 	 * after we clear away the data. We can shortcut out if
5625 	 * there's more than one non-empty extent in the
5626 	 * list. Otherwise, a check of the remaining extent is
5627 	 * necessary.
5628 	 */
5629 	next_free = le16_to_cpu(el->l_next_free_rec);
5630 	rec = NULL;
5631 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5632 		if (next_free > 2)
5633 			goto out;
5634 
5635 		/* We may have a valid extent in index 1, check it. */
5636 		if (next_free == 2)
5637 			rec = &el->l_recs[1];
5638 
5639 		/*
5640 		 * Fall through - no more nonempty extents, so we want
5641 		 * to delete this leaf.
5642 		 */
5643 	} else {
5644 		if (next_free > 1)
5645 			goto out;
5646 
5647 		rec = &el->l_recs[0];
5648 	}
5649 
5650 	if (rec) {
5651 		/*
5652 		 * Check it we'll only be trimming off the end of this
5653 		 * cluster.
5654 		 */
5655 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5656 			goto out;
5657 	}
5658 
5659 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5660 	if (ret) {
5661 		mlog_errno(ret);
5662 		goto out;
5663 	}
5664 
5665 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5666 	if (ret) {
5667 		mlog_errno(ret);
5668 		goto out;
5669 	}
5670 
5671 	eb = (struct ocfs2_extent_block *) bh->b_data;
5672 	el = &eb->h_list;
5673 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5674 		OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5675 		ret = -EROFS;
5676 		goto out;
5677 	}
5678 
5679 	*new_last_eb = bh;
5680 	get_bh(*new_last_eb);
5681 	mlog(0, "returning block %llu, (cpos: %u)\n",
5682 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5683 out:
5684 	brelse(bh);
5685 
5686 	return ret;
5687 }
5688 
5689 /*
5690  * Trim some clusters off the rightmost edge of a tree. Only called
5691  * during truncate.
5692  *
5693  * The caller needs to:
5694  *   - start journaling of each path component.
5695  *   - compute and fully set up any new last ext block
5696  */
5697 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5698 			   handle_t *handle, struct ocfs2_truncate_context *tc,
5699 			   u32 clusters_to_del, u64 *delete_start)
5700 {
5701 	int ret, i, index = path->p_tree_depth;
5702 	u32 new_edge = 0;
5703 	u64 deleted_eb = 0;
5704 	struct buffer_head *bh;
5705 	struct ocfs2_extent_list *el;
5706 	struct ocfs2_extent_rec *rec;
5707 
5708 	*delete_start = 0;
5709 
5710 	while (index >= 0) {
5711 		bh = path->p_node[index].bh;
5712 		el = path->p_node[index].el;
5713 
5714 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
5715 		     index,  (unsigned long long)bh->b_blocknr);
5716 
5717 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5718 
5719 		if (index !=
5720 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5721 			ocfs2_error(inode->i_sb,
5722 				    "Inode %lu has invalid ext. block %llu",
5723 				    inode->i_ino,
5724 				    (unsigned long long)bh->b_blocknr);
5725 			ret = -EROFS;
5726 			goto out;
5727 		}
5728 
5729 find_tail_record:
5730 		i = le16_to_cpu(el->l_next_free_rec) - 1;
5731 		rec = &el->l_recs[i];
5732 
5733 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5734 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5735 		     ocfs2_rec_clusters(el, rec),
5736 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5737 		     le16_to_cpu(el->l_next_free_rec));
5738 
5739 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5740 
5741 		if (le16_to_cpu(el->l_tree_depth) == 0) {
5742 			/*
5743 			 * If the leaf block contains a single empty
5744 			 * extent and no records, we can just remove
5745 			 * the block.
5746 			 */
5747 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
5748 				memset(rec, 0,
5749 				       sizeof(struct ocfs2_extent_rec));
5750 				el->l_next_free_rec = cpu_to_le16(0);
5751 
5752 				goto delete;
5753 			}
5754 
5755 			/*
5756 			 * Remove any empty extents by shifting things
5757 			 * left. That should make life much easier on
5758 			 * the code below. This condition is rare
5759 			 * enough that we shouldn't see a performance
5760 			 * hit.
5761 			 */
5762 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5763 				le16_add_cpu(&el->l_next_free_rec, -1);
5764 
5765 				for(i = 0;
5766 				    i < le16_to_cpu(el->l_next_free_rec); i++)
5767 					el->l_recs[i] = el->l_recs[i + 1];
5768 
5769 				memset(&el->l_recs[i], 0,
5770 				       sizeof(struct ocfs2_extent_rec));
5771 
5772 				/*
5773 				 * We've modified our extent list. The
5774 				 * simplest way to handle this change
5775 				 * is to being the search from the
5776 				 * start again.
5777 				 */
5778 				goto find_tail_record;
5779 			}
5780 
5781 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5782 
5783 			/*
5784 			 * We'll use "new_edge" on our way back up the
5785 			 * tree to know what our rightmost cpos is.
5786 			 */
5787 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
5788 			new_edge += le32_to_cpu(rec->e_cpos);
5789 
5790 			/*
5791 			 * The caller will use this to delete data blocks.
5792 			 */
5793 			*delete_start = le64_to_cpu(rec->e_blkno)
5794 				+ ocfs2_clusters_to_blocks(inode->i_sb,
5795 					le16_to_cpu(rec->e_leaf_clusters));
5796 
5797 			/*
5798 			 * If it's now empty, remove this record.
5799 			 */
5800 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5801 				memset(rec, 0,
5802 				       sizeof(struct ocfs2_extent_rec));
5803 				le16_add_cpu(&el->l_next_free_rec, -1);
5804 			}
5805 		} else {
5806 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5807 				memset(rec, 0,
5808 				       sizeof(struct ocfs2_extent_rec));
5809 				le16_add_cpu(&el->l_next_free_rec, -1);
5810 
5811 				goto delete;
5812 			}
5813 
5814 			/* Can this actually happen? */
5815 			if (le16_to_cpu(el->l_next_free_rec) == 0)
5816 				goto delete;
5817 
5818 			/*
5819 			 * We never actually deleted any clusters
5820 			 * because our leaf was empty. There's no
5821 			 * reason to adjust the rightmost edge then.
5822 			 */
5823 			if (new_edge == 0)
5824 				goto delete;
5825 
5826 			rec->e_int_clusters = cpu_to_le32(new_edge);
5827 			le32_add_cpu(&rec->e_int_clusters,
5828 				     -le32_to_cpu(rec->e_cpos));
5829 
5830 			 /*
5831 			  * A deleted child record should have been
5832 			  * caught above.
5833 			  */
5834 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5835 		}
5836 
5837 delete:
5838 		ret = ocfs2_journal_dirty(handle, bh);
5839 		if (ret) {
5840 			mlog_errno(ret);
5841 			goto out;
5842 		}
5843 
5844 		mlog(0, "extent list container %llu, after: record %d: "
5845 		     "(%u, %u, %llu), next = %u.\n",
5846 		     (unsigned long long)bh->b_blocknr, i,
5847 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5848 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
5849 		     le16_to_cpu(el->l_next_free_rec));
5850 
5851 		/*
5852 		 * We must be careful to only attempt delete of an
5853 		 * extent block (and not the root inode block).
5854 		 */
5855 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5856 			struct ocfs2_extent_block *eb =
5857 				(struct ocfs2_extent_block *)bh->b_data;
5858 
5859 			/*
5860 			 * Save this for use when processing the
5861 			 * parent block.
5862 			 */
5863 			deleted_eb = le64_to_cpu(eb->h_blkno);
5864 
5865 			mlog(0, "deleting this extent block.\n");
5866 
5867 			ocfs2_remove_from_cache(inode, bh);
5868 
5869 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5870 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5871 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5872 
5873 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5874 			/* An error here is not fatal. */
5875 			if (ret < 0)
5876 				mlog_errno(ret);
5877 		} else {
5878 			deleted_eb = 0;
5879 		}
5880 
5881 		index--;
5882 	}
5883 
5884 	ret = 0;
5885 out:
5886 	return ret;
5887 }
5888 
5889 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5890 			     unsigned int clusters_to_del,
5891 			     struct inode *inode,
5892 			     struct buffer_head *fe_bh,
5893 			     handle_t *handle,
5894 			     struct ocfs2_truncate_context *tc,
5895 			     struct ocfs2_path *path)
5896 {
5897 	int status;
5898 	struct ocfs2_dinode *fe;
5899 	struct ocfs2_extent_block *last_eb = NULL;
5900 	struct ocfs2_extent_list *el;
5901 	struct buffer_head *last_eb_bh = NULL;
5902 	u64 delete_blk = 0;
5903 
5904 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
5905 
5906 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5907 					     path, &last_eb_bh);
5908 	if (status < 0) {
5909 		mlog_errno(status);
5910 		goto bail;
5911 	}
5912 
5913 	/*
5914 	 * Each component will be touched, so we might as well journal
5915 	 * here to avoid having to handle errors later.
5916 	 */
5917 	status = ocfs2_journal_access_path(inode, handle, path);
5918 	if (status < 0) {
5919 		mlog_errno(status);
5920 		goto bail;
5921 	}
5922 
5923 	if (last_eb_bh) {
5924 		status = ocfs2_journal_access(handle, inode, last_eb_bh,
5925 					      OCFS2_JOURNAL_ACCESS_WRITE);
5926 		if (status < 0) {
5927 			mlog_errno(status);
5928 			goto bail;
5929 		}
5930 
5931 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5932 	}
5933 
5934 	el = &(fe->id2.i_list);
5935 
5936 	/*
5937 	 * Lower levels depend on this never happening, but it's best
5938 	 * to check it up here before changing the tree.
5939 	 */
5940 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5941 		ocfs2_error(inode->i_sb,
5942 			    "Inode %lu has an empty extent record, depth %u\n",
5943 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
5944 		status = -EROFS;
5945 		goto bail;
5946 	}
5947 
5948 	spin_lock(&OCFS2_I(inode)->ip_lock);
5949 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5950 				      clusters_to_del;
5951 	spin_unlock(&OCFS2_I(inode)->ip_lock);
5952 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5953 	inode->i_blocks = ocfs2_inode_sector_count(inode);
5954 
5955 	status = ocfs2_trim_tree(inode, path, handle, tc,
5956 				 clusters_to_del, &delete_blk);
5957 	if (status) {
5958 		mlog_errno(status);
5959 		goto bail;
5960 	}
5961 
5962 	if (le32_to_cpu(fe->i_clusters) == 0) {
5963 		/* trunc to zero is a special case. */
5964 		el->l_tree_depth = 0;
5965 		fe->i_last_eb_blk = 0;
5966 	} else if (last_eb)
5967 		fe->i_last_eb_blk = last_eb->h_blkno;
5968 
5969 	status = ocfs2_journal_dirty(handle, fe_bh);
5970 	if (status < 0) {
5971 		mlog_errno(status);
5972 		goto bail;
5973 	}
5974 
5975 	if (last_eb) {
5976 		/* If there will be a new last extent block, then by
5977 		 * definition, there cannot be any leaves to the right of
5978 		 * him. */
5979 		last_eb->h_next_leaf_blk = 0;
5980 		status = ocfs2_journal_dirty(handle, last_eb_bh);
5981 		if (status < 0) {
5982 			mlog_errno(status);
5983 			goto bail;
5984 		}
5985 	}
5986 
5987 	if (delete_blk) {
5988 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5989 						   clusters_to_del);
5990 		if (status < 0) {
5991 			mlog_errno(status);
5992 			goto bail;
5993 		}
5994 	}
5995 	status = 0;
5996 bail:
5997 
5998 	mlog_exit(status);
5999 	return status;
6000 }
6001 
6002 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6003 {
6004 	set_buffer_uptodate(bh);
6005 	mark_buffer_dirty(bh);
6006 	return 0;
6007 }
6008 
6009 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6010 {
6011 	set_buffer_uptodate(bh);
6012 	mark_buffer_dirty(bh);
6013 	return ocfs2_journal_dirty_data(handle, bh);
6014 }
6015 
6016 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6017 				     unsigned int from, unsigned int to,
6018 				     struct page *page, int zero, u64 *phys)
6019 {
6020 	int ret, partial = 0;
6021 
6022 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6023 	if (ret)
6024 		mlog_errno(ret);
6025 
6026 	if (zero)
6027 		zero_user_segment(page, from, to);
6028 
6029 	/*
6030 	 * Need to set the buffers we zero'd into uptodate
6031 	 * here if they aren't - ocfs2_map_page_blocks()
6032 	 * might've skipped some
6033 	 */
6034 	if (ocfs2_should_order_data(inode)) {
6035 		ret = walk_page_buffers(handle,
6036 					page_buffers(page),
6037 					from, to, &partial,
6038 					ocfs2_ordered_zero_func);
6039 		if (ret < 0)
6040 			mlog_errno(ret);
6041 	} else {
6042 		ret = walk_page_buffers(handle, page_buffers(page),
6043 					from, to, &partial,
6044 					ocfs2_writeback_zero_func);
6045 		if (ret < 0)
6046 			mlog_errno(ret);
6047 	}
6048 
6049 	if (!partial)
6050 		SetPageUptodate(page);
6051 
6052 	flush_dcache_page(page);
6053 }
6054 
6055 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6056 				     loff_t end, struct page **pages,
6057 				     int numpages, u64 phys, handle_t *handle)
6058 {
6059 	int i;
6060 	struct page *page;
6061 	unsigned int from, to = PAGE_CACHE_SIZE;
6062 	struct super_block *sb = inode->i_sb;
6063 
6064 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6065 
6066 	if (numpages == 0)
6067 		goto out;
6068 
6069 	to = PAGE_CACHE_SIZE;
6070 	for(i = 0; i < numpages; i++) {
6071 		page = pages[i];
6072 
6073 		from = start & (PAGE_CACHE_SIZE - 1);
6074 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6075 			to = end & (PAGE_CACHE_SIZE - 1);
6076 
6077 		BUG_ON(from > PAGE_CACHE_SIZE);
6078 		BUG_ON(to > PAGE_CACHE_SIZE);
6079 
6080 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6081 					 &phys);
6082 
6083 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6084 	}
6085 out:
6086 	if (pages)
6087 		ocfs2_unlock_and_free_pages(pages, numpages);
6088 }
6089 
6090 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6091 				struct page **pages, int *num)
6092 {
6093 	int numpages, ret = 0;
6094 	struct super_block *sb = inode->i_sb;
6095 	struct address_space *mapping = inode->i_mapping;
6096 	unsigned long index;
6097 	loff_t last_page_bytes;
6098 
6099 	BUG_ON(start > end);
6100 
6101 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6102 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6103 
6104 	numpages = 0;
6105 	last_page_bytes = PAGE_ALIGN(end);
6106 	index = start >> PAGE_CACHE_SHIFT;
6107 	do {
6108 		pages[numpages] = grab_cache_page(mapping, index);
6109 		if (!pages[numpages]) {
6110 			ret = -ENOMEM;
6111 			mlog_errno(ret);
6112 			goto out;
6113 		}
6114 
6115 		numpages++;
6116 		index++;
6117 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6118 
6119 out:
6120 	if (ret != 0) {
6121 		if (pages)
6122 			ocfs2_unlock_and_free_pages(pages, numpages);
6123 		numpages = 0;
6124 	}
6125 
6126 	*num = numpages;
6127 
6128 	return ret;
6129 }
6130 
6131 /*
6132  * Zero the area past i_size but still within an allocated
6133  * cluster. This avoids exposing nonzero data on subsequent file
6134  * extends.
6135  *
6136  * We need to call this before i_size is updated on the inode because
6137  * otherwise block_write_full_page() will skip writeout of pages past
6138  * i_size. The new_i_size parameter is passed for this reason.
6139  */
6140 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6141 				  u64 range_start, u64 range_end)
6142 {
6143 	int ret = 0, numpages;
6144 	struct page **pages = NULL;
6145 	u64 phys;
6146 	unsigned int ext_flags;
6147 	struct super_block *sb = inode->i_sb;
6148 
6149 	/*
6150 	 * File systems which don't support sparse files zero on every
6151 	 * extend.
6152 	 */
6153 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6154 		return 0;
6155 
6156 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6157 			sizeof(struct page *), GFP_NOFS);
6158 	if (pages == NULL) {
6159 		ret = -ENOMEM;
6160 		mlog_errno(ret);
6161 		goto out;
6162 	}
6163 
6164 	if (range_start == range_end)
6165 		goto out;
6166 
6167 	ret = ocfs2_extent_map_get_blocks(inode,
6168 					  range_start >> sb->s_blocksize_bits,
6169 					  &phys, NULL, &ext_flags);
6170 	if (ret) {
6171 		mlog_errno(ret);
6172 		goto out;
6173 	}
6174 
6175 	/*
6176 	 * Tail is a hole, or is marked unwritten. In either case, we
6177 	 * can count on read and write to return/push zero's.
6178 	 */
6179 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6180 		goto out;
6181 
6182 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6183 				   &numpages);
6184 	if (ret) {
6185 		mlog_errno(ret);
6186 		goto out;
6187 	}
6188 
6189 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6190 				 numpages, phys, handle);
6191 
6192 	/*
6193 	 * Initiate writeout of the pages we zero'd here. We don't
6194 	 * wait on them - the truncate_inode_pages() call later will
6195 	 * do that for us.
6196 	 */
6197 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
6198 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
6199 	if (ret)
6200 		mlog_errno(ret);
6201 
6202 out:
6203 	if (pages)
6204 		kfree(pages);
6205 
6206 	return ret;
6207 }
6208 
6209 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6210 {
6211 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6212 
6213 	memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6214 }
6215 
6216 void ocfs2_dinode_new_extent_list(struct inode *inode,
6217 				  struct ocfs2_dinode *di)
6218 {
6219 	ocfs2_zero_dinode_id2(inode, di);
6220 	di->id2.i_list.l_tree_depth = 0;
6221 	di->id2.i_list.l_next_free_rec = 0;
6222 	di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6223 }
6224 
6225 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6226 {
6227 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6228 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6229 
6230 	spin_lock(&oi->ip_lock);
6231 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6232 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6233 	spin_unlock(&oi->ip_lock);
6234 
6235 	/*
6236 	 * We clear the entire i_data structure here so that all
6237 	 * fields can be properly initialized.
6238 	 */
6239 	ocfs2_zero_dinode_id2(inode, di);
6240 
6241 	idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6242 }
6243 
6244 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6245 					 struct buffer_head *di_bh)
6246 {
6247 	int ret, i, has_data, num_pages = 0;
6248 	handle_t *handle;
6249 	u64 uninitialized_var(block);
6250 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6251 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6252 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6253 	struct ocfs2_alloc_context *data_ac = NULL;
6254 	struct page **pages = NULL;
6255 	loff_t end = osb->s_clustersize;
6256 
6257 	has_data = i_size_read(inode) ? 1 : 0;
6258 
6259 	if (has_data) {
6260 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6261 				sizeof(struct page *), GFP_NOFS);
6262 		if (pages == NULL) {
6263 			ret = -ENOMEM;
6264 			mlog_errno(ret);
6265 			goto out;
6266 		}
6267 
6268 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6269 		if (ret) {
6270 			mlog_errno(ret);
6271 			goto out;
6272 		}
6273 	}
6274 
6275 	handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6276 	if (IS_ERR(handle)) {
6277 		ret = PTR_ERR(handle);
6278 		mlog_errno(ret);
6279 		goto out_unlock;
6280 	}
6281 
6282 	ret = ocfs2_journal_access(handle, inode, di_bh,
6283 				   OCFS2_JOURNAL_ACCESS_WRITE);
6284 	if (ret) {
6285 		mlog_errno(ret);
6286 		goto out_commit;
6287 	}
6288 
6289 	if (has_data) {
6290 		u32 bit_off, num;
6291 		unsigned int page_end;
6292 		u64 phys;
6293 
6294 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6295 					   &num);
6296 		if (ret) {
6297 			mlog_errno(ret);
6298 			goto out_commit;
6299 		}
6300 
6301 		/*
6302 		 * Save two copies, one for insert, and one that can
6303 		 * be changed by ocfs2_map_and_dirty_page() below.
6304 		 */
6305 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6306 
6307 		/*
6308 		 * Non sparse file systems zero on extend, so no need
6309 		 * to do that now.
6310 		 */
6311 		if (!ocfs2_sparse_alloc(osb) &&
6312 		    PAGE_CACHE_SIZE < osb->s_clustersize)
6313 			end = PAGE_CACHE_SIZE;
6314 
6315 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6316 		if (ret) {
6317 			mlog_errno(ret);
6318 			goto out_commit;
6319 		}
6320 
6321 		/*
6322 		 * This should populate the 1st page for us and mark
6323 		 * it up to date.
6324 		 */
6325 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6326 		if (ret) {
6327 			mlog_errno(ret);
6328 			goto out_commit;
6329 		}
6330 
6331 		page_end = PAGE_CACHE_SIZE;
6332 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
6333 			page_end = osb->s_clustersize;
6334 
6335 		for (i = 0; i < num_pages; i++)
6336 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6337 						 pages[i], i > 0, &phys);
6338 	}
6339 
6340 	spin_lock(&oi->ip_lock);
6341 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6342 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6343 	spin_unlock(&oi->ip_lock);
6344 
6345 	ocfs2_dinode_new_extent_list(inode, di);
6346 
6347 	ocfs2_journal_dirty(handle, di_bh);
6348 
6349 	if (has_data) {
6350 		/*
6351 		 * An error at this point should be extremely rare. If
6352 		 * this proves to be false, we could always re-build
6353 		 * the in-inode data from our pages.
6354 		 */
6355 		ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6356 					  0, block, 1, 0, NULL);
6357 		if (ret) {
6358 			mlog_errno(ret);
6359 			goto out_commit;
6360 		}
6361 
6362 		inode->i_blocks = ocfs2_inode_sector_count(inode);
6363 	}
6364 
6365 out_commit:
6366 	ocfs2_commit_trans(osb, handle);
6367 
6368 out_unlock:
6369 	if (data_ac)
6370 		ocfs2_free_alloc_context(data_ac);
6371 
6372 out:
6373 	if (pages) {
6374 		ocfs2_unlock_and_free_pages(pages, num_pages);
6375 		kfree(pages);
6376 	}
6377 
6378 	return ret;
6379 }
6380 
6381 /*
6382  * It is expected, that by the time you call this function,
6383  * inode->i_size and fe->i_size have been adjusted.
6384  *
6385  * WARNING: This will kfree the truncate context
6386  */
6387 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6388 			  struct inode *inode,
6389 			  struct buffer_head *fe_bh,
6390 			  struct ocfs2_truncate_context *tc)
6391 {
6392 	int status, i, credits, tl_sem = 0;
6393 	u32 clusters_to_del, new_highest_cpos, range;
6394 	struct ocfs2_extent_list *el;
6395 	handle_t *handle = NULL;
6396 	struct inode *tl_inode = osb->osb_tl_inode;
6397 	struct ocfs2_path *path = NULL;
6398 
6399 	mlog_entry_void();
6400 
6401 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6402 						     i_size_read(inode));
6403 
6404 	path = ocfs2_new_inode_path(fe_bh);
6405 	if (!path) {
6406 		status = -ENOMEM;
6407 		mlog_errno(status);
6408 		goto bail;
6409 	}
6410 
6411 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
6412 
6413 start:
6414 	/*
6415 	 * Check that we still have allocation to delete.
6416 	 */
6417 	if (OCFS2_I(inode)->ip_clusters == 0) {
6418 		status = 0;
6419 		goto bail;
6420 	}
6421 
6422 	/*
6423 	 * Truncate always works against the rightmost tree branch.
6424 	 */
6425 	status = ocfs2_find_path(inode, path, UINT_MAX);
6426 	if (status) {
6427 		mlog_errno(status);
6428 		goto bail;
6429 	}
6430 
6431 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6432 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6433 
6434 	/*
6435 	 * By now, el will point to the extent list on the bottom most
6436 	 * portion of this tree. Only the tail record is considered in
6437 	 * each pass.
6438 	 *
6439 	 * We handle the following cases, in order:
6440 	 * - empty extent: delete the remaining branch
6441 	 * - remove the entire record
6442 	 * - remove a partial record
6443 	 * - no record needs to be removed (truncate has completed)
6444 	 */
6445 	el = path_leaf_el(path);
6446 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
6447 		ocfs2_error(inode->i_sb,
6448 			    "Inode %llu has empty extent block at %llu\n",
6449 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6450 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
6451 		status = -EROFS;
6452 		goto bail;
6453 	}
6454 
6455 	i = le16_to_cpu(el->l_next_free_rec) - 1;
6456 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
6457 		ocfs2_rec_clusters(el, &el->l_recs[i]);
6458 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6459 		clusters_to_del = 0;
6460 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6461 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6462 	} else if (range > new_highest_cpos) {
6463 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6464 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
6465 				  new_highest_cpos;
6466 	} else {
6467 		status = 0;
6468 		goto bail;
6469 	}
6470 
6471 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6472 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6473 
6474 	mutex_lock(&tl_inode->i_mutex);
6475 	tl_sem = 1;
6476 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
6477 	 * record is free for use. If there isn't any, we flush to get
6478 	 * an empty truncate log.  */
6479 	if (ocfs2_truncate_log_needs_flush(osb)) {
6480 		status = __ocfs2_flush_truncate_log(osb);
6481 		if (status < 0) {
6482 			mlog_errno(status);
6483 			goto bail;
6484 		}
6485 	}
6486 
6487 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6488 						(struct ocfs2_dinode *)fe_bh->b_data,
6489 						el);
6490 	handle = ocfs2_start_trans(osb, credits);
6491 	if (IS_ERR(handle)) {
6492 		status = PTR_ERR(handle);
6493 		handle = NULL;
6494 		mlog_errno(status);
6495 		goto bail;
6496 	}
6497 
6498 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6499 				   tc, path);
6500 	if (status < 0) {
6501 		mlog_errno(status);
6502 		goto bail;
6503 	}
6504 
6505 	mutex_unlock(&tl_inode->i_mutex);
6506 	tl_sem = 0;
6507 
6508 	ocfs2_commit_trans(osb, handle);
6509 	handle = NULL;
6510 
6511 	ocfs2_reinit_path(path, 1);
6512 
6513 	/*
6514 	 * The check above will catch the case where we've truncated
6515 	 * away all allocation.
6516 	 */
6517 	goto start;
6518 
6519 bail:
6520 
6521 	ocfs2_schedule_truncate_log_flush(osb, 1);
6522 
6523 	if (tl_sem)
6524 		mutex_unlock(&tl_inode->i_mutex);
6525 
6526 	if (handle)
6527 		ocfs2_commit_trans(osb, handle);
6528 
6529 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6530 
6531 	ocfs2_free_path(path);
6532 
6533 	/* This will drop the ext_alloc cluster lock for us */
6534 	ocfs2_free_truncate_context(tc);
6535 
6536 	mlog_exit(status);
6537 	return status;
6538 }
6539 
6540 /*
6541  * Expects the inode to already be locked.
6542  */
6543 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6544 			   struct inode *inode,
6545 			   struct buffer_head *fe_bh,
6546 			   struct ocfs2_truncate_context **tc)
6547 {
6548 	int status;
6549 	unsigned int new_i_clusters;
6550 	struct ocfs2_dinode *fe;
6551 	struct ocfs2_extent_block *eb;
6552 	struct buffer_head *last_eb_bh = NULL;
6553 
6554 	mlog_entry_void();
6555 
6556 	*tc = NULL;
6557 
6558 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6559 						  i_size_read(inode));
6560 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6561 
6562 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6563 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6564 	     (unsigned long long)le64_to_cpu(fe->i_size));
6565 
6566 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6567 	if (!(*tc)) {
6568 		status = -ENOMEM;
6569 		mlog_errno(status);
6570 		goto bail;
6571 	}
6572 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6573 
6574 	if (fe->id2.i_list.l_tree_depth) {
6575 		status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6576 					  &last_eb_bh, OCFS2_BH_CACHED, inode);
6577 		if (status < 0) {
6578 			mlog_errno(status);
6579 			goto bail;
6580 		}
6581 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6582 		if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6583 			OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6584 
6585 			brelse(last_eb_bh);
6586 			status = -EIO;
6587 			goto bail;
6588 		}
6589 	}
6590 
6591 	(*tc)->tc_last_eb_bh = last_eb_bh;
6592 
6593 	status = 0;
6594 bail:
6595 	if (status < 0) {
6596 		if (*tc)
6597 			ocfs2_free_truncate_context(*tc);
6598 		*tc = NULL;
6599 	}
6600 	mlog_exit_void();
6601 	return status;
6602 }
6603 
6604 /*
6605  * 'start' is inclusive, 'end' is not.
6606  */
6607 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6608 			  unsigned int start, unsigned int end, int trunc)
6609 {
6610 	int ret;
6611 	unsigned int numbytes;
6612 	handle_t *handle;
6613 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6614 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6615 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6616 
6617 	if (end > i_size_read(inode))
6618 		end = i_size_read(inode);
6619 
6620 	BUG_ON(start >= end);
6621 
6622 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6623 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6624 	    !ocfs2_supports_inline_data(osb)) {
6625 		ocfs2_error(inode->i_sb,
6626 			    "Inline data flags for inode %llu don't agree! "
6627 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6628 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
6629 			    le16_to_cpu(di->i_dyn_features),
6630 			    OCFS2_I(inode)->ip_dyn_features,
6631 			    osb->s_feature_incompat);
6632 		ret = -EROFS;
6633 		goto out;
6634 	}
6635 
6636 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6637 	if (IS_ERR(handle)) {
6638 		ret = PTR_ERR(handle);
6639 		mlog_errno(ret);
6640 		goto out;
6641 	}
6642 
6643 	ret = ocfs2_journal_access(handle, inode, di_bh,
6644 				   OCFS2_JOURNAL_ACCESS_WRITE);
6645 	if (ret) {
6646 		mlog_errno(ret);
6647 		goto out_commit;
6648 	}
6649 
6650 	numbytes = end - start;
6651 	memset(idata->id_data + start, 0, numbytes);
6652 
6653 	/*
6654 	 * No need to worry about the data page here - it's been
6655 	 * truncated already and inline data doesn't need it for
6656 	 * pushing zero's to disk, so we'll let readpage pick it up
6657 	 * later.
6658 	 */
6659 	if (trunc) {
6660 		i_size_write(inode, start);
6661 		di->i_size = cpu_to_le64(start);
6662 	}
6663 
6664 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6665 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6666 
6667 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6668 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6669 
6670 	ocfs2_journal_dirty(handle, di_bh);
6671 
6672 out_commit:
6673 	ocfs2_commit_trans(osb, handle);
6674 
6675 out:
6676 	return ret;
6677 }
6678 
6679 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6680 {
6681 	/*
6682 	 * The caller is responsible for completing deallocation
6683 	 * before freeing the context.
6684 	 */
6685 	if (tc->tc_dealloc.c_first_suballocator != NULL)
6686 		mlog(ML_NOTICE,
6687 		     "Truncate completion has non-empty dealloc context\n");
6688 
6689 	if (tc->tc_last_eb_bh)
6690 		brelse(tc->tc_last_eb_bh);
6691 
6692 	kfree(tc);
6693 }
6694