1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "dlmglue.h" 40 #include "extent_map.h" 41 #include "inode.h" 42 #include "journal.h" 43 #include "localalloc.h" 44 #include "suballoc.h" 45 #include "sysfile.h" 46 #include "file.h" 47 #include "super.h" 48 #include "uptodate.h" 49 50 #include "buffer_head_io.h" 51 52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 54 struct ocfs2_extent_block *eb); 55 56 /* 57 * Structures which describe a path through a btree, and functions to 58 * manipulate them. 59 * 60 * The idea here is to be as generic as possible with the tree 61 * manipulation code. 62 */ 63 struct ocfs2_path_item { 64 struct buffer_head *bh; 65 struct ocfs2_extent_list *el; 66 }; 67 68 #define OCFS2_MAX_PATH_DEPTH 5 69 70 struct ocfs2_path { 71 int p_tree_depth; 72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 73 }; 74 75 #define path_root_bh(_path) ((_path)->p_node[0].bh) 76 #define path_root_el(_path) ((_path)->p_node[0].el) 77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 79 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 80 81 /* 82 * Reset the actual path elements so that we can re-use the structure 83 * to build another path. Generally, this involves freeing the buffer 84 * heads. 85 */ 86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 87 { 88 int i, start = 0, depth = 0; 89 struct ocfs2_path_item *node; 90 91 if (keep_root) 92 start = 1; 93 94 for(i = start; i < path_num_items(path); i++) { 95 node = &path->p_node[i]; 96 97 brelse(node->bh); 98 node->bh = NULL; 99 node->el = NULL; 100 } 101 102 /* 103 * Tree depth may change during truncate, or insert. If we're 104 * keeping the root extent list, then make sure that our path 105 * structure reflects the proper depth. 106 */ 107 if (keep_root) 108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 109 110 path->p_tree_depth = depth; 111 } 112 113 static void ocfs2_free_path(struct ocfs2_path *path) 114 { 115 if (path) { 116 ocfs2_reinit_path(path, 0); 117 kfree(path); 118 } 119 } 120 121 /* 122 * All the elements of src into dest. After this call, src could be freed 123 * without affecting dest. 124 * 125 * Both paths should have the same root. Any non-root elements of dest 126 * will be freed. 127 */ 128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 129 { 130 int i; 131 132 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 133 BUG_ON(path_root_el(dest) != path_root_el(src)); 134 135 ocfs2_reinit_path(dest, 1); 136 137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 138 dest->p_node[i].bh = src->p_node[i].bh; 139 dest->p_node[i].el = src->p_node[i].el; 140 141 if (dest->p_node[i].bh) 142 get_bh(dest->p_node[i].bh); 143 } 144 } 145 146 /* 147 * Make the *dest path the same as src and re-initialize src path to 148 * have a root only. 149 */ 150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 151 { 152 int i; 153 154 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 155 156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 157 brelse(dest->p_node[i].bh); 158 159 dest->p_node[i].bh = src->p_node[i].bh; 160 dest->p_node[i].el = src->p_node[i].el; 161 162 src->p_node[i].bh = NULL; 163 src->p_node[i].el = NULL; 164 } 165 } 166 167 /* 168 * Insert an extent block at given index. 169 * 170 * This will not take an additional reference on eb_bh. 171 */ 172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 173 struct buffer_head *eb_bh) 174 { 175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 176 177 /* 178 * Right now, no root bh is an extent block, so this helps 179 * catch code errors with dinode trees. The assertion can be 180 * safely removed if we ever need to insert extent block 181 * structures at the root. 182 */ 183 BUG_ON(index == 0); 184 185 path->p_node[index].bh = eb_bh; 186 path->p_node[index].el = &eb->h_list; 187 } 188 189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 190 struct ocfs2_extent_list *root_el) 191 { 192 struct ocfs2_path *path; 193 194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 195 196 path = kzalloc(sizeof(*path), GFP_NOFS); 197 if (path) { 198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 199 get_bh(root_bh); 200 path_root_bh(path) = root_bh; 201 path_root_el(path) = root_el; 202 } 203 204 return path; 205 } 206 207 /* 208 * Allocate and initialize a new path based on a disk inode tree. 209 */ 210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh) 211 { 212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 213 struct ocfs2_extent_list *el = &di->id2.i_list; 214 215 return ocfs2_new_path(di_bh, el); 216 } 217 218 /* 219 * Convenience function to journal all components in a path. 220 */ 221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 222 struct ocfs2_path *path) 223 { 224 int i, ret = 0; 225 226 if (!path) 227 goto out; 228 229 for(i = 0; i < path_num_items(path); i++) { 230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh, 231 OCFS2_JOURNAL_ACCESS_WRITE); 232 if (ret < 0) { 233 mlog_errno(ret); 234 goto out; 235 } 236 } 237 238 out: 239 return ret; 240 } 241 242 /* 243 * Return the index of the extent record which contains cluster #v_cluster. 244 * -1 is returned if it was not found. 245 * 246 * Should work fine on interior and exterior nodes. 247 */ 248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 249 { 250 int ret = -1; 251 int i; 252 struct ocfs2_extent_rec *rec; 253 u32 rec_end, rec_start, clusters; 254 255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 256 rec = &el->l_recs[i]; 257 258 rec_start = le32_to_cpu(rec->e_cpos); 259 clusters = ocfs2_rec_clusters(el, rec); 260 261 rec_end = rec_start + clusters; 262 263 if (v_cluster >= rec_start && v_cluster < rec_end) { 264 ret = i; 265 break; 266 } 267 } 268 269 return ret; 270 } 271 272 enum ocfs2_contig_type { 273 CONTIG_NONE = 0, 274 CONTIG_LEFT, 275 CONTIG_RIGHT, 276 CONTIG_LEFTRIGHT, 277 }; 278 279 280 /* 281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 282 * ocfs2_extent_contig only work properly against leaf nodes! 283 */ 284 static int ocfs2_block_extent_contig(struct super_block *sb, 285 struct ocfs2_extent_rec *ext, 286 u64 blkno) 287 { 288 u64 blk_end = le64_to_cpu(ext->e_blkno); 289 290 blk_end += ocfs2_clusters_to_blocks(sb, 291 le16_to_cpu(ext->e_leaf_clusters)); 292 293 return blkno == blk_end; 294 } 295 296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 297 struct ocfs2_extent_rec *right) 298 { 299 u32 left_range; 300 301 left_range = le32_to_cpu(left->e_cpos) + 302 le16_to_cpu(left->e_leaf_clusters); 303 304 return (left_range == le32_to_cpu(right->e_cpos)); 305 } 306 307 static enum ocfs2_contig_type 308 ocfs2_extent_contig(struct inode *inode, 309 struct ocfs2_extent_rec *ext, 310 struct ocfs2_extent_rec *insert_rec) 311 { 312 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 313 314 /* 315 * Refuse to coalesce extent records with different flag 316 * fields - we don't want to mix unwritten extents with user 317 * data. 318 */ 319 if (ext->e_flags != insert_rec->e_flags) 320 return CONTIG_NONE; 321 322 if (ocfs2_extents_adjacent(ext, insert_rec) && 323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 324 return CONTIG_RIGHT; 325 326 blkno = le64_to_cpu(ext->e_blkno); 327 if (ocfs2_extents_adjacent(insert_rec, ext) && 328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 329 return CONTIG_LEFT; 330 331 return CONTIG_NONE; 332 } 333 334 /* 335 * NOTE: We can have pretty much any combination of contiguousness and 336 * appending. 337 * 338 * The usefulness of APPEND_TAIL is more in that it lets us know that 339 * we'll have to update the path to that leaf. 340 */ 341 enum ocfs2_append_type { 342 APPEND_NONE = 0, 343 APPEND_TAIL, 344 }; 345 346 enum ocfs2_split_type { 347 SPLIT_NONE = 0, 348 SPLIT_LEFT, 349 SPLIT_RIGHT, 350 }; 351 352 struct ocfs2_insert_type { 353 enum ocfs2_split_type ins_split; 354 enum ocfs2_append_type ins_appending; 355 enum ocfs2_contig_type ins_contig; 356 int ins_contig_index; 357 int ins_tree_depth; 358 }; 359 360 struct ocfs2_merge_ctxt { 361 enum ocfs2_contig_type c_contig_type; 362 int c_has_empty_extent; 363 int c_split_covers_rec; 364 }; 365 366 /* 367 * How many free extents have we got before we need more meta data? 368 */ 369 int ocfs2_num_free_extents(struct ocfs2_super *osb, 370 struct inode *inode, 371 struct ocfs2_dinode *fe) 372 { 373 int retval; 374 struct ocfs2_extent_list *el; 375 struct ocfs2_extent_block *eb; 376 struct buffer_head *eb_bh = NULL; 377 378 mlog_entry_void(); 379 380 if (!OCFS2_IS_VALID_DINODE(fe)) { 381 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe); 382 retval = -EIO; 383 goto bail; 384 } 385 386 if (fe->i_last_eb_blk) { 387 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 388 &eb_bh, OCFS2_BH_CACHED, inode); 389 if (retval < 0) { 390 mlog_errno(retval); 391 goto bail; 392 } 393 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 394 el = &eb->h_list; 395 } else 396 el = &fe->id2.i_list; 397 398 BUG_ON(el->l_tree_depth != 0); 399 400 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 401 bail: 402 if (eb_bh) 403 brelse(eb_bh); 404 405 mlog_exit(retval); 406 return retval; 407 } 408 409 /* expects array to already be allocated 410 * 411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 412 * l_count for you 413 */ 414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 415 handle_t *handle, 416 struct inode *inode, 417 int wanted, 418 struct ocfs2_alloc_context *meta_ac, 419 struct buffer_head *bhs[]) 420 { 421 int count, status, i; 422 u16 suballoc_bit_start; 423 u32 num_got; 424 u64 first_blkno; 425 struct ocfs2_extent_block *eb; 426 427 mlog_entry_void(); 428 429 count = 0; 430 while (count < wanted) { 431 status = ocfs2_claim_metadata(osb, 432 handle, 433 meta_ac, 434 wanted - count, 435 &suballoc_bit_start, 436 &num_got, 437 &first_blkno); 438 if (status < 0) { 439 mlog_errno(status); 440 goto bail; 441 } 442 443 for(i = count; i < (num_got + count); i++) { 444 bhs[i] = sb_getblk(osb->sb, first_blkno); 445 if (bhs[i] == NULL) { 446 status = -EIO; 447 mlog_errno(status); 448 goto bail; 449 } 450 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 451 452 status = ocfs2_journal_access(handle, inode, bhs[i], 453 OCFS2_JOURNAL_ACCESS_CREATE); 454 if (status < 0) { 455 mlog_errno(status); 456 goto bail; 457 } 458 459 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 460 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 461 /* Ok, setup the minimal stuff here. */ 462 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 463 eb->h_blkno = cpu_to_le64(first_blkno); 464 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 465 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 466 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 467 eb->h_list.l_count = 468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 469 470 suballoc_bit_start++; 471 first_blkno++; 472 473 /* We'll also be dirtied by the caller, so 474 * this isn't absolutely necessary. */ 475 status = ocfs2_journal_dirty(handle, bhs[i]); 476 if (status < 0) { 477 mlog_errno(status); 478 goto bail; 479 } 480 } 481 482 count += num_got; 483 } 484 485 status = 0; 486 bail: 487 if (status < 0) { 488 for(i = 0; i < wanted; i++) { 489 if (bhs[i]) 490 brelse(bhs[i]); 491 bhs[i] = NULL; 492 } 493 } 494 mlog_exit(status); 495 return status; 496 } 497 498 /* 499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 500 * 501 * Returns the sum of the rightmost extent rec logical offset and 502 * cluster count. 503 * 504 * ocfs2_add_branch() uses this to determine what logical cluster 505 * value should be populated into the leftmost new branch records. 506 * 507 * ocfs2_shift_tree_depth() uses this to determine the # clusters 508 * value for the new topmost tree record. 509 */ 510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 511 { 512 int i; 513 514 i = le16_to_cpu(el->l_next_free_rec) - 1; 515 516 return le32_to_cpu(el->l_recs[i].e_cpos) + 517 ocfs2_rec_clusters(el, &el->l_recs[i]); 518 } 519 520 /* 521 * Add an entire tree branch to our inode. eb_bh is the extent block 522 * to start at, if we don't want to start the branch at the dinode 523 * structure. 524 * 525 * last_eb_bh is required as we have to update it's next_leaf pointer 526 * for the new last extent block. 527 * 528 * the new branch will be 'empty' in the sense that every block will 529 * contain a single record with cluster count == 0. 530 */ 531 static int ocfs2_add_branch(struct ocfs2_super *osb, 532 handle_t *handle, 533 struct inode *inode, 534 struct buffer_head *fe_bh, 535 struct buffer_head *eb_bh, 536 struct buffer_head **last_eb_bh, 537 struct ocfs2_alloc_context *meta_ac) 538 { 539 int status, new_blocks, i; 540 u64 next_blkno, new_last_eb_blk; 541 struct buffer_head *bh; 542 struct buffer_head **new_eb_bhs = NULL; 543 struct ocfs2_dinode *fe; 544 struct ocfs2_extent_block *eb; 545 struct ocfs2_extent_list *eb_el; 546 struct ocfs2_extent_list *el; 547 u32 new_cpos; 548 549 mlog_entry_void(); 550 551 BUG_ON(!last_eb_bh || !*last_eb_bh); 552 553 fe = (struct ocfs2_dinode *) fe_bh->b_data; 554 555 if (eb_bh) { 556 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 557 el = &eb->h_list; 558 } else 559 el = &fe->id2.i_list; 560 561 /* we never add a branch to a leaf. */ 562 BUG_ON(!el->l_tree_depth); 563 564 new_blocks = le16_to_cpu(el->l_tree_depth); 565 566 /* allocate the number of new eb blocks we need */ 567 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 568 GFP_KERNEL); 569 if (!new_eb_bhs) { 570 status = -ENOMEM; 571 mlog_errno(status); 572 goto bail; 573 } 574 575 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 576 meta_ac, new_eb_bhs); 577 if (status < 0) { 578 mlog_errno(status); 579 goto bail; 580 } 581 582 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 583 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 584 585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 586 * linked with the rest of the tree. 587 * conversly, new_eb_bhs[0] is the new bottommost leaf. 588 * 589 * when we leave the loop, new_last_eb_blk will point to the 590 * newest leaf, and next_blkno will point to the topmost extent 591 * block. */ 592 next_blkno = new_last_eb_blk = 0; 593 for(i = 0; i < new_blocks; i++) { 594 bh = new_eb_bhs[i]; 595 eb = (struct ocfs2_extent_block *) bh->b_data; 596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 598 status = -EIO; 599 goto bail; 600 } 601 eb_el = &eb->h_list; 602 603 status = ocfs2_journal_access(handle, inode, bh, 604 OCFS2_JOURNAL_ACCESS_CREATE); 605 if (status < 0) { 606 mlog_errno(status); 607 goto bail; 608 } 609 610 eb->h_next_leaf_blk = 0; 611 eb_el->l_tree_depth = cpu_to_le16(i); 612 eb_el->l_next_free_rec = cpu_to_le16(1); 613 /* 614 * This actually counts as an empty extent as 615 * c_clusters == 0 616 */ 617 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 618 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 619 /* 620 * eb_el isn't always an interior node, but even leaf 621 * nodes want a zero'd flags and reserved field so 622 * this gets the whole 32 bits regardless of use. 623 */ 624 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 625 if (!eb_el->l_tree_depth) 626 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 627 628 status = ocfs2_journal_dirty(handle, bh); 629 if (status < 0) { 630 mlog_errno(status); 631 goto bail; 632 } 633 634 next_blkno = le64_to_cpu(eb->h_blkno); 635 } 636 637 /* This is a bit hairy. We want to update up to three blocks 638 * here without leaving any of them in an inconsistent state 639 * in case of error. We don't have to worry about 640 * journal_dirty erroring as it won't unless we've aborted the 641 * handle (in which case we would never be here) so reserving 642 * the write with journal_access is all we need to do. */ 643 status = ocfs2_journal_access(handle, inode, *last_eb_bh, 644 OCFS2_JOURNAL_ACCESS_WRITE); 645 if (status < 0) { 646 mlog_errno(status); 647 goto bail; 648 } 649 status = ocfs2_journal_access(handle, inode, fe_bh, 650 OCFS2_JOURNAL_ACCESS_WRITE); 651 if (status < 0) { 652 mlog_errno(status); 653 goto bail; 654 } 655 if (eb_bh) { 656 status = ocfs2_journal_access(handle, inode, eb_bh, 657 OCFS2_JOURNAL_ACCESS_WRITE); 658 if (status < 0) { 659 mlog_errno(status); 660 goto bail; 661 } 662 } 663 664 /* Link the new branch into the rest of the tree (el will 665 * either be on the fe, or the extent block passed in. */ 666 i = le16_to_cpu(el->l_next_free_rec); 667 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 668 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 669 el->l_recs[i].e_int_clusters = 0; 670 le16_add_cpu(&el->l_next_free_rec, 1); 671 672 /* fe needs a new last extent block pointer, as does the 673 * next_leaf on the previously last-extent-block. */ 674 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk); 675 676 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 677 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 678 679 status = ocfs2_journal_dirty(handle, *last_eb_bh); 680 if (status < 0) 681 mlog_errno(status); 682 status = ocfs2_journal_dirty(handle, fe_bh); 683 if (status < 0) 684 mlog_errno(status); 685 if (eb_bh) { 686 status = ocfs2_journal_dirty(handle, eb_bh); 687 if (status < 0) 688 mlog_errno(status); 689 } 690 691 /* 692 * Some callers want to track the rightmost leaf so pass it 693 * back here. 694 */ 695 brelse(*last_eb_bh); 696 get_bh(new_eb_bhs[0]); 697 *last_eb_bh = new_eb_bhs[0]; 698 699 status = 0; 700 bail: 701 if (new_eb_bhs) { 702 for (i = 0; i < new_blocks; i++) 703 if (new_eb_bhs[i]) 704 brelse(new_eb_bhs[i]); 705 kfree(new_eb_bhs); 706 } 707 708 mlog_exit(status); 709 return status; 710 } 711 712 /* 713 * adds another level to the allocation tree. 714 * returns back the new extent block so you can add a branch to it 715 * after this call. 716 */ 717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 718 handle_t *handle, 719 struct inode *inode, 720 struct buffer_head *fe_bh, 721 struct ocfs2_alloc_context *meta_ac, 722 struct buffer_head **ret_new_eb_bh) 723 { 724 int status, i; 725 u32 new_clusters; 726 struct buffer_head *new_eb_bh = NULL; 727 struct ocfs2_dinode *fe; 728 struct ocfs2_extent_block *eb; 729 struct ocfs2_extent_list *fe_el; 730 struct ocfs2_extent_list *eb_el; 731 732 mlog_entry_void(); 733 734 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 735 &new_eb_bh); 736 if (status < 0) { 737 mlog_errno(status); 738 goto bail; 739 } 740 741 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 744 status = -EIO; 745 goto bail; 746 } 747 748 eb_el = &eb->h_list; 749 fe = (struct ocfs2_dinode *) fe_bh->b_data; 750 fe_el = &fe->id2.i_list; 751 752 status = ocfs2_journal_access(handle, inode, new_eb_bh, 753 OCFS2_JOURNAL_ACCESS_CREATE); 754 if (status < 0) { 755 mlog_errno(status); 756 goto bail; 757 } 758 759 /* copy the fe data into the new extent block */ 760 eb_el->l_tree_depth = fe_el->l_tree_depth; 761 eb_el->l_next_free_rec = fe_el->l_next_free_rec; 762 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 763 eb_el->l_recs[i] = fe_el->l_recs[i]; 764 765 status = ocfs2_journal_dirty(handle, new_eb_bh); 766 if (status < 0) { 767 mlog_errno(status); 768 goto bail; 769 } 770 771 status = ocfs2_journal_access(handle, inode, fe_bh, 772 OCFS2_JOURNAL_ACCESS_WRITE); 773 if (status < 0) { 774 mlog_errno(status); 775 goto bail; 776 } 777 778 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 779 780 /* update fe now */ 781 le16_add_cpu(&fe_el->l_tree_depth, 1); 782 fe_el->l_recs[0].e_cpos = 0; 783 fe_el->l_recs[0].e_blkno = eb->h_blkno; 784 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 785 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++) 786 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 787 fe_el->l_next_free_rec = cpu_to_le16(1); 788 789 /* If this is our 1st tree depth shift, then last_eb_blk 790 * becomes the allocated extent block */ 791 if (fe_el->l_tree_depth == cpu_to_le16(1)) 792 fe->i_last_eb_blk = eb->h_blkno; 793 794 status = ocfs2_journal_dirty(handle, fe_bh); 795 if (status < 0) { 796 mlog_errno(status); 797 goto bail; 798 } 799 800 *ret_new_eb_bh = new_eb_bh; 801 new_eb_bh = NULL; 802 status = 0; 803 bail: 804 if (new_eb_bh) 805 brelse(new_eb_bh); 806 807 mlog_exit(status); 808 return status; 809 } 810 811 /* 812 * Should only be called when there is no space left in any of the 813 * leaf nodes. What we want to do is find the lowest tree depth 814 * non-leaf extent block with room for new records. There are three 815 * valid results of this search: 816 * 817 * 1) a lowest extent block is found, then we pass it back in 818 * *lowest_eb_bh and return '0' 819 * 820 * 2) the search fails to find anything, but the dinode has room. We 821 * pass NULL back in *lowest_eb_bh, but still return '0' 822 * 823 * 3) the search fails to find anything AND the dinode is full, in 824 * which case we return > 0 825 * 826 * return status < 0 indicates an error. 827 */ 828 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 829 struct inode *inode, 830 struct buffer_head *fe_bh, 831 struct buffer_head **target_bh) 832 { 833 int status = 0, i; 834 u64 blkno; 835 struct ocfs2_dinode *fe; 836 struct ocfs2_extent_block *eb; 837 struct ocfs2_extent_list *el; 838 struct buffer_head *bh = NULL; 839 struct buffer_head *lowest_bh = NULL; 840 841 mlog_entry_void(); 842 843 *target_bh = NULL; 844 845 fe = (struct ocfs2_dinode *) fe_bh->b_data; 846 el = &fe->id2.i_list; 847 848 while(le16_to_cpu(el->l_tree_depth) > 1) { 849 if (le16_to_cpu(el->l_next_free_rec) == 0) { 850 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 851 "extent list (next_free_rec == 0)", 852 (unsigned long long)OCFS2_I(inode)->ip_blkno); 853 status = -EIO; 854 goto bail; 855 } 856 i = le16_to_cpu(el->l_next_free_rec) - 1; 857 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 858 if (!blkno) { 859 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 860 "list where extent # %d has no physical " 861 "block start", 862 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 863 status = -EIO; 864 goto bail; 865 } 866 867 if (bh) { 868 brelse(bh); 869 bh = NULL; 870 } 871 872 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED, 873 inode); 874 if (status < 0) { 875 mlog_errno(status); 876 goto bail; 877 } 878 879 eb = (struct ocfs2_extent_block *) bh->b_data; 880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 882 status = -EIO; 883 goto bail; 884 } 885 el = &eb->h_list; 886 887 if (le16_to_cpu(el->l_next_free_rec) < 888 le16_to_cpu(el->l_count)) { 889 if (lowest_bh) 890 brelse(lowest_bh); 891 lowest_bh = bh; 892 get_bh(lowest_bh); 893 } 894 } 895 896 /* If we didn't find one and the fe doesn't have any room, 897 * then return '1' */ 898 if (!lowest_bh 899 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count)) 900 status = 1; 901 902 *target_bh = lowest_bh; 903 bail: 904 if (bh) 905 brelse(bh); 906 907 mlog_exit(status); 908 return status; 909 } 910 911 /* 912 * Grow a b-tree so that it has more records. 913 * 914 * We might shift the tree depth in which case existing paths should 915 * be considered invalid. 916 * 917 * Tree depth after the grow is returned via *final_depth. 918 * 919 * *last_eb_bh will be updated by ocfs2_add_branch(). 920 */ 921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 922 struct buffer_head *di_bh, int *final_depth, 923 struct buffer_head **last_eb_bh, 924 struct ocfs2_alloc_context *meta_ac) 925 { 926 int ret, shift; 927 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 928 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth); 929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 930 struct buffer_head *bh = NULL; 931 932 BUG_ON(meta_ac == NULL); 933 934 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh); 935 if (shift < 0) { 936 ret = shift; 937 mlog_errno(ret); 938 goto out; 939 } 940 941 /* We traveled all the way to the bottom of the allocation tree 942 * and didn't find room for any more extents - we need to add 943 * another tree level */ 944 if (shift) { 945 BUG_ON(bh); 946 mlog(0, "need to shift tree depth (current = %d)\n", depth); 947 948 /* ocfs2_shift_tree_depth will return us a buffer with 949 * the new extent block (so we can pass that to 950 * ocfs2_add_branch). */ 951 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh, 952 meta_ac, &bh); 953 if (ret < 0) { 954 mlog_errno(ret); 955 goto out; 956 } 957 depth++; 958 if (depth == 1) { 959 /* 960 * Special case: we have room now if we shifted from 961 * tree_depth 0, so no more work needs to be done. 962 * 963 * We won't be calling add_branch, so pass 964 * back *last_eb_bh as the new leaf. At depth 965 * zero, it should always be null so there's 966 * no reason to brelse. 967 */ 968 BUG_ON(*last_eb_bh); 969 get_bh(bh); 970 *last_eb_bh = bh; 971 goto out; 972 } 973 } 974 975 /* call ocfs2_add_branch to add the final part of the tree with 976 * the new data. */ 977 mlog(0, "add branch. bh = %p\n", bh); 978 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh, 979 meta_ac); 980 if (ret < 0) { 981 mlog_errno(ret); 982 goto out; 983 } 984 985 out: 986 if (final_depth) 987 *final_depth = depth; 988 brelse(bh); 989 return ret; 990 } 991 992 /* 993 * This function will discard the rightmost extent record. 994 */ 995 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 996 { 997 int next_free = le16_to_cpu(el->l_next_free_rec); 998 int count = le16_to_cpu(el->l_count); 999 unsigned int num_bytes; 1000 1001 BUG_ON(!next_free); 1002 /* This will cause us to go off the end of our extent list. */ 1003 BUG_ON(next_free >= count); 1004 1005 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1006 1007 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1008 } 1009 1010 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1011 struct ocfs2_extent_rec *insert_rec) 1012 { 1013 int i, insert_index, next_free, has_empty, num_bytes; 1014 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1015 struct ocfs2_extent_rec *rec; 1016 1017 next_free = le16_to_cpu(el->l_next_free_rec); 1018 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1019 1020 BUG_ON(!next_free); 1021 1022 /* The tree code before us didn't allow enough room in the leaf. */ 1023 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1024 1025 /* 1026 * The easiest way to approach this is to just remove the 1027 * empty extent and temporarily decrement next_free. 1028 */ 1029 if (has_empty) { 1030 /* 1031 * If next_free was 1 (only an empty extent), this 1032 * loop won't execute, which is fine. We still want 1033 * the decrement above to happen. 1034 */ 1035 for(i = 0; i < (next_free - 1); i++) 1036 el->l_recs[i] = el->l_recs[i+1]; 1037 1038 next_free--; 1039 } 1040 1041 /* 1042 * Figure out what the new record index should be. 1043 */ 1044 for(i = 0; i < next_free; i++) { 1045 rec = &el->l_recs[i]; 1046 1047 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1048 break; 1049 } 1050 insert_index = i; 1051 1052 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1053 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1054 1055 BUG_ON(insert_index < 0); 1056 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1057 BUG_ON(insert_index > next_free); 1058 1059 /* 1060 * No need to memmove if we're just adding to the tail. 1061 */ 1062 if (insert_index != next_free) { 1063 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1064 1065 num_bytes = next_free - insert_index; 1066 num_bytes *= sizeof(struct ocfs2_extent_rec); 1067 memmove(&el->l_recs[insert_index + 1], 1068 &el->l_recs[insert_index], 1069 num_bytes); 1070 } 1071 1072 /* 1073 * Either we had an empty extent, and need to re-increment or 1074 * there was no empty extent on a non full rightmost leaf node, 1075 * in which case we still need to increment. 1076 */ 1077 next_free++; 1078 el->l_next_free_rec = cpu_to_le16(next_free); 1079 /* 1080 * Make sure none of the math above just messed up our tree. 1081 */ 1082 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1083 1084 el->l_recs[insert_index] = *insert_rec; 1085 1086 } 1087 1088 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1089 { 1090 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1091 1092 BUG_ON(num_recs == 0); 1093 1094 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1095 num_recs--; 1096 size = num_recs * sizeof(struct ocfs2_extent_rec); 1097 memmove(&el->l_recs[0], &el->l_recs[1], size); 1098 memset(&el->l_recs[num_recs], 0, 1099 sizeof(struct ocfs2_extent_rec)); 1100 el->l_next_free_rec = cpu_to_le16(num_recs); 1101 } 1102 } 1103 1104 /* 1105 * Create an empty extent record . 1106 * 1107 * l_next_free_rec may be updated. 1108 * 1109 * If an empty extent already exists do nothing. 1110 */ 1111 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1112 { 1113 int next_free = le16_to_cpu(el->l_next_free_rec); 1114 1115 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1116 1117 if (next_free == 0) 1118 goto set_and_inc; 1119 1120 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1121 return; 1122 1123 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1124 "Asked to create an empty extent in a full list:\n" 1125 "count = %u, tree depth = %u", 1126 le16_to_cpu(el->l_count), 1127 le16_to_cpu(el->l_tree_depth)); 1128 1129 ocfs2_shift_records_right(el); 1130 1131 set_and_inc: 1132 le16_add_cpu(&el->l_next_free_rec, 1); 1133 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1134 } 1135 1136 /* 1137 * For a rotation which involves two leaf nodes, the "root node" is 1138 * the lowest level tree node which contains a path to both leafs. This 1139 * resulting set of information can be used to form a complete "subtree" 1140 * 1141 * This function is passed two full paths from the dinode down to a 1142 * pair of adjacent leaves. It's task is to figure out which path 1143 * index contains the subtree root - this can be the root index itself 1144 * in a worst-case rotation. 1145 * 1146 * The array index of the subtree root is passed back. 1147 */ 1148 static int ocfs2_find_subtree_root(struct inode *inode, 1149 struct ocfs2_path *left, 1150 struct ocfs2_path *right) 1151 { 1152 int i = 0; 1153 1154 /* 1155 * Check that the caller passed in two paths from the same tree. 1156 */ 1157 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1158 1159 do { 1160 i++; 1161 1162 /* 1163 * The caller didn't pass two adjacent paths. 1164 */ 1165 mlog_bug_on_msg(i > left->p_tree_depth, 1166 "Inode %lu, left depth %u, right depth %u\n" 1167 "left leaf blk %llu, right leaf blk %llu\n", 1168 inode->i_ino, left->p_tree_depth, 1169 right->p_tree_depth, 1170 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1171 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1172 } while (left->p_node[i].bh->b_blocknr == 1173 right->p_node[i].bh->b_blocknr); 1174 1175 return i - 1; 1176 } 1177 1178 typedef void (path_insert_t)(void *, struct buffer_head *); 1179 1180 /* 1181 * Traverse a btree path in search of cpos, starting at root_el. 1182 * 1183 * This code can be called with a cpos larger than the tree, in which 1184 * case it will return the rightmost path. 1185 */ 1186 static int __ocfs2_find_path(struct inode *inode, 1187 struct ocfs2_extent_list *root_el, u32 cpos, 1188 path_insert_t *func, void *data) 1189 { 1190 int i, ret = 0; 1191 u32 range; 1192 u64 blkno; 1193 struct buffer_head *bh = NULL; 1194 struct ocfs2_extent_block *eb; 1195 struct ocfs2_extent_list *el; 1196 struct ocfs2_extent_rec *rec; 1197 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1198 1199 el = root_el; 1200 while (el->l_tree_depth) { 1201 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1202 ocfs2_error(inode->i_sb, 1203 "Inode %llu has empty extent list at " 1204 "depth %u\n", 1205 (unsigned long long)oi->ip_blkno, 1206 le16_to_cpu(el->l_tree_depth)); 1207 ret = -EROFS; 1208 goto out; 1209 1210 } 1211 1212 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1213 rec = &el->l_recs[i]; 1214 1215 /* 1216 * In the case that cpos is off the allocation 1217 * tree, this should just wind up returning the 1218 * rightmost record. 1219 */ 1220 range = le32_to_cpu(rec->e_cpos) + 1221 ocfs2_rec_clusters(el, rec); 1222 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1223 break; 1224 } 1225 1226 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1227 if (blkno == 0) { 1228 ocfs2_error(inode->i_sb, 1229 "Inode %llu has bad blkno in extent list " 1230 "at depth %u (index %d)\n", 1231 (unsigned long long)oi->ip_blkno, 1232 le16_to_cpu(el->l_tree_depth), i); 1233 ret = -EROFS; 1234 goto out; 1235 } 1236 1237 brelse(bh); 1238 bh = NULL; 1239 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno, 1240 &bh, OCFS2_BH_CACHED, inode); 1241 if (ret) { 1242 mlog_errno(ret); 1243 goto out; 1244 } 1245 1246 eb = (struct ocfs2_extent_block *) bh->b_data; 1247 el = &eb->h_list; 1248 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 1249 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 1250 ret = -EIO; 1251 goto out; 1252 } 1253 1254 if (le16_to_cpu(el->l_next_free_rec) > 1255 le16_to_cpu(el->l_count)) { 1256 ocfs2_error(inode->i_sb, 1257 "Inode %llu has bad count in extent list " 1258 "at block %llu (next free=%u, count=%u)\n", 1259 (unsigned long long)oi->ip_blkno, 1260 (unsigned long long)bh->b_blocknr, 1261 le16_to_cpu(el->l_next_free_rec), 1262 le16_to_cpu(el->l_count)); 1263 ret = -EROFS; 1264 goto out; 1265 } 1266 1267 if (func) 1268 func(data, bh); 1269 } 1270 1271 out: 1272 /* 1273 * Catch any trailing bh that the loop didn't handle. 1274 */ 1275 brelse(bh); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Given an initialized path (that is, it has a valid root extent 1282 * list), this function will traverse the btree in search of the path 1283 * which would contain cpos. 1284 * 1285 * The path traveled is recorded in the path structure. 1286 * 1287 * Note that this will not do any comparisons on leaf node extent 1288 * records, so it will work fine in the case that we just added a tree 1289 * branch. 1290 */ 1291 struct find_path_data { 1292 int index; 1293 struct ocfs2_path *path; 1294 }; 1295 static void find_path_ins(void *data, struct buffer_head *bh) 1296 { 1297 struct find_path_data *fp = data; 1298 1299 get_bh(bh); 1300 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1301 fp->index++; 1302 } 1303 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1304 u32 cpos) 1305 { 1306 struct find_path_data data; 1307 1308 data.index = 1; 1309 data.path = path; 1310 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1311 find_path_ins, &data); 1312 } 1313 1314 static void find_leaf_ins(void *data, struct buffer_head *bh) 1315 { 1316 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1317 struct ocfs2_extent_list *el = &eb->h_list; 1318 struct buffer_head **ret = data; 1319 1320 /* We want to retain only the leaf block. */ 1321 if (le16_to_cpu(el->l_tree_depth) == 0) { 1322 get_bh(bh); 1323 *ret = bh; 1324 } 1325 } 1326 /* 1327 * Find the leaf block in the tree which would contain cpos. No 1328 * checking of the actual leaf is done. 1329 * 1330 * Some paths want to call this instead of allocating a path structure 1331 * and calling ocfs2_find_path(). 1332 * 1333 * This function doesn't handle non btree extent lists. 1334 */ 1335 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1336 u32 cpos, struct buffer_head **leaf_bh) 1337 { 1338 int ret; 1339 struct buffer_head *bh = NULL; 1340 1341 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1342 if (ret) { 1343 mlog_errno(ret); 1344 goto out; 1345 } 1346 1347 *leaf_bh = bh; 1348 out: 1349 return ret; 1350 } 1351 1352 /* 1353 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1354 * 1355 * Basically, we've moved stuff around at the bottom of the tree and 1356 * we need to fix up the extent records above the changes to reflect 1357 * the new changes. 1358 * 1359 * left_rec: the record on the left. 1360 * left_child_el: is the child list pointed to by left_rec 1361 * right_rec: the record to the right of left_rec 1362 * right_child_el: is the child list pointed to by right_rec 1363 * 1364 * By definition, this only works on interior nodes. 1365 */ 1366 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1367 struct ocfs2_extent_list *left_child_el, 1368 struct ocfs2_extent_rec *right_rec, 1369 struct ocfs2_extent_list *right_child_el) 1370 { 1371 u32 left_clusters, right_end; 1372 1373 /* 1374 * Interior nodes never have holes. Their cpos is the cpos of 1375 * the leftmost record in their child list. Their cluster 1376 * count covers the full theoretical range of their child list 1377 * - the range between their cpos and the cpos of the record 1378 * immediately to their right. 1379 */ 1380 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1381 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1382 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1383 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1384 } 1385 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1386 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1387 1388 /* 1389 * Calculate the rightmost cluster count boundary before 1390 * moving cpos - we will need to adjust clusters after 1391 * updating e_cpos to keep the same highest cluster count. 1392 */ 1393 right_end = le32_to_cpu(right_rec->e_cpos); 1394 right_end += le32_to_cpu(right_rec->e_int_clusters); 1395 1396 right_rec->e_cpos = left_rec->e_cpos; 1397 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1398 1399 right_end -= le32_to_cpu(right_rec->e_cpos); 1400 right_rec->e_int_clusters = cpu_to_le32(right_end); 1401 } 1402 1403 /* 1404 * Adjust the adjacent root node records involved in a 1405 * rotation. left_el_blkno is passed in as a key so that we can easily 1406 * find it's index in the root list. 1407 */ 1408 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1409 struct ocfs2_extent_list *left_el, 1410 struct ocfs2_extent_list *right_el, 1411 u64 left_el_blkno) 1412 { 1413 int i; 1414 1415 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1416 le16_to_cpu(left_el->l_tree_depth)); 1417 1418 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1419 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1420 break; 1421 } 1422 1423 /* 1424 * The path walking code should have never returned a root and 1425 * two paths which are not adjacent. 1426 */ 1427 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1428 1429 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1430 &root_el->l_recs[i + 1], right_el); 1431 } 1432 1433 /* 1434 * We've changed a leaf block (in right_path) and need to reflect that 1435 * change back up the subtree. 1436 * 1437 * This happens in multiple places: 1438 * - When we've moved an extent record from the left path leaf to the right 1439 * path leaf to make room for an empty extent in the left path leaf. 1440 * - When our insert into the right path leaf is at the leftmost edge 1441 * and requires an update of the path immediately to it's left. This 1442 * can occur at the end of some types of rotation and appending inserts. 1443 * - When we've adjusted the last extent record in the left path leaf and the 1444 * 1st extent record in the right path leaf during cross extent block merge. 1445 */ 1446 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1447 struct ocfs2_path *left_path, 1448 struct ocfs2_path *right_path, 1449 int subtree_index) 1450 { 1451 int ret, i, idx; 1452 struct ocfs2_extent_list *el, *left_el, *right_el; 1453 struct ocfs2_extent_rec *left_rec, *right_rec; 1454 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1455 1456 /* 1457 * Update the counts and position values within all the 1458 * interior nodes to reflect the leaf rotation we just did. 1459 * 1460 * The root node is handled below the loop. 1461 * 1462 * We begin the loop with right_el and left_el pointing to the 1463 * leaf lists and work our way up. 1464 * 1465 * NOTE: within this loop, left_el and right_el always refer 1466 * to the *child* lists. 1467 */ 1468 left_el = path_leaf_el(left_path); 1469 right_el = path_leaf_el(right_path); 1470 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 1471 mlog(0, "Adjust records at index %u\n", i); 1472 1473 /* 1474 * One nice property of knowing that all of these 1475 * nodes are below the root is that we only deal with 1476 * the leftmost right node record and the rightmost 1477 * left node record. 1478 */ 1479 el = left_path->p_node[i].el; 1480 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 1481 left_rec = &el->l_recs[idx]; 1482 1483 el = right_path->p_node[i].el; 1484 right_rec = &el->l_recs[0]; 1485 1486 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 1487 right_el); 1488 1489 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 1490 if (ret) 1491 mlog_errno(ret); 1492 1493 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 1494 if (ret) 1495 mlog_errno(ret); 1496 1497 /* 1498 * Setup our list pointers now so that the current 1499 * parents become children in the next iteration. 1500 */ 1501 left_el = left_path->p_node[i].el; 1502 right_el = right_path->p_node[i].el; 1503 } 1504 1505 /* 1506 * At the root node, adjust the two adjacent records which 1507 * begin our path to the leaves. 1508 */ 1509 1510 el = left_path->p_node[subtree_index].el; 1511 left_el = left_path->p_node[subtree_index + 1].el; 1512 right_el = right_path->p_node[subtree_index + 1].el; 1513 1514 ocfs2_adjust_root_records(el, left_el, right_el, 1515 left_path->p_node[subtree_index + 1].bh->b_blocknr); 1516 1517 root_bh = left_path->p_node[subtree_index].bh; 1518 1519 ret = ocfs2_journal_dirty(handle, root_bh); 1520 if (ret) 1521 mlog_errno(ret); 1522 } 1523 1524 static int ocfs2_rotate_subtree_right(struct inode *inode, 1525 handle_t *handle, 1526 struct ocfs2_path *left_path, 1527 struct ocfs2_path *right_path, 1528 int subtree_index) 1529 { 1530 int ret, i; 1531 struct buffer_head *right_leaf_bh; 1532 struct buffer_head *left_leaf_bh = NULL; 1533 struct buffer_head *root_bh; 1534 struct ocfs2_extent_list *right_el, *left_el; 1535 struct ocfs2_extent_rec move_rec; 1536 1537 left_leaf_bh = path_leaf_bh(left_path); 1538 left_el = path_leaf_el(left_path); 1539 1540 if (left_el->l_next_free_rec != left_el->l_count) { 1541 ocfs2_error(inode->i_sb, 1542 "Inode %llu has non-full interior leaf node %llu" 1543 "(next free = %u)", 1544 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1545 (unsigned long long)left_leaf_bh->b_blocknr, 1546 le16_to_cpu(left_el->l_next_free_rec)); 1547 return -EROFS; 1548 } 1549 1550 /* 1551 * This extent block may already have an empty record, so we 1552 * return early if so. 1553 */ 1554 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 1555 return 0; 1556 1557 root_bh = left_path->p_node[subtree_index].bh; 1558 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 1559 1560 ret = ocfs2_journal_access(handle, inode, root_bh, 1561 OCFS2_JOURNAL_ACCESS_WRITE); 1562 if (ret) { 1563 mlog_errno(ret); 1564 goto out; 1565 } 1566 1567 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 1568 ret = ocfs2_journal_access(handle, inode, 1569 right_path->p_node[i].bh, 1570 OCFS2_JOURNAL_ACCESS_WRITE); 1571 if (ret) { 1572 mlog_errno(ret); 1573 goto out; 1574 } 1575 1576 ret = ocfs2_journal_access(handle, inode, 1577 left_path->p_node[i].bh, 1578 OCFS2_JOURNAL_ACCESS_WRITE); 1579 if (ret) { 1580 mlog_errno(ret); 1581 goto out; 1582 } 1583 } 1584 1585 right_leaf_bh = path_leaf_bh(right_path); 1586 right_el = path_leaf_el(right_path); 1587 1588 /* This is a code error, not a disk corruption. */ 1589 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 1590 "because rightmost leaf block %llu is empty\n", 1591 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1592 (unsigned long long)right_leaf_bh->b_blocknr); 1593 1594 ocfs2_create_empty_extent(right_el); 1595 1596 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 1597 if (ret) { 1598 mlog_errno(ret); 1599 goto out; 1600 } 1601 1602 /* Do the copy now. */ 1603 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 1604 move_rec = left_el->l_recs[i]; 1605 right_el->l_recs[0] = move_rec; 1606 1607 /* 1608 * Clear out the record we just copied and shift everything 1609 * over, leaving an empty extent in the left leaf. 1610 * 1611 * We temporarily subtract from next_free_rec so that the 1612 * shift will lose the tail record (which is now defunct). 1613 */ 1614 le16_add_cpu(&left_el->l_next_free_rec, -1); 1615 ocfs2_shift_records_right(left_el); 1616 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1617 le16_add_cpu(&left_el->l_next_free_rec, 1); 1618 1619 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 1620 if (ret) { 1621 mlog_errno(ret); 1622 goto out; 1623 } 1624 1625 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 1626 subtree_index); 1627 1628 out: 1629 return ret; 1630 } 1631 1632 /* 1633 * Given a full path, determine what cpos value would return us a path 1634 * containing the leaf immediately to the left of the current one. 1635 * 1636 * Will return zero if the path passed in is already the leftmost path. 1637 */ 1638 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 1639 struct ocfs2_path *path, u32 *cpos) 1640 { 1641 int i, j, ret = 0; 1642 u64 blkno; 1643 struct ocfs2_extent_list *el; 1644 1645 BUG_ON(path->p_tree_depth == 0); 1646 1647 *cpos = 0; 1648 1649 blkno = path_leaf_bh(path)->b_blocknr; 1650 1651 /* Start at the tree node just above the leaf and work our way up. */ 1652 i = path->p_tree_depth - 1; 1653 while (i >= 0) { 1654 el = path->p_node[i].el; 1655 1656 /* 1657 * Find the extent record just before the one in our 1658 * path. 1659 */ 1660 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 1661 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 1662 if (j == 0) { 1663 if (i == 0) { 1664 /* 1665 * We've determined that the 1666 * path specified is already 1667 * the leftmost one - return a 1668 * cpos of zero. 1669 */ 1670 goto out; 1671 } 1672 /* 1673 * The leftmost record points to our 1674 * leaf - we need to travel up the 1675 * tree one level. 1676 */ 1677 goto next_node; 1678 } 1679 1680 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 1681 *cpos = *cpos + ocfs2_rec_clusters(el, 1682 &el->l_recs[j - 1]); 1683 *cpos = *cpos - 1; 1684 goto out; 1685 } 1686 } 1687 1688 /* 1689 * If we got here, we never found a valid node where 1690 * the tree indicated one should be. 1691 */ 1692 ocfs2_error(sb, 1693 "Invalid extent tree at extent block %llu\n", 1694 (unsigned long long)blkno); 1695 ret = -EROFS; 1696 goto out; 1697 1698 next_node: 1699 blkno = path->p_node[i].bh->b_blocknr; 1700 i--; 1701 } 1702 1703 out: 1704 return ret; 1705 } 1706 1707 /* 1708 * Extend the transaction by enough credits to complete the rotation, 1709 * and still leave at least the original number of credits allocated 1710 * to this transaction. 1711 */ 1712 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 1713 int op_credits, 1714 struct ocfs2_path *path) 1715 { 1716 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 1717 1718 if (handle->h_buffer_credits < credits) 1719 return ocfs2_extend_trans(handle, credits); 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * Trap the case where we're inserting into the theoretical range past 1726 * the _actual_ left leaf range. Otherwise, we'll rotate a record 1727 * whose cpos is less than ours into the right leaf. 1728 * 1729 * It's only necessary to look at the rightmost record of the left 1730 * leaf because the logic that calls us should ensure that the 1731 * theoretical ranges in the path components above the leaves are 1732 * correct. 1733 */ 1734 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 1735 u32 insert_cpos) 1736 { 1737 struct ocfs2_extent_list *left_el; 1738 struct ocfs2_extent_rec *rec; 1739 int next_free; 1740 1741 left_el = path_leaf_el(left_path); 1742 next_free = le16_to_cpu(left_el->l_next_free_rec); 1743 rec = &left_el->l_recs[next_free - 1]; 1744 1745 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 1746 return 1; 1747 return 0; 1748 } 1749 1750 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 1751 { 1752 int next_free = le16_to_cpu(el->l_next_free_rec); 1753 unsigned int range; 1754 struct ocfs2_extent_rec *rec; 1755 1756 if (next_free == 0) 1757 return 0; 1758 1759 rec = &el->l_recs[0]; 1760 if (ocfs2_is_empty_extent(rec)) { 1761 /* Empty list. */ 1762 if (next_free == 1) 1763 return 0; 1764 rec = &el->l_recs[1]; 1765 } 1766 1767 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1768 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1769 return 1; 1770 return 0; 1771 } 1772 1773 /* 1774 * Rotate all the records in a btree right one record, starting at insert_cpos. 1775 * 1776 * The path to the rightmost leaf should be passed in. 1777 * 1778 * The array is assumed to be large enough to hold an entire path (tree depth). 1779 * 1780 * Upon succesful return from this function: 1781 * 1782 * - The 'right_path' array will contain a path to the leaf block 1783 * whose range contains e_cpos. 1784 * - That leaf block will have a single empty extent in list index 0. 1785 * - In the case that the rotation requires a post-insert update, 1786 * *ret_left_path will contain a valid path which can be passed to 1787 * ocfs2_insert_path(). 1788 */ 1789 static int ocfs2_rotate_tree_right(struct inode *inode, 1790 handle_t *handle, 1791 enum ocfs2_split_type split, 1792 u32 insert_cpos, 1793 struct ocfs2_path *right_path, 1794 struct ocfs2_path **ret_left_path) 1795 { 1796 int ret, start, orig_credits = handle->h_buffer_credits; 1797 u32 cpos; 1798 struct ocfs2_path *left_path = NULL; 1799 1800 *ret_left_path = NULL; 1801 1802 left_path = ocfs2_new_path(path_root_bh(right_path), 1803 path_root_el(right_path)); 1804 if (!left_path) { 1805 ret = -ENOMEM; 1806 mlog_errno(ret); 1807 goto out; 1808 } 1809 1810 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 1811 if (ret) { 1812 mlog_errno(ret); 1813 goto out; 1814 } 1815 1816 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 1817 1818 /* 1819 * What we want to do here is: 1820 * 1821 * 1) Start with the rightmost path. 1822 * 1823 * 2) Determine a path to the leaf block directly to the left 1824 * of that leaf. 1825 * 1826 * 3) Determine the 'subtree root' - the lowest level tree node 1827 * which contains a path to both leaves. 1828 * 1829 * 4) Rotate the subtree. 1830 * 1831 * 5) Find the next subtree by considering the left path to be 1832 * the new right path. 1833 * 1834 * The check at the top of this while loop also accepts 1835 * insert_cpos == cpos because cpos is only a _theoretical_ 1836 * value to get us the left path - insert_cpos might very well 1837 * be filling that hole. 1838 * 1839 * Stop at a cpos of '0' because we either started at the 1840 * leftmost branch (i.e., a tree with one branch and a 1841 * rotation inside of it), or we've gone as far as we can in 1842 * rotating subtrees. 1843 */ 1844 while (cpos && insert_cpos <= cpos) { 1845 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 1846 insert_cpos, cpos); 1847 1848 ret = ocfs2_find_path(inode, left_path, cpos); 1849 if (ret) { 1850 mlog_errno(ret); 1851 goto out; 1852 } 1853 1854 mlog_bug_on_msg(path_leaf_bh(left_path) == 1855 path_leaf_bh(right_path), 1856 "Inode %lu: error during insert of %u " 1857 "(left path cpos %u) results in two identical " 1858 "paths ending at %llu\n", 1859 inode->i_ino, insert_cpos, cpos, 1860 (unsigned long long) 1861 path_leaf_bh(left_path)->b_blocknr); 1862 1863 if (split == SPLIT_NONE && 1864 ocfs2_rotate_requires_path_adjustment(left_path, 1865 insert_cpos)) { 1866 1867 /* 1868 * We've rotated the tree as much as we 1869 * should. The rest is up to 1870 * ocfs2_insert_path() to complete, after the 1871 * record insertion. We indicate this 1872 * situation by returning the left path. 1873 * 1874 * The reason we don't adjust the records here 1875 * before the record insert is that an error 1876 * later might break the rule where a parent 1877 * record e_cpos will reflect the actual 1878 * e_cpos of the 1st nonempty record of the 1879 * child list. 1880 */ 1881 *ret_left_path = left_path; 1882 goto out_ret_path; 1883 } 1884 1885 start = ocfs2_find_subtree_root(inode, left_path, right_path); 1886 1887 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 1888 start, 1889 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 1890 right_path->p_tree_depth); 1891 1892 ret = ocfs2_extend_rotate_transaction(handle, start, 1893 orig_credits, right_path); 1894 if (ret) { 1895 mlog_errno(ret); 1896 goto out; 1897 } 1898 1899 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 1900 right_path, start); 1901 if (ret) { 1902 mlog_errno(ret); 1903 goto out; 1904 } 1905 1906 if (split != SPLIT_NONE && 1907 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 1908 insert_cpos)) { 1909 /* 1910 * A rotate moves the rightmost left leaf 1911 * record over to the leftmost right leaf 1912 * slot. If we're doing an extent split 1913 * instead of a real insert, then we have to 1914 * check that the extent to be split wasn't 1915 * just moved over. If it was, then we can 1916 * exit here, passing left_path back - 1917 * ocfs2_split_extent() is smart enough to 1918 * search both leaves. 1919 */ 1920 *ret_left_path = left_path; 1921 goto out_ret_path; 1922 } 1923 1924 /* 1925 * There is no need to re-read the next right path 1926 * as we know that it'll be our current left 1927 * path. Optimize by copying values instead. 1928 */ 1929 ocfs2_mv_path(right_path, left_path); 1930 1931 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 1932 &cpos); 1933 if (ret) { 1934 mlog_errno(ret); 1935 goto out; 1936 } 1937 } 1938 1939 out: 1940 ocfs2_free_path(left_path); 1941 1942 out_ret_path: 1943 return ret; 1944 } 1945 1946 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 1947 struct ocfs2_path *path) 1948 { 1949 int i, idx; 1950 struct ocfs2_extent_rec *rec; 1951 struct ocfs2_extent_list *el; 1952 struct ocfs2_extent_block *eb; 1953 u32 range; 1954 1955 /* Path should always be rightmost. */ 1956 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 1957 BUG_ON(eb->h_next_leaf_blk != 0ULL); 1958 1959 el = &eb->h_list; 1960 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 1961 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1962 rec = &el->l_recs[idx]; 1963 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1964 1965 for (i = 0; i < path->p_tree_depth; i++) { 1966 el = path->p_node[i].el; 1967 idx = le16_to_cpu(el->l_next_free_rec) - 1; 1968 rec = &el->l_recs[idx]; 1969 1970 rec->e_int_clusters = cpu_to_le32(range); 1971 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 1972 1973 ocfs2_journal_dirty(handle, path->p_node[i].bh); 1974 } 1975 } 1976 1977 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 1978 struct ocfs2_cached_dealloc_ctxt *dealloc, 1979 struct ocfs2_path *path, int unlink_start) 1980 { 1981 int ret, i; 1982 struct ocfs2_extent_block *eb; 1983 struct ocfs2_extent_list *el; 1984 struct buffer_head *bh; 1985 1986 for(i = unlink_start; i < path_num_items(path); i++) { 1987 bh = path->p_node[i].bh; 1988 1989 eb = (struct ocfs2_extent_block *)bh->b_data; 1990 /* 1991 * Not all nodes might have had their final count 1992 * decremented by the caller - handle this here. 1993 */ 1994 el = &eb->h_list; 1995 if (le16_to_cpu(el->l_next_free_rec) > 1) { 1996 mlog(ML_ERROR, 1997 "Inode %llu, attempted to remove extent block " 1998 "%llu with %u records\n", 1999 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2000 (unsigned long long)le64_to_cpu(eb->h_blkno), 2001 le16_to_cpu(el->l_next_free_rec)); 2002 2003 ocfs2_journal_dirty(handle, bh); 2004 ocfs2_remove_from_cache(inode, bh); 2005 continue; 2006 } 2007 2008 el->l_next_free_rec = 0; 2009 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2010 2011 ocfs2_journal_dirty(handle, bh); 2012 2013 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2014 if (ret) 2015 mlog_errno(ret); 2016 2017 ocfs2_remove_from_cache(inode, bh); 2018 } 2019 } 2020 2021 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2022 struct ocfs2_path *left_path, 2023 struct ocfs2_path *right_path, 2024 int subtree_index, 2025 struct ocfs2_cached_dealloc_ctxt *dealloc) 2026 { 2027 int i; 2028 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2029 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2030 struct ocfs2_extent_list *el; 2031 struct ocfs2_extent_block *eb; 2032 2033 el = path_leaf_el(left_path); 2034 2035 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2036 2037 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2038 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2039 break; 2040 2041 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2042 2043 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2044 le16_add_cpu(&root_el->l_next_free_rec, -1); 2045 2046 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2047 eb->h_next_leaf_blk = 0; 2048 2049 ocfs2_journal_dirty(handle, root_bh); 2050 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2051 2052 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2053 subtree_index + 1); 2054 } 2055 2056 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2057 struct ocfs2_path *left_path, 2058 struct ocfs2_path *right_path, 2059 int subtree_index, 2060 struct ocfs2_cached_dealloc_ctxt *dealloc, 2061 int *deleted) 2062 { 2063 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2064 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path); 2065 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 2066 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2067 struct ocfs2_extent_block *eb; 2068 2069 *deleted = 0; 2070 2071 right_leaf_el = path_leaf_el(right_path); 2072 left_leaf_el = path_leaf_el(left_path); 2073 root_bh = left_path->p_node[subtree_index].bh; 2074 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2075 2076 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2077 return 0; 2078 2079 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2080 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2081 /* 2082 * It's legal for us to proceed if the right leaf is 2083 * the rightmost one and it has an empty extent. There 2084 * are two cases to handle - whether the leaf will be 2085 * empty after removal or not. If the leaf isn't empty 2086 * then just remove the empty extent up front. The 2087 * next block will handle empty leaves by flagging 2088 * them for unlink. 2089 * 2090 * Non rightmost leaves will throw -EAGAIN and the 2091 * caller can manually move the subtree and retry. 2092 */ 2093 2094 if (eb->h_next_leaf_blk != 0ULL) 2095 return -EAGAIN; 2096 2097 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2098 ret = ocfs2_journal_access(handle, inode, 2099 path_leaf_bh(right_path), 2100 OCFS2_JOURNAL_ACCESS_WRITE); 2101 if (ret) { 2102 mlog_errno(ret); 2103 goto out; 2104 } 2105 2106 ocfs2_remove_empty_extent(right_leaf_el); 2107 } else 2108 right_has_empty = 1; 2109 } 2110 2111 if (eb->h_next_leaf_blk == 0ULL && 2112 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2113 /* 2114 * We have to update i_last_eb_blk during the meta 2115 * data delete. 2116 */ 2117 ret = ocfs2_journal_access(handle, inode, di_bh, 2118 OCFS2_JOURNAL_ACCESS_WRITE); 2119 if (ret) { 2120 mlog_errno(ret); 2121 goto out; 2122 } 2123 2124 del_right_subtree = 1; 2125 } 2126 2127 /* 2128 * Getting here with an empty extent in the right path implies 2129 * that it's the rightmost path and will be deleted. 2130 */ 2131 BUG_ON(right_has_empty && !del_right_subtree); 2132 2133 ret = ocfs2_journal_access(handle, inode, root_bh, 2134 OCFS2_JOURNAL_ACCESS_WRITE); 2135 if (ret) { 2136 mlog_errno(ret); 2137 goto out; 2138 } 2139 2140 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2141 ret = ocfs2_journal_access(handle, inode, 2142 right_path->p_node[i].bh, 2143 OCFS2_JOURNAL_ACCESS_WRITE); 2144 if (ret) { 2145 mlog_errno(ret); 2146 goto out; 2147 } 2148 2149 ret = ocfs2_journal_access(handle, inode, 2150 left_path->p_node[i].bh, 2151 OCFS2_JOURNAL_ACCESS_WRITE); 2152 if (ret) { 2153 mlog_errno(ret); 2154 goto out; 2155 } 2156 } 2157 2158 if (!right_has_empty) { 2159 /* 2160 * Only do this if we're moving a real 2161 * record. Otherwise, the action is delayed until 2162 * after removal of the right path in which case we 2163 * can do a simple shift to remove the empty extent. 2164 */ 2165 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2166 memset(&right_leaf_el->l_recs[0], 0, 2167 sizeof(struct ocfs2_extent_rec)); 2168 } 2169 if (eb->h_next_leaf_blk == 0ULL) { 2170 /* 2171 * Move recs over to get rid of empty extent, decrease 2172 * next_free. This is allowed to remove the last 2173 * extent in our leaf (setting l_next_free_rec to 2174 * zero) - the delete code below won't care. 2175 */ 2176 ocfs2_remove_empty_extent(right_leaf_el); 2177 } 2178 2179 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2180 if (ret) 2181 mlog_errno(ret); 2182 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2183 if (ret) 2184 mlog_errno(ret); 2185 2186 if (del_right_subtree) { 2187 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2188 subtree_index, dealloc); 2189 ocfs2_update_edge_lengths(inode, handle, left_path); 2190 2191 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2192 di->i_last_eb_blk = eb->h_blkno; 2193 2194 /* 2195 * Removal of the extent in the left leaf was skipped 2196 * above so we could delete the right path 2197 * 1st. 2198 */ 2199 if (right_has_empty) 2200 ocfs2_remove_empty_extent(left_leaf_el); 2201 2202 ret = ocfs2_journal_dirty(handle, di_bh); 2203 if (ret) 2204 mlog_errno(ret); 2205 2206 *deleted = 1; 2207 } else 2208 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2209 subtree_index); 2210 2211 out: 2212 return ret; 2213 } 2214 2215 /* 2216 * Given a full path, determine what cpos value would return us a path 2217 * containing the leaf immediately to the right of the current one. 2218 * 2219 * Will return zero if the path passed in is already the rightmost path. 2220 * 2221 * This looks similar, but is subtly different to 2222 * ocfs2_find_cpos_for_left_leaf(). 2223 */ 2224 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2225 struct ocfs2_path *path, u32 *cpos) 2226 { 2227 int i, j, ret = 0; 2228 u64 blkno; 2229 struct ocfs2_extent_list *el; 2230 2231 *cpos = 0; 2232 2233 if (path->p_tree_depth == 0) 2234 return 0; 2235 2236 blkno = path_leaf_bh(path)->b_blocknr; 2237 2238 /* Start at the tree node just above the leaf and work our way up. */ 2239 i = path->p_tree_depth - 1; 2240 while (i >= 0) { 2241 int next_free; 2242 2243 el = path->p_node[i].el; 2244 2245 /* 2246 * Find the extent record just after the one in our 2247 * path. 2248 */ 2249 next_free = le16_to_cpu(el->l_next_free_rec); 2250 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2251 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2252 if (j == (next_free - 1)) { 2253 if (i == 0) { 2254 /* 2255 * We've determined that the 2256 * path specified is already 2257 * the rightmost one - return a 2258 * cpos of zero. 2259 */ 2260 goto out; 2261 } 2262 /* 2263 * The rightmost record points to our 2264 * leaf - we need to travel up the 2265 * tree one level. 2266 */ 2267 goto next_node; 2268 } 2269 2270 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2271 goto out; 2272 } 2273 } 2274 2275 /* 2276 * If we got here, we never found a valid node where 2277 * the tree indicated one should be. 2278 */ 2279 ocfs2_error(sb, 2280 "Invalid extent tree at extent block %llu\n", 2281 (unsigned long long)blkno); 2282 ret = -EROFS; 2283 goto out; 2284 2285 next_node: 2286 blkno = path->p_node[i].bh->b_blocknr; 2287 i--; 2288 } 2289 2290 out: 2291 return ret; 2292 } 2293 2294 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2295 handle_t *handle, 2296 struct buffer_head *bh, 2297 struct ocfs2_extent_list *el) 2298 { 2299 int ret; 2300 2301 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2302 return 0; 2303 2304 ret = ocfs2_journal_access(handle, inode, bh, 2305 OCFS2_JOURNAL_ACCESS_WRITE); 2306 if (ret) { 2307 mlog_errno(ret); 2308 goto out; 2309 } 2310 2311 ocfs2_remove_empty_extent(el); 2312 2313 ret = ocfs2_journal_dirty(handle, bh); 2314 if (ret) 2315 mlog_errno(ret); 2316 2317 out: 2318 return ret; 2319 } 2320 2321 static int __ocfs2_rotate_tree_left(struct inode *inode, 2322 handle_t *handle, int orig_credits, 2323 struct ocfs2_path *path, 2324 struct ocfs2_cached_dealloc_ctxt *dealloc, 2325 struct ocfs2_path **empty_extent_path) 2326 { 2327 int ret, subtree_root, deleted; 2328 u32 right_cpos; 2329 struct ocfs2_path *left_path = NULL; 2330 struct ocfs2_path *right_path = NULL; 2331 2332 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2333 2334 *empty_extent_path = NULL; 2335 2336 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2337 &right_cpos); 2338 if (ret) { 2339 mlog_errno(ret); 2340 goto out; 2341 } 2342 2343 left_path = ocfs2_new_path(path_root_bh(path), 2344 path_root_el(path)); 2345 if (!left_path) { 2346 ret = -ENOMEM; 2347 mlog_errno(ret); 2348 goto out; 2349 } 2350 2351 ocfs2_cp_path(left_path, path); 2352 2353 right_path = ocfs2_new_path(path_root_bh(path), 2354 path_root_el(path)); 2355 if (!right_path) { 2356 ret = -ENOMEM; 2357 mlog_errno(ret); 2358 goto out; 2359 } 2360 2361 while (right_cpos) { 2362 ret = ocfs2_find_path(inode, right_path, right_cpos); 2363 if (ret) { 2364 mlog_errno(ret); 2365 goto out; 2366 } 2367 2368 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2369 right_path); 2370 2371 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2372 subtree_root, 2373 (unsigned long long) 2374 right_path->p_node[subtree_root].bh->b_blocknr, 2375 right_path->p_tree_depth); 2376 2377 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2378 orig_credits, left_path); 2379 if (ret) { 2380 mlog_errno(ret); 2381 goto out; 2382 } 2383 2384 /* 2385 * Caller might still want to make changes to the 2386 * tree root, so re-add it to the journal here. 2387 */ 2388 ret = ocfs2_journal_access(handle, inode, 2389 path_root_bh(left_path), 2390 OCFS2_JOURNAL_ACCESS_WRITE); 2391 if (ret) { 2392 mlog_errno(ret); 2393 goto out; 2394 } 2395 2396 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2397 right_path, subtree_root, 2398 dealloc, &deleted); 2399 if (ret == -EAGAIN) { 2400 /* 2401 * The rotation has to temporarily stop due to 2402 * the right subtree having an empty 2403 * extent. Pass it back to the caller for a 2404 * fixup. 2405 */ 2406 *empty_extent_path = right_path; 2407 right_path = NULL; 2408 goto out; 2409 } 2410 if (ret) { 2411 mlog_errno(ret); 2412 goto out; 2413 } 2414 2415 /* 2416 * The subtree rotate might have removed records on 2417 * the rightmost edge. If so, then rotation is 2418 * complete. 2419 */ 2420 if (deleted) 2421 break; 2422 2423 ocfs2_mv_path(left_path, right_path); 2424 2425 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2426 &right_cpos); 2427 if (ret) { 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 } 2432 2433 out: 2434 ocfs2_free_path(right_path); 2435 ocfs2_free_path(left_path); 2436 2437 return ret; 2438 } 2439 2440 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2441 struct ocfs2_path *path, 2442 struct ocfs2_cached_dealloc_ctxt *dealloc) 2443 { 2444 int ret, subtree_index; 2445 u32 cpos; 2446 struct ocfs2_path *left_path = NULL; 2447 struct ocfs2_dinode *di; 2448 struct ocfs2_extent_block *eb; 2449 struct ocfs2_extent_list *el; 2450 2451 /* 2452 * XXX: This code assumes that the root is an inode, which is 2453 * true for now but may change as tree code gets generic. 2454 */ 2455 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data; 2456 if (!OCFS2_IS_VALID_DINODE(di)) { 2457 ret = -EIO; 2458 ocfs2_error(inode->i_sb, 2459 "Inode %llu has invalid path root", 2460 (unsigned long long)OCFS2_I(inode)->ip_blkno); 2461 goto out; 2462 } 2463 2464 /* 2465 * There's two ways we handle this depending on 2466 * whether path is the only existing one. 2467 */ 2468 ret = ocfs2_extend_rotate_transaction(handle, 0, 2469 handle->h_buffer_credits, 2470 path); 2471 if (ret) { 2472 mlog_errno(ret); 2473 goto out; 2474 } 2475 2476 ret = ocfs2_journal_access_path(inode, handle, path); 2477 if (ret) { 2478 mlog_errno(ret); 2479 goto out; 2480 } 2481 2482 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 2483 if (ret) { 2484 mlog_errno(ret); 2485 goto out; 2486 } 2487 2488 if (cpos) { 2489 /* 2490 * We have a path to the left of this one - it needs 2491 * an update too. 2492 */ 2493 left_path = ocfs2_new_path(path_root_bh(path), 2494 path_root_el(path)); 2495 if (!left_path) { 2496 ret = -ENOMEM; 2497 mlog_errno(ret); 2498 goto out; 2499 } 2500 2501 ret = ocfs2_find_path(inode, left_path, cpos); 2502 if (ret) { 2503 mlog_errno(ret); 2504 goto out; 2505 } 2506 2507 ret = ocfs2_journal_access_path(inode, handle, left_path); 2508 if (ret) { 2509 mlog_errno(ret); 2510 goto out; 2511 } 2512 2513 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 2514 2515 ocfs2_unlink_subtree(inode, handle, left_path, path, 2516 subtree_index, dealloc); 2517 ocfs2_update_edge_lengths(inode, handle, left_path); 2518 2519 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2520 di->i_last_eb_blk = eb->h_blkno; 2521 } else { 2522 /* 2523 * 'path' is also the leftmost path which 2524 * means it must be the only one. This gets 2525 * handled differently because we want to 2526 * revert the inode back to having extents 2527 * in-line. 2528 */ 2529 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 2530 2531 el = &di->id2.i_list; 2532 el->l_tree_depth = 0; 2533 el->l_next_free_rec = 0; 2534 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2535 2536 di->i_last_eb_blk = 0; 2537 } 2538 2539 ocfs2_journal_dirty(handle, path_root_bh(path)); 2540 2541 out: 2542 ocfs2_free_path(left_path); 2543 return ret; 2544 } 2545 2546 /* 2547 * Left rotation of btree records. 2548 * 2549 * In many ways, this is (unsurprisingly) the opposite of right 2550 * rotation. We start at some non-rightmost path containing an empty 2551 * extent in the leaf block. The code works its way to the rightmost 2552 * path by rotating records to the left in every subtree. 2553 * 2554 * This is used by any code which reduces the number of extent records 2555 * in a leaf. After removal, an empty record should be placed in the 2556 * leftmost list position. 2557 * 2558 * This won't handle a length update of the rightmost path records if 2559 * the rightmost tree leaf record is removed so the caller is 2560 * responsible for detecting and correcting that. 2561 */ 2562 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 2563 struct ocfs2_path *path, 2564 struct ocfs2_cached_dealloc_ctxt *dealloc) 2565 { 2566 int ret, orig_credits = handle->h_buffer_credits; 2567 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 2568 struct ocfs2_extent_block *eb; 2569 struct ocfs2_extent_list *el; 2570 2571 el = path_leaf_el(path); 2572 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2573 return 0; 2574 2575 if (path->p_tree_depth == 0) { 2576 rightmost_no_delete: 2577 /* 2578 * In-inode extents. This is trivially handled, so do 2579 * it up front. 2580 */ 2581 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 2582 path_leaf_bh(path), 2583 path_leaf_el(path)); 2584 if (ret) 2585 mlog_errno(ret); 2586 goto out; 2587 } 2588 2589 /* 2590 * Handle rightmost branch now. There's several cases: 2591 * 1) simple rotation leaving records in there. That's trivial. 2592 * 2) rotation requiring a branch delete - there's no more 2593 * records left. Two cases of this: 2594 * a) There are branches to the left. 2595 * b) This is also the leftmost (the only) branch. 2596 * 2597 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 2598 * 2a) we need the left branch so that we can update it with the unlink 2599 * 2b) we need to bring the inode back to inline extents. 2600 */ 2601 2602 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2603 el = &eb->h_list; 2604 if (eb->h_next_leaf_blk == 0) { 2605 /* 2606 * This gets a bit tricky if we're going to delete the 2607 * rightmost path. Get the other cases out of the way 2608 * 1st. 2609 */ 2610 if (le16_to_cpu(el->l_next_free_rec) > 1) 2611 goto rightmost_no_delete; 2612 2613 if (le16_to_cpu(el->l_next_free_rec) == 0) { 2614 ret = -EIO; 2615 ocfs2_error(inode->i_sb, 2616 "Inode %llu has empty extent block at %llu", 2617 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2618 (unsigned long long)le64_to_cpu(eb->h_blkno)); 2619 goto out; 2620 } 2621 2622 /* 2623 * XXX: The caller can not trust "path" any more after 2624 * this as it will have been deleted. What do we do? 2625 * 2626 * In theory the rotate-for-merge code will never get 2627 * here because it'll always ask for a rotate in a 2628 * nonempty list. 2629 */ 2630 2631 ret = ocfs2_remove_rightmost_path(inode, handle, path, 2632 dealloc); 2633 if (ret) 2634 mlog_errno(ret); 2635 goto out; 2636 } 2637 2638 /* 2639 * Now we can loop, remembering the path we get from -EAGAIN 2640 * and restarting from there. 2641 */ 2642 try_rotate: 2643 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 2644 dealloc, &restart_path); 2645 if (ret && ret != -EAGAIN) { 2646 mlog_errno(ret); 2647 goto out; 2648 } 2649 2650 while (ret == -EAGAIN) { 2651 tmp_path = restart_path; 2652 restart_path = NULL; 2653 2654 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 2655 tmp_path, dealloc, 2656 &restart_path); 2657 if (ret && ret != -EAGAIN) { 2658 mlog_errno(ret); 2659 goto out; 2660 } 2661 2662 ocfs2_free_path(tmp_path); 2663 tmp_path = NULL; 2664 2665 if (ret == 0) 2666 goto try_rotate; 2667 } 2668 2669 out: 2670 ocfs2_free_path(tmp_path); 2671 ocfs2_free_path(restart_path); 2672 return ret; 2673 } 2674 2675 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 2676 int index) 2677 { 2678 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 2679 unsigned int size; 2680 2681 if (rec->e_leaf_clusters == 0) { 2682 /* 2683 * We consumed all of the merged-from record. An empty 2684 * extent cannot exist anywhere but the 1st array 2685 * position, so move things over if the merged-from 2686 * record doesn't occupy that position. 2687 * 2688 * This creates a new empty extent so the caller 2689 * should be smart enough to have removed any existing 2690 * ones. 2691 */ 2692 if (index > 0) { 2693 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 2694 size = index * sizeof(struct ocfs2_extent_rec); 2695 memmove(&el->l_recs[1], &el->l_recs[0], size); 2696 } 2697 2698 /* 2699 * Always memset - the caller doesn't check whether it 2700 * created an empty extent, so there could be junk in 2701 * the other fields. 2702 */ 2703 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2704 } 2705 } 2706 2707 static int ocfs2_get_right_path(struct inode *inode, 2708 struct ocfs2_path *left_path, 2709 struct ocfs2_path **ret_right_path) 2710 { 2711 int ret; 2712 u32 right_cpos; 2713 struct ocfs2_path *right_path = NULL; 2714 struct ocfs2_extent_list *left_el; 2715 2716 *ret_right_path = NULL; 2717 2718 /* This function shouldn't be called for non-trees. */ 2719 BUG_ON(left_path->p_tree_depth == 0); 2720 2721 left_el = path_leaf_el(left_path); 2722 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 2723 2724 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2725 &right_cpos); 2726 if (ret) { 2727 mlog_errno(ret); 2728 goto out; 2729 } 2730 2731 /* This function shouldn't be called for the rightmost leaf. */ 2732 BUG_ON(right_cpos == 0); 2733 2734 right_path = ocfs2_new_path(path_root_bh(left_path), 2735 path_root_el(left_path)); 2736 if (!right_path) { 2737 ret = -ENOMEM; 2738 mlog_errno(ret); 2739 goto out; 2740 } 2741 2742 ret = ocfs2_find_path(inode, right_path, right_cpos); 2743 if (ret) { 2744 mlog_errno(ret); 2745 goto out; 2746 } 2747 2748 *ret_right_path = right_path; 2749 out: 2750 if (ret) 2751 ocfs2_free_path(right_path); 2752 return ret; 2753 } 2754 2755 /* 2756 * Remove split_rec clusters from the record at index and merge them 2757 * onto the beginning of the record "next" to it. 2758 * For index < l_count - 1, the next means the extent rec at index + 1. 2759 * For index == l_count - 1, the "next" means the 1st extent rec of the 2760 * next extent block. 2761 */ 2762 static int ocfs2_merge_rec_right(struct inode *inode, 2763 struct ocfs2_path *left_path, 2764 handle_t *handle, 2765 struct ocfs2_extent_rec *split_rec, 2766 int index) 2767 { 2768 int ret, next_free, i; 2769 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2770 struct ocfs2_extent_rec *left_rec; 2771 struct ocfs2_extent_rec *right_rec; 2772 struct ocfs2_extent_list *right_el; 2773 struct ocfs2_path *right_path = NULL; 2774 int subtree_index = 0; 2775 struct ocfs2_extent_list *el = path_leaf_el(left_path); 2776 struct buffer_head *bh = path_leaf_bh(left_path); 2777 struct buffer_head *root_bh = NULL; 2778 2779 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 2780 left_rec = &el->l_recs[index]; 2781 2782 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 2783 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 2784 /* we meet with a cross extent block merge. */ 2785 ret = ocfs2_get_right_path(inode, left_path, &right_path); 2786 if (ret) { 2787 mlog_errno(ret); 2788 goto out; 2789 } 2790 2791 right_el = path_leaf_el(right_path); 2792 next_free = le16_to_cpu(right_el->l_next_free_rec); 2793 BUG_ON(next_free <= 0); 2794 right_rec = &right_el->l_recs[0]; 2795 if (ocfs2_is_empty_extent(right_rec)) { 2796 BUG_ON(next_free <= 1); 2797 right_rec = &right_el->l_recs[1]; 2798 } 2799 2800 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 2801 le16_to_cpu(left_rec->e_leaf_clusters) != 2802 le32_to_cpu(right_rec->e_cpos)); 2803 2804 subtree_index = ocfs2_find_subtree_root(inode, 2805 left_path, right_path); 2806 2807 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 2808 handle->h_buffer_credits, 2809 right_path); 2810 if (ret) { 2811 mlog_errno(ret); 2812 goto out; 2813 } 2814 2815 root_bh = left_path->p_node[subtree_index].bh; 2816 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2817 2818 ret = ocfs2_journal_access(handle, inode, root_bh, 2819 OCFS2_JOURNAL_ACCESS_WRITE); 2820 if (ret) { 2821 mlog_errno(ret); 2822 goto out; 2823 } 2824 2825 for (i = subtree_index + 1; 2826 i < path_num_items(right_path); i++) { 2827 ret = ocfs2_journal_access(handle, inode, 2828 right_path->p_node[i].bh, 2829 OCFS2_JOURNAL_ACCESS_WRITE); 2830 if (ret) { 2831 mlog_errno(ret); 2832 goto out; 2833 } 2834 2835 ret = ocfs2_journal_access(handle, inode, 2836 left_path->p_node[i].bh, 2837 OCFS2_JOURNAL_ACCESS_WRITE); 2838 if (ret) { 2839 mlog_errno(ret); 2840 goto out; 2841 } 2842 } 2843 2844 } else { 2845 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 2846 right_rec = &el->l_recs[index + 1]; 2847 } 2848 2849 ret = ocfs2_journal_access(handle, inode, bh, 2850 OCFS2_JOURNAL_ACCESS_WRITE); 2851 if (ret) { 2852 mlog_errno(ret); 2853 goto out; 2854 } 2855 2856 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 2857 2858 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 2859 le64_add_cpu(&right_rec->e_blkno, 2860 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 2861 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 2862 2863 ocfs2_cleanup_merge(el, index); 2864 2865 ret = ocfs2_journal_dirty(handle, bh); 2866 if (ret) 2867 mlog_errno(ret); 2868 2869 if (right_path) { 2870 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2871 if (ret) 2872 mlog_errno(ret); 2873 2874 ocfs2_complete_edge_insert(inode, handle, left_path, 2875 right_path, subtree_index); 2876 } 2877 out: 2878 if (right_path) 2879 ocfs2_free_path(right_path); 2880 return ret; 2881 } 2882 2883 static int ocfs2_get_left_path(struct inode *inode, 2884 struct ocfs2_path *right_path, 2885 struct ocfs2_path **ret_left_path) 2886 { 2887 int ret; 2888 u32 left_cpos; 2889 struct ocfs2_path *left_path = NULL; 2890 2891 *ret_left_path = NULL; 2892 2893 /* This function shouldn't be called for non-trees. */ 2894 BUG_ON(right_path->p_tree_depth == 0); 2895 2896 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 2897 right_path, &left_cpos); 2898 if (ret) { 2899 mlog_errno(ret); 2900 goto out; 2901 } 2902 2903 /* This function shouldn't be called for the leftmost leaf. */ 2904 BUG_ON(left_cpos == 0); 2905 2906 left_path = ocfs2_new_path(path_root_bh(right_path), 2907 path_root_el(right_path)); 2908 if (!left_path) { 2909 ret = -ENOMEM; 2910 mlog_errno(ret); 2911 goto out; 2912 } 2913 2914 ret = ocfs2_find_path(inode, left_path, left_cpos); 2915 if (ret) { 2916 mlog_errno(ret); 2917 goto out; 2918 } 2919 2920 *ret_left_path = left_path; 2921 out: 2922 if (ret) 2923 ocfs2_free_path(left_path); 2924 return ret; 2925 } 2926 2927 /* 2928 * Remove split_rec clusters from the record at index and merge them 2929 * onto the tail of the record "before" it. 2930 * For index > 0, the "before" means the extent rec at index - 1. 2931 * 2932 * For index == 0, the "before" means the last record of the previous 2933 * extent block. And there is also a situation that we may need to 2934 * remove the rightmost leaf extent block in the right_path and change 2935 * the right path to indicate the new rightmost path. 2936 */ 2937 static int ocfs2_merge_rec_left(struct inode *inode, 2938 struct ocfs2_path *right_path, 2939 handle_t *handle, 2940 struct ocfs2_extent_rec *split_rec, 2941 struct ocfs2_cached_dealloc_ctxt *dealloc, 2942 int index) 2943 { 2944 int ret, i, subtree_index = 0, has_empty_extent = 0; 2945 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 2946 struct ocfs2_extent_rec *left_rec; 2947 struct ocfs2_extent_rec *right_rec; 2948 struct ocfs2_extent_list *el = path_leaf_el(right_path); 2949 struct buffer_head *bh = path_leaf_bh(right_path); 2950 struct buffer_head *root_bh = NULL; 2951 struct ocfs2_path *left_path = NULL; 2952 struct ocfs2_extent_list *left_el; 2953 2954 BUG_ON(index < 0); 2955 2956 right_rec = &el->l_recs[index]; 2957 if (index == 0) { 2958 /* we meet with a cross extent block merge. */ 2959 ret = ocfs2_get_left_path(inode, right_path, &left_path); 2960 if (ret) { 2961 mlog_errno(ret); 2962 goto out; 2963 } 2964 2965 left_el = path_leaf_el(left_path); 2966 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 2967 le16_to_cpu(left_el->l_count)); 2968 2969 left_rec = &left_el->l_recs[ 2970 le16_to_cpu(left_el->l_next_free_rec) - 1]; 2971 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 2972 le16_to_cpu(left_rec->e_leaf_clusters) != 2973 le32_to_cpu(split_rec->e_cpos)); 2974 2975 subtree_index = ocfs2_find_subtree_root(inode, 2976 left_path, right_path); 2977 2978 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 2979 handle->h_buffer_credits, 2980 left_path); 2981 if (ret) { 2982 mlog_errno(ret); 2983 goto out; 2984 } 2985 2986 root_bh = left_path->p_node[subtree_index].bh; 2987 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2988 2989 ret = ocfs2_journal_access(handle, inode, root_bh, 2990 OCFS2_JOURNAL_ACCESS_WRITE); 2991 if (ret) { 2992 mlog_errno(ret); 2993 goto out; 2994 } 2995 2996 for (i = subtree_index + 1; 2997 i < path_num_items(right_path); i++) { 2998 ret = ocfs2_journal_access(handle, inode, 2999 right_path->p_node[i].bh, 3000 OCFS2_JOURNAL_ACCESS_WRITE); 3001 if (ret) { 3002 mlog_errno(ret); 3003 goto out; 3004 } 3005 3006 ret = ocfs2_journal_access(handle, inode, 3007 left_path->p_node[i].bh, 3008 OCFS2_JOURNAL_ACCESS_WRITE); 3009 if (ret) { 3010 mlog_errno(ret); 3011 goto out; 3012 } 3013 } 3014 } else { 3015 left_rec = &el->l_recs[index - 1]; 3016 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3017 has_empty_extent = 1; 3018 } 3019 3020 ret = ocfs2_journal_access(handle, inode, bh, 3021 OCFS2_JOURNAL_ACCESS_WRITE); 3022 if (ret) { 3023 mlog_errno(ret); 3024 goto out; 3025 } 3026 3027 if (has_empty_extent && index == 1) { 3028 /* 3029 * The easy case - we can just plop the record right in. 3030 */ 3031 *left_rec = *split_rec; 3032 3033 has_empty_extent = 0; 3034 } else 3035 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3036 3037 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3038 le64_add_cpu(&right_rec->e_blkno, 3039 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3040 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3041 3042 ocfs2_cleanup_merge(el, index); 3043 3044 ret = ocfs2_journal_dirty(handle, bh); 3045 if (ret) 3046 mlog_errno(ret); 3047 3048 if (left_path) { 3049 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3050 if (ret) 3051 mlog_errno(ret); 3052 3053 /* 3054 * In the situation that the right_rec is empty and the extent 3055 * block is empty also, ocfs2_complete_edge_insert can't handle 3056 * it and we need to delete the right extent block. 3057 */ 3058 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3059 le16_to_cpu(el->l_next_free_rec) == 1) { 3060 3061 ret = ocfs2_remove_rightmost_path(inode, handle, 3062 right_path, dealloc); 3063 if (ret) { 3064 mlog_errno(ret); 3065 goto out; 3066 } 3067 3068 /* Now the rightmost extent block has been deleted. 3069 * So we use the new rightmost path. 3070 */ 3071 ocfs2_mv_path(right_path, left_path); 3072 left_path = NULL; 3073 } else 3074 ocfs2_complete_edge_insert(inode, handle, left_path, 3075 right_path, subtree_index); 3076 } 3077 out: 3078 if (left_path) 3079 ocfs2_free_path(left_path); 3080 return ret; 3081 } 3082 3083 static int ocfs2_try_to_merge_extent(struct inode *inode, 3084 handle_t *handle, 3085 struct ocfs2_path *path, 3086 int split_index, 3087 struct ocfs2_extent_rec *split_rec, 3088 struct ocfs2_cached_dealloc_ctxt *dealloc, 3089 struct ocfs2_merge_ctxt *ctxt) 3090 3091 { 3092 int ret = 0; 3093 struct ocfs2_extent_list *el = path_leaf_el(path); 3094 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3095 3096 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3097 3098 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3099 /* 3100 * The merge code will need to create an empty 3101 * extent to take the place of the newly 3102 * emptied slot. Remove any pre-existing empty 3103 * extents - having more than one in a leaf is 3104 * illegal. 3105 */ 3106 ret = ocfs2_rotate_tree_left(inode, handle, path, 3107 dealloc); 3108 if (ret) { 3109 mlog_errno(ret); 3110 goto out; 3111 } 3112 split_index--; 3113 rec = &el->l_recs[split_index]; 3114 } 3115 3116 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3117 /* 3118 * Left-right contig implies this. 3119 */ 3120 BUG_ON(!ctxt->c_split_covers_rec); 3121 3122 /* 3123 * Since the leftright insert always covers the entire 3124 * extent, this call will delete the insert record 3125 * entirely, resulting in an empty extent record added to 3126 * the extent block. 3127 * 3128 * Since the adding of an empty extent shifts 3129 * everything back to the right, there's no need to 3130 * update split_index here. 3131 * 3132 * When the split_index is zero, we need to merge it to the 3133 * prevoius extent block. It is more efficient and easier 3134 * if we do merge_right first and merge_left later. 3135 */ 3136 ret = ocfs2_merge_rec_right(inode, path, 3137 handle, split_rec, 3138 split_index); 3139 if (ret) { 3140 mlog_errno(ret); 3141 goto out; 3142 } 3143 3144 /* 3145 * We can only get this from logic error above. 3146 */ 3147 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3148 3149 /* The merge left us with an empty extent, remove it. */ 3150 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 3151 if (ret) { 3152 mlog_errno(ret); 3153 goto out; 3154 } 3155 3156 rec = &el->l_recs[split_index]; 3157 3158 /* 3159 * Note that we don't pass split_rec here on purpose - 3160 * we've merged it into the rec already. 3161 */ 3162 ret = ocfs2_merge_rec_left(inode, path, 3163 handle, rec, 3164 dealloc, 3165 split_index); 3166 3167 if (ret) { 3168 mlog_errno(ret); 3169 goto out; 3170 } 3171 3172 ret = ocfs2_rotate_tree_left(inode, handle, path, 3173 dealloc); 3174 /* 3175 * Error from this last rotate is not critical, so 3176 * print but don't bubble it up. 3177 */ 3178 if (ret) 3179 mlog_errno(ret); 3180 ret = 0; 3181 } else { 3182 /* 3183 * Merge a record to the left or right. 3184 * 3185 * 'contig_type' is relative to the existing record, 3186 * so for example, if we're "right contig", it's to 3187 * the record on the left (hence the left merge). 3188 */ 3189 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3190 ret = ocfs2_merge_rec_left(inode, 3191 path, 3192 handle, split_rec, 3193 dealloc, 3194 split_index); 3195 if (ret) { 3196 mlog_errno(ret); 3197 goto out; 3198 } 3199 } else { 3200 ret = ocfs2_merge_rec_right(inode, 3201 path, 3202 handle, split_rec, 3203 split_index); 3204 if (ret) { 3205 mlog_errno(ret); 3206 goto out; 3207 } 3208 } 3209 3210 if (ctxt->c_split_covers_rec) { 3211 /* 3212 * The merge may have left an empty extent in 3213 * our leaf. Try to rotate it away. 3214 */ 3215 ret = ocfs2_rotate_tree_left(inode, handle, path, 3216 dealloc); 3217 if (ret) 3218 mlog_errno(ret); 3219 ret = 0; 3220 } 3221 } 3222 3223 out: 3224 return ret; 3225 } 3226 3227 static void ocfs2_subtract_from_rec(struct super_block *sb, 3228 enum ocfs2_split_type split, 3229 struct ocfs2_extent_rec *rec, 3230 struct ocfs2_extent_rec *split_rec) 3231 { 3232 u64 len_blocks; 3233 3234 len_blocks = ocfs2_clusters_to_blocks(sb, 3235 le16_to_cpu(split_rec->e_leaf_clusters)); 3236 3237 if (split == SPLIT_LEFT) { 3238 /* 3239 * Region is on the left edge of the existing 3240 * record. 3241 */ 3242 le32_add_cpu(&rec->e_cpos, 3243 le16_to_cpu(split_rec->e_leaf_clusters)); 3244 le64_add_cpu(&rec->e_blkno, len_blocks); 3245 le16_add_cpu(&rec->e_leaf_clusters, 3246 -le16_to_cpu(split_rec->e_leaf_clusters)); 3247 } else { 3248 /* 3249 * Region is on the right edge of the existing 3250 * record. 3251 */ 3252 le16_add_cpu(&rec->e_leaf_clusters, 3253 -le16_to_cpu(split_rec->e_leaf_clusters)); 3254 } 3255 } 3256 3257 /* 3258 * Do the final bits of extent record insertion at the target leaf 3259 * list. If this leaf is part of an allocation tree, it is assumed 3260 * that the tree above has been prepared. 3261 */ 3262 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3263 struct ocfs2_extent_list *el, 3264 struct ocfs2_insert_type *insert, 3265 struct inode *inode) 3266 { 3267 int i = insert->ins_contig_index; 3268 unsigned int range; 3269 struct ocfs2_extent_rec *rec; 3270 3271 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3272 3273 if (insert->ins_split != SPLIT_NONE) { 3274 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3275 BUG_ON(i == -1); 3276 rec = &el->l_recs[i]; 3277 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3278 insert_rec); 3279 goto rotate; 3280 } 3281 3282 /* 3283 * Contiguous insert - either left or right. 3284 */ 3285 if (insert->ins_contig != CONTIG_NONE) { 3286 rec = &el->l_recs[i]; 3287 if (insert->ins_contig == CONTIG_LEFT) { 3288 rec->e_blkno = insert_rec->e_blkno; 3289 rec->e_cpos = insert_rec->e_cpos; 3290 } 3291 le16_add_cpu(&rec->e_leaf_clusters, 3292 le16_to_cpu(insert_rec->e_leaf_clusters)); 3293 return; 3294 } 3295 3296 /* 3297 * Handle insert into an empty leaf. 3298 */ 3299 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3300 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3301 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3302 el->l_recs[0] = *insert_rec; 3303 el->l_next_free_rec = cpu_to_le16(1); 3304 return; 3305 } 3306 3307 /* 3308 * Appending insert. 3309 */ 3310 if (insert->ins_appending == APPEND_TAIL) { 3311 i = le16_to_cpu(el->l_next_free_rec) - 1; 3312 rec = &el->l_recs[i]; 3313 range = le32_to_cpu(rec->e_cpos) 3314 + le16_to_cpu(rec->e_leaf_clusters); 3315 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3316 3317 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3318 le16_to_cpu(el->l_count), 3319 "inode %lu, depth %u, count %u, next free %u, " 3320 "rec.cpos %u, rec.clusters %u, " 3321 "insert.cpos %u, insert.clusters %u\n", 3322 inode->i_ino, 3323 le16_to_cpu(el->l_tree_depth), 3324 le16_to_cpu(el->l_count), 3325 le16_to_cpu(el->l_next_free_rec), 3326 le32_to_cpu(el->l_recs[i].e_cpos), 3327 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3328 le32_to_cpu(insert_rec->e_cpos), 3329 le16_to_cpu(insert_rec->e_leaf_clusters)); 3330 i++; 3331 el->l_recs[i] = *insert_rec; 3332 le16_add_cpu(&el->l_next_free_rec, 1); 3333 return; 3334 } 3335 3336 rotate: 3337 /* 3338 * Ok, we have to rotate. 3339 * 3340 * At this point, it is safe to assume that inserting into an 3341 * empty leaf and appending to a leaf have both been handled 3342 * above. 3343 * 3344 * This leaf needs to have space, either by the empty 1st 3345 * extent record, or by virtue of an l_next_rec < l_count. 3346 */ 3347 ocfs2_rotate_leaf(el, insert_rec); 3348 } 3349 3350 static inline void ocfs2_update_dinode_clusters(struct inode *inode, 3351 struct ocfs2_dinode *di, 3352 u32 clusters) 3353 { 3354 le32_add_cpu(&di->i_clusters, clusters); 3355 spin_lock(&OCFS2_I(inode)->ip_lock); 3356 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 3357 spin_unlock(&OCFS2_I(inode)->ip_lock); 3358 } 3359 3360 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3361 handle_t *handle, 3362 struct ocfs2_path *path, 3363 struct ocfs2_extent_rec *insert_rec) 3364 { 3365 int ret, i, next_free; 3366 struct buffer_head *bh; 3367 struct ocfs2_extent_list *el; 3368 struct ocfs2_extent_rec *rec; 3369 3370 /* 3371 * Update everything except the leaf block. 3372 */ 3373 for (i = 0; i < path->p_tree_depth; i++) { 3374 bh = path->p_node[i].bh; 3375 el = path->p_node[i].el; 3376 3377 next_free = le16_to_cpu(el->l_next_free_rec); 3378 if (next_free == 0) { 3379 ocfs2_error(inode->i_sb, 3380 "Dinode %llu has a bad extent list", 3381 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3382 ret = -EIO; 3383 return; 3384 } 3385 3386 rec = &el->l_recs[next_free - 1]; 3387 3388 rec->e_int_clusters = insert_rec->e_cpos; 3389 le32_add_cpu(&rec->e_int_clusters, 3390 le16_to_cpu(insert_rec->e_leaf_clusters)); 3391 le32_add_cpu(&rec->e_int_clusters, 3392 -le32_to_cpu(rec->e_cpos)); 3393 3394 ret = ocfs2_journal_dirty(handle, bh); 3395 if (ret) 3396 mlog_errno(ret); 3397 3398 } 3399 } 3400 3401 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3402 struct ocfs2_extent_rec *insert_rec, 3403 struct ocfs2_path *right_path, 3404 struct ocfs2_path **ret_left_path) 3405 { 3406 int ret, next_free; 3407 struct ocfs2_extent_list *el; 3408 struct ocfs2_path *left_path = NULL; 3409 3410 *ret_left_path = NULL; 3411 3412 /* 3413 * This shouldn't happen for non-trees. The extent rec cluster 3414 * count manipulation below only works for interior nodes. 3415 */ 3416 BUG_ON(right_path->p_tree_depth == 0); 3417 3418 /* 3419 * If our appending insert is at the leftmost edge of a leaf, 3420 * then we might need to update the rightmost records of the 3421 * neighboring path. 3422 */ 3423 el = path_leaf_el(right_path); 3424 next_free = le16_to_cpu(el->l_next_free_rec); 3425 if (next_free == 0 || 3426 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3427 u32 left_cpos; 3428 3429 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3430 &left_cpos); 3431 if (ret) { 3432 mlog_errno(ret); 3433 goto out; 3434 } 3435 3436 mlog(0, "Append may need a left path update. cpos: %u, " 3437 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3438 left_cpos); 3439 3440 /* 3441 * No need to worry if the append is already in the 3442 * leftmost leaf. 3443 */ 3444 if (left_cpos) { 3445 left_path = ocfs2_new_path(path_root_bh(right_path), 3446 path_root_el(right_path)); 3447 if (!left_path) { 3448 ret = -ENOMEM; 3449 mlog_errno(ret); 3450 goto out; 3451 } 3452 3453 ret = ocfs2_find_path(inode, left_path, left_cpos); 3454 if (ret) { 3455 mlog_errno(ret); 3456 goto out; 3457 } 3458 3459 /* 3460 * ocfs2_insert_path() will pass the left_path to the 3461 * journal for us. 3462 */ 3463 } 3464 } 3465 3466 ret = ocfs2_journal_access_path(inode, handle, right_path); 3467 if (ret) { 3468 mlog_errno(ret); 3469 goto out; 3470 } 3471 3472 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3473 3474 *ret_left_path = left_path; 3475 ret = 0; 3476 out: 3477 if (ret != 0) 3478 ocfs2_free_path(left_path); 3479 3480 return ret; 3481 } 3482 3483 static void ocfs2_split_record(struct inode *inode, 3484 struct ocfs2_path *left_path, 3485 struct ocfs2_path *right_path, 3486 struct ocfs2_extent_rec *split_rec, 3487 enum ocfs2_split_type split) 3488 { 3489 int index; 3490 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3491 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3492 struct ocfs2_extent_rec *rec, *tmprec; 3493 3494 right_el = path_leaf_el(right_path);; 3495 if (left_path) 3496 left_el = path_leaf_el(left_path); 3497 3498 el = right_el; 3499 insert_el = right_el; 3500 index = ocfs2_search_extent_list(el, cpos); 3501 if (index != -1) { 3502 if (index == 0 && left_path) { 3503 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3504 3505 /* 3506 * This typically means that the record 3507 * started in the left path but moved to the 3508 * right as a result of rotation. We either 3509 * move the existing record to the left, or we 3510 * do the later insert there. 3511 * 3512 * In this case, the left path should always 3513 * exist as the rotate code will have passed 3514 * it back for a post-insert update. 3515 */ 3516 3517 if (split == SPLIT_LEFT) { 3518 /* 3519 * It's a left split. Since we know 3520 * that the rotate code gave us an 3521 * empty extent in the left path, we 3522 * can just do the insert there. 3523 */ 3524 insert_el = left_el; 3525 } else { 3526 /* 3527 * Right split - we have to move the 3528 * existing record over to the left 3529 * leaf. The insert will be into the 3530 * newly created empty extent in the 3531 * right leaf. 3532 */ 3533 tmprec = &right_el->l_recs[index]; 3534 ocfs2_rotate_leaf(left_el, tmprec); 3535 el = left_el; 3536 3537 memset(tmprec, 0, sizeof(*tmprec)); 3538 index = ocfs2_search_extent_list(left_el, cpos); 3539 BUG_ON(index == -1); 3540 } 3541 } 3542 } else { 3543 BUG_ON(!left_path); 3544 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 3545 /* 3546 * Left path is easy - we can just allow the insert to 3547 * happen. 3548 */ 3549 el = left_el; 3550 insert_el = left_el; 3551 index = ocfs2_search_extent_list(el, cpos); 3552 BUG_ON(index == -1); 3553 } 3554 3555 rec = &el->l_recs[index]; 3556 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 3557 ocfs2_rotate_leaf(insert_el, split_rec); 3558 } 3559 3560 /* 3561 * This function only does inserts on an allocation b-tree. For dinode 3562 * lists, ocfs2_insert_at_leaf() is called directly. 3563 * 3564 * right_path is the path we want to do the actual insert 3565 * in. left_path should only be passed in if we need to update that 3566 * portion of the tree after an edge insert. 3567 */ 3568 static int ocfs2_insert_path(struct inode *inode, 3569 handle_t *handle, 3570 struct ocfs2_path *left_path, 3571 struct ocfs2_path *right_path, 3572 struct ocfs2_extent_rec *insert_rec, 3573 struct ocfs2_insert_type *insert) 3574 { 3575 int ret, subtree_index; 3576 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 3577 3578 if (left_path) { 3579 int credits = handle->h_buffer_credits; 3580 3581 /* 3582 * There's a chance that left_path got passed back to 3583 * us without being accounted for in the 3584 * journal. Extend our transaction here to be sure we 3585 * can change those blocks. 3586 */ 3587 credits += left_path->p_tree_depth; 3588 3589 ret = ocfs2_extend_trans(handle, credits); 3590 if (ret < 0) { 3591 mlog_errno(ret); 3592 goto out; 3593 } 3594 3595 ret = ocfs2_journal_access_path(inode, handle, left_path); 3596 if (ret < 0) { 3597 mlog_errno(ret); 3598 goto out; 3599 } 3600 } 3601 3602 /* 3603 * Pass both paths to the journal. The majority of inserts 3604 * will be touching all components anyway. 3605 */ 3606 ret = ocfs2_journal_access_path(inode, handle, right_path); 3607 if (ret < 0) { 3608 mlog_errno(ret); 3609 goto out; 3610 } 3611 3612 if (insert->ins_split != SPLIT_NONE) { 3613 /* 3614 * We could call ocfs2_insert_at_leaf() for some types 3615 * of splits, but it's easier to just let one separate 3616 * function sort it all out. 3617 */ 3618 ocfs2_split_record(inode, left_path, right_path, 3619 insert_rec, insert->ins_split); 3620 3621 /* 3622 * Split might have modified either leaf and we don't 3623 * have a guarantee that the later edge insert will 3624 * dirty this for us. 3625 */ 3626 if (left_path) 3627 ret = ocfs2_journal_dirty(handle, 3628 path_leaf_bh(left_path)); 3629 if (ret) 3630 mlog_errno(ret); 3631 } else 3632 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 3633 insert, inode); 3634 3635 ret = ocfs2_journal_dirty(handle, leaf_bh); 3636 if (ret) 3637 mlog_errno(ret); 3638 3639 if (left_path) { 3640 /* 3641 * The rotate code has indicated that we need to fix 3642 * up portions of the tree after the insert. 3643 * 3644 * XXX: Should we extend the transaction here? 3645 */ 3646 subtree_index = ocfs2_find_subtree_root(inode, left_path, 3647 right_path); 3648 ocfs2_complete_edge_insert(inode, handle, left_path, 3649 right_path, subtree_index); 3650 } 3651 3652 ret = 0; 3653 out: 3654 return ret; 3655 } 3656 3657 static int ocfs2_do_insert_extent(struct inode *inode, 3658 handle_t *handle, 3659 struct buffer_head *di_bh, 3660 struct ocfs2_extent_rec *insert_rec, 3661 struct ocfs2_insert_type *type) 3662 { 3663 int ret, rotate = 0; 3664 u32 cpos; 3665 struct ocfs2_path *right_path = NULL; 3666 struct ocfs2_path *left_path = NULL; 3667 struct ocfs2_dinode *di; 3668 struct ocfs2_extent_list *el; 3669 3670 di = (struct ocfs2_dinode *) di_bh->b_data; 3671 el = &di->id2.i_list; 3672 3673 ret = ocfs2_journal_access(handle, inode, di_bh, 3674 OCFS2_JOURNAL_ACCESS_WRITE); 3675 if (ret) { 3676 mlog_errno(ret); 3677 goto out; 3678 } 3679 3680 if (le16_to_cpu(el->l_tree_depth) == 0) { 3681 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 3682 goto out_update_clusters; 3683 } 3684 3685 right_path = ocfs2_new_inode_path(di_bh); 3686 if (!right_path) { 3687 ret = -ENOMEM; 3688 mlog_errno(ret); 3689 goto out; 3690 } 3691 3692 /* 3693 * Determine the path to start with. Rotations need the 3694 * rightmost path, everything else can go directly to the 3695 * target leaf. 3696 */ 3697 cpos = le32_to_cpu(insert_rec->e_cpos); 3698 if (type->ins_appending == APPEND_NONE && 3699 type->ins_contig == CONTIG_NONE) { 3700 rotate = 1; 3701 cpos = UINT_MAX; 3702 } 3703 3704 ret = ocfs2_find_path(inode, right_path, cpos); 3705 if (ret) { 3706 mlog_errno(ret); 3707 goto out; 3708 } 3709 3710 /* 3711 * Rotations and appends need special treatment - they modify 3712 * parts of the tree's above them. 3713 * 3714 * Both might pass back a path immediate to the left of the 3715 * one being inserted to. This will be cause 3716 * ocfs2_insert_path() to modify the rightmost records of 3717 * left_path to account for an edge insert. 3718 * 3719 * XXX: When modifying this code, keep in mind that an insert 3720 * can wind up skipping both of these two special cases... 3721 */ 3722 if (rotate) { 3723 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 3724 le32_to_cpu(insert_rec->e_cpos), 3725 right_path, &left_path); 3726 if (ret) { 3727 mlog_errno(ret); 3728 goto out; 3729 } 3730 3731 /* 3732 * ocfs2_rotate_tree_right() might have extended the 3733 * transaction without re-journaling our tree root. 3734 */ 3735 ret = ocfs2_journal_access(handle, inode, di_bh, 3736 OCFS2_JOURNAL_ACCESS_WRITE); 3737 if (ret) { 3738 mlog_errno(ret); 3739 goto out; 3740 } 3741 } else if (type->ins_appending == APPEND_TAIL 3742 && type->ins_contig != CONTIG_LEFT) { 3743 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 3744 right_path, &left_path); 3745 if (ret) { 3746 mlog_errno(ret); 3747 goto out; 3748 } 3749 } 3750 3751 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 3752 insert_rec, type); 3753 if (ret) { 3754 mlog_errno(ret); 3755 goto out; 3756 } 3757 3758 out_update_clusters: 3759 if (type->ins_split == SPLIT_NONE) 3760 ocfs2_update_dinode_clusters(inode, di, 3761 le16_to_cpu(insert_rec->e_leaf_clusters)); 3762 3763 ret = ocfs2_journal_dirty(handle, di_bh); 3764 if (ret) 3765 mlog_errno(ret); 3766 3767 out: 3768 ocfs2_free_path(left_path); 3769 ocfs2_free_path(right_path); 3770 3771 return ret; 3772 } 3773 3774 static enum ocfs2_contig_type 3775 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 3776 struct ocfs2_extent_list *el, int index, 3777 struct ocfs2_extent_rec *split_rec) 3778 { 3779 int status; 3780 enum ocfs2_contig_type ret = CONTIG_NONE; 3781 u32 left_cpos, right_cpos; 3782 struct ocfs2_extent_rec *rec = NULL; 3783 struct ocfs2_extent_list *new_el; 3784 struct ocfs2_path *left_path = NULL, *right_path = NULL; 3785 struct buffer_head *bh; 3786 struct ocfs2_extent_block *eb; 3787 3788 if (index > 0) { 3789 rec = &el->l_recs[index - 1]; 3790 } else if (path->p_tree_depth > 0) { 3791 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3792 path, &left_cpos); 3793 if (status) 3794 goto out; 3795 3796 if (left_cpos != 0) { 3797 left_path = ocfs2_new_path(path_root_bh(path), 3798 path_root_el(path)); 3799 if (!left_path) 3800 goto out; 3801 3802 status = ocfs2_find_path(inode, left_path, left_cpos); 3803 if (status) 3804 goto out; 3805 3806 new_el = path_leaf_el(left_path); 3807 3808 if (le16_to_cpu(new_el->l_next_free_rec) != 3809 le16_to_cpu(new_el->l_count)) { 3810 bh = path_leaf_bh(left_path); 3811 eb = (struct ocfs2_extent_block *)bh->b_data; 3812 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, 3813 eb); 3814 goto out; 3815 } 3816 rec = &new_el->l_recs[ 3817 le16_to_cpu(new_el->l_next_free_rec) - 1]; 3818 } 3819 } 3820 3821 /* 3822 * We're careful to check for an empty extent record here - 3823 * the merge code will know what to do if it sees one. 3824 */ 3825 if (rec) { 3826 if (index == 1 && ocfs2_is_empty_extent(rec)) { 3827 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 3828 ret = CONTIG_RIGHT; 3829 } else { 3830 ret = ocfs2_extent_contig(inode, rec, split_rec); 3831 } 3832 } 3833 3834 rec = NULL; 3835 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 3836 rec = &el->l_recs[index + 1]; 3837 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 3838 path->p_tree_depth > 0) { 3839 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 3840 path, &right_cpos); 3841 if (status) 3842 goto out; 3843 3844 if (right_cpos == 0) 3845 goto out; 3846 3847 right_path = ocfs2_new_path(path_root_bh(path), 3848 path_root_el(path)); 3849 if (!right_path) 3850 goto out; 3851 3852 status = ocfs2_find_path(inode, right_path, right_cpos); 3853 if (status) 3854 goto out; 3855 3856 new_el = path_leaf_el(right_path); 3857 rec = &new_el->l_recs[0]; 3858 if (ocfs2_is_empty_extent(rec)) { 3859 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 3860 bh = path_leaf_bh(right_path); 3861 eb = (struct ocfs2_extent_block *)bh->b_data; 3862 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, 3863 eb); 3864 goto out; 3865 } 3866 rec = &new_el->l_recs[1]; 3867 } 3868 } 3869 3870 if (rec) { 3871 enum ocfs2_contig_type contig_type; 3872 3873 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 3874 3875 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 3876 ret = CONTIG_LEFTRIGHT; 3877 else if (ret == CONTIG_NONE) 3878 ret = contig_type; 3879 } 3880 3881 out: 3882 if (left_path) 3883 ocfs2_free_path(left_path); 3884 if (right_path) 3885 ocfs2_free_path(right_path); 3886 3887 return ret; 3888 } 3889 3890 static void ocfs2_figure_contig_type(struct inode *inode, 3891 struct ocfs2_insert_type *insert, 3892 struct ocfs2_extent_list *el, 3893 struct ocfs2_extent_rec *insert_rec) 3894 { 3895 int i; 3896 enum ocfs2_contig_type contig_type = CONTIG_NONE; 3897 3898 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3899 3900 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 3901 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 3902 insert_rec); 3903 if (contig_type != CONTIG_NONE) { 3904 insert->ins_contig_index = i; 3905 break; 3906 } 3907 } 3908 insert->ins_contig = contig_type; 3909 } 3910 3911 /* 3912 * This should only be called against the righmost leaf extent list. 3913 * 3914 * ocfs2_figure_appending_type() will figure out whether we'll have to 3915 * insert at the tail of the rightmost leaf. 3916 * 3917 * This should also work against the dinode list for tree's with 0 3918 * depth. If we consider the dinode list to be the rightmost leaf node 3919 * then the logic here makes sense. 3920 */ 3921 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 3922 struct ocfs2_extent_list *el, 3923 struct ocfs2_extent_rec *insert_rec) 3924 { 3925 int i; 3926 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 3927 struct ocfs2_extent_rec *rec; 3928 3929 insert->ins_appending = APPEND_NONE; 3930 3931 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3932 3933 if (!el->l_next_free_rec) 3934 goto set_tail_append; 3935 3936 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 3937 /* Were all records empty? */ 3938 if (le16_to_cpu(el->l_next_free_rec) == 1) 3939 goto set_tail_append; 3940 } 3941 3942 i = le16_to_cpu(el->l_next_free_rec) - 1; 3943 rec = &el->l_recs[i]; 3944 3945 if (cpos >= 3946 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 3947 goto set_tail_append; 3948 3949 return; 3950 3951 set_tail_append: 3952 insert->ins_appending = APPEND_TAIL; 3953 } 3954 3955 /* 3956 * Helper function called at the begining of an insert. 3957 * 3958 * This computes a few things that are commonly used in the process of 3959 * inserting into the btree: 3960 * - Whether the new extent is contiguous with an existing one. 3961 * - The current tree depth. 3962 * - Whether the insert is an appending one. 3963 * - The total # of free records in the tree. 3964 * 3965 * All of the information is stored on the ocfs2_insert_type 3966 * structure. 3967 */ 3968 static int ocfs2_figure_insert_type(struct inode *inode, 3969 struct buffer_head *di_bh, 3970 struct buffer_head **last_eb_bh, 3971 struct ocfs2_extent_rec *insert_rec, 3972 int *free_records, 3973 struct ocfs2_insert_type *insert) 3974 { 3975 int ret; 3976 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 3977 struct ocfs2_extent_block *eb; 3978 struct ocfs2_extent_list *el; 3979 struct ocfs2_path *path = NULL; 3980 struct buffer_head *bh = NULL; 3981 3982 insert->ins_split = SPLIT_NONE; 3983 3984 el = &di->id2.i_list; 3985 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 3986 3987 if (el->l_tree_depth) { 3988 /* 3989 * If we have tree depth, we read in the 3990 * rightmost extent block ahead of time as 3991 * ocfs2_figure_insert_type() and ocfs2_add_branch() 3992 * may want it later. 3993 */ 3994 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 3995 le64_to_cpu(di->i_last_eb_blk), &bh, 3996 OCFS2_BH_CACHED, inode); 3997 if (ret) { 3998 mlog_exit(ret); 3999 goto out; 4000 } 4001 eb = (struct ocfs2_extent_block *) bh->b_data; 4002 el = &eb->h_list; 4003 } 4004 4005 /* 4006 * Unless we have a contiguous insert, we'll need to know if 4007 * there is room left in our allocation tree for another 4008 * extent record. 4009 * 4010 * XXX: This test is simplistic, we can search for empty 4011 * extent records too. 4012 */ 4013 *free_records = le16_to_cpu(el->l_count) - 4014 le16_to_cpu(el->l_next_free_rec); 4015 4016 if (!insert->ins_tree_depth) { 4017 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 4018 ocfs2_figure_appending_type(insert, el, insert_rec); 4019 return 0; 4020 } 4021 4022 path = ocfs2_new_inode_path(di_bh); 4023 if (!path) { 4024 ret = -ENOMEM; 4025 mlog_errno(ret); 4026 goto out; 4027 } 4028 4029 /* 4030 * In the case that we're inserting past what the tree 4031 * currently accounts for, ocfs2_find_path() will return for 4032 * us the rightmost tree path. This is accounted for below in 4033 * the appending code. 4034 */ 4035 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4036 if (ret) { 4037 mlog_errno(ret); 4038 goto out; 4039 } 4040 4041 el = path_leaf_el(path); 4042 4043 /* 4044 * Now that we have the path, there's two things we want to determine: 4045 * 1) Contiguousness (also set contig_index if this is so) 4046 * 4047 * 2) Are we doing an append? We can trivially break this up 4048 * into two types of appends: simple record append, or a 4049 * rotate inside the tail leaf. 4050 */ 4051 ocfs2_figure_contig_type(inode, insert, el, insert_rec); 4052 4053 /* 4054 * The insert code isn't quite ready to deal with all cases of 4055 * left contiguousness. Specifically, if it's an insert into 4056 * the 1st record in a leaf, it will require the adjustment of 4057 * cluster count on the last record of the path directly to it's 4058 * left. For now, just catch that case and fool the layers 4059 * above us. This works just fine for tree_depth == 0, which 4060 * is why we allow that above. 4061 */ 4062 if (insert->ins_contig == CONTIG_LEFT && 4063 insert->ins_contig_index == 0) 4064 insert->ins_contig = CONTIG_NONE; 4065 4066 /* 4067 * Ok, so we can simply compare against last_eb to figure out 4068 * whether the path doesn't exist. This will only happen in 4069 * the case that we're doing a tail append, so maybe we can 4070 * take advantage of that information somehow. 4071 */ 4072 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) { 4073 /* 4074 * Ok, ocfs2_find_path() returned us the rightmost 4075 * tree path. This might be an appending insert. There are 4076 * two cases: 4077 * 1) We're doing a true append at the tail: 4078 * -This might even be off the end of the leaf 4079 * 2) We're "appending" by rotating in the tail 4080 */ 4081 ocfs2_figure_appending_type(insert, el, insert_rec); 4082 } 4083 4084 out: 4085 ocfs2_free_path(path); 4086 4087 if (ret == 0) 4088 *last_eb_bh = bh; 4089 else 4090 brelse(bh); 4091 return ret; 4092 } 4093 4094 /* 4095 * Insert an extent into an inode btree. 4096 * 4097 * The caller needs to update fe->i_clusters 4098 */ 4099 int ocfs2_insert_extent(struct ocfs2_super *osb, 4100 handle_t *handle, 4101 struct inode *inode, 4102 struct buffer_head *fe_bh, 4103 u32 cpos, 4104 u64 start_blk, 4105 u32 new_clusters, 4106 u8 flags, 4107 struct ocfs2_alloc_context *meta_ac) 4108 { 4109 int status; 4110 int uninitialized_var(free_records); 4111 struct buffer_head *last_eb_bh = NULL; 4112 struct ocfs2_insert_type insert = {0, }; 4113 struct ocfs2_extent_rec rec; 4114 4115 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 4116 4117 mlog(0, "add %u clusters at position %u to inode %llu\n", 4118 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4119 4120 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 4121 (OCFS2_I(inode)->ip_clusters != cpos), 4122 "Device %s, asking for sparse allocation: inode %llu, " 4123 "cpos %u, clusters %u\n", 4124 osb->dev_str, 4125 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, 4126 OCFS2_I(inode)->ip_clusters); 4127 4128 memset(&rec, 0, sizeof(rec)); 4129 rec.e_cpos = cpu_to_le32(cpos); 4130 rec.e_blkno = cpu_to_le64(start_blk); 4131 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4132 rec.e_flags = flags; 4133 4134 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec, 4135 &free_records, &insert); 4136 if (status < 0) { 4137 mlog_errno(status); 4138 goto bail; 4139 } 4140 4141 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4142 "Insert.contig_index: %d, Insert.free_records: %d, " 4143 "Insert.tree_depth: %d\n", 4144 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4145 free_records, insert.ins_tree_depth); 4146 4147 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4148 status = ocfs2_grow_tree(inode, handle, fe_bh, 4149 &insert.ins_tree_depth, &last_eb_bh, 4150 meta_ac); 4151 if (status) { 4152 mlog_errno(status); 4153 goto bail; 4154 } 4155 } 4156 4157 /* Finally, we can add clusters. This might rotate the tree for us. */ 4158 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert); 4159 if (status < 0) 4160 mlog_errno(status); 4161 else 4162 ocfs2_extent_map_insert_rec(inode, &rec); 4163 4164 bail: 4165 if (last_eb_bh) 4166 brelse(last_eb_bh); 4167 4168 mlog_exit(status); 4169 return status; 4170 } 4171 4172 static void ocfs2_make_right_split_rec(struct super_block *sb, 4173 struct ocfs2_extent_rec *split_rec, 4174 u32 cpos, 4175 struct ocfs2_extent_rec *rec) 4176 { 4177 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4178 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4179 4180 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4181 4182 split_rec->e_cpos = cpu_to_le32(cpos); 4183 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4184 4185 split_rec->e_blkno = rec->e_blkno; 4186 le64_add_cpu(&split_rec->e_blkno, 4187 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4188 4189 split_rec->e_flags = rec->e_flags; 4190 } 4191 4192 static int ocfs2_split_and_insert(struct inode *inode, 4193 handle_t *handle, 4194 struct ocfs2_path *path, 4195 struct buffer_head *di_bh, 4196 struct buffer_head **last_eb_bh, 4197 int split_index, 4198 struct ocfs2_extent_rec *orig_split_rec, 4199 struct ocfs2_alloc_context *meta_ac) 4200 { 4201 int ret = 0, depth; 4202 unsigned int insert_range, rec_range, do_leftright = 0; 4203 struct ocfs2_extent_rec tmprec; 4204 struct ocfs2_extent_list *rightmost_el; 4205 struct ocfs2_extent_rec rec; 4206 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4207 struct ocfs2_insert_type insert; 4208 struct ocfs2_extent_block *eb; 4209 struct ocfs2_dinode *di; 4210 4211 leftright: 4212 /* 4213 * Store a copy of the record on the stack - it might move 4214 * around as the tree is manipulated below. 4215 */ 4216 rec = path_leaf_el(path)->l_recs[split_index]; 4217 4218 di = (struct ocfs2_dinode *)di_bh->b_data; 4219 rightmost_el = &di->id2.i_list; 4220 4221 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4222 if (depth) { 4223 BUG_ON(!(*last_eb_bh)); 4224 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4225 rightmost_el = &eb->h_list; 4226 } 4227 4228 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4229 le16_to_cpu(rightmost_el->l_count)) { 4230 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh, 4231 meta_ac); 4232 if (ret) { 4233 mlog_errno(ret); 4234 goto out; 4235 } 4236 } 4237 4238 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4239 insert.ins_appending = APPEND_NONE; 4240 insert.ins_contig = CONTIG_NONE; 4241 insert.ins_tree_depth = depth; 4242 4243 insert_range = le32_to_cpu(split_rec.e_cpos) + 4244 le16_to_cpu(split_rec.e_leaf_clusters); 4245 rec_range = le32_to_cpu(rec.e_cpos) + 4246 le16_to_cpu(rec.e_leaf_clusters); 4247 4248 if (split_rec.e_cpos == rec.e_cpos) { 4249 insert.ins_split = SPLIT_LEFT; 4250 } else if (insert_range == rec_range) { 4251 insert.ins_split = SPLIT_RIGHT; 4252 } else { 4253 /* 4254 * Left/right split. We fake this as a right split 4255 * first and then make a second pass as a left split. 4256 */ 4257 insert.ins_split = SPLIT_RIGHT; 4258 4259 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4260 &rec); 4261 4262 split_rec = tmprec; 4263 4264 BUG_ON(do_leftright); 4265 do_leftright = 1; 4266 } 4267 4268 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, 4269 &insert); 4270 if (ret) { 4271 mlog_errno(ret); 4272 goto out; 4273 } 4274 4275 if (do_leftright == 1) { 4276 u32 cpos; 4277 struct ocfs2_extent_list *el; 4278 4279 do_leftright++; 4280 split_rec = *orig_split_rec; 4281 4282 ocfs2_reinit_path(path, 1); 4283 4284 cpos = le32_to_cpu(split_rec.e_cpos); 4285 ret = ocfs2_find_path(inode, path, cpos); 4286 if (ret) { 4287 mlog_errno(ret); 4288 goto out; 4289 } 4290 4291 el = path_leaf_el(path); 4292 split_index = ocfs2_search_extent_list(el, cpos); 4293 goto leftright; 4294 } 4295 out: 4296 4297 return ret; 4298 } 4299 4300 /* 4301 * Mark part or all of the extent record at split_index in the leaf 4302 * pointed to by path as written. This removes the unwritten 4303 * extent flag. 4304 * 4305 * Care is taken to handle contiguousness so as to not grow the tree. 4306 * 4307 * meta_ac is not strictly necessary - we only truly need it if growth 4308 * of the tree is required. All other cases will degrade into a less 4309 * optimal tree layout. 4310 * 4311 * last_eb_bh should be the rightmost leaf block for any inode with a 4312 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call. 4313 * 4314 * This code is optimized for readability - several passes might be 4315 * made over certain portions of the tree. All of those blocks will 4316 * have been brought into cache (and pinned via the journal), so the 4317 * extra overhead is not expressed in terms of disk reads. 4318 */ 4319 static int __ocfs2_mark_extent_written(struct inode *inode, 4320 struct buffer_head *di_bh, 4321 handle_t *handle, 4322 struct ocfs2_path *path, 4323 int split_index, 4324 struct ocfs2_extent_rec *split_rec, 4325 struct ocfs2_alloc_context *meta_ac, 4326 struct ocfs2_cached_dealloc_ctxt *dealloc) 4327 { 4328 int ret = 0; 4329 struct ocfs2_extent_list *el = path_leaf_el(path); 4330 struct buffer_head *last_eb_bh = NULL; 4331 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4332 struct ocfs2_merge_ctxt ctxt; 4333 struct ocfs2_extent_list *rightmost_el; 4334 4335 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4336 ret = -EIO; 4337 mlog_errno(ret); 4338 goto out; 4339 } 4340 4341 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4342 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4343 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4344 ret = -EIO; 4345 mlog_errno(ret); 4346 goto out; 4347 } 4348 4349 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 4350 split_index, 4351 split_rec); 4352 4353 /* 4354 * The core merge / split code wants to know how much room is 4355 * left in this inodes allocation tree, so we pass the 4356 * rightmost extent list. 4357 */ 4358 if (path->p_tree_depth) { 4359 struct ocfs2_extent_block *eb; 4360 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4361 4362 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4363 le64_to_cpu(di->i_last_eb_blk), 4364 &last_eb_bh, OCFS2_BH_CACHED, inode); 4365 if (ret) { 4366 mlog_exit(ret); 4367 goto out; 4368 } 4369 4370 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4371 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 4372 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 4373 ret = -EROFS; 4374 goto out; 4375 } 4376 4377 rightmost_el = &eb->h_list; 4378 } else 4379 rightmost_el = path_root_el(path); 4380 4381 if (rec->e_cpos == split_rec->e_cpos && 4382 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 4383 ctxt.c_split_covers_rec = 1; 4384 else 4385 ctxt.c_split_covers_rec = 0; 4386 4387 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 4388 4389 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 4390 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 4391 ctxt.c_split_covers_rec); 4392 4393 if (ctxt.c_contig_type == CONTIG_NONE) { 4394 if (ctxt.c_split_covers_rec) 4395 el->l_recs[split_index] = *split_rec; 4396 else 4397 ret = ocfs2_split_and_insert(inode, handle, path, di_bh, 4398 &last_eb_bh, split_index, 4399 split_rec, meta_ac); 4400 if (ret) 4401 mlog_errno(ret); 4402 } else { 4403 ret = ocfs2_try_to_merge_extent(inode, handle, path, 4404 split_index, split_rec, 4405 dealloc, &ctxt); 4406 if (ret) 4407 mlog_errno(ret); 4408 } 4409 4410 out: 4411 brelse(last_eb_bh); 4412 return ret; 4413 } 4414 4415 /* 4416 * Mark the already-existing extent at cpos as written for len clusters. 4417 * 4418 * If the existing extent is larger than the request, initiate a 4419 * split. An attempt will be made at merging with adjacent extents. 4420 * 4421 * The caller is responsible for passing down meta_ac if we'll need it. 4422 */ 4423 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh, 4424 handle_t *handle, u32 cpos, u32 len, u32 phys, 4425 struct ocfs2_alloc_context *meta_ac, 4426 struct ocfs2_cached_dealloc_ctxt *dealloc) 4427 { 4428 int ret, index; 4429 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 4430 struct ocfs2_extent_rec split_rec; 4431 struct ocfs2_path *left_path = NULL; 4432 struct ocfs2_extent_list *el; 4433 4434 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 4435 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 4436 4437 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 4438 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 4439 "that are being written to, but the feature bit " 4440 "is not set in the super block.", 4441 (unsigned long long)OCFS2_I(inode)->ip_blkno); 4442 ret = -EROFS; 4443 goto out; 4444 } 4445 4446 /* 4447 * XXX: This should be fixed up so that we just re-insert the 4448 * next extent records. 4449 */ 4450 ocfs2_extent_map_trunc(inode, 0); 4451 4452 left_path = ocfs2_new_inode_path(di_bh); 4453 if (!left_path) { 4454 ret = -ENOMEM; 4455 mlog_errno(ret); 4456 goto out; 4457 } 4458 4459 ret = ocfs2_find_path(inode, left_path, cpos); 4460 if (ret) { 4461 mlog_errno(ret); 4462 goto out; 4463 } 4464 el = path_leaf_el(left_path); 4465 4466 index = ocfs2_search_extent_list(el, cpos); 4467 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4468 ocfs2_error(inode->i_sb, 4469 "Inode %llu has an extent at cpos %u which can no " 4470 "longer be found.\n", 4471 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4472 ret = -EROFS; 4473 goto out; 4474 } 4475 4476 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4477 split_rec.e_cpos = cpu_to_le32(cpos); 4478 split_rec.e_leaf_clusters = cpu_to_le16(len); 4479 split_rec.e_blkno = cpu_to_le64(start_blkno); 4480 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 4481 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 4482 4483 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path, 4484 index, &split_rec, meta_ac, dealloc); 4485 if (ret) 4486 mlog_errno(ret); 4487 4488 out: 4489 ocfs2_free_path(left_path); 4490 return ret; 4491 } 4492 4493 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh, 4494 handle_t *handle, struct ocfs2_path *path, 4495 int index, u32 new_range, 4496 struct ocfs2_alloc_context *meta_ac) 4497 { 4498 int ret, depth, credits = handle->h_buffer_credits; 4499 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 4500 struct buffer_head *last_eb_bh = NULL; 4501 struct ocfs2_extent_block *eb; 4502 struct ocfs2_extent_list *rightmost_el, *el; 4503 struct ocfs2_extent_rec split_rec; 4504 struct ocfs2_extent_rec *rec; 4505 struct ocfs2_insert_type insert; 4506 4507 /* 4508 * Setup the record to split before we grow the tree. 4509 */ 4510 el = path_leaf_el(path); 4511 rec = &el->l_recs[index]; 4512 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 4513 4514 depth = path->p_tree_depth; 4515 if (depth > 0) { 4516 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), 4517 le64_to_cpu(di->i_last_eb_blk), 4518 &last_eb_bh, OCFS2_BH_CACHED, inode); 4519 if (ret < 0) { 4520 mlog_errno(ret); 4521 goto out; 4522 } 4523 4524 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 4525 rightmost_el = &eb->h_list; 4526 } else 4527 rightmost_el = path_leaf_el(path); 4528 4529 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di); 4530 ret = ocfs2_extend_trans(handle, credits); 4531 if (ret) { 4532 mlog_errno(ret); 4533 goto out; 4534 } 4535 4536 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4537 le16_to_cpu(rightmost_el->l_count)) { 4538 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh, 4539 meta_ac); 4540 if (ret) { 4541 mlog_errno(ret); 4542 goto out; 4543 } 4544 } 4545 4546 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4547 insert.ins_appending = APPEND_NONE; 4548 insert.ins_contig = CONTIG_NONE; 4549 insert.ins_split = SPLIT_RIGHT; 4550 insert.ins_tree_depth = depth; 4551 4552 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert); 4553 if (ret) 4554 mlog_errno(ret); 4555 4556 out: 4557 brelse(last_eb_bh); 4558 return ret; 4559 } 4560 4561 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 4562 struct ocfs2_path *path, int index, 4563 struct ocfs2_cached_dealloc_ctxt *dealloc, 4564 u32 cpos, u32 len) 4565 { 4566 int ret; 4567 u32 left_cpos, rec_range, trunc_range; 4568 int wants_rotate = 0, is_rightmost_tree_rec = 0; 4569 struct super_block *sb = inode->i_sb; 4570 struct ocfs2_path *left_path = NULL; 4571 struct ocfs2_extent_list *el = path_leaf_el(path); 4572 struct ocfs2_extent_rec *rec; 4573 struct ocfs2_extent_block *eb; 4574 4575 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 4576 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4577 if (ret) { 4578 mlog_errno(ret); 4579 goto out; 4580 } 4581 4582 index--; 4583 } 4584 4585 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 4586 path->p_tree_depth) { 4587 /* 4588 * Check whether this is the rightmost tree record. If 4589 * we remove all of this record or part of its right 4590 * edge then an update of the record lengths above it 4591 * will be required. 4592 */ 4593 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 4594 if (eb->h_next_leaf_blk == 0) 4595 is_rightmost_tree_rec = 1; 4596 } 4597 4598 rec = &el->l_recs[index]; 4599 if (index == 0 && path->p_tree_depth && 4600 le32_to_cpu(rec->e_cpos) == cpos) { 4601 /* 4602 * Changing the leftmost offset (via partial or whole 4603 * record truncate) of an interior (or rightmost) path 4604 * means we have to update the subtree that is formed 4605 * by this leaf and the one to it's left. 4606 * 4607 * There are two cases we can skip: 4608 * 1) Path is the leftmost one in our inode tree. 4609 * 2) The leaf is rightmost and will be empty after 4610 * we remove the extent record - the rotate code 4611 * knows how to update the newly formed edge. 4612 */ 4613 4614 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 4615 &left_cpos); 4616 if (ret) { 4617 mlog_errno(ret); 4618 goto out; 4619 } 4620 4621 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 4622 left_path = ocfs2_new_path(path_root_bh(path), 4623 path_root_el(path)); 4624 if (!left_path) { 4625 ret = -ENOMEM; 4626 mlog_errno(ret); 4627 goto out; 4628 } 4629 4630 ret = ocfs2_find_path(inode, left_path, left_cpos); 4631 if (ret) { 4632 mlog_errno(ret); 4633 goto out; 4634 } 4635 } 4636 } 4637 4638 ret = ocfs2_extend_rotate_transaction(handle, 0, 4639 handle->h_buffer_credits, 4640 path); 4641 if (ret) { 4642 mlog_errno(ret); 4643 goto out; 4644 } 4645 4646 ret = ocfs2_journal_access_path(inode, handle, path); 4647 if (ret) { 4648 mlog_errno(ret); 4649 goto out; 4650 } 4651 4652 ret = ocfs2_journal_access_path(inode, handle, left_path); 4653 if (ret) { 4654 mlog_errno(ret); 4655 goto out; 4656 } 4657 4658 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4659 trunc_range = cpos + len; 4660 4661 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 4662 int next_free; 4663 4664 memset(rec, 0, sizeof(*rec)); 4665 ocfs2_cleanup_merge(el, index); 4666 wants_rotate = 1; 4667 4668 next_free = le16_to_cpu(el->l_next_free_rec); 4669 if (is_rightmost_tree_rec && next_free > 1) { 4670 /* 4671 * We skip the edge update if this path will 4672 * be deleted by the rotate code. 4673 */ 4674 rec = &el->l_recs[next_free - 1]; 4675 ocfs2_adjust_rightmost_records(inode, handle, path, 4676 rec); 4677 } 4678 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 4679 /* Remove leftmost portion of the record. */ 4680 le32_add_cpu(&rec->e_cpos, len); 4681 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 4682 le16_add_cpu(&rec->e_leaf_clusters, -len); 4683 } else if (rec_range == trunc_range) { 4684 /* Remove rightmost portion of the record */ 4685 le16_add_cpu(&rec->e_leaf_clusters, -len); 4686 if (is_rightmost_tree_rec) 4687 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 4688 } else { 4689 /* Caller should have trapped this. */ 4690 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 4691 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 4692 le32_to_cpu(rec->e_cpos), 4693 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 4694 BUG(); 4695 } 4696 4697 if (left_path) { 4698 int subtree_index; 4699 4700 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 4701 ocfs2_complete_edge_insert(inode, handle, left_path, path, 4702 subtree_index); 4703 } 4704 4705 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4706 4707 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc); 4708 if (ret) { 4709 mlog_errno(ret); 4710 goto out; 4711 } 4712 4713 out: 4714 ocfs2_free_path(left_path); 4715 return ret; 4716 } 4717 4718 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh, 4719 u32 cpos, u32 len, handle_t *handle, 4720 struct ocfs2_alloc_context *meta_ac, 4721 struct ocfs2_cached_dealloc_ctxt *dealloc) 4722 { 4723 int ret, index; 4724 u32 rec_range, trunc_range; 4725 struct ocfs2_extent_rec *rec; 4726 struct ocfs2_extent_list *el; 4727 struct ocfs2_path *path; 4728 4729 ocfs2_extent_map_trunc(inode, 0); 4730 4731 path = ocfs2_new_inode_path(di_bh); 4732 if (!path) { 4733 ret = -ENOMEM; 4734 mlog_errno(ret); 4735 goto out; 4736 } 4737 4738 ret = ocfs2_find_path(inode, path, cpos); 4739 if (ret) { 4740 mlog_errno(ret); 4741 goto out; 4742 } 4743 4744 el = path_leaf_el(path); 4745 index = ocfs2_search_extent_list(el, cpos); 4746 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4747 ocfs2_error(inode->i_sb, 4748 "Inode %llu has an extent at cpos %u which can no " 4749 "longer be found.\n", 4750 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 4751 ret = -EROFS; 4752 goto out; 4753 } 4754 4755 /* 4756 * We have 3 cases of extent removal: 4757 * 1) Range covers the entire extent rec 4758 * 2) Range begins or ends on one edge of the extent rec 4759 * 3) Range is in the middle of the extent rec (no shared edges) 4760 * 4761 * For case 1 we remove the extent rec and left rotate to 4762 * fill the hole. 4763 * 4764 * For case 2 we just shrink the existing extent rec, with a 4765 * tree update if the shrinking edge is also the edge of an 4766 * extent block. 4767 * 4768 * For case 3 we do a right split to turn the extent rec into 4769 * something case 2 can handle. 4770 */ 4771 rec = &el->l_recs[index]; 4772 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 4773 trunc_range = cpos + len; 4774 4775 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 4776 4777 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 4778 "(cpos %u, len %u)\n", 4779 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 4780 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 4781 4782 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 4783 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4784 cpos, len); 4785 if (ret) { 4786 mlog_errno(ret); 4787 goto out; 4788 } 4789 } else { 4790 ret = ocfs2_split_tree(inode, di_bh, handle, path, index, 4791 trunc_range, meta_ac); 4792 if (ret) { 4793 mlog_errno(ret); 4794 goto out; 4795 } 4796 4797 /* 4798 * The split could have manipulated the tree enough to 4799 * move the record location, so we have to look for it again. 4800 */ 4801 ocfs2_reinit_path(path, 1); 4802 4803 ret = ocfs2_find_path(inode, path, cpos); 4804 if (ret) { 4805 mlog_errno(ret); 4806 goto out; 4807 } 4808 4809 el = path_leaf_el(path); 4810 index = ocfs2_search_extent_list(el, cpos); 4811 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 4812 ocfs2_error(inode->i_sb, 4813 "Inode %llu: split at cpos %u lost record.", 4814 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4815 cpos); 4816 ret = -EROFS; 4817 goto out; 4818 } 4819 4820 /* 4821 * Double check our values here. If anything is fishy, 4822 * it's easier to catch it at the top level. 4823 */ 4824 rec = &el->l_recs[index]; 4825 rec_range = le32_to_cpu(rec->e_cpos) + 4826 ocfs2_rec_clusters(el, rec); 4827 if (rec_range != trunc_range) { 4828 ocfs2_error(inode->i_sb, 4829 "Inode %llu: error after split at cpos %u" 4830 "trunc len %u, existing record is (%u,%u)", 4831 (unsigned long long)OCFS2_I(inode)->ip_blkno, 4832 cpos, len, le32_to_cpu(rec->e_cpos), 4833 ocfs2_rec_clusters(el, rec)); 4834 ret = -EROFS; 4835 goto out; 4836 } 4837 4838 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 4839 cpos, len); 4840 if (ret) { 4841 mlog_errno(ret); 4842 goto out; 4843 } 4844 } 4845 4846 out: 4847 ocfs2_free_path(path); 4848 return ret; 4849 } 4850 4851 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 4852 { 4853 struct buffer_head *tl_bh = osb->osb_tl_bh; 4854 struct ocfs2_dinode *di; 4855 struct ocfs2_truncate_log *tl; 4856 4857 di = (struct ocfs2_dinode *) tl_bh->b_data; 4858 tl = &di->id2.i_dealloc; 4859 4860 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 4861 "slot %d, invalid truncate log parameters: used = " 4862 "%u, count = %u\n", osb->slot_num, 4863 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 4864 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 4865 } 4866 4867 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 4868 unsigned int new_start) 4869 { 4870 unsigned int tail_index; 4871 unsigned int current_tail; 4872 4873 /* No records, nothing to coalesce */ 4874 if (!le16_to_cpu(tl->tl_used)) 4875 return 0; 4876 4877 tail_index = le16_to_cpu(tl->tl_used) - 1; 4878 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 4879 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 4880 4881 return current_tail == new_start; 4882 } 4883 4884 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 4885 handle_t *handle, 4886 u64 start_blk, 4887 unsigned int num_clusters) 4888 { 4889 int status, index; 4890 unsigned int start_cluster, tl_count; 4891 struct inode *tl_inode = osb->osb_tl_inode; 4892 struct buffer_head *tl_bh = osb->osb_tl_bh; 4893 struct ocfs2_dinode *di; 4894 struct ocfs2_truncate_log *tl; 4895 4896 mlog_entry("start_blk = %llu, num_clusters = %u\n", 4897 (unsigned long long)start_blk, num_clusters); 4898 4899 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 4900 4901 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 4902 4903 di = (struct ocfs2_dinode *) tl_bh->b_data; 4904 tl = &di->id2.i_dealloc; 4905 if (!OCFS2_IS_VALID_DINODE(di)) { 4906 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 4907 status = -EIO; 4908 goto bail; 4909 } 4910 4911 tl_count = le16_to_cpu(tl->tl_count); 4912 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 4913 tl_count == 0, 4914 "Truncate record count on #%llu invalid " 4915 "wanted %u, actual %u\n", 4916 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 4917 ocfs2_truncate_recs_per_inode(osb->sb), 4918 le16_to_cpu(tl->tl_count)); 4919 4920 /* Caller should have known to flush before calling us. */ 4921 index = le16_to_cpu(tl->tl_used); 4922 if (index >= tl_count) { 4923 status = -ENOSPC; 4924 mlog_errno(status); 4925 goto bail; 4926 } 4927 4928 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4929 OCFS2_JOURNAL_ACCESS_WRITE); 4930 if (status < 0) { 4931 mlog_errno(status); 4932 goto bail; 4933 } 4934 4935 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 4936 "%llu (index = %d)\n", num_clusters, start_cluster, 4937 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 4938 4939 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 4940 /* 4941 * Move index back to the record we are coalescing with. 4942 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 4943 */ 4944 index--; 4945 4946 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 4947 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 4948 index, le32_to_cpu(tl->tl_recs[index].t_start), 4949 num_clusters); 4950 } else { 4951 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 4952 tl->tl_used = cpu_to_le16(index + 1); 4953 } 4954 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 4955 4956 status = ocfs2_journal_dirty(handle, tl_bh); 4957 if (status < 0) { 4958 mlog_errno(status); 4959 goto bail; 4960 } 4961 4962 bail: 4963 mlog_exit(status); 4964 return status; 4965 } 4966 4967 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 4968 handle_t *handle, 4969 struct inode *data_alloc_inode, 4970 struct buffer_head *data_alloc_bh) 4971 { 4972 int status = 0; 4973 int i; 4974 unsigned int num_clusters; 4975 u64 start_blk; 4976 struct ocfs2_truncate_rec rec; 4977 struct ocfs2_dinode *di; 4978 struct ocfs2_truncate_log *tl; 4979 struct inode *tl_inode = osb->osb_tl_inode; 4980 struct buffer_head *tl_bh = osb->osb_tl_bh; 4981 4982 mlog_entry_void(); 4983 4984 di = (struct ocfs2_dinode *) tl_bh->b_data; 4985 tl = &di->id2.i_dealloc; 4986 i = le16_to_cpu(tl->tl_used) - 1; 4987 while (i >= 0) { 4988 /* Caller has given us at least enough credits to 4989 * update the truncate log dinode */ 4990 status = ocfs2_journal_access(handle, tl_inode, tl_bh, 4991 OCFS2_JOURNAL_ACCESS_WRITE); 4992 if (status < 0) { 4993 mlog_errno(status); 4994 goto bail; 4995 } 4996 4997 tl->tl_used = cpu_to_le16(i); 4998 4999 status = ocfs2_journal_dirty(handle, tl_bh); 5000 if (status < 0) { 5001 mlog_errno(status); 5002 goto bail; 5003 } 5004 5005 /* TODO: Perhaps we can calculate the bulk of the 5006 * credits up front rather than extending like 5007 * this. */ 5008 status = ocfs2_extend_trans(handle, 5009 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5010 if (status < 0) { 5011 mlog_errno(status); 5012 goto bail; 5013 } 5014 5015 rec = tl->tl_recs[i]; 5016 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5017 le32_to_cpu(rec.t_start)); 5018 num_clusters = le32_to_cpu(rec.t_clusters); 5019 5020 /* if start_blk is not set, we ignore the record as 5021 * invalid. */ 5022 if (start_blk) { 5023 mlog(0, "free record %d, start = %u, clusters = %u\n", 5024 i, le32_to_cpu(rec.t_start), num_clusters); 5025 5026 status = ocfs2_free_clusters(handle, data_alloc_inode, 5027 data_alloc_bh, start_blk, 5028 num_clusters); 5029 if (status < 0) { 5030 mlog_errno(status); 5031 goto bail; 5032 } 5033 } 5034 i--; 5035 } 5036 5037 bail: 5038 mlog_exit(status); 5039 return status; 5040 } 5041 5042 /* Expects you to already be holding tl_inode->i_mutex */ 5043 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5044 { 5045 int status; 5046 unsigned int num_to_flush; 5047 handle_t *handle; 5048 struct inode *tl_inode = osb->osb_tl_inode; 5049 struct inode *data_alloc_inode = NULL; 5050 struct buffer_head *tl_bh = osb->osb_tl_bh; 5051 struct buffer_head *data_alloc_bh = NULL; 5052 struct ocfs2_dinode *di; 5053 struct ocfs2_truncate_log *tl; 5054 5055 mlog_entry_void(); 5056 5057 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5058 5059 di = (struct ocfs2_dinode *) tl_bh->b_data; 5060 tl = &di->id2.i_dealloc; 5061 if (!OCFS2_IS_VALID_DINODE(di)) { 5062 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di); 5063 status = -EIO; 5064 goto out; 5065 } 5066 5067 num_to_flush = le16_to_cpu(tl->tl_used); 5068 mlog(0, "Flush %u records from truncate log #%llu\n", 5069 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5070 if (!num_to_flush) { 5071 status = 0; 5072 goto out; 5073 } 5074 5075 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5076 GLOBAL_BITMAP_SYSTEM_INODE, 5077 OCFS2_INVALID_SLOT); 5078 if (!data_alloc_inode) { 5079 status = -EINVAL; 5080 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5081 goto out; 5082 } 5083 5084 mutex_lock(&data_alloc_inode->i_mutex); 5085 5086 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5087 if (status < 0) { 5088 mlog_errno(status); 5089 goto out_mutex; 5090 } 5091 5092 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5093 if (IS_ERR(handle)) { 5094 status = PTR_ERR(handle); 5095 mlog_errno(status); 5096 goto out_unlock; 5097 } 5098 5099 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5100 data_alloc_bh); 5101 if (status < 0) 5102 mlog_errno(status); 5103 5104 ocfs2_commit_trans(osb, handle); 5105 5106 out_unlock: 5107 brelse(data_alloc_bh); 5108 ocfs2_inode_unlock(data_alloc_inode, 1); 5109 5110 out_mutex: 5111 mutex_unlock(&data_alloc_inode->i_mutex); 5112 iput(data_alloc_inode); 5113 5114 out: 5115 mlog_exit(status); 5116 return status; 5117 } 5118 5119 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5120 { 5121 int status; 5122 struct inode *tl_inode = osb->osb_tl_inode; 5123 5124 mutex_lock(&tl_inode->i_mutex); 5125 status = __ocfs2_flush_truncate_log(osb); 5126 mutex_unlock(&tl_inode->i_mutex); 5127 5128 return status; 5129 } 5130 5131 static void ocfs2_truncate_log_worker(struct work_struct *work) 5132 { 5133 int status; 5134 struct ocfs2_super *osb = 5135 container_of(work, struct ocfs2_super, 5136 osb_truncate_log_wq.work); 5137 5138 mlog_entry_void(); 5139 5140 status = ocfs2_flush_truncate_log(osb); 5141 if (status < 0) 5142 mlog_errno(status); 5143 else 5144 ocfs2_init_inode_steal_slot(osb); 5145 5146 mlog_exit(status); 5147 } 5148 5149 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5150 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5151 int cancel) 5152 { 5153 if (osb->osb_tl_inode) { 5154 /* We want to push off log flushes while truncates are 5155 * still running. */ 5156 if (cancel) 5157 cancel_delayed_work(&osb->osb_truncate_log_wq); 5158 5159 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5160 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5161 } 5162 } 5163 5164 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5165 int slot_num, 5166 struct inode **tl_inode, 5167 struct buffer_head **tl_bh) 5168 { 5169 int status; 5170 struct inode *inode = NULL; 5171 struct buffer_head *bh = NULL; 5172 5173 inode = ocfs2_get_system_file_inode(osb, 5174 TRUNCATE_LOG_SYSTEM_INODE, 5175 slot_num); 5176 if (!inode) { 5177 status = -EINVAL; 5178 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5179 goto bail; 5180 } 5181 5182 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh, 5183 OCFS2_BH_CACHED, inode); 5184 if (status < 0) { 5185 iput(inode); 5186 mlog_errno(status); 5187 goto bail; 5188 } 5189 5190 *tl_inode = inode; 5191 *tl_bh = bh; 5192 bail: 5193 mlog_exit(status); 5194 return status; 5195 } 5196 5197 /* called during the 1st stage of node recovery. we stamp a clean 5198 * truncate log and pass back a copy for processing later. if the 5199 * truncate log does not require processing, a *tl_copy is set to 5200 * NULL. */ 5201 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5202 int slot_num, 5203 struct ocfs2_dinode **tl_copy) 5204 { 5205 int status; 5206 struct inode *tl_inode = NULL; 5207 struct buffer_head *tl_bh = NULL; 5208 struct ocfs2_dinode *di; 5209 struct ocfs2_truncate_log *tl; 5210 5211 *tl_copy = NULL; 5212 5213 mlog(0, "recover truncate log from slot %d\n", slot_num); 5214 5215 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5216 if (status < 0) { 5217 mlog_errno(status); 5218 goto bail; 5219 } 5220 5221 di = (struct ocfs2_dinode *) tl_bh->b_data; 5222 tl = &di->id2.i_dealloc; 5223 if (!OCFS2_IS_VALID_DINODE(di)) { 5224 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di); 5225 status = -EIO; 5226 goto bail; 5227 } 5228 5229 if (le16_to_cpu(tl->tl_used)) { 5230 mlog(0, "We'll have %u logs to recover\n", 5231 le16_to_cpu(tl->tl_used)); 5232 5233 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5234 if (!(*tl_copy)) { 5235 status = -ENOMEM; 5236 mlog_errno(status); 5237 goto bail; 5238 } 5239 5240 /* Assuming the write-out below goes well, this copy 5241 * will be passed back to recovery for processing. */ 5242 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5243 5244 /* All we need to do to clear the truncate log is set 5245 * tl_used. */ 5246 tl->tl_used = 0; 5247 5248 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5249 if (status < 0) { 5250 mlog_errno(status); 5251 goto bail; 5252 } 5253 } 5254 5255 bail: 5256 if (tl_inode) 5257 iput(tl_inode); 5258 if (tl_bh) 5259 brelse(tl_bh); 5260 5261 if (status < 0 && (*tl_copy)) { 5262 kfree(*tl_copy); 5263 *tl_copy = NULL; 5264 } 5265 5266 mlog_exit(status); 5267 return status; 5268 } 5269 5270 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 5271 struct ocfs2_dinode *tl_copy) 5272 { 5273 int status = 0; 5274 int i; 5275 unsigned int clusters, num_recs, start_cluster; 5276 u64 start_blk; 5277 handle_t *handle; 5278 struct inode *tl_inode = osb->osb_tl_inode; 5279 struct ocfs2_truncate_log *tl; 5280 5281 mlog_entry_void(); 5282 5283 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 5284 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 5285 return -EINVAL; 5286 } 5287 5288 tl = &tl_copy->id2.i_dealloc; 5289 num_recs = le16_to_cpu(tl->tl_used); 5290 mlog(0, "cleanup %u records from %llu\n", num_recs, 5291 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 5292 5293 mutex_lock(&tl_inode->i_mutex); 5294 for(i = 0; i < num_recs; i++) { 5295 if (ocfs2_truncate_log_needs_flush(osb)) { 5296 status = __ocfs2_flush_truncate_log(osb); 5297 if (status < 0) { 5298 mlog_errno(status); 5299 goto bail_up; 5300 } 5301 } 5302 5303 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5304 if (IS_ERR(handle)) { 5305 status = PTR_ERR(handle); 5306 mlog_errno(status); 5307 goto bail_up; 5308 } 5309 5310 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 5311 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 5312 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 5313 5314 status = ocfs2_truncate_log_append(osb, handle, 5315 start_blk, clusters); 5316 ocfs2_commit_trans(osb, handle); 5317 if (status < 0) { 5318 mlog_errno(status); 5319 goto bail_up; 5320 } 5321 } 5322 5323 bail_up: 5324 mutex_unlock(&tl_inode->i_mutex); 5325 5326 mlog_exit(status); 5327 return status; 5328 } 5329 5330 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 5331 { 5332 int status; 5333 struct inode *tl_inode = osb->osb_tl_inode; 5334 5335 mlog_entry_void(); 5336 5337 if (tl_inode) { 5338 cancel_delayed_work(&osb->osb_truncate_log_wq); 5339 flush_workqueue(ocfs2_wq); 5340 5341 status = ocfs2_flush_truncate_log(osb); 5342 if (status < 0) 5343 mlog_errno(status); 5344 5345 brelse(osb->osb_tl_bh); 5346 iput(osb->osb_tl_inode); 5347 } 5348 5349 mlog_exit_void(); 5350 } 5351 5352 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 5353 { 5354 int status; 5355 struct inode *tl_inode = NULL; 5356 struct buffer_head *tl_bh = NULL; 5357 5358 mlog_entry_void(); 5359 5360 status = ocfs2_get_truncate_log_info(osb, 5361 osb->slot_num, 5362 &tl_inode, 5363 &tl_bh); 5364 if (status < 0) 5365 mlog_errno(status); 5366 5367 /* ocfs2_truncate_log_shutdown keys on the existence of 5368 * osb->osb_tl_inode so we don't set any of the osb variables 5369 * until we're sure all is well. */ 5370 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 5371 ocfs2_truncate_log_worker); 5372 osb->osb_tl_bh = tl_bh; 5373 osb->osb_tl_inode = tl_inode; 5374 5375 mlog_exit(status); 5376 return status; 5377 } 5378 5379 /* 5380 * Delayed de-allocation of suballocator blocks. 5381 * 5382 * Some sets of block de-allocations might involve multiple suballocator inodes. 5383 * 5384 * The locking for this can get extremely complicated, especially when 5385 * the suballocator inodes to delete from aren't known until deep 5386 * within an unrelated codepath. 5387 * 5388 * ocfs2_extent_block structures are a good example of this - an inode 5389 * btree could have been grown by any number of nodes each allocating 5390 * out of their own suballoc inode. 5391 * 5392 * These structures allow the delay of block de-allocation until a 5393 * later time, when locking of multiple cluster inodes won't cause 5394 * deadlock. 5395 */ 5396 5397 /* 5398 * Describes a single block free from a suballocator 5399 */ 5400 struct ocfs2_cached_block_free { 5401 struct ocfs2_cached_block_free *free_next; 5402 u64 free_blk; 5403 unsigned int free_bit; 5404 }; 5405 5406 struct ocfs2_per_slot_free_list { 5407 struct ocfs2_per_slot_free_list *f_next_suballocator; 5408 int f_inode_type; 5409 int f_slot; 5410 struct ocfs2_cached_block_free *f_first; 5411 }; 5412 5413 static int ocfs2_free_cached_items(struct ocfs2_super *osb, 5414 int sysfile_type, 5415 int slot, 5416 struct ocfs2_cached_block_free *head) 5417 { 5418 int ret; 5419 u64 bg_blkno; 5420 handle_t *handle; 5421 struct inode *inode; 5422 struct buffer_head *di_bh = NULL; 5423 struct ocfs2_cached_block_free *tmp; 5424 5425 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 5426 if (!inode) { 5427 ret = -EINVAL; 5428 mlog_errno(ret); 5429 goto out; 5430 } 5431 5432 mutex_lock(&inode->i_mutex); 5433 5434 ret = ocfs2_inode_lock(inode, &di_bh, 1); 5435 if (ret) { 5436 mlog_errno(ret); 5437 goto out_mutex; 5438 } 5439 5440 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 5441 if (IS_ERR(handle)) { 5442 ret = PTR_ERR(handle); 5443 mlog_errno(ret); 5444 goto out_unlock; 5445 } 5446 5447 while (head) { 5448 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 5449 head->free_bit); 5450 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 5451 head->free_bit, (unsigned long long)head->free_blk); 5452 5453 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 5454 head->free_bit, bg_blkno, 1); 5455 if (ret) { 5456 mlog_errno(ret); 5457 goto out_journal; 5458 } 5459 5460 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 5461 if (ret) { 5462 mlog_errno(ret); 5463 goto out_journal; 5464 } 5465 5466 tmp = head; 5467 head = head->free_next; 5468 kfree(tmp); 5469 } 5470 5471 out_journal: 5472 ocfs2_commit_trans(osb, handle); 5473 5474 out_unlock: 5475 ocfs2_inode_unlock(inode, 1); 5476 brelse(di_bh); 5477 out_mutex: 5478 mutex_unlock(&inode->i_mutex); 5479 iput(inode); 5480 out: 5481 while(head) { 5482 /* Premature exit may have left some dangling items. */ 5483 tmp = head; 5484 head = head->free_next; 5485 kfree(tmp); 5486 } 5487 5488 return ret; 5489 } 5490 5491 int ocfs2_run_deallocs(struct ocfs2_super *osb, 5492 struct ocfs2_cached_dealloc_ctxt *ctxt) 5493 { 5494 int ret = 0, ret2; 5495 struct ocfs2_per_slot_free_list *fl; 5496 5497 if (!ctxt) 5498 return 0; 5499 5500 while (ctxt->c_first_suballocator) { 5501 fl = ctxt->c_first_suballocator; 5502 5503 if (fl->f_first) { 5504 mlog(0, "Free items: (type %u, slot %d)\n", 5505 fl->f_inode_type, fl->f_slot); 5506 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type, 5507 fl->f_slot, fl->f_first); 5508 if (ret2) 5509 mlog_errno(ret2); 5510 if (!ret) 5511 ret = ret2; 5512 } 5513 5514 ctxt->c_first_suballocator = fl->f_next_suballocator; 5515 kfree(fl); 5516 } 5517 5518 return ret; 5519 } 5520 5521 static struct ocfs2_per_slot_free_list * 5522 ocfs2_find_per_slot_free_list(int type, 5523 int slot, 5524 struct ocfs2_cached_dealloc_ctxt *ctxt) 5525 { 5526 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 5527 5528 while (fl) { 5529 if (fl->f_inode_type == type && fl->f_slot == slot) 5530 return fl; 5531 5532 fl = fl->f_next_suballocator; 5533 } 5534 5535 fl = kmalloc(sizeof(*fl), GFP_NOFS); 5536 if (fl) { 5537 fl->f_inode_type = type; 5538 fl->f_slot = slot; 5539 fl->f_first = NULL; 5540 fl->f_next_suballocator = ctxt->c_first_suballocator; 5541 5542 ctxt->c_first_suballocator = fl; 5543 } 5544 return fl; 5545 } 5546 5547 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 5548 int type, int slot, u64 blkno, 5549 unsigned int bit) 5550 { 5551 int ret; 5552 struct ocfs2_per_slot_free_list *fl; 5553 struct ocfs2_cached_block_free *item; 5554 5555 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 5556 if (fl == NULL) { 5557 ret = -ENOMEM; 5558 mlog_errno(ret); 5559 goto out; 5560 } 5561 5562 item = kmalloc(sizeof(*item), GFP_NOFS); 5563 if (item == NULL) { 5564 ret = -ENOMEM; 5565 mlog_errno(ret); 5566 goto out; 5567 } 5568 5569 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 5570 type, slot, bit, (unsigned long long)blkno); 5571 5572 item->free_blk = blkno; 5573 item->free_bit = bit; 5574 item->free_next = fl->f_first; 5575 5576 fl->f_first = item; 5577 5578 ret = 0; 5579 out: 5580 return ret; 5581 } 5582 5583 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 5584 struct ocfs2_extent_block *eb) 5585 { 5586 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 5587 le16_to_cpu(eb->h_suballoc_slot), 5588 le64_to_cpu(eb->h_blkno), 5589 le16_to_cpu(eb->h_suballoc_bit)); 5590 } 5591 5592 /* This function will figure out whether the currently last extent 5593 * block will be deleted, and if it will, what the new last extent 5594 * block will be so we can update his h_next_leaf_blk field, as well 5595 * as the dinodes i_last_eb_blk */ 5596 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 5597 unsigned int clusters_to_del, 5598 struct ocfs2_path *path, 5599 struct buffer_head **new_last_eb) 5600 { 5601 int next_free, ret = 0; 5602 u32 cpos; 5603 struct ocfs2_extent_rec *rec; 5604 struct ocfs2_extent_block *eb; 5605 struct ocfs2_extent_list *el; 5606 struct buffer_head *bh = NULL; 5607 5608 *new_last_eb = NULL; 5609 5610 /* we have no tree, so of course, no last_eb. */ 5611 if (!path->p_tree_depth) 5612 goto out; 5613 5614 /* trunc to zero special case - this makes tree_depth = 0 5615 * regardless of what it is. */ 5616 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 5617 goto out; 5618 5619 el = path_leaf_el(path); 5620 BUG_ON(!el->l_next_free_rec); 5621 5622 /* 5623 * Make sure that this extent list will actually be empty 5624 * after we clear away the data. We can shortcut out if 5625 * there's more than one non-empty extent in the 5626 * list. Otherwise, a check of the remaining extent is 5627 * necessary. 5628 */ 5629 next_free = le16_to_cpu(el->l_next_free_rec); 5630 rec = NULL; 5631 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5632 if (next_free > 2) 5633 goto out; 5634 5635 /* We may have a valid extent in index 1, check it. */ 5636 if (next_free == 2) 5637 rec = &el->l_recs[1]; 5638 5639 /* 5640 * Fall through - no more nonempty extents, so we want 5641 * to delete this leaf. 5642 */ 5643 } else { 5644 if (next_free > 1) 5645 goto out; 5646 5647 rec = &el->l_recs[0]; 5648 } 5649 5650 if (rec) { 5651 /* 5652 * Check it we'll only be trimming off the end of this 5653 * cluster. 5654 */ 5655 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 5656 goto out; 5657 } 5658 5659 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 5660 if (ret) { 5661 mlog_errno(ret); 5662 goto out; 5663 } 5664 5665 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 5666 if (ret) { 5667 mlog_errno(ret); 5668 goto out; 5669 } 5670 5671 eb = (struct ocfs2_extent_block *) bh->b_data; 5672 el = &eb->h_list; 5673 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 5674 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 5675 ret = -EROFS; 5676 goto out; 5677 } 5678 5679 *new_last_eb = bh; 5680 get_bh(*new_last_eb); 5681 mlog(0, "returning block %llu, (cpos: %u)\n", 5682 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 5683 out: 5684 brelse(bh); 5685 5686 return ret; 5687 } 5688 5689 /* 5690 * Trim some clusters off the rightmost edge of a tree. Only called 5691 * during truncate. 5692 * 5693 * The caller needs to: 5694 * - start journaling of each path component. 5695 * - compute and fully set up any new last ext block 5696 */ 5697 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 5698 handle_t *handle, struct ocfs2_truncate_context *tc, 5699 u32 clusters_to_del, u64 *delete_start) 5700 { 5701 int ret, i, index = path->p_tree_depth; 5702 u32 new_edge = 0; 5703 u64 deleted_eb = 0; 5704 struct buffer_head *bh; 5705 struct ocfs2_extent_list *el; 5706 struct ocfs2_extent_rec *rec; 5707 5708 *delete_start = 0; 5709 5710 while (index >= 0) { 5711 bh = path->p_node[index].bh; 5712 el = path->p_node[index].el; 5713 5714 mlog(0, "traveling tree (index = %d, block = %llu)\n", 5715 index, (unsigned long long)bh->b_blocknr); 5716 5717 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 5718 5719 if (index != 5720 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 5721 ocfs2_error(inode->i_sb, 5722 "Inode %lu has invalid ext. block %llu", 5723 inode->i_ino, 5724 (unsigned long long)bh->b_blocknr); 5725 ret = -EROFS; 5726 goto out; 5727 } 5728 5729 find_tail_record: 5730 i = le16_to_cpu(el->l_next_free_rec) - 1; 5731 rec = &el->l_recs[i]; 5732 5733 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 5734 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 5735 ocfs2_rec_clusters(el, rec), 5736 (unsigned long long)le64_to_cpu(rec->e_blkno), 5737 le16_to_cpu(el->l_next_free_rec)); 5738 5739 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 5740 5741 if (le16_to_cpu(el->l_tree_depth) == 0) { 5742 /* 5743 * If the leaf block contains a single empty 5744 * extent and no records, we can just remove 5745 * the block. 5746 */ 5747 if (i == 0 && ocfs2_is_empty_extent(rec)) { 5748 memset(rec, 0, 5749 sizeof(struct ocfs2_extent_rec)); 5750 el->l_next_free_rec = cpu_to_le16(0); 5751 5752 goto delete; 5753 } 5754 5755 /* 5756 * Remove any empty extents by shifting things 5757 * left. That should make life much easier on 5758 * the code below. This condition is rare 5759 * enough that we shouldn't see a performance 5760 * hit. 5761 */ 5762 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 5763 le16_add_cpu(&el->l_next_free_rec, -1); 5764 5765 for(i = 0; 5766 i < le16_to_cpu(el->l_next_free_rec); i++) 5767 el->l_recs[i] = el->l_recs[i + 1]; 5768 5769 memset(&el->l_recs[i], 0, 5770 sizeof(struct ocfs2_extent_rec)); 5771 5772 /* 5773 * We've modified our extent list. The 5774 * simplest way to handle this change 5775 * is to being the search from the 5776 * start again. 5777 */ 5778 goto find_tail_record; 5779 } 5780 5781 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 5782 5783 /* 5784 * We'll use "new_edge" on our way back up the 5785 * tree to know what our rightmost cpos is. 5786 */ 5787 new_edge = le16_to_cpu(rec->e_leaf_clusters); 5788 new_edge += le32_to_cpu(rec->e_cpos); 5789 5790 /* 5791 * The caller will use this to delete data blocks. 5792 */ 5793 *delete_start = le64_to_cpu(rec->e_blkno) 5794 + ocfs2_clusters_to_blocks(inode->i_sb, 5795 le16_to_cpu(rec->e_leaf_clusters)); 5796 5797 /* 5798 * If it's now empty, remove this record. 5799 */ 5800 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 5801 memset(rec, 0, 5802 sizeof(struct ocfs2_extent_rec)); 5803 le16_add_cpu(&el->l_next_free_rec, -1); 5804 } 5805 } else { 5806 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 5807 memset(rec, 0, 5808 sizeof(struct ocfs2_extent_rec)); 5809 le16_add_cpu(&el->l_next_free_rec, -1); 5810 5811 goto delete; 5812 } 5813 5814 /* Can this actually happen? */ 5815 if (le16_to_cpu(el->l_next_free_rec) == 0) 5816 goto delete; 5817 5818 /* 5819 * We never actually deleted any clusters 5820 * because our leaf was empty. There's no 5821 * reason to adjust the rightmost edge then. 5822 */ 5823 if (new_edge == 0) 5824 goto delete; 5825 5826 rec->e_int_clusters = cpu_to_le32(new_edge); 5827 le32_add_cpu(&rec->e_int_clusters, 5828 -le32_to_cpu(rec->e_cpos)); 5829 5830 /* 5831 * A deleted child record should have been 5832 * caught above. 5833 */ 5834 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 5835 } 5836 5837 delete: 5838 ret = ocfs2_journal_dirty(handle, bh); 5839 if (ret) { 5840 mlog_errno(ret); 5841 goto out; 5842 } 5843 5844 mlog(0, "extent list container %llu, after: record %d: " 5845 "(%u, %u, %llu), next = %u.\n", 5846 (unsigned long long)bh->b_blocknr, i, 5847 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 5848 (unsigned long long)le64_to_cpu(rec->e_blkno), 5849 le16_to_cpu(el->l_next_free_rec)); 5850 5851 /* 5852 * We must be careful to only attempt delete of an 5853 * extent block (and not the root inode block). 5854 */ 5855 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 5856 struct ocfs2_extent_block *eb = 5857 (struct ocfs2_extent_block *)bh->b_data; 5858 5859 /* 5860 * Save this for use when processing the 5861 * parent block. 5862 */ 5863 deleted_eb = le64_to_cpu(eb->h_blkno); 5864 5865 mlog(0, "deleting this extent block.\n"); 5866 5867 ocfs2_remove_from_cache(inode, bh); 5868 5869 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 5870 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 5871 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 5872 5873 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 5874 /* An error here is not fatal. */ 5875 if (ret < 0) 5876 mlog_errno(ret); 5877 } else { 5878 deleted_eb = 0; 5879 } 5880 5881 index--; 5882 } 5883 5884 ret = 0; 5885 out: 5886 return ret; 5887 } 5888 5889 static int ocfs2_do_truncate(struct ocfs2_super *osb, 5890 unsigned int clusters_to_del, 5891 struct inode *inode, 5892 struct buffer_head *fe_bh, 5893 handle_t *handle, 5894 struct ocfs2_truncate_context *tc, 5895 struct ocfs2_path *path) 5896 { 5897 int status; 5898 struct ocfs2_dinode *fe; 5899 struct ocfs2_extent_block *last_eb = NULL; 5900 struct ocfs2_extent_list *el; 5901 struct buffer_head *last_eb_bh = NULL; 5902 u64 delete_blk = 0; 5903 5904 fe = (struct ocfs2_dinode *) fe_bh->b_data; 5905 5906 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 5907 path, &last_eb_bh); 5908 if (status < 0) { 5909 mlog_errno(status); 5910 goto bail; 5911 } 5912 5913 /* 5914 * Each component will be touched, so we might as well journal 5915 * here to avoid having to handle errors later. 5916 */ 5917 status = ocfs2_journal_access_path(inode, handle, path); 5918 if (status < 0) { 5919 mlog_errno(status); 5920 goto bail; 5921 } 5922 5923 if (last_eb_bh) { 5924 status = ocfs2_journal_access(handle, inode, last_eb_bh, 5925 OCFS2_JOURNAL_ACCESS_WRITE); 5926 if (status < 0) { 5927 mlog_errno(status); 5928 goto bail; 5929 } 5930 5931 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5932 } 5933 5934 el = &(fe->id2.i_list); 5935 5936 /* 5937 * Lower levels depend on this never happening, but it's best 5938 * to check it up here before changing the tree. 5939 */ 5940 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 5941 ocfs2_error(inode->i_sb, 5942 "Inode %lu has an empty extent record, depth %u\n", 5943 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 5944 status = -EROFS; 5945 goto bail; 5946 } 5947 5948 spin_lock(&OCFS2_I(inode)->ip_lock); 5949 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 5950 clusters_to_del; 5951 spin_unlock(&OCFS2_I(inode)->ip_lock); 5952 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 5953 inode->i_blocks = ocfs2_inode_sector_count(inode); 5954 5955 status = ocfs2_trim_tree(inode, path, handle, tc, 5956 clusters_to_del, &delete_blk); 5957 if (status) { 5958 mlog_errno(status); 5959 goto bail; 5960 } 5961 5962 if (le32_to_cpu(fe->i_clusters) == 0) { 5963 /* trunc to zero is a special case. */ 5964 el->l_tree_depth = 0; 5965 fe->i_last_eb_blk = 0; 5966 } else if (last_eb) 5967 fe->i_last_eb_blk = last_eb->h_blkno; 5968 5969 status = ocfs2_journal_dirty(handle, fe_bh); 5970 if (status < 0) { 5971 mlog_errno(status); 5972 goto bail; 5973 } 5974 5975 if (last_eb) { 5976 /* If there will be a new last extent block, then by 5977 * definition, there cannot be any leaves to the right of 5978 * him. */ 5979 last_eb->h_next_leaf_blk = 0; 5980 status = ocfs2_journal_dirty(handle, last_eb_bh); 5981 if (status < 0) { 5982 mlog_errno(status); 5983 goto bail; 5984 } 5985 } 5986 5987 if (delete_blk) { 5988 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 5989 clusters_to_del); 5990 if (status < 0) { 5991 mlog_errno(status); 5992 goto bail; 5993 } 5994 } 5995 status = 0; 5996 bail: 5997 5998 mlog_exit(status); 5999 return status; 6000 } 6001 6002 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh) 6003 { 6004 set_buffer_uptodate(bh); 6005 mark_buffer_dirty(bh); 6006 return 0; 6007 } 6008 6009 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh) 6010 { 6011 set_buffer_uptodate(bh); 6012 mark_buffer_dirty(bh); 6013 return ocfs2_journal_dirty_data(handle, bh); 6014 } 6015 6016 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6017 unsigned int from, unsigned int to, 6018 struct page *page, int zero, u64 *phys) 6019 { 6020 int ret, partial = 0; 6021 6022 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6023 if (ret) 6024 mlog_errno(ret); 6025 6026 if (zero) 6027 zero_user_segment(page, from, to); 6028 6029 /* 6030 * Need to set the buffers we zero'd into uptodate 6031 * here if they aren't - ocfs2_map_page_blocks() 6032 * might've skipped some 6033 */ 6034 if (ocfs2_should_order_data(inode)) { 6035 ret = walk_page_buffers(handle, 6036 page_buffers(page), 6037 from, to, &partial, 6038 ocfs2_ordered_zero_func); 6039 if (ret < 0) 6040 mlog_errno(ret); 6041 } else { 6042 ret = walk_page_buffers(handle, page_buffers(page), 6043 from, to, &partial, 6044 ocfs2_writeback_zero_func); 6045 if (ret < 0) 6046 mlog_errno(ret); 6047 } 6048 6049 if (!partial) 6050 SetPageUptodate(page); 6051 6052 flush_dcache_page(page); 6053 } 6054 6055 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6056 loff_t end, struct page **pages, 6057 int numpages, u64 phys, handle_t *handle) 6058 { 6059 int i; 6060 struct page *page; 6061 unsigned int from, to = PAGE_CACHE_SIZE; 6062 struct super_block *sb = inode->i_sb; 6063 6064 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6065 6066 if (numpages == 0) 6067 goto out; 6068 6069 to = PAGE_CACHE_SIZE; 6070 for(i = 0; i < numpages; i++) { 6071 page = pages[i]; 6072 6073 from = start & (PAGE_CACHE_SIZE - 1); 6074 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6075 to = end & (PAGE_CACHE_SIZE - 1); 6076 6077 BUG_ON(from > PAGE_CACHE_SIZE); 6078 BUG_ON(to > PAGE_CACHE_SIZE); 6079 6080 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6081 &phys); 6082 6083 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6084 } 6085 out: 6086 if (pages) 6087 ocfs2_unlock_and_free_pages(pages, numpages); 6088 } 6089 6090 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6091 struct page **pages, int *num) 6092 { 6093 int numpages, ret = 0; 6094 struct super_block *sb = inode->i_sb; 6095 struct address_space *mapping = inode->i_mapping; 6096 unsigned long index; 6097 loff_t last_page_bytes; 6098 6099 BUG_ON(start > end); 6100 6101 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6102 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6103 6104 numpages = 0; 6105 last_page_bytes = PAGE_ALIGN(end); 6106 index = start >> PAGE_CACHE_SHIFT; 6107 do { 6108 pages[numpages] = grab_cache_page(mapping, index); 6109 if (!pages[numpages]) { 6110 ret = -ENOMEM; 6111 mlog_errno(ret); 6112 goto out; 6113 } 6114 6115 numpages++; 6116 index++; 6117 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6118 6119 out: 6120 if (ret != 0) { 6121 if (pages) 6122 ocfs2_unlock_and_free_pages(pages, numpages); 6123 numpages = 0; 6124 } 6125 6126 *num = numpages; 6127 6128 return ret; 6129 } 6130 6131 /* 6132 * Zero the area past i_size but still within an allocated 6133 * cluster. This avoids exposing nonzero data on subsequent file 6134 * extends. 6135 * 6136 * We need to call this before i_size is updated on the inode because 6137 * otherwise block_write_full_page() will skip writeout of pages past 6138 * i_size. The new_i_size parameter is passed for this reason. 6139 */ 6140 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6141 u64 range_start, u64 range_end) 6142 { 6143 int ret = 0, numpages; 6144 struct page **pages = NULL; 6145 u64 phys; 6146 unsigned int ext_flags; 6147 struct super_block *sb = inode->i_sb; 6148 6149 /* 6150 * File systems which don't support sparse files zero on every 6151 * extend. 6152 */ 6153 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6154 return 0; 6155 6156 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6157 sizeof(struct page *), GFP_NOFS); 6158 if (pages == NULL) { 6159 ret = -ENOMEM; 6160 mlog_errno(ret); 6161 goto out; 6162 } 6163 6164 if (range_start == range_end) 6165 goto out; 6166 6167 ret = ocfs2_extent_map_get_blocks(inode, 6168 range_start >> sb->s_blocksize_bits, 6169 &phys, NULL, &ext_flags); 6170 if (ret) { 6171 mlog_errno(ret); 6172 goto out; 6173 } 6174 6175 /* 6176 * Tail is a hole, or is marked unwritten. In either case, we 6177 * can count on read and write to return/push zero's. 6178 */ 6179 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6180 goto out; 6181 6182 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6183 &numpages); 6184 if (ret) { 6185 mlog_errno(ret); 6186 goto out; 6187 } 6188 6189 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6190 numpages, phys, handle); 6191 6192 /* 6193 * Initiate writeout of the pages we zero'd here. We don't 6194 * wait on them - the truncate_inode_pages() call later will 6195 * do that for us. 6196 */ 6197 ret = do_sync_mapping_range(inode->i_mapping, range_start, 6198 range_end - 1, SYNC_FILE_RANGE_WRITE); 6199 if (ret) 6200 mlog_errno(ret); 6201 6202 out: 6203 if (pages) 6204 kfree(pages); 6205 6206 return ret; 6207 } 6208 6209 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di) 6210 { 6211 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6212 6213 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2)); 6214 } 6215 6216 void ocfs2_dinode_new_extent_list(struct inode *inode, 6217 struct ocfs2_dinode *di) 6218 { 6219 ocfs2_zero_dinode_id2(inode, di); 6220 di->id2.i_list.l_tree_depth = 0; 6221 di->id2.i_list.l_next_free_rec = 0; 6222 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb)); 6223 } 6224 6225 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6226 { 6227 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6228 struct ocfs2_inline_data *idata = &di->id2.i_data; 6229 6230 spin_lock(&oi->ip_lock); 6231 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6232 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6233 spin_unlock(&oi->ip_lock); 6234 6235 /* 6236 * We clear the entire i_data structure here so that all 6237 * fields can be properly initialized. 6238 */ 6239 ocfs2_zero_dinode_id2(inode, di); 6240 6241 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb)); 6242 } 6243 6244 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6245 struct buffer_head *di_bh) 6246 { 6247 int ret, i, has_data, num_pages = 0; 6248 handle_t *handle; 6249 u64 uninitialized_var(block); 6250 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6251 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6252 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6253 struct ocfs2_alloc_context *data_ac = NULL; 6254 struct page **pages = NULL; 6255 loff_t end = osb->s_clustersize; 6256 6257 has_data = i_size_read(inode) ? 1 : 0; 6258 6259 if (has_data) { 6260 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6261 sizeof(struct page *), GFP_NOFS); 6262 if (pages == NULL) { 6263 ret = -ENOMEM; 6264 mlog_errno(ret); 6265 goto out; 6266 } 6267 6268 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6269 if (ret) { 6270 mlog_errno(ret); 6271 goto out; 6272 } 6273 } 6274 6275 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS); 6276 if (IS_ERR(handle)) { 6277 ret = PTR_ERR(handle); 6278 mlog_errno(ret); 6279 goto out_unlock; 6280 } 6281 6282 ret = ocfs2_journal_access(handle, inode, di_bh, 6283 OCFS2_JOURNAL_ACCESS_WRITE); 6284 if (ret) { 6285 mlog_errno(ret); 6286 goto out_commit; 6287 } 6288 6289 if (has_data) { 6290 u32 bit_off, num; 6291 unsigned int page_end; 6292 u64 phys; 6293 6294 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 6295 &num); 6296 if (ret) { 6297 mlog_errno(ret); 6298 goto out_commit; 6299 } 6300 6301 /* 6302 * Save two copies, one for insert, and one that can 6303 * be changed by ocfs2_map_and_dirty_page() below. 6304 */ 6305 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6306 6307 /* 6308 * Non sparse file systems zero on extend, so no need 6309 * to do that now. 6310 */ 6311 if (!ocfs2_sparse_alloc(osb) && 6312 PAGE_CACHE_SIZE < osb->s_clustersize) 6313 end = PAGE_CACHE_SIZE; 6314 6315 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6316 if (ret) { 6317 mlog_errno(ret); 6318 goto out_commit; 6319 } 6320 6321 /* 6322 * This should populate the 1st page for us and mark 6323 * it up to date. 6324 */ 6325 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6326 if (ret) { 6327 mlog_errno(ret); 6328 goto out_commit; 6329 } 6330 6331 page_end = PAGE_CACHE_SIZE; 6332 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6333 page_end = osb->s_clustersize; 6334 6335 for (i = 0; i < num_pages; i++) 6336 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6337 pages[i], i > 0, &phys); 6338 } 6339 6340 spin_lock(&oi->ip_lock); 6341 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6342 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6343 spin_unlock(&oi->ip_lock); 6344 6345 ocfs2_dinode_new_extent_list(inode, di); 6346 6347 ocfs2_journal_dirty(handle, di_bh); 6348 6349 if (has_data) { 6350 /* 6351 * An error at this point should be extremely rare. If 6352 * this proves to be false, we could always re-build 6353 * the in-inode data from our pages. 6354 */ 6355 ret = ocfs2_insert_extent(osb, handle, inode, di_bh, 6356 0, block, 1, 0, NULL); 6357 if (ret) { 6358 mlog_errno(ret); 6359 goto out_commit; 6360 } 6361 6362 inode->i_blocks = ocfs2_inode_sector_count(inode); 6363 } 6364 6365 out_commit: 6366 ocfs2_commit_trans(osb, handle); 6367 6368 out_unlock: 6369 if (data_ac) 6370 ocfs2_free_alloc_context(data_ac); 6371 6372 out: 6373 if (pages) { 6374 ocfs2_unlock_and_free_pages(pages, num_pages); 6375 kfree(pages); 6376 } 6377 6378 return ret; 6379 } 6380 6381 /* 6382 * It is expected, that by the time you call this function, 6383 * inode->i_size and fe->i_size have been adjusted. 6384 * 6385 * WARNING: This will kfree the truncate context 6386 */ 6387 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6388 struct inode *inode, 6389 struct buffer_head *fe_bh, 6390 struct ocfs2_truncate_context *tc) 6391 { 6392 int status, i, credits, tl_sem = 0; 6393 u32 clusters_to_del, new_highest_cpos, range; 6394 struct ocfs2_extent_list *el; 6395 handle_t *handle = NULL; 6396 struct inode *tl_inode = osb->osb_tl_inode; 6397 struct ocfs2_path *path = NULL; 6398 6399 mlog_entry_void(); 6400 6401 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 6402 i_size_read(inode)); 6403 6404 path = ocfs2_new_inode_path(fe_bh); 6405 if (!path) { 6406 status = -ENOMEM; 6407 mlog_errno(status); 6408 goto bail; 6409 } 6410 6411 ocfs2_extent_map_trunc(inode, new_highest_cpos); 6412 6413 start: 6414 /* 6415 * Check that we still have allocation to delete. 6416 */ 6417 if (OCFS2_I(inode)->ip_clusters == 0) { 6418 status = 0; 6419 goto bail; 6420 } 6421 6422 /* 6423 * Truncate always works against the rightmost tree branch. 6424 */ 6425 status = ocfs2_find_path(inode, path, UINT_MAX); 6426 if (status) { 6427 mlog_errno(status); 6428 goto bail; 6429 } 6430 6431 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 6432 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 6433 6434 /* 6435 * By now, el will point to the extent list on the bottom most 6436 * portion of this tree. Only the tail record is considered in 6437 * each pass. 6438 * 6439 * We handle the following cases, in order: 6440 * - empty extent: delete the remaining branch 6441 * - remove the entire record 6442 * - remove a partial record 6443 * - no record needs to be removed (truncate has completed) 6444 */ 6445 el = path_leaf_el(path); 6446 if (le16_to_cpu(el->l_next_free_rec) == 0) { 6447 ocfs2_error(inode->i_sb, 6448 "Inode %llu has empty extent block at %llu\n", 6449 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6450 (unsigned long long)path_leaf_bh(path)->b_blocknr); 6451 status = -EROFS; 6452 goto bail; 6453 } 6454 6455 i = le16_to_cpu(el->l_next_free_rec) - 1; 6456 range = le32_to_cpu(el->l_recs[i].e_cpos) + 6457 ocfs2_rec_clusters(el, &el->l_recs[i]); 6458 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 6459 clusters_to_del = 0; 6460 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 6461 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 6462 } else if (range > new_highest_cpos) { 6463 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 6464 le32_to_cpu(el->l_recs[i].e_cpos)) - 6465 new_highest_cpos; 6466 } else { 6467 status = 0; 6468 goto bail; 6469 } 6470 6471 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 6472 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 6473 6474 mutex_lock(&tl_inode->i_mutex); 6475 tl_sem = 1; 6476 /* ocfs2_truncate_log_needs_flush guarantees us at least one 6477 * record is free for use. If there isn't any, we flush to get 6478 * an empty truncate log. */ 6479 if (ocfs2_truncate_log_needs_flush(osb)) { 6480 status = __ocfs2_flush_truncate_log(osb); 6481 if (status < 0) { 6482 mlog_errno(status); 6483 goto bail; 6484 } 6485 } 6486 6487 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 6488 (struct ocfs2_dinode *)fe_bh->b_data, 6489 el); 6490 handle = ocfs2_start_trans(osb, credits); 6491 if (IS_ERR(handle)) { 6492 status = PTR_ERR(handle); 6493 handle = NULL; 6494 mlog_errno(status); 6495 goto bail; 6496 } 6497 6498 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 6499 tc, path); 6500 if (status < 0) { 6501 mlog_errno(status); 6502 goto bail; 6503 } 6504 6505 mutex_unlock(&tl_inode->i_mutex); 6506 tl_sem = 0; 6507 6508 ocfs2_commit_trans(osb, handle); 6509 handle = NULL; 6510 6511 ocfs2_reinit_path(path, 1); 6512 6513 /* 6514 * The check above will catch the case where we've truncated 6515 * away all allocation. 6516 */ 6517 goto start; 6518 6519 bail: 6520 6521 ocfs2_schedule_truncate_log_flush(osb, 1); 6522 6523 if (tl_sem) 6524 mutex_unlock(&tl_inode->i_mutex); 6525 6526 if (handle) 6527 ocfs2_commit_trans(osb, handle); 6528 6529 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 6530 6531 ocfs2_free_path(path); 6532 6533 /* This will drop the ext_alloc cluster lock for us */ 6534 ocfs2_free_truncate_context(tc); 6535 6536 mlog_exit(status); 6537 return status; 6538 } 6539 6540 /* 6541 * Expects the inode to already be locked. 6542 */ 6543 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 6544 struct inode *inode, 6545 struct buffer_head *fe_bh, 6546 struct ocfs2_truncate_context **tc) 6547 { 6548 int status; 6549 unsigned int new_i_clusters; 6550 struct ocfs2_dinode *fe; 6551 struct ocfs2_extent_block *eb; 6552 struct buffer_head *last_eb_bh = NULL; 6553 6554 mlog_entry_void(); 6555 6556 *tc = NULL; 6557 6558 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 6559 i_size_read(inode)); 6560 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6561 6562 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 6563 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 6564 (unsigned long long)le64_to_cpu(fe->i_size)); 6565 6566 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 6567 if (!(*tc)) { 6568 status = -ENOMEM; 6569 mlog_errno(status); 6570 goto bail; 6571 } 6572 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 6573 6574 if (fe->id2.i_list.l_tree_depth) { 6575 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk), 6576 &last_eb_bh, OCFS2_BH_CACHED, inode); 6577 if (status < 0) { 6578 mlog_errno(status); 6579 goto bail; 6580 } 6581 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6582 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 6583 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb); 6584 6585 brelse(last_eb_bh); 6586 status = -EIO; 6587 goto bail; 6588 } 6589 } 6590 6591 (*tc)->tc_last_eb_bh = last_eb_bh; 6592 6593 status = 0; 6594 bail: 6595 if (status < 0) { 6596 if (*tc) 6597 ocfs2_free_truncate_context(*tc); 6598 *tc = NULL; 6599 } 6600 mlog_exit_void(); 6601 return status; 6602 } 6603 6604 /* 6605 * 'start' is inclusive, 'end' is not. 6606 */ 6607 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 6608 unsigned int start, unsigned int end, int trunc) 6609 { 6610 int ret; 6611 unsigned int numbytes; 6612 handle_t *handle; 6613 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6614 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6615 struct ocfs2_inline_data *idata = &di->id2.i_data; 6616 6617 if (end > i_size_read(inode)) 6618 end = i_size_read(inode); 6619 6620 BUG_ON(start >= end); 6621 6622 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 6623 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 6624 !ocfs2_supports_inline_data(osb)) { 6625 ocfs2_error(inode->i_sb, 6626 "Inline data flags for inode %llu don't agree! " 6627 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 6628 (unsigned long long)OCFS2_I(inode)->ip_blkno, 6629 le16_to_cpu(di->i_dyn_features), 6630 OCFS2_I(inode)->ip_dyn_features, 6631 osb->s_feature_incompat); 6632 ret = -EROFS; 6633 goto out; 6634 } 6635 6636 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 6637 if (IS_ERR(handle)) { 6638 ret = PTR_ERR(handle); 6639 mlog_errno(ret); 6640 goto out; 6641 } 6642 6643 ret = ocfs2_journal_access(handle, inode, di_bh, 6644 OCFS2_JOURNAL_ACCESS_WRITE); 6645 if (ret) { 6646 mlog_errno(ret); 6647 goto out_commit; 6648 } 6649 6650 numbytes = end - start; 6651 memset(idata->id_data + start, 0, numbytes); 6652 6653 /* 6654 * No need to worry about the data page here - it's been 6655 * truncated already and inline data doesn't need it for 6656 * pushing zero's to disk, so we'll let readpage pick it up 6657 * later. 6658 */ 6659 if (trunc) { 6660 i_size_write(inode, start); 6661 di->i_size = cpu_to_le64(start); 6662 } 6663 6664 inode->i_blocks = ocfs2_inode_sector_count(inode); 6665 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 6666 6667 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 6668 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 6669 6670 ocfs2_journal_dirty(handle, di_bh); 6671 6672 out_commit: 6673 ocfs2_commit_trans(osb, handle); 6674 6675 out: 6676 return ret; 6677 } 6678 6679 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 6680 { 6681 /* 6682 * The caller is responsible for completing deallocation 6683 * before freeing the context. 6684 */ 6685 if (tc->tc_dealloc.c_first_suballocator != NULL) 6686 mlog(ML_NOTICE, 6687 "Truncate completion has non-empty dealloc context\n"); 6688 6689 if (tc->tc_last_eb_bh) 6690 brelse(tc->tc_last_eb_bh); 6691 6692 kfree(tc); 6693 } 6694