xref: /linux/fs/ocfs2/alloc.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 
54 #include "buffer_head_io.h"
55 
56 enum ocfs2_contig_type {
57 	CONTIG_NONE = 0,
58 	CONTIG_LEFT,
59 	CONTIG_RIGHT,
60 	CONTIG_LEFTRIGHT,
61 };
62 
63 static enum ocfs2_contig_type
64 	ocfs2_extent_rec_contig(struct super_block *sb,
65 				struct ocfs2_extent_rec *ext,
66 				struct ocfs2_extent_rec *insert_rec);
67 /*
68  * Operations for a specific extent tree type.
69  *
70  * To implement an on-disk btree (extent tree) type in ocfs2, add
71  * an ocfs2_extent_tree_operations structure and the matching
72  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
73  * for the allocation portion of the extent tree.
74  */
75 struct ocfs2_extent_tree_operations {
76 	/*
77 	 * last_eb_blk is the block number of the right most leaf extent
78 	 * block.  Most on-disk structures containing an extent tree store
79 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
80 	 * ->eo_get_last_eb_blk() operations access this value.  They are
81 	 *  both required.
82 	 */
83 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
84 				   u64 blkno);
85 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
86 
87 	/*
88 	 * The on-disk structure usually keeps track of how many total
89 	 * clusters are stored in this extent tree.  This function updates
90 	 * that value.  new_clusters is the delta, and must be
91 	 * added to the total.  Required.
92 	 */
93 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
94 				   u32 new_clusters);
95 
96 	/*
97 	 * If this extent tree is supported by an extent map, insert
98 	 * a record into the map.
99 	 */
100 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 				     struct ocfs2_extent_rec *rec);
102 
103 	/*
104 	 * If this extent tree is supported by an extent map, truncate the
105 	 * map to clusters,
106 	 */
107 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
108 				       u32 clusters);
109 
110 	/*
111 	 * If ->eo_insert_check() exists, it is called before rec is
112 	 * inserted into the extent tree.  It is optional.
113 	 */
114 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 			       struct ocfs2_extent_rec *rec);
116 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
117 
118 	/*
119 	 * --------------------------------------------------------------
120 	 * The remaining are internal to ocfs2_extent_tree and don't have
121 	 * accessor functions
122 	 */
123 
124 	/*
125 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
126 	 * It is required.
127 	 */
128 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
129 
130 	/*
131 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
133 	 * to 0 (unlimited).  Optional.
134 	 */
135 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
136 
137 	/*
138 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 	 * are contiguous or not. Optional. Don't need to set it if use
140 	 * ocfs2_extent_rec as the tree leaf.
141 	 */
142 	enum ocfs2_contig_type
143 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 				    struct ocfs2_extent_rec *ext,
145 				    struct ocfs2_extent_rec *insert_rec);
146 };
147 
148 
149 /*
150  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
151  * in the methods.
152  */
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
155 					 u64 blkno);
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
157 					 u32 clusters);
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 					   struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
161 					     u32 clusters);
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 				     struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
168 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
169 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
170 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
171 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
172 	.eo_insert_check	= ocfs2_dinode_insert_check,
173 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
174 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
175 };
176 
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
178 					 u64 blkno)
179 {
180 	struct ocfs2_dinode *di = et->et_object;
181 
182 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 	di->i_last_eb_blk = cpu_to_le64(blkno);
184 }
185 
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
187 {
188 	struct ocfs2_dinode *di = et->et_object;
189 
190 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 	return le64_to_cpu(di->i_last_eb_blk);
192 }
193 
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
195 					 u32 clusters)
196 {
197 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 	struct ocfs2_dinode *di = et->et_object;
199 
200 	le32_add_cpu(&di->i_clusters, clusters);
201 	spin_lock(&oi->ip_lock);
202 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 	spin_unlock(&oi->ip_lock);
204 }
205 
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 					   struct ocfs2_extent_rec *rec)
208 {
209 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
210 
211 	ocfs2_extent_map_insert_rec(inode, rec);
212 }
213 
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
215 					     u32 clusters)
216 {
217 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
218 
219 	ocfs2_extent_map_trunc(inode, clusters);
220 }
221 
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 				     struct ocfs2_extent_rec *rec)
224 {
225 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
227 
228 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 			"Device %s, asking for sparse allocation: inode %llu, "
232 			"cpos %u, clusters %u\n",
233 			osb->dev_str,
234 			(unsigned long long)oi->ip_blkno,
235 			rec->e_cpos, oi->ip_clusters);
236 
237 	return 0;
238 }
239 
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
241 {
242 	struct ocfs2_dinode *di = et->et_object;
243 
244 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
246 
247 	return 0;
248 }
249 
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
251 {
252 	struct ocfs2_dinode *di = et->et_object;
253 
254 	et->et_root_el = &di->id2.i_list;
255 }
256 
257 
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
259 {
260 	struct ocfs2_xattr_value_buf *vb = et->et_object;
261 
262 	et->et_root_el = &vb->vb_xv->xr_list;
263 }
264 
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
266 					      u64 blkno)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
271 }
272 
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
274 {
275 	struct ocfs2_xattr_value_buf *vb = et->et_object;
276 
277 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
281 					      u32 clusters)
282 {
283 	struct ocfs2_xattr_value_buf *vb = et->et_object;
284 
285 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
286 }
287 
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
290 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
291 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
292 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
293 };
294 
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
296 {
297 	struct ocfs2_xattr_block *xb = et->et_object;
298 
299 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
300 }
301 
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
303 {
304 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 	et->et_max_leaf_clusters =
306 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
307 }
308 
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
310 					     u64 blkno)
311 {
312 	struct ocfs2_xattr_block *xb = et->et_object;
313 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
314 
315 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
316 }
317 
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
319 {
320 	struct ocfs2_xattr_block *xb = et->et_object;
321 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
322 
323 	return le64_to_cpu(xt->xt_last_eb_blk);
324 }
325 
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
327 					     u32 clusters)
328 {
329 	struct ocfs2_xattr_block *xb = et->et_object;
330 
331 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
332 }
333 
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
336 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
337 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
338 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
339 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
340 };
341 
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 					  u64 blkno)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
348 }
349 
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
351 {
352 	struct ocfs2_dx_root_block *dx_root = et->et_object;
353 
354 	return le64_to_cpu(dx_root->dr_last_eb_blk);
355 }
356 
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
358 					  u32 clusters)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	le32_add_cpu(&dx_root->dr_clusters, clusters);
363 }
364 
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
366 {
367 	struct ocfs2_dx_root_block *dx_root = et->et_object;
368 
369 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
370 
371 	return 0;
372 }
373 
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
375 {
376 	struct ocfs2_dx_root_block *dx_root = et->et_object;
377 
378 	et->et_root_el = &dx_root->dr_list;
379 }
380 
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
383 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
384 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
385 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
386 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
387 };
388 
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
390 {
391 	struct ocfs2_refcount_block *rb = et->et_object;
392 
393 	et->et_root_el = &rb->rf_list;
394 }
395 
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
397 						u64 blkno)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
402 }
403 
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
405 {
406 	struct ocfs2_refcount_block *rb = et->et_object;
407 
408 	return le64_to_cpu(rb->rf_last_eb_blk);
409 }
410 
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
412 						u32 clusters)
413 {
414 	struct ocfs2_refcount_block *rb = et->et_object;
415 
416 	le32_add_cpu(&rb->rf_clusters, clusters);
417 }
418 
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 				  struct ocfs2_extent_rec *ext,
422 				  struct ocfs2_extent_rec *insert_rec)
423 {
424 	return CONTIG_NONE;
425 }
426 
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
429 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
430 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
431 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
432 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
433 };
434 
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 				     struct ocfs2_caching_info *ci,
437 				     struct buffer_head *bh,
438 				     ocfs2_journal_access_func access,
439 				     void *obj,
440 				     struct ocfs2_extent_tree_operations *ops)
441 {
442 	et->et_ops = ops;
443 	et->et_root_bh = bh;
444 	et->et_ci = ci;
445 	et->et_root_journal_access = access;
446 	if (!obj)
447 		obj = (void *)bh->b_data;
448 	et->et_object = obj;
449 
450 	et->et_ops->eo_fill_root_el(et);
451 	if (!et->et_ops->eo_fill_max_leaf_clusters)
452 		et->et_max_leaf_clusters = 0;
453 	else
454 		et->et_ops->eo_fill_max_leaf_clusters(et);
455 }
456 
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 				   struct ocfs2_caching_info *ci,
459 				   struct buffer_head *bh)
460 {
461 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 				 NULL, &ocfs2_dinode_et_ops);
463 }
464 
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 				       struct ocfs2_caching_info *ci,
467 				       struct buffer_head *bh)
468 {
469 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 				 NULL, &ocfs2_xattr_tree_et_ops);
471 }
472 
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 					struct ocfs2_caching_info *ci,
475 					struct ocfs2_xattr_value_buf *vb)
476 {
477 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 				 &ocfs2_xattr_value_et_ops);
479 }
480 
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 				    struct ocfs2_caching_info *ci,
483 				    struct buffer_head *bh)
484 {
485 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 				 NULL, &ocfs2_dx_root_et_ops);
487 }
488 
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 				     struct ocfs2_caching_info *ci,
491 				     struct buffer_head *bh)
492 {
493 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 				 NULL, &ocfs2_refcount_tree_et_ops);
495 }
496 
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
498 					    u64 new_last_eb_blk)
499 {
500 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
501 }
502 
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
504 {
505 	return et->et_ops->eo_get_last_eb_blk(et);
506 }
507 
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
509 					    u32 clusters)
510 {
511 	et->et_ops->eo_update_clusters(et, clusters);
512 }
513 
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 					      struct ocfs2_extent_rec *rec)
516 {
517 	if (et->et_ops->eo_extent_map_insert)
518 		et->et_ops->eo_extent_map_insert(et, rec);
519 }
520 
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
522 						u32 clusters)
523 {
524 	if (et->et_ops->eo_extent_map_truncate)
525 		et->et_ops->eo_extent_map_truncate(et, clusters);
526 }
527 
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 					       struct ocfs2_extent_tree *et,
530 					       int type)
531 {
532 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
533 					  type);
534 }
535 
536 static inline enum ocfs2_contig_type
537 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 			       struct ocfs2_extent_rec *rec,
539 			       struct ocfs2_extent_rec *insert_rec)
540 {
541 	if (et->et_ops->eo_extent_contig)
542 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
543 
544 	return ocfs2_extent_rec_contig(
545 				ocfs2_metadata_cache_get_super(et->et_ci),
546 				rec, insert_rec);
547 }
548 
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 					struct ocfs2_extent_rec *rec)
551 {
552 	int ret = 0;
553 
554 	if (et->et_ops->eo_insert_check)
555 		ret = et->et_ops->eo_insert_check(et, rec);
556 	return ret;
557 }
558 
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
560 {
561 	int ret = 0;
562 
563 	if (et->et_ops->eo_sanity_check)
564 		ret = et->et_ops->eo_sanity_check(et);
565 	return ret;
566 }
567 
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 					 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 					   struct ocfs2_extent_tree *et,
573 					   struct ocfs2_path *path,
574 					   struct ocfs2_extent_rec *insert_rec);
575 /*
576  * Reset the actual path elements so that we can re-use the structure
577  * to build another path. Generally, this involves freeing the buffer
578  * heads.
579  */
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
581 {
582 	int i, start = 0, depth = 0;
583 	struct ocfs2_path_item *node;
584 
585 	if (keep_root)
586 		start = 1;
587 
588 	for(i = start; i < path_num_items(path); i++) {
589 		node = &path->p_node[i];
590 
591 		brelse(node->bh);
592 		node->bh = NULL;
593 		node->el = NULL;
594 	}
595 
596 	/*
597 	 * Tree depth may change during truncate, or insert. If we're
598 	 * keeping the root extent list, then make sure that our path
599 	 * structure reflects the proper depth.
600 	 */
601 	if (keep_root)
602 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 	else
604 		path_root_access(path) = NULL;
605 
606 	path->p_tree_depth = depth;
607 }
608 
609 void ocfs2_free_path(struct ocfs2_path *path)
610 {
611 	if (path) {
612 		ocfs2_reinit_path(path, 0);
613 		kfree(path);
614 	}
615 }
616 
617 /*
618  * All the elements of src into dest. After this call, src could be freed
619  * without affecting dest.
620  *
621  * Both paths should have the same root. Any non-root elements of dest
622  * will be freed.
623  */
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
625 {
626 	int i;
627 
628 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 	BUG_ON(path_root_el(dest) != path_root_el(src));
630 	BUG_ON(path_root_access(dest) != path_root_access(src));
631 
632 	ocfs2_reinit_path(dest, 1);
633 
634 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 		dest->p_node[i].bh = src->p_node[i].bh;
636 		dest->p_node[i].el = src->p_node[i].el;
637 
638 		if (dest->p_node[i].bh)
639 			get_bh(dest->p_node[i].bh);
640 	}
641 }
642 
643 /*
644  * Make the *dest path the same as src and re-initialize src path to
645  * have a root only.
646  */
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
648 {
649 	int i;
650 
651 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 	BUG_ON(path_root_access(dest) != path_root_access(src));
653 
654 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 		brelse(dest->p_node[i].bh);
656 
657 		dest->p_node[i].bh = src->p_node[i].bh;
658 		dest->p_node[i].el = src->p_node[i].el;
659 
660 		src->p_node[i].bh = NULL;
661 		src->p_node[i].el = NULL;
662 	}
663 }
664 
665 /*
666  * Insert an extent block at given index.
667  *
668  * This will not take an additional reference on eb_bh.
669  */
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 					struct buffer_head *eb_bh)
672 {
673 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
674 
675 	/*
676 	 * Right now, no root bh is an extent block, so this helps
677 	 * catch code errors with dinode trees. The assertion can be
678 	 * safely removed if we ever need to insert extent block
679 	 * structures at the root.
680 	 */
681 	BUG_ON(index == 0);
682 
683 	path->p_node[index].bh = eb_bh;
684 	path->p_node[index].el = &eb->h_list;
685 }
686 
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 					 struct ocfs2_extent_list *root_el,
689 					 ocfs2_journal_access_func access)
690 {
691 	struct ocfs2_path *path;
692 
693 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
694 
695 	path = kzalloc(sizeof(*path), GFP_NOFS);
696 	if (path) {
697 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 		get_bh(root_bh);
699 		path_root_bh(path) = root_bh;
700 		path_root_el(path) = root_el;
701 		path_root_access(path) = access;
702 	}
703 
704 	return path;
705 }
706 
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
708 {
709 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 			      path_root_access(path));
711 }
712 
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
714 {
715 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 			      et->et_root_journal_access);
717 }
718 
719 /*
720  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
721  * otherwise it's the root_access function.
722  *
723  * I don't like the way this function's name looks next to
724  * ocfs2_journal_access_path(), but I don't have a better one.
725  */
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 				 struct ocfs2_caching_info *ci,
728 				 struct ocfs2_path *path,
729 				 int idx)
730 {
731 	ocfs2_journal_access_func access = path_root_access(path);
732 
733 	if (!access)
734 		access = ocfs2_journal_access;
735 
736 	if (idx)
737 		access = ocfs2_journal_access_eb;
738 
739 	return access(handle, ci, path->p_node[idx].bh,
740 		      OCFS2_JOURNAL_ACCESS_WRITE);
741 }
742 
743 /*
744  * Convenience function to journal all components in a path.
745  */
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 			      handle_t *handle,
748 			      struct ocfs2_path *path)
749 {
750 	int i, ret = 0;
751 
752 	if (!path)
753 		goto out;
754 
755 	for(i = 0; i < path_num_items(path); i++) {
756 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 		if (ret < 0) {
758 			mlog_errno(ret);
759 			goto out;
760 		}
761 	}
762 
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Return the index of the extent record which contains cluster #v_cluster.
769  * -1 is returned if it was not found.
770  *
771  * Should work fine on interior and exterior nodes.
772  */
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
774 {
775 	int ret = -1;
776 	int i;
777 	struct ocfs2_extent_rec *rec;
778 	u32 rec_end, rec_start, clusters;
779 
780 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 		rec = &el->l_recs[i];
782 
783 		rec_start = le32_to_cpu(rec->e_cpos);
784 		clusters = ocfs2_rec_clusters(el, rec);
785 
786 		rec_end = rec_start + clusters;
787 
788 		if (v_cluster >= rec_start && v_cluster < rec_end) {
789 			ret = i;
790 			break;
791 		}
792 	}
793 
794 	return ret;
795 }
796 
797 /*
798  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799  * ocfs2_extent_rec_contig only work properly against leaf nodes!
800  */
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 				     struct ocfs2_extent_rec *ext,
803 				     u64 blkno)
804 {
805 	u64 blk_end = le64_to_cpu(ext->e_blkno);
806 
807 	blk_end += ocfs2_clusters_to_blocks(sb,
808 				    le16_to_cpu(ext->e_leaf_clusters));
809 
810 	return blkno == blk_end;
811 }
812 
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 				  struct ocfs2_extent_rec *right)
815 {
816 	u32 left_range;
817 
818 	left_range = le32_to_cpu(left->e_cpos) +
819 		le16_to_cpu(left->e_leaf_clusters);
820 
821 	return (left_range == le32_to_cpu(right->e_cpos));
822 }
823 
824 static enum ocfs2_contig_type
825 	ocfs2_extent_rec_contig(struct super_block *sb,
826 				struct ocfs2_extent_rec *ext,
827 				struct ocfs2_extent_rec *insert_rec)
828 {
829 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
830 
831 	/*
832 	 * Refuse to coalesce extent records with different flag
833 	 * fields - we don't want to mix unwritten extents with user
834 	 * data.
835 	 */
836 	if (ext->e_flags != insert_rec->e_flags)
837 		return CONTIG_NONE;
838 
839 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 	    ocfs2_block_extent_contig(sb, ext, blkno))
841 			return CONTIG_RIGHT;
842 
843 	blkno = le64_to_cpu(ext->e_blkno);
844 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 		return CONTIG_LEFT;
847 
848 	return CONTIG_NONE;
849 }
850 
851 /*
852  * NOTE: We can have pretty much any combination of contiguousness and
853  * appending.
854  *
855  * The usefulness of APPEND_TAIL is more in that it lets us know that
856  * we'll have to update the path to that leaf.
857  */
858 enum ocfs2_append_type {
859 	APPEND_NONE = 0,
860 	APPEND_TAIL,
861 };
862 
863 enum ocfs2_split_type {
864 	SPLIT_NONE = 0,
865 	SPLIT_LEFT,
866 	SPLIT_RIGHT,
867 };
868 
869 struct ocfs2_insert_type {
870 	enum ocfs2_split_type	ins_split;
871 	enum ocfs2_append_type	ins_appending;
872 	enum ocfs2_contig_type	ins_contig;
873 	int			ins_contig_index;
874 	int			ins_tree_depth;
875 };
876 
877 struct ocfs2_merge_ctxt {
878 	enum ocfs2_contig_type	c_contig_type;
879 	int			c_has_empty_extent;
880 	int			c_split_covers_rec;
881 };
882 
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 				       struct buffer_head *bh)
885 {
886 	int rc;
887 	struct ocfs2_extent_block *eb =
888 		(struct ocfs2_extent_block *)bh->b_data;
889 
890 	mlog(0, "Validating extent block %llu\n",
891 	     (unsigned long long)bh->b_blocknr);
892 
893 	BUG_ON(!buffer_uptodate(bh));
894 
895 	/*
896 	 * If the ecc fails, we return the error but otherwise
897 	 * leave the filesystem running.  We know any error is
898 	 * local to this block.
899 	 */
900 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 	if (rc) {
902 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 		     (unsigned long long)bh->b_blocknr);
904 		return rc;
905 	}
906 
907 	/*
908 	 * Errors after here are fatal.
909 	 */
910 
911 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 		ocfs2_error(sb,
913 			    "Extent block #%llu has bad signature %.*s",
914 			    (unsigned long long)bh->b_blocknr, 7,
915 			    eb->h_signature);
916 		return -EINVAL;
917 	}
918 
919 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 		ocfs2_error(sb,
921 			    "Extent block #%llu has an invalid h_blkno "
922 			    "of %llu",
923 			    (unsigned long long)bh->b_blocknr,
924 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
925 		return -EINVAL;
926 	}
927 
928 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
929 		ocfs2_error(sb,
930 			    "Extent block #%llu has an invalid "
931 			    "h_fs_generation of #%u",
932 			    (unsigned long long)bh->b_blocknr,
933 			    le32_to_cpu(eb->h_fs_generation));
934 		return -EINVAL;
935 	}
936 
937 	return 0;
938 }
939 
940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
941 			    struct buffer_head **bh)
942 {
943 	int rc;
944 	struct buffer_head *tmp = *bh;
945 
946 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
947 			      ocfs2_validate_extent_block);
948 
949 	/* If ocfs2_read_block() got us a new bh, pass it up. */
950 	if (!rc && !*bh)
951 		*bh = tmp;
952 
953 	return rc;
954 }
955 
956 
957 /*
958  * How many free extents have we got before we need more meta data?
959  */
960 int ocfs2_num_free_extents(struct ocfs2_super *osb,
961 			   struct ocfs2_extent_tree *et)
962 {
963 	int retval;
964 	struct ocfs2_extent_list *el = NULL;
965 	struct ocfs2_extent_block *eb;
966 	struct buffer_head *eb_bh = NULL;
967 	u64 last_eb_blk = 0;
968 
969 	mlog_entry_void();
970 
971 	el = et->et_root_el;
972 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
973 
974 	if (last_eb_blk) {
975 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
976 						 &eb_bh);
977 		if (retval < 0) {
978 			mlog_errno(retval);
979 			goto bail;
980 		}
981 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
982 		el = &eb->h_list;
983 	}
984 
985 	BUG_ON(el->l_tree_depth != 0);
986 
987 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
988 bail:
989 	brelse(eb_bh);
990 
991 	mlog_exit(retval);
992 	return retval;
993 }
994 
995 /* expects array to already be allocated
996  *
997  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
998  * l_count for you
999  */
1000 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1001 				     struct ocfs2_extent_tree *et,
1002 				     int wanted,
1003 				     struct ocfs2_alloc_context *meta_ac,
1004 				     struct buffer_head *bhs[])
1005 {
1006 	int count, status, i;
1007 	u16 suballoc_bit_start;
1008 	u32 num_got;
1009 	u64 first_blkno;
1010 	struct ocfs2_super *osb =
1011 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1012 	struct ocfs2_extent_block *eb;
1013 
1014 	mlog_entry_void();
1015 
1016 	count = 0;
1017 	while (count < wanted) {
1018 		status = ocfs2_claim_metadata(osb,
1019 					      handle,
1020 					      meta_ac,
1021 					      wanted - count,
1022 					      &suballoc_bit_start,
1023 					      &num_got,
1024 					      &first_blkno);
1025 		if (status < 0) {
1026 			mlog_errno(status);
1027 			goto bail;
1028 		}
1029 
1030 		for(i = count;  i < (num_got + count); i++) {
1031 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1032 			if (bhs[i] == NULL) {
1033 				status = -EIO;
1034 				mlog_errno(status);
1035 				goto bail;
1036 			}
1037 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1038 
1039 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1040 							 bhs[i],
1041 							 OCFS2_JOURNAL_ACCESS_CREATE);
1042 			if (status < 0) {
1043 				mlog_errno(status);
1044 				goto bail;
1045 			}
1046 
1047 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1048 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1049 			/* Ok, setup the minimal stuff here. */
1050 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1051 			eb->h_blkno = cpu_to_le64(first_blkno);
1052 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1053 			eb->h_suballoc_slot =
1054 				cpu_to_le16(meta_ac->ac_alloc_slot);
1055 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1056 			eb->h_list.l_count =
1057 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1058 
1059 			suballoc_bit_start++;
1060 			first_blkno++;
1061 
1062 			/* We'll also be dirtied by the caller, so
1063 			 * this isn't absolutely necessary. */
1064 			status = ocfs2_journal_dirty(handle, bhs[i]);
1065 			if (status < 0) {
1066 				mlog_errno(status);
1067 				goto bail;
1068 			}
1069 		}
1070 
1071 		count += num_got;
1072 	}
1073 
1074 	status = 0;
1075 bail:
1076 	if (status < 0) {
1077 		for(i = 0; i < wanted; i++) {
1078 			brelse(bhs[i]);
1079 			bhs[i] = NULL;
1080 		}
1081 	}
1082 	mlog_exit(status);
1083 	return status;
1084 }
1085 
1086 /*
1087  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1088  *
1089  * Returns the sum of the rightmost extent rec logical offset and
1090  * cluster count.
1091  *
1092  * ocfs2_add_branch() uses this to determine what logical cluster
1093  * value should be populated into the leftmost new branch records.
1094  *
1095  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1096  * value for the new topmost tree record.
1097  */
1098 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1099 {
1100 	int i;
1101 
1102 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1103 
1104 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1105 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1106 }
1107 
1108 /*
1109  * Change range of the branches in the right most path according to the leaf
1110  * extent block's rightmost record.
1111  */
1112 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1113 					 struct ocfs2_extent_tree *et)
1114 {
1115 	int status;
1116 	struct ocfs2_path *path = NULL;
1117 	struct ocfs2_extent_list *el;
1118 	struct ocfs2_extent_rec *rec;
1119 
1120 	path = ocfs2_new_path_from_et(et);
1121 	if (!path) {
1122 		status = -ENOMEM;
1123 		return status;
1124 	}
1125 
1126 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1127 	if (status < 0) {
1128 		mlog_errno(status);
1129 		goto out;
1130 	}
1131 
1132 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1133 				    handle->h_buffer_credits);
1134 	if (status < 0) {
1135 		mlog_errno(status);
1136 		goto out;
1137 	}
1138 
1139 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1140 	if (status < 0) {
1141 		mlog_errno(status);
1142 		goto out;
1143 	}
1144 
1145 	el = path_leaf_el(path);
1146 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1147 
1148 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1149 
1150 out:
1151 	ocfs2_free_path(path);
1152 	return status;
1153 }
1154 
1155 /*
1156  * Add an entire tree branch to our inode. eb_bh is the extent block
1157  * to start at, if we don't want to start the branch at the root
1158  * structure.
1159  *
1160  * last_eb_bh is required as we have to update it's next_leaf pointer
1161  * for the new last extent block.
1162  *
1163  * the new branch will be 'empty' in the sense that every block will
1164  * contain a single record with cluster count == 0.
1165  */
1166 static int ocfs2_add_branch(handle_t *handle,
1167 			    struct ocfs2_extent_tree *et,
1168 			    struct buffer_head *eb_bh,
1169 			    struct buffer_head **last_eb_bh,
1170 			    struct ocfs2_alloc_context *meta_ac)
1171 {
1172 	int status, new_blocks, i;
1173 	u64 next_blkno, new_last_eb_blk;
1174 	struct buffer_head *bh;
1175 	struct buffer_head **new_eb_bhs = NULL;
1176 	struct ocfs2_extent_block *eb;
1177 	struct ocfs2_extent_list  *eb_el;
1178 	struct ocfs2_extent_list  *el;
1179 	u32 new_cpos, root_end;
1180 
1181 	mlog_entry_void();
1182 
1183 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1184 
1185 	if (eb_bh) {
1186 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1187 		el = &eb->h_list;
1188 	} else
1189 		el = et->et_root_el;
1190 
1191 	/* we never add a branch to a leaf. */
1192 	BUG_ON(!el->l_tree_depth);
1193 
1194 	new_blocks = le16_to_cpu(el->l_tree_depth);
1195 
1196 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1197 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1198 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1199 
1200 	/*
1201 	 * If there is a gap before the root end and the real end
1202 	 * of the righmost leaf block, we need to remove the gap
1203 	 * between new_cpos and root_end first so that the tree
1204 	 * is consistent after we add a new branch(it will start
1205 	 * from new_cpos).
1206 	 */
1207 	if (root_end > new_cpos) {
1208 		mlog(0, "adjust the cluster end from %u to %u\n",
1209 		     root_end, new_cpos);
1210 		status = ocfs2_adjust_rightmost_branch(handle, et);
1211 		if (status) {
1212 			mlog_errno(status);
1213 			goto bail;
1214 		}
1215 	}
1216 
1217 	/* allocate the number of new eb blocks we need */
1218 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1219 			     GFP_KERNEL);
1220 	if (!new_eb_bhs) {
1221 		status = -ENOMEM;
1222 		mlog_errno(status);
1223 		goto bail;
1224 	}
1225 
1226 	status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1227 					   meta_ac, new_eb_bhs);
1228 	if (status < 0) {
1229 		mlog_errno(status);
1230 		goto bail;
1231 	}
1232 
1233 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1234 	 * linked with the rest of the tree.
1235 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1236 	 *
1237 	 * when we leave the loop, new_last_eb_blk will point to the
1238 	 * newest leaf, and next_blkno will point to the topmost extent
1239 	 * block. */
1240 	next_blkno = new_last_eb_blk = 0;
1241 	for(i = 0; i < new_blocks; i++) {
1242 		bh = new_eb_bhs[i];
1243 		eb = (struct ocfs2_extent_block *) bh->b_data;
1244 		/* ocfs2_create_new_meta_bhs() should create it right! */
1245 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1246 		eb_el = &eb->h_list;
1247 
1248 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1249 						 OCFS2_JOURNAL_ACCESS_CREATE);
1250 		if (status < 0) {
1251 			mlog_errno(status);
1252 			goto bail;
1253 		}
1254 
1255 		eb->h_next_leaf_blk = 0;
1256 		eb_el->l_tree_depth = cpu_to_le16(i);
1257 		eb_el->l_next_free_rec = cpu_to_le16(1);
1258 		/*
1259 		 * This actually counts as an empty extent as
1260 		 * c_clusters == 0
1261 		 */
1262 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1263 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1264 		/*
1265 		 * eb_el isn't always an interior node, but even leaf
1266 		 * nodes want a zero'd flags and reserved field so
1267 		 * this gets the whole 32 bits regardless of use.
1268 		 */
1269 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1270 		if (!eb_el->l_tree_depth)
1271 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1272 
1273 		status = ocfs2_journal_dirty(handle, bh);
1274 		if (status < 0) {
1275 			mlog_errno(status);
1276 			goto bail;
1277 		}
1278 
1279 		next_blkno = le64_to_cpu(eb->h_blkno);
1280 	}
1281 
1282 	/* This is a bit hairy. We want to update up to three blocks
1283 	 * here without leaving any of them in an inconsistent state
1284 	 * in case of error. We don't have to worry about
1285 	 * journal_dirty erroring as it won't unless we've aborted the
1286 	 * handle (in which case we would never be here) so reserving
1287 	 * the write with journal_access is all we need to do. */
1288 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1289 					 OCFS2_JOURNAL_ACCESS_WRITE);
1290 	if (status < 0) {
1291 		mlog_errno(status);
1292 		goto bail;
1293 	}
1294 	status = ocfs2_et_root_journal_access(handle, et,
1295 					      OCFS2_JOURNAL_ACCESS_WRITE);
1296 	if (status < 0) {
1297 		mlog_errno(status);
1298 		goto bail;
1299 	}
1300 	if (eb_bh) {
1301 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1302 						 OCFS2_JOURNAL_ACCESS_WRITE);
1303 		if (status < 0) {
1304 			mlog_errno(status);
1305 			goto bail;
1306 		}
1307 	}
1308 
1309 	/* Link the new branch into the rest of the tree (el will
1310 	 * either be on the root_bh, or the extent block passed in. */
1311 	i = le16_to_cpu(el->l_next_free_rec);
1312 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1313 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1314 	el->l_recs[i].e_int_clusters = 0;
1315 	le16_add_cpu(&el->l_next_free_rec, 1);
1316 
1317 	/* fe needs a new last extent block pointer, as does the
1318 	 * next_leaf on the previously last-extent-block. */
1319 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1320 
1321 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1322 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1323 
1324 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1325 	if (status < 0)
1326 		mlog_errno(status);
1327 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1328 	if (status < 0)
1329 		mlog_errno(status);
1330 	if (eb_bh) {
1331 		status = ocfs2_journal_dirty(handle, eb_bh);
1332 		if (status < 0)
1333 			mlog_errno(status);
1334 	}
1335 
1336 	/*
1337 	 * Some callers want to track the rightmost leaf so pass it
1338 	 * back here.
1339 	 */
1340 	brelse(*last_eb_bh);
1341 	get_bh(new_eb_bhs[0]);
1342 	*last_eb_bh = new_eb_bhs[0];
1343 
1344 	status = 0;
1345 bail:
1346 	if (new_eb_bhs) {
1347 		for (i = 0; i < new_blocks; i++)
1348 			brelse(new_eb_bhs[i]);
1349 		kfree(new_eb_bhs);
1350 	}
1351 
1352 	mlog_exit(status);
1353 	return status;
1354 }
1355 
1356 /*
1357  * adds another level to the allocation tree.
1358  * returns back the new extent block so you can add a branch to it
1359  * after this call.
1360  */
1361 static int ocfs2_shift_tree_depth(handle_t *handle,
1362 				  struct ocfs2_extent_tree *et,
1363 				  struct ocfs2_alloc_context *meta_ac,
1364 				  struct buffer_head **ret_new_eb_bh)
1365 {
1366 	int status, i;
1367 	u32 new_clusters;
1368 	struct buffer_head *new_eb_bh = NULL;
1369 	struct ocfs2_extent_block *eb;
1370 	struct ocfs2_extent_list  *root_el;
1371 	struct ocfs2_extent_list  *eb_el;
1372 
1373 	mlog_entry_void();
1374 
1375 	status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1376 					   &new_eb_bh);
1377 	if (status < 0) {
1378 		mlog_errno(status);
1379 		goto bail;
1380 	}
1381 
1382 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1383 	/* ocfs2_create_new_meta_bhs() should create it right! */
1384 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1385 
1386 	eb_el = &eb->h_list;
1387 	root_el = et->et_root_el;
1388 
1389 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1390 					 OCFS2_JOURNAL_ACCESS_CREATE);
1391 	if (status < 0) {
1392 		mlog_errno(status);
1393 		goto bail;
1394 	}
1395 
1396 	/* copy the root extent list data into the new extent block */
1397 	eb_el->l_tree_depth = root_el->l_tree_depth;
1398 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1399 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1400 		eb_el->l_recs[i] = root_el->l_recs[i];
1401 
1402 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1403 	if (status < 0) {
1404 		mlog_errno(status);
1405 		goto bail;
1406 	}
1407 
1408 	status = ocfs2_et_root_journal_access(handle, et,
1409 					      OCFS2_JOURNAL_ACCESS_WRITE);
1410 	if (status < 0) {
1411 		mlog_errno(status);
1412 		goto bail;
1413 	}
1414 
1415 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1416 
1417 	/* update root_bh now */
1418 	le16_add_cpu(&root_el->l_tree_depth, 1);
1419 	root_el->l_recs[0].e_cpos = 0;
1420 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1421 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1422 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1423 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1424 	root_el->l_next_free_rec = cpu_to_le16(1);
1425 
1426 	/* If this is our 1st tree depth shift, then last_eb_blk
1427 	 * becomes the allocated extent block */
1428 	if (root_el->l_tree_depth == cpu_to_le16(1))
1429 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1430 
1431 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1432 	if (status < 0) {
1433 		mlog_errno(status);
1434 		goto bail;
1435 	}
1436 
1437 	*ret_new_eb_bh = new_eb_bh;
1438 	new_eb_bh = NULL;
1439 	status = 0;
1440 bail:
1441 	brelse(new_eb_bh);
1442 
1443 	mlog_exit(status);
1444 	return status;
1445 }
1446 
1447 /*
1448  * Should only be called when there is no space left in any of the
1449  * leaf nodes. What we want to do is find the lowest tree depth
1450  * non-leaf extent block with room for new records. There are three
1451  * valid results of this search:
1452  *
1453  * 1) a lowest extent block is found, then we pass it back in
1454  *    *lowest_eb_bh and return '0'
1455  *
1456  * 2) the search fails to find anything, but the root_el has room. We
1457  *    pass NULL back in *lowest_eb_bh, but still return '0'
1458  *
1459  * 3) the search fails to find anything AND the root_el is full, in
1460  *    which case we return > 0
1461  *
1462  * return status < 0 indicates an error.
1463  */
1464 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1465 				    struct buffer_head **target_bh)
1466 {
1467 	int status = 0, i;
1468 	u64 blkno;
1469 	struct ocfs2_extent_block *eb;
1470 	struct ocfs2_extent_list  *el;
1471 	struct buffer_head *bh = NULL;
1472 	struct buffer_head *lowest_bh = NULL;
1473 
1474 	mlog_entry_void();
1475 
1476 	*target_bh = NULL;
1477 
1478 	el = et->et_root_el;
1479 
1480 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1481 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1482 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1483 				    "Owner %llu has empty "
1484 				    "extent list (next_free_rec == 0)",
1485 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1486 			status = -EIO;
1487 			goto bail;
1488 		}
1489 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1490 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1491 		if (!blkno) {
1492 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1493 				    "Owner %llu has extent "
1494 				    "list where extent # %d has no physical "
1495 				    "block start",
1496 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1497 			status = -EIO;
1498 			goto bail;
1499 		}
1500 
1501 		brelse(bh);
1502 		bh = NULL;
1503 
1504 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1505 		if (status < 0) {
1506 			mlog_errno(status);
1507 			goto bail;
1508 		}
1509 
1510 		eb = (struct ocfs2_extent_block *) bh->b_data;
1511 		el = &eb->h_list;
1512 
1513 		if (le16_to_cpu(el->l_next_free_rec) <
1514 		    le16_to_cpu(el->l_count)) {
1515 			brelse(lowest_bh);
1516 			lowest_bh = bh;
1517 			get_bh(lowest_bh);
1518 		}
1519 	}
1520 
1521 	/* If we didn't find one and the fe doesn't have any room,
1522 	 * then return '1' */
1523 	el = et->et_root_el;
1524 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1525 		status = 1;
1526 
1527 	*target_bh = lowest_bh;
1528 bail:
1529 	brelse(bh);
1530 
1531 	mlog_exit(status);
1532 	return status;
1533 }
1534 
1535 /*
1536  * Grow a b-tree so that it has more records.
1537  *
1538  * We might shift the tree depth in which case existing paths should
1539  * be considered invalid.
1540  *
1541  * Tree depth after the grow is returned via *final_depth.
1542  *
1543  * *last_eb_bh will be updated by ocfs2_add_branch().
1544  */
1545 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1546 			   int *final_depth, struct buffer_head **last_eb_bh,
1547 			   struct ocfs2_alloc_context *meta_ac)
1548 {
1549 	int ret, shift;
1550 	struct ocfs2_extent_list *el = et->et_root_el;
1551 	int depth = le16_to_cpu(el->l_tree_depth);
1552 	struct buffer_head *bh = NULL;
1553 
1554 	BUG_ON(meta_ac == NULL);
1555 
1556 	shift = ocfs2_find_branch_target(et, &bh);
1557 	if (shift < 0) {
1558 		ret = shift;
1559 		mlog_errno(ret);
1560 		goto out;
1561 	}
1562 
1563 	/* We traveled all the way to the bottom of the allocation tree
1564 	 * and didn't find room for any more extents - we need to add
1565 	 * another tree level */
1566 	if (shift) {
1567 		BUG_ON(bh);
1568 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1569 
1570 		/* ocfs2_shift_tree_depth will return us a buffer with
1571 		 * the new extent block (so we can pass that to
1572 		 * ocfs2_add_branch). */
1573 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1574 		if (ret < 0) {
1575 			mlog_errno(ret);
1576 			goto out;
1577 		}
1578 		depth++;
1579 		if (depth == 1) {
1580 			/*
1581 			 * Special case: we have room now if we shifted from
1582 			 * tree_depth 0, so no more work needs to be done.
1583 			 *
1584 			 * We won't be calling add_branch, so pass
1585 			 * back *last_eb_bh as the new leaf. At depth
1586 			 * zero, it should always be null so there's
1587 			 * no reason to brelse.
1588 			 */
1589 			BUG_ON(*last_eb_bh);
1590 			get_bh(bh);
1591 			*last_eb_bh = bh;
1592 			goto out;
1593 		}
1594 	}
1595 
1596 	/* call ocfs2_add_branch to add the final part of the tree with
1597 	 * the new data. */
1598 	mlog(0, "add branch. bh = %p\n", bh);
1599 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1600 			       meta_ac);
1601 	if (ret < 0) {
1602 		mlog_errno(ret);
1603 		goto out;
1604 	}
1605 
1606 out:
1607 	if (final_depth)
1608 		*final_depth = depth;
1609 	brelse(bh);
1610 	return ret;
1611 }
1612 
1613 /*
1614  * This function will discard the rightmost extent record.
1615  */
1616 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1617 {
1618 	int next_free = le16_to_cpu(el->l_next_free_rec);
1619 	int count = le16_to_cpu(el->l_count);
1620 	unsigned int num_bytes;
1621 
1622 	BUG_ON(!next_free);
1623 	/* This will cause us to go off the end of our extent list. */
1624 	BUG_ON(next_free >= count);
1625 
1626 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1627 
1628 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1629 }
1630 
1631 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1632 			      struct ocfs2_extent_rec *insert_rec)
1633 {
1634 	int i, insert_index, next_free, has_empty, num_bytes;
1635 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1636 	struct ocfs2_extent_rec *rec;
1637 
1638 	next_free = le16_to_cpu(el->l_next_free_rec);
1639 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1640 
1641 	BUG_ON(!next_free);
1642 
1643 	/* The tree code before us didn't allow enough room in the leaf. */
1644 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1645 
1646 	/*
1647 	 * The easiest way to approach this is to just remove the
1648 	 * empty extent and temporarily decrement next_free.
1649 	 */
1650 	if (has_empty) {
1651 		/*
1652 		 * If next_free was 1 (only an empty extent), this
1653 		 * loop won't execute, which is fine. We still want
1654 		 * the decrement above to happen.
1655 		 */
1656 		for(i = 0; i < (next_free - 1); i++)
1657 			el->l_recs[i] = el->l_recs[i+1];
1658 
1659 		next_free--;
1660 	}
1661 
1662 	/*
1663 	 * Figure out what the new record index should be.
1664 	 */
1665 	for(i = 0; i < next_free; i++) {
1666 		rec = &el->l_recs[i];
1667 
1668 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1669 			break;
1670 	}
1671 	insert_index = i;
1672 
1673 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1674 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1675 
1676 	BUG_ON(insert_index < 0);
1677 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1678 	BUG_ON(insert_index > next_free);
1679 
1680 	/*
1681 	 * No need to memmove if we're just adding to the tail.
1682 	 */
1683 	if (insert_index != next_free) {
1684 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1685 
1686 		num_bytes = next_free - insert_index;
1687 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1688 		memmove(&el->l_recs[insert_index + 1],
1689 			&el->l_recs[insert_index],
1690 			num_bytes);
1691 	}
1692 
1693 	/*
1694 	 * Either we had an empty extent, and need to re-increment or
1695 	 * there was no empty extent on a non full rightmost leaf node,
1696 	 * in which case we still need to increment.
1697 	 */
1698 	next_free++;
1699 	el->l_next_free_rec = cpu_to_le16(next_free);
1700 	/*
1701 	 * Make sure none of the math above just messed up our tree.
1702 	 */
1703 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1704 
1705 	el->l_recs[insert_index] = *insert_rec;
1706 
1707 }
1708 
1709 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1710 {
1711 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1712 
1713 	BUG_ON(num_recs == 0);
1714 
1715 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1716 		num_recs--;
1717 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1718 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1719 		memset(&el->l_recs[num_recs], 0,
1720 		       sizeof(struct ocfs2_extent_rec));
1721 		el->l_next_free_rec = cpu_to_le16(num_recs);
1722 	}
1723 }
1724 
1725 /*
1726  * Create an empty extent record .
1727  *
1728  * l_next_free_rec may be updated.
1729  *
1730  * If an empty extent already exists do nothing.
1731  */
1732 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1733 {
1734 	int next_free = le16_to_cpu(el->l_next_free_rec);
1735 
1736 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1737 
1738 	if (next_free == 0)
1739 		goto set_and_inc;
1740 
1741 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1742 		return;
1743 
1744 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1745 			"Asked to create an empty extent in a full list:\n"
1746 			"count = %u, tree depth = %u",
1747 			le16_to_cpu(el->l_count),
1748 			le16_to_cpu(el->l_tree_depth));
1749 
1750 	ocfs2_shift_records_right(el);
1751 
1752 set_and_inc:
1753 	le16_add_cpu(&el->l_next_free_rec, 1);
1754 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1755 }
1756 
1757 /*
1758  * For a rotation which involves two leaf nodes, the "root node" is
1759  * the lowest level tree node which contains a path to both leafs. This
1760  * resulting set of information can be used to form a complete "subtree"
1761  *
1762  * This function is passed two full paths from the dinode down to a
1763  * pair of adjacent leaves. It's task is to figure out which path
1764  * index contains the subtree root - this can be the root index itself
1765  * in a worst-case rotation.
1766  *
1767  * The array index of the subtree root is passed back.
1768  */
1769 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1770 			    struct ocfs2_path *left,
1771 			    struct ocfs2_path *right)
1772 {
1773 	int i = 0;
1774 
1775 	/*
1776 	 * Check that the caller passed in two paths from the same tree.
1777 	 */
1778 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1779 
1780 	do {
1781 		i++;
1782 
1783 		/*
1784 		 * The caller didn't pass two adjacent paths.
1785 		 */
1786 		mlog_bug_on_msg(i > left->p_tree_depth,
1787 				"Owner %llu, left depth %u, right depth %u\n"
1788 				"left leaf blk %llu, right leaf blk %llu\n",
1789 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1790 				left->p_tree_depth, right->p_tree_depth,
1791 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1792 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1793 	} while (left->p_node[i].bh->b_blocknr ==
1794 		 right->p_node[i].bh->b_blocknr);
1795 
1796 	return i - 1;
1797 }
1798 
1799 typedef void (path_insert_t)(void *, struct buffer_head *);
1800 
1801 /*
1802  * Traverse a btree path in search of cpos, starting at root_el.
1803  *
1804  * This code can be called with a cpos larger than the tree, in which
1805  * case it will return the rightmost path.
1806  */
1807 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1808 			     struct ocfs2_extent_list *root_el, u32 cpos,
1809 			     path_insert_t *func, void *data)
1810 {
1811 	int i, ret = 0;
1812 	u32 range;
1813 	u64 blkno;
1814 	struct buffer_head *bh = NULL;
1815 	struct ocfs2_extent_block *eb;
1816 	struct ocfs2_extent_list *el;
1817 	struct ocfs2_extent_rec *rec;
1818 
1819 	el = root_el;
1820 	while (el->l_tree_depth) {
1821 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1822 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1823 				    "Owner %llu has empty extent list at "
1824 				    "depth %u\n",
1825 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1826 				    le16_to_cpu(el->l_tree_depth));
1827 			ret = -EROFS;
1828 			goto out;
1829 
1830 		}
1831 
1832 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1833 			rec = &el->l_recs[i];
1834 
1835 			/*
1836 			 * In the case that cpos is off the allocation
1837 			 * tree, this should just wind up returning the
1838 			 * rightmost record.
1839 			 */
1840 			range = le32_to_cpu(rec->e_cpos) +
1841 				ocfs2_rec_clusters(el, rec);
1842 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1843 			    break;
1844 		}
1845 
1846 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1847 		if (blkno == 0) {
1848 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1849 				    "Owner %llu has bad blkno in extent list "
1850 				    "at depth %u (index %d)\n",
1851 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1852 				    le16_to_cpu(el->l_tree_depth), i);
1853 			ret = -EROFS;
1854 			goto out;
1855 		}
1856 
1857 		brelse(bh);
1858 		bh = NULL;
1859 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1860 		if (ret) {
1861 			mlog_errno(ret);
1862 			goto out;
1863 		}
1864 
1865 		eb = (struct ocfs2_extent_block *) bh->b_data;
1866 		el = &eb->h_list;
1867 
1868 		if (le16_to_cpu(el->l_next_free_rec) >
1869 		    le16_to_cpu(el->l_count)) {
1870 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1871 				    "Owner %llu has bad count in extent list "
1872 				    "at block %llu (next free=%u, count=%u)\n",
1873 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1874 				    (unsigned long long)bh->b_blocknr,
1875 				    le16_to_cpu(el->l_next_free_rec),
1876 				    le16_to_cpu(el->l_count));
1877 			ret = -EROFS;
1878 			goto out;
1879 		}
1880 
1881 		if (func)
1882 			func(data, bh);
1883 	}
1884 
1885 out:
1886 	/*
1887 	 * Catch any trailing bh that the loop didn't handle.
1888 	 */
1889 	brelse(bh);
1890 
1891 	return ret;
1892 }
1893 
1894 /*
1895  * Given an initialized path (that is, it has a valid root extent
1896  * list), this function will traverse the btree in search of the path
1897  * which would contain cpos.
1898  *
1899  * The path traveled is recorded in the path structure.
1900  *
1901  * Note that this will not do any comparisons on leaf node extent
1902  * records, so it will work fine in the case that we just added a tree
1903  * branch.
1904  */
1905 struct find_path_data {
1906 	int index;
1907 	struct ocfs2_path *path;
1908 };
1909 static void find_path_ins(void *data, struct buffer_head *bh)
1910 {
1911 	struct find_path_data *fp = data;
1912 
1913 	get_bh(bh);
1914 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1915 	fp->index++;
1916 }
1917 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1918 		    struct ocfs2_path *path, u32 cpos)
1919 {
1920 	struct find_path_data data;
1921 
1922 	data.index = 1;
1923 	data.path = path;
1924 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1925 				 find_path_ins, &data);
1926 }
1927 
1928 static void find_leaf_ins(void *data, struct buffer_head *bh)
1929 {
1930 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1931 	struct ocfs2_extent_list *el = &eb->h_list;
1932 	struct buffer_head **ret = data;
1933 
1934 	/* We want to retain only the leaf block. */
1935 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1936 		get_bh(bh);
1937 		*ret = bh;
1938 	}
1939 }
1940 /*
1941  * Find the leaf block in the tree which would contain cpos. No
1942  * checking of the actual leaf is done.
1943  *
1944  * Some paths want to call this instead of allocating a path structure
1945  * and calling ocfs2_find_path().
1946  *
1947  * This function doesn't handle non btree extent lists.
1948  */
1949 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1950 		    struct ocfs2_extent_list *root_el, u32 cpos,
1951 		    struct buffer_head **leaf_bh)
1952 {
1953 	int ret;
1954 	struct buffer_head *bh = NULL;
1955 
1956 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1957 	if (ret) {
1958 		mlog_errno(ret);
1959 		goto out;
1960 	}
1961 
1962 	*leaf_bh = bh;
1963 out:
1964 	return ret;
1965 }
1966 
1967 /*
1968  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1969  *
1970  * Basically, we've moved stuff around at the bottom of the tree and
1971  * we need to fix up the extent records above the changes to reflect
1972  * the new changes.
1973  *
1974  * left_rec: the record on the left.
1975  * left_child_el: is the child list pointed to by left_rec
1976  * right_rec: the record to the right of left_rec
1977  * right_child_el: is the child list pointed to by right_rec
1978  *
1979  * By definition, this only works on interior nodes.
1980  */
1981 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1982 				  struct ocfs2_extent_list *left_child_el,
1983 				  struct ocfs2_extent_rec *right_rec,
1984 				  struct ocfs2_extent_list *right_child_el)
1985 {
1986 	u32 left_clusters, right_end;
1987 
1988 	/*
1989 	 * Interior nodes never have holes. Their cpos is the cpos of
1990 	 * the leftmost record in their child list. Their cluster
1991 	 * count covers the full theoretical range of their child list
1992 	 * - the range between their cpos and the cpos of the record
1993 	 * immediately to their right.
1994 	 */
1995 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1996 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1997 		BUG_ON(right_child_el->l_tree_depth);
1998 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1999 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
2000 	}
2001 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
2002 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
2003 
2004 	/*
2005 	 * Calculate the rightmost cluster count boundary before
2006 	 * moving cpos - we will need to adjust clusters after
2007 	 * updating e_cpos to keep the same highest cluster count.
2008 	 */
2009 	right_end = le32_to_cpu(right_rec->e_cpos);
2010 	right_end += le32_to_cpu(right_rec->e_int_clusters);
2011 
2012 	right_rec->e_cpos = left_rec->e_cpos;
2013 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
2014 
2015 	right_end -= le32_to_cpu(right_rec->e_cpos);
2016 	right_rec->e_int_clusters = cpu_to_le32(right_end);
2017 }
2018 
2019 /*
2020  * Adjust the adjacent root node records involved in a
2021  * rotation. left_el_blkno is passed in as a key so that we can easily
2022  * find it's index in the root list.
2023  */
2024 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2025 				      struct ocfs2_extent_list *left_el,
2026 				      struct ocfs2_extent_list *right_el,
2027 				      u64 left_el_blkno)
2028 {
2029 	int i;
2030 
2031 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2032 	       le16_to_cpu(left_el->l_tree_depth));
2033 
2034 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2035 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2036 			break;
2037 	}
2038 
2039 	/*
2040 	 * The path walking code should have never returned a root and
2041 	 * two paths which are not adjacent.
2042 	 */
2043 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2044 
2045 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2046 				      &root_el->l_recs[i + 1], right_el);
2047 }
2048 
2049 /*
2050  * We've changed a leaf block (in right_path) and need to reflect that
2051  * change back up the subtree.
2052  *
2053  * This happens in multiple places:
2054  *   - When we've moved an extent record from the left path leaf to the right
2055  *     path leaf to make room for an empty extent in the left path leaf.
2056  *   - When our insert into the right path leaf is at the leftmost edge
2057  *     and requires an update of the path immediately to it's left. This
2058  *     can occur at the end of some types of rotation and appending inserts.
2059  *   - When we've adjusted the last extent record in the left path leaf and the
2060  *     1st extent record in the right path leaf during cross extent block merge.
2061  */
2062 static void ocfs2_complete_edge_insert(handle_t *handle,
2063 				       struct ocfs2_path *left_path,
2064 				       struct ocfs2_path *right_path,
2065 				       int subtree_index)
2066 {
2067 	int ret, i, idx;
2068 	struct ocfs2_extent_list *el, *left_el, *right_el;
2069 	struct ocfs2_extent_rec *left_rec, *right_rec;
2070 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2071 
2072 	/*
2073 	 * Update the counts and position values within all the
2074 	 * interior nodes to reflect the leaf rotation we just did.
2075 	 *
2076 	 * The root node is handled below the loop.
2077 	 *
2078 	 * We begin the loop with right_el and left_el pointing to the
2079 	 * leaf lists and work our way up.
2080 	 *
2081 	 * NOTE: within this loop, left_el and right_el always refer
2082 	 * to the *child* lists.
2083 	 */
2084 	left_el = path_leaf_el(left_path);
2085 	right_el = path_leaf_el(right_path);
2086 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2087 		mlog(0, "Adjust records at index %u\n", i);
2088 
2089 		/*
2090 		 * One nice property of knowing that all of these
2091 		 * nodes are below the root is that we only deal with
2092 		 * the leftmost right node record and the rightmost
2093 		 * left node record.
2094 		 */
2095 		el = left_path->p_node[i].el;
2096 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2097 		left_rec = &el->l_recs[idx];
2098 
2099 		el = right_path->p_node[i].el;
2100 		right_rec = &el->l_recs[0];
2101 
2102 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2103 					      right_el);
2104 
2105 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2106 		if (ret)
2107 			mlog_errno(ret);
2108 
2109 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2110 		if (ret)
2111 			mlog_errno(ret);
2112 
2113 		/*
2114 		 * Setup our list pointers now so that the current
2115 		 * parents become children in the next iteration.
2116 		 */
2117 		left_el = left_path->p_node[i].el;
2118 		right_el = right_path->p_node[i].el;
2119 	}
2120 
2121 	/*
2122 	 * At the root node, adjust the two adjacent records which
2123 	 * begin our path to the leaves.
2124 	 */
2125 
2126 	el = left_path->p_node[subtree_index].el;
2127 	left_el = left_path->p_node[subtree_index + 1].el;
2128 	right_el = right_path->p_node[subtree_index + 1].el;
2129 
2130 	ocfs2_adjust_root_records(el, left_el, right_el,
2131 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2132 
2133 	root_bh = left_path->p_node[subtree_index].bh;
2134 
2135 	ret = ocfs2_journal_dirty(handle, root_bh);
2136 	if (ret)
2137 		mlog_errno(ret);
2138 }
2139 
2140 static int ocfs2_rotate_subtree_right(handle_t *handle,
2141 				      struct ocfs2_extent_tree *et,
2142 				      struct ocfs2_path *left_path,
2143 				      struct ocfs2_path *right_path,
2144 				      int subtree_index)
2145 {
2146 	int ret, i;
2147 	struct buffer_head *right_leaf_bh;
2148 	struct buffer_head *left_leaf_bh = NULL;
2149 	struct buffer_head *root_bh;
2150 	struct ocfs2_extent_list *right_el, *left_el;
2151 	struct ocfs2_extent_rec move_rec;
2152 
2153 	left_leaf_bh = path_leaf_bh(left_path);
2154 	left_el = path_leaf_el(left_path);
2155 
2156 	if (left_el->l_next_free_rec != left_el->l_count) {
2157 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2158 			    "Inode %llu has non-full interior leaf node %llu"
2159 			    "(next free = %u)",
2160 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2161 			    (unsigned long long)left_leaf_bh->b_blocknr,
2162 			    le16_to_cpu(left_el->l_next_free_rec));
2163 		return -EROFS;
2164 	}
2165 
2166 	/*
2167 	 * This extent block may already have an empty record, so we
2168 	 * return early if so.
2169 	 */
2170 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2171 		return 0;
2172 
2173 	root_bh = left_path->p_node[subtree_index].bh;
2174 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2175 
2176 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2177 					   subtree_index);
2178 	if (ret) {
2179 		mlog_errno(ret);
2180 		goto out;
2181 	}
2182 
2183 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2184 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2185 						   right_path, i);
2186 		if (ret) {
2187 			mlog_errno(ret);
2188 			goto out;
2189 		}
2190 
2191 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2192 						   left_path, i);
2193 		if (ret) {
2194 			mlog_errno(ret);
2195 			goto out;
2196 		}
2197 	}
2198 
2199 	right_leaf_bh = path_leaf_bh(right_path);
2200 	right_el = path_leaf_el(right_path);
2201 
2202 	/* This is a code error, not a disk corruption. */
2203 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2204 			"because rightmost leaf block %llu is empty\n",
2205 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2206 			(unsigned long long)right_leaf_bh->b_blocknr);
2207 
2208 	ocfs2_create_empty_extent(right_el);
2209 
2210 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2211 	if (ret) {
2212 		mlog_errno(ret);
2213 		goto out;
2214 	}
2215 
2216 	/* Do the copy now. */
2217 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2218 	move_rec = left_el->l_recs[i];
2219 	right_el->l_recs[0] = move_rec;
2220 
2221 	/*
2222 	 * Clear out the record we just copied and shift everything
2223 	 * over, leaving an empty extent in the left leaf.
2224 	 *
2225 	 * We temporarily subtract from next_free_rec so that the
2226 	 * shift will lose the tail record (which is now defunct).
2227 	 */
2228 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2229 	ocfs2_shift_records_right(left_el);
2230 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2231 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2232 
2233 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2234 	if (ret) {
2235 		mlog_errno(ret);
2236 		goto out;
2237 	}
2238 
2239 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2240 				   subtree_index);
2241 
2242 out:
2243 	return ret;
2244 }
2245 
2246 /*
2247  * Given a full path, determine what cpos value would return us a path
2248  * containing the leaf immediately to the left of the current one.
2249  *
2250  * Will return zero if the path passed in is already the leftmost path.
2251  */
2252 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2253 					 struct ocfs2_path *path, u32 *cpos)
2254 {
2255 	int i, j, ret = 0;
2256 	u64 blkno;
2257 	struct ocfs2_extent_list *el;
2258 
2259 	BUG_ON(path->p_tree_depth == 0);
2260 
2261 	*cpos = 0;
2262 
2263 	blkno = path_leaf_bh(path)->b_blocknr;
2264 
2265 	/* Start at the tree node just above the leaf and work our way up. */
2266 	i = path->p_tree_depth - 1;
2267 	while (i >= 0) {
2268 		el = path->p_node[i].el;
2269 
2270 		/*
2271 		 * Find the extent record just before the one in our
2272 		 * path.
2273 		 */
2274 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2275 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2276 				if (j == 0) {
2277 					if (i == 0) {
2278 						/*
2279 						 * We've determined that the
2280 						 * path specified is already
2281 						 * the leftmost one - return a
2282 						 * cpos of zero.
2283 						 */
2284 						goto out;
2285 					}
2286 					/*
2287 					 * The leftmost record points to our
2288 					 * leaf - we need to travel up the
2289 					 * tree one level.
2290 					 */
2291 					goto next_node;
2292 				}
2293 
2294 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2295 				*cpos = *cpos + ocfs2_rec_clusters(el,
2296 							   &el->l_recs[j - 1]);
2297 				*cpos = *cpos - 1;
2298 				goto out;
2299 			}
2300 		}
2301 
2302 		/*
2303 		 * If we got here, we never found a valid node where
2304 		 * the tree indicated one should be.
2305 		 */
2306 		ocfs2_error(sb,
2307 			    "Invalid extent tree at extent block %llu\n",
2308 			    (unsigned long long)blkno);
2309 		ret = -EROFS;
2310 		goto out;
2311 
2312 next_node:
2313 		blkno = path->p_node[i].bh->b_blocknr;
2314 		i--;
2315 	}
2316 
2317 out:
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Extend the transaction by enough credits to complete the rotation,
2323  * and still leave at least the original number of credits allocated
2324  * to this transaction.
2325  */
2326 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2327 					   int op_credits,
2328 					   struct ocfs2_path *path)
2329 {
2330 	int ret;
2331 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2332 
2333 	if (handle->h_buffer_credits < credits) {
2334 		ret = ocfs2_extend_trans(handle,
2335 					 credits - handle->h_buffer_credits);
2336 		if (ret)
2337 			return ret;
2338 
2339 		if (unlikely(handle->h_buffer_credits < credits))
2340 			return ocfs2_extend_trans(handle, credits);
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Trap the case where we're inserting into the theoretical range past
2348  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2349  * whose cpos is less than ours into the right leaf.
2350  *
2351  * It's only necessary to look at the rightmost record of the left
2352  * leaf because the logic that calls us should ensure that the
2353  * theoretical ranges in the path components above the leaves are
2354  * correct.
2355  */
2356 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2357 						 u32 insert_cpos)
2358 {
2359 	struct ocfs2_extent_list *left_el;
2360 	struct ocfs2_extent_rec *rec;
2361 	int next_free;
2362 
2363 	left_el = path_leaf_el(left_path);
2364 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2365 	rec = &left_el->l_recs[next_free - 1];
2366 
2367 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2368 		return 1;
2369 	return 0;
2370 }
2371 
2372 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2373 {
2374 	int next_free = le16_to_cpu(el->l_next_free_rec);
2375 	unsigned int range;
2376 	struct ocfs2_extent_rec *rec;
2377 
2378 	if (next_free == 0)
2379 		return 0;
2380 
2381 	rec = &el->l_recs[0];
2382 	if (ocfs2_is_empty_extent(rec)) {
2383 		/* Empty list. */
2384 		if (next_free == 1)
2385 			return 0;
2386 		rec = &el->l_recs[1];
2387 	}
2388 
2389 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2390 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2391 		return 1;
2392 	return 0;
2393 }
2394 
2395 /*
2396  * Rotate all the records in a btree right one record, starting at insert_cpos.
2397  *
2398  * The path to the rightmost leaf should be passed in.
2399  *
2400  * The array is assumed to be large enough to hold an entire path (tree depth).
2401  *
2402  * Upon successful return from this function:
2403  *
2404  * - The 'right_path' array will contain a path to the leaf block
2405  *   whose range contains e_cpos.
2406  * - That leaf block will have a single empty extent in list index 0.
2407  * - In the case that the rotation requires a post-insert update,
2408  *   *ret_left_path will contain a valid path which can be passed to
2409  *   ocfs2_insert_path().
2410  */
2411 static int ocfs2_rotate_tree_right(handle_t *handle,
2412 				   struct ocfs2_extent_tree *et,
2413 				   enum ocfs2_split_type split,
2414 				   u32 insert_cpos,
2415 				   struct ocfs2_path *right_path,
2416 				   struct ocfs2_path **ret_left_path)
2417 {
2418 	int ret, start, orig_credits = handle->h_buffer_credits;
2419 	u32 cpos;
2420 	struct ocfs2_path *left_path = NULL;
2421 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2422 
2423 	*ret_left_path = NULL;
2424 
2425 	left_path = ocfs2_new_path_from_path(right_path);
2426 	if (!left_path) {
2427 		ret = -ENOMEM;
2428 		mlog_errno(ret);
2429 		goto out;
2430 	}
2431 
2432 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2433 	if (ret) {
2434 		mlog_errno(ret);
2435 		goto out;
2436 	}
2437 
2438 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2439 
2440 	/*
2441 	 * What we want to do here is:
2442 	 *
2443 	 * 1) Start with the rightmost path.
2444 	 *
2445 	 * 2) Determine a path to the leaf block directly to the left
2446 	 *    of that leaf.
2447 	 *
2448 	 * 3) Determine the 'subtree root' - the lowest level tree node
2449 	 *    which contains a path to both leaves.
2450 	 *
2451 	 * 4) Rotate the subtree.
2452 	 *
2453 	 * 5) Find the next subtree by considering the left path to be
2454 	 *    the new right path.
2455 	 *
2456 	 * The check at the top of this while loop also accepts
2457 	 * insert_cpos == cpos because cpos is only a _theoretical_
2458 	 * value to get us the left path - insert_cpos might very well
2459 	 * be filling that hole.
2460 	 *
2461 	 * Stop at a cpos of '0' because we either started at the
2462 	 * leftmost branch (i.e., a tree with one branch and a
2463 	 * rotation inside of it), or we've gone as far as we can in
2464 	 * rotating subtrees.
2465 	 */
2466 	while (cpos && insert_cpos <= cpos) {
2467 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2468 		     insert_cpos, cpos);
2469 
2470 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2471 		if (ret) {
2472 			mlog_errno(ret);
2473 			goto out;
2474 		}
2475 
2476 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2477 				path_leaf_bh(right_path),
2478 				"Owner %llu: error during insert of %u "
2479 				"(left path cpos %u) results in two identical "
2480 				"paths ending at %llu\n",
2481 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2482 				insert_cpos, cpos,
2483 				(unsigned long long)
2484 				path_leaf_bh(left_path)->b_blocknr);
2485 
2486 		if (split == SPLIT_NONE &&
2487 		    ocfs2_rotate_requires_path_adjustment(left_path,
2488 							  insert_cpos)) {
2489 
2490 			/*
2491 			 * We've rotated the tree as much as we
2492 			 * should. The rest is up to
2493 			 * ocfs2_insert_path() to complete, after the
2494 			 * record insertion. We indicate this
2495 			 * situation by returning the left path.
2496 			 *
2497 			 * The reason we don't adjust the records here
2498 			 * before the record insert is that an error
2499 			 * later might break the rule where a parent
2500 			 * record e_cpos will reflect the actual
2501 			 * e_cpos of the 1st nonempty record of the
2502 			 * child list.
2503 			 */
2504 			*ret_left_path = left_path;
2505 			goto out_ret_path;
2506 		}
2507 
2508 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2509 
2510 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2511 		     start,
2512 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2513 		     right_path->p_tree_depth);
2514 
2515 		ret = ocfs2_extend_rotate_transaction(handle, start,
2516 						      orig_credits, right_path);
2517 		if (ret) {
2518 			mlog_errno(ret);
2519 			goto out;
2520 		}
2521 
2522 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2523 						 right_path, start);
2524 		if (ret) {
2525 			mlog_errno(ret);
2526 			goto out;
2527 		}
2528 
2529 		if (split != SPLIT_NONE &&
2530 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2531 						insert_cpos)) {
2532 			/*
2533 			 * A rotate moves the rightmost left leaf
2534 			 * record over to the leftmost right leaf
2535 			 * slot. If we're doing an extent split
2536 			 * instead of a real insert, then we have to
2537 			 * check that the extent to be split wasn't
2538 			 * just moved over. If it was, then we can
2539 			 * exit here, passing left_path back -
2540 			 * ocfs2_split_extent() is smart enough to
2541 			 * search both leaves.
2542 			 */
2543 			*ret_left_path = left_path;
2544 			goto out_ret_path;
2545 		}
2546 
2547 		/*
2548 		 * There is no need to re-read the next right path
2549 		 * as we know that it'll be our current left
2550 		 * path. Optimize by copying values instead.
2551 		 */
2552 		ocfs2_mv_path(right_path, left_path);
2553 
2554 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2555 		if (ret) {
2556 			mlog_errno(ret);
2557 			goto out;
2558 		}
2559 	}
2560 
2561 out:
2562 	ocfs2_free_path(left_path);
2563 
2564 out_ret_path:
2565 	return ret;
2566 }
2567 
2568 static int ocfs2_update_edge_lengths(handle_t *handle,
2569 				     struct ocfs2_extent_tree *et,
2570 				     int subtree_index, struct ocfs2_path *path)
2571 {
2572 	int i, idx, ret;
2573 	struct ocfs2_extent_rec *rec;
2574 	struct ocfs2_extent_list *el;
2575 	struct ocfs2_extent_block *eb;
2576 	u32 range;
2577 
2578 	/*
2579 	 * In normal tree rotation process, we will never touch the
2580 	 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2581 	 * doesn't reserve the credits for them either.
2582 	 *
2583 	 * But we do have a special case here which will update the rightmost
2584 	 * records for all the bh in the path.
2585 	 * So we have to allocate extra credits and access them.
2586 	 */
2587 	ret = ocfs2_extend_trans(handle,
2588 				 handle->h_buffer_credits + subtree_index);
2589 	if (ret) {
2590 		mlog_errno(ret);
2591 		goto out;
2592 	}
2593 
2594 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2595 	if (ret) {
2596 		mlog_errno(ret);
2597 		goto out;
2598 	}
2599 
2600 	/* Path should always be rightmost. */
2601 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2602 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2603 
2604 	el = &eb->h_list;
2605 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2606 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2607 	rec = &el->l_recs[idx];
2608 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2609 
2610 	for (i = 0; i < path->p_tree_depth; i++) {
2611 		el = path->p_node[i].el;
2612 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2613 		rec = &el->l_recs[idx];
2614 
2615 		rec->e_int_clusters = cpu_to_le32(range);
2616 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2617 
2618 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2619 	}
2620 out:
2621 	return ret;
2622 }
2623 
2624 static void ocfs2_unlink_path(handle_t *handle,
2625 			      struct ocfs2_extent_tree *et,
2626 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2627 			      struct ocfs2_path *path, int unlink_start)
2628 {
2629 	int ret, i;
2630 	struct ocfs2_extent_block *eb;
2631 	struct ocfs2_extent_list *el;
2632 	struct buffer_head *bh;
2633 
2634 	for(i = unlink_start; i < path_num_items(path); i++) {
2635 		bh = path->p_node[i].bh;
2636 
2637 		eb = (struct ocfs2_extent_block *)bh->b_data;
2638 		/*
2639 		 * Not all nodes might have had their final count
2640 		 * decremented by the caller - handle this here.
2641 		 */
2642 		el = &eb->h_list;
2643 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2644 			mlog(ML_ERROR,
2645 			     "Inode %llu, attempted to remove extent block "
2646 			     "%llu with %u records\n",
2647 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2648 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2649 			     le16_to_cpu(el->l_next_free_rec));
2650 
2651 			ocfs2_journal_dirty(handle, bh);
2652 			ocfs2_remove_from_cache(et->et_ci, bh);
2653 			continue;
2654 		}
2655 
2656 		el->l_next_free_rec = 0;
2657 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2658 
2659 		ocfs2_journal_dirty(handle, bh);
2660 
2661 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2662 		if (ret)
2663 			mlog_errno(ret);
2664 
2665 		ocfs2_remove_from_cache(et->et_ci, bh);
2666 	}
2667 }
2668 
2669 static void ocfs2_unlink_subtree(handle_t *handle,
2670 				 struct ocfs2_extent_tree *et,
2671 				 struct ocfs2_path *left_path,
2672 				 struct ocfs2_path *right_path,
2673 				 int subtree_index,
2674 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2675 {
2676 	int i;
2677 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2678 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2679 	struct ocfs2_extent_list *el;
2680 	struct ocfs2_extent_block *eb;
2681 
2682 	el = path_leaf_el(left_path);
2683 
2684 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2685 
2686 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2687 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2688 			break;
2689 
2690 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2691 
2692 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2693 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2694 
2695 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2696 	eb->h_next_leaf_blk = 0;
2697 
2698 	ocfs2_journal_dirty(handle, root_bh);
2699 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2700 
2701 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2702 			  subtree_index + 1);
2703 }
2704 
2705 static int ocfs2_rotate_subtree_left(handle_t *handle,
2706 				     struct ocfs2_extent_tree *et,
2707 				     struct ocfs2_path *left_path,
2708 				     struct ocfs2_path *right_path,
2709 				     int subtree_index,
2710 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2711 				     int *deleted)
2712 {
2713 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2714 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2715 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2716 	struct ocfs2_extent_block *eb;
2717 
2718 	*deleted = 0;
2719 
2720 	right_leaf_el = path_leaf_el(right_path);
2721 	left_leaf_el = path_leaf_el(left_path);
2722 	root_bh = left_path->p_node[subtree_index].bh;
2723 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2724 
2725 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2726 		return 0;
2727 
2728 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2729 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2730 		/*
2731 		 * It's legal for us to proceed if the right leaf is
2732 		 * the rightmost one and it has an empty extent. There
2733 		 * are two cases to handle - whether the leaf will be
2734 		 * empty after removal or not. If the leaf isn't empty
2735 		 * then just remove the empty extent up front. The
2736 		 * next block will handle empty leaves by flagging
2737 		 * them for unlink.
2738 		 *
2739 		 * Non rightmost leaves will throw -EAGAIN and the
2740 		 * caller can manually move the subtree and retry.
2741 		 */
2742 
2743 		if (eb->h_next_leaf_blk != 0ULL)
2744 			return -EAGAIN;
2745 
2746 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2747 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2748 						      path_leaf_bh(right_path),
2749 						      OCFS2_JOURNAL_ACCESS_WRITE);
2750 			if (ret) {
2751 				mlog_errno(ret);
2752 				goto out;
2753 			}
2754 
2755 			ocfs2_remove_empty_extent(right_leaf_el);
2756 		} else
2757 			right_has_empty = 1;
2758 	}
2759 
2760 	if (eb->h_next_leaf_blk == 0ULL &&
2761 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2762 		/*
2763 		 * We have to update i_last_eb_blk during the meta
2764 		 * data delete.
2765 		 */
2766 		ret = ocfs2_et_root_journal_access(handle, et,
2767 						   OCFS2_JOURNAL_ACCESS_WRITE);
2768 		if (ret) {
2769 			mlog_errno(ret);
2770 			goto out;
2771 		}
2772 
2773 		del_right_subtree = 1;
2774 	}
2775 
2776 	/*
2777 	 * Getting here with an empty extent in the right path implies
2778 	 * that it's the rightmost path and will be deleted.
2779 	 */
2780 	BUG_ON(right_has_empty && !del_right_subtree);
2781 
2782 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2783 					   subtree_index);
2784 	if (ret) {
2785 		mlog_errno(ret);
2786 		goto out;
2787 	}
2788 
2789 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2790 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2791 						   right_path, i);
2792 		if (ret) {
2793 			mlog_errno(ret);
2794 			goto out;
2795 		}
2796 
2797 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2798 						   left_path, i);
2799 		if (ret) {
2800 			mlog_errno(ret);
2801 			goto out;
2802 		}
2803 	}
2804 
2805 	if (!right_has_empty) {
2806 		/*
2807 		 * Only do this if we're moving a real
2808 		 * record. Otherwise, the action is delayed until
2809 		 * after removal of the right path in which case we
2810 		 * can do a simple shift to remove the empty extent.
2811 		 */
2812 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2813 		memset(&right_leaf_el->l_recs[0], 0,
2814 		       sizeof(struct ocfs2_extent_rec));
2815 	}
2816 	if (eb->h_next_leaf_blk == 0ULL) {
2817 		/*
2818 		 * Move recs over to get rid of empty extent, decrease
2819 		 * next_free. This is allowed to remove the last
2820 		 * extent in our leaf (setting l_next_free_rec to
2821 		 * zero) - the delete code below won't care.
2822 		 */
2823 		ocfs2_remove_empty_extent(right_leaf_el);
2824 	}
2825 
2826 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2827 	if (ret)
2828 		mlog_errno(ret);
2829 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2830 	if (ret)
2831 		mlog_errno(ret);
2832 
2833 	if (del_right_subtree) {
2834 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2835 				     subtree_index, dealloc);
2836 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2837 						left_path);
2838 		if (ret) {
2839 			mlog_errno(ret);
2840 			goto out;
2841 		}
2842 
2843 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2844 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2845 
2846 		/*
2847 		 * Removal of the extent in the left leaf was skipped
2848 		 * above so we could delete the right path
2849 		 * 1st.
2850 		 */
2851 		if (right_has_empty)
2852 			ocfs2_remove_empty_extent(left_leaf_el);
2853 
2854 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2855 		if (ret)
2856 			mlog_errno(ret);
2857 
2858 		*deleted = 1;
2859 	} else
2860 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2861 					   subtree_index);
2862 
2863 out:
2864 	return ret;
2865 }
2866 
2867 /*
2868  * Given a full path, determine what cpos value would return us a path
2869  * containing the leaf immediately to the right of the current one.
2870  *
2871  * Will return zero if the path passed in is already the rightmost path.
2872  *
2873  * This looks similar, but is subtly different to
2874  * ocfs2_find_cpos_for_left_leaf().
2875  */
2876 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2877 				   struct ocfs2_path *path, u32 *cpos)
2878 {
2879 	int i, j, ret = 0;
2880 	u64 blkno;
2881 	struct ocfs2_extent_list *el;
2882 
2883 	*cpos = 0;
2884 
2885 	if (path->p_tree_depth == 0)
2886 		return 0;
2887 
2888 	blkno = path_leaf_bh(path)->b_blocknr;
2889 
2890 	/* Start at the tree node just above the leaf and work our way up. */
2891 	i = path->p_tree_depth - 1;
2892 	while (i >= 0) {
2893 		int next_free;
2894 
2895 		el = path->p_node[i].el;
2896 
2897 		/*
2898 		 * Find the extent record just after the one in our
2899 		 * path.
2900 		 */
2901 		next_free = le16_to_cpu(el->l_next_free_rec);
2902 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2903 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2904 				if (j == (next_free - 1)) {
2905 					if (i == 0) {
2906 						/*
2907 						 * We've determined that the
2908 						 * path specified is already
2909 						 * the rightmost one - return a
2910 						 * cpos of zero.
2911 						 */
2912 						goto out;
2913 					}
2914 					/*
2915 					 * The rightmost record points to our
2916 					 * leaf - we need to travel up the
2917 					 * tree one level.
2918 					 */
2919 					goto next_node;
2920 				}
2921 
2922 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2923 				goto out;
2924 			}
2925 		}
2926 
2927 		/*
2928 		 * If we got here, we never found a valid node where
2929 		 * the tree indicated one should be.
2930 		 */
2931 		ocfs2_error(sb,
2932 			    "Invalid extent tree at extent block %llu\n",
2933 			    (unsigned long long)blkno);
2934 		ret = -EROFS;
2935 		goto out;
2936 
2937 next_node:
2938 		blkno = path->p_node[i].bh->b_blocknr;
2939 		i--;
2940 	}
2941 
2942 out:
2943 	return ret;
2944 }
2945 
2946 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2947 					    struct ocfs2_extent_tree *et,
2948 					    struct ocfs2_path *path)
2949 {
2950 	int ret;
2951 	struct buffer_head *bh = path_leaf_bh(path);
2952 	struct ocfs2_extent_list *el = path_leaf_el(path);
2953 
2954 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2955 		return 0;
2956 
2957 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2958 					   path_num_items(path) - 1);
2959 	if (ret) {
2960 		mlog_errno(ret);
2961 		goto out;
2962 	}
2963 
2964 	ocfs2_remove_empty_extent(el);
2965 
2966 	ret = ocfs2_journal_dirty(handle, bh);
2967 	if (ret)
2968 		mlog_errno(ret);
2969 
2970 out:
2971 	return ret;
2972 }
2973 
2974 static int __ocfs2_rotate_tree_left(handle_t *handle,
2975 				    struct ocfs2_extent_tree *et,
2976 				    int orig_credits,
2977 				    struct ocfs2_path *path,
2978 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2979 				    struct ocfs2_path **empty_extent_path)
2980 {
2981 	int ret, subtree_root, deleted;
2982 	u32 right_cpos;
2983 	struct ocfs2_path *left_path = NULL;
2984 	struct ocfs2_path *right_path = NULL;
2985 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2986 
2987 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2988 
2989 	*empty_extent_path = NULL;
2990 
2991 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2992 	if (ret) {
2993 		mlog_errno(ret);
2994 		goto out;
2995 	}
2996 
2997 	left_path = ocfs2_new_path_from_path(path);
2998 	if (!left_path) {
2999 		ret = -ENOMEM;
3000 		mlog_errno(ret);
3001 		goto out;
3002 	}
3003 
3004 	ocfs2_cp_path(left_path, path);
3005 
3006 	right_path = ocfs2_new_path_from_path(path);
3007 	if (!right_path) {
3008 		ret = -ENOMEM;
3009 		mlog_errno(ret);
3010 		goto out;
3011 	}
3012 
3013 	while (right_cpos) {
3014 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3015 		if (ret) {
3016 			mlog_errno(ret);
3017 			goto out;
3018 		}
3019 
3020 		subtree_root = ocfs2_find_subtree_root(et, left_path,
3021 						       right_path);
3022 
3023 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
3024 		     subtree_root,
3025 		     (unsigned long long)
3026 		     right_path->p_node[subtree_root].bh->b_blocknr,
3027 		     right_path->p_tree_depth);
3028 
3029 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
3030 						      orig_credits, left_path);
3031 		if (ret) {
3032 			mlog_errno(ret);
3033 			goto out;
3034 		}
3035 
3036 		/*
3037 		 * Caller might still want to make changes to the
3038 		 * tree root, so re-add it to the journal here.
3039 		 */
3040 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3041 						   left_path, 0);
3042 		if (ret) {
3043 			mlog_errno(ret);
3044 			goto out;
3045 		}
3046 
3047 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
3048 						right_path, subtree_root,
3049 						dealloc, &deleted);
3050 		if (ret == -EAGAIN) {
3051 			/*
3052 			 * The rotation has to temporarily stop due to
3053 			 * the right subtree having an empty
3054 			 * extent. Pass it back to the caller for a
3055 			 * fixup.
3056 			 */
3057 			*empty_extent_path = right_path;
3058 			right_path = NULL;
3059 			goto out;
3060 		}
3061 		if (ret) {
3062 			mlog_errno(ret);
3063 			goto out;
3064 		}
3065 
3066 		/*
3067 		 * The subtree rotate might have removed records on
3068 		 * the rightmost edge. If so, then rotation is
3069 		 * complete.
3070 		 */
3071 		if (deleted)
3072 			break;
3073 
3074 		ocfs2_mv_path(left_path, right_path);
3075 
3076 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3077 						     &right_cpos);
3078 		if (ret) {
3079 			mlog_errno(ret);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 out:
3085 	ocfs2_free_path(right_path);
3086 	ocfs2_free_path(left_path);
3087 
3088 	return ret;
3089 }
3090 
3091 static int ocfs2_remove_rightmost_path(handle_t *handle,
3092 				struct ocfs2_extent_tree *et,
3093 				struct ocfs2_path *path,
3094 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3095 {
3096 	int ret, subtree_index;
3097 	u32 cpos;
3098 	struct ocfs2_path *left_path = NULL;
3099 	struct ocfs2_extent_block *eb;
3100 	struct ocfs2_extent_list *el;
3101 
3102 
3103 	ret = ocfs2_et_sanity_check(et);
3104 	if (ret)
3105 		goto out;
3106 	/*
3107 	 * There's two ways we handle this depending on
3108 	 * whether path is the only existing one.
3109 	 */
3110 	ret = ocfs2_extend_rotate_transaction(handle, 0,
3111 					      handle->h_buffer_credits,
3112 					      path);
3113 	if (ret) {
3114 		mlog_errno(ret);
3115 		goto out;
3116 	}
3117 
3118 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3119 	if (ret) {
3120 		mlog_errno(ret);
3121 		goto out;
3122 	}
3123 
3124 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3125 					    path, &cpos);
3126 	if (ret) {
3127 		mlog_errno(ret);
3128 		goto out;
3129 	}
3130 
3131 	if (cpos) {
3132 		/*
3133 		 * We have a path to the left of this one - it needs
3134 		 * an update too.
3135 		 */
3136 		left_path = ocfs2_new_path_from_path(path);
3137 		if (!left_path) {
3138 			ret = -ENOMEM;
3139 			mlog_errno(ret);
3140 			goto out;
3141 		}
3142 
3143 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3144 		if (ret) {
3145 			mlog_errno(ret);
3146 			goto out;
3147 		}
3148 
3149 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3150 		if (ret) {
3151 			mlog_errno(ret);
3152 			goto out;
3153 		}
3154 
3155 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3156 
3157 		ocfs2_unlink_subtree(handle, et, left_path, path,
3158 				     subtree_index, dealloc);
3159 		ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3160 						left_path);
3161 		if (ret) {
3162 			mlog_errno(ret);
3163 			goto out;
3164 		}
3165 
3166 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3167 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3168 	} else {
3169 		/*
3170 		 * 'path' is also the leftmost path which
3171 		 * means it must be the only one. This gets
3172 		 * handled differently because we want to
3173 		 * revert the root back to having extents
3174 		 * in-line.
3175 		 */
3176 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3177 
3178 		el = et->et_root_el;
3179 		el->l_tree_depth = 0;
3180 		el->l_next_free_rec = 0;
3181 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3182 
3183 		ocfs2_et_set_last_eb_blk(et, 0);
3184 	}
3185 
3186 	ocfs2_journal_dirty(handle, path_root_bh(path));
3187 
3188 out:
3189 	ocfs2_free_path(left_path);
3190 	return ret;
3191 }
3192 
3193 /*
3194  * Left rotation of btree records.
3195  *
3196  * In many ways, this is (unsurprisingly) the opposite of right
3197  * rotation. We start at some non-rightmost path containing an empty
3198  * extent in the leaf block. The code works its way to the rightmost
3199  * path by rotating records to the left in every subtree.
3200  *
3201  * This is used by any code which reduces the number of extent records
3202  * in a leaf. After removal, an empty record should be placed in the
3203  * leftmost list position.
3204  *
3205  * This won't handle a length update of the rightmost path records if
3206  * the rightmost tree leaf record is removed so the caller is
3207  * responsible for detecting and correcting that.
3208  */
3209 static int ocfs2_rotate_tree_left(handle_t *handle,
3210 				  struct ocfs2_extent_tree *et,
3211 				  struct ocfs2_path *path,
3212 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3213 {
3214 	int ret, orig_credits = handle->h_buffer_credits;
3215 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3216 	struct ocfs2_extent_block *eb;
3217 	struct ocfs2_extent_list *el;
3218 
3219 	el = path_leaf_el(path);
3220 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3221 		return 0;
3222 
3223 	if (path->p_tree_depth == 0) {
3224 rightmost_no_delete:
3225 		/*
3226 		 * Inline extents. This is trivially handled, so do
3227 		 * it up front.
3228 		 */
3229 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3230 		if (ret)
3231 			mlog_errno(ret);
3232 		goto out;
3233 	}
3234 
3235 	/*
3236 	 * Handle rightmost branch now. There's several cases:
3237 	 *  1) simple rotation leaving records in there. That's trivial.
3238 	 *  2) rotation requiring a branch delete - there's no more
3239 	 *     records left. Two cases of this:
3240 	 *     a) There are branches to the left.
3241 	 *     b) This is also the leftmost (the only) branch.
3242 	 *
3243 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3244 	 *  2a) we need the left branch so that we can update it with the unlink
3245 	 *  2b) we need to bring the root back to inline extents.
3246 	 */
3247 
3248 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3249 	el = &eb->h_list;
3250 	if (eb->h_next_leaf_blk == 0) {
3251 		/*
3252 		 * This gets a bit tricky if we're going to delete the
3253 		 * rightmost path. Get the other cases out of the way
3254 		 * 1st.
3255 		 */
3256 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3257 			goto rightmost_no_delete;
3258 
3259 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3260 			ret = -EIO;
3261 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3262 				    "Owner %llu has empty extent block at %llu",
3263 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3264 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3265 			goto out;
3266 		}
3267 
3268 		/*
3269 		 * XXX: The caller can not trust "path" any more after
3270 		 * this as it will have been deleted. What do we do?
3271 		 *
3272 		 * In theory the rotate-for-merge code will never get
3273 		 * here because it'll always ask for a rotate in a
3274 		 * nonempty list.
3275 		 */
3276 
3277 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3278 						  dealloc);
3279 		if (ret)
3280 			mlog_errno(ret);
3281 		goto out;
3282 	}
3283 
3284 	/*
3285 	 * Now we can loop, remembering the path we get from -EAGAIN
3286 	 * and restarting from there.
3287 	 */
3288 try_rotate:
3289 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3290 				       dealloc, &restart_path);
3291 	if (ret && ret != -EAGAIN) {
3292 		mlog_errno(ret);
3293 		goto out;
3294 	}
3295 
3296 	while (ret == -EAGAIN) {
3297 		tmp_path = restart_path;
3298 		restart_path = NULL;
3299 
3300 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3301 					       tmp_path, dealloc,
3302 					       &restart_path);
3303 		if (ret && ret != -EAGAIN) {
3304 			mlog_errno(ret);
3305 			goto out;
3306 		}
3307 
3308 		ocfs2_free_path(tmp_path);
3309 		tmp_path = NULL;
3310 
3311 		if (ret == 0)
3312 			goto try_rotate;
3313 	}
3314 
3315 out:
3316 	ocfs2_free_path(tmp_path);
3317 	ocfs2_free_path(restart_path);
3318 	return ret;
3319 }
3320 
3321 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3322 				int index)
3323 {
3324 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3325 	unsigned int size;
3326 
3327 	if (rec->e_leaf_clusters == 0) {
3328 		/*
3329 		 * We consumed all of the merged-from record. An empty
3330 		 * extent cannot exist anywhere but the 1st array
3331 		 * position, so move things over if the merged-from
3332 		 * record doesn't occupy that position.
3333 		 *
3334 		 * This creates a new empty extent so the caller
3335 		 * should be smart enough to have removed any existing
3336 		 * ones.
3337 		 */
3338 		if (index > 0) {
3339 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3340 			size = index * sizeof(struct ocfs2_extent_rec);
3341 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3342 		}
3343 
3344 		/*
3345 		 * Always memset - the caller doesn't check whether it
3346 		 * created an empty extent, so there could be junk in
3347 		 * the other fields.
3348 		 */
3349 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3350 	}
3351 }
3352 
3353 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3354 				struct ocfs2_path *left_path,
3355 				struct ocfs2_path **ret_right_path)
3356 {
3357 	int ret;
3358 	u32 right_cpos;
3359 	struct ocfs2_path *right_path = NULL;
3360 	struct ocfs2_extent_list *left_el;
3361 
3362 	*ret_right_path = NULL;
3363 
3364 	/* This function shouldn't be called for non-trees. */
3365 	BUG_ON(left_path->p_tree_depth == 0);
3366 
3367 	left_el = path_leaf_el(left_path);
3368 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3369 
3370 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3371 					     left_path, &right_cpos);
3372 	if (ret) {
3373 		mlog_errno(ret);
3374 		goto out;
3375 	}
3376 
3377 	/* This function shouldn't be called for the rightmost leaf. */
3378 	BUG_ON(right_cpos == 0);
3379 
3380 	right_path = ocfs2_new_path_from_path(left_path);
3381 	if (!right_path) {
3382 		ret = -ENOMEM;
3383 		mlog_errno(ret);
3384 		goto out;
3385 	}
3386 
3387 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3388 	if (ret) {
3389 		mlog_errno(ret);
3390 		goto out;
3391 	}
3392 
3393 	*ret_right_path = right_path;
3394 out:
3395 	if (ret)
3396 		ocfs2_free_path(right_path);
3397 	return ret;
3398 }
3399 
3400 /*
3401  * Remove split_rec clusters from the record at index and merge them
3402  * onto the beginning of the record "next" to it.
3403  * For index < l_count - 1, the next means the extent rec at index + 1.
3404  * For index == l_count - 1, the "next" means the 1st extent rec of the
3405  * next extent block.
3406  */
3407 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3408 				 handle_t *handle,
3409 				 struct ocfs2_extent_tree *et,
3410 				 struct ocfs2_extent_rec *split_rec,
3411 				 int index)
3412 {
3413 	int ret, next_free, i;
3414 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3415 	struct ocfs2_extent_rec *left_rec;
3416 	struct ocfs2_extent_rec *right_rec;
3417 	struct ocfs2_extent_list *right_el;
3418 	struct ocfs2_path *right_path = NULL;
3419 	int subtree_index = 0;
3420 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3421 	struct buffer_head *bh = path_leaf_bh(left_path);
3422 	struct buffer_head *root_bh = NULL;
3423 
3424 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3425 	left_rec = &el->l_recs[index];
3426 
3427 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3428 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3429 		/* we meet with a cross extent block merge. */
3430 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3431 		if (ret) {
3432 			mlog_errno(ret);
3433 			goto out;
3434 		}
3435 
3436 		right_el = path_leaf_el(right_path);
3437 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3438 		BUG_ON(next_free <= 0);
3439 		right_rec = &right_el->l_recs[0];
3440 		if (ocfs2_is_empty_extent(right_rec)) {
3441 			BUG_ON(next_free <= 1);
3442 			right_rec = &right_el->l_recs[1];
3443 		}
3444 
3445 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3446 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3447 		       le32_to_cpu(right_rec->e_cpos));
3448 
3449 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3450 							right_path);
3451 
3452 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3453 						      handle->h_buffer_credits,
3454 						      right_path);
3455 		if (ret) {
3456 			mlog_errno(ret);
3457 			goto out;
3458 		}
3459 
3460 		root_bh = left_path->p_node[subtree_index].bh;
3461 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3462 
3463 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3464 						   subtree_index);
3465 		if (ret) {
3466 			mlog_errno(ret);
3467 			goto out;
3468 		}
3469 
3470 		for (i = subtree_index + 1;
3471 		     i < path_num_items(right_path); i++) {
3472 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3473 							   right_path, i);
3474 			if (ret) {
3475 				mlog_errno(ret);
3476 				goto out;
3477 			}
3478 
3479 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3480 							   left_path, i);
3481 			if (ret) {
3482 				mlog_errno(ret);
3483 				goto out;
3484 			}
3485 		}
3486 
3487 	} else {
3488 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3489 		right_rec = &el->l_recs[index + 1];
3490 	}
3491 
3492 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3493 					   path_num_items(left_path) - 1);
3494 	if (ret) {
3495 		mlog_errno(ret);
3496 		goto out;
3497 	}
3498 
3499 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3500 
3501 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3502 	le64_add_cpu(&right_rec->e_blkno,
3503 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3504 					       split_clusters));
3505 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3506 
3507 	ocfs2_cleanup_merge(el, index);
3508 
3509 	ret = ocfs2_journal_dirty(handle, bh);
3510 	if (ret)
3511 		mlog_errno(ret);
3512 
3513 	if (right_path) {
3514 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3515 		if (ret)
3516 			mlog_errno(ret);
3517 
3518 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3519 					   subtree_index);
3520 	}
3521 out:
3522 	if (right_path)
3523 		ocfs2_free_path(right_path);
3524 	return ret;
3525 }
3526 
3527 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3528 			       struct ocfs2_path *right_path,
3529 			       struct ocfs2_path **ret_left_path)
3530 {
3531 	int ret;
3532 	u32 left_cpos;
3533 	struct ocfs2_path *left_path = NULL;
3534 
3535 	*ret_left_path = NULL;
3536 
3537 	/* This function shouldn't be called for non-trees. */
3538 	BUG_ON(right_path->p_tree_depth == 0);
3539 
3540 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3541 					    right_path, &left_cpos);
3542 	if (ret) {
3543 		mlog_errno(ret);
3544 		goto out;
3545 	}
3546 
3547 	/* This function shouldn't be called for the leftmost leaf. */
3548 	BUG_ON(left_cpos == 0);
3549 
3550 	left_path = ocfs2_new_path_from_path(right_path);
3551 	if (!left_path) {
3552 		ret = -ENOMEM;
3553 		mlog_errno(ret);
3554 		goto out;
3555 	}
3556 
3557 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3558 	if (ret) {
3559 		mlog_errno(ret);
3560 		goto out;
3561 	}
3562 
3563 	*ret_left_path = left_path;
3564 out:
3565 	if (ret)
3566 		ocfs2_free_path(left_path);
3567 	return ret;
3568 }
3569 
3570 /*
3571  * Remove split_rec clusters from the record at index and merge them
3572  * onto the tail of the record "before" it.
3573  * For index > 0, the "before" means the extent rec at index - 1.
3574  *
3575  * For index == 0, the "before" means the last record of the previous
3576  * extent block. And there is also a situation that we may need to
3577  * remove the rightmost leaf extent block in the right_path and change
3578  * the right path to indicate the new rightmost path.
3579  */
3580 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3581 				handle_t *handle,
3582 				struct ocfs2_extent_tree *et,
3583 				struct ocfs2_extent_rec *split_rec,
3584 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3585 				int index)
3586 {
3587 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3588 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3589 	struct ocfs2_extent_rec *left_rec;
3590 	struct ocfs2_extent_rec *right_rec;
3591 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3592 	struct buffer_head *bh = path_leaf_bh(right_path);
3593 	struct buffer_head *root_bh = NULL;
3594 	struct ocfs2_path *left_path = NULL;
3595 	struct ocfs2_extent_list *left_el;
3596 
3597 	BUG_ON(index < 0);
3598 
3599 	right_rec = &el->l_recs[index];
3600 	if (index == 0) {
3601 		/* we meet with a cross extent block merge. */
3602 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3603 		if (ret) {
3604 			mlog_errno(ret);
3605 			goto out;
3606 		}
3607 
3608 		left_el = path_leaf_el(left_path);
3609 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3610 		       le16_to_cpu(left_el->l_count));
3611 
3612 		left_rec = &left_el->l_recs[
3613 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3614 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3615 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3616 		       le32_to_cpu(split_rec->e_cpos));
3617 
3618 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3619 							right_path);
3620 
3621 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3622 						      handle->h_buffer_credits,
3623 						      left_path);
3624 		if (ret) {
3625 			mlog_errno(ret);
3626 			goto out;
3627 		}
3628 
3629 		root_bh = left_path->p_node[subtree_index].bh;
3630 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3631 
3632 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3633 						   subtree_index);
3634 		if (ret) {
3635 			mlog_errno(ret);
3636 			goto out;
3637 		}
3638 
3639 		for (i = subtree_index + 1;
3640 		     i < path_num_items(right_path); i++) {
3641 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3642 							   right_path, i);
3643 			if (ret) {
3644 				mlog_errno(ret);
3645 				goto out;
3646 			}
3647 
3648 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3649 							   left_path, i);
3650 			if (ret) {
3651 				mlog_errno(ret);
3652 				goto out;
3653 			}
3654 		}
3655 	} else {
3656 		left_rec = &el->l_recs[index - 1];
3657 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3658 			has_empty_extent = 1;
3659 	}
3660 
3661 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3662 					   path_num_items(right_path) - 1);
3663 	if (ret) {
3664 		mlog_errno(ret);
3665 		goto out;
3666 	}
3667 
3668 	if (has_empty_extent && index == 1) {
3669 		/*
3670 		 * The easy case - we can just plop the record right in.
3671 		 */
3672 		*left_rec = *split_rec;
3673 
3674 		has_empty_extent = 0;
3675 	} else
3676 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3677 
3678 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3679 	le64_add_cpu(&right_rec->e_blkno,
3680 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3681 					      split_clusters));
3682 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3683 
3684 	ocfs2_cleanup_merge(el, index);
3685 
3686 	ret = ocfs2_journal_dirty(handle, bh);
3687 	if (ret)
3688 		mlog_errno(ret);
3689 
3690 	if (left_path) {
3691 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3692 		if (ret)
3693 			mlog_errno(ret);
3694 
3695 		/*
3696 		 * In the situation that the right_rec is empty and the extent
3697 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3698 		 * it and we need to delete the right extent block.
3699 		 */
3700 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3701 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3702 
3703 			ret = ocfs2_remove_rightmost_path(handle, et,
3704 							  right_path,
3705 							  dealloc);
3706 			if (ret) {
3707 				mlog_errno(ret);
3708 				goto out;
3709 			}
3710 
3711 			/* Now the rightmost extent block has been deleted.
3712 			 * So we use the new rightmost path.
3713 			 */
3714 			ocfs2_mv_path(right_path, left_path);
3715 			left_path = NULL;
3716 		} else
3717 			ocfs2_complete_edge_insert(handle, left_path,
3718 						   right_path, subtree_index);
3719 	}
3720 out:
3721 	if (left_path)
3722 		ocfs2_free_path(left_path);
3723 	return ret;
3724 }
3725 
3726 static int ocfs2_try_to_merge_extent(handle_t *handle,
3727 				     struct ocfs2_extent_tree *et,
3728 				     struct ocfs2_path *path,
3729 				     int split_index,
3730 				     struct ocfs2_extent_rec *split_rec,
3731 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3732 				     struct ocfs2_merge_ctxt *ctxt)
3733 {
3734 	int ret = 0;
3735 	struct ocfs2_extent_list *el = path_leaf_el(path);
3736 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3737 
3738 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3739 
3740 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3741 		/*
3742 		 * The merge code will need to create an empty
3743 		 * extent to take the place of the newly
3744 		 * emptied slot. Remove any pre-existing empty
3745 		 * extents - having more than one in a leaf is
3746 		 * illegal.
3747 		 */
3748 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3749 		if (ret) {
3750 			mlog_errno(ret);
3751 			goto out;
3752 		}
3753 		split_index--;
3754 		rec = &el->l_recs[split_index];
3755 	}
3756 
3757 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3758 		/*
3759 		 * Left-right contig implies this.
3760 		 */
3761 		BUG_ON(!ctxt->c_split_covers_rec);
3762 
3763 		/*
3764 		 * Since the leftright insert always covers the entire
3765 		 * extent, this call will delete the insert record
3766 		 * entirely, resulting in an empty extent record added to
3767 		 * the extent block.
3768 		 *
3769 		 * Since the adding of an empty extent shifts
3770 		 * everything back to the right, there's no need to
3771 		 * update split_index here.
3772 		 *
3773 		 * When the split_index is zero, we need to merge it to the
3774 		 * prevoius extent block. It is more efficient and easier
3775 		 * if we do merge_right first and merge_left later.
3776 		 */
3777 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3778 					    split_index);
3779 		if (ret) {
3780 			mlog_errno(ret);
3781 			goto out;
3782 		}
3783 
3784 		/*
3785 		 * We can only get this from logic error above.
3786 		 */
3787 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3788 
3789 		/* The merge left us with an empty extent, remove it. */
3790 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3791 		if (ret) {
3792 			mlog_errno(ret);
3793 			goto out;
3794 		}
3795 
3796 		rec = &el->l_recs[split_index];
3797 
3798 		/*
3799 		 * Note that we don't pass split_rec here on purpose -
3800 		 * we've merged it into the rec already.
3801 		 */
3802 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3803 					   dealloc, split_index);
3804 
3805 		if (ret) {
3806 			mlog_errno(ret);
3807 			goto out;
3808 		}
3809 
3810 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3811 		/*
3812 		 * Error from this last rotate is not critical, so
3813 		 * print but don't bubble it up.
3814 		 */
3815 		if (ret)
3816 			mlog_errno(ret);
3817 		ret = 0;
3818 	} else {
3819 		/*
3820 		 * Merge a record to the left or right.
3821 		 *
3822 		 * 'contig_type' is relative to the existing record,
3823 		 * so for example, if we're "right contig", it's to
3824 		 * the record on the left (hence the left merge).
3825 		 */
3826 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3827 			ret = ocfs2_merge_rec_left(path, handle, et,
3828 						   split_rec, dealloc,
3829 						   split_index);
3830 			if (ret) {
3831 				mlog_errno(ret);
3832 				goto out;
3833 			}
3834 		} else {
3835 			ret = ocfs2_merge_rec_right(path, handle,
3836 						    et, split_rec,
3837 						    split_index);
3838 			if (ret) {
3839 				mlog_errno(ret);
3840 				goto out;
3841 			}
3842 		}
3843 
3844 		if (ctxt->c_split_covers_rec) {
3845 			/*
3846 			 * The merge may have left an empty extent in
3847 			 * our leaf. Try to rotate it away.
3848 			 */
3849 			ret = ocfs2_rotate_tree_left(handle, et, path,
3850 						     dealloc);
3851 			if (ret)
3852 				mlog_errno(ret);
3853 			ret = 0;
3854 		}
3855 	}
3856 
3857 out:
3858 	return ret;
3859 }
3860 
3861 static void ocfs2_subtract_from_rec(struct super_block *sb,
3862 				    enum ocfs2_split_type split,
3863 				    struct ocfs2_extent_rec *rec,
3864 				    struct ocfs2_extent_rec *split_rec)
3865 {
3866 	u64 len_blocks;
3867 
3868 	len_blocks = ocfs2_clusters_to_blocks(sb,
3869 				le16_to_cpu(split_rec->e_leaf_clusters));
3870 
3871 	if (split == SPLIT_LEFT) {
3872 		/*
3873 		 * Region is on the left edge of the existing
3874 		 * record.
3875 		 */
3876 		le32_add_cpu(&rec->e_cpos,
3877 			     le16_to_cpu(split_rec->e_leaf_clusters));
3878 		le64_add_cpu(&rec->e_blkno, len_blocks);
3879 		le16_add_cpu(&rec->e_leaf_clusters,
3880 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3881 	} else {
3882 		/*
3883 		 * Region is on the right edge of the existing
3884 		 * record.
3885 		 */
3886 		le16_add_cpu(&rec->e_leaf_clusters,
3887 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3888 	}
3889 }
3890 
3891 /*
3892  * Do the final bits of extent record insertion at the target leaf
3893  * list. If this leaf is part of an allocation tree, it is assumed
3894  * that the tree above has been prepared.
3895  */
3896 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3897 				 struct ocfs2_extent_rec *insert_rec,
3898 				 struct ocfs2_extent_list *el,
3899 				 struct ocfs2_insert_type *insert)
3900 {
3901 	int i = insert->ins_contig_index;
3902 	unsigned int range;
3903 	struct ocfs2_extent_rec *rec;
3904 
3905 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3906 
3907 	if (insert->ins_split != SPLIT_NONE) {
3908 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3909 		BUG_ON(i == -1);
3910 		rec = &el->l_recs[i];
3911 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3912 					insert->ins_split, rec,
3913 					insert_rec);
3914 		goto rotate;
3915 	}
3916 
3917 	/*
3918 	 * Contiguous insert - either left or right.
3919 	 */
3920 	if (insert->ins_contig != CONTIG_NONE) {
3921 		rec = &el->l_recs[i];
3922 		if (insert->ins_contig == CONTIG_LEFT) {
3923 			rec->e_blkno = insert_rec->e_blkno;
3924 			rec->e_cpos = insert_rec->e_cpos;
3925 		}
3926 		le16_add_cpu(&rec->e_leaf_clusters,
3927 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3928 		return;
3929 	}
3930 
3931 	/*
3932 	 * Handle insert into an empty leaf.
3933 	 */
3934 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3935 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3936 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3937 		el->l_recs[0] = *insert_rec;
3938 		el->l_next_free_rec = cpu_to_le16(1);
3939 		return;
3940 	}
3941 
3942 	/*
3943 	 * Appending insert.
3944 	 */
3945 	if (insert->ins_appending == APPEND_TAIL) {
3946 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3947 		rec = &el->l_recs[i];
3948 		range = le32_to_cpu(rec->e_cpos)
3949 			+ le16_to_cpu(rec->e_leaf_clusters);
3950 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3951 
3952 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3953 				le16_to_cpu(el->l_count),
3954 				"owner %llu, depth %u, count %u, next free %u, "
3955 				"rec.cpos %u, rec.clusters %u, "
3956 				"insert.cpos %u, insert.clusters %u\n",
3957 				ocfs2_metadata_cache_owner(et->et_ci),
3958 				le16_to_cpu(el->l_tree_depth),
3959 				le16_to_cpu(el->l_count),
3960 				le16_to_cpu(el->l_next_free_rec),
3961 				le32_to_cpu(el->l_recs[i].e_cpos),
3962 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3963 				le32_to_cpu(insert_rec->e_cpos),
3964 				le16_to_cpu(insert_rec->e_leaf_clusters));
3965 		i++;
3966 		el->l_recs[i] = *insert_rec;
3967 		le16_add_cpu(&el->l_next_free_rec, 1);
3968 		return;
3969 	}
3970 
3971 rotate:
3972 	/*
3973 	 * Ok, we have to rotate.
3974 	 *
3975 	 * At this point, it is safe to assume that inserting into an
3976 	 * empty leaf and appending to a leaf have both been handled
3977 	 * above.
3978 	 *
3979 	 * This leaf needs to have space, either by the empty 1st
3980 	 * extent record, or by virtue of an l_next_rec < l_count.
3981 	 */
3982 	ocfs2_rotate_leaf(el, insert_rec);
3983 }
3984 
3985 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3986 					   struct ocfs2_extent_tree *et,
3987 					   struct ocfs2_path *path,
3988 					   struct ocfs2_extent_rec *insert_rec)
3989 {
3990 	int ret, i, next_free;
3991 	struct buffer_head *bh;
3992 	struct ocfs2_extent_list *el;
3993 	struct ocfs2_extent_rec *rec;
3994 
3995 	/*
3996 	 * Update everything except the leaf block.
3997 	 */
3998 	for (i = 0; i < path->p_tree_depth; i++) {
3999 		bh = path->p_node[i].bh;
4000 		el = path->p_node[i].el;
4001 
4002 		next_free = le16_to_cpu(el->l_next_free_rec);
4003 		if (next_free == 0) {
4004 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4005 				    "Owner %llu has a bad extent list",
4006 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4007 			ret = -EIO;
4008 			return;
4009 		}
4010 
4011 		rec = &el->l_recs[next_free - 1];
4012 
4013 		rec->e_int_clusters = insert_rec->e_cpos;
4014 		le32_add_cpu(&rec->e_int_clusters,
4015 			     le16_to_cpu(insert_rec->e_leaf_clusters));
4016 		le32_add_cpu(&rec->e_int_clusters,
4017 			     -le32_to_cpu(rec->e_cpos));
4018 
4019 		ret = ocfs2_journal_dirty(handle, bh);
4020 		if (ret)
4021 			mlog_errno(ret);
4022 
4023 	}
4024 }
4025 
4026 static int ocfs2_append_rec_to_path(handle_t *handle,
4027 				    struct ocfs2_extent_tree *et,
4028 				    struct ocfs2_extent_rec *insert_rec,
4029 				    struct ocfs2_path *right_path,
4030 				    struct ocfs2_path **ret_left_path)
4031 {
4032 	int ret, next_free;
4033 	struct ocfs2_extent_list *el;
4034 	struct ocfs2_path *left_path = NULL;
4035 
4036 	*ret_left_path = NULL;
4037 
4038 	/*
4039 	 * This shouldn't happen for non-trees. The extent rec cluster
4040 	 * count manipulation below only works for interior nodes.
4041 	 */
4042 	BUG_ON(right_path->p_tree_depth == 0);
4043 
4044 	/*
4045 	 * If our appending insert is at the leftmost edge of a leaf,
4046 	 * then we might need to update the rightmost records of the
4047 	 * neighboring path.
4048 	 */
4049 	el = path_leaf_el(right_path);
4050 	next_free = le16_to_cpu(el->l_next_free_rec);
4051 	if (next_free == 0 ||
4052 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4053 		u32 left_cpos;
4054 
4055 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4056 						    right_path, &left_cpos);
4057 		if (ret) {
4058 			mlog_errno(ret);
4059 			goto out;
4060 		}
4061 
4062 		mlog(0, "Append may need a left path update. cpos: %u, "
4063 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
4064 		     left_cpos);
4065 
4066 		/*
4067 		 * No need to worry if the append is already in the
4068 		 * leftmost leaf.
4069 		 */
4070 		if (left_cpos) {
4071 			left_path = ocfs2_new_path_from_path(right_path);
4072 			if (!left_path) {
4073 				ret = -ENOMEM;
4074 				mlog_errno(ret);
4075 				goto out;
4076 			}
4077 
4078 			ret = ocfs2_find_path(et->et_ci, left_path,
4079 					      left_cpos);
4080 			if (ret) {
4081 				mlog_errno(ret);
4082 				goto out;
4083 			}
4084 
4085 			/*
4086 			 * ocfs2_insert_path() will pass the left_path to the
4087 			 * journal for us.
4088 			 */
4089 		}
4090 	}
4091 
4092 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4093 	if (ret) {
4094 		mlog_errno(ret);
4095 		goto out;
4096 	}
4097 
4098 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4099 
4100 	*ret_left_path = left_path;
4101 	ret = 0;
4102 out:
4103 	if (ret != 0)
4104 		ocfs2_free_path(left_path);
4105 
4106 	return ret;
4107 }
4108 
4109 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4110 			       struct ocfs2_path *left_path,
4111 			       struct ocfs2_path *right_path,
4112 			       struct ocfs2_extent_rec *split_rec,
4113 			       enum ocfs2_split_type split)
4114 {
4115 	int index;
4116 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4117 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4118 	struct ocfs2_extent_rec *rec, *tmprec;
4119 
4120 	right_el = path_leaf_el(right_path);
4121 	if (left_path)
4122 		left_el = path_leaf_el(left_path);
4123 
4124 	el = right_el;
4125 	insert_el = right_el;
4126 	index = ocfs2_search_extent_list(el, cpos);
4127 	if (index != -1) {
4128 		if (index == 0 && left_path) {
4129 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4130 
4131 			/*
4132 			 * This typically means that the record
4133 			 * started in the left path but moved to the
4134 			 * right as a result of rotation. We either
4135 			 * move the existing record to the left, or we
4136 			 * do the later insert there.
4137 			 *
4138 			 * In this case, the left path should always
4139 			 * exist as the rotate code will have passed
4140 			 * it back for a post-insert update.
4141 			 */
4142 
4143 			if (split == SPLIT_LEFT) {
4144 				/*
4145 				 * It's a left split. Since we know
4146 				 * that the rotate code gave us an
4147 				 * empty extent in the left path, we
4148 				 * can just do the insert there.
4149 				 */
4150 				insert_el = left_el;
4151 			} else {
4152 				/*
4153 				 * Right split - we have to move the
4154 				 * existing record over to the left
4155 				 * leaf. The insert will be into the
4156 				 * newly created empty extent in the
4157 				 * right leaf.
4158 				 */
4159 				tmprec = &right_el->l_recs[index];
4160 				ocfs2_rotate_leaf(left_el, tmprec);
4161 				el = left_el;
4162 
4163 				memset(tmprec, 0, sizeof(*tmprec));
4164 				index = ocfs2_search_extent_list(left_el, cpos);
4165 				BUG_ON(index == -1);
4166 			}
4167 		}
4168 	} else {
4169 		BUG_ON(!left_path);
4170 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4171 		/*
4172 		 * Left path is easy - we can just allow the insert to
4173 		 * happen.
4174 		 */
4175 		el = left_el;
4176 		insert_el = left_el;
4177 		index = ocfs2_search_extent_list(el, cpos);
4178 		BUG_ON(index == -1);
4179 	}
4180 
4181 	rec = &el->l_recs[index];
4182 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4183 				split, rec, split_rec);
4184 	ocfs2_rotate_leaf(insert_el, split_rec);
4185 }
4186 
4187 /*
4188  * This function only does inserts on an allocation b-tree. For tree
4189  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4190  *
4191  * right_path is the path we want to do the actual insert
4192  * in. left_path should only be passed in if we need to update that
4193  * portion of the tree after an edge insert.
4194  */
4195 static int ocfs2_insert_path(handle_t *handle,
4196 			     struct ocfs2_extent_tree *et,
4197 			     struct ocfs2_path *left_path,
4198 			     struct ocfs2_path *right_path,
4199 			     struct ocfs2_extent_rec *insert_rec,
4200 			     struct ocfs2_insert_type *insert)
4201 {
4202 	int ret, subtree_index;
4203 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4204 
4205 	if (left_path) {
4206 		int credits = handle->h_buffer_credits;
4207 
4208 		/*
4209 		 * There's a chance that left_path got passed back to
4210 		 * us without being accounted for in the
4211 		 * journal. Extend our transaction here to be sure we
4212 		 * can change those blocks.
4213 		 */
4214 		credits += left_path->p_tree_depth;
4215 
4216 		ret = ocfs2_extend_trans(handle, credits);
4217 		if (ret < 0) {
4218 			mlog_errno(ret);
4219 			goto out;
4220 		}
4221 
4222 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4223 		if (ret < 0) {
4224 			mlog_errno(ret);
4225 			goto out;
4226 		}
4227 	}
4228 
4229 	/*
4230 	 * Pass both paths to the journal. The majority of inserts
4231 	 * will be touching all components anyway.
4232 	 */
4233 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4234 	if (ret < 0) {
4235 		mlog_errno(ret);
4236 		goto out;
4237 	}
4238 
4239 	if (insert->ins_split != SPLIT_NONE) {
4240 		/*
4241 		 * We could call ocfs2_insert_at_leaf() for some types
4242 		 * of splits, but it's easier to just let one separate
4243 		 * function sort it all out.
4244 		 */
4245 		ocfs2_split_record(et, left_path, right_path,
4246 				   insert_rec, insert->ins_split);
4247 
4248 		/*
4249 		 * Split might have modified either leaf and we don't
4250 		 * have a guarantee that the later edge insert will
4251 		 * dirty this for us.
4252 		 */
4253 		if (left_path)
4254 			ret = ocfs2_journal_dirty(handle,
4255 						  path_leaf_bh(left_path));
4256 			if (ret)
4257 				mlog_errno(ret);
4258 	} else
4259 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4260 				     insert);
4261 
4262 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4263 	if (ret)
4264 		mlog_errno(ret);
4265 
4266 	if (left_path) {
4267 		/*
4268 		 * The rotate code has indicated that we need to fix
4269 		 * up portions of the tree after the insert.
4270 		 *
4271 		 * XXX: Should we extend the transaction here?
4272 		 */
4273 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4274 							right_path);
4275 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4276 					   subtree_index);
4277 	}
4278 
4279 	ret = 0;
4280 out:
4281 	return ret;
4282 }
4283 
4284 static int ocfs2_do_insert_extent(handle_t *handle,
4285 				  struct ocfs2_extent_tree *et,
4286 				  struct ocfs2_extent_rec *insert_rec,
4287 				  struct ocfs2_insert_type *type)
4288 {
4289 	int ret, rotate = 0;
4290 	u32 cpos;
4291 	struct ocfs2_path *right_path = NULL;
4292 	struct ocfs2_path *left_path = NULL;
4293 	struct ocfs2_extent_list *el;
4294 
4295 	el = et->et_root_el;
4296 
4297 	ret = ocfs2_et_root_journal_access(handle, et,
4298 					   OCFS2_JOURNAL_ACCESS_WRITE);
4299 	if (ret) {
4300 		mlog_errno(ret);
4301 		goto out;
4302 	}
4303 
4304 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4305 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4306 		goto out_update_clusters;
4307 	}
4308 
4309 	right_path = ocfs2_new_path_from_et(et);
4310 	if (!right_path) {
4311 		ret = -ENOMEM;
4312 		mlog_errno(ret);
4313 		goto out;
4314 	}
4315 
4316 	/*
4317 	 * Determine the path to start with. Rotations need the
4318 	 * rightmost path, everything else can go directly to the
4319 	 * target leaf.
4320 	 */
4321 	cpos = le32_to_cpu(insert_rec->e_cpos);
4322 	if (type->ins_appending == APPEND_NONE &&
4323 	    type->ins_contig == CONTIG_NONE) {
4324 		rotate = 1;
4325 		cpos = UINT_MAX;
4326 	}
4327 
4328 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4329 	if (ret) {
4330 		mlog_errno(ret);
4331 		goto out;
4332 	}
4333 
4334 	/*
4335 	 * Rotations and appends need special treatment - they modify
4336 	 * parts of the tree's above them.
4337 	 *
4338 	 * Both might pass back a path immediate to the left of the
4339 	 * one being inserted to. This will be cause
4340 	 * ocfs2_insert_path() to modify the rightmost records of
4341 	 * left_path to account for an edge insert.
4342 	 *
4343 	 * XXX: When modifying this code, keep in mind that an insert
4344 	 * can wind up skipping both of these two special cases...
4345 	 */
4346 	if (rotate) {
4347 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4348 					      le32_to_cpu(insert_rec->e_cpos),
4349 					      right_path, &left_path);
4350 		if (ret) {
4351 			mlog_errno(ret);
4352 			goto out;
4353 		}
4354 
4355 		/*
4356 		 * ocfs2_rotate_tree_right() might have extended the
4357 		 * transaction without re-journaling our tree root.
4358 		 */
4359 		ret = ocfs2_et_root_journal_access(handle, et,
4360 						   OCFS2_JOURNAL_ACCESS_WRITE);
4361 		if (ret) {
4362 			mlog_errno(ret);
4363 			goto out;
4364 		}
4365 	} else if (type->ins_appending == APPEND_TAIL
4366 		   && type->ins_contig != CONTIG_LEFT) {
4367 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4368 					       right_path, &left_path);
4369 		if (ret) {
4370 			mlog_errno(ret);
4371 			goto out;
4372 		}
4373 	}
4374 
4375 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4376 				insert_rec, type);
4377 	if (ret) {
4378 		mlog_errno(ret);
4379 		goto out;
4380 	}
4381 
4382 out_update_clusters:
4383 	if (type->ins_split == SPLIT_NONE)
4384 		ocfs2_et_update_clusters(et,
4385 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4386 
4387 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4388 	if (ret)
4389 		mlog_errno(ret);
4390 
4391 out:
4392 	ocfs2_free_path(left_path);
4393 	ocfs2_free_path(right_path);
4394 
4395 	return ret;
4396 }
4397 
4398 static enum ocfs2_contig_type
4399 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4400 			       struct ocfs2_path *path,
4401 			       struct ocfs2_extent_list *el, int index,
4402 			       struct ocfs2_extent_rec *split_rec)
4403 {
4404 	int status;
4405 	enum ocfs2_contig_type ret = CONTIG_NONE;
4406 	u32 left_cpos, right_cpos;
4407 	struct ocfs2_extent_rec *rec = NULL;
4408 	struct ocfs2_extent_list *new_el;
4409 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4410 	struct buffer_head *bh;
4411 	struct ocfs2_extent_block *eb;
4412 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4413 
4414 	if (index > 0) {
4415 		rec = &el->l_recs[index - 1];
4416 	} else if (path->p_tree_depth > 0) {
4417 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4418 		if (status)
4419 			goto out;
4420 
4421 		if (left_cpos != 0) {
4422 			left_path = ocfs2_new_path_from_path(path);
4423 			if (!left_path)
4424 				goto out;
4425 
4426 			status = ocfs2_find_path(et->et_ci, left_path,
4427 						 left_cpos);
4428 			if (status)
4429 				goto out;
4430 
4431 			new_el = path_leaf_el(left_path);
4432 
4433 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4434 			    le16_to_cpu(new_el->l_count)) {
4435 				bh = path_leaf_bh(left_path);
4436 				eb = (struct ocfs2_extent_block *)bh->b_data;
4437 				ocfs2_error(sb,
4438 					    "Extent block #%llu has an "
4439 					    "invalid l_next_free_rec of "
4440 					    "%d.  It should have "
4441 					    "matched the l_count of %d",
4442 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4443 					    le16_to_cpu(new_el->l_next_free_rec),
4444 					    le16_to_cpu(new_el->l_count));
4445 				status = -EINVAL;
4446 				goto out;
4447 			}
4448 			rec = &new_el->l_recs[
4449 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4450 		}
4451 	}
4452 
4453 	/*
4454 	 * We're careful to check for an empty extent record here -
4455 	 * the merge code will know what to do if it sees one.
4456 	 */
4457 	if (rec) {
4458 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4459 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4460 				ret = CONTIG_RIGHT;
4461 		} else {
4462 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4463 		}
4464 	}
4465 
4466 	rec = NULL;
4467 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4468 		rec = &el->l_recs[index + 1];
4469 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4470 		 path->p_tree_depth > 0) {
4471 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4472 		if (status)
4473 			goto out;
4474 
4475 		if (right_cpos == 0)
4476 			goto out;
4477 
4478 		right_path = ocfs2_new_path_from_path(path);
4479 		if (!right_path)
4480 			goto out;
4481 
4482 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4483 		if (status)
4484 			goto out;
4485 
4486 		new_el = path_leaf_el(right_path);
4487 		rec = &new_el->l_recs[0];
4488 		if (ocfs2_is_empty_extent(rec)) {
4489 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4490 				bh = path_leaf_bh(right_path);
4491 				eb = (struct ocfs2_extent_block *)bh->b_data;
4492 				ocfs2_error(sb,
4493 					    "Extent block #%llu has an "
4494 					    "invalid l_next_free_rec of %d",
4495 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4496 					    le16_to_cpu(new_el->l_next_free_rec));
4497 				status = -EINVAL;
4498 				goto out;
4499 			}
4500 			rec = &new_el->l_recs[1];
4501 		}
4502 	}
4503 
4504 	if (rec) {
4505 		enum ocfs2_contig_type contig_type;
4506 
4507 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4508 
4509 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4510 			ret = CONTIG_LEFTRIGHT;
4511 		else if (ret == CONTIG_NONE)
4512 			ret = contig_type;
4513 	}
4514 
4515 out:
4516 	if (left_path)
4517 		ocfs2_free_path(left_path);
4518 	if (right_path)
4519 		ocfs2_free_path(right_path);
4520 
4521 	return ret;
4522 }
4523 
4524 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4525 				     struct ocfs2_insert_type *insert,
4526 				     struct ocfs2_extent_list *el,
4527 				     struct ocfs2_extent_rec *insert_rec)
4528 {
4529 	int i;
4530 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4531 
4532 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4533 
4534 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4535 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4536 						     insert_rec);
4537 		if (contig_type != CONTIG_NONE) {
4538 			insert->ins_contig_index = i;
4539 			break;
4540 		}
4541 	}
4542 	insert->ins_contig = contig_type;
4543 
4544 	if (insert->ins_contig != CONTIG_NONE) {
4545 		struct ocfs2_extent_rec *rec =
4546 				&el->l_recs[insert->ins_contig_index];
4547 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4548 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4549 
4550 		/*
4551 		 * Caller might want us to limit the size of extents, don't
4552 		 * calculate contiguousness if we might exceed that limit.
4553 		 */
4554 		if (et->et_max_leaf_clusters &&
4555 		    (len > et->et_max_leaf_clusters))
4556 			insert->ins_contig = CONTIG_NONE;
4557 	}
4558 }
4559 
4560 /*
4561  * This should only be called against the righmost leaf extent list.
4562  *
4563  * ocfs2_figure_appending_type() will figure out whether we'll have to
4564  * insert at the tail of the rightmost leaf.
4565  *
4566  * This should also work against the root extent list for tree's with 0
4567  * depth. If we consider the root extent list to be the rightmost leaf node
4568  * then the logic here makes sense.
4569  */
4570 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4571 					struct ocfs2_extent_list *el,
4572 					struct ocfs2_extent_rec *insert_rec)
4573 {
4574 	int i;
4575 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4576 	struct ocfs2_extent_rec *rec;
4577 
4578 	insert->ins_appending = APPEND_NONE;
4579 
4580 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4581 
4582 	if (!el->l_next_free_rec)
4583 		goto set_tail_append;
4584 
4585 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4586 		/* Were all records empty? */
4587 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4588 			goto set_tail_append;
4589 	}
4590 
4591 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4592 	rec = &el->l_recs[i];
4593 
4594 	if (cpos >=
4595 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4596 		goto set_tail_append;
4597 
4598 	return;
4599 
4600 set_tail_append:
4601 	insert->ins_appending = APPEND_TAIL;
4602 }
4603 
4604 /*
4605  * Helper function called at the begining of an insert.
4606  *
4607  * This computes a few things that are commonly used in the process of
4608  * inserting into the btree:
4609  *   - Whether the new extent is contiguous with an existing one.
4610  *   - The current tree depth.
4611  *   - Whether the insert is an appending one.
4612  *   - The total # of free records in the tree.
4613  *
4614  * All of the information is stored on the ocfs2_insert_type
4615  * structure.
4616  */
4617 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4618 				    struct buffer_head **last_eb_bh,
4619 				    struct ocfs2_extent_rec *insert_rec,
4620 				    int *free_records,
4621 				    struct ocfs2_insert_type *insert)
4622 {
4623 	int ret;
4624 	struct ocfs2_extent_block *eb;
4625 	struct ocfs2_extent_list *el;
4626 	struct ocfs2_path *path = NULL;
4627 	struct buffer_head *bh = NULL;
4628 
4629 	insert->ins_split = SPLIT_NONE;
4630 
4631 	el = et->et_root_el;
4632 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4633 
4634 	if (el->l_tree_depth) {
4635 		/*
4636 		 * If we have tree depth, we read in the
4637 		 * rightmost extent block ahead of time as
4638 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4639 		 * may want it later.
4640 		 */
4641 		ret = ocfs2_read_extent_block(et->et_ci,
4642 					      ocfs2_et_get_last_eb_blk(et),
4643 					      &bh);
4644 		if (ret) {
4645 			mlog_exit(ret);
4646 			goto out;
4647 		}
4648 		eb = (struct ocfs2_extent_block *) bh->b_data;
4649 		el = &eb->h_list;
4650 	}
4651 
4652 	/*
4653 	 * Unless we have a contiguous insert, we'll need to know if
4654 	 * there is room left in our allocation tree for another
4655 	 * extent record.
4656 	 *
4657 	 * XXX: This test is simplistic, we can search for empty
4658 	 * extent records too.
4659 	 */
4660 	*free_records = le16_to_cpu(el->l_count) -
4661 		le16_to_cpu(el->l_next_free_rec);
4662 
4663 	if (!insert->ins_tree_depth) {
4664 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4665 		ocfs2_figure_appending_type(insert, el, insert_rec);
4666 		return 0;
4667 	}
4668 
4669 	path = ocfs2_new_path_from_et(et);
4670 	if (!path) {
4671 		ret = -ENOMEM;
4672 		mlog_errno(ret);
4673 		goto out;
4674 	}
4675 
4676 	/*
4677 	 * In the case that we're inserting past what the tree
4678 	 * currently accounts for, ocfs2_find_path() will return for
4679 	 * us the rightmost tree path. This is accounted for below in
4680 	 * the appending code.
4681 	 */
4682 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4683 	if (ret) {
4684 		mlog_errno(ret);
4685 		goto out;
4686 	}
4687 
4688 	el = path_leaf_el(path);
4689 
4690 	/*
4691 	 * Now that we have the path, there's two things we want to determine:
4692 	 * 1) Contiguousness (also set contig_index if this is so)
4693 	 *
4694 	 * 2) Are we doing an append? We can trivially break this up
4695          *     into two types of appends: simple record append, or a
4696          *     rotate inside the tail leaf.
4697 	 */
4698 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4699 
4700 	/*
4701 	 * The insert code isn't quite ready to deal with all cases of
4702 	 * left contiguousness. Specifically, if it's an insert into
4703 	 * the 1st record in a leaf, it will require the adjustment of
4704 	 * cluster count on the last record of the path directly to it's
4705 	 * left. For now, just catch that case and fool the layers
4706 	 * above us. This works just fine for tree_depth == 0, which
4707 	 * is why we allow that above.
4708 	 */
4709 	if (insert->ins_contig == CONTIG_LEFT &&
4710 	    insert->ins_contig_index == 0)
4711 		insert->ins_contig = CONTIG_NONE;
4712 
4713 	/*
4714 	 * Ok, so we can simply compare against last_eb to figure out
4715 	 * whether the path doesn't exist. This will only happen in
4716 	 * the case that we're doing a tail append, so maybe we can
4717 	 * take advantage of that information somehow.
4718 	 */
4719 	if (ocfs2_et_get_last_eb_blk(et) ==
4720 	    path_leaf_bh(path)->b_blocknr) {
4721 		/*
4722 		 * Ok, ocfs2_find_path() returned us the rightmost
4723 		 * tree path. This might be an appending insert. There are
4724 		 * two cases:
4725 		 *    1) We're doing a true append at the tail:
4726 		 *	-This might even be off the end of the leaf
4727 		 *    2) We're "appending" by rotating in the tail
4728 		 */
4729 		ocfs2_figure_appending_type(insert, el, insert_rec);
4730 	}
4731 
4732 out:
4733 	ocfs2_free_path(path);
4734 
4735 	if (ret == 0)
4736 		*last_eb_bh = bh;
4737 	else
4738 		brelse(bh);
4739 	return ret;
4740 }
4741 
4742 /*
4743  * Insert an extent into a btree.
4744  *
4745  * The caller needs to update the owning btree's cluster count.
4746  */
4747 int ocfs2_insert_extent(handle_t *handle,
4748 			struct ocfs2_extent_tree *et,
4749 			u32 cpos,
4750 			u64 start_blk,
4751 			u32 new_clusters,
4752 			u8 flags,
4753 			struct ocfs2_alloc_context *meta_ac)
4754 {
4755 	int status;
4756 	int uninitialized_var(free_records);
4757 	struct buffer_head *last_eb_bh = NULL;
4758 	struct ocfs2_insert_type insert = {0, };
4759 	struct ocfs2_extent_rec rec;
4760 
4761 	mlog(0, "add %u clusters at position %u to owner %llu\n",
4762 	     new_clusters, cpos,
4763 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4764 
4765 	memset(&rec, 0, sizeof(rec));
4766 	rec.e_cpos = cpu_to_le32(cpos);
4767 	rec.e_blkno = cpu_to_le64(start_blk);
4768 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4769 	rec.e_flags = flags;
4770 	status = ocfs2_et_insert_check(et, &rec);
4771 	if (status) {
4772 		mlog_errno(status);
4773 		goto bail;
4774 	}
4775 
4776 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4777 					  &free_records, &insert);
4778 	if (status < 0) {
4779 		mlog_errno(status);
4780 		goto bail;
4781 	}
4782 
4783 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4784 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4785 	     "Insert.tree_depth: %d\n",
4786 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4787 	     free_records, insert.ins_tree_depth);
4788 
4789 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4790 		status = ocfs2_grow_tree(handle, et,
4791 					 &insert.ins_tree_depth, &last_eb_bh,
4792 					 meta_ac);
4793 		if (status) {
4794 			mlog_errno(status);
4795 			goto bail;
4796 		}
4797 	}
4798 
4799 	/* Finally, we can add clusters. This might rotate the tree for us. */
4800 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4801 	if (status < 0)
4802 		mlog_errno(status);
4803 	else
4804 		ocfs2_et_extent_map_insert(et, &rec);
4805 
4806 bail:
4807 	brelse(last_eb_bh);
4808 
4809 	mlog_exit(status);
4810 	return status;
4811 }
4812 
4813 /*
4814  * Allcate and add clusters into the extent b-tree.
4815  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4816  * The extent b-tree's root is specified by et, and
4817  * it is not limited to the file storage. Any extent tree can use this
4818  * function if it implements the proper ocfs2_extent_tree.
4819  */
4820 int ocfs2_add_clusters_in_btree(handle_t *handle,
4821 				struct ocfs2_extent_tree *et,
4822 				u32 *logical_offset,
4823 				u32 clusters_to_add,
4824 				int mark_unwritten,
4825 				struct ocfs2_alloc_context *data_ac,
4826 				struct ocfs2_alloc_context *meta_ac,
4827 				enum ocfs2_alloc_restarted *reason_ret)
4828 {
4829 	int status = 0;
4830 	int free_extents;
4831 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4832 	u32 bit_off, num_bits;
4833 	u64 block;
4834 	u8 flags = 0;
4835 	struct ocfs2_super *osb =
4836 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4837 
4838 	BUG_ON(!clusters_to_add);
4839 
4840 	if (mark_unwritten)
4841 		flags = OCFS2_EXT_UNWRITTEN;
4842 
4843 	free_extents = ocfs2_num_free_extents(osb, et);
4844 	if (free_extents < 0) {
4845 		status = free_extents;
4846 		mlog_errno(status);
4847 		goto leave;
4848 	}
4849 
4850 	/* there are two cases which could cause us to EAGAIN in the
4851 	 * we-need-more-metadata case:
4852 	 * 1) we haven't reserved *any*
4853 	 * 2) we are so fragmented, we've needed to add metadata too
4854 	 *    many times. */
4855 	if (!free_extents && !meta_ac) {
4856 		mlog(0, "we haven't reserved any metadata!\n");
4857 		status = -EAGAIN;
4858 		reason = RESTART_META;
4859 		goto leave;
4860 	} else if ((!free_extents)
4861 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4862 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4863 		mlog(0, "filesystem is really fragmented...\n");
4864 		status = -EAGAIN;
4865 		reason = RESTART_META;
4866 		goto leave;
4867 	}
4868 
4869 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4870 					clusters_to_add, &bit_off, &num_bits);
4871 	if (status < 0) {
4872 		if (status != -ENOSPC)
4873 			mlog_errno(status);
4874 		goto leave;
4875 	}
4876 
4877 	BUG_ON(num_bits > clusters_to_add);
4878 
4879 	/* reserve our write early -- insert_extent may update the tree root */
4880 	status = ocfs2_et_root_journal_access(handle, et,
4881 					      OCFS2_JOURNAL_ACCESS_WRITE);
4882 	if (status < 0) {
4883 		mlog_errno(status);
4884 		goto leave;
4885 	}
4886 
4887 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4888 	mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4889 	     num_bits, bit_off,
4890 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4891 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4892 				     num_bits, flags, meta_ac);
4893 	if (status < 0) {
4894 		mlog_errno(status);
4895 		goto leave;
4896 	}
4897 
4898 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4899 	if (status < 0) {
4900 		mlog_errno(status);
4901 		goto leave;
4902 	}
4903 
4904 	clusters_to_add -= num_bits;
4905 	*logical_offset += num_bits;
4906 
4907 	if (clusters_to_add) {
4908 		mlog(0, "need to alloc once more, wanted = %u\n",
4909 		     clusters_to_add);
4910 		status = -EAGAIN;
4911 		reason = RESTART_TRANS;
4912 	}
4913 
4914 leave:
4915 	mlog_exit(status);
4916 	if (reason_ret)
4917 		*reason_ret = reason;
4918 	return status;
4919 }
4920 
4921 static void ocfs2_make_right_split_rec(struct super_block *sb,
4922 				       struct ocfs2_extent_rec *split_rec,
4923 				       u32 cpos,
4924 				       struct ocfs2_extent_rec *rec)
4925 {
4926 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4927 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4928 
4929 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4930 
4931 	split_rec->e_cpos = cpu_to_le32(cpos);
4932 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4933 
4934 	split_rec->e_blkno = rec->e_blkno;
4935 	le64_add_cpu(&split_rec->e_blkno,
4936 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4937 
4938 	split_rec->e_flags = rec->e_flags;
4939 }
4940 
4941 static int ocfs2_split_and_insert(handle_t *handle,
4942 				  struct ocfs2_extent_tree *et,
4943 				  struct ocfs2_path *path,
4944 				  struct buffer_head **last_eb_bh,
4945 				  int split_index,
4946 				  struct ocfs2_extent_rec *orig_split_rec,
4947 				  struct ocfs2_alloc_context *meta_ac)
4948 {
4949 	int ret = 0, depth;
4950 	unsigned int insert_range, rec_range, do_leftright = 0;
4951 	struct ocfs2_extent_rec tmprec;
4952 	struct ocfs2_extent_list *rightmost_el;
4953 	struct ocfs2_extent_rec rec;
4954 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4955 	struct ocfs2_insert_type insert;
4956 	struct ocfs2_extent_block *eb;
4957 
4958 leftright:
4959 	/*
4960 	 * Store a copy of the record on the stack - it might move
4961 	 * around as the tree is manipulated below.
4962 	 */
4963 	rec = path_leaf_el(path)->l_recs[split_index];
4964 
4965 	rightmost_el = et->et_root_el;
4966 
4967 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4968 	if (depth) {
4969 		BUG_ON(!(*last_eb_bh));
4970 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4971 		rightmost_el = &eb->h_list;
4972 	}
4973 
4974 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4975 	    le16_to_cpu(rightmost_el->l_count)) {
4976 		ret = ocfs2_grow_tree(handle, et,
4977 				      &depth, last_eb_bh, meta_ac);
4978 		if (ret) {
4979 			mlog_errno(ret);
4980 			goto out;
4981 		}
4982 	}
4983 
4984 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4985 	insert.ins_appending = APPEND_NONE;
4986 	insert.ins_contig = CONTIG_NONE;
4987 	insert.ins_tree_depth = depth;
4988 
4989 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4990 		le16_to_cpu(split_rec.e_leaf_clusters);
4991 	rec_range = le32_to_cpu(rec.e_cpos) +
4992 		le16_to_cpu(rec.e_leaf_clusters);
4993 
4994 	if (split_rec.e_cpos == rec.e_cpos) {
4995 		insert.ins_split = SPLIT_LEFT;
4996 	} else if (insert_range == rec_range) {
4997 		insert.ins_split = SPLIT_RIGHT;
4998 	} else {
4999 		/*
5000 		 * Left/right split. We fake this as a right split
5001 		 * first and then make a second pass as a left split.
5002 		 */
5003 		insert.ins_split = SPLIT_RIGHT;
5004 
5005 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5006 					   &tmprec, insert_range, &rec);
5007 
5008 		split_rec = tmprec;
5009 
5010 		BUG_ON(do_leftright);
5011 		do_leftright = 1;
5012 	}
5013 
5014 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5015 	if (ret) {
5016 		mlog_errno(ret);
5017 		goto out;
5018 	}
5019 
5020 	if (do_leftright == 1) {
5021 		u32 cpos;
5022 		struct ocfs2_extent_list *el;
5023 
5024 		do_leftright++;
5025 		split_rec = *orig_split_rec;
5026 
5027 		ocfs2_reinit_path(path, 1);
5028 
5029 		cpos = le32_to_cpu(split_rec.e_cpos);
5030 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5031 		if (ret) {
5032 			mlog_errno(ret);
5033 			goto out;
5034 		}
5035 
5036 		el = path_leaf_el(path);
5037 		split_index = ocfs2_search_extent_list(el, cpos);
5038 		goto leftright;
5039 	}
5040 out:
5041 
5042 	return ret;
5043 }
5044 
5045 static int ocfs2_replace_extent_rec(handle_t *handle,
5046 				    struct ocfs2_extent_tree *et,
5047 				    struct ocfs2_path *path,
5048 				    struct ocfs2_extent_list *el,
5049 				    int split_index,
5050 				    struct ocfs2_extent_rec *split_rec)
5051 {
5052 	int ret;
5053 
5054 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5055 					   path_num_items(path) - 1);
5056 	if (ret) {
5057 		mlog_errno(ret);
5058 		goto out;
5059 	}
5060 
5061 	el->l_recs[split_index] = *split_rec;
5062 
5063 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5064 out:
5065 	return ret;
5066 }
5067 
5068 /*
5069  * Split part or all of the extent record at split_index in the leaf
5070  * pointed to by path. Merge with the contiguous extent record if needed.
5071  *
5072  * Care is taken to handle contiguousness so as to not grow the tree.
5073  *
5074  * meta_ac is not strictly necessary - we only truly need it if growth
5075  * of the tree is required. All other cases will degrade into a less
5076  * optimal tree layout.
5077  *
5078  * last_eb_bh should be the rightmost leaf block for any extent
5079  * btree. Since a split may grow the tree or a merge might shrink it,
5080  * the caller cannot trust the contents of that buffer after this call.
5081  *
5082  * This code is optimized for readability - several passes might be
5083  * made over certain portions of the tree. All of those blocks will
5084  * have been brought into cache (and pinned via the journal), so the
5085  * extra overhead is not expressed in terms of disk reads.
5086  */
5087 int ocfs2_split_extent(handle_t *handle,
5088 		       struct ocfs2_extent_tree *et,
5089 		       struct ocfs2_path *path,
5090 		       int split_index,
5091 		       struct ocfs2_extent_rec *split_rec,
5092 		       struct ocfs2_alloc_context *meta_ac,
5093 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5094 {
5095 	int ret = 0;
5096 	struct ocfs2_extent_list *el = path_leaf_el(path);
5097 	struct buffer_head *last_eb_bh = NULL;
5098 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5099 	struct ocfs2_merge_ctxt ctxt;
5100 	struct ocfs2_extent_list *rightmost_el;
5101 
5102 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5103 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5104 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5105 		ret = -EIO;
5106 		mlog_errno(ret);
5107 		goto out;
5108 	}
5109 
5110 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5111 							    split_index,
5112 							    split_rec);
5113 
5114 	/*
5115 	 * The core merge / split code wants to know how much room is
5116 	 * left in this allocation tree, so we pass the
5117 	 * rightmost extent list.
5118 	 */
5119 	if (path->p_tree_depth) {
5120 		struct ocfs2_extent_block *eb;
5121 
5122 		ret = ocfs2_read_extent_block(et->et_ci,
5123 					      ocfs2_et_get_last_eb_blk(et),
5124 					      &last_eb_bh);
5125 		if (ret) {
5126 			mlog_exit(ret);
5127 			goto out;
5128 		}
5129 
5130 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5131 		rightmost_el = &eb->h_list;
5132 	} else
5133 		rightmost_el = path_root_el(path);
5134 
5135 	if (rec->e_cpos == split_rec->e_cpos &&
5136 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5137 		ctxt.c_split_covers_rec = 1;
5138 	else
5139 		ctxt.c_split_covers_rec = 0;
5140 
5141 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5142 
5143 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5144 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5145 	     ctxt.c_split_covers_rec);
5146 
5147 	if (ctxt.c_contig_type == CONTIG_NONE) {
5148 		if (ctxt.c_split_covers_rec)
5149 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5150 						       split_index, split_rec);
5151 		else
5152 			ret = ocfs2_split_and_insert(handle, et, path,
5153 						     &last_eb_bh, split_index,
5154 						     split_rec, meta_ac);
5155 		if (ret)
5156 			mlog_errno(ret);
5157 	} else {
5158 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5159 						split_index, split_rec,
5160 						dealloc, &ctxt);
5161 		if (ret)
5162 			mlog_errno(ret);
5163 	}
5164 
5165 out:
5166 	brelse(last_eb_bh);
5167 	return ret;
5168 }
5169 
5170 /*
5171  * Change the flags of the already-existing extent at cpos for len clusters.
5172  *
5173  * new_flags: the flags we want to set.
5174  * clear_flags: the flags we want to clear.
5175  * phys: the new physical offset we want this new extent starts from.
5176  *
5177  * If the existing extent is larger than the request, initiate a
5178  * split. An attempt will be made at merging with adjacent extents.
5179  *
5180  * The caller is responsible for passing down meta_ac if we'll need it.
5181  */
5182 int ocfs2_change_extent_flag(handle_t *handle,
5183 			     struct ocfs2_extent_tree *et,
5184 			     u32 cpos, u32 len, u32 phys,
5185 			     struct ocfs2_alloc_context *meta_ac,
5186 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5187 			     int new_flags, int clear_flags)
5188 {
5189 	int ret, index;
5190 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5191 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5192 	struct ocfs2_extent_rec split_rec;
5193 	struct ocfs2_path *left_path = NULL;
5194 	struct ocfs2_extent_list *el;
5195 	struct ocfs2_extent_rec *rec;
5196 
5197 	left_path = ocfs2_new_path_from_et(et);
5198 	if (!left_path) {
5199 		ret = -ENOMEM;
5200 		mlog_errno(ret);
5201 		goto out;
5202 	}
5203 
5204 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5205 	if (ret) {
5206 		mlog_errno(ret);
5207 		goto out;
5208 	}
5209 	el = path_leaf_el(left_path);
5210 
5211 	index = ocfs2_search_extent_list(el, cpos);
5212 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5213 		ocfs2_error(sb,
5214 			    "Owner %llu has an extent at cpos %u which can no "
5215 			    "longer be found.\n",
5216 			     (unsigned long long)
5217 			     ocfs2_metadata_cache_owner(et->et_ci), cpos);
5218 		ret = -EROFS;
5219 		goto out;
5220 	}
5221 
5222 	ret = -EIO;
5223 	rec = &el->l_recs[index];
5224 	if (new_flags && (rec->e_flags & new_flags)) {
5225 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5226 		     "extent that already had them",
5227 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5228 		     new_flags);
5229 		goto out;
5230 	}
5231 
5232 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5233 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5234 		     "extent that didn't have them",
5235 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5236 		     clear_flags);
5237 		goto out;
5238 	}
5239 
5240 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5241 	split_rec.e_cpos = cpu_to_le32(cpos);
5242 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5243 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5244 	split_rec.e_flags = rec->e_flags;
5245 	if (new_flags)
5246 		split_rec.e_flags |= new_flags;
5247 	if (clear_flags)
5248 		split_rec.e_flags &= ~clear_flags;
5249 
5250 	ret = ocfs2_split_extent(handle, et, left_path,
5251 				 index, &split_rec, meta_ac,
5252 				 dealloc);
5253 	if (ret)
5254 		mlog_errno(ret);
5255 
5256 out:
5257 	ocfs2_free_path(left_path);
5258 	return ret;
5259 
5260 }
5261 
5262 /*
5263  * Mark the already-existing extent at cpos as written for len clusters.
5264  * This removes the unwritten extent flag.
5265  *
5266  * If the existing extent is larger than the request, initiate a
5267  * split. An attempt will be made at merging with adjacent extents.
5268  *
5269  * The caller is responsible for passing down meta_ac if we'll need it.
5270  */
5271 int ocfs2_mark_extent_written(struct inode *inode,
5272 			      struct ocfs2_extent_tree *et,
5273 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5274 			      struct ocfs2_alloc_context *meta_ac,
5275 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5276 {
5277 	int ret;
5278 
5279 	mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5280 	     inode->i_ino, cpos, len, phys);
5281 
5282 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5283 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5284 			    "that are being written to, but the feature bit "
5285 			    "is not set in the super block.",
5286 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5287 		ret = -EROFS;
5288 		goto out;
5289 	}
5290 
5291 	/*
5292 	 * XXX: This should be fixed up so that we just re-insert the
5293 	 * next extent records.
5294 	 */
5295 	ocfs2_et_extent_map_truncate(et, 0);
5296 
5297 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5298 				       len, phys, meta_ac, dealloc,
5299 				       0, OCFS2_EXT_UNWRITTEN);
5300 	if (ret)
5301 		mlog_errno(ret);
5302 
5303 out:
5304 	return ret;
5305 }
5306 
5307 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5308 			    struct ocfs2_path *path,
5309 			    int index, u32 new_range,
5310 			    struct ocfs2_alloc_context *meta_ac)
5311 {
5312 	int ret, depth, credits = handle->h_buffer_credits;
5313 	struct buffer_head *last_eb_bh = NULL;
5314 	struct ocfs2_extent_block *eb;
5315 	struct ocfs2_extent_list *rightmost_el, *el;
5316 	struct ocfs2_extent_rec split_rec;
5317 	struct ocfs2_extent_rec *rec;
5318 	struct ocfs2_insert_type insert;
5319 
5320 	/*
5321 	 * Setup the record to split before we grow the tree.
5322 	 */
5323 	el = path_leaf_el(path);
5324 	rec = &el->l_recs[index];
5325 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5326 				   &split_rec, new_range, rec);
5327 
5328 	depth = path->p_tree_depth;
5329 	if (depth > 0) {
5330 		ret = ocfs2_read_extent_block(et->et_ci,
5331 					      ocfs2_et_get_last_eb_blk(et),
5332 					      &last_eb_bh);
5333 		if (ret < 0) {
5334 			mlog_errno(ret);
5335 			goto out;
5336 		}
5337 
5338 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5339 		rightmost_el = &eb->h_list;
5340 	} else
5341 		rightmost_el = path_leaf_el(path);
5342 
5343 	credits += path->p_tree_depth +
5344 		   ocfs2_extend_meta_needed(et->et_root_el);
5345 	ret = ocfs2_extend_trans(handle, credits);
5346 	if (ret) {
5347 		mlog_errno(ret);
5348 		goto out;
5349 	}
5350 
5351 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5352 	    le16_to_cpu(rightmost_el->l_count)) {
5353 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5354 				      meta_ac);
5355 		if (ret) {
5356 			mlog_errno(ret);
5357 			goto out;
5358 		}
5359 	}
5360 
5361 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5362 	insert.ins_appending = APPEND_NONE;
5363 	insert.ins_contig = CONTIG_NONE;
5364 	insert.ins_split = SPLIT_RIGHT;
5365 	insert.ins_tree_depth = depth;
5366 
5367 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5368 	if (ret)
5369 		mlog_errno(ret);
5370 
5371 out:
5372 	brelse(last_eb_bh);
5373 	return ret;
5374 }
5375 
5376 static int ocfs2_truncate_rec(handle_t *handle,
5377 			      struct ocfs2_extent_tree *et,
5378 			      struct ocfs2_path *path, int index,
5379 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5380 			      u32 cpos, u32 len)
5381 {
5382 	int ret;
5383 	u32 left_cpos, rec_range, trunc_range;
5384 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5385 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5386 	struct ocfs2_path *left_path = NULL;
5387 	struct ocfs2_extent_list *el = path_leaf_el(path);
5388 	struct ocfs2_extent_rec *rec;
5389 	struct ocfs2_extent_block *eb;
5390 
5391 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5392 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5393 		if (ret) {
5394 			mlog_errno(ret);
5395 			goto out;
5396 		}
5397 
5398 		index--;
5399 	}
5400 
5401 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5402 	    path->p_tree_depth) {
5403 		/*
5404 		 * Check whether this is the rightmost tree record. If
5405 		 * we remove all of this record or part of its right
5406 		 * edge then an update of the record lengths above it
5407 		 * will be required.
5408 		 */
5409 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5410 		if (eb->h_next_leaf_blk == 0)
5411 			is_rightmost_tree_rec = 1;
5412 	}
5413 
5414 	rec = &el->l_recs[index];
5415 	if (index == 0 && path->p_tree_depth &&
5416 	    le32_to_cpu(rec->e_cpos) == cpos) {
5417 		/*
5418 		 * Changing the leftmost offset (via partial or whole
5419 		 * record truncate) of an interior (or rightmost) path
5420 		 * means we have to update the subtree that is formed
5421 		 * by this leaf and the one to it's left.
5422 		 *
5423 		 * There are two cases we can skip:
5424 		 *   1) Path is the leftmost one in our btree.
5425 		 *   2) The leaf is rightmost and will be empty after
5426 		 *      we remove the extent record - the rotate code
5427 		 *      knows how to update the newly formed edge.
5428 		 */
5429 
5430 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5431 		if (ret) {
5432 			mlog_errno(ret);
5433 			goto out;
5434 		}
5435 
5436 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5437 			left_path = ocfs2_new_path_from_path(path);
5438 			if (!left_path) {
5439 				ret = -ENOMEM;
5440 				mlog_errno(ret);
5441 				goto out;
5442 			}
5443 
5444 			ret = ocfs2_find_path(et->et_ci, left_path,
5445 					      left_cpos);
5446 			if (ret) {
5447 				mlog_errno(ret);
5448 				goto out;
5449 			}
5450 		}
5451 	}
5452 
5453 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5454 					      handle->h_buffer_credits,
5455 					      path);
5456 	if (ret) {
5457 		mlog_errno(ret);
5458 		goto out;
5459 	}
5460 
5461 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5462 	if (ret) {
5463 		mlog_errno(ret);
5464 		goto out;
5465 	}
5466 
5467 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5468 	if (ret) {
5469 		mlog_errno(ret);
5470 		goto out;
5471 	}
5472 
5473 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5474 	trunc_range = cpos + len;
5475 
5476 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5477 		int next_free;
5478 
5479 		memset(rec, 0, sizeof(*rec));
5480 		ocfs2_cleanup_merge(el, index);
5481 		wants_rotate = 1;
5482 
5483 		next_free = le16_to_cpu(el->l_next_free_rec);
5484 		if (is_rightmost_tree_rec && next_free > 1) {
5485 			/*
5486 			 * We skip the edge update if this path will
5487 			 * be deleted by the rotate code.
5488 			 */
5489 			rec = &el->l_recs[next_free - 1];
5490 			ocfs2_adjust_rightmost_records(handle, et, path,
5491 						       rec);
5492 		}
5493 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5494 		/* Remove leftmost portion of the record. */
5495 		le32_add_cpu(&rec->e_cpos, len);
5496 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5497 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5498 	} else if (rec_range == trunc_range) {
5499 		/* Remove rightmost portion of the record */
5500 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5501 		if (is_rightmost_tree_rec)
5502 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5503 	} else {
5504 		/* Caller should have trapped this. */
5505 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5506 		     "(%u, %u)\n",
5507 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5508 		     le32_to_cpu(rec->e_cpos),
5509 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5510 		BUG();
5511 	}
5512 
5513 	if (left_path) {
5514 		int subtree_index;
5515 
5516 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5517 		ocfs2_complete_edge_insert(handle, left_path, path,
5518 					   subtree_index);
5519 	}
5520 
5521 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5522 
5523 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5524 	if (ret) {
5525 		mlog_errno(ret);
5526 		goto out;
5527 	}
5528 
5529 out:
5530 	ocfs2_free_path(left_path);
5531 	return ret;
5532 }
5533 
5534 int ocfs2_remove_extent(handle_t *handle,
5535 			struct ocfs2_extent_tree *et,
5536 			u32 cpos, u32 len,
5537 			struct ocfs2_alloc_context *meta_ac,
5538 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5539 {
5540 	int ret, index;
5541 	u32 rec_range, trunc_range;
5542 	struct ocfs2_extent_rec *rec;
5543 	struct ocfs2_extent_list *el;
5544 	struct ocfs2_path *path = NULL;
5545 
5546 	/*
5547 	 * XXX: Why are we truncating to 0 instead of wherever this
5548 	 * affects us?
5549 	 */
5550 	ocfs2_et_extent_map_truncate(et, 0);
5551 
5552 	path = ocfs2_new_path_from_et(et);
5553 	if (!path) {
5554 		ret = -ENOMEM;
5555 		mlog_errno(ret);
5556 		goto out;
5557 	}
5558 
5559 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5560 	if (ret) {
5561 		mlog_errno(ret);
5562 		goto out;
5563 	}
5564 
5565 	el = path_leaf_el(path);
5566 	index = ocfs2_search_extent_list(el, cpos);
5567 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5568 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5569 			    "Owner %llu has an extent at cpos %u which can no "
5570 			    "longer be found.\n",
5571 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5572 			    cpos);
5573 		ret = -EROFS;
5574 		goto out;
5575 	}
5576 
5577 	/*
5578 	 * We have 3 cases of extent removal:
5579 	 *   1) Range covers the entire extent rec
5580 	 *   2) Range begins or ends on one edge of the extent rec
5581 	 *   3) Range is in the middle of the extent rec (no shared edges)
5582 	 *
5583 	 * For case 1 we remove the extent rec and left rotate to
5584 	 * fill the hole.
5585 	 *
5586 	 * For case 2 we just shrink the existing extent rec, with a
5587 	 * tree update if the shrinking edge is also the edge of an
5588 	 * extent block.
5589 	 *
5590 	 * For case 3 we do a right split to turn the extent rec into
5591 	 * something case 2 can handle.
5592 	 */
5593 	rec = &el->l_recs[index];
5594 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5595 	trunc_range = cpos + len;
5596 
5597 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5598 
5599 	mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5600 	     "(cpos %u, len %u)\n",
5601 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 	     cpos, len, index,
5603 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5604 
5605 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5606 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5607 					 cpos, len);
5608 		if (ret) {
5609 			mlog_errno(ret);
5610 			goto out;
5611 		}
5612 	} else {
5613 		ret = ocfs2_split_tree(handle, et, path, index,
5614 				       trunc_range, meta_ac);
5615 		if (ret) {
5616 			mlog_errno(ret);
5617 			goto out;
5618 		}
5619 
5620 		/*
5621 		 * The split could have manipulated the tree enough to
5622 		 * move the record location, so we have to look for it again.
5623 		 */
5624 		ocfs2_reinit_path(path, 1);
5625 
5626 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5627 		if (ret) {
5628 			mlog_errno(ret);
5629 			goto out;
5630 		}
5631 
5632 		el = path_leaf_el(path);
5633 		index = ocfs2_search_extent_list(el, cpos);
5634 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5635 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5636 				    "Owner %llu: split at cpos %u lost record.",
5637 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5638 				    cpos);
5639 			ret = -EROFS;
5640 			goto out;
5641 		}
5642 
5643 		/*
5644 		 * Double check our values here. If anything is fishy,
5645 		 * it's easier to catch it at the top level.
5646 		 */
5647 		rec = &el->l_recs[index];
5648 		rec_range = le32_to_cpu(rec->e_cpos) +
5649 			ocfs2_rec_clusters(el, rec);
5650 		if (rec_range != trunc_range) {
5651 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5652 				    "Owner %llu: error after split at cpos %u"
5653 				    "trunc len %u, existing record is (%u,%u)",
5654 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5655 				    cpos, len, le32_to_cpu(rec->e_cpos),
5656 				    ocfs2_rec_clusters(el, rec));
5657 			ret = -EROFS;
5658 			goto out;
5659 		}
5660 
5661 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5662 					 cpos, len);
5663 		if (ret) {
5664 			mlog_errno(ret);
5665 			goto out;
5666 		}
5667 	}
5668 
5669 out:
5670 	ocfs2_free_path(path);
5671 	return ret;
5672 }
5673 
5674 int ocfs2_remove_btree_range(struct inode *inode,
5675 			     struct ocfs2_extent_tree *et,
5676 			     u32 cpos, u32 phys_cpos, u32 len,
5677 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5678 {
5679 	int ret;
5680 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5681 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5682 	struct inode *tl_inode = osb->osb_tl_inode;
5683 	handle_t *handle;
5684 	struct ocfs2_alloc_context *meta_ac = NULL;
5685 
5686 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5687 	if (ret) {
5688 		mlog_errno(ret);
5689 		return ret;
5690 	}
5691 
5692 	mutex_lock(&tl_inode->i_mutex);
5693 
5694 	if (ocfs2_truncate_log_needs_flush(osb)) {
5695 		ret = __ocfs2_flush_truncate_log(osb);
5696 		if (ret < 0) {
5697 			mlog_errno(ret);
5698 			goto out;
5699 		}
5700 	}
5701 
5702 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5703 	if (IS_ERR(handle)) {
5704 		ret = PTR_ERR(handle);
5705 		mlog_errno(ret);
5706 		goto out;
5707 	}
5708 
5709 	ret = ocfs2_et_root_journal_access(handle, et,
5710 					   OCFS2_JOURNAL_ACCESS_WRITE);
5711 	if (ret) {
5712 		mlog_errno(ret);
5713 		goto out;
5714 	}
5715 
5716 	dquot_free_space_nodirty(inode,
5717 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5718 
5719 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5720 	if (ret) {
5721 		mlog_errno(ret);
5722 		goto out_commit;
5723 	}
5724 
5725 	ocfs2_et_update_clusters(et, -len);
5726 
5727 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5728 	if (ret) {
5729 		mlog_errno(ret);
5730 		goto out_commit;
5731 	}
5732 
5733 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5734 	if (ret)
5735 		mlog_errno(ret);
5736 
5737 out_commit:
5738 	ocfs2_commit_trans(osb, handle);
5739 out:
5740 	mutex_unlock(&tl_inode->i_mutex);
5741 
5742 	if (meta_ac)
5743 		ocfs2_free_alloc_context(meta_ac);
5744 
5745 	return ret;
5746 }
5747 
5748 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5749 {
5750 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5751 	struct ocfs2_dinode *di;
5752 	struct ocfs2_truncate_log *tl;
5753 
5754 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5755 	tl = &di->id2.i_dealloc;
5756 
5757 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5758 			"slot %d, invalid truncate log parameters: used = "
5759 			"%u, count = %u\n", osb->slot_num,
5760 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5761 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5762 }
5763 
5764 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5765 					   unsigned int new_start)
5766 {
5767 	unsigned int tail_index;
5768 	unsigned int current_tail;
5769 
5770 	/* No records, nothing to coalesce */
5771 	if (!le16_to_cpu(tl->tl_used))
5772 		return 0;
5773 
5774 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5775 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5776 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5777 
5778 	return current_tail == new_start;
5779 }
5780 
5781 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5782 			      handle_t *handle,
5783 			      u64 start_blk,
5784 			      unsigned int num_clusters)
5785 {
5786 	int status, index;
5787 	unsigned int start_cluster, tl_count;
5788 	struct inode *tl_inode = osb->osb_tl_inode;
5789 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5790 	struct ocfs2_dinode *di;
5791 	struct ocfs2_truncate_log *tl;
5792 
5793 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5794 		   (unsigned long long)start_blk, num_clusters);
5795 
5796 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5797 
5798 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5799 
5800 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5801 
5802 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5803 	 * by the underlying call to ocfs2_read_inode_block(), so any
5804 	 * corruption is a code bug */
5805 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5806 
5807 	tl = &di->id2.i_dealloc;
5808 	tl_count = le16_to_cpu(tl->tl_count);
5809 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5810 			tl_count == 0,
5811 			"Truncate record count on #%llu invalid "
5812 			"wanted %u, actual %u\n",
5813 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5814 			ocfs2_truncate_recs_per_inode(osb->sb),
5815 			le16_to_cpu(tl->tl_count));
5816 
5817 	/* Caller should have known to flush before calling us. */
5818 	index = le16_to_cpu(tl->tl_used);
5819 	if (index >= tl_count) {
5820 		status = -ENOSPC;
5821 		mlog_errno(status);
5822 		goto bail;
5823 	}
5824 
5825 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5826 					 OCFS2_JOURNAL_ACCESS_WRITE);
5827 	if (status < 0) {
5828 		mlog_errno(status);
5829 		goto bail;
5830 	}
5831 
5832 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5833 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5834 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5835 
5836 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5837 		/*
5838 		 * Move index back to the record we are coalescing with.
5839 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5840 		 */
5841 		index--;
5842 
5843 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5844 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5845 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5846 		     num_clusters);
5847 	} else {
5848 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5849 		tl->tl_used = cpu_to_le16(index + 1);
5850 	}
5851 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5852 
5853 	status = ocfs2_journal_dirty(handle, tl_bh);
5854 	if (status < 0) {
5855 		mlog_errno(status);
5856 		goto bail;
5857 	}
5858 
5859 bail:
5860 	mlog_exit(status);
5861 	return status;
5862 }
5863 
5864 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5865 					 handle_t *handle,
5866 					 struct inode *data_alloc_inode,
5867 					 struct buffer_head *data_alloc_bh)
5868 {
5869 	int status = 0;
5870 	int i;
5871 	unsigned int num_clusters;
5872 	u64 start_blk;
5873 	struct ocfs2_truncate_rec rec;
5874 	struct ocfs2_dinode *di;
5875 	struct ocfs2_truncate_log *tl;
5876 	struct inode *tl_inode = osb->osb_tl_inode;
5877 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5878 
5879 	mlog_entry_void();
5880 
5881 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5882 	tl = &di->id2.i_dealloc;
5883 	i = le16_to_cpu(tl->tl_used) - 1;
5884 	while (i >= 0) {
5885 		/* Caller has given us at least enough credits to
5886 		 * update the truncate log dinode */
5887 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5888 						 OCFS2_JOURNAL_ACCESS_WRITE);
5889 		if (status < 0) {
5890 			mlog_errno(status);
5891 			goto bail;
5892 		}
5893 
5894 		tl->tl_used = cpu_to_le16(i);
5895 
5896 		status = ocfs2_journal_dirty(handle, tl_bh);
5897 		if (status < 0) {
5898 			mlog_errno(status);
5899 			goto bail;
5900 		}
5901 
5902 		/* TODO: Perhaps we can calculate the bulk of the
5903 		 * credits up front rather than extending like
5904 		 * this. */
5905 		status = ocfs2_extend_trans(handle,
5906 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5907 		if (status < 0) {
5908 			mlog_errno(status);
5909 			goto bail;
5910 		}
5911 
5912 		rec = tl->tl_recs[i];
5913 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5914 						    le32_to_cpu(rec.t_start));
5915 		num_clusters = le32_to_cpu(rec.t_clusters);
5916 
5917 		/* if start_blk is not set, we ignore the record as
5918 		 * invalid. */
5919 		if (start_blk) {
5920 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5921 			     i, le32_to_cpu(rec.t_start), num_clusters);
5922 
5923 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5924 						     data_alloc_bh, start_blk,
5925 						     num_clusters);
5926 			if (status < 0) {
5927 				mlog_errno(status);
5928 				goto bail;
5929 			}
5930 		}
5931 		i--;
5932 	}
5933 
5934 bail:
5935 	mlog_exit(status);
5936 	return status;
5937 }
5938 
5939 /* Expects you to already be holding tl_inode->i_mutex */
5940 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5941 {
5942 	int status;
5943 	unsigned int num_to_flush;
5944 	handle_t *handle;
5945 	struct inode *tl_inode = osb->osb_tl_inode;
5946 	struct inode *data_alloc_inode = NULL;
5947 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5948 	struct buffer_head *data_alloc_bh = NULL;
5949 	struct ocfs2_dinode *di;
5950 	struct ocfs2_truncate_log *tl;
5951 
5952 	mlog_entry_void();
5953 
5954 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5955 
5956 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5957 
5958 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5959 	 * by the underlying call to ocfs2_read_inode_block(), so any
5960 	 * corruption is a code bug */
5961 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5962 
5963 	tl = &di->id2.i_dealloc;
5964 	num_to_flush = le16_to_cpu(tl->tl_used);
5965 	mlog(0, "Flush %u records from truncate log #%llu\n",
5966 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5967 	if (!num_to_flush) {
5968 		status = 0;
5969 		goto out;
5970 	}
5971 
5972 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5973 						       GLOBAL_BITMAP_SYSTEM_INODE,
5974 						       OCFS2_INVALID_SLOT);
5975 	if (!data_alloc_inode) {
5976 		status = -EINVAL;
5977 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5978 		goto out;
5979 	}
5980 
5981 	mutex_lock(&data_alloc_inode->i_mutex);
5982 
5983 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5984 	if (status < 0) {
5985 		mlog_errno(status);
5986 		goto out_mutex;
5987 	}
5988 
5989 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5990 	if (IS_ERR(handle)) {
5991 		status = PTR_ERR(handle);
5992 		mlog_errno(status);
5993 		goto out_unlock;
5994 	}
5995 
5996 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5997 					       data_alloc_bh);
5998 	if (status < 0)
5999 		mlog_errno(status);
6000 
6001 	ocfs2_commit_trans(osb, handle);
6002 
6003 out_unlock:
6004 	brelse(data_alloc_bh);
6005 	ocfs2_inode_unlock(data_alloc_inode, 1);
6006 
6007 out_mutex:
6008 	mutex_unlock(&data_alloc_inode->i_mutex);
6009 	iput(data_alloc_inode);
6010 
6011 out:
6012 	mlog_exit(status);
6013 	return status;
6014 }
6015 
6016 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6017 {
6018 	int status;
6019 	struct inode *tl_inode = osb->osb_tl_inode;
6020 
6021 	mutex_lock(&tl_inode->i_mutex);
6022 	status = __ocfs2_flush_truncate_log(osb);
6023 	mutex_unlock(&tl_inode->i_mutex);
6024 
6025 	return status;
6026 }
6027 
6028 static void ocfs2_truncate_log_worker(struct work_struct *work)
6029 {
6030 	int status;
6031 	struct ocfs2_super *osb =
6032 		container_of(work, struct ocfs2_super,
6033 			     osb_truncate_log_wq.work);
6034 
6035 	mlog_entry_void();
6036 
6037 	status = ocfs2_flush_truncate_log(osb);
6038 	if (status < 0)
6039 		mlog_errno(status);
6040 	else
6041 		ocfs2_init_steal_slots(osb);
6042 
6043 	mlog_exit(status);
6044 }
6045 
6046 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6047 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6048 				       int cancel)
6049 {
6050 	if (osb->osb_tl_inode) {
6051 		/* We want to push off log flushes while truncates are
6052 		 * still running. */
6053 		if (cancel)
6054 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6055 
6056 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6057 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6058 	}
6059 }
6060 
6061 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6062 				       int slot_num,
6063 				       struct inode **tl_inode,
6064 				       struct buffer_head **tl_bh)
6065 {
6066 	int status;
6067 	struct inode *inode = NULL;
6068 	struct buffer_head *bh = NULL;
6069 
6070 	inode = ocfs2_get_system_file_inode(osb,
6071 					   TRUNCATE_LOG_SYSTEM_INODE,
6072 					   slot_num);
6073 	if (!inode) {
6074 		status = -EINVAL;
6075 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6076 		goto bail;
6077 	}
6078 
6079 	status = ocfs2_read_inode_block(inode, &bh);
6080 	if (status < 0) {
6081 		iput(inode);
6082 		mlog_errno(status);
6083 		goto bail;
6084 	}
6085 
6086 	*tl_inode = inode;
6087 	*tl_bh    = bh;
6088 bail:
6089 	mlog_exit(status);
6090 	return status;
6091 }
6092 
6093 /* called during the 1st stage of node recovery. we stamp a clean
6094  * truncate log and pass back a copy for processing later. if the
6095  * truncate log does not require processing, a *tl_copy is set to
6096  * NULL. */
6097 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6098 				      int slot_num,
6099 				      struct ocfs2_dinode **tl_copy)
6100 {
6101 	int status;
6102 	struct inode *tl_inode = NULL;
6103 	struct buffer_head *tl_bh = NULL;
6104 	struct ocfs2_dinode *di;
6105 	struct ocfs2_truncate_log *tl;
6106 
6107 	*tl_copy = NULL;
6108 
6109 	mlog(0, "recover truncate log from slot %d\n", slot_num);
6110 
6111 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6112 	if (status < 0) {
6113 		mlog_errno(status);
6114 		goto bail;
6115 	}
6116 
6117 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6118 
6119 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6120 	 * validated by the underlying call to ocfs2_read_inode_block(),
6121 	 * so any corruption is a code bug */
6122 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6123 
6124 	tl = &di->id2.i_dealloc;
6125 	if (le16_to_cpu(tl->tl_used)) {
6126 		mlog(0, "We'll have %u logs to recover\n",
6127 		     le16_to_cpu(tl->tl_used));
6128 
6129 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6130 		if (!(*tl_copy)) {
6131 			status = -ENOMEM;
6132 			mlog_errno(status);
6133 			goto bail;
6134 		}
6135 
6136 		/* Assuming the write-out below goes well, this copy
6137 		 * will be passed back to recovery for processing. */
6138 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6139 
6140 		/* All we need to do to clear the truncate log is set
6141 		 * tl_used. */
6142 		tl->tl_used = 0;
6143 
6144 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6145 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6146 		if (status < 0) {
6147 			mlog_errno(status);
6148 			goto bail;
6149 		}
6150 	}
6151 
6152 bail:
6153 	if (tl_inode)
6154 		iput(tl_inode);
6155 	brelse(tl_bh);
6156 
6157 	if (status < 0 && (*tl_copy)) {
6158 		kfree(*tl_copy);
6159 		*tl_copy = NULL;
6160 	}
6161 
6162 	mlog_exit(status);
6163 	return status;
6164 }
6165 
6166 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6167 					 struct ocfs2_dinode *tl_copy)
6168 {
6169 	int status = 0;
6170 	int i;
6171 	unsigned int clusters, num_recs, start_cluster;
6172 	u64 start_blk;
6173 	handle_t *handle;
6174 	struct inode *tl_inode = osb->osb_tl_inode;
6175 	struct ocfs2_truncate_log *tl;
6176 
6177 	mlog_entry_void();
6178 
6179 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6180 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6181 		return -EINVAL;
6182 	}
6183 
6184 	tl = &tl_copy->id2.i_dealloc;
6185 	num_recs = le16_to_cpu(tl->tl_used);
6186 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6187 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6188 
6189 	mutex_lock(&tl_inode->i_mutex);
6190 	for(i = 0; i < num_recs; i++) {
6191 		if (ocfs2_truncate_log_needs_flush(osb)) {
6192 			status = __ocfs2_flush_truncate_log(osb);
6193 			if (status < 0) {
6194 				mlog_errno(status);
6195 				goto bail_up;
6196 			}
6197 		}
6198 
6199 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6200 		if (IS_ERR(handle)) {
6201 			status = PTR_ERR(handle);
6202 			mlog_errno(status);
6203 			goto bail_up;
6204 		}
6205 
6206 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6207 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6208 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6209 
6210 		status = ocfs2_truncate_log_append(osb, handle,
6211 						   start_blk, clusters);
6212 		ocfs2_commit_trans(osb, handle);
6213 		if (status < 0) {
6214 			mlog_errno(status);
6215 			goto bail_up;
6216 		}
6217 	}
6218 
6219 bail_up:
6220 	mutex_unlock(&tl_inode->i_mutex);
6221 
6222 	mlog_exit(status);
6223 	return status;
6224 }
6225 
6226 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6227 {
6228 	int status;
6229 	struct inode *tl_inode = osb->osb_tl_inode;
6230 
6231 	mlog_entry_void();
6232 
6233 	if (tl_inode) {
6234 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6235 		flush_workqueue(ocfs2_wq);
6236 
6237 		status = ocfs2_flush_truncate_log(osb);
6238 		if (status < 0)
6239 			mlog_errno(status);
6240 
6241 		brelse(osb->osb_tl_bh);
6242 		iput(osb->osb_tl_inode);
6243 	}
6244 
6245 	mlog_exit_void();
6246 }
6247 
6248 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6249 {
6250 	int status;
6251 	struct inode *tl_inode = NULL;
6252 	struct buffer_head *tl_bh = NULL;
6253 
6254 	mlog_entry_void();
6255 
6256 	status = ocfs2_get_truncate_log_info(osb,
6257 					     osb->slot_num,
6258 					     &tl_inode,
6259 					     &tl_bh);
6260 	if (status < 0)
6261 		mlog_errno(status);
6262 
6263 	/* ocfs2_truncate_log_shutdown keys on the existence of
6264 	 * osb->osb_tl_inode so we don't set any of the osb variables
6265 	 * until we're sure all is well. */
6266 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6267 			  ocfs2_truncate_log_worker);
6268 	osb->osb_tl_bh    = tl_bh;
6269 	osb->osb_tl_inode = tl_inode;
6270 
6271 	mlog_exit(status);
6272 	return status;
6273 }
6274 
6275 /*
6276  * Delayed de-allocation of suballocator blocks.
6277  *
6278  * Some sets of block de-allocations might involve multiple suballocator inodes.
6279  *
6280  * The locking for this can get extremely complicated, especially when
6281  * the suballocator inodes to delete from aren't known until deep
6282  * within an unrelated codepath.
6283  *
6284  * ocfs2_extent_block structures are a good example of this - an inode
6285  * btree could have been grown by any number of nodes each allocating
6286  * out of their own suballoc inode.
6287  *
6288  * These structures allow the delay of block de-allocation until a
6289  * later time, when locking of multiple cluster inodes won't cause
6290  * deadlock.
6291  */
6292 
6293 /*
6294  * Describe a single bit freed from a suballocator.  For the block
6295  * suballocators, it represents one block.  For the global cluster
6296  * allocator, it represents some clusters and free_bit indicates
6297  * clusters number.
6298  */
6299 struct ocfs2_cached_block_free {
6300 	struct ocfs2_cached_block_free		*free_next;
6301 	u64					free_blk;
6302 	unsigned int				free_bit;
6303 };
6304 
6305 struct ocfs2_per_slot_free_list {
6306 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6307 	int					f_inode_type;
6308 	int					f_slot;
6309 	struct ocfs2_cached_block_free		*f_first;
6310 };
6311 
6312 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6313 				    int sysfile_type,
6314 				    int slot,
6315 				    struct ocfs2_cached_block_free *head)
6316 {
6317 	int ret;
6318 	u64 bg_blkno;
6319 	handle_t *handle;
6320 	struct inode *inode;
6321 	struct buffer_head *di_bh = NULL;
6322 	struct ocfs2_cached_block_free *tmp;
6323 
6324 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6325 	if (!inode) {
6326 		ret = -EINVAL;
6327 		mlog_errno(ret);
6328 		goto out;
6329 	}
6330 
6331 	mutex_lock(&inode->i_mutex);
6332 
6333 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6334 	if (ret) {
6335 		mlog_errno(ret);
6336 		goto out_mutex;
6337 	}
6338 
6339 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6340 	if (IS_ERR(handle)) {
6341 		ret = PTR_ERR(handle);
6342 		mlog_errno(ret);
6343 		goto out_unlock;
6344 	}
6345 
6346 	while (head) {
6347 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6348 						      head->free_bit);
6349 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6350 		     head->free_bit, (unsigned long long)head->free_blk);
6351 
6352 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6353 					       head->free_bit, bg_blkno, 1);
6354 		if (ret) {
6355 			mlog_errno(ret);
6356 			goto out_journal;
6357 		}
6358 
6359 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6360 		if (ret) {
6361 			mlog_errno(ret);
6362 			goto out_journal;
6363 		}
6364 
6365 		tmp = head;
6366 		head = head->free_next;
6367 		kfree(tmp);
6368 	}
6369 
6370 out_journal:
6371 	ocfs2_commit_trans(osb, handle);
6372 
6373 out_unlock:
6374 	ocfs2_inode_unlock(inode, 1);
6375 	brelse(di_bh);
6376 out_mutex:
6377 	mutex_unlock(&inode->i_mutex);
6378 	iput(inode);
6379 out:
6380 	while(head) {
6381 		/* Premature exit may have left some dangling items. */
6382 		tmp = head;
6383 		head = head->free_next;
6384 		kfree(tmp);
6385 	}
6386 
6387 	return ret;
6388 }
6389 
6390 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6391 				u64 blkno, unsigned int bit)
6392 {
6393 	int ret = 0;
6394 	struct ocfs2_cached_block_free *item;
6395 
6396 	item = kmalloc(sizeof(*item), GFP_NOFS);
6397 	if (item == NULL) {
6398 		ret = -ENOMEM;
6399 		mlog_errno(ret);
6400 		return ret;
6401 	}
6402 
6403 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6404 	     bit, (unsigned long long)blkno);
6405 
6406 	item->free_blk = blkno;
6407 	item->free_bit = bit;
6408 	item->free_next = ctxt->c_global_allocator;
6409 
6410 	ctxt->c_global_allocator = item;
6411 	return ret;
6412 }
6413 
6414 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6415 				      struct ocfs2_cached_block_free *head)
6416 {
6417 	struct ocfs2_cached_block_free *tmp;
6418 	struct inode *tl_inode = osb->osb_tl_inode;
6419 	handle_t *handle;
6420 	int ret = 0;
6421 
6422 	mutex_lock(&tl_inode->i_mutex);
6423 
6424 	while (head) {
6425 		if (ocfs2_truncate_log_needs_flush(osb)) {
6426 			ret = __ocfs2_flush_truncate_log(osb);
6427 			if (ret < 0) {
6428 				mlog_errno(ret);
6429 				break;
6430 			}
6431 		}
6432 
6433 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6434 		if (IS_ERR(handle)) {
6435 			ret = PTR_ERR(handle);
6436 			mlog_errno(ret);
6437 			break;
6438 		}
6439 
6440 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6441 						head->free_bit);
6442 
6443 		ocfs2_commit_trans(osb, handle);
6444 		tmp = head;
6445 		head = head->free_next;
6446 		kfree(tmp);
6447 
6448 		if (ret < 0) {
6449 			mlog_errno(ret);
6450 			break;
6451 		}
6452 	}
6453 
6454 	mutex_unlock(&tl_inode->i_mutex);
6455 
6456 	while (head) {
6457 		/* Premature exit may have left some dangling items. */
6458 		tmp = head;
6459 		head = head->free_next;
6460 		kfree(tmp);
6461 	}
6462 
6463 	return ret;
6464 }
6465 
6466 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6467 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6468 {
6469 	int ret = 0, ret2;
6470 	struct ocfs2_per_slot_free_list *fl;
6471 
6472 	if (!ctxt)
6473 		return 0;
6474 
6475 	while (ctxt->c_first_suballocator) {
6476 		fl = ctxt->c_first_suballocator;
6477 
6478 		if (fl->f_first) {
6479 			mlog(0, "Free items: (type %u, slot %d)\n",
6480 			     fl->f_inode_type, fl->f_slot);
6481 			ret2 = ocfs2_free_cached_blocks(osb,
6482 							fl->f_inode_type,
6483 							fl->f_slot,
6484 							fl->f_first);
6485 			if (ret2)
6486 				mlog_errno(ret2);
6487 			if (!ret)
6488 				ret = ret2;
6489 		}
6490 
6491 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6492 		kfree(fl);
6493 	}
6494 
6495 	if (ctxt->c_global_allocator) {
6496 		ret2 = ocfs2_free_cached_clusters(osb,
6497 						  ctxt->c_global_allocator);
6498 		if (ret2)
6499 			mlog_errno(ret2);
6500 		if (!ret)
6501 			ret = ret2;
6502 
6503 		ctxt->c_global_allocator = NULL;
6504 	}
6505 
6506 	return ret;
6507 }
6508 
6509 static struct ocfs2_per_slot_free_list *
6510 ocfs2_find_per_slot_free_list(int type,
6511 			      int slot,
6512 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6513 {
6514 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6515 
6516 	while (fl) {
6517 		if (fl->f_inode_type == type && fl->f_slot == slot)
6518 			return fl;
6519 
6520 		fl = fl->f_next_suballocator;
6521 	}
6522 
6523 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6524 	if (fl) {
6525 		fl->f_inode_type = type;
6526 		fl->f_slot = slot;
6527 		fl->f_first = NULL;
6528 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6529 
6530 		ctxt->c_first_suballocator = fl;
6531 	}
6532 	return fl;
6533 }
6534 
6535 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6536 			      int type, int slot, u64 blkno,
6537 			      unsigned int bit)
6538 {
6539 	int ret;
6540 	struct ocfs2_per_slot_free_list *fl;
6541 	struct ocfs2_cached_block_free *item;
6542 
6543 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6544 	if (fl == NULL) {
6545 		ret = -ENOMEM;
6546 		mlog_errno(ret);
6547 		goto out;
6548 	}
6549 
6550 	item = kmalloc(sizeof(*item), GFP_NOFS);
6551 	if (item == NULL) {
6552 		ret = -ENOMEM;
6553 		mlog_errno(ret);
6554 		goto out;
6555 	}
6556 
6557 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6558 	     type, slot, bit, (unsigned long long)blkno);
6559 
6560 	item->free_blk = blkno;
6561 	item->free_bit = bit;
6562 	item->free_next = fl->f_first;
6563 
6564 	fl->f_first = item;
6565 
6566 	ret = 0;
6567 out:
6568 	return ret;
6569 }
6570 
6571 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6572 					 struct ocfs2_extent_block *eb)
6573 {
6574 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6575 					 le16_to_cpu(eb->h_suballoc_slot),
6576 					 le64_to_cpu(eb->h_blkno),
6577 					 le16_to_cpu(eb->h_suballoc_bit));
6578 }
6579 
6580 /* This function will figure out whether the currently last extent
6581  * block will be deleted, and if it will, what the new last extent
6582  * block will be so we can update his h_next_leaf_blk field, as well
6583  * as the dinodes i_last_eb_blk */
6584 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6585 				       unsigned int clusters_to_del,
6586 				       struct ocfs2_path *path,
6587 				       struct buffer_head **new_last_eb)
6588 {
6589 	int next_free, ret = 0;
6590 	u32 cpos;
6591 	struct ocfs2_extent_rec *rec;
6592 	struct ocfs2_extent_block *eb;
6593 	struct ocfs2_extent_list *el;
6594 	struct buffer_head *bh = NULL;
6595 
6596 	*new_last_eb = NULL;
6597 
6598 	/* we have no tree, so of course, no last_eb. */
6599 	if (!path->p_tree_depth)
6600 		goto out;
6601 
6602 	/* trunc to zero special case - this makes tree_depth = 0
6603 	 * regardless of what it is.  */
6604 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6605 		goto out;
6606 
6607 	el = path_leaf_el(path);
6608 	BUG_ON(!el->l_next_free_rec);
6609 
6610 	/*
6611 	 * Make sure that this extent list will actually be empty
6612 	 * after we clear away the data. We can shortcut out if
6613 	 * there's more than one non-empty extent in the
6614 	 * list. Otherwise, a check of the remaining extent is
6615 	 * necessary.
6616 	 */
6617 	next_free = le16_to_cpu(el->l_next_free_rec);
6618 	rec = NULL;
6619 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6620 		if (next_free > 2)
6621 			goto out;
6622 
6623 		/* We may have a valid extent in index 1, check it. */
6624 		if (next_free == 2)
6625 			rec = &el->l_recs[1];
6626 
6627 		/*
6628 		 * Fall through - no more nonempty extents, so we want
6629 		 * to delete this leaf.
6630 		 */
6631 	} else {
6632 		if (next_free > 1)
6633 			goto out;
6634 
6635 		rec = &el->l_recs[0];
6636 	}
6637 
6638 	if (rec) {
6639 		/*
6640 		 * Check it we'll only be trimming off the end of this
6641 		 * cluster.
6642 		 */
6643 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6644 			goto out;
6645 	}
6646 
6647 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6648 	if (ret) {
6649 		mlog_errno(ret);
6650 		goto out;
6651 	}
6652 
6653 	ret = ocfs2_find_leaf(INODE_CACHE(inode), path_root_el(path), cpos, &bh);
6654 	if (ret) {
6655 		mlog_errno(ret);
6656 		goto out;
6657 	}
6658 
6659 	eb = (struct ocfs2_extent_block *) bh->b_data;
6660 	el = &eb->h_list;
6661 
6662 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6663 	 * Any corruption is a code bug. */
6664 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6665 
6666 	*new_last_eb = bh;
6667 	get_bh(*new_last_eb);
6668 	mlog(0, "returning block %llu, (cpos: %u)\n",
6669 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6670 out:
6671 	brelse(bh);
6672 
6673 	return ret;
6674 }
6675 
6676 /*
6677  * Trim some clusters off the rightmost edge of a tree. Only called
6678  * during truncate.
6679  *
6680  * The caller needs to:
6681  *   - start journaling of each path component.
6682  *   - compute and fully set up any new last ext block
6683  */
6684 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6685 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6686 			   u32 clusters_to_del, u64 *delete_start, u8 *flags)
6687 {
6688 	int ret, i, index = path->p_tree_depth;
6689 	u32 new_edge = 0;
6690 	u64 deleted_eb = 0;
6691 	struct buffer_head *bh;
6692 	struct ocfs2_extent_list *el;
6693 	struct ocfs2_extent_rec *rec;
6694 
6695 	*delete_start = 0;
6696 	*flags = 0;
6697 
6698 	while (index >= 0) {
6699 		bh = path->p_node[index].bh;
6700 		el = path->p_node[index].el;
6701 
6702 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6703 		     index,  (unsigned long long)bh->b_blocknr);
6704 
6705 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6706 
6707 		if (index !=
6708 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6709 			ocfs2_error(inode->i_sb,
6710 				    "Inode %lu has invalid ext. block %llu",
6711 				    inode->i_ino,
6712 				    (unsigned long long)bh->b_blocknr);
6713 			ret = -EROFS;
6714 			goto out;
6715 		}
6716 
6717 find_tail_record:
6718 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6719 		rec = &el->l_recs[i];
6720 
6721 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6722 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6723 		     ocfs2_rec_clusters(el, rec),
6724 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6725 		     le16_to_cpu(el->l_next_free_rec));
6726 
6727 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6728 
6729 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6730 			/*
6731 			 * If the leaf block contains a single empty
6732 			 * extent and no records, we can just remove
6733 			 * the block.
6734 			 */
6735 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6736 				memset(rec, 0,
6737 				       sizeof(struct ocfs2_extent_rec));
6738 				el->l_next_free_rec = cpu_to_le16(0);
6739 
6740 				goto delete;
6741 			}
6742 
6743 			/*
6744 			 * Remove any empty extents by shifting things
6745 			 * left. That should make life much easier on
6746 			 * the code below. This condition is rare
6747 			 * enough that we shouldn't see a performance
6748 			 * hit.
6749 			 */
6750 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6751 				le16_add_cpu(&el->l_next_free_rec, -1);
6752 
6753 				for(i = 0;
6754 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6755 					el->l_recs[i] = el->l_recs[i + 1];
6756 
6757 				memset(&el->l_recs[i], 0,
6758 				       sizeof(struct ocfs2_extent_rec));
6759 
6760 				/*
6761 				 * We've modified our extent list. The
6762 				 * simplest way to handle this change
6763 				 * is to being the search from the
6764 				 * start again.
6765 				 */
6766 				goto find_tail_record;
6767 			}
6768 
6769 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6770 
6771 			/*
6772 			 * We'll use "new_edge" on our way back up the
6773 			 * tree to know what our rightmost cpos is.
6774 			 */
6775 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6776 			new_edge += le32_to_cpu(rec->e_cpos);
6777 
6778 			/*
6779 			 * The caller will use this to delete data blocks.
6780 			 */
6781 			*delete_start = le64_to_cpu(rec->e_blkno)
6782 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6783 					le16_to_cpu(rec->e_leaf_clusters));
6784 			*flags = rec->e_flags;
6785 
6786 			/*
6787 			 * If it's now empty, remove this record.
6788 			 */
6789 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6790 				memset(rec, 0,
6791 				       sizeof(struct ocfs2_extent_rec));
6792 				le16_add_cpu(&el->l_next_free_rec, -1);
6793 			}
6794 		} else {
6795 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6796 				memset(rec, 0,
6797 				       sizeof(struct ocfs2_extent_rec));
6798 				le16_add_cpu(&el->l_next_free_rec, -1);
6799 
6800 				goto delete;
6801 			}
6802 
6803 			/* Can this actually happen? */
6804 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6805 				goto delete;
6806 
6807 			/*
6808 			 * We never actually deleted any clusters
6809 			 * because our leaf was empty. There's no
6810 			 * reason to adjust the rightmost edge then.
6811 			 */
6812 			if (new_edge == 0)
6813 				goto delete;
6814 
6815 			rec->e_int_clusters = cpu_to_le32(new_edge);
6816 			le32_add_cpu(&rec->e_int_clusters,
6817 				     -le32_to_cpu(rec->e_cpos));
6818 
6819 			 /*
6820 			  * A deleted child record should have been
6821 			  * caught above.
6822 			  */
6823 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6824 		}
6825 
6826 delete:
6827 		ret = ocfs2_journal_dirty(handle, bh);
6828 		if (ret) {
6829 			mlog_errno(ret);
6830 			goto out;
6831 		}
6832 
6833 		mlog(0, "extent list container %llu, after: record %d: "
6834 		     "(%u, %u, %llu), next = %u.\n",
6835 		     (unsigned long long)bh->b_blocknr, i,
6836 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6837 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6838 		     le16_to_cpu(el->l_next_free_rec));
6839 
6840 		/*
6841 		 * We must be careful to only attempt delete of an
6842 		 * extent block (and not the root inode block).
6843 		 */
6844 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6845 			struct ocfs2_extent_block *eb =
6846 				(struct ocfs2_extent_block *)bh->b_data;
6847 
6848 			/*
6849 			 * Save this for use when processing the
6850 			 * parent block.
6851 			 */
6852 			deleted_eb = le64_to_cpu(eb->h_blkno);
6853 
6854 			mlog(0, "deleting this extent block.\n");
6855 
6856 			ocfs2_remove_from_cache(INODE_CACHE(inode), bh);
6857 
6858 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6859 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6860 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6861 
6862 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6863 			/* An error here is not fatal. */
6864 			if (ret < 0)
6865 				mlog_errno(ret);
6866 		} else {
6867 			deleted_eb = 0;
6868 		}
6869 
6870 		index--;
6871 	}
6872 
6873 	ret = 0;
6874 out:
6875 	return ret;
6876 }
6877 
6878 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6879 			     unsigned int clusters_to_del,
6880 			     struct inode *inode,
6881 			     struct buffer_head *fe_bh,
6882 			     handle_t *handle,
6883 			     struct ocfs2_truncate_context *tc,
6884 			     struct ocfs2_path *path,
6885 			     struct ocfs2_alloc_context *meta_ac)
6886 {
6887 	int status;
6888 	struct ocfs2_dinode *fe;
6889 	struct ocfs2_extent_block *last_eb = NULL;
6890 	struct ocfs2_extent_list *el;
6891 	struct buffer_head *last_eb_bh = NULL;
6892 	u64 delete_blk = 0;
6893 	u8 rec_flags;
6894 
6895 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6896 
6897 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6898 					     path, &last_eb_bh);
6899 	if (status < 0) {
6900 		mlog_errno(status);
6901 		goto bail;
6902 	}
6903 
6904 	/*
6905 	 * Each component will be touched, so we might as well journal
6906 	 * here to avoid having to handle errors later.
6907 	 */
6908 	status = ocfs2_journal_access_path(INODE_CACHE(inode), handle, path);
6909 	if (status < 0) {
6910 		mlog_errno(status);
6911 		goto bail;
6912 	}
6913 
6914 	if (last_eb_bh) {
6915 		status = ocfs2_journal_access_eb(handle, INODE_CACHE(inode), last_eb_bh,
6916 						 OCFS2_JOURNAL_ACCESS_WRITE);
6917 		if (status < 0) {
6918 			mlog_errno(status);
6919 			goto bail;
6920 		}
6921 
6922 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6923 	}
6924 
6925 	el = &(fe->id2.i_list);
6926 
6927 	/*
6928 	 * Lower levels depend on this never happening, but it's best
6929 	 * to check it up here before changing the tree.
6930 	 */
6931 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6932 		ocfs2_error(inode->i_sb,
6933 			    "Inode %lu has an empty extent record, depth %u\n",
6934 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6935 		status = -EROFS;
6936 		goto bail;
6937 	}
6938 
6939 	dquot_free_space_nodirty(inode,
6940 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6941 	spin_lock(&OCFS2_I(inode)->ip_lock);
6942 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6943 				      clusters_to_del;
6944 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6945 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6946 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6947 
6948 	status = ocfs2_trim_tree(inode, path, handle, tc,
6949 				 clusters_to_del, &delete_blk, &rec_flags);
6950 	if (status) {
6951 		mlog_errno(status);
6952 		goto bail;
6953 	}
6954 
6955 	if (le32_to_cpu(fe->i_clusters) == 0) {
6956 		/* trunc to zero is a special case. */
6957 		el->l_tree_depth = 0;
6958 		fe->i_last_eb_blk = 0;
6959 	} else if (last_eb)
6960 		fe->i_last_eb_blk = last_eb->h_blkno;
6961 
6962 	status = ocfs2_journal_dirty(handle, fe_bh);
6963 	if (status < 0) {
6964 		mlog_errno(status);
6965 		goto bail;
6966 	}
6967 
6968 	if (last_eb) {
6969 		/* If there will be a new last extent block, then by
6970 		 * definition, there cannot be any leaves to the right of
6971 		 * him. */
6972 		last_eb->h_next_leaf_blk = 0;
6973 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6974 		if (status < 0) {
6975 			mlog_errno(status);
6976 			goto bail;
6977 		}
6978 	}
6979 
6980 	if (delete_blk) {
6981 		if (rec_flags & OCFS2_EXT_REFCOUNTED)
6982 			status = ocfs2_decrease_refcount(inode, handle,
6983 					ocfs2_blocks_to_clusters(osb->sb,
6984 								 delete_blk),
6985 					clusters_to_del, meta_ac,
6986 					&tc->tc_dealloc, 1);
6987 		else
6988 			status = ocfs2_truncate_log_append(osb, handle,
6989 							   delete_blk,
6990 							   clusters_to_del);
6991 		if (status < 0) {
6992 			mlog_errno(status);
6993 			goto bail;
6994 		}
6995 	}
6996 	status = 0;
6997 bail:
6998 	brelse(last_eb_bh);
6999 	mlog_exit(status);
7000 	return status;
7001 }
7002 
7003 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
7004 {
7005 	set_buffer_uptodate(bh);
7006 	mark_buffer_dirty(bh);
7007 	return 0;
7008 }
7009 
7010 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
7011 			      unsigned int from, unsigned int to,
7012 			      struct page *page, int zero, u64 *phys)
7013 {
7014 	int ret, partial = 0;
7015 
7016 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
7017 	if (ret)
7018 		mlog_errno(ret);
7019 
7020 	if (zero)
7021 		zero_user_segment(page, from, to);
7022 
7023 	/*
7024 	 * Need to set the buffers we zero'd into uptodate
7025 	 * here if they aren't - ocfs2_map_page_blocks()
7026 	 * might've skipped some
7027 	 */
7028 	ret = walk_page_buffers(handle, page_buffers(page),
7029 				from, to, &partial,
7030 				ocfs2_zero_func);
7031 	if (ret < 0)
7032 		mlog_errno(ret);
7033 	else if (ocfs2_should_order_data(inode)) {
7034 		ret = ocfs2_jbd2_file_inode(handle, inode);
7035 		if (ret < 0)
7036 			mlog_errno(ret);
7037 	}
7038 
7039 	if (!partial)
7040 		SetPageUptodate(page);
7041 
7042 	flush_dcache_page(page);
7043 }
7044 
7045 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
7046 				     loff_t end, struct page **pages,
7047 				     int numpages, u64 phys, handle_t *handle)
7048 {
7049 	int i;
7050 	struct page *page;
7051 	unsigned int from, to = PAGE_CACHE_SIZE;
7052 	struct super_block *sb = inode->i_sb;
7053 
7054 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
7055 
7056 	if (numpages == 0)
7057 		goto out;
7058 
7059 	to = PAGE_CACHE_SIZE;
7060 	for(i = 0; i < numpages; i++) {
7061 		page = pages[i];
7062 
7063 		from = start & (PAGE_CACHE_SIZE - 1);
7064 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
7065 			to = end & (PAGE_CACHE_SIZE - 1);
7066 
7067 		BUG_ON(from > PAGE_CACHE_SIZE);
7068 		BUG_ON(to > PAGE_CACHE_SIZE);
7069 
7070 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
7071 					 &phys);
7072 
7073 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
7074 	}
7075 out:
7076 	if (pages)
7077 		ocfs2_unlock_and_free_pages(pages, numpages);
7078 }
7079 
7080 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
7081 		     struct page **pages, int *num)
7082 {
7083 	int numpages, ret = 0;
7084 	struct address_space *mapping = inode->i_mapping;
7085 	unsigned long index;
7086 	loff_t last_page_bytes;
7087 
7088 	BUG_ON(start > end);
7089 
7090 	numpages = 0;
7091 	last_page_bytes = PAGE_ALIGN(end);
7092 	index = start >> PAGE_CACHE_SHIFT;
7093 	do {
7094 		pages[numpages] = grab_cache_page(mapping, index);
7095 		if (!pages[numpages]) {
7096 			ret = -ENOMEM;
7097 			mlog_errno(ret);
7098 			goto out;
7099 		}
7100 
7101 		numpages++;
7102 		index++;
7103 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
7104 
7105 out:
7106 	if (ret != 0) {
7107 		if (pages)
7108 			ocfs2_unlock_and_free_pages(pages, numpages);
7109 		numpages = 0;
7110 	}
7111 
7112 	*num = numpages;
7113 
7114 	return ret;
7115 }
7116 
7117 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
7118 				struct page **pages, int *num)
7119 {
7120 	struct super_block *sb = inode->i_sb;
7121 
7122 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
7123 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
7124 
7125 	return ocfs2_grab_pages(inode, start, end, pages, num);
7126 }
7127 
7128 /*
7129  * Zero the area past i_size but still within an allocated
7130  * cluster. This avoids exposing nonzero data on subsequent file
7131  * extends.
7132  *
7133  * We need to call this before i_size is updated on the inode because
7134  * otherwise block_write_full_page() will skip writeout of pages past
7135  * i_size. The new_i_size parameter is passed for this reason.
7136  */
7137 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
7138 				  u64 range_start, u64 range_end)
7139 {
7140 	int ret = 0, numpages;
7141 	struct page **pages = NULL;
7142 	u64 phys;
7143 	unsigned int ext_flags;
7144 	struct super_block *sb = inode->i_sb;
7145 
7146 	/*
7147 	 * File systems which don't support sparse files zero on every
7148 	 * extend.
7149 	 */
7150 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
7151 		return 0;
7152 
7153 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
7154 			sizeof(struct page *), GFP_NOFS);
7155 	if (pages == NULL) {
7156 		ret = -ENOMEM;
7157 		mlog_errno(ret);
7158 		goto out;
7159 	}
7160 
7161 	if (range_start == range_end)
7162 		goto out;
7163 
7164 	ret = ocfs2_extent_map_get_blocks(inode,
7165 					  range_start >> sb->s_blocksize_bits,
7166 					  &phys, NULL, &ext_flags);
7167 	if (ret) {
7168 		mlog_errno(ret);
7169 		goto out;
7170 	}
7171 
7172 	/*
7173 	 * Tail is a hole, or is marked unwritten. In either case, we
7174 	 * can count on read and write to return/push zero's.
7175 	 */
7176 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
7177 		goto out;
7178 
7179 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
7180 				   &numpages);
7181 	if (ret) {
7182 		mlog_errno(ret);
7183 		goto out;
7184 	}
7185 
7186 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7187 				 numpages, phys, handle);
7188 
7189 	/*
7190 	 * Initiate writeout of the pages we zero'd here. We don't
7191 	 * wait on them - the truncate_inode_pages() call later will
7192 	 * do that for us.
7193 	 */
7194 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
7195 				       range_end - 1);
7196 	if (ret)
7197 		mlog_errno(ret);
7198 
7199 out:
7200 	if (pages)
7201 		kfree(pages);
7202 
7203 	return ret;
7204 }
7205 
7206 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7207 					     struct ocfs2_dinode *di)
7208 {
7209 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7210 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7211 
7212 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7213 		memset(&di->id2, 0, blocksize -
7214 				    offsetof(struct ocfs2_dinode, id2) -
7215 				    xattrsize);
7216 	else
7217 		memset(&di->id2, 0, blocksize -
7218 				    offsetof(struct ocfs2_dinode, id2));
7219 }
7220 
7221 void ocfs2_dinode_new_extent_list(struct inode *inode,
7222 				  struct ocfs2_dinode *di)
7223 {
7224 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7225 	di->id2.i_list.l_tree_depth = 0;
7226 	di->id2.i_list.l_next_free_rec = 0;
7227 	di->id2.i_list.l_count = cpu_to_le16(
7228 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7229 }
7230 
7231 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7232 {
7233 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7234 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7235 
7236 	spin_lock(&oi->ip_lock);
7237 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7238 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7239 	spin_unlock(&oi->ip_lock);
7240 
7241 	/*
7242 	 * We clear the entire i_data structure here so that all
7243 	 * fields can be properly initialized.
7244 	 */
7245 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7246 
7247 	idata->id_count = cpu_to_le16(
7248 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7249 }
7250 
7251 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7252 					 struct buffer_head *di_bh)
7253 {
7254 	int ret, i, has_data, num_pages = 0;
7255 	handle_t *handle;
7256 	u64 uninitialized_var(block);
7257 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7258 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7259 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7260 	struct ocfs2_alloc_context *data_ac = NULL;
7261 	struct page **pages = NULL;
7262 	loff_t end = osb->s_clustersize;
7263 	struct ocfs2_extent_tree et;
7264 	int did_quota = 0;
7265 
7266 	has_data = i_size_read(inode) ? 1 : 0;
7267 
7268 	if (has_data) {
7269 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7270 				sizeof(struct page *), GFP_NOFS);
7271 		if (pages == NULL) {
7272 			ret = -ENOMEM;
7273 			mlog_errno(ret);
7274 			goto out;
7275 		}
7276 
7277 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7278 		if (ret) {
7279 			mlog_errno(ret);
7280 			goto out;
7281 		}
7282 	}
7283 
7284 	handle = ocfs2_start_trans(osb,
7285 				   ocfs2_inline_to_extents_credits(osb->sb));
7286 	if (IS_ERR(handle)) {
7287 		ret = PTR_ERR(handle);
7288 		mlog_errno(ret);
7289 		goto out_unlock;
7290 	}
7291 
7292 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7293 				      OCFS2_JOURNAL_ACCESS_WRITE);
7294 	if (ret) {
7295 		mlog_errno(ret);
7296 		goto out_commit;
7297 	}
7298 
7299 	if (has_data) {
7300 		u32 bit_off, num;
7301 		unsigned int page_end;
7302 		u64 phys;
7303 
7304 		ret = dquot_alloc_space_nodirty(inode,
7305 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7306 		if (ret)
7307 			goto out_commit;
7308 		did_quota = 1;
7309 
7310 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7311 					   &num);
7312 		if (ret) {
7313 			mlog_errno(ret);
7314 			goto out_commit;
7315 		}
7316 
7317 		/*
7318 		 * Save two copies, one for insert, and one that can
7319 		 * be changed by ocfs2_map_and_dirty_page() below.
7320 		 */
7321 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7322 
7323 		/*
7324 		 * Non sparse file systems zero on extend, so no need
7325 		 * to do that now.
7326 		 */
7327 		if (!ocfs2_sparse_alloc(osb) &&
7328 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7329 			end = PAGE_CACHE_SIZE;
7330 
7331 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7332 		if (ret) {
7333 			mlog_errno(ret);
7334 			goto out_commit;
7335 		}
7336 
7337 		/*
7338 		 * This should populate the 1st page for us and mark
7339 		 * it up to date.
7340 		 */
7341 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7342 		if (ret) {
7343 			mlog_errno(ret);
7344 			goto out_commit;
7345 		}
7346 
7347 		page_end = PAGE_CACHE_SIZE;
7348 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7349 			page_end = osb->s_clustersize;
7350 
7351 		for (i = 0; i < num_pages; i++)
7352 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7353 						 pages[i], i > 0, &phys);
7354 	}
7355 
7356 	spin_lock(&oi->ip_lock);
7357 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7358 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7359 	spin_unlock(&oi->ip_lock);
7360 
7361 	ocfs2_dinode_new_extent_list(inode, di);
7362 
7363 	ocfs2_journal_dirty(handle, di_bh);
7364 
7365 	if (has_data) {
7366 		/*
7367 		 * An error at this point should be extremely rare. If
7368 		 * this proves to be false, we could always re-build
7369 		 * the in-inode data from our pages.
7370 		 */
7371 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7372 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7373 		if (ret) {
7374 			mlog_errno(ret);
7375 			goto out_commit;
7376 		}
7377 
7378 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7379 	}
7380 
7381 out_commit:
7382 	if (ret < 0 && did_quota)
7383 		dquot_free_space_nodirty(inode,
7384 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7385 
7386 	ocfs2_commit_trans(osb, handle);
7387 
7388 out_unlock:
7389 	if (data_ac)
7390 		ocfs2_free_alloc_context(data_ac);
7391 
7392 out:
7393 	if (pages) {
7394 		ocfs2_unlock_and_free_pages(pages, num_pages);
7395 		kfree(pages);
7396 	}
7397 
7398 	return ret;
7399 }
7400 
7401 /*
7402  * It is expected, that by the time you call this function,
7403  * inode->i_size and fe->i_size have been adjusted.
7404  *
7405  * WARNING: This will kfree the truncate context
7406  */
7407 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7408 			  struct inode *inode,
7409 			  struct buffer_head *fe_bh,
7410 			  struct ocfs2_truncate_context *tc)
7411 {
7412 	int status, i, credits, tl_sem = 0;
7413 	u32 clusters_to_del, new_highest_cpos, range;
7414 	u64 blkno = 0;
7415 	struct ocfs2_extent_list *el;
7416 	handle_t *handle = NULL;
7417 	struct inode *tl_inode = osb->osb_tl_inode;
7418 	struct ocfs2_path *path = NULL;
7419 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7420 	struct ocfs2_alloc_context *meta_ac = NULL;
7421 	struct ocfs2_refcount_tree *ref_tree = NULL;
7422 
7423 	mlog_entry_void();
7424 
7425 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7426 						     i_size_read(inode));
7427 
7428 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7429 			      ocfs2_journal_access_di);
7430 	if (!path) {
7431 		status = -ENOMEM;
7432 		mlog_errno(status);
7433 		goto bail;
7434 	}
7435 
7436 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7437 
7438 start:
7439 	/*
7440 	 * Check that we still have allocation to delete.
7441 	 */
7442 	if (OCFS2_I(inode)->ip_clusters == 0) {
7443 		status = 0;
7444 		goto bail;
7445 	}
7446 
7447 	credits = 0;
7448 
7449 	/*
7450 	 * Truncate always works against the rightmost tree branch.
7451 	 */
7452 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7453 	if (status) {
7454 		mlog_errno(status);
7455 		goto bail;
7456 	}
7457 
7458 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7459 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7460 
7461 	/*
7462 	 * By now, el will point to the extent list on the bottom most
7463 	 * portion of this tree. Only the tail record is considered in
7464 	 * each pass.
7465 	 *
7466 	 * We handle the following cases, in order:
7467 	 * - empty extent: delete the remaining branch
7468 	 * - remove the entire record
7469 	 * - remove a partial record
7470 	 * - no record needs to be removed (truncate has completed)
7471 	 */
7472 	el = path_leaf_el(path);
7473 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7474 		ocfs2_error(inode->i_sb,
7475 			    "Inode %llu has empty extent block at %llu\n",
7476 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7477 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7478 		status = -EROFS;
7479 		goto bail;
7480 	}
7481 
7482 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7483 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7484 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7485 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7486 		clusters_to_del = 0;
7487 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7488 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7489 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
7490 	} else if (range > new_highest_cpos) {
7491 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7492 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7493 				  new_highest_cpos;
7494 		blkno = le64_to_cpu(el->l_recs[i].e_blkno) +
7495 			ocfs2_clusters_to_blocks(inode->i_sb,
7496 				ocfs2_rec_clusters(el, &el->l_recs[i]) -
7497 				clusters_to_del);
7498 	} else {
7499 		status = 0;
7500 		goto bail;
7501 	}
7502 
7503 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7504 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7505 
7506 	if (el->l_recs[i].e_flags & OCFS2_EXT_REFCOUNTED && clusters_to_del) {
7507 		BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
7508 			 OCFS2_HAS_REFCOUNT_FL));
7509 
7510 		status = ocfs2_lock_refcount_tree(osb,
7511 						le64_to_cpu(di->i_refcount_loc),
7512 						1, &ref_tree, NULL);
7513 		if (status) {
7514 			mlog_errno(status);
7515 			goto bail;
7516 		}
7517 
7518 		status = ocfs2_prepare_refcount_change_for_del(inode, fe_bh,
7519 							       blkno,
7520 							       clusters_to_del,
7521 							       &credits,
7522 							       &meta_ac);
7523 		if (status < 0) {
7524 			mlog_errno(status);
7525 			goto bail;
7526 		}
7527 	}
7528 
7529 	mutex_lock(&tl_inode->i_mutex);
7530 	tl_sem = 1;
7531 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7532 	 * record is free for use. If there isn't any, we flush to get
7533 	 * an empty truncate log.  */
7534 	if (ocfs2_truncate_log_needs_flush(osb)) {
7535 		status = __ocfs2_flush_truncate_log(osb);
7536 		if (status < 0) {
7537 			mlog_errno(status);
7538 			goto bail;
7539 		}
7540 	}
7541 
7542 	credits += ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7543 						(struct ocfs2_dinode *)fe_bh->b_data,
7544 						el);
7545 	handle = ocfs2_start_trans(osb, credits);
7546 	if (IS_ERR(handle)) {
7547 		status = PTR_ERR(handle);
7548 		handle = NULL;
7549 		mlog_errno(status);
7550 		goto bail;
7551 	}
7552 
7553 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7554 				   tc, path, meta_ac);
7555 	if (status < 0) {
7556 		mlog_errno(status);
7557 		goto bail;
7558 	}
7559 
7560 	mutex_unlock(&tl_inode->i_mutex);
7561 	tl_sem = 0;
7562 
7563 	ocfs2_commit_trans(osb, handle);
7564 	handle = NULL;
7565 
7566 	ocfs2_reinit_path(path, 1);
7567 
7568 	if (meta_ac) {
7569 		ocfs2_free_alloc_context(meta_ac);
7570 		meta_ac = NULL;
7571 	}
7572 
7573 	if (ref_tree) {
7574 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7575 		ref_tree = NULL;
7576 	}
7577 
7578 	/*
7579 	 * The check above will catch the case where we've truncated
7580 	 * away all allocation.
7581 	 */
7582 	goto start;
7583 
7584 bail:
7585 
7586 	ocfs2_schedule_truncate_log_flush(osb, 1);
7587 
7588 	if (tl_sem)
7589 		mutex_unlock(&tl_inode->i_mutex);
7590 
7591 	if (handle)
7592 		ocfs2_commit_trans(osb, handle);
7593 
7594 	if (meta_ac)
7595 		ocfs2_free_alloc_context(meta_ac);
7596 
7597 	if (ref_tree)
7598 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7599 
7600 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7601 
7602 	ocfs2_free_path(path);
7603 
7604 	/* This will drop the ext_alloc cluster lock for us */
7605 	ocfs2_free_truncate_context(tc);
7606 
7607 	mlog_exit(status);
7608 	return status;
7609 }
7610 
7611 /*
7612  * Expects the inode to already be locked.
7613  */
7614 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7615 			   struct inode *inode,
7616 			   struct buffer_head *fe_bh,
7617 			   struct ocfs2_truncate_context **tc)
7618 {
7619 	int status;
7620 	unsigned int new_i_clusters;
7621 	struct ocfs2_dinode *fe;
7622 	struct ocfs2_extent_block *eb;
7623 	struct buffer_head *last_eb_bh = NULL;
7624 
7625 	mlog_entry_void();
7626 
7627 	*tc = NULL;
7628 
7629 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7630 						  i_size_read(inode));
7631 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7632 
7633 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7634 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7635 	     (unsigned long long)le64_to_cpu(fe->i_size));
7636 
7637 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7638 	if (!(*tc)) {
7639 		status = -ENOMEM;
7640 		mlog_errno(status);
7641 		goto bail;
7642 	}
7643 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7644 
7645 	if (fe->id2.i_list.l_tree_depth) {
7646 		status = ocfs2_read_extent_block(INODE_CACHE(inode),
7647 						 le64_to_cpu(fe->i_last_eb_blk),
7648 						 &last_eb_bh);
7649 		if (status < 0) {
7650 			mlog_errno(status);
7651 			goto bail;
7652 		}
7653 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7654 	}
7655 
7656 	(*tc)->tc_last_eb_bh = last_eb_bh;
7657 
7658 	status = 0;
7659 bail:
7660 	if (status < 0) {
7661 		if (*tc)
7662 			ocfs2_free_truncate_context(*tc);
7663 		*tc = NULL;
7664 	}
7665 	mlog_exit_void();
7666 	return status;
7667 }
7668 
7669 /*
7670  * 'start' is inclusive, 'end' is not.
7671  */
7672 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7673 			  unsigned int start, unsigned int end, int trunc)
7674 {
7675 	int ret;
7676 	unsigned int numbytes;
7677 	handle_t *handle;
7678 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7679 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7680 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7681 
7682 	if (end > i_size_read(inode))
7683 		end = i_size_read(inode);
7684 
7685 	BUG_ON(start >= end);
7686 
7687 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7688 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7689 	    !ocfs2_supports_inline_data(osb)) {
7690 		ocfs2_error(inode->i_sb,
7691 			    "Inline data flags for inode %llu don't agree! "
7692 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7693 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7694 			    le16_to_cpu(di->i_dyn_features),
7695 			    OCFS2_I(inode)->ip_dyn_features,
7696 			    osb->s_feature_incompat);
7697 		ret = -EROFS;
7698 		goto out;
7699 	}
7700 
7701 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7702 	if (IS_ERR(handle)) {
7703 		ret = PTR_ERR(handle);
7704 		mlog_errno(ret);
7705 		goto out;
7706 	}
7707 
7708 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7709 				      OCFS2_JOURNAL_ACCESS_WRITE);
7710 	if (ret) {
7711 		mlog_errno(ret);
7712 		goto out_commit;
7713 	}
7714 
7715 	numbytes = end - start;
7716 	memset(idata->id_data + start, 0, numbytes);
7717 
7718 	/*
7719 	 * No need to worry about the data page here - it's been
7720 	 * truncated already and inline data doesn't need it for
7721 	 * pushing zero's to disk, so we'll let readpage pick it up
7722 	 * later.
7723 	 */
7724 	if (trunc) {
7725 		i_size_write(inode, start);
7726 		di->i_size = cpu_to_le64(start);
7727 	}
7728 
7729 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7730 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7731 
7732 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7733 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7734 
7735 	ocfs2_journal_dirty(handle, di_bh);
7736 
7737 out_commit:
7738 	ocfs2_commit_trans(osb, handle);
7739 
7740 out:
7741 	return ret;
7742 }
7743 
7744 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7745 {
7746 	/*
7747 	 * The caller is responsible for completing deallocation
7748 	 * before freeing the context.
7749 	 */
7750 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7751 		mlog(ML_NOTICE,
7752 		     "Truncate completion has non-empty dealloc context\n");
7753 
7754 	brelse(tc->tc_last_eb_bh);
7755 
7756 	kfree(tc);
7757 }
7758