1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #include <cluster/masklog.h> 34 35 #include "ocfs2.h" 36 37 #include "alloc.h" 38 #include "aops.h" 39 #include "blockcheck.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "inode.h" 43 #include "journal.h" 44 #include "localalloc.h" 45 #include "suballoc.h" 46 #include "sysfile.h" 47 #include "file.h" 48 #include "super.h" 49 #include "uptodate.h" 50 #include "xattr.h" 51 #include "refcounttree.h" 52 #include "ocfs2_trace.h" 53 54 #include "buffer_head_io.h" 55 56 enum ocfs2_contig_type { 57 CONTIG_NONE = 0, 58 CONTIG_LEFT, 59 CONTIG_RIGHT, 60 CONTIG_LEFTRIGHT, 61 }; 62 63 static enum ocfs2_contig_type 64 ocfs2_extent_rec_contig(struct super_block *sb, 65 struct ocfs2_extent_rec *ext, 66 struct ocfs2_extent_rec *insert_rec); 67 /* 68 * Operations for a specific extent tree type. 69 * 70 * To implement an on-disk btree (extent tree) type in ocfs2, add 71 * an ocfs2_extent_tree_operations structure and the matching 72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 73 * for the allocation portion of the extent tree. 74 */ 75 struct ocfs2_extent_tree_operations { 76 /* 77 * last_eb_blk is the block number of the right most leaf extent 78 * block. Most on-disk structures containing an extent tree store 79 * this value for fast access. The ->eo_set_last_eb_blk() and 80 * ->eo_get_last_eb_blk() operations access this value. They are 81 * both required. 82 */ 83 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 84 u64 blkno); 85 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 86 87 /* 88 * The on-disk structure usually keeps track of how many total 89 * clusters are stored in this extent tree. This function updates 90 * that value. new_clusters is the delta, and must be 91 * added to the total. Required. 92 */ 93 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 94 u32 new_clusters); 95 96 /* 97 * If this extent tree is supported by an extent map, insert 98 * a record into the map. 99 */ 100 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 103 /* 104 * If this extent tree is supported by an extent map, truncate the 105 * map to clusters, 106 */ 107 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 108 u32 clusters); 109 110 /* 111 * If ->eo_insert_check() exists, it is called before rec is 112 * inserted into the extent tree. It is optional. 113 */ 114 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 115 struct ocfs2_extent_rec *rec); 116 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 117 118 /* 119 * -------------------------------------------------------------- 120 * The remaining are internal to ocfs2_extent_tree and don't have 121 * accessor functions 122 */ 123 124 /* 125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 126 * It is required. 127 */ 128 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 129 130 /* 131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 132 * it exists. If it does not, et->et_max_leaf_clusters is set 133 * to 0 (unlimited). Optional. 134 */ 135 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 136 137 /* 138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 139 * are contiguous or not. Optional. Don't need to set it if use 140 * ocfs2_extent_rec as the tree leaf. 141 */ 142 enum ocfs2_contig_type 143 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 144 struct ocfs2_extent_rec *ext, 145 struct ocfs2_extent_rec *insert_rec); 146 }; 147 148 149 /* 150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 151 * in the methods. 152 */ 153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 155 u64 blkno); 156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 157 u32 clusters); 158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 159 struct ocfs2_extent_rec *rec); 160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 161 u32 clusters); 162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 163 struct ocfs2_extent_rec *rec); 164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 167 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 168 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 169 .eo_update_clusters = ocfs2_dinode_update_clusters, 170 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 171 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 172 .eo_insert_check = ocfs2_dinode_insert_check, 173 .eo_sanity_check = ocfs2_dinode_sanity_check, 174 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 175 }; 176 177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 178 u64 blkno) 179 { 180 struct ocfs2_dinode *di = et->et_object; 181 182 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 183 di->i_last_eb_blk = cpu_to_le64(blkno); 184 } 185 186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 187 { 188 struct ocfs2_dinode *di = et->et_object; 189 190 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 191 return le64_to_cpu(di->i_last_eb_blk); 192 } 193 194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 195 u32 clusters) 196 { 197 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 198 struct ocfs2_dinode *di = et->et_object; 199 200 le32_add_cpu(&di->i_clusters, clusters); 201 spin_lock(&oi->ip_lock); 202 oi->ip_clusters = le32_to_cpu(di->i_clusters); 203 spin_unlock(&oi->ip_lock); 204 } 205 206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 207 struct ocfs2_extent_rec *rec) 208 { 209 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 210 211 ocfs2_extent_map_insert_rec(inode, rec); 212 } 213 214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 215 u32 clusters) 216 { 217 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 218 219 ocfs2_extent_map_trunc(inode, clusters); 220 } 221 222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 223 struct ocfs2_extent_rec *rec) 224 { 225 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 226 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 227 228 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 230 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 231 "Device %s, asking for sparse allocation: inode %llu, " 232 "cpos %u, clusters %u\n", 233 osb->dev_str, 234 (unsigned long long)oi->ip_blkno, 235 rec->e_cpos, oi->ip_clusters); 236 237 return 0; 238 } 239 240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 241 { 242 struct ocfs2_dinode *di = et->et_object; 243 244 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 245 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 246 247 return 0; 248 } 249 250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 251 { 252 struct ocfs2_dinode *di = et->et_object; 253 254 et->et_root_el = &di->id2.i_list; 255 } 256 257 258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 259 { 260 struct ocfs2_xattr_value_buf *vb = et->et_object; 261 262 et->et_root_el = &vb->vb_xv->xr_list; 263 } 264 265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 266 u64 blkno) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 271 } 272 273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 274 { 275 struct ocfs2_xattr_value_buf *vb = et->et_object; 276 277 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 281 u32 clusters) 282 { 283 struct ocfs2_xattr_value_buf *vb = et->et_object; 284 285 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 286 } 287 288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 289 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 290 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 291 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 292 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 293 }; 294 295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 296 { 297 struct ocfs2_xattr_block *xb = et->et_object; 298 299 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 300 } 301 302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 303 { 304 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 305 et->et_max_leaf_clusters = 306 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 307 } 308 309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 310 u64 blkno) 311 { 312 struct ocfs2_xattr_block *xb = et->et_object; 313 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 314 315 xt->xt_last_eb_blk = cpu_to_le64(blkno); 316 } 317 318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 319 { 320 struct ocfs2_xattr_block *xb = et->et_object; 321 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 322 323 return le64_to_cpu(xt->xt_last_eb_blk); 324 } 325 326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 327 u32 clusters) 328 { 329 struct ocfs2_xattr_block *xb = et->et_object; 330 331 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 332 } 333 334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 335 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 336 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 337 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 338 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 339 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 340 }; 341 342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 343 u64 blkno) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 348 } 349 350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 351 { 352 struct ocfs2_dx_root_block *dx_root = et->et_object; 353 354 return le64_to_cpu(dx_root->dr_last_eb_blk); 355 } 356 357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 358 u32 clusters) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 le32_add_cpu(&dx_root->dr_clusters, clusters); 363 } 364 365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 366 { 367 struct ocfs2_dx_root_block *dx_root = et->et_object; 368 369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 370 371 return 0; 372 } 373 374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 375 { 376 struct ocfs2_dx_root_block *dx_root = et->et_object; 377 378 et->et_root_el = &dx_root->dr_list; 379 } 380 381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 382 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 383 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 384 .eo_update_clusters = ocfs2_dx_root_update_clusters, 385 .eo_sanity_check = ocfs2_dx_root_sanity_check, 386 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 387 }; 388 389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 390 { 391 struct ocfs2_refcount_block *rb = et->et_object; 392 393 et->et_root_el = &rb->rf_list; 394 } 395 396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 397 u64 blkno) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 rb->rf_last_eb_blk = cpu_to_le64(blkno); 402 } 403 404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 405 { 406 struct ocfs2_refcount_block *rb = et->et_object; 407 408 return le64_to_cpu(rb->rf_last_eb_blk); 409 } 410 411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 struct ocfs2_refcount_block *rb = et->et_object; 415 416 le32_add_cpu(&rb->rf_clusters, clusters); 417 } 418 419 static enum ocfs2_contig_type 420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 421 struct ocfs2_extent_rec *ext, 422 struct ocfs2_extent_rec *insert_rec) 423 { 424 return CONTIG_NONE; 425 } 426 427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 428 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 429 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 430 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 431 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 432 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 433 }; 434 435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 436 struct ocfs2_caching_info *ci, 437 struct buffer_head *bh, 438 ocfs2_journal_access_func access, 439 void *obj, 440 struct ocfs2_extent_tree_operations *ops) 441 { 442 et->et_ops = ops; 443 et->et_root_bh = bh; 444 et->et_ci = ci; 445 et->et_root_journal_access = access; 446 if (!obj) 447 obj = (void *)bh->b_data; 448 et->et_object = obj; 449 450 et->et_ops->eo_fill_root_el(et); 451 if (!et->et_ops->eo_fill_max_leaf_clusters) 452 et->et_max_leaf_clusters = 0; 453 else 454 et->et_ops->eo_fill_max_leaf_clusters(et); 455 } 456 457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 458 struct ocfs2_caching_info *ci, 459 struct buffer_head *bh) 460 { 461 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 462 NULL, &ocfs2_dinode_et_ops); 463 } 464 465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 466 struct ocfs2_caching_info *ci, 467 struct buffer_head *bh) 468 { 469 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 470 NULL, &ocfs2_xattr_tree_et_ops); 471 } 472 473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 474 struct ocfs2_caching_info *ci, 475 struct ocfs2_xattr_value_buf *vb) 476 { 477 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 478 &ocfs2_xattr_value_et_ops); 479 } 480 481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 482 struct ocfs2_caching_info *ci, 483 struct buffer_head *bh) 484 { 485 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 486 NULL, &ocfs2_dx_root_et_ops); 487 } 488 489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 490 struct ocfs2_caching_info *ci, 491 struct buffer_head *bh) 492 { 493 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 494 NULL, &ocfs2_refcount_tree_et_ops); 495 } 496 497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 498 u64 new_last_eb_blk) 499 { 500 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 501 } 502 503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 504 { 505 return et->et_ops->eo_get_last_eb_blk(et); 506 } 507 508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 509 u32 clusters) 510 { 511 et->et_ops->eo_update_clusters(et, clusters); 512 } 513 514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 515 struct ocfs2_extent_rec *rec) 516 { 517 if (et->et_ops->eo_extent_map_insert) 518 et->et_ops->eo_extent_map_insert(et, rec); 519 } 520 521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 522 u32 clusters) 523 { 524 if (et->et_ops->eo_extent_map_truncate) 525 et->et_ops->eo_extent_map_truncate(et, clusters); 526 } 527 528 static inline int ocfs2_et_root_journal_access(handle_t *handle, 529 struct ocfs2_extent_tree *et, 530 int type) 531 { 532 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 533 type); 534 } 535 536 static inline enum ocfs2_contig_type 537 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 538 struct ocfs2_extent_rec *rec, 539 struct ocfs2_extent_rec *insert_rec) 540 { 541 if (et->et_ops->eo_extent_contig) 542 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 543 544 return ocfs2_extent_rec_contig( 545 ocfs2_metadata_cache_get_super(et->et_ci), 546 rec, insert_rec); 547 } 548 549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 550 struct ocfs2_extent_rec *rec) 551 { 552 int ret = 0; 553 554 if (et->et_ops->eo_insert_check) 555 ret = et->et_ops->eo_insert_check(et, rec); 556 return ret; 557 } 558 559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 560 { 561 int ret = 0; 562 563 if (et->et_ops->eo_sanity_check) 564 ret = et->et_ops->eo_sanity_check(et); 565 return ret; 566 } 567 568 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 569 struct ocfs2_extent_block *eb); 570 static void ocfs2_adjust_rightmost_records(handle_t *handle, 571 struct ocfs2_extent_tree *et, 572 struct ocfs2_path *path, 573 struct ocfs2_extent_rec *insert_rec); 574 /* 575 * Reset the actual path elements so that we can re-use the structure 576 * to build another path. Generally, this involves freeing the buffer 577 * heads. 578 */ 579 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 580 { 581 int i, start = 0, depth = 0; 582 struct ocfs2_path_item *node; 583 584 if (keep_root) 585 start = 1; 586 587 for(i = start; i < path_num_items(path); i++) { 588 node = &path->p_node[i]; 589 590 brelse(node->bh); 591 node->bh = NULL; 592 node->el = NULL; 593 } 594 595 /* 596 * Tree depth may change during truncate, or insert. If we're 597 * keeping the root extent list, then make sure that our path 598 * structure reflects the proper depth. 599 */ 600 if (keep_root) 601 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 602 else 603 path_root_access(path) = NULL; 604 605 path->p_tree_depth = depth; 606 } 607 608 void ocfs2_free_path(struct ocfs2_path *path) 609 { 610 if (path) { 611 ocfs2_reinit_path(path, 0); 612 kfree(path); 613 } 614 } 615 616 /* 617 * All the elements of src into dest. After this call, src could be freed 618 * without affecting dest. 619 * 620 * Both paths should have the same root. Any non-root elements of dest 621 * will be freed. 622 */ 623 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 624 { 625 int i; 626 627 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 628 BUG_ON(path_root_el(dest) != path_root_el(src)); 629 BUG_ON(path_root_access(dest) != path_root_access(src)); 630 631 ocfs2_reinit_path(dest, 1); 632 633 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 634 dest->p_node[i].bh = src->p_node[i].bh; 635 dest->p_node[i].el = src->p_node[i].el; 636 637 if (dest->p_node[i].bh) 638 get_bh(dest->p_node[i].bh); 639 } 640 } 641 642 /* 643 * Make the *dest path the same as src and re-initialize src path to 644 * have a root only. 645 */ 646 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 647 { 648 int i; 649 650 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 651 BUG_ON(path_root_access(dest) != path_root_access(src)); 652 653 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 654 brelse(dest->p_node[i].bh); 655 656 dest->p_node[i].bh = src->p_node[i].bh; 657 dest->p_node[i].el = src->p_node[i].el; 658 659 src->p_node[i].bh = NULL; 660 src->p_node[i].el = NULL; 661 } 662 } 663 664 /* 665 * Insert an extent block at given index. 666 * 667 * This will not take an additional reference on eb_bh. 668 */ 669 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 670 struct buffer_head *eb_bh) 671 { 672 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 673 674 /* 675 * Right now, no root bh is an extent block, so this helps 676 * catch code errors with dinode trees. The assertion can be 677 * safely removed if we ever need to insert extent block 678 * structures at the root. 679 */ 680 BUG_ON(index == 0); 681 682 path->p_node[index].bh = eb_bh; 683 path->p_node[index].el = &eb->h_list; 684 } 685 686 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 687 struct ocfs2_extent_list *root_el, 688 ocfs2_journal_access_func access) 689 { 690 struct ocfs2_path *path; 691 692 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 693 694 path = kzalloc(sizeof(*path), GFP_NOFS); 695 if (path) { 696 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 697 get_bh(root_bh); 698 path_root_bh(path) = root_bh; 699 path_root_el(path) = root_el; 700 path_root_access(path) = access; 701 } 702 703 return path; 704 } 705 706 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 707 { 708 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 709 path_root_access(path)); 710 } 711 712 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 713 { 714 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 715 et->et_root_journal_access); 716 } 717 718 /* 719 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 720 * otherwise it's the root_access function. 721 * 722 * I don't like the way this function's name looks next to 723 * ocfs2_journal_access_path(), but I don't have a better one. 724 */ 725 int ocfs2_path_bh_journal_access(handle_t *handle, 726 struct ocfs2_caching_info *ci, 727 struct ocfs2_path *path, 728 int idx) 729 { 730 ocfs2_journal_access_func access = path_root_access(path); 731 732 if (!access) 733 access = ocfs2_journal_access; 734 735 if (idx) 736 access = ocfs2_journal_access_eb; 737 738 return access(handle, ci, path->p_node[idx].bh, 739 OCFS2_JOURNAL_ACCESS_WRITE); 740 } 741 742 /* 743 * Convenience function to journal all components in a path. 744 */ 745 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 746 handle_t *handle, 747 struct ocfs2_path *path) 748 { 749 int i, ret = 0; 750 751 if (!path) 752 goto out; 753 754 for(i = 0; i < path_num_items(path); i++) { 755 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 756 if (ret < 0) { 757 mlog_errno(ret); 758 goto out; 759 } 760 } 761 762 out: 763 return ret; 764 } 765 766 /* 767 * Return the index of the extent record which contains cluster #v_cluster. 768 * -1 is returned if it was not found. 769 * 770 * Should work fine on interior and exterior nodes. 771 */ 772 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 773 { 774 int ret = -1; 775 int i; 776 struct ocfs2_extent_rec *rec; 777 u32 rec_end, rec_start, clusters; 778 779 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 780 rec = &el->l_recs[i]; 781 782 rec_start = le32_to_cpu(rec->e_cpos); 783 clusters = ocfs2_rec_clusters(el, rec); 784 785 rec_end = rec_start + clusters; 786 787 if (v_cluster >= rec_start && v_cluster < rec_end) { 788 ret = i; 789 break; 790 } 791 } 792 793 return ret; 794 } 795 796 /* 797 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 798 * ocfs2_extent_rec_contig only work properly against leaf nodes! 799 */ 800 static int ocfs2_block_extent_contig(struct super_block *sb, 801 struct ocfs2_extent_rec *ext, 802 u64 blkno) 803 { 804 u64 blk_end = le64_to_cpu(ext->e_blkno); 805 806 blk_end += ocfs2_clusters_to_blocks(sb, 807 le16_to_cpu(ext->e_leaf_clusters)); 808 809 return blkno == blk_end; 810 } 811 812 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 813 struct ocfs2_extent_rec *right) 814 { 815 u32 left_range; 816 817 left_range = le32_to_cpu(left->e_cpos) + 818 le16_to_cpu(left->e_leaf_clusters); 819 820 return (left_range == le32_to_cpu(right->e_cpos)); 821 } 822 823 static enum ocfs2_contig_type 824 ocfs2_extent_rec_contig(struct super_block *sb, 825 struct ocfs2_extent_rec *ext, 826 struct ocfs2_extent_rec *insert_rec) 827 { 828 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 829 830 /* 831 * Refuse to coalesce extent records with different flag 832 * fields - we don't want to mix unwritten extents with user 833 * data. 834 */ 835 if (ext->e_flags != insert_rec->e_flags) 836 return CONTIG_NONE; 837 838 if (ocfs2_extents_adjacent(ext, insert_rec) && 839 ocfs2_block_extent_contig(sb, ext, blkno)) 840 return CONTIG_RIGHT; 841 842 blkno = le64_to_cpu(ext->e_blkno); 843 if (ocfs2_extents_adjacent(insert_rec, ext) && 844 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 845 return CONTIG_LEFT; 846 847 return CONTIG_NONE; 848 } 849 850 /* 851 * NOTE: We can have pretty much any combination of contiguousness and 852 * appending. 853 * 854 * The usefulness of APPEND_TAIL is more in that it lets us know that 855 * we'll have to update the path to that leaf. 856 */ 857 enum ocfs2_append_type { 858 APPEND_NONE = 0, 859 APPEND_TAIL, 860 }; 861 862 enum ocfs2_split_type { 863 SPLIT_NONE = 0, 864 SPLIT_LEFT, 865 SPLIT_RIGHT, 866 }; 867 868 struct ocfs2_insert_type { 869 enum ocfs2_split_type ins_split; 870 enum ocfs2_append_type ins_appending; 871 enum ocfs2_contig_type ins_contig; 872 int ins_contig_index; 873 int ins_tree_depth; 874 }; 875 876 struct ocfs2_merge_ctxt { 877 enum ocfs2_contig_type c_contig_type; 878 int c_has_empty_extent; 879 int c_split_covers_rec; 880 }; 881 882 static int ocfs2_validate_extent_block(struct super_block *sb, 883 struct buffer_head *bh) 884 { 885 int rc; 886 struct ocfs2_extent_block *eb = 887 (struct ocfs2_extent_block *)bh->b_data; 888 889 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 890 891 BUG_ON(!buffer_uptodate(bh)); 892 893 /* 894 * If the ecc fails, we return the error but otherwise 895 * leave the filesystem running. We know any error is 896 * local to this block. 897 */ 898 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 899 if (rc) { 900 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 901 (unsigned long long)bh->b_blocknr); 902 return rc; 903 } 904 905 /* 906 * Errors after here are fatal. 907 */ 908 909 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 910 ocfs2_error(sb, 911 "Extent block #%llu has bad signature %.*s", 912 (unsigned long long)bh->b_blocknr, 7, 913 eb->h_signature); 914 return -EINVAL; 915 } 916 917 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 918 ocfs2_error(sb, 919 "Extent block #%llu has an invalid h_blkno " 920 "of %llu", 921 (unsigned long long)bh->b_blocknr, 922 (unsigned long long)le64_to_cpu(eb->h_blkno)); 923 return -EINVAL; 924 } 925 926 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 927 ocfs2_error(sb, 928 "Extent block #%llu has an invalid " 929 "h_fs_generation of #%u", 930 (unsigned long long)bh->b_blocknr, 931 le32_to_cpu(eb->h_fs_generation)); 932 return -EINVAL; 933 } 934 935 return 0; 936 } 937 938 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 939 struct buffer_head **bh) 940 { 941 int rc; 942 struct buffer_head *tmp = *bh; 943 944 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 945 ocfs2_validate_extent_block); 946 947 /* If ocfs2_read_block() got us a new bh, pass it up. */ 948 if (!rc && !*bh) 949 *bh = tmp; 950 951 return rc; 952 } 953 954 955 /* 956 * How many free extents have we got before we need more meta data? 957 */ 958 int ocfs2_num_free_extents(struct ocfs2_super *osb, 959 struct ocfs2_extent_tree *et) 960 { 961 int retval; 962 struct ocfs2_extent_list *el = NULL; 963 struct ocfs2_extent_block *eb; 964 struct buffer_head *eb_bh = NULL; 965 u64 last_eb_blk = 0; 966 967 el = et->et_root_el; 968 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 969 970 if (last_eb_blk) { 971 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 972 &eb_bh); 973 if (retval < 0) { 974 mlog_errno(retval); 975 goto bail; 976 } 977 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 978 el = &eb->h_list; 979 } 980 981 BUG_ON(el->l_tree_depth != 0); 982 983 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 984 bail: 985 brelse(eb_bh); 986 987 trace_ocfs2_num_free_extents(retval); 988 return retval; 989 } 990 991 /* expects array to already be allocated 992 * 993 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 994 * l_count for you 995 */ 996 static int ocfs2_create_new_meta_bhs(handle_t *handle, 997 struct ocfs2_extent_tree *et, 998 int wanted, 999 struct ocfs2_alloc_context *meta_ac, 1000 struct buffer_head *bhs[]) 1001 { 1002 int count, status, i; 1003 u16 suballoc_bit_start; 1004 u32 num_got; 1005 u64 suballoc_loc, first_blkno; 1006 struct ocfs2_super *osb = 1007 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1008 struct ocfs2_extent_block *eb; 1009 1010 count = 0; 1011 while (count < wanted) { 1012 status = ocfs2_claim_metadata(handle, 1013 meta_ac, 1014 wanted - count, 1015 &suballoc_loc, 1016 &suballoc_bit_start, 1017 &num_got, 1018 &first_blkno); 1019 if (status < 0) { 1020 mlog_errno(status); 1021 goto bail; 1022 } 1023 1024 for(i = count; i < (num_got + count); i++) { 1025 bhs[i] = sb_getblk(osb->sb, first_blkno); 1026 if (bhs[i] == NULL) { 1027 status = -EIO; 1028 mlog_errno(status); 1029 goto bail; 1030 } 1031 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1032 1033 status = ocfs2_journal_access_eb(handle, et->et_ci, 1034 bhs[i], 1035 OCFS2_JOURNAL_ACCESS_CREATE); 1036 if (status < 0) { 1037 mlog_errno(status); 1038 goto bail; 1039 } 1040 1041 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1042 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1043 /* Ok, setup the minimal stuff here. */ 1044 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1045 eb->h_blkno = cpu_to_le64(first_blkno); 1046 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1047 eb->h_suballoc_slot = 1048 cpu_to_le16(meta_ac->ac_alloc_slot); 1049 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1050 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1051 eb->h_list.l_count = 1052 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1053 1054 suballoc_bit_start++; 1055 first_blkno++; 1056 1057 /* We'll also be dirtied by the caller, so 1058 * this isn't absolutely necessary. */ 1059 ocfs2_journal_dirty(handle, bhs[i]); 1060 } 1061 1062 count += num_got; 1063 } 1064 1065 status = 0; 1066 bail: 1067 if (status < 0) { 1068 for(i = 0; i < wanted; i++) { 1069 brelse(bhs[i]); 1070 bhs[i] = NULL; 1071 } 1072 mlog_errno(status); 1073 } 1074 return status; 1075 } 1076 1077 /* 1078 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1079 * 1080 * Returns the sum of the rightmost extent rec logical offset and 1081 * cluster count. 1082 * 1083 * ocfs2_add_branch() uses this to determine what logical cluster 1084 * value should be populated into the leftmost new branch records. 1085 * 1086 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1087 * value for the new topmost tree record. 1088 */ 1089 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1090 { 1091 int i; 1092 1093 i = le16_to_cpu(el->l_next_free_rec) - 1; 1094 1095 return le32_to_cpu(el->l_recs[i].e_cpos) + 1096 ocfs2_rec_clusters(el, &el->l_recs[i]); 1097 } 1098 1099 /* 1100 * Change range of the branches in the right most path according to the leaf 1101 * extent block's rightmost record. 1102 */ 1103 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1104 struct ocfs2_extent_tree *et) 1105 { 1106 int status; 1107 struct ocfs2_path *path = NULL; 1108 struct ocfs2_extent_list *el; 1109 struct ocfs2_extent_rec *rec; 1110 1111 path = ocfs2_new_path_from_et(et); 1112 if (!path) { 1113 status = -ENOMEM; 1114 return status; 1115 } 1116 1117 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1118 if (status < 0) { 1119 mlog_errno(status); 1120 goto out; 1121 } 1122 1123 status = ocfs2_extend_trans(handle, path_num_items(path)); 1124 if (status < 0) { 1125 mlog_errno(status); 1126 goto out; 1127 } 1128 1129 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1130 if (status < 0) { 1131 mlog_errno(status); 1132 goto out; 1133 } 1134 1135 el = path_leaf_el(path); 1136 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1137 1138 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1139 1140 out: 1141 ocfs2_free_path(path); 1142 return status; 1143 } 1144 1145 /* 1146 * Add an entire tree branch to our inode. eb_bh is the extent block 1147 * to start at, if we don't want to start the branch at the root 1148 * structure. 1149 * 1150 * last_eb_bh is required as we have to update it's next_leaf pointer 1151 * for the new last extent block. 1152 * 1153 * the new branch will be 'empty' in the sense that every block will 1154 * contain a single record with cluster count == 0. 1155 */ 1156 static int ocfs2_add_branch(handle_t *handle, 1157 struct ocfs2_extent_tree *et, 1158 struct buffer_head *eb_bh, 1159 struct buffer_head **last_eb_bh, 1160 struct ocfs2_alloc_context *meta_ac) 1161 { 1162 int status, new_blocks, i; 1163 u64 next_blkno, new_last_eb_blk; 1164 struct buffer_head *bh; 1165 struct buffer_head **new_eb_bhs = NULL; 1166 struct ocfs2_extent_block *eb; 1167 struct ocfs2_extent_list *eb_el; 1168 struct ocfs2_extent_list *el; 1169 u32 new_cpos, root_end; 1170 1171 BUG_ON(!last_eb_bh || !*last_eb_bh); 1172 1173 if (eb_bh) { 1174 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1175 el = &eb->h_list; 1176 } else 1177 el = et->et_root_el; 1178 1179 /* we never add a branch to a leaf. */ 1180 BUG_ON(!el->l_tree_depth); 1181 1182 new_blocks = le16_to_cpu(el->l_tree_depth); 1183 1184 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1185 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1186 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1187 1188 /* 1189 * If there is a gap before the root end and the real end 1190 * of the righmost leaf block, we need to remove the gap 1191 * between new_cpos and root_end first so that the tree 1192 * is consistent after we add a new branch(it will start 1193 * from new_cpos). 1194 */ 1195 if (root_end > new_cpos) { 1196 trace_ocfs2_adjust_rightmost_branch( 1197 (unsigned long long) 1198 ocfs2_metadata_cache_owner(et->et_ci), 1199 root_end, new_cpos); 1200 1201 status = ocfs2_adjust_rightmost_branch(handle, et); 1202 if (status) { 1203 mlog_errno(status); 1204 goto bail; 1205 } 1206 } 1207 1208 /* allocate the number of new eb blocks we need */ 1209 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1210 GFP_KERNEL); 1211 if (!new_eb_bhs) { 1212 status = -ENOMEM; 1213 mlog_errno(status); 1214 goto bail; 1215 } 1216 1217 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks, 1218 meta_ac, new_eb_bhs); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 1224 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1225 * linked with the rest of the tree. 1226 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1227 * 1228 * when we leave the loop, new_last_eb_blk will point to the 1229 * newest leaf, and next_blkno will point to the topmost extent 1230 * block. */ 1231 next_blkno = new_last_eb_blk = 0; 1232 for(i = 0; i < new_blocks; i++) { 1233 bh = new_eb_bhs[i]; 1234 eb = (struct ocfs2_extent_block *) bh->b_data; 1235 /* ocfs2_create_new_meta_bhs() should create it right! */ 1236 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1237 eb_el = &eb->h_list; 1238 1239 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1240 OCFS2_JOURNAL_ACCESS_CREATE); 1241 if (status < 0) { 1242 mlog_errno(status); 1243 goto bail; 1244 } 1245 1246 eb->h_next_leaf_blk = 0; 1247 eb_el->l_tree_depth = cpu_to_le16(i); 1248 eb_el->l_next_free_rec = cpu_to_le16(1); 1249 /* 1250 * This actually counts as an empty extent as 1251 * c_clusters == 0 1252 */ 1253 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1254 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1255 /* 1256 * eb_el isn't always an interior node, but even leaf 1257 * nodes want a zero'd flags and reserved field so 1258 * this gets the whole 32 bits regardless of use. 1259 */ 1260 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1261 if (!eb_el->l_tree_depth) 1262 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1263 1264 ocfs2_journal_dirty(handle, bh); 1265 next_blkno = le64_to_cpu(eb->h_blkno); 1266 } 1267 1268 /* This is a bit hairy. We want to update up to three blocks 1269 * here without leaving any of them in an inconsistent state 1270 * in case of error. We don't have to worry about 1271 * journal_dirty erroring as it won't unless we've aborted the 1272 * handle (in which case we would never be here) so reserving 1273 * the write with journal_access is all we need to do. */ 1274 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1275 OCFS2_JOURNAL_ACCESS_WRITE); 1276 if (status < 0) { 1277 mlog_errno(status); 1278 goto bail; 1279 } 1280 status = ocfs2_et_root_journal_access(handle, et, 1281 OCFS2_JOURNAL_ACCESS_WRITE); 1282 if (status < 0) { 1283 mlog_errno(status); 1284 goto bail; 1285 } 1286 if (eb_bh) { 1287 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1288 OCFS2_JOURNAL_ACCESS_WRITE); 1289 if (status < 0) { 1290 mlog_errno(status); 1291 goto bail; 1292 } 1293 } 1294 1295 /* Link the new branch into the rest of the tree (el will 1296 * either be on the root_bh, or the extent block passed in. */ 1297 i = le16_to_cpu(el->l_next_free_rec); 1298 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1299 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1300 el->l_recs[i].e_int_clusters = 0; 1301 le16_add_cpu(&el->l_next_free_rec, 1); 1302 1303 /* fe needs a new last extent block pointer, as does the 1304 * next_leaf on the previously last-extent-block. */ 1305 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1306 1307 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1308 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1309 1310 ocfs2_journal_dirty(handle, *last_eb_bh); 1311 ocfs2_journal_dirty(handle, et->et_root_bh); 1312 if (eb_bh) 1313 ocfs2_journal_dirty(handle, eb_bh); 1314 1315 /* 1316 * Some callers want to track the rightmost leaf so pass it 1317 * back here. 1318 */ 1319 brelse(*last_eb_bh); 1320 get_bh(new_eb_bhs[0]); 1321 *last_eb_bh = new_eb_bhs[0]; 1322 1323 status = 0; 1324 bail: 1325 if (new_eb_bhs) { 1326 for (i = 0; i < new_blocks; i++) 1327 brelse(new_eb_bhs[i]); 1328 kfree(new_eb_bhs); 1329 } 1330 1331 return status; 1332 } 1333 1334 /* 1335 * adds another level to the allocation tree. 1336 * returns back the new extent block so you can add a branch to it 1337 * after this call. 1338 */ 1339 static int ocfs2_shift_tree_depth(handle_t *handle, 1340 struct ocfs2_extent_tree *et, 1341 struct ocfs2_alloc_context *meta_ac, 1342 struct buffer_head **ret_new_eb_bh) 1343 { 1344 int status, i; 1345 u32 new_clusters; 1346 struct buffer_head *new_eb_bh = NULL; 1347 struct ocfs2_extent_block *eb; 1348 struct ocfs2_extent_list *root_el; 1349 struct ocfs2_extent_list *eb_el; 1350 1351 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1352 &new_eb_bh); 1353 if (status < 0) { 1354 mlog_errno(status); 1355 goto bail; 1356 } 1357 1358 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1359 /* ocfs2_create_new_meta_bhs() should create it right! */ 1360 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1361 1362 eb_el = &eb->h_list; 1363 root_el = et->et_root_el; 1364 1365 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1366 OCFS2_JOURNAL_ACCESS_CREATE); 1367 if (status < 0) { 1368 mlog_errno(status); 1369 goto bail; 1370 } 1371 1372 /* copy the root extent list data into the new extent block */ 1373 eb_el->l_tree_depth = root_el->l_tree_depth; 1374 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1375 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1376 eb_el->l_recs[i] = root_el->l_recs[i]; 1377 1378 ocfs2_journal_dirty(handle, new_eb_bh); 1379 1380 status = ocfs2_et_root_journal_access(handle, et, 1381 OCFS2_JOURNAL_ACCESS_WRITE); 1382 if (status < 0) { 1383 mlog_errno(status); 1384 goto bail; 1385 } 1386 1387 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1388 1389 /* update root_bh now */ 1390 le16_add_cpu(&root_el->l_tree_depth, 1); 1391 root_el->l_recs[0].e_cpos = 0; 1392 root_el->l_recs[0].e_blkno = eb->h_blkno; 1393 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1394 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1395 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1396 root_el->l_next_free_rec = cpu_to_le16(1); 1397 1398 /* If this is our 1st tree depth shift, then last_eb_blk 1399 * becomes the allocated extent block */ 1400 if (root_el->l_tree_depth == cpu_to_le16(1)) 1401 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1402 1403 ocfs2_journal_dirty(handle, et->et_root_bh); 1404 1405 *ret_new_eb_bh = new_eb_bh; 1406 new_eb_bh = NULL; 1407 status = 0; 1408 bail: 1409 brelse(new_eb_bh); 1410 1411 return status; 1412 } 1413 1414 /* 1415 * Should only be called when there is no space left in any of the 1416 * leaf nodes. What we want to do is find the lowest tree depth 1417 * non-leaf extent block with room for new records. There are three 1418 * valid results of this search: 1419 * 1420 * 1) a lowest extent block is found, then we pass it back in 1421 * *lowest_eb_bh and return '0' 1422 * 1423 * 2) the search fails to find anything, but the root_el has room. We 1424 * pass NULL back in *lowest_eb_bh, but still return '0' 1425 * 1426 * 3) the search fails to find anything AND the root_el is full, in 1427 * which case we return > 0 1428 * 1429 * return status < 0 indicates an error. 1430 */ 1431 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1432 struct buffer_head **target_bh) 1433 { 1434 int status = 0, i; 1435 u64 blkno; 1436 struct ocfs2_extent_block *eb; 1437 struct ocfs2_extent_list *el; 1438 struct buffer_head *bh = NULL; 1439 struct buffer_head *lowest_bh = NULL; 1440 1441 *target_bh = NULL; 1442 1443 el = et->et_root_el; 1444 1445 while(le16_to_cpu(el->l_tree_depth) > 1) { 1446 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1447 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1448 "Owner %llu has empty " 1449 "extent list (next_free_rec == 0)", 1450 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1451 status = -EIO; 1452 goto bail; 1453 } 1454 i = le16_to_cpu(el->l_next_free_rec) - 1; 1455 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1456 if (!blkno) { 1457 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1458 "Owner %llu has extent " 1459 "list where extent # %d has no physical " 1460 "block start", 1461 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1462 status = -EIO; 1463 goto bail; 1464 } 1465 1466 brelse(bh); 1467 bh = NULL; 1468 1469 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1470 if (status < 0) { 1471 mlog_errno(status); 1472 goto bail; 1473 } 1474 1475 eb = (struct ocfs2_extent_block *) bh->b_data; 1476 el = &eb->h_list; 1477 1478 if (le16_to_cpu(el->l_next_free_rec) < 1479 le16_to_cpu(el->l_count)) { 1480 brelse(lowest_bh); 1481 lowest_bh = bh; 1482 get_bh(lowest_bh); 1483 } 1484 } 1485 1486 /* If we didn't find one and the fe doesn't have any room, 1487 * then return '1' */ 1488 el = et->et_root_el; 1489 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1490 status = 1; 1491 1492 *target_bh = lowest_bh; 1493 bail: 1494 brelse(bh); 1495 1496 return status; 1497 } 1498 1499 /* 1500 * Grow a b-tree so that it has more records. 1501 * 1502 * We might shift the tree depth in which case existing paths should 1503 * be considered invalid. 1504 * 1505 * Tree depth after the grow is returned via *final_depth. 1506 * 1507 * *last_eb_bh will be updated by ocfs2_add_branch(). 1508 */ 1509 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1510 int *final_depth, struct buffer_head **last_eb_bh, 1511 struct ocfs2_alloc_context *meta_ac) 1512 { 1513 int ret, shift; 1514 struct ocfs2_extent_list *el = et->et_root_el; 1515 int depth = le16_to_cpu(el->l_tree_depth); 1516 struct buffer_head *bh = NULL; 1517 1518 BUG_ON(meta_ac == NULL); 1519 1520 shift = ocfs2_find_branch_target(et, &bh); 1521 if (shift < 0) { 1522 ret = shift; 1523 mlog_errno(ret); 1524 goto out; 1525 } 1526 1527 /* We traveled all the way to the bottom of the allocation tree 1528 * and didn't find room for any more extents - we need to add 1529 * another tree level */ 1530 if (shift) { 1531 BUG_ON(bh); 1532 trace_ocfs2_grow_tree( 1533 (unsigned long long) 1534 ocfs2_metadata_cache_owner(et->et_ci), 1535 depth); 1536 1537 /* ocfs2_shift_tree_depth will return us a buffer with 1538 * the new extent block (so we can pass that to 1539 * ocfs2_add_branch). */ 1540 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1541 if (ret < 0) { 1542 mlog_errno(ret); 1543 goto out; 1544 } 1545 depth++; 1546 if (depth == 1) { 1547 /* 1548 * Special case: we have room now if we shifted from 1549 * tree_depth 0, so no more work needs to be done. 1550 * 1551 * We won't be calling add_branch, so pass 1552 * back *last_eb_bh as the new leaf. At depth 1553 * zero, it should always be null so there's 1554 * no reason to brelse. 1555 */ 1556 BUG_ON(*last_eb_bh); 1557 get_bh(bh); 1558 *last_eb_bh = bh; 1559 goto out; 1560 } 1561 } 1562 1563 /* call ocfs2_add_branch to add the final part of the tree with 1564 * the new data. */ 1565 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1566 meta_ac); 1567 if (ret < 0) { 1568 mlog_errno(ret); 1569 goto out; 1570 } 1571 1572 out: 1573 if (final_depth) 1574 *final_depth = depth; 1575 brelse(bh); 1576 return ret; 1577 } 1578 1579 /* 1580 * This function will discard the rightmost extent record. 1581 */ 1582 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1583 { 1584 int next_free = le16_to_cpu(el->l_next_free_rec); 1585 int count = le16_to_cpu(el->l_count); 1586 unsigned int num_bytes; 1587 1588 BUG_ON(!next_free); 1589 /* This will cause us to go off the end of our extent list. */ 1590 BUG_ON(next_free >= count); 1591 1592 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1593 1594 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1595 } 1596 1597 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1598 struct ocfs2_extent_rec *insert_rec) 1599 { 1600 int i, insert_index, next_free, has_empty, num_bytes; 1601 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1602 struct ocfs2_extent_rec *rec; 1603 1604 next_free = le16_to_cpu(el->l_next_free_rec); 1605 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1606 1607 BUG_ON(!next_free); 1608 1609 /* The tree code before us didn't allow enough room in the leaf. */ 1610 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1611 1612 /* 1613 * The easiest way to approach this is to just remove the 1614 * empty extent and temporarily decrement next_free. 1615 */ 1616 if (has_empty) { 1617 /* 1618 * If next_free was 1 (only an empty extent), this 1619 * loop won't execute, which is fine. We still want 1620 * the decrement above to happen. 1621 */ 1622 for(i = 0; i < (next_free - 1); i++) 1623 el->l_recs[i] = el->l_recs[i+1]; 1624 1625 next_free--; 1626 } 1627 1628 /* 1629 * Figure out what the new record index should be. 1630 */ 1631 for(i = 0; i < next_free; i++) { 1632 rec = &el->l_recs[i]; 1633 1634 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1635 break; 1636 } 1637 insert_index = i; 1638 1639 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1640 has_empty, next_free, 1641 le16_to_cpu(el->l_count)); 1642 1643 BUG_ON(insert_index < 0); 1644 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1645 BUG_ON(insert_index > next_free); 1646 1647 /* 1648 * No need to memmove if we're just adding to the tail. 1649 */ 1650 if (insert_index != next_free) { 1651 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1652 1653 num_bytes = next_free - insert_index; 1654 num_bytes *= sizeof(struct ocfs2_extent_rec); 1655 memmove(&el->l_recs[insert_index + 1], 1656 &el->l_recs[insert_index], 1657 num_bytes); 1658 } 1659 1660 /* 1661 * Either we had an empty extent, and need to re-increment or 1662 * there was no empty extent on a non full rightmost leaf node, 1663 * in which case we still need to increment. 1664 */ 1665 next_free++; 1666 el->l_next_free_rec = cpu_to_le16(next_free); 1667 /* 1668 * Make sure none of the math above just messed up our tree. 1669 */ 1670 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1671 1672 el->l_recs[insert_index] = *insert_rec; 1673 1674 } 1675 1676 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1677 { 1678 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1679 1680 BUG_ON(num_recs == 0); 1681 1682 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1683 num_recs--; 1684 size = num_recs * sizeof(struct ocfs2_extent_rec); 1685 memmove(&el->l_recs[0], &el->l_recs[1], size); 1686 memset(&el->l_recs[num_recs], 0, 1687 sizeof(struct ocfs2_extent_rec)); 1688 el->l_next_free_rec = cpu_to_le16(num_recs); 1689 } 1690 } 1691 1692 /* 1693 * Create an empty extent record . 1694 * 1695 * l_next_free_rec may be updated. 1696 * 1697 * If an empty extent already exists do nothing. 1698 */ 1699 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1700 { 1701 int next_free = le16_to_cpu(el->l_next_free_rec); 1702 1703 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1704 1705 if (next_free == 0) 1706 goto set_and_inc; 1707 1708 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1709 return; 1710 1711 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1712 "Asked to create an empty extent in a full list:\n" 1713 "count = %u, tree depth = %u", 1714 le16_to_cpu(el->l_count), 1715 le16_to_cpu(el->l_tree_depth)); 1716 1717 ocfs2_shift_records_right(el); 1718 1719 set_and_inc: 1720 le16_add_cpu(&el->l_next_free_rec, 1); 1721 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1722 } 1723 1724 /* 1725 * For a rotation which involves two leaf nodes, the "root node" is 1726 * the lowest level tree node which contains a path to both leafs. This 1727 * resulting set of information can be used to form a complete "subtree" 1728 * 1729 * This function is passed two full paths from the dinode down to a 1730 * pair of adjacent leaves. It's task is to figure out which path 1731 * index contains the subtree root - this can be the root index itself 1732 * in a worst-case rotation. 1733 * 1734 * The array index of the subtree root is passed back. 1735 */ 1736 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1737 struct ocfs2_path *left, 1738 struct ocfs2_path *right) 1739 { 1740 int i = 0; 1741 1742 /* 1743 * Check that the caller passed in two paths from the same tree. 1744 */ 1745 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1746 1747 do { 1748 i++; 1749 1750 /* 1751 * The caller didn't pass two adjacent paths. 1752 */ 1753 mlog_bug_on_msg(i > left->p_tree_depth, 1754 "Owner %llu, left depth %u, right depth %u\n" 1755 "left leaf blk %llu, right leaf blk %llu\n", 1756 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1757 left->p_tree_depth, right->p_tree_depth, 1758 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1759 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1760 } while (left->p_node[i].bh->b_blocknr == 1761 right->p_node[i].bh->b_blocknr); 1762 1763 return i - 1; 1764 } 1765 1766 typedef void (path_insert_t)(void *, struct buffer_head *); 1767 1768 /* 1769 * Traverse a btree path in search of cpos, starting at root_el. 1770 * 1771 * This code can be called with a cpos larger than the tree, in which 1772 * case it will return the rightmost path. 1773 */ 1774 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1775 struct ocfs2_extent_list *root_el, u32 cpos, 1776 path_insert_t *func, void *data) 1777 { 1778 int i, ret = 0; 1779 u32 range; 1780 u64 blkno; 1781 struct buffer_head *bh = NULL; 1782 struct ocfs2_extent_block *eb; 1783 struct ocfs2_extent_list *el; 1784 struct ocfs2_extent_rec *rec; 1785 1786 el = root_el; 1787 while (el->l_tree_depth) { 1788 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1789 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1790 "Owner %llu has empty extent list at " 1791 "depth %u\n", 1792 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1793 le16_to_cpu(el->l_tree_depth)); 1794 ret = -EROFS; 1795 goto out; 1796 1797 } 1798 1799 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1800 rec = &el->l_recs[i]; 1801 1802 /* 1803 * In the case that cpos is off the allocation 1804 * tree, this should just wind up returning the 1805 * rightmost record. 1806 */ 1807 range = le32_to_cpu(rec->e_cpos) + 1808 ocfs2_rec_clusters(el, rec); 1809 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1810 break; 1811 } 1812 1813 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1814 if (blkno == 0) { 1815 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1816 "Owner %llu has bad blkno in extent list " 1817 "at depth %u (index %d)\n", 1818 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1819 le16_to_cpu(el->l_tree_depth), i); 1820 ret = -EROFS; 1821 goto out; 1822 } 1823 1824 brelse(bh); 1825 bh = NULL; 1826 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1827 if (ret) { 1828 mlog_errno(ret); 1829 goto out; 1830 } 1831 1832 eb = (struct ocfs2_extent_block *) bh->b_data; 1833 el = &eb->h_list; 1834 1835 if (le16_to_cpu(el->l_next_free_rec) > 1836 le16_to_cpu(el->l_count)) { 1837 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1838 "Owner %llu has bad count in extent list " 1839 "at block %llu (next free=%u, count=%u)\n", 1840 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1841 (unsigned long long)bh->b_blocknr, 1842 le16_to_cpu(el->l_next_free_rec), 1843 le16_to_cpu(el->l_count)); 1844 ret = -EROFS; 1845 goto out; 1846 } 1847 1848 if (func) 1849 func(data, bh); 1850 } 1851 1852 out: 1853 /* 1854 * Catch any trailing bh that the loop didn't handle. 1855 */ 1856 brelse(bh); 1857 1858 return ret; 1859 } 1860 1861 /* 1862 * Given an initialized path (that is, it has a valid root extent 1863 * list), this function will traverse the btree in search of the path 1864 * which would contain cpos. 1865 * 1866 * The path traveled is recorded in the path structure. 1867 * 1868 * Note that this will not do any comparisons on leaf node extent 1869 * records, so it will work fine in the case that we just added a tree 1870 * branch. 1871 */ 1872 struct find_path_data { 1873 int index; 1874 struct ocfs2_path *path; 1875 }; 1876 static void find_path_ins(void *data, struct buffer_head *bh) 1877 { 1878 struct find_path_data *fp = data; 1879 1880 get_bh(bh); 1881 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1882 fp->index++; 1883 } 1884 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1885 struct ocfs2_path *path, u32 cpos) 1886 { 1887 struct find_path_data data; 1888 1889 data.index = 1; 1890 data.path = path; 1891 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1892 find_path_ins, &data); 1893 } 1894 1895 static void find_leaf_ins(void *data, struct buffer_head *bh) 1896 { 1897 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1898 struct ocfs2_extent_list *el = &eb->h_list; 1899 struct buffer_head **ret = data; 1900 1901 /* We want to retain only the leaf block. */ 1902 if (le16_to_cpu(el->l_tree_depth) == 0) { 1903 get_bh(bh); 1904 *ret = bh; 1905 } 1906 } 1907 /* 1908 * Find the leaf block in the tree which would contain cpos. No 1909 * checking of the actual leaf is done. 1910 * 1911 * Some paths want to call this instead of allocating a path structure 1912 * and calling ocfs2_find_path(). 1913 * 1914 * This function doesn't handle non btree extent lists. 1915 */ 1916 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1917 struct ocfs2_extent_list *root_el, u32 cpos, 1918 struct buffer_head **leaf_bh) 1919 { 1920 int ret; 1921 struct buffer_head *bh = NULL; 1922 1923 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1924 if (ret) { 1925 mlog_errno(ret); 1926 goto out; 1927 } 1928 1929 *leaf_bh = bh; 1930 out: 1931 return ret; 1932 } 1933 1934 /* 1935 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1936 * 1937 * Basically, we've moved stuff around at the bottom of the tree and 1938 * we need to fix up the extent records above the changes to reflect 1939 * the new changes. 1940 * 1941 * left_rec: the record on the left. 1942 * left_child_el: is the child list pointed to by left_rec 1943 * right_rec: the record to the right of left_rec 1944 * right_child_el: is the child list pointed to by right_rec 1945 * 1946 * By definition, this only works on interior nodes. 1947 */ 1948 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1949 struct ocfs2_extent_list *left_child_el, 1950 struct ocfs2_extent_rec *right_rec, 1951 struct ocfs2_extent_list *right_child_el) 1952 { 1953 u32 left_clusters, right_end; 1954 1955 /* 1956 * Interior nodes never have holes. Their cpos is the cpos of 1957 * the leftmost record in their child list. Their cluster 1958 * count covers the full theoretical range of their child list 1959 * - the range between their cpos and the cpos of the record 1960 * immediately to their right. 1961 */ 1962 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1963 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1964 BUG_ON(right_child_el->l_tree_depth); 1965 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1966 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1967 } 1968 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1969 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1970 1971 /* 1972 * Calculate the rightmost cluster count boundary before 1973 * moving cpos - we will need to adjust clusters after 1974 * updating e_cpos to keep the same highest cluster count. 1975 */ 1976 right_end = le32_to_cpu(right_rec->e_cpos); 1977 right_end += le32_to_cpu(right_rec->e_int_clusters); 1978 1979 right_rec->e_cpos = left_rec->e_cpos; 1980 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1981 1982 right_end -= le32_to_cpu(right_rec->e_cpos); 1983 right_rec->e_int_clusters = cpu_to_le32(right_end); 1984 } 1985 1986 /* 1987 * Adjust the adjacent root node records involved in a 1988 * rotation. left_el_blkno is passed in as a key so that we can easily 1989 * find it's index in the root list. 1990 */ 1991 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1992 struct ocfs2_extent_list *left_el, 1993 struct ocfs2_extent_list *right_el, 1994 u64 left_el_blkno) 1995 { 1996 int i; 1997 1998 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1999 le16_to_cpu(left_el->l_tree_depth)); 2000 2001 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2002 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2003 break; 2004 } 2005 2006 /* 2007 * The path walking code should have never returned a root and 2008 * two paths which are not adjacent. 2009 */ 2010 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2011 2012 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 2013 &root_el->l_recs[i + 1], right_el); 2014 } 2015 2016 /* 2017 * We've changed a leaf block (in right_path) and need to reflect that 2018 * change back up the subtree. 2019 * 2020 * This happens in multiple places: 2021 * - When we've moved an extent record from the left path leaf to the right 2022 * path leaf to make room for an empty extent in the left path leaf. 2023 * - When our insert into the right path leaf is at the leftmost edge 2024 * and requires an update of the path immediately to it's left. This 2025 * can occur at the end of some types of rotation and appending inserts. 2026 * - When we've adjusted the last extent record in the left path leaf and the 2027 * 1st extent record in the right path leaf during cross extent block merge. 2028 */ 2029 static void ocfs2_complete_edge_insert(handle_t *handle, 2030 struct ocfs2_path *left_path, 2031 struct ocfs2_path *right_path, 2032 int subtree_index) 2033 { 2034 int i, idx; 2035 struct ocfs2_extent_list *el, *left_el, *right_el; 2036 struct ocfs2_extent_rec *left_rec, *right_rec; 2037 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2038 2039 /* 2040 * Update the counts and position values within all the 2041 * interior nodes to reflect the leaf rotation we just did. 2042 * 2043 * The root node is handled below the loop. 2044 * 2045 * We begin the loop with right_el and left_el pointing to the 2046 * leaf lists and work our way up. 2047 * 2048 * NOTE: within this loop, left_el and right_el always refer 2049 * to the *child* lists. 2050 */ 2051 left_el = path_leaf_el(left_path); 2052 right_el = path_leaf_el(right_path); 2053 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2054 trace_ocfs2_complete_edge_insert(i); 2055 2056 /* 2057 * One nice property of knowing that all of these 2058 * nodes are below the root is that we only deal with 2059 * the leftmost right node record and the rightmost 2060 * left node record. 2061 */ 2062 el = left_path->p_node[i].el; 2063 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2064 left_rec = &el->l_recs[idx]; 2065 2066 el = right_path->p_node[i].el; 2067 right_rec = &el->l_recs[0]; 2068 2069 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2070 right_el); 2071 2072 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2073 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2074 2075 /* 2076 * Setup our list pointers now so that the current 2077 * parents become children in the next iteration. 2078 */ 2079 left_el = left_path->p_node[i].el; 2080 right_el = right_path->p_node[i].el; 2081 } 2082 2083 /* 2084 * At the root node, adjust the two adjacent records which 2085 * begin our path to the leaves. 2086 */ 2087 2088 el = left_path->p_node[subtree_index].el; 2089 left_el = left_path->p_node[subtree_index + 1].el; 2090 right_el = right_path->p_node[subtree_index + 1].el; 2091 2092 ocfs2_adjust_root_records(el, left_el, right_el, 2093 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2094 2095 root_bh = left_path->p_node[subtree_index].bh; 2096 2097 ocfs2_journal_dirty(handle, root_bh); 2098 } 2099 2100 static int ocfs2_rotate_subtree_right(handle_t *handle, 2101 struct ocfs2_extent_tree *et, 2102 struct ocfs2_path *left_path, 2103 struct ocfs2_path *right_path, 2104 int subtree_index) 2105 { 2106 int ret, i; 2107 struct buffer_head *right_leaf_bh; 2108 struct buffer_head *left_leaf_bh = NULL; 2109 struct buffer_head *root_bh; 2110 struct ocfs2_extent_list *right_el, *left_el; 2111 struct ocfs2_extent_rec move_rec; 2112 2113 left_leaf_bh = path_leaf_bh(left_path); 2114 left_el = path_leaf_el(left_path); 2115 2116 if (left_el->l_next_free_rec != left_el->l_count) { 2117 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2118 "Inode %llu has non-full interior leaf node %llu" 2119 "(next free = %u)", 2120 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2121 (unsigned long long)left_leaf_bh->b_blocknr, 2122 le16_to_cpu(left_el->l_next_free_rec)); 2123 return -EROFS; 2124 } 2125 2126 /* 2127 * This extent block may already have an empty record, so we 2128 * return early if so. 2129 */ 2130 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2131 return 0; 2132 2133 root_bh = left_path->p_node[subtree_index].bh; 2134 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2135 2136 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2137 subtree_index); 2138 if (ret) { 2139 mlog_errno(ret); 2140 goto out; 2141 } 2142 2143 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2144 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2145 right_path, i); 2146 if (ret) { 2147 mlog_errno(ret); 2148 goto out; 2149 } 2150 2151 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2152 left_path, i); 2153 if (ret) { 2154 mlog_errno(ret); 2155 goto out; 2156 } 2157 } 2158 2159 right_leaf_bh = path_leaf_bh(right_path); 2160 right_el = path_leaf_el(right_path); 2161 2162 /* This is a code error, not a disk corruption. */ 2163 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2164 "because rightmost leaf block %llu is empty\n", 2165 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2166 (unsigned long long)right_leaf_bh->b_blocknr); 2167 2168 ocfs2_create_empty_extent(right_el); 2169 2170 ocfs2_journal_dirty(handle, right_leaf_bh); 2171 2172 /* Do the copy now. */ 2173 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2174 move_rec = left_el->l_recs[i]; 2175 right_el->l_recs[0] = move_rec; 2176 2177 /* 2178 * Clear out the record we just copied and shift everything 2179 * over, leaving an empty extent in the left leaf. 2180 * 2181 * We temporarily subtract from next_free_rec so that the 2182 * shift will lose the tail record (which is now defunct). 2183 */ 2184 le16_add_cpu(&left_el->l_next_free_rec, -1); 2185 ocfs2_shift_records_right(left_el); 2186 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2187 le16_add_cpu(&left_el->l_next_free_rec, 1); 2188 2189 ocfs2_journal_dirty(handle, left_leaf_bh); 2190 2191 ocfs2_complete_edge_insert(handle, left_path, right_path, 2192 subtree_index); 2193 2194 out: 2195 return ret; 2196 } 2197 2198 /* 2199 * Given a full path, determine what cpos value would return us a path 2200 * containing the leaf immediately to the left of the current one. 2201 * 2202 * Will return zero if the path passed in is already the leftmost path. 2203 */ 2204 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2205 struct ocfs2_path *path, u32 *cpos) 2206 { 2207 int i, j, ret = 0; 2208 u64 blkno; 2209 struct ocfs2_extent_list *el; 2210 2211 BUG_ON(path->p_tree_depth == 0); 2212 2213 *cpos = 0; 2214 2215 blkno = path_leaf_bh(path)->b_blocknr; 2216 2217 /* Start at the tree node just above the leaf and work our way up. */ 2218 i = path->p_tree_depth - 1; 2219 while (i >= 0) { 2220 el = path->p_node[i].el; 2221 2222 /* 2223 * Find the extent record just before the one in our 2224 * path. 2225 */ 2226 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2227 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2228 if (j == 0) { 2229 if (i == 0) { 2230 /* 2231 * We've determined that the 2232 * path specified is already 2233 * the leftmost one - return a 2234 * cpos of zero. 2235 */ 2236 goto out; 2237 } 2238 /* 2239 * The leftmost record points to our 2240 * leaf - we need to travel up the 2241 * tree one level. 2242 */ 2243 goto next_node; 2244 } 2245 2246 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2247 *cpos = *cpos + ocfs2_rec_clusters(el, 2248 &el->l_recs[j - 1]); 2249 *cpos = *cpos - 1; 2250 goto out; 2251 } 2252 } 2253 2254 /* 2255 * If we got here, we never found a valid node where 2256 * the tree indicated one should be. 2257 */ 2258 ocfs2_error(sb, 2259 "Invalid extent tree at extent block %llu\n", 2260 (unsigned long long)blkno); 2261 ret = -EROFS; 2262 goto out; 2263 2264 next_node: 2265 blkno = path->p_node[i].bh->b_blocknr; 2266 i--; 2267 } 2268 2269 out: 2270 return ret; 2271 } 2272 2273 /* 2274 * Extend the transaction by enough credits to complete the rotation, 2275 * and still leave at least the original number of credits allocated 2276 * to this transaction. 2277 */ 2278 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2279 int op_credits, 2280 struct ocfs2_path *path) 2281 { 2282 int ret = 0; 2283 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2284 2285 if (handle->h_buffer_credits < credits) 2286 ret = ocfs2_extend_trans(handle, 2287 credits - handle->h_buffer_credits); 2288 2289 return ret; 2290 } 2291 2292 /* 2293 * Trap the case where we're inserting into the theoretical range past 2294 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2295 * whose cpos is less than ours into the right leaf. 2296 * 2297 * It's only necessary to look at the rightmost record of the left 2298 * leaf because the logic that calls us should ensure that the 2299 * theoretical ranges in the path components above the leaves are 2300 * correct. 2301 */ 2302 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2303 u32 insert_cpos) 2304 { 2305 struct ocfs2_extent_list *left_el; 2306 struct ocfs2_extent_rec *rec; 2307 int next_free; 2308 2309 left_el = path_leaf_el(left_path); 2310 next_free = le16_to_cpu(left_el->l_next_free_rec); 2311 rec = &left_el->l_recs[next_free - 1]; 2312 2313 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2314 return 1; 2315 return 0; 2316 } 2317 2318 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2319 { 2320 int next_free = le16_to_cpu(el->l_next_free_rec); 2321 unsigned int range; 2322 struct ocfs2_extent_rec *rec; 2323 2324 if (next_free == 0) 2325 return 0; 2326 2327 rec = &el->l_recs[0]; 2328 if (ocfs2_is_empty_extent(rec)) { 2329 /* Empty list. */ 2330 if (next_free == 1) 2331 return 0; 2332 rec = &el->l_recs[1]; 2333 } 2334 2335 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2336 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2337 return 1; 2338 return 0; 2339 } 2340 2341 /* 2342 * Rotate all the records in a btree right one record, starting at insert_cpos. 2343 * 2344 * The path to the rightmost leaf should be passed in. 2345 * 2346 * The array is assumed to be large enough to hold an entire path (tree depth). 2347 * 2348 * Upon successful return from this function: 2349 * 2350 * - The 'right_path' array will contain a path to the leaf block 2351 * whose range contains e_cpos. 2352 * - That leaf block will have a single empty extent in list index 0. 2353 * - In the case that the rotation requires a post-insert update, 2354 * *ret_left_path will contain a valid path which can be passed to 2355 * ocfs2_insert_path(). 2356 */ 2357 static int ocfs2_rotate_tree_right(handle_t *handle, 2358 struct ocfs2_extent_tree *et, 2359 enum ocfs2_split_type split, 2360 u32 insert_cpos, 2361 struct ocfs2_path *right_path, 2362 struct ocfs2_path **ret_left_path) 2363 { 2364 int ret, start, orig_credits = handle->h_buffer_credits; 2365 u32 cpos; 2366 struct ocfs2_path *left_path = NULL; 2367 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2368 2369 *ret_left_path = NULL; 2370 2371 left_path = ocfs2_new_path_from_path(right_path); 2372 if (!left_path) { 2373 ret = -ENOMEM; 2374 mlog_errno(ret); 2375 goto out; 2376 } 2377 2378 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2379 if (ret) { 2380 mlog_errno(ret); 2381 goto out; 2382 } 2383 2384 trace_ocfs2_rotate_tree_right( 2385 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2386 insert_cpos, cpos); 2387 2388 /* 2389 * What we want to do here is: 2390 * 2391 * 1) Start with the rightmost path. 2392 * 2393 * 2) Determine a path to the leaf block directly to the left 2394 * of that leaf. 2395 * 2396 * 3) Determine the 'subtree root' - the lowest level tree node 2397 * which contains a path to both leaves. 2398 * 2399 * 4) Rotate the subtree. 2400 * 2401 * 5) Find the next subtree by considering the left path to be 2402 * the new right path. 2403 * 2404 * The check at the top of this while loop also accepts 2405 * insert_cpos == cpos because cpos is only a _theoretical_ 2406 * value to get us the left path - insert_cpos might very well 2407 * be filling that hole. 2408 * 2409 * Stop at a cpos of '0' because we either started at the 2410 * leftmost branch (i.e., a tree with one branch and a 2411 * rotation inside of it), or we've gone as far as we can in 2412 * rotating subtrees. 2413 */ 2414 while (cpos && insert_cpos <= cpos) { 2415 trace_ocfs2_rotate_tree_right( 2416 (unsigned long long) 2417 ocfs2_metadata_cache_owner(et->et_ci), 2418 insert_cpos, cpos); 2419 2420 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2421 if (ret) { 2422 mlog_errno(ret); 2423 goto out; 2424 } 2425 2426 mlog_bug_on_msg(path_leaf_bh(left_path) == 2427 path_leaf_bh(right_path), 2428 "Owner %llu: error during insert of %u " 2429 "(left path cpos %u) results in two identical " 2430 "paths ending at %llu\n", 2431 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2432 insert_cpos, cpos, 2433 (unsigned long long) 2434 path_leaf_bh(left_path)->b_blocknr); 2435 2436 if (split == SPLIT_NONE && 2437 ocfs2_rotate_requires_path_adjustment(left_path, 2438 insert_cpos)) { 2439 2440 /* 2441 * We've rotated the tree as much as we 2442 * should. The rest is up to 2443 * ocfs2_insert_path() to complete, after the 2444 * record insertion. We indicate this 2445 * situation by returning the left path. 2446 * 2447 * The reason we don't adjust the records here 2448 * before the record insert is that an error 2449 * later might break the rule where a parent 2450 * record e_cpos will reflect the actual 2451 * e_cpos of the 1st nonempty record of the 2452 * child list. 2453 */ 2454 *ret_left_path = left_path; 2455 goto out_ret_path; 2456 } 2457 2458 start = ocfs2_find_subtree_root(et, left_path, right_path); 2459 2460 trace_ocfs2_rotate_subtree(start, 2461 (unsigned long long) 2462 right_path->p_node[start].bh->b_blocknr, 2463 right_path->p_tree_depth); 2464 2465 ret = ocfs2_extend_rotate_transaction(handle, start, 2466 orig_credits, right_path); 2467 if (ret) { 2468 mlog_errno(ret); 2469 goto out; 2470 } 2471 2472 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2473 right_path, start); 2474 if (ret) { 2475 mlog_errno(ret); 2476 goto out; 2477 } 2478 2479 if (split != SPLIT_NONE && 2480 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2481 insert_cpos)) { 2482 /* 2483 * A rotate moves the rightmost left leaf 2484 * record over to the leftmost right leaf 2485 * slot. If we're doing an extent split 2486 * instead of a real insert, then we have to 2487 * check that the extent to be split wasn't 2488 * just moved over. If it was, then we can 2489 * exit here, passing left_path back - 2490 * ocfs2_split_extent() is smart enough to 2491 * search both leaves. 2492 */ 2493 *ret_left_path = left_path; 2494 goto out_ret_path; 2495 } 2496 2497 /* 2498 * There is no need to re-read the next right path 2499 * as we know that it'll be our current left 2500 * path. Optimize by copying values instead. 2501 */ 2502 ocfs2_mv_path(right_path, left_path); 2503 2504 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2505 if (ret) { 2506 mlog_errno(ret); 2507 goto out; 2508 } 2509 } 2510 2511 out: 2512 ocfs2_free_path(left_path); 2513 2514 out_ret_path: 2515 return ret; 2516 } 2517 2518 static int ocfs2_update_edge_lengths(handle_t *handle, 2519 struct ocfs2_extent_tree *et, 2520 int subtree_index, struct ocfs2_path *path) 2521 { 2522 int i, idx, ret; 2523 struct ocfs2_extent_rec *rec; 2524 struct ocfs2_extent_list *el; 2525 struct ocfs2_extent_block *eb; 2526 u32 range; 2527 2528 /* 2529 * In normal tree rotation process, we will never touch the 2530 * tree branch above subtree_index and ocfs2_extend_rotate_transaction 2531 * doesn't reserve the credits for them either. 2532 * 2533 * But we do have a special case here which will update the rightmost 2534 * records for all the bh in the path. 2535 * So we have to allocate extra credits and access them. 2536 */ 2537 ret = ocfs2_extend_trans(handle, subtree_index); 2538 if (ret) { 2539 mlog_errno(ret); 2540 goto out; 2541 } 2542 2543 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2544 if (ret) { 2545 mlog_errno(ret); 2546 goto out; 2547 } 2548 2549 /* Path should always be rightmost. */ 2550 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2551 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2552 2553 el = &eb->h_list; 2554 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2555 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2556 rec = &el->l_recs[idx]; 2557 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2558 2559 for (i = 0; i < path->p_tree_depth; i++) { 2560 el = path->p_node[i].el; 2561 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2562 rec = &el->l_recs[idx]; 2563 2564 rec->e_int_clusters = cpu_to_le32(range); 2565 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2566 2567 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2568 } 2569 out: 2570 return ret; 2571 } 2572 2573 static void ocfs2_unlink_path(handle_t *handle, 2574 struct ocfs2_extent_tree *et, 2575 struct ocfs2_cached_dealloc_ctxt *dealloc, 2576 struct ocfs2_path *path, int unlink_start) 2577 { 2578 int ret, i; 2579 struct ocfs2_extent_block *eb; 2580 struct ocfs2_extent_list *el; 2581 struct buffer_head *bh; 2582 2583 for(i = unlink_start; i < path_num_items(path); i++) { 2584 bh = path->p_node[i].bh; 2585 2586 eb = (struct ocfs2_extent_block *)bh->b_data; 2587 /* 2588 * Not all nodes might have had their final count 2589 * decremented by the caller - handle this here. 2590 */ 2591 el = &eb->h_list; 2592 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2593 mlog(ML_ERROR, 2594 "Inode %llu, attempted to remove extent block " 2595 "%llu with %u records\n", 2596 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2597 (unsigned long long)le64_to_cpu(eb->h_blkno), 2598 le16_to_cpu(el->l_next_free_rec)); 2599 2600 ocfs2_journal_dirty(handle, bh); 2601 ocfs2_remove_from_cache(et->et_ci, bh); 2602 continue; 2603 } 2604 2605 el->l_next_free_rec = 0; 2606 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2607 2608 ocfs2_journal_dirty(handle, bh); 2609 2610 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2611 if (ret) 2612 mlog_errno(ret); 2613 2614 ocfs2_remove_from_cache(et->et_ci, bh); 2615 } 2616 } 2617 2618 static void ocfs2_unlink_subtree(handle_t *handle, 2619 struct ocfs2_extent_tree *et, 2620 struct ocfs2_path *left_path, 2621 struct ocfs2_path *right_path, 2622 int subtree_index, 2623 struct ocfs2_cached_dealloc_ctxt *dealloc) 2624 { 2625 int i; 2626 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2627 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2628 struct ocfs2_extent_list *el; 2629 struct ocfs2_extent_block *eb; 2630 2631 el = path_leaf_el(left_path); 2632 2633 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2634 2635 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2636 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2637 break; 2638 2639 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2640 2641 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2642 le16_add_cpu(&root_el->l_next_free_rec, -1); 2643 2644 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2645 eb->h_next_leaf_blk = 0; 2646 2647 ocfs2_journal_dirty(handle, root_bh); 2648 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2649 2650 ocfs2_unlink_path(handle, et, dealloc, right_path, 2651 subtree_index + 1); 2652 } 2653 2654 static int ocfs2_rotate_subtree_left(handle_t *handle, 2655 struct ocfs2_extent_tree *et, 2656 struct ocfs2_path *left_path, 2657 struct ocfs2_path *right_path, 2658 int subtree_index, 2659 struct ocfs2_cached_dealloc_ctxt *dealloc, 2660 int *deleted) 2661 { 2662 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2663 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2664 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2665 struct ocfs2_extent_block *eb; 2666 2667 *deleted = 0; 2668 2669 right_leaf_el = path_leaf_el(right_path); 2670 left_leaf_el = path_leaf_el(left_path); 2671 root_bh = left_path->p_node[subtree_index].bh; 2672 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2673 2674 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2675 return 0; 2676 2677 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2678 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2679 /* 2680 * It's legal for us to proceed if the right leaf is 2681 * the rightmost one and it has an empty extent. There 2682 * are two cases to handle - whether the leaf will be 2683 * empty after removal or not. If the leaf isn't empty 2684 * then just remove the empty extent up front. The 2685 * next block will handle empty leaves by flagging 2686 * them for unlink. 2687 * 2688 * Non rightmost leaves will throw -EAGAIN and the 2689 * caller can manually move the subtree and retry. 2690 */ 2691 2692 if (eb->h_next_leaf_blk != 0ULL) 2693 return -EAGAIN; 2694 2695 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2696 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2697 path_leaf_bh(right_path), 2698 OCFS2_JOURNAL_ACCESS_WRITE); 2699 if (ret) { 2700 mlog_errno(ret); 2701 goto out; 2702 } 2703 2704 ocfs2_remove_empty_extent(right_leaf_el); 2705 } else 2706 right_has_empty = 1; 2707 } 2708 2709 if (eb->h_next_leaf_blk == 0ULL && 2710 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2711 /* 2712 * We have to update i_last_eb_blk during the meta 2713 * data delete. 2714 */ 2715 ret = ocfs2_et_root_journal_access(handle, et, 2716 OCFS2_JOURNAL_ACCESS_WRITE); 2717 if (ret) { 2718 mlog_errno(ret); 2719 goto out; 2720 } 2721 2722 del_right_subtree = 1; 2723 } 2724 2725 /* 2726 * Getting here with an empty extent in the right path implies 2727 * that it's the rightmost path and will be deleted. 2728 */ 2729 BUG_ON(right_has_empty && !del_right_subtree); 2730 2731 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2732 subtree_index); 2733 if (ret) { 2734 mlog_errno(ret); 2735 goto out; 2736 } 2737 2738 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2739 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2740 right_path, i); 2741 if (ret) { 2742 mlog_errno(ret); 2743 goto out; 2744 } 2745 2746 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2747 left_path, i); 2748 if (ret) { 2749 mlog_errno(ret); 2750 goto out; 2751 } 2752 } 2753 2754 if (!right_has_empty) { 2755 /* 2756 * Only do this if we're moving a real 2757 * record. Otherwise, the action is delayed until 2758 * after removal of the right path in which case we 2759 * can do a simple shift to remove the empty extent. 2760 */ 2761 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2762 memset(&right_leaf_el->l_recs[0], 0, 2763 sizeof(struct ocfs2_extent_rec)); 2764 } 2765 if (eb->h_next_leaf_blk == 0ULL) { 2766 /* 2767 * Move recs over to get rid of empty extent, decrease 2768 * next_free. This is allowed to remove the last 2769 * extent in our leaf (setting l_next_free_rec to 2770 * zero) - the delete code below won't care. 2771 */ 2772 ocfs2_remove_empty_extent(right_leaf_el); 2773 } 2774 2775 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2776 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2777 2778 if (del_right_subtree) { 2779 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2780 subtree_index, dealloc); 2781 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 2782 left_path); 2783 if (ret) { 2784 mlog_errno(ret); 2785 goto out; 2786 } 2787 2788 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2789 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2790 2791 /* 2792 * Removal of the extent in the left leaf was skipped 2793 * above so we could delete the right path 2794 * 1st. 2795 */ 2796 if (right_has_empty) 2797 ocfs2_remove_empty_extent(left_leaf_el); 2798 2799 ocfs2_journal_dirty(handle, et_root_bh); 2800 2801 *deleted = 1; 2802 } else 2803 ocfs2_complete_edge_insert(handle, left_path, right_path, 2804 subtree_index); 2805 2806 out: 2807 return ret; 2808 } 2809 2810 /* 2811 * Given a full path, determine what cpos value would return us a path 2812 * containing the leaf immediately to the right of the current one. 2813 * 2814 * Will return zero if the path passed in is already the rightmost path. 2815 * 2816 * This looks similar, but is subtly different to 2817 * ocfs2_find_cpos_for_left_leaf(). 2818 */ 2819 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2820 struct ocfs2_path *path, u32 *cpos) 2821 { 2822 int i, j, ret = 0; 2823 u64 blkno; 2824 struct ocfs2_extent_list *el; 2825 2826 *cpos = 0; 2827 2828 if (path->p_tree_depth == 0) 2829 return 0; 2830 2831 blkno = path_leaf_bh(path)->b_blocknr; 2832 2833 /* Start at the tree node just above the leaf and work our way up. */ 2834 i = path->p_tree_depth - 1; 2835 while (i >= 0) { 2836 int next_free; 2837 2838 el = path->p_node[i].el; 2839 2840 /* 2841 * Find the extent record just after the one in our 2842 * path. 2843 */ 2844 next_free = le16_to_cpu(el->l_next_free_rec); 2845 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2846 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2847 if (j == (next_free - 1)) { 2848 if (i == 0) { 2849 /* 2850 * We've determined that the 2851 * path specified is already 2852 * the rightmost one - return a 2853 * cpos of zero. 2854 */ 2855 goto out; 2856 } 2857 /* 2858 * The rightmost record points to our 2859 * leaf - we need to travel up the 2860 * tree one level. 2861 */ 2862 goto next_node; 2863 } 2864 2865 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2866 goto out; 2867 } 2868 } 2869 2870 /* 2871 * If we got here, we never found a valid node where 2872 * the tree indicated one should be. 2873 */ 2874 ocfs2_error(sb, 2875 "Invalid extent tree at extent block %llu\n", 2876 (unsigned long long)blkno); 2877 ret = -EROFS; 2878 goto out; 2879 2880 next_node: 2881 blkno = path->p_node[i].bh->b_blocknr; 2882 i--; 2883 } 2884 2885 out: 2886 return ret; 2887 } 2888 2889 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2890 struct ocfs2_extent_tree *et, 2891 struct ocfs2_path *path) 2892 { 2893 int ret; 2894 struct buffer_head *bh = path_leaf_bh(path); 2895 struct ocfs2_extent_list *el = path_leaf_el(path); 2896 2897 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2898 return 0; 2899 2900 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2901 path_num_items(path) - 1); 2902 if (ret) { 2903 mlog_errno(ret); 2904 goto out; 2905 } 2906 2907 ocfs2_remove_empty_extent(el); 2908 ocfs2_journal_dirty(handle, bh); 2909 2910 out: 2911 return ret; 2912 } 2913 2914 static int __ocfs2_rotate_tree_left(handle_t *handle, 2915 struct ocfs2_extent_tree *et, 2916 int orig_credits, 2917 struct ocfs2_path *path, 2918 struct ocfs2_cached_dealloc_ctxt *dealloc, 2919 struct ocfs2_path **empty_extent_path) 2920 { 2921 int ret, subtree_root, deleted; 2922 u32 right_cpos; 2923 struct ocfs2_path *left_path = NULL; 2924 struct ocfs2_path *right_path = NULL; 2925 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2926 2927 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2928 2929 *empty_extent_path = NULL; 2930 2931 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2932 if (ret) { 2933 mlog_errno(ret); 2934 goto out; 2935 } 2936 2937 left_path = ocfs2_new_path_from_path(path); 2938 if (!left_path) { 2939 ret = -ENOMEM; 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 ocfs2_cp_path(left_path, path); 2945 2946 right_path = ocfs2_new_path_from_path(path); 2947 if (!right_path) { 2948 ret = -ENOMEM; 2949 mlog_errno(ret); 2950 goto out; 2951 } 2952 2953 while (right_cpos) { 2954 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2955 if (ret) { 2956 mlog_errno(ret); 2957 goto out; 2958 } 2959 2960 subtree_root = ocfs2_find_subtree_root(et, left_path, 2961 right_path); 2962 2963 trace_ocfs2_rotate_subtree(subtree_root, 2964 (unsigned long long) 2965 right_path->p_node[subtree_root].bh->b_blocknr, 2966 right_path->p_tree_depth); 2967 2968 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2969 orig_credits, left_path); 2970 if (ret) { 2971 mlog_errno(ret); 2972 goto out; 2973 } 2974 2975 /* 2976 * Caller might still want to make changes to the 2977 * tree root, so re-add it to the journal here. 2978 */ 2979 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2980 left_path, 0); 2981 if (ret) { 2982 mlog_errno(ret); 2983 goto out; 2984 } 2985 2986 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2987 right_path, subtree_root, 2988 dealloc, &deleted); 2989 if (ret == -EAGAIN) { 2990 /* 2991 * The rotation has to temporarily stop due to 2992 * the right subtree having an empty 2993 * extent. Pass it back to the caller for a 2994 * fixup. 2995 */ 2996 *empty_extent_path = right_path; 2997 right_path = NULL; 2998 goto out; 2999 } 3000 if (ret) { 3001 mlog_errno(ret); 3002 goto out; 3003 } 3004 3005 /* 3006 * The subtree rotate might have removed records on 3007 * the rightmost edge. If so, then rotation is 3008 * complete. 3009 */ 3010 if (deleted) 3011 break; 3012 3013 ocfs2_mv_path(left_path, right_path); 3014 3015 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3016 &right_cpos); 3017 if (ret) { 3018 mlog_errno(ret); 3019 goto out; 3020 } 3021 } 3022 3023 out: 3024 ocfs2_free_path(right_path); 3025 ocfs2_free_path(left_path); 3026 3027 return ret; 3028 } 3029 3030 static int ocfs2_remove_rightmost_path(handle_t *handle, 3031 struct ocfs2_extent_tree *et, 3032 struct ocfs2_path *path, 3033 struct ocfs2_cached_dealloc_ctxt *dealloc) 3034 { 3035 int ret, subtree_index; 3036 u32 cpos; 3037 struct ocfs2_path *left_path = NULL; 3038 struct ocfs2_extent_block *eb; 3039 struct ocfs2_extent_list *el; 3040 3041 3042 ret = ocfs2_et_sanity_check(et); 3043 if (ret) 3044 goto out; 3045 /* 3046 * There's two ways we handle this depending on 3047 * whether path is the only existing one. 3048 */ 3049 ret = ocfs2_extend_rotate_transaction(handle, 0, 3050 handle->h_buffer_credits, 3051 path); 3052 if (ret) { 3053 mlog_errno(ret); 3054 goto out; 3055 } 3056 3057 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3058 if (ret) { 3059 mlog_errno(ret); 3060 goto out; 3061 } 3062 3063 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3064 path, &cpos); 3065 if (ret) { 3066 mlog_errno(ret); 3067 goto out; 3068 } 3069 3070 if (cpos) { 3071 /* 3072 * We have a path to the left of this one - it needs 3073 * an update too. 3074 */ 3075 left_path = ocfs2_new_path_from_path(path); 3076 if (!left_path) { 3077 ret = -ENOMEM; 3078 mlog_errno(ret); 3079 goto out; 3080 } 3081 3082 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3083 if (ret) { 3084 mlog_errno(ret); 3085 goto out; 3086 } 3087 3088 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3089 if (ret) { 3090 mlog_errno(ret); 3091 goto out; 3092 } 3093 3094 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3095 3096 ocfs2_unlink_subtree(handle, et, left_path, path, 3097 subtree_index, dealloc); 3098 ret = ocfs2_update_edge_lengths(handle, et, subtree_index, 3099 left_path); 3100 if (ret) { 3101 mlog_errno(ret); 3102 goto out; 3103 } 3104 3105 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3106 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3107 } else { 3108 /* 3109 * 'path' is also the leftmost path which 3110 * means it must be the only one. This gets 3111 * handled differently because we want to 3112 * revert the root back to having extents 3113 * in-line. 3114 */ 3115 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3116 3117 el = et->et_root_el; 3118 el->l_tree_depth = 0; 3119 el->l_next_free_rec = 0; 3120 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3121 3122 ocfs2_et_set_last_eb_blk(et, 0); 3123 } 3124 3125 ocfs2_journal_dirty(handle, path_root_bh(path)); 3126 3127 out: 3128 ocfs2_free_path(left_path); 3129 return ret; 3130 } 3131 3132 /* 3133 * Left rotation of btree records. 3134 * 3135 * In many ways, this is (unsurprisingly) the opposite of right 3136 * rotation. We start at some non-rightmost path containing an empty 3137 * extent in the leaf block. The code works its way to the rightmost 3138 * path by rotating records to the left in every subtree. 3139 * 3140 * This is used by any code which reduces the number of extent records 3141 * in a leaf. After removal, an empty record should be placed in the 3142 * leftmost list position. 3143 * 3144 * This won't handle a length update of the rightmost path records if 3145 * the rightmost tree leaf record is removed so the caller is 3146 * responsible for detecting and correcting that. 3147 */ 3148 static int ocfs2_rotate_tree_left(handle_t *handle, 3149 struct ocfs2_extent_tree *et, 3150 struct ocfs2_path *path, 3151 struct ocfs2_cached_dealloc_ctxt *dealloc) 3152 { 3153 int ret, orig_credits = handle->h_buffer_credits; 3154 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3155 struct ocfs2_extent_block *eb; 3156 struct ocfs2_extent_list *el; 3157 3158 el = path_leaf_el(path); 3159 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3160 return 0; 3161 3162 if (path->p_tree_depth == 0) { 3163 rightmost_no_delete: 3164 /* 3165 * Inline extents. This is trivially handled, so do 3166 * it up front. 3167 */ 3168 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3169 if (ret) 3170 mlog_errno(ret); 3171 goto out; 3172 } 3173 3174 /* 3175 * Handle rightmost branch now. There's several cases: 3176 * 1) simple rotation leaving records in there. That's trivial. 3177 * 2) rotation requiring a branch delete - there's no more 3178 * records left. Two cases of this: 3179 * a) There are branches to the left. 3180 * b) This is also the leftmost (the only) branch. 3181 * 3182 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3183 * 2a) we need the left branch so that we can update it with the unlink 3184 * 2b) we need to bring the root back to inline extents. 3185 */ 3186 3187 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3188 el = &eb->h_list; 3189 if (eb->h_next_leaf_blk == 0) { 3190 /* 3191 * This gets a bit tricky if we're going to delete the 3192 * rightmost path. Get the other cases out of the way 3193 * 1st. 3194 */ 3195 if (le16_to_cpu(el->l_next_free_rec) > 1) 3196 goto rightmost_no_delete; 3197 3198 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3199 ret = -EIO; 3200 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3201 "Owner %llu has empty extent block at %llu", 3202 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3203 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3204 goto out; 3205 } 3206 3207 /* 3208 * XXX: The caller can not trust "path" any more after 3209 * this as it will have been deleted. What do we do? 3210 * 3211 * In theory the rotate-for-merge code will never get 3212 * here because it'll always ask for a rotate in a 3213 * nonempty list. 3214 */ 3215 3216 ret = ocfs2_remove_rightmost_path(handle, et, path, 3217 dealloc); 3218 if (ret) 3219 mlog_errno(ret); 3220 goto out; 3221 } 3222 3223 /* 3224 * Now we can loop, remembering the path we get from -EAGAIN 3225 * and restarting from there. 3226 */ 3227 try_rotate: 3228 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3229 dealloc, &restart_path); 3230 if (ret && ret != -EAGAIN) { 3231 mlog_errno(ret); 3232 goto out; 3233 } 3234 3235 while (ret == -EAGAIN) { 3236 tmp_path = restart_path; 3237 restart_path = NULL; 3238 3239 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3240 tmp_path, dealloc, 3241 &restart_path); 3242 if (ret && ret != -EAGAIN) { 3243 mlog_errno(ret); 3244 goto out; 3245 } 3246 3247 ocfs2_free_path(tmp_path); 3248 tmp_path = NULL; 3249 3250 if (ret == 0) 3251 goto try_rotate; 3252 } 3253 3254 out: 3255 ocfs2_free_path(tmp_path); 3256 ocfs2_free_path(restart_path); 3257 return ret; 3258 } 3259 3260 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3261 int index) 3262 { 3263 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3264 unsigned int size; 3265 3266 if (rec->e_leaf_clusters == 0) { 3267 /* 3268 * We consumed all of the merged-from record. An empty 3269 * extent cannot exist anywhere but the 1st array 3270 * position, so move things over if the merged-from 3271 * record doesn't occupy that position. 3272 * 3273 * This creates a new empty extent so the caller 3274 * should be smart enough to have removed any existing 3275 * ones. 3276 */ 3277 if (index > 0) { 3278 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3279 size = index * sizeof(struct ocfs2_extent_rec); 3280 memmove(&el->l_recs[1], &el->l_recs[0], size); 3281 } 3282 3283 /* 3284 * Always memset - the caller doesn't check whether it 3285 * created an empty extent, so there could be junk in 3286 * the other fields. 3287 */ 3288 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3289 } 3290 } 3291 3292 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3293 struct ocfs2_path *left_path, 3294 struct ocfs2_path **ret_right_path) 3295 { 3296 int ret; 3297 u32 right_cpos; 3298 struct ocfs2_path *right_path = NULL; 3299 struct ocfs2_extent_list *left_el; 3300 3301 *ret_right_path = NULL; 3302 3303 /* This function shouldn't be called for non-trees. */ 3304 BUG_ON(left_path->p_tree_depth == 0); 3305 3306 left_el = path_leaf_el(left_path); 3307 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3308 3309 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3310 left_path, &right_cpos); 3311 if (ret) { 3312 mlog_errno(ret); 3313 goto out; 3314 } 3315 3316 /* This function shouldn't be called for the rightmost leaf. */ 3317 BUG_ON(right_cpos == 0); 3318 3319 right_path = ocfs2_new_path_from_path(left_path); 3320 if (!right_path) { 3321 ret = -ENOMEM; 3322 mlog_errno(ret); 3323 goto out; 3324 } 3325 3326 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3327 if (ret) { 3328 mlog_errno(ret); 3329 goto out; 3330 } 3331 3332 *ret_right_path = right_path; 3333 out: 3334 if (ret) 3335 ocfs2_free_path(right_path); 3336 return ret; 3337 } 3338 3339 /* 3340 * Remove split_rec clusters from the record at index and merge them 3341 * onto the beginning of the record "next" to it. 3342 * For index < l_count - 1, the next means the extent rec at index + 1. 3343 * For index == l_count - 1, the "next" means the 1st extent rec of the 3344 * next extent block. 3345 */ 3346 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3347 handle_t *handle, 3348 struct ocfs2_extent_tree *et, 3349 struct ocfs2_extent_rec *split_rec, 3350 int index) 3351 { 3352 int ret, next_free, i; 3353 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3354 struct ocfs2_extent_rec *left_rec; 3355 struct ocfs2_extent_rec *right_rec; 3356 struct ocfs2_extent_list *right_el; 3357 struct ocfs2_path *right_path = NULL; 3358 int subtree_index = 0; 3359 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3360 struct buffer_head *bh = path_leaf_bh(left_path); 3361 struct buffer_head *root_bh = NULL; 3362 3363 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3364 left_rec = &el->l_recs[index]; 3365 3366 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3367 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3368 /* we meet with a cross extent block merge. */ 3369 ret = ocfs2_get_right_path(et, left_path, &right_path); 3370 if (ret) { 3371 mlog_errno(ret); 3372 goto out; 3373 } 3374 3375 right_el = path_leaf_el(right_path); 3376 next_free = le16_to_cpu(right_el->l_next_free_rec); 3377 BUG_ON(next_free <= 0); 3378 right_rec = &right_el->l_recs[0]; 3379 if (ocfs2_is_empty_extent(right_rec)) { 3380 BUG_ON(next_free <= 1); 3381 right_rec = &right_el->l_recs[1]; 3382 } 3383 3384 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3385 le16_to_cpu(left_rec->e_leaf_clusters) != 3386 le32_to_cpu(right_rec->e_cpos)); 3387 3388 subtree_index = ocfs2_find_subtree_root(et, left_path, 3389 right_path); 3390 3391 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3392 handle->h_buffer_credits, 3393 right_path); 3394 if (ret) { 3395 mlog_errno(ret); 3396 goto out; 3397 } 3398 3399 root_bh = left_path->p_node[subtree_index].bh; 3400 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3401 3402 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3403 subtree_index); 3404 if (ret) { 3405 mlog_errno(ret); 3406 goto out; 3407 } 3408 3409 for (i = subtree_index + 1; 3410 i < path_num_items(right_path); i++) { 3411 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3412 right_path, i); 3413 if (ret) { 3414 mlog_errno(ret); 3415 goto out; 3416 } 3417 3418 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3419 left_path, i); 3420 if (ret) { 3421 mlog_errno(ret); 3422 goto out; 3423 } 3424 } 3425 3426 } else { 3427 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3428 right_rec = &el->l_recs[index + 1]; 3429 } 3430 3431 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3432 path_num_items(left_path) - 1); 3433 if (ret) { 3434 mlog_errno(ret); 3435 goto out; 3436 } 3437 3438 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3439 3440 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3441 le64_add_cpu(&right_rec->e_blkno, 3442 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3443 split_clusters)); 3444 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3445 3446 ocfs2_cleanup_merge(el, index); 3447 3448 ocfs2_journal_dirty(handle, bh); 3449 if (right_path) { 3450 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3451 ocfs2_complete_edge_insert(handle, left_path, right_path, 3452 subtree_index); 3453 } 3454 out: 3455 if (right_path) 3456 ocfs2_free_path(right_path); 3457 return ret; 3458 } 3459 3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3461 struct ocfs2_path *right_path, 3462 struct ocfs2_path **ret_left_path) 3463 { 3464 int ret; 3465 u32 left_cpos; 3466 struct ocfs2_path *left_path = NULL; 3467 3468 *ret_left_path = NULL; 3469 3470 /* This function shouldn't be called for non-trees. */ 3471 BUG_ON(right_path->p_tree_depth == 0); 3472 3473 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3474 right_path, &left_cpos); 3475 if (ret) { 3476 mlog_errno(ret); 3477 goto out; 3478 } 3479 3480 /* This function shouldn't be called for the leftmost leaf. */ 3481 BUG_ON(left_cpos == 0); 3482 3483 left_path = ocfs2_new_path_from_path(right_path); 3484 if (!left_path) { 3485 ret = -ENOMEM; 3486 mlog_errno(ret); 3487 goto out; 3488 } 3489 3490 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3491 if (ret) { 3492 mlog_errno(ret); 3493 goto out; 3494 } 3495 3496 *ret_left_path = left_path; 3497 out: 3498 if (ret) 3499 ocfs2_free_path(left_path); 3500 return ret; 3501 } 3502 3503 /* 3504 * Remove split_rec clusters from the record at index and merge them 3505 * onto the tail of the record "before" it. 3506 * For index > 0, the "before" means the extent rec at index - 1. 3507 * 3508 * For index == 0, the "before" means the last record of the previous 3509 * extent block. And there is also a situation that we may need to 3510 * remove the rightmost leaf extent block in the right_path and change 3511 * the right path to indicate the new rightmost path. 3512 */ 3513 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3514 handle_t *handle, 3515 struct ocfs2_extent_tree *et, 3516 struct ocfs2_extent_rec *split_rec, 3517 struct ocfs2_cached_dealloc_ctxt *dealloc, 3518 int index) 3519 { 3520 int ret, i, subtree_index = 0, has_empty_extent = 0; 3521 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3522 struct ocfs2_extent_rec *left_rec; 3523 struct ocfs2_extent_rec *right_rec; 3524 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3525 struct buffer_head *bh = path_leaf_bh(right_path); 3526 struct buffer_head *root_bh = NULL; 3527 struct ocfs2_path *left_path = NULL; 3528 struct ocfs2_extent_list *left_el; 3529 3530 BUG_ON(index < 0); 3531 3532 right_rec = &el->l_recs[index]; 3533 if (index == 0) { 3534 /* we meet with a cross extent block merge. */ 3535 ret = ocfs2_get_left_path(et, right_path, &left_path); 3536 if (ret) { 3537 mlog_errno(ret); 3538 goto out; 3539 } 3540 3541 left_el = path_leaf_el(left_path); 3542 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3543 le16_to_cpu(left_el->l_count)); 3544 3545 left_rec = &left_el->l_recs[ 3546 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3547 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3548 le16_to_cpu(left_rec->e_leaf_clusters) != 3549 le32_to_cpu(split_rec->e_cpos)); 3550 3551 subtree_index = ocfs2_find_subtree_root(et, left_path, 3552 right_path); 3553 3554 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3555 handle->h_buffer_credits, 3556 left_path); 3557 if (ret) { 3558 mlog_errno(ret); 3559 goto out; 3560 } 3561 3562 root_bh = left_path->p_node[subtree_index].bh; 3563 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3564 3565 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3566 subtree_index); 3567 if (ret) { 3568 mlog_errno(ret); 3569 goto out; 3570 } 3571 3572 for (i = subtree_index + 1; 3573 i < path_num_items(right_path); i++) { 3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3575 right_path, i); 3576 if (ret) { 3577 mlog_errno(ret); 3578 goto out; 3579 } 3580 3581 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3582 left_path, i); 3583 if (ret) { 3584 mlog_errno(ret); 3585 goto out; 3586 } 3587 } 3588 } else { 3589 left_rec = &el->l_recs[index - 1]; 3590 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3591 has_empty_extent = 1; 3592 } 3593 3594 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3595 path_num_items(right_path) - 1); 3596 if (ret) { 3597 mlog_errno(ret); 3598 goto out; 3599 } 3600 3601 if (has_empty_extent && index == 1) { 3602 /* 3603 * The easy case - we can just plop the record right in. 3604 */ 3605 *left_rec = *split_rec; 3606 3607 has_empty_extent = 0; 3608 } else 3609 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3610 3611 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3612 le64_add_cpu(&right_rec->e_blkno, 3613 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3614 split_clusters)); 3615 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3616 3617 ocfs2_cleanup_merge(el, index); 3618 3619 ocfs2_journal_dirty(handle, bh); 3620 if (left_path) { 3621 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3622 3623 /* 3624 * In the situation that the right_rec is empty and the extent 3625 * block is empty also, ocfs2_complete_edge_insert can't handle 3626 * it and we need to delete the right extent block. 3627 */ 3628 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3629 le16_to_cpu(el->l_next_free_rec) == 1) { 3630 3631 ret = ocfs2_remove_rightmost_path(handle, et, 3632 right_path, 3633 dealloc); 3634 if (ret) { 3635 mlog_errno(ret); 3636 goto out; 3637 } 3638 3639 /* Now the rightmost extent block has been deleted. 3640 * So we use the new rightmost path. 3641 */ 3642 ocfs2_mv_path(right_path, left_path); 3643 left_path = NULL; 3644 } else 3645 ocfs2_complete_edge_insert(handle, left_path, 3646 right_path, subtree_index); 3647 } 3648 out: 3649 if (left_path) 3650 ocfs2_free_path(left_path); 3651 return ret; 3652 } 3653 3654 static int ocfs2_try_to_merge_extent(handle_t *handle, 3655 struct ocfs2_extent_tree *et, 3656 struct ocfs2_path *path, 3657 int split_index, 3658 struct ocfs2_extent_rec *split_rec, 3659 struct ocfs2_cached_dealloc_ctxt *dealloc, 3660 struct ocfs2_merge_ctxt *ctxt) 3661 { 3662 int ret = 0; 3663 struct ocfs2_extent_list *el = path_leaf_el(path); 3664 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3665 3666 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3667 3668 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3669 /* 3670 * The merge code will need to create an empty 3671 * extent to take the place of the newly 3672 * emptied slot. Remove any pre-existing empty 3673 * extents - having more than one in a leaf is 3674 * illegal. 3675 */ 3676 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3677 if (ret) { 3678 mlog_errno(ret); 3679 goto out; 3680 } 3681 split_index--; 3682 rec = &el->l_recs[split_index]; 3683 } 3684 3685 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3686 /* 3687 * Left-right contig implies this. 3688 */ 3689 BUG_ON(!ctxt->c_split_covers_rec); 3690 3691 /* 3692 * Since the leftright insert always covers the entire 3693 * extent, this call will delete the insert record 3694 * entirely, resulting in an empty extent record added to 3695 * the extent block. 3696 * 3697 * Since the adding of an empty extent shifts 3698 * everything back to the right, there's no need to 3699 * update split_index here. 3700 * 3701 * When the split_index is zero, we need to merge it to the 3702 * prevoius extent block. It is more efficient and easier 3703 * if we do merge_right first and merge_left later. 3704 */ 3705 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3706 split_index); 3707 if (ret) { 3708 mlog_errno(ret); 3709 goto out; 3710 } 3711 3712 /* 3713 * We can only get this from logic error above. 3714 */ 3715 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3716 3717 /* The merge left us with an empty extent, remove it. */ 3718 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3719 if (ret) { 3720 mlog_errno(ret); 3721 goto out; 3722 } 3723 3724 rec = &el->l_recs[split_index]; 3725 3726 /* 3727 * Note that we don't pass split_rec here on purpose - 3728 * we've merged it into the rec already. 3729 */ 3730 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3731 dealloc, split_index); 3732 3733 if (ret) { 3734 mlog_errno(ret); 3735 goto out; 3736 } 3737 3738 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3739 /* 3740 * Error from this last rotate is not critical, so 3741 * print but don't bubble it up. 3742 */ 3743 if (ret) 3744 mlog_errno(ret); 3745 ret = 0; 3746 } else { 3747 /* 3748 * Merge a record to the left or right. 3749 * 3750 * 'contig_type' is relative to the existing record, 3751 * so for example, if we're "right contig", it's to 3752 * the record on the left (hence the left merge). 3753 */ 3754 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3755 ret = ocfs2_merge_rec_left(path, handle, et, 3756 split_rec, dealloc, 3757 split_index); 3758 if (ret) { 3759 mlog_errno(ret); 3760 goto out; 3761 } 3762 } else { 3763 ret = ocfs2_merge_rec_right(path, handle, 3764 et, split_rec, 3765 split_index); 3766 if (ret) { 3767 mlog_errno(ret); 3768 goto out; 3769 } 3770 } 3771 3772 if (ctxt->c_split_covers_rec) { 3773 /* 3774 * The merge may have left an empty extent in 3775 * our leaf. Try to rotate it away. 3776 */ 3777 ret = ocfs2_rotate_tree_left(handle, et, path, 3778 dealloc); 3779 if (ret) 3780 mlog_errno(ret); 3781 ret = 0; 3782 } 3783 } 3784 3785 out: 3786 return ret; 3787 } 3788 3789 static void ocfs2_subtract_from_rec(struct super_block *sb, 3790 enum ocfs2_split_type split, 3791 struct ocfs2_extent_rec *rec, 3792 struct ocfs2_extent_rec *split_rec) 3793 { 3794 u64 len_blocks; 3795 3796 len_blocks = ocfs2_clusters_to_blocks(sb, 3797 le16_to_cpu(split_rec->e_leaf_clusters)); 3798 3799 if (split == SPLIT_LEFT) { 3800 /* 3801 * Region is on the left edge of the existing 3802 * record. 3803 */ 3804 le32_add_cpu(&rec->e_cpos, 3805 le16_to_cpu(split_rec->e_leaf_clusters)); 3806 le64_add_cpu(&rec->e_blkno, len_blocks); 3807 le16_add_cpu(&rec->e_leaf_clusters, 3808 -le16_to_cpu(split_rec->e_leaf_clusters)); 3809 } else { 3810 /* 3811 * Region is on the right edge of the existing 3812 * record. 3813 */ 3814 le16_add_cpu(&rec->e_leaf_clusters, 3815 -le16_to_cpu(split_rec->e_leaf_clusters)); 3816 } 3817 } 3818 3819 /* 3820 * Do the final bits of extent record insertion at the target leaf 3821 * list. If this leaf is part of an allocation tree, it is assumed 3822 * that the tree above has been prepared. 3823 */ 3824 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3825 struct ocfs2_extent_rec *insert_rec, 3826 struct ocfs2_extent_list *el, 3827 struct ocfs2_insert_type *insert) 3828 { 3829 int i = insert->ins_contig_index; 3830 unsigned int range; 3831 struct ocfs2_extent_rec *rec; 3832 3833 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3834 3835 if (insert->ins_split != SPLIT_NONE) { 3836 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3837 BUG_ON(i == -1); 3838 rec = &el->l_recs[i]; 3839 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3840 insert->ins_split, rec, 3841 insert_rec); 3842 goto rotate; 3843 } 3844 3845 /* 3846 * Contiguous insert - either left or right. 3847 */ 3848 if (insert->ins_contig != CONTIG_NONE) { 3849 rec = &el->l_recs[i]; 3850 if (insert->ins_contig == CONTIG_LEFT) { 3851 rec->e_blkno = insert_rec->e_blkno; 3852 rec->e_cpos = insert_rec->e_cpos; 3853 } 3854 le16_add_cpu(&rec->e_leaf_clusters, 3855 le16_to_cpu(insert_rec->e_leaf_clusters)); 3856 return; 3857 } 3858 3859 /* 3860 * Handle insert into an empty leaf. 3861 */ 3862 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3863 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3864 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3865 el->l_recs[0] = *insert_rec; 3866 el->l_next_free_rec = cpu_to_le16(1); 3867 return; 3868 } 3869 3870 /* 3871 * Appending insert. 3872 */ 3873 if (insert->ins_appending == APPEND_TAIL) { 3874 i = le16_to_cpu(el->l_next_free_rec) - 1; 3875 rec = &el->l_recs[i]; 3876 range = le32_to_cpu(rec->e_cpos) 3877 + le16_to_cpu(rec->e_leaf_clusters); 3878 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3879 3880 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3881 le16_to_cpu(el->l_count), 3882 "owner %llu, depth %u, count %u, next free %u, " 3883 "rec.cpos %u, rec.clusters %u, " 3884 "insert.cpos %u, insert.clusters %u\n", 3885 ocfs2_metadata_cache_owner(et->et_ci), 3886 le16_to_cpu(el->l_tree_depth), 3887 le16_to_cpu(el->l_count), 3888 le16_to_cpu(el->l_next_free_rec), 3889 le32_to_cpu(el->l_recs[i].e_cpos), 3890 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3891 le32_to_cpu(insert_rec->e_cpos), 3892 le16_to_cpu(insert_rec->e_leaf_clusters)); 3893 i++; 3894 el->l_recs[i] = *insert_rec; 3895 le16_add_cpu(&el->l_next_free_rec, 1); 3896 return; 3897 } 3898 3899 rotate: 3900 /* 3901 * Ok, we have to rotate. 3902 * 3903 * At this point, it is safe to assume that inserting into an 3904 * empty leaf and appending to a leaf have both been handled 3905 * above. 3906 * 3907 * This leaf needs to have space, either by the empty 1st 3908 * extent record, or by virtue of an l_next_rec < l_count. 3909 */ 3910 ocfs2_rotate_leaf(el, insert_rec); 3911 } 3912 3913 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3914 struct ocfs2_extent_tree *et, 3915 struct ocfs2_path *path, 3916 struct ocfs2_extent_rec *insert_rec) 3917 { 3918 int ret, i, next_free; 3919 struct buffer_head *bh; 3920 struct ocfs2_extent_list *el; 3921 struct ocfs2_extent_rec *rec; 3922 3923 /* 3924 * Update everything except the leaf block. 3925 */ 3926 for (i = 0; i < path->p_tree_depth; i++) { 3927 bh = path->p_node[i].bh; 3928 el = path->p_node[i].el; 3929 3930 next_free = le16_to_cpu(el->l_next_free_rec); 3931 if (next_free == 0) { 3932 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3933 "Owner %llu has a bad extent list", 3934 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3935 ret = -EIO; 3936 return; 3937 } 3938 3939 rec = &el->l_recs[next_free - 1]; 3940 3941 rec->e_int_clusters = insert_rec->e_cpos; 3942 le32_add_cpu(&rec->e_int_clusters, 3943 le16_to_cpu(insert_rec->e_leaf_clusters)); 3944 le32_add_cpu(&rec->e_int_clusters, 3945 -le32_to_cpu(rec->e_cpos)); 3946 3947 ocfs2_journal_dirty(handle, bh); 3948 } 3949 } 3950 3951 static int ocfs2_append_rec_to_path(handle_t *handle, 3952 struct ocfs2_extent_tree *et, 3953 struct ocfs2_extent_rec *insert_rec, 3954 struct ocfs2_path *right_path, 3955 struct ocfs2_path **ret_left_path) 3956 { 3957 int ret, next_free; 3958 struct ocfs2_extent_list *el; 3959 struct ocfs2_path *left_path = NULL; 3960 3961 *ret_left_path = NULL; 3962 3963 /* 3964 * This shouldn't happen for non-trees. The extent rec cluster 3965 * count manipulation below only works for interior nodes. 3966 */ 3967 BUG_ON(right_path->p_tree_depth == 0); 3968 3969 /* 3970 * If our appending insert is at the leftmost edge of a leaf, 3971 * then we might need to update the rightmost records of the 3972 * neighboring path. 3973 */ 3974 el = path_leaf_el(right_path); 3975 next_free = le16_to_cpu(el->l_next_free_rec); 3976 if (next_free == 0 || 3977 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3978 u32 left_cpos; 3979 3980 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3981 right_path, &left_cpos); 3982 if (ret) { 3983 mlog_errno(ret); 3984 goto out; 3985 } 3986 3987 trace_ocfs2_append_rec_to_path( 3988 (unsigned long long) 3989 ocfs2_metadata_cache_owner(et->et_ci), 3990 le32_to_cpu(insert_rec->e_cpos), 3991 left_cpos); 3992 3993 /* 3994 * No need to worry if the append is already in the 3995 * leftmost leaf. 3996 */ 3997 if (left_cpos) { 3998 left_path = ocfs2_new_path_from_path(right_path); 3999 if (!left_path) { 4000 ret = -ENOMEM; 4001 mlog_errno(ret); 4002 goto out; 4003 } 4004 4005 ret = ocfs2_find_path(et->et_ci, left_path, 4006 left_cpos); 4007 if (ret) { 4008 mlog_errno(ret); 4009 goto out; 4010 } 4011 4012 /* 4013 * ocfs2_insert_path() will pass the left_path to the 4014 * journal for us. 4015 */ 4016 } 4017 } 4018 4019 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4020 if (ret) { 4021 mlog_errno(ret); 4022 goto out; 4023 } 4024 4025 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4026 4027 *ret_left_path = left_path; 4028 ret = 0; 4029 out: 4030 if (ret != 0) 4031 ocfs2_free_path(left_path); 4032 4033 return ret; 4034 } 4035 4036 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4037 struct ocfs2_path *left_path, 4038 struct ocfs2_path *right_path, 4039 struct ocfs2_extent_rec *split_rec, 4040 enum ocfs2_split_type split) 4041 { 4042 int index; 4043 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4044 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4045 struct ocfs2_extent_rec *rec, *tmprec; 4046 4047 right_el = path_leaf_el(right_path); 4048 if (left_path) 4049 left_el = path_leaf_el(left_path); 4050 4051 el = right_el; 4052 insert_el = right_el; 4053 index = ocfs2_search_extent_list(el, cpos); 4054 if (index != -1) { 4055 if (index == 0 && left_path) { 4056 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4057 4058 /* 4059 * This typically means that the record 4060 * started in the left path but moved to the 4061 * right as a result of rotation. We either 4062 * move the existing record to the left, or we 4063 * do the later insert there. 4064 * 4065 * In this case, the left path should always 4066 * exist as the rotate code will have passed 4067 * it back for a post-insert update. 4068 */ 4069 4070 if (split == SPLIT_LEFT) { 4071 /* 4072 * It's a left split. Since we know 4073 * that the rotate code gave us an 4074 * empty extent in the left path, we 4075 * can just do the insert there. 4076 */ 4077 insert_el = left_el; 4078 } else { 4079 /* 4080 * Right split - we have to move the 4081 * existing record over to the left 4082 * leaf. The insert will be into the 4083 * newly created empty extent in the 4084 * right leaf. 4085 */ 4086 tmprec = &right_el->l_recs[index]; 4087 ocfs2_rotate_leaf(left_el, tmprec); 4088 el = left_el; 4089 4090 memset(tmprec, 0, sizeof(*tmprec)); 4091 index = ocfs2_search_extent_list(left_el, cpos); 4092 BUG_ON(index == -1); 4093 } 4094 } 4095 } else { 4096 BUG_ON(!left_path); 4097 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4098 /* 4099 * Left path is easy - we can just allow the insert to 4100 * happen. 4101 */ 4102 el = left_el; 4103 insert_el = left_el; 4104 index = ocfs2_search_extent_list(el, cpos); 4105 BUG_ON(index == -1); 4106 } 4107 4108 rec = &el->l_recs[index]; 4109 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4110 split, rec, split_rec); 4111 ocfs2_rotate_leaf(insert_el, split_rec); 4112 } 4113 4114 /* 4115 * This function only does inserts on an allocation b-tree. For tree 4116 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4117 * 4118 * right_path is the path we want to do the actual insert 4119 * in. left_path should only be passed in if we need to update that 4120 * portion of the tree after an edge insert. 4121 */ 4122 static int ocfs2_insert_path(handle_t *handle, 4123 struct ocfs2_extent_tree *et, 4124 struct ocfs2_path *left_path, 4125 struct ocfs2_path *right_path, 4126 struct ocfs2_extent_rec *insert_rec, 4127 struct ocfs2_insert_type *insert) 4128 { 4129 int ret, subtree_index; 4130 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4131 4132 if (left_path) { 4133 /* 4134 * There's a chance that left_path got passed back to 4135 * us without being accounted for in the 4136 * journal. Extend our transaction here to be sure we 4137 * can change those blocks. 4138 */ 4139 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4140 if (ret < 0) { 4141 mlog_errno(ret); 4142 goto out; 4143 } 4144 4145 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4146 if (ret < 0) { 4147 mlog_errno(ret); 4148 goto out; 4149 } 4150 } 4151 4152 /* 4153 * Pass both paths to the journal. The majority of inserts 4154 * will be touching all components anyway. 4155 */ 4156 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4157 if (ret < 0) { 4158 mlog_errno(ret); 4159 goto out; 4160 } 4161 4162 if (insert->ins_split != SPLIT_NONE) { 4163 /* 4164 * We could call ocfs2_insert_at_leaf() for some types 4165 * of splits, but it's easier to just let one separate 4166 * function sort it all out. 4167 */ 4168 ocfs2_split_record(et, left_path, right_path, 4169 insert_rec, insert->ins_split); 4170 4171 /* 4172 * Split might have modified either leaf and we don't 4173 * have a guarantee that the later edge insert will 4174 * dirty this for us. 4175 */ 4176 if (left_path) 4177 ocfs2_journal_dirty(handle, 4178 path_leaf_bh(left_path)); 4179 } else 4180 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4181 insert); 4182 4183 ocfs2_journal_dirty(handle, leaf_bh); 4184 4185 if (left_path) { 4186 /* 4187 * The rotate code has indicated that we need to fix 4188 * up portions of the tree after the insert. 4189 * 4190 * XXX: Should we extend the transaction here? 4191 */ 4192 subtree_index = ocfs2_find_subtree_root(et, left_path, 4193 right_path); 4194 ocfs2_complete_edge_insert(handle, left_path, right_path, 4195 subtree_index); 4196 } 4197 4198 ret = 0; 4199 out: 4200 return ret; 4201 } 4202 4203 static int ocfs2_do_insert_extent(handle_t *handle, 4204 struct ocfs2_extent_tree *et, 4205 struct ocfs2_extent_rec *insert_rec, 4206 struct ocfs2_insert_type *type) 4207 { 4208 int ret, rotate = 0; 4209 u32 cpos; 4210 struct ocfs2_path *right_path = NULL; 4211 struct ocfs2_path *left_path = NULL; 4212 struct ocfs2_extent_list *el; 4213 4214 el = et->et_root_el; 4215 4216 ret = ocfs2_et_root_journal_access(handle, et, 4217 OCFS2_JOURNAL_ACCESS_WRITE); 4218 if (ret) { 4219 mlog_errno(ret); 4220 goto out; 4221 } 4222 4223 if (le16_to_cpu(el->l_tree_depth) == 0) { 4224 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4225 goto out_update_clusters; 4226 } 4227 4228 right_path = ocfs2_new_path_from_et(et); 4229 if (!right_path) { 4230 ret = -ENOMEM; 4231 mlog_errno(ret); 4232 goto out; 4233 } 4234 4235 /* 4236 * Determine the path to start with. Rotations need the 4237 * rightmost path, everything else can go directly to the 4238 * target leaf. 4239 */ 4240 cpos = le32_to_cpu(insert_rec->e_cpos); 4241 if (type->ins_appending == APPEND_NONE && 4242 type->ins_contig == CONTIG_NONE) { 4243 rotate = 1; 4244 cpos = UINT_MAX; 4245 } 4246 4247 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4248 if (ret) { 4249 mlog_errno(ret); 4250 goto out; 4251 } 4252 4253 /* 4254 * Rotations and appends need special treatment - they modify 4255 * parts of the tree's above them. 4256 * 4257 * Both might pass back a path immediate to the left of the 4258 * one being inserted to. This will be cause 4259 * ocfs2_insert_path() to modify the rightmost records of 4260 * left_path to account for an edge insert. 4261 * 4262 * XXX: When modifying this code, keep in mind that an insert 4263 * can wind up skipping both of these two special cases... 4264 */ 4265 if (rotate) { 4266 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4267 le32_to_cpu(insert_rec->e_cpos), 4268 right_path, &left_path); 4269 if (ret) { 4270 mlog_errno(ret); 4271 goto out; 4272 } 4273 4274 /* 4275 * ocfs2_rotate_tree_right() might have extended the 4276 * transaction without re-journaling our tree root. 4277 */ 4278 ret = ocfs2_et_root_journal_access(handle, et, 4279 OCFS2_JOURNAL_ACCESS_WRITE); 4280 if (ret) { 4281 mlog_errno(ret); 4282 goto out; 4283 } 4284 } else if (type->ins_appending == APPEND_TAIL 4285 && type->ins_contig != CONTIG_LEFT) { 4286 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4287 right_path, &left_path); 4288 if (ret) { 4289 mlog_errno(ret); 4290 goto out; 4291 } 4292 } 4293 4294 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4295 insert_rec, type); 4296 if (ret) { 4297 mlog_errno(ret); 4298 goto out; 4299 } 4300 4301 out_update_clusters: 4302 if (type->ins_split == SPLIT_NONE) 4303 ocfs2_et_update_clusters(et, 4304 le16_to_cpu(insert_rec->e_leaf_clusters)); 4305 4306 ocfs2_journal_dirty(handle, et->et_root_bh); 4307 4308 out: 4309 ocfs2_free_path(left_path); 4310 ocfs2_free_path(right_path); 4311 4312 return ret; 4313 } 4314 4315 static enum ocfs2_contig_type 4316 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4317 struct ocfs2_path *path, 4318 struct ocfs2_extent_list *el, int index, 4319 struct ocfs2_extent_rec *split_rec) 4320 { 4321 int status; 4322 enum ocfs2_contig_type ret = CONTIG_NONE; 4323 u32 left_cpos, right_cpos; 4324 struct ocfs2_extent_rec *rec = NULL; 4325 struct ocfs2_extent_list *new_el; 4326 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4327 struct buffer_head *bh; 4328 struct ocfs2_extent_block *eb; 4329 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4330 4331 if (index > 0) { 4332 rec = &el->l_recs[index - 1]; 4333 } else if (path->p_tree_depth > 0) { 4334 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4335 if (status) 4336 goto out; 4337 4338 if (left_cpos != 0) { 4339 left_path = ocfs2_new_path_from_path(path); 4340 if (!left_path) 4341 goto out; 4342 4343 status = ocfs2_find_path(et->et_ci, left_path, 4344 left_cpos); 4345 if (status) 4346 goto out; 4347 4348 new_el = path_leaf_el(left_path); 4349 4350 if (le16_to_cpu(new_el->l_next_free_rec) != 4351 le16_to_cpu(new_el->l_count)) { 4352 bh = path_leaf_bh(left_path); 4353 eb = (struct ocfs2_extent_block *)bh->b_data; 4354 ocfs2_error(sb, 4355 "Extent block #%llu has an " 4356 "invalid l_next_free_rec of " 4357 "%d. It should have " 4358 "matched the l_count of %d", 4359 (unsigned long long)le64_to_cpu(eb->h_blkno), 4360 le16_to_cpu(new_el->l_next_free_rec), 4361 le16_to_cpu(new_el->l_count)); 4362 status = -EINVAL; 4363 goto out; 4364 } 4365 rec = &new_el->l_recs[ 4366 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4367 } 4368 } 4369 4370 /* 4371 * We're careful to check for an empty extent record here - 4372 * the merge code will know what to do if it sees one. 4373 */ 4374 if (rec) { 4375 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4376 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4377 ret = CONTIG_RIGHT; 4378 } else { 4379 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4380 } 4381 } 4382 4383 rec = NULL; 4384 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4385 rec = &el->l_recs[index + 1]; 4386 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4387 path->p_tree_depth > 0) { 4388 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4389 if (status) 4390 goto out; 4391 4392 if (right_cpos == 0) 4393 goto out; 4394 4395 right_path = ocfs2_new_path_from_path(path); 4396 if (!right_path) 4397 goto out; 4398 4399 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4400 if (status) 4401 goto out; 4402 4403 new_el = path_leaf_el(right_path); 4404 rec = &new_el->l_recs[0]; 4405 if (ocfs2_is_empty_extent(rec)) { 4406 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4407 bh = path_leaf_bh(right_path); 4408 eb = (struct ocfs2_extent_block *)bh->b_data; 4409 ocfs2_error(sb, 4410 "Extent block #%llu has an " 4411 "invalid l_next_free_rec of %d", 4412 (unsigned long long)le64_to_cpu(eb->h_blkno), 4413 le16_to_cpu(new_el->l_next_free_rec)); 4414 status = -EINVAL; 4415 goto out; 4416 } 4417 rec = &new_el->l_recs[1]; 4418 } 4419 } 4420 4421 if (rec) { 4422 enum ocfs2_contig_type contig_type; 4423 4424 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4425 4426 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4427 ret = CONTIG_LEFTRIGHT; 4428 else if (ret == CONTIG_NONE) 4429 ret = contig_type; 4430 } 4431 4432 out: 4433 if (left_path) 4434 ocfs2_free_path(left_path); 4435 if (right_path) 4436 ocfs2_free_path(right_path); 4437 4438 return ret; 4439 } 4440 4441 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4442 struct ocfs2_insert_type *insert, 4443 struct ocfs2_extent_list *el, 4444 struct ocfs2_extent_rec *insert_rec) 4445 { 4446 int i; 4447 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4448 4449 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4450 4451 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4452 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4453 insert_rec); 4454 if (contig_type != CONTIG_NONE) { 4455 insert->ins_contig_index = i; 4456 break; 4457 } 4458 } 4459 insert->ins_contig = contig_type; 4460 4461 if (insert->ins_contig != CONTIG_NONE) { 4462 struct ocfs2_extent_rec *rec = 4463 &el->l_recs[insert->ins_contig_index]; 4464 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4465 le16_to_cpu(insert_rec->e_leaf_clusters); 4466 4467 /* 4468 * Caller might want us to limit the size of extents, don't 4469 * calculate contiguousness if we might exceed that limit. 4470 */ 4471 if (et->et_max_leaf_clusters && 4472 (len > et->et_max_leaf_clusters)) 4473 insert->ins_contig = CONTIG_NONE; 4474 } 4475 } 4476 4477 /* 4478 * This should only be called against the righmost leaf extent list. 4479 * 4480 * ocfs2_figure_appending_type() will figure out whether we'll have to 4481 * insert at the tail of the rightmost leaf. 4482 * 4483 * This should also work against the root extent list for tree's with 0 4484 * depth. If we consider the root extent list to be the rightmost leaf node 4485 * then the logic here makes sense. 4486 */ 4487 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4488 struct ocfs2_extent_list *el, 4489 struct ocfs2_extent_rec *insert_rec) 4490 { 4491 int i; 4492 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4493 struct ocfs2_extent_rec *rec; 4494 4495 insert->ins_appending = APPEND_NONE; 4496 4497 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4498 4499 if (!el->l_next_free_rec) 4500 goto set_tail_append; 4501 4502 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4503 /* Were all records empty? */ 4504 if (le16_to_cpu(el->l_next_free_rec) == 1) 4505 goto set_tail_append; 4506 } 4507 4508 i = le16_to_cpu(el->l_next_free_rec) - 1; 4509 rec = &el->l_recs[i]; 4510 4511 if (cpos >= 4512 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4513 goto set_tail_append; 4514 4515 return; 4516 4517 set_tail_append: 4518 insert->ins_appending = APPEND_TAIL; 4519 } 4520 4521 /* 4522 * Helper function called at the beginning of an insert. 4523 * 4524 * This computes a few things that are commonly used in the process of 4525 * inserting into the btree: 4526 * - Whether the new extent is contiguous with an existing one. 4527 * - The current tree depth. 4528 * - Whether the insert is an appending one. 4529 * - The total # of free records in the tree. 4530 * 4531 * All of the information is stored on the ocfs2_insert_type 4532 * structure. 4533 */ 4534 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4535 struct buffer_head **last_eb_bh, 4536 struct ocfs2_extent_rec *insert_rec, 4537 int *free_records, 4538 struct ocfs2_insert_type *insert) 4539 { 4540 int ret; 4541 struct ocfs2_extent_block *eb; 4542 struct ocfs2_extent_list *el; 4543 struct ocfs2_path *path = NULL; 4544 struct buffer_head *bh = NULL; 4545 4546 insert->ins_split = SPLIT_NONE; 4547 4548 el = et->et_root_el; 4549 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4550 4551 if (el->l_tree_depth) { 4552 /* 4553 * If we have tree depth, we read in the 4554 * rightmost extent block ahead of time as 4555 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4556 * may want it later. 4557 */ 4558 ret = ocfs2_read_extent_block(et->et_ci, 4559 ocfs2_et_get_last_eb_blk(et), 4560 &bh); 4561 if (ret) { 4562 mlog_errno(ret); 4563 goto out; 4564 } 4565 eb = (struct ocfs2_extent_block *) bh->b_data; 4566 el = &eb->h_list; 4567 } 4568 4569 /* 4570 * Unless we have a contiguous insert, we'll need to know if 4571 * there is room left in our allocation tree for another 4572 * extent record. 4573 * 4574 * XXX: This test is simplistic, we can search for empty 4575 * extent records too. 4576 */ 4577 *free_records = le16_to_cpu(el->l_count) - 4578 le16_to_cpu(el->l_next_free_rec); 4579 4580 if (!insert->ins_tree_depth) { 4581 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4582 ocfs2_figure_appending_type(insert, el, insert_rec); 4583 return 0; 4584 } 4585 4586 path = ocfs2_new_path_from_et(et); 4587 if (!path) { 4588 ret = -ENOMEM; 4589 mlog_errno(ret); 4590 goto out; 4591 } 4592 4593 /* 4594 * In the case that we're inserting past what the tree 4595 * currently accounts for, ocfs2_find_path() will return for 4596 * us the rightmost tree path. This is accounted for below in 4597 * the appending code. 4598 */ 4599 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4600 if (ret) { 4601 mlog_errno(ret); 4602 goto out; 4603 } 4604 4605 el = path_leaf_el(path); 4606 4607 /* 4608 * Now that we have the path, there's two things we want to determine: 4609 * 1) Contiguousness (also set contig_index if this is so) 4610 * 4611 * 2) Are we doing an append? We can trivially break this up 4612 * into two types of appends: simple record append, or a 4613 * rotate inside the tail leaf. 4614 */ 4615 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4616 4617 /* 4618 * The insert code isn't quite ready to deal with all cases of 4619 * left contiguousness. Specifically, if it's an insert into 4620 * the 1st record in a leaf, it will require the adjustment of 4621 * cluster count on the last record of the path directly to it's 4622 * left. For now, just catch that case and fool the layers 4623 * above us. This works just fine for tree_depth == 0, which 4624 * is why we allow that above. 4625 */ 4626 if (insert->ins_contig == CONTIG_LEFT && 4627 insert->ins_contig_index == 0) 4628 insert->ins_contig = CONTIG_NONE; 4629 4630 /* 4631 * Ok, so we can simply compare against last_eb to figure out 4632 * whether the path doesn't exist. This will only happen in 4633 * the case that we're doing a tail append, so maybe we can 4634 * take advantage of that information somehow. 4635 */ 4636 if (ocfs2_et_get_last_eb_blk(et) == 4637 path_leaf_bh(path)->b_blocknr) { 4638 /* 4639 * Ok, ocfs2_find_path() returned us the rightmost 4640 * tree path. This might be an appending insert. There are 4641 * two cases: 4642 * 1) We're doing a true append at the tail: 4643 * -This might even be off the end of the leaf 4644 * 2) We're "appending" by rotating in the tail 4645 */ 4646 ocfs2_figure_appending_type(insert, el, insert_rec); 4647 } 4648 4649 out: 4650 ocfs2_free_path(path); 4651 4652 if (ret == 0) 4653 *last_eb_bh = bh; 4654 else 4655 brelse(bh); 4656 return ret; 4657 } 4658 4659 /* 4660 * Insert an extent into a btree. 4661 * 4662 * The caller needs to update the owning btree's cluster count. 4663 */ 4664 int ocfs2_insert_extent(handle_t *handle, 4665 struct ocfs2_extent_tree *et, 4666 u32 cpos, 4667 u64 start_blk, 4668 u32 new_clusters, 4669 u8 flags, 4670 struct ocfs2_alloc_context *meta_ac) 4671 { 4672 int status; 4673 int uninitialized_var(free_records); 4674 struct buffer_head *last_eb_bh = NULL; 4675 struct ocfs2_insert_type insert = {0, }; 4676 struct ocfs2_extent_rec rec; 4677 4678 trace_ocfs2_insert_extent_start( 4679 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4680 cpos, new_clusters); 4681 4682 memset(&rec, 0, sizeof(rec)); 4683 rec.e_cpos = cpu_to_le32(cpos); 4684 rec.e_blkno = cpu_to_le64(start_blk); 4685 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4686 rec.e_flags = flags; 4687 status = ocfs2_et_insert_check(et, &rec); 4688 if (status) { 4689 mlog_errno(status); 4690 goto bail; 4691 } 4692 4693 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4694 &free_records, &insert); 4695 if (status < 0) { 4696 mlog_errno(status); 4697 goto bail; 4698 } 4699 4700 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4701 insert.ins_contig_index, free_records, 4702 insert.ins_tree_depth); 4703 4704 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4705 status = ocfs2_grow_tree(handle, et, 4706 &insert.ins_tree_depth, &last_eb_bh, 4707 meta_ac); 4708 if (status) { 4709 mlog_errno(status); 4710 goto bail; 4711 } 4712 } 4713 4714 /* Finally, we can add clusters. This might rotate the tree for us. */ 4715 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4716 if (status < 0) 4717 mlog_errno(status); 4718 else 4719 ocfs2_et_extent_map_insert(et, &rec); 4720 4721 bail: 4722 brelse(last_eb_bh); 4723 4724 return status; 4725 } 4726 4727 /* 4728 * Allcate and add clusters into the extent b-tree. 4729 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4730 * The extent b-tree's root is specified by et, and 4731 * it is not limited to the file storage. Any extent tree can use this 4732 * function if it implements the proper ocfs2_extent_tree. 4733 */ 4734 int ocfs2_add_clusters_in_btree(handle_t *handle, 4735 struct ocfs2_extent_tree *et, 4736 u32 *logical_offset, 4737 u32 clusters_to_add, 4738 int mark_unwritten, 4739 struct ocfs2_alloc_context *data_ac, 4740 struct ocfs2_alloc_context *meta_ac, 4741 enum ocfs2_alloc_restarted *reason_ret) 4742 { 4743 int status = 0, err = 0; 4744 int free_extents; 4745 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4746 u32 bit_off, num_bits; 4747 u64 block; 4748 u8 flags = 0; 4749 struct ocfs2_super *osb = 4750 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4751 4752 BUG_ON(!clusters_to_add); 4753 4754 if (mark_unwritten) 4755 flags = OCFS2_EXT_UNWRITTEN; 4756 4757 free_extents = ocfs2_num_free_extents(osb, et); 4758 if (free_extents < 0) { 4759 status = free_extents; 4760 mlog_errno(status); 4761 goto leave; 4762 } 4763 4764 /* there are two cases which could cause us to EAGAIN in the 4765 * we-need-more-metadata case: 4766 * 1) we haven't reserved *any* 4767 * 2) we are so fragmented, we've needed to add metadata too 4768 * many times. */ 4769 if (!free_extents && !meta_ac) { 4770 err = -1; 4771 status = -EAGAIN; 4772 reason = RESTART_META; 4773 goto leave; 4774 } else if ((!free_extents) 4775 && (ocfs2_alloc_context_bits_left(meta_ac) 4776 < ocfs2_extend_meta_needed(et->et_root_el))) { 4777 err = -2; 4778 status = -EAGAIN; 4779 reason = RESTART_META; 4780 goto leave; 4781 } 4782 4783 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4784 clusters_to_add, &bit_off, &num_bits); 4785 if (status < 0) { 4786 if (status != -ENOSPC) 4787 mlog_errno(status); 4788 goto leave; 4789 } 4790 4791 BUG_ON(num_bits > clusters_to_add); 4792 4793 /* reserve our write early -- insert_extent may update the tree root */ 4794 status = ocfs2_et_root_journal_access(handle, et, 4795 OCFS2_JOURNAL_ACCESS_WRITE); 4796 if (status < 0) { 4797 mlog_errno(status); 4798 goto leave; 4799 } 4800 4801 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4802 trace_ocfs2_add_clusters_in_btree( 4803 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4804 bit_off, num_bits); 4805 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4806 num_bits, flags, meta_ac); 4807 if (status < 0) { 4808 mlog_errno(status); 4809 goto leave; 4810 } 4811 4812 ocfs2_journal_dirty(handle, et->et_root_bh); 4813 4814 clusters_to_add -= num_bits; 4815 *logical_offset += num_bits; 4816 4817 if (clusters_to_add) { 4818 err = clusters_to_add; 4819 status = -EAGAIN; 4820 reason = RESTART_TRANS; 4821 } 4822 4823 leave: 4824 if (reason_ret) 4825 *reason_ret = reason; 4826 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4827 return status; 4828 } 4829 4830 static void ocfs2_make_right_split_rec(struct super_block *sb, 4831 struct ocfs2_extent_rec *split_rec, 4832 u32 cpos, 4833 struct ocfs2_extent_rec *rec) 4834 { 4835 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4836 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4837 4838 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4839 4840 split_rec->e_cpos = cpu_to_le32(cpos); 4841 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4842 4843 split_rec->e_blkno = rec->e_blkno; 4844 le64_add_cpu(&split_rec->e_blkno, 4845 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4846 4847 split_rec->e_flags = rec->e_flags; 4848 } 4849 4850 static int ocfs2_split_and_insert(handle_t *handle, 4851 struct ocfs2_extent_tree *et, 4852 struct ocfs2_path *path, 4853 struct buffer_head **last_eb_bh, 4854 int split_index, 4855 struct ocfs2_extent_rec *orig_split_rec, 4856 struct ocfs2_alloc_context *meta_ac) 4857 { 4858 int ret = 0, depth; 4859 unsigned int insert_range, rec_range, do_leftright = 0; 4860 struct ocfs2_extent_rec tmprec; 4861 struct ocfs2_extent_list *rightmost_el; 4862 struct ocfs2_extent_rec rec; 4863 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4864 struct ocfs2_insert_type insert; 4865 struct ocfs2_extent_block *eb; 4866 4867 leftright: 4868 /* 4869 * Store a copy of the record on the stack - it might move 4870 * around as the tree is manipulated below. 4871 */ 4872 rec = path_leaf_el(path)->l_recs[split_index]; 4873 4874 rightmost_el = et->et_root_el; 4875 4876 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4877 if (depth) { 4878 BUG_ON(!(*last_eb_bh)); 4879 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4880 rightmost_el = &eb->h_list; 4881 } 4882 4883 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4884 le16_to_cpu(rightmost_el->l_count)) { 4885 ret = ocfs2_grow_tree(handle, et, 4886 &depth, last_eb_bh, meta_ac); 4887 if (ret) { 4888 mlog_errno(ret); 4889 goto out; 4890 } 4891 } 4892 4893 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4894 insert.ins_appending = APPEND_NONE; 4895 insert.ins_contig = CONTIG_NONE; 4896 insert.ins_tree_depth = depth; 4897 4898 insert_range = le32_to_cpu(split_rec.e_cpos) + 4899 le16_to_cpu(split_rec.e_leaf_clusters); 4900 rec_range = le32_to_cpu(rec.e_cpos) + 4901 le16_to_cpu(rec.e_leaf_clusters); 4902 4903 if (split_rec.e_cpos == rec.e_cpos) { 4904 insert.ins_split = SPLIT_LEFT; 4905 } else if (insert_range == rec_range) { 4906 insert.ins_split = SPLIT_RIGHT; 4907 } else { 4908 /* 4909 * Left/right split. We fake this as a right split 4910 * first and then make a second pass as a left split. 4911 */ 4912 insert.ins_split = SPLIT_RIGHT; 4913 4914 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4915 &tmprec, insert_range, &rec); 4916 4917 split_rec = tmprec; 4918 4919 BUG_ON(do_leftright); 4920 do_leftright = 1; 4921 } 4922 4923 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4924 if (ret) { 4925 mlog_errno(ret); 4926 goto out; 4927 } 4928 4929 if (do_leftright == 1) { 4930 u32 cpos; 4931 struct ocfs2_extent_list *el; 4932 4933 do_leftright++; 4934 split_rec = *orig_split_rec; 4935 4936 ocfs2_reinit_path(path, 1); 4937 4938 cpos = le32_to_cpu(split_rec.e_cpos); 4939 ret = ocfs2_find_path(et->et_ci, path, cpos); 4940 if (ret) { 4941 mlog_errno(ret); 4942 goto out; 4943 } 4944 4945 el = path_leaf_el(path); 4946 split_index = ocfs2_search_extent_list(el, cpos); 4947 goto leftright; 4948 } 4949 out: 4950 4951 return ret; 4952 } 4953 4954 static int ocfs2_replace_extent_rec(handle_t *handle, 4955 struct ocfs2_extent_tree *et, 4956 struct ocfs2_path *path, 4957 struct ocfs2_extent_list *el, 4958 int split_index, 4959 struct ocfs2_extent_rec *split_rec) 4960 { 4961 int ret; 4962 4963 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 4964 path_num_items(path) - 1); 4965 if (ret) { 4966 mlog_errno(ret); 4967 goto out; 4968 } 4969 4970 el->l_recs[split_index] = *split_rec; 4971 4972 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4973 out: 4974 return ret; 4975 } 4976 4977 /* 4978 * Split part or all of the extent record at split_index in the leaf 4979 * pointed to by path. Merge with the contiguous extent record if needed. 4980 * 4981 * Care is taken to handle contiguousness so as to not grow the tree. 4982 * 4983 * meta_ac is not strictly necessary - we only truly need it if growth 4984 * of the tree is required. All other cases will degrade into a less 4985 * optimal tree layout. 4986 * 4987 * last_eb_bh should be the rightmost leaf block for any extent 4988 * btree. Since a split may grow the tree or a merge might shrink it, 4989 * the caller cannot trust the contents of that buffer after this call. 4990 * 4991 * This code is optimized for readability - several passes might be 4992 * made over certain portions of the tree. All of those blocks will 4993 * have been brought into cache (and pinned via the journal), so the 4994 * extra overhead is not expressed in terms of disk reads. 4995 */ 4996 int ocfs2_split_extent(handle_t *handle, 4997 struct ocfs2_extent_tree *et, 4998 struct ocfs2_path *path, 4999 int split_index, 5000 struct ocfs2_extent_rec *split_rec, 5001 struct ocfs2_alloc_context *meta_ac, 5002 struct ocfs2_cached_dealloc_ctxt *dealloc) 5003 { 5004 int ret = 0; 5005 struct ocfs2_extent_list *el = path_leaf_el(path); 5006 struct buffer_head *last_eb_bh = NULL; 5007 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5008 struct ocfs2_merge_ctxt ctxt; 5009 struct ocfs2_extent_list *rightmost_el; 5010 5011 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5012 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5013 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5014 ret = -EIO; 5015 mlog_errno(ret); 5016 goto out; 5017 } 5018 5019 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el, 5020 split_index, 5021 split_rec); 5022 5023 /* 5024 * The core merge / split code wants to know how much room is 5025 * left in this allocation tree, so we pass the 5026 * rightmost extent list. 5027 */ 5028 if (path->p_tree_depth) { 5029 struct ocfs2_extent_block *eb; 5030 5031 ret = ocfs2_read_extent_block(et->et_ci, 5032 ocfs2_et_get_last_eb_blk(et), 5033 &last_eb_bh); 5034 if (ret) { 5035 mlog_errno(ret); 5036 goto out; 5037 } 5038 5039 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5040 rightmost_el = &eb->h_list; 5041 } else 5042 rightmost_el = path_root_el(path); 5043 5044 if (rec->e_cpos == split_rec->e_cpos && 5045 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5046 ctxt.c_split_covers_rec = 1; 5047 else 5048 ctxt.c_split_covers_rec = 0; 5049 5050 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5051 5052 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5053 ctxt.c_has_empty_extent, 5054 ctxt.c_split_covers_rec); 5055 5056 if (ctxt.c_contig_type == CONTIG_NONE) { 5057 if (ctxt.c_split_covers_rec) 5058 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5059 split_index, split_rec); 5060 else 5061 ret = ocfs2_split_and_insert(handle, et, path, 5062 &last_eb_bh, split_index, 5063 split_rec, meta_ac); 5064 if (ret) 5065 mlog_errno(ret); 5066 } else { 5067 ret = ocfs2_try_to_merge_extent(handle, et, path, 5068 split_index, split_rec, 5069 dealloc, &ctxt); 5070 if (ret) 5071 mlog_errno(ret); 5072 } 5073 5074 out: 5075 brelse(last_eb_bh); 5076 return ret; 5077 } 5078 5079 /* 5080 * Change the flags of the already-existing extent at cpos for len clusters. 5081 * 5082 * new_flags: the flags we want to set. 5083 * clear_flags: the flags we want to clear. 5084 * phys: the new physical offset we want this new extent starts from. 5085 * 5086 * If the existing extent is larger than the request, initiate a 5087 * split. An attempt will be made at merging with adjacent extents. 5088 * 5089 * The caller is responsible for passing down meta_ac if we'll need it. 5090 */ 5091 int ocfs2_change_extent_flag(handle_t *handle, 5092 struct ocfs2_extent_tree *et, 5093 u32 cpos, u32 len, u32 phys, 5094 struct ocfs2_alloc_context *meta_ac, 5095 struct ocfs2_cached_dealloc_ctxt *dealloc, 5096 int new_flags, int clear_flags) 5097 { 5098 int ret, index; 5099 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5100 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5101 struct ocfs2_extent_rec split_rec; 5102 struct ocfs2_path *left_path = NULL; 5103 struct ocfs2_extent_list *el; 5104 struct ocfs2_extent_rec *rec; 5105 5106 left_path = ocfs2_new_path_from_et(et); 5107 if (!left_path) { 5108 ret = -ENOMEM; 5109 mlog_errno(ret); 5110 goto out; 5111 } 5112 5113 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5114 if (ret) { 5115 mlog_errno(ret); 5116 goto out; 5117 } 5118 el = path_leaf_el(left_path); 5119 5120 index = ocfs2_search_extent_list(el, cpos); 5121 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5122 ocfs2_error(sb, 5123 "Owner %llu has an extent at cpos %u which can no " 5124 "longer be found.\n", 5125 (unsigned long long) 5126 ocfs2_metadata_cache_owner(et->et_ci), cpos); 5127 ret = -EROFS; 5128 goto out; 5129 } 5130 5131 ret = -EIO; 5132 rec = &el->l_recs[index]; 5133 if (new_flags && (rec->e_flags & new_flags)) { 5134 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5135 "extent that already had them", 5136 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5137 new_flags); 5138 goto out; 5139 } 5140 5141 if (clear_flags && !(rec->e_flags & clear_flags)) { 5142 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5143 "extent that didn't have them", 5144 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5145 clear_flags); 5146 goto out; 5147 } 5148 5149 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5150 split_rec.e_cpos = cpu_to_le32(cpos); 5151 split_rec.e_leaf_clusters = cpu_to_le16(len); 5152 split_rec.e_blkno = cpu_to_le64(start_blkno); 5153 split_rec.e_flags = rec->e_flags; 5154 if (new_flags) 5155 split_rec.e_flags |= new_flags; 5156 if (clear_flags) 5157 split_rec.e_flags &= ~clear_flags; 5158 5159 ret = ocfs2_split_extent(handle, et, left_path, 5160 index, &split_rec, meta_ac, 5161 dealloc); 5162 if (ret) 5163 mlog_errno(ret); 5164 5165 out: 5166 ocfs2_free_path(left_path); 5167 return ret; 5168 5169 } 5170 5171 /* 5172 * Mark the already-existing extent at cpos as written for len clusters. 5173 * This removes the unwritten extent flag. 5174 * 5175 * If the existing extent is larger than the request, initiate a 5176 * split. An attempt will be made at merging with adjacent extents. 5177 * 5178 * The caller is responsible for passing down meta_ac if we'll need it. 5179 */ 5180 int ocfs2_mark_extent_written(struct inode *inode, 5181 struct ocfs2_extent_tree *et, 5182 handle_t *handle, u32 cpos, u32 len, u32 phys, 5183 struct ocfs2_alloc_context *meta_ac, 5184 struct ocfs2_cached_dealloc_ctxt *dealloc) 5185 { 5186 int ret; 5187 5188 trace_ocfs2_mark_extent_written( 5189 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5190 cpos, len, phys); 5191 5192 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5193 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5194 "that are being written to, but the feature bit " 5195 "is not set in the super block.", 5196 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5197 ret = -EROFS; 5198 goto out; 5199 } 5200 5201 /* 5202 * XXX: This should be fixed up so that we just re-insert the 5203 * next extent records. 5204 */ 5205 ocfs2_et_extent_map_truncate(et, 0); 5206 5207 ret = ocfs2_change_extent_flag(handle, et, cpos, 5208 len, phys, meta_ac, dealloc, 5209 0, OCFS2_EXT_UNWRITTEN); 5210 if (ret) 5211 mlog_errno(ret); 5212 5213 out: 5214 return ret; 5215 } 5216 5217 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5218 struct ocfs2_path *path, 5219 int index, u32 new_range, 5220 struct ocfs2_alloc_context *meta_ac) 5221 { 5222 int ret, depth, credits; 5223 struct buffer_head *last_eb_bh = NULL; 5224 struct ocfs2_extent_block *eb; 5225 struct ocfs2_extent_list *rightmost_el, *el; 5226 struct ocfs2_extent_rec split_rec; 5227 struct ocfs2_extent_rec *rec; 5228 struct ocfs2_insert_type insert; 5229 5230 /* 5231 * Setup the record to split before we grow the tree. 5232 */ 5233 el = path_leaf_el(path); 5234 rec = &el->l_recs[index]; 5235 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5236 &split_rec, new_range, rec); 5237 5238 depth = path->p_tree_depth; 5239 if (depth > 0) { 5240 ret = ocfs2_read_extent_block(et->et_ci, 5241 ocfs2_et_get_last_eb_blk(et), 5242 &last_eb_bh); 5243 if (ret < 0) { 5244 mlog_errno(ret); 5245 goto out; 5246 } 5247 5248 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5249 rightmost_el = &eb->h_list; 5250 } else 5251 rightmost_el = path_leaf_el(path); 5252 5253 credits = path->p_tree_depth + 5254 ocfs2_extend_meta_needed(et->et_root_el); 5255 ret = ocfs2_extend_trans(handle, credits); 5256 if (ret) { 5257 mlog_errno(ret); 5258 goto out; 5259 } 5260 5261 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5262 le16_to_cpu(rightmost_el->l_count)) { 5263 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5264 meta_ac); 5265 if (ret) { 5266 mlog_errno(ret); 5267 goto out; 5268 } 5269 } 5270 5271 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5272 insert.ins_appending = APPEND_NONE; 5273 insert.ins_contig = CONTIG_NONE; 5274 insert.ins_split = SPLIT_RIGHT; 5275 insert.ins_tree_depth = depth; 5276 5277 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5278 if (ret) 5279 mlog_errno(ret); 5280 5281 out: 5282 brelse(last_eb_bh); 5283 return ret; 5284 } 5285 5286 static int ocfs2_truncate_rec(handle_t *handle, 5287 struct ocfs2_extent_tree *et, 5288 struct ocfs2_path *path, int index, 5289 struct ocfs2_cached_dealloc_ctxt *dealloc, 5290 u32 cpos, u32 len) 5291 { 5292 int ret; 5293 u32 left_cpos, rec_range, trunc_range; 5294 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5295 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5296 struct ocfs2_path *left_path = NULL; 5297 struct ocfs2_extent_list *el = path_leaf_el(path); 5298 struct ocfs2_extent_rec *rec; 5299 struct ocfs2_extent_block *eb; 5300 5301 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5302 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5303 if (ret) { 5304 mlog_errno(ret); 5305 goto out; 5306 } 5307 5308 index--; 5309 } 5310 5311 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5312 path->p_tree_depth) { 5313 /* 5314 * Check whether this is the rightmost tree record. If 5315 * we remove all of this record or part of its right 5316 * edge then an update of the record lengths above it 5317 * will be required. 5318 */ 5319 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5320 if (eb->h_next_leaf_blk == 0) 5321 is_rightmost_tree_rec = 1; 5322 } 5323 5324 rec = &el->l_recs[index]; 5325 if (index == 0 && path->p_tree_depth && 5326 le32_to_cpu(rec->e_cpos) == cpos) { 5327 /* 5328 * Changing the leftmost offset (via partial or whole 5329 * record truncate) of an interior (or rightmost) path 5330 * means we have to update the subtree that is formed 5331 * by this leaf and the one to it's left. 5332 * 5333 * There are two cases we can skip: 5334 * 1) Path is the leftmost one in our btree. 5335 * 2) The leaf is rightmost and will be empty after 5336 * we remove the extent record - the rotate code 5337 * knows how to update the newly formed edge. 5338 */ 5339 5340 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5341 if (ret) { 5342 mlog_errno(ret); 5343 goto out; 5344 } 5345 5346 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5347 left_path = ocfs2_new_path_from_path(path); 5348 if (!left_path) { 5349 ret = -ENOMEM; 5350 mlog_errno(ret); 5351 goto out; 5352 } 5353 5354 ret = ocfs2_find_path(et->et_ci, left_path, 5355 left_cpos); 5356 if (ret) { 5357 mlog_errno(ret); 5358 goto out; 5359 } 5360 } 5361 } 5362 5363 ret = ocfs2_extend_rotate_transaction(handle, 0, 5364 handle->h_buffer_credits, 5365 path); 5366 if (ret) { 5367 mlog_errno(ret); 5368 goto out; 5369 } 5370 5371 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5372 if (ret) { 5373 mlog_errno(ret); 5374 goto out; 5375 } 5376 5377 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5378 if (ret) { 5379 mlog_errno(ret); 5380 goto out; 5381 } 5382 5383 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5384 trunc_range = cpos + len; 5385 5386 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5387 int next_free; 5388 5389 memset(rec, 0, sizeof(*rec)); 5390 ocfs2_cleanup_merge(el, index); 5391 wants_rotate = 1; 5392 5393 next_free = le16_to_cpu(el->l_next_free_rec); 5394 if (is_rightmost_tree_rec && next_free > 1) { 5395 /* 5396 * We skip the edge update if this path will 5397 * be deleted by the rotate code. 5398 */ 5399 rec = &el->l_recs[next_free - 1]; 5400 ocfs2_adjust_rightmost_records(handle, et, path, 5401 rec); 5402 } 5403 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5404 /* Remove leftmost portion of the record. */ 5405 le32_add_cpu(&rec->e_cpos, len); 5406 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5407 le16_add_cpu(&rec->e_leaf_clusters, -len); 5408 } else if (rec_range == trunc_range) { 5409 /* Remove rightmost portion of the record */ 5410 le16_add_cpu(&rec->e_leaf_clusters, -len); 5411 if (is_rightmost_tree_rec) 5412 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5413 } else { 5414 /* Caller should have trapped this. */ 5415 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5416 "(%u, %u)\n", 5417 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5418 le32_to_cpu(rec->e_cpos), 5419 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5420 BUG(); 5421 } 5422 5423 if (left_path) { 5424 int subtree_index; 5425 5426 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5427 ocfs2_complete_edge_insert(handle, left_path, path, 5428 subtree_index); 5429 } 5430 5431 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5432 5433 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5434 if (ret) { 5435 mlog_errno(ret); 5436 goto out; 5437 } 5438 5439 out: 5440 ocfs2_free_path(left_path); 5441 return ret; 5442 } 5443 5444 int ocfs2_remove_extent(handle_t *handle, 5445 struct ocfs2_extent_tree *et, 5446 u32 cpos, u32 len, 5447 struct ocfs2_alloc_context *meta_ac, 5448 struct ocfs2_cached_dealloc_ctxt *dealloc) 5449 { 5450 int ret, index; 5451 u32 rec_range, trunc_range; 5452 struct ocfs2_extent_rec *rec; 5453 struct ocfs2_extent_list *el; 5454 struct ocfs2_path *path = NULL; 5455 5456 /* 5457 * XXX: Why are we truncating to 0 instead of wherever this 5458 * affects us? 5459 */ 5460 ocfs2_et_extent_map_truncate(et, 0); 5461 5462 path = ocfs2_new_path_from_et(et); 5463 if (!path) { 5464 ret = -ENOMEM; 5465 mlog_errno(ret); 5466 goto out; 5467 } 5468 5469 ret = ocfs2_find_path(et->et_ci, path, cpos); 5470 if (ret) { 5471 mlog_errno(ret); 5472 goto out; 5473 } 5474 5475 el = path_leaf_el(path); 5476 index = ocfs2_search_extent_list(el, cpos); 5477 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5478 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5479 "Owner %llu has an extent at cpos %u which can no " 5480 "longer be found.\n", 5481 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5482 cpos); 5483 ret = -EROFS; 5484 goto out; 5485 } 5486 5487 /* 5488 * We have 3 cases of extent removal: 5489 * 1) Range covers the entire extent rec 5490 * 2) Range begins or ends on one edge of the extent rec 5491 * 3) Range is in the middle of the extent rec (no shared edges) 5492 * 5493 * For case 1 we remove the extent rec and left rotate to 5494 * fill the hole. 5495 * 5496 * For case 2 we just shrink the existing extent rec, with a 5497 * tree update if the shrinking edge is also the edge of an 5498 * extent block. 5499 * 5500 * For case 3 we do a right split to turn the extent rec into 5501 * something case 2 can handle. 5502 */ 5503 rec = &el->l_recs[index]; 5504 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5505 trunc_range = cpos + len; 5506 5507 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5508 5509 trace_ocfs2_remove_extent( 5510 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5511 cpos, len, index, le32_to_cpu(rec->e_cpos), 5512 ocfs2_rec_clusters(el, rec)); 5513 5514 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5515 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5516 cpos, len); 5517 if (ret) { 5518 mlog_errno(ret); 5519 goto out; 5520 } 5521 } else { 5522 ret = ocfs2_split_tree(handle, et, path, index, 5523 trunc_range, meta_ac); 5524 if (ret) { 5525 mlog_errno(ret); 5526 goto out; 5527 } 5528 5529 /* 5530 * The split could have manipulated the tree enough to 5531 * move the record location, so we have to look for it again. 5532 */ 5533 ocfs2_reinit_path(path, 1); 5534 5535 ret = ocfs2_find_path(et->et_ci, path, cpos); 5536 if (ret) { 5537 mlog_errno(ret); 5538 goto out; 5539 } 5540 5541 el = path_leaf_el(path); 5542 index = ocfs2_search_extent_list(el, cpos); 5543 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5544 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5545 "Owner %llu: split at cpos %u lost record.", 5546 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5547 cpos); 5548 ret = -EROFS; 5549 goto out; 5550 } 5551 5552 /* 5553 * Double check our values here. If anything is fishy, 5554 * it's easier to catch it at the top level. 5555 */ 5556 rec = &el->l_recs[index]; 5557 rec_range = le32_to_cpu(rec->e_cpos) + 5558 ocfs2_rec_clusters(el, rec); 5559 if (rec_range != trunc_range) { 5560 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5561 "Owner %llu: error after split at cpos %u" 5562 "trunc len %u, existing record is (%u,%u)", 5563 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5564 cpos, len, le32_to_cpu(rec->e_cpos), 5565 ocfs2_rec_clusters(el, rec)); 5566 ret = -EROFS; 5567 goto out; 5568 } 5569 5570 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5571 cpos, len); 5572 if (ret) { 5573 mlog_errno(ret); 5574 goto out; 5575 } 5576 } 5577 5578 out: 5579 ocfs2_free_path(path); 5580 return ret; 5581 } 5582 5583 /* 5584 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5585 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5586 * number to reserve some extra blocks, and it only handles meta 5587 * data allocations. 5588 * 5589 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5590 * and punching holes. 5591 */ 5592 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5593 struct ocfs2_extent_tree *et, 5594 u32 extents_to_split, 5595 struct ocfs2_alloc_context **ac, 5596 int extra_blocks) 5597 { 5598 int ret = 0, num_free_extents; 5599 unsigned int max_recs_needed = 2 * extents_to_split; 5600 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5601 5602 *ac = NULL; 5603 5604 num_free_extents = ocfs2_num_free_extents(osb, et); 5605 if (num_free_extents < 0) { 5606 ret = num_free_extents; 5607 mlog_errno(ret); 5608 goto out; 5609 } 5610 5611 if (!num_free_extents || 5612 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5613 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5614 5615 if (extra_blocks) { 5616 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5617 if (ret < 0) { 5618 if (ret != -ENOSPC) 5619 mlog_errno(ret); 5620 goto out; 5621 } 5622 } 5623 5624 out: 5625 if (ret) { 5626 if (*ac) { 5627 ocfs2_free_alloc_context(*ac); 5628 *ac = NULL; 5629 } 5630 } 5631 5632 return ret; 5633 } 5634 5635 int ocfs2_remove_btree_range(struct inode *inode, 5636 struct ocfs2_extent_tree *et, 5637 u32 cpos, u32 phys_cpos, u32 len, int flags, 5638 struct ocfs2_cached_dealloc_ctxt *dealloc, 5639 u64 refcount_loc) 5640 { 5641 int ret, credits = 0, extra_blocks = 0; 5642 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5643 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5644 struct inode *tl_inode = osb->osb_tl_inode; 5645 handle_t *handle; 5646 struct ocfs2_alloc_context *meta_ac = NULL; 5647 struct ocfs2_refcount_tree *ref_tree = NULL; 5648 5649 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5650 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & 5651 OCFS2_HAS_REFCOUNT_FL)); 5652 5653 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5654 &ref_tree, NULL); 5655 if (ret) { 5656 mlog_errno(ret); 5657 goto out; 5658 } 5659 5660 ret = ocfs2_prepare_refcount_change_for_del(inode, 5661 refcount_loc, 5662 phys_blkno, 5663 len, 5664 &credits, 5665 &extra_blocks); 5666 if (ret < 0) { 5667 mlog_errno(ret); 5668 goto out; 5669 } 5670 } 5671 5672 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5673 extra_blocks); 5674 if (ret) { 5675 mlog_errno(ret); 5676 return ret; 5677 } 5678 5679 mutex_lock(&tl_inode->i_mutex); 5680 5681 if (ocfs2_truncate_log_needs_flush(osb)) { 5682 ret = __ocfs2_flush_truncate_log(osb); 5683 if (ret < 0) { 5684 mlog_errno(ret); 5685 goto out; 5686 } 5687 } 5688 5689 handle = ocfs2_start_trans(osb, 5690 ocfs2_remove_extent_credits(osb->sb) + credits); 5691 if (IS_ERR(handle)) { 5692 ret = PTR_ERR(handle); 5693 mlog_errno(ret); 5694 goto out; 5695 } 5696 5697 ret = ocfs2_et_root_journal_access(handle, et, 5698 OCFS2_JOURNAL_ACCESS_WRITE); 5699 if (ret) { 5700 mlog_errno(ret); 5701 goto out; 5702 } 5703 5704 dquot_free_space_nodirty(inode, 5705 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5706 5707 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5708 if (ret) { 5709 mlog_errno(ret); 5710 goto out_commit; 5711 } 5712 5713 ocfs2_et_update_clusters(et, -len); 5714 5715 ocfs2_journal_dirty(handle, et->et_root_bh); 5716 5717 if (phys_blkno) { 5718 if (flags & OCFS2_EXT_REFCOUNTED) 5719 ret = ocfs2_decrease_refcount(inode, handle, 5720 ocfs2_blocks_to_clusters(osb->sb, 5721 phys_blkno), 5722 len, meta_ac, 5723 dealloc, 1); 5724 else 5725 ret = ocfs2_truncate_log_append(osb, handle, 5726 phys_blkno, len); 5727 if (ret) 5728 mlog_errno(ret); 5729 5730 } 5731 5732 out_commit: 5733 ocfs2_commit_trans(osb, handle); 5734 out: 5735 mutex_unlock(&tl_inode->i_mutex); 5736 5737 if (meta_ac) 5738 ocfs2_free_alloc_context(meta_ac); 5739 5740 if (ref_tree) 5741 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5742 5743 return ret; 5744 } 5745 5746 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5747 { 5748 struct buffer_head *tl_bh = osb->osb_tl_bh; 5749 struct ocfs2_dinode *di; 5750 struct ocfs2_truncate_log *tl; 5751 5752 di = (struct ocfs2_dinode *) tl_bh->b_data; 5753 tl = &di->id2.i_dealloc; 5754 5755 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5756 "slot %d, invalid truncate log parameters: used = " 5757 "%u, count = %u\n", osb->slot_num, 5758 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5759 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5760 } 5761 5762 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5763 unsigned int new_start) 5764 { 5765 unsigned int tail_index; 5766 unsigned int current_tail; 5767 5768 /* No records, nothing to coalesce */ 5769 if (!le16_to_cpu(tl->tl_used)) 5770 return 0; 5771 5772 tail_index = le16_to_cpu(tl->tl_used) - 1; 5773 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5774 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5775 5776 return current_tail == new_start; 5777 } 5778 5779 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5780 handle_t *handle, 5781 u64 start_blk, 5782 unsigned int num_clusters) 5783 { 5784 int status, index; 5785 unsigned int start_cluster, tl_count; 5786 struct inode *tl_inode = osb->osb_tl_inode; 5787 struct buffer_head *tl_bh = osb->osb_tl_bh; 5788 struct ocfs2_dinode *di; 5789 struct ocfs2_truncate_log *tl; 5790 5791 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5792 5793 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5794 5795 di = (struct ocfs2_dinode *) tl_bh->b_data; 5796 5797 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5798 * by the underlying call to ocfs2_read_inode_block(), so any 5799 * corruption is a code bug */ 5800 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5801 5802 tl = &di->id2.i_dealloc; 5803 tl_count = le16_to_cpu(tl->tl_count); 5804 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5805 tl_count == 0, 5806 "Truncate record count on #%llu invalid " 5807 "wanted %u, actual %u\n", 5808 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5809 ocfs2_truncate_recs_per_inode(osb->sb), 5810 le16_to_cpu(tl->tl_count)); 5811 5812 /* Caller should have known to flush before calling us. */ 5813 index = le16_to_cpu(tl->tl_used); 5814 if (index >= tl_count) { 5815 status = -ENOSPC; 5816 mlog_errno(status); 5817 goto bail; 5818 } 5819 5820 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5821 OCFS2_JOURNAL_ACCESS_WRITE); 5822 if (status < 0) { 5823 mlog_errno(status); 5824 goto bail; 5825 } 5826 5827 trace_ocfs2_truncate_log_append( 5828 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5829 start_cluster, num_clusters); 5830 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5831 /* 5832 * Move index back to the record we are coalescing with. 5833 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5834 */ 5835 index--; 5836 5837 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5838 trace_ocfs2_truncate_log_append( 5839 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5840 index, le32_to_cpu(tl->tl_recs[index].t_start), 5841 num_clusters); 5842 } else { 5843 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5844 tl->tl_used = cpu_to_le16(index + 1); 5845 } 5846 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5847 5848 ocfs2_journal_dirty(handle, tl_bh); 5849 5850 osb->truncated_clusters += num_clusters; 5851 bail: 5852 return status; 5853 } 5854 5855 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5856 handle_t *handle, 5857 struct inode *data_alloc_inode, 5858 struct buffer_head *data_alloc_bh) 5859 { 5860 int status = 0; 5861 int i; 5862 unsigned int num_clusters; 5863 u64 start_blk; 5864 struct ocfs2_truncate_rec rec; 5865 struct ocfs2_dinode *di; 5866 struct ocfs2_truncate_log *tl; 5867 struct inode *tl_inode = osb->osb_tl_inode; 5868 struct buffer_head *tl_bh = osb->osb_tl_bh; 5869 5870 di = (struct ocfs2_dinode *) tl_bh->b_data; 5871 tl = &di->id2.i_dealloc; 5872 i = le16_to_cpu(tl->tl_used) - 1; 5873 while (i >= 0) { 5874 /* Caller has given us at least enough credits to 5875 * update the truncate log dinode */ 5876 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5877 OCFS2_JOURNAL_ACCESS_WRITE); 5878 if (status < 0) { 5879 mlog_errno(status); 5880 goto bail; 5881 } 5882 5883 tl->tl_used = cpu_to_le16(i); 5884 5885 ocfs2_journal_dirty(handle, tl_bh); 5886 5887 /* TODO: Perhaps we can calculate the bulk of the 5888 * credits up front rather than extending like 5889 * this. */ 5890 status = ocfs2_extend_trans(handle, 5891 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5892 if (status < 0) { 5893 mlog_errno(status); 5894 goto bail; 5895 } 5896 5897 rec = tl->tl_recs[i]; 5898 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5899 le32_to_cpu(rec.t_start)); 5900 num_clusters = le32_to_cpu(rec.t_clusters); 5901 5902 /* if start_blk is not set, we ignore the record as 5903 * invalid. */ 5904 if (start_blk) { 5905 trace_ocfs2_replay_truncate_records( 5906 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5907 i, le32_to_cpu(rec.t_start), num_clusters); 5908 5909 status = ocfs2_free_clusters(handle, data_alloc_inode, 5910 data_alloc_bh, start_blk, 5911 num_clusters); 5912 if (status < 0) { 5913 mlog_errno(status); 5914 goto bail; 5915 } 5916 } 5917 i--; 5918 } 5919 5920 osb->truncated_clusters = 0; 5921 5922 bail: 5923 return status; 5924 } 5925 5926 /* Expects you to already be holding tl_inode->i_mutex */ 5927 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5928 { 5929 int status; 5930 unsigned int num_to_flush; 5931 handle_t *handle; 5932 struct inode *tl_inode = osb->osb_tl_inode; 5933 struct inode *data_alloc_inode = NULL; 5934 struct buffer_head *tl_bh = osb->osb_tl_bh; 5935 struct buffer_head *data_alloc_bh = NULL; 5936 struct ocfs2_dinode *di; 5937 struct ocfs2_truncate_log *tl; 5938 5939 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5940 5941 di = (struct ocfs2_dinode *) tl_bh->b_data; 5942 5943 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5944 * by the underlying call to ocfs2_read_inode_block(), so any 5945 * corruption is a code bug */ 5946 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5947 5948 tl = &di->id2.i_dealloc; 5949 num_to_flush = le16_to_cpu(tl->tl_used); 5950 trace_ocfs2_flush_truncate_log( 5951 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5952 num_to_flush); 5953 if (!num_to_flush) { 5954 status = 0; 5955 goto out; 5956 } 5957 5958 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5959 GLOBAL_BITMAP_SYSTEM_INODE, 5960 OCFS2_INVALID_SLOT); 5961 if (!data_alloc_inode) { 5962 status = -EINVAL; 5963 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5964 goto out; 5965 } 5966 5967 mutex_lock(&data_alloc_inode->i_mutex); 5968 5969 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5970 if (status < 0) { 5971 mlog_errno(status); 5972 goto out_mutex; 5973 } 5974 5975 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5976 if (IS_ERR(handle)) { 5977 status = PTR_ERR(handle); 5978 mlog_errno(status); 5979 goto out_unlock; 5980 } 5981 5982 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5983 data_alloc_bh); 5984 if (status < 0) 5985 mlog_errno(status); 5986 5987 ocfs2_commit_trans(osb, handle); 5988 5989 out_unlock: 5990 brelse(data_alloc_bh); 5991 ocfs2_inode_unlock(data_alloc_inode, 1); 5992 5993 out_mutex: 5994 mutex_unlock(&data_alloc_inode->i_mutex); 5995 iput(data_alloc_inode); 5996 5997 out: 5998 return status; 5999 } 6000 6001 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6002 { 6003 int status; 6004 struct inode *tl_inode = osb->osb_tl_inode; 6005 6006 mutex_lock(&tl_inode->i_mutex); 6007 status = __ocfs2_flush_truncate_log(osb); 6008 mutex_unlock(&tl_inode->i_mutex); 6009 6010 return status; 6011 } 6012 6013 static void ocfs2_truncate_log_worker(struct work_struct *work) 6014 { 6015 int status; 6016 struct ocfs2_super *osb = 6017 container_of(work, struct ocfs2_super, 6018 osb_truncate_log_wq.work); 6019 6020 status = ocfs2_flush_truncate_log(osb); 6021 if (status < 0) 6022 mlog_errno(status); 6023 else 6024 ocfs2_init_steal_slots(osb); 6025 } 6026 6027 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6028 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6029 int cancel) 6030 { 6031 if (osb->osb_tl_inode) { 6032 /* We want to push off log flushes while truncates are 6033 * still running. */ 6034 if (cancel) 6035 cancel_delayed_work(&osb->osb_truncate_log_wq); 6036 6037 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 6038 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6039 } 6040 } 6041 6042 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6043 int slot_num, 6044 struct inode **tl_inode, 6045 struct buffer_head **tl_bh) 6046 { 6047 int status; 6048 struct inode *inode = NULL; 6049 struct buffer_head *bh = NULL; 6050 6051 inode = ocfs2_get_system_file_inode(osb, 6052 TRUNCATE_LOG_SYSTEM_INODE, 6053 slot_num); 6054 if (!inode) { 6055 status = -EINVAL; 6056 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6057 goto bail; 6058 } 6059 6060 status = ocfs2_read_inode_block(inode, &bh); 6061 if (status < 0) { 6062 iput(inode); 6063 mlog_errno(status); 6064 goto bail; 6065 } 6066 6067 *tl_inode = inode; 6068 *tl_bh = bh; 6069 bail: 6070 return status; 6071 } 6072 6073 /* called during the 1st stage of node recovery. we stamp a clean 6074 * truncate log and pass back a copy for processing later. if the 6075 * truncate log does not require processing, a *tl_copy is set to 6076 * NULL. */ 6077 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6078 int slot_num, 6079 struct ocfs2_dinode **tl_copy) 6080 { 6081 int status; 6082 struct inode *tl_inode = NULL; 6083 struct buffer_head *tl_bh = NULL; 6084 struct ocfs2_dinode *di; 6085 struct ocfs2_truncate_log *tl; 6086 6087 *tl_copy = NULL; 6088 6089 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6090 6091 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6092 if (status < 0) { 6093 mlog_errno(status); 6094 goto bail; 6095 } 6096 6097 di = (struct ocfs2_dinode *) tl_bh->b_data; 6098 6099 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6100 * validated by the underlying call to ocfs2_read_inode_block(), 6101 * so any corruption is a code bug */ 6102 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6103 6104 tl = &di->id2.i_dealloc; 6105 if (le16_to_cpu(tl->tl_used)) { 6106 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6107 6108 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6109 if (!(*tl_copy)) { 6110 status = -ENOMEM; 6111 mlog_errno(status); 6112 goto bail; 6113 } 6114 6115 /* Assuming the write-out below goes well, this copy 6116 * will be passed back to recovery for processing. */ 6117 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6118 6119 /* All we need to do to clear the truncate log is set 6120 * tl_used. */ 6121 tl->tl_used = 0; 6122 6123 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6124 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6125 if (status < 0) { 6126 mlog_errno(status); 6127 goto bail; 6128 } 6129 } 6130 6131 bail: 6132 if (tl_inode) 6133 iput(tl_inode); 6134 brelse(tl_bh); 6135 6136 if (status < 0 && (*tl_copy)) { 6137 kfree(*tl_copy); 6138 *tl_copy = NULL; 6139 mlog_errno(status); 6140 } 6141 6142 return status; 6143 } 6144 6145 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6146 struct ocfs2_dinode *tl_copy) 6147 { 6148 int status = 0; 6149 int i; 6150 unsigned int clusters, num_recs, start_cluster; 6151 u64 start_blk; 6152 handle_t *handle; 6153 struct inode *tl_inode = osb->osb_tl_inode; 6154 struct ocfs2_truncate_log *tl; 6155 6156 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6157 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6158 return -EINVAL; 6159 } 6160 6161 tl = &tl_copy->id2.i_dealloc; 6162 num_recs = le16_to_cpu(tl->tl_used); 6163 trace_ocfs2_complete_truncate_log_recovery( 6164 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6165 num_recs); 6166 6167 mutex_lock(&tl_inode->i_mutex); 6168 for(i = 0; i < num_recs; i++) { 6169 if (ocfs2_truncate_log_needs_flush(osb)) { 6170 status = __ocfs2_flush_truncate_log(osb); 6171 if (status < 0) { 6172 mlog_errno(status); 6173 goto bail_up; 6174 } 6175 } 6176 6177 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6178 if (IS_ERR(handle)) { 6179 status = PTR_ERR(handle); 6180 mlog_errno(status); 6181 goto bail_up; 6182 } 6183 6184 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6185 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6186 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6187 6188 status = ocfs2_truncate_log_append(osb, handle, 6189 start_blk, clusters); 6190 ocfs2_commit_trans(osb, handle); 6191 if (status < 0) { 6192 mlog_errno(status); 6193 goto bail_up; 6194 } 6195 } 6196 6197 bail_up: 6198 mutex_unlock(&tl_inode->i_mutex); 6199 6200 return status; 6201 } 6202 6203 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6204 { 6205 int status; 6206 struct inode *tl_inode = osb->osb_tl_inode; 6207 6208 if (tl_inode) { 6209 cancel_delayed_work(&osb->osb_truncate_log_wq); 6210 flush_workqueue(ocfs2_wq); 6211 6212 status = ocfs2_flush_truncate_log(osb); 6213 if (status < 0) 6214 mlog_errno(status); 6215 6216 brelse(osb->osb_tl_bh); 6217 iput(osb->osb_tl_inode); 6218 } 6219 } 6220 6221 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6222 { 6223 int status; 6224 struct inode *tl_inode = NULL; 6225 struct buffer_head *tl_bh = NULL; 6226 6227 status = ocfs2_get_truncate_log_info(osb, 6228 osb->slot_num, 6229 &tl_inode, 6230 &tl_bh); 6231 if (status < 0) 6232 mlog_errno(status); 6233 6234 /* ocfs2_truncate_log_shutdown keys on the existence of 6235 * osb->osb_tl_inode so we don't set any of the osb variables 6236 * until we're sure all is well. */ 6237 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6238 ocfs2_truncate_log_worker); 6239 osb->osb_tl_bh = tl_bh; 6240 osb->osb_tl_inode = tl_inode; 6241 6242 return status; 6243 } 6244 6245 /* 6246 * Delayed de-allocation of suballocator blocks. 6247 * 6248 * Some sets of block de-allocations might involve multiple suballocator inodes. 6249 * 6250 * The locking for this can get extremely complicated, especially when 6251 * the suballocator inodes to delete from aren't known until deep 6252 * within an unrelated codepath. 6253 * 6254 * ocfs2_extent_block structures are a good example of this - an inode 6255 * btree could have been grown by any number of nodes each allocating 6256 * out of their own suballoc inode. 6257 * 6258 * These structures allow the delay of block de-allocation until a 6259 * later time, when locking of multiple cluster inodes won't cause 6260 * deadlock. 6261 */ 6262 6263 /* 6264 * Describe a single bit freed from a suballocator. For the block 6265 * suballocators, it represents one block. For the global cluster 6266 * allocator, it represents some clusters and free_bit indicates 6267 * clusters number. 6268 */ 6269 struct ocfs2_cached_block_free { 6270 struct ocfs2_cached_block_free *free_next; 6271 u64 free_bg; 6272 u64 free_blk; 6273 unsigned int free_bit; 6274 }; 6275 6276 struct ocfs2_per_slot_free_list { 6277 struct ocfs2_per_slot_free_list *f_next_suballocator; 6278 int f_inode_type; 6279 int f_slot; 6280 struct ocfs2_cached_block_free *f_first; 6281 }; 6282 6283 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6284 int sysfile_type, 6285 int slot, 6286 struct ocfs2_cached_block_free *head) 6287 { 6288 int ret; 6289 u64 bg_blkno; 6290 handle_t *handle; 6291 struct inode *inode; 6292 struct buffer_head *di_bh = NULL; 6293 struct ocfs2_cached_block_free *tmp; 6294 6295 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6296 if (!inode) { 6297 ret = -EINVAL; 6298 mlog_errno(ret); 6299 goto out; 6300 } 6301 6302 mutex_lock(&inode->i_mutex); 6303 6304 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6305 if (ret) { 6306 mlog_errno(ret); 6307 goto out_mutex; 6308 } 6309 6310 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6311 if (IS_ERR(handle)) { 6312 ret = PTR_ERR(handle); 6313 mlog_errno(ret); 6314 goto out_unlock; 6315 } 6316 6317 while (head) { 6318 if (head->free_bg) 6319 bg_blkno = head->free_bg; 6320 else 6321 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6322 head->free_bit); 6323 trace_ocfs2_free_cached_blocks( 6324 (unsigned long long)head->free_blk, head->free_bit); 6325 6326 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6327 head->free_bit, bg_blkno, 1); 6328 if (ret) { 6329 mlog_errno(ret); 6330 goto out_journal; 6331 } 6332 6333 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6334 if (ret) { 6335 mlog_errno(ret); 6336 goto out_journal; 6337 } 6338 6339 tmp = head; 6340 head = head->free_next; 6341 kfree(tmp); 6342 } 6343 6344 out_journal: 6345 ocfs2_commit_trans(osb, handle); 6346 6347 out_unlock: 6348 ocfs2_inode_unlock(inode, 1); 6349 brelse(di_bh); 6350 out_mutex: 6351 mutex_unlock(&inode->i_mutex); 6352 iput(inode); 6353 out: 6354 while(head) { 6355 /* Premature exit may have left some dangling items. */ 6356 tmp = head; 6357 head = head->free_next; 6358 kfree(tmp); 6359 } 6360 6361 return ret; 6362 } 6363 6364 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6365 u64 blkno, unsigned int bit) 6366 { 6367 int ret = 0; 6368 struct ocfs2_cached_block_free *item; 6369 6370 item = kzalloc(sizeof(*item), GFP_NOFS); 6371 if (item == NULL) { 6372 ret = -ENOMEM; 6373 mlog_errno(ret); 6374 return ret; 6375 } 6376 6377 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6378 6379 item->free_blk = blkno; 6380 item->free_bit = bit; 6381 item->free_next = ctxt->c_global_allocator; 6382 6383 ctxt->c_global_allocator = item; 6384 return ret; 6385 } 6386 6387 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6388 struct ocfs2_cached_block_free *head) 6389 { 6390 struct ocfs2_cached_block_free *tmp; 6391 struct inode *tl_inode = osb->osb_tl_inode; 6392 handle_t *handle; 6393 int ret = 0; 6394 6395 mutex_lock(&tl_inode->i_mutex); 6396 6397 while (head) { 6398 if (ocfs2_truncate_log_needs_flush(osb)) { 6399 ret = __ocfs2_flush_truncate_log(osb); 6400 if (ret < 0) { 6401 mlog_errno(ret); 6402 break; 6403 } 6404 } 6405 6406 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6407 if (IS_ERR(handle)) { 6408 ret = PTR_ERR(handle); 6409 mlog_errno(ret); 6410 break; 6411 } 6412 6413 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6414 head->free_bit); 6415 6416 ocfs2_commit_trans(osb, handle); 6417 tmp = head; 6418 head = head->free_next; 6419 kfree(tmp); 6420 6421 if (ret < 0) { 6422 mlog_errno(ret); 6423 break; 6424 } 6425 } 6426 6427 mutex_unlock(&tl_inode->i_mutex); 6428 6429 while (head) { 6430 /* Premature exit may have left some dangling items. */ 6431 tmp = head; 6432 head = head->free_next; 6433 kfree(tmp); 6434 } 6435 6436 return ret; 6437 } 6438 6439 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6440 struct ocfs2_cached_dealloc_ctxt *ctxt) 6441 { 6442 int ret = 0, ret2; 6443 struct ocfs2_per_slot_free_list *fl; 6444 6445 if (!ctxt) 6446 return 0; 6447 6448 while (ctxt->c_first_suballocator) { 6449 fl = ctxt->c_first_suballocator; 6450 6451 if (fl->f_first) { 6452 trace_ocfs2_run_deallocs(fl->f_inode_type, 6453 fl->f_slot); 6454 ret2 = ocfs2_free_cached_blocks(osb, 6455 fl->f_inode_type, 6456 fl->f_slot, 6457 fl->f_first); 6458 if (ret2) 6459 mlog_errno(ret2); 6460 if (!ret) 6461 ret = ret2; 6462 } 6463 6464 ctxt->c_first_suballocator = fl->f_next_suballocator; 6465 kfree(fl); 6466 } 6467 6468 if (ctxt->c_global_allocator) { 6469 ret2 = ocfs2_free_cached_clusters(osb, 6470 ctxt->c_global_allocator); 6471 if (ret2) 6472 mlog_errno(ret2); 6473 if (!ret) 6474 ret = ret2; 6475 6476 ctxt->c_global_allocator = NULL; 6477 } 6478 6479 return ret; 6480 } 6481 6482 static struct ocfs2_per_slot_free_list * 6483 ocfs2_find_per_slot_free_list(int type, 6484 int slot, 6485 struct ocfs2_cached_dealloc_ctxt *ctxt) 6486 { 6487 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6488 6489 while (fl) { 6490 if (fl->f_inode_type == type && fl->f_slot == slot) 6491 return fl; 6492 6493 fl = fl->f_next_suballocator; 6494 } 6495 6496 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6497 if (fl) { 6498 fl->f_inode_type = type; 6499 fl->f_slot = slot; 6500 fl->f_first = NULL; 6501 fl->f_next_suballocator = ctxt->c_first_suballocator; 6502 6503 ctxt->c_first_suballocator = fl; 6504 } 6505 return fl; 6506 } 6507 6508 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6509 int type, int slot, u64 suballoc, 6510 u64 blkno, unsigned int bit) 6511 { 6512 int ret; 6513 struct ocfs2_per_slot_free_list *fl; 6514 struct ocfs2_cached_block_free *item; 6515 6516 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6517 if (fl == NULL) { 6518 ret = -ENOMEM; 6519 mlog_errno(ret); 6520 goto out; 6521 } 6522 6523 item = kzalloc(sizeof(*item), GFP_NOFS); 6524 if (item == NULL) { 6525 ret = -ENOMEM; 6526 mlog_errno(ret); 6527 goto out; 6528 } 6529 6530 trace_ocfs2_cache_block_dealloc(type, slot, 6531 (unsigned long long)suballoc, 6532 (unsigned long long)blkno, bit); 6533 6534 item->free_bg = suballoc; 6535 item->free_blk = blkno; 6536 item->free_bit = bit; 6537 item->free_next = fl->f_first; 6538 6539 fl->f_first = item; 6540 6541 ret = 0; 6542 out: 6543 return ret; 6544 } 6545 6546 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6547 struct ocfs2_extent_block *eb) 6548 { 6549 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6550 le16_to_cpu(eb->h_suballoc_slot), 6551 le64_to_cpu(eb->h_suballoc_loc), 6552 le64_to_cpu(eb->h_blkno), 6553 le16_to_cpu(eb->h_suballoc_bit)); 6554 } 6555 6556 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6557 { 6558 set_buffer_uptodate(bh); 6559 mark_buffer_dirty(bh); 6560 return 0; 6561 } 6562 6563 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6564 unsigned int from, unsigned int to, 6565 struct page *page, int zero, u64 *phys) 6566 { 6567 int ret, partial = 0; 6568 6569 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6570 if (ret) 6571 mlog_errno(ret); 6572 6573 if (zero) 6574 zero_user_segment(page, from, to); 6575 6576 /* 6577 * Need to set the buffers we zero'd into uptodate 6578 * here if they aren't - ocfs2_map_page_blocks() 6579 * might've skipped some 6580 */ 6581 ret = walk_page_buffers(handle, page_buffers(page), 6582 from, to, &partial, 6583 ocfs2_zero_func); 6584 if (ret < 0) 6585 mlog_errno(ret); 6586 else if (ocfs2_should_order_data(inode)) { 6587 ret = ocfs2_jbd2_file_inode(handle, inode); 6588 if (ret < 0) 6589 mlog_errno(ret); 6590 } 6591 6592 if (!partial) 6593 SetPageUptodate(page); 6594 6595 flush_dcache_page(page); 6596 } 6597 6598 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6599 loff_t end, struct page **pages, 6600 int numpages, u64 phys, handle_t *handle) 6601 { 6602 int i; 6603 struct page *page; 6604 unsigned int from, to = PAGE_CACHE_SIZE; 6605 struct super_block *sb = inode->i_sb; 6606 6607 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6608 6609 if (numpages == 0) 6610 goto out; 6611 6612 to = PAGE_CACHE_SIZE; 6613 for(i = 0; i < numpages; i++) { 6614 page = pages[i]; 6615 6616 from = start & (PAGE_CACHE_SIZE - 1); 6617 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6618 to = end & (PAGE_CACHE_SIZE - 1); 6619 6620 BUG_ON(from > PAGE_CACHE_SIZE); 6621 BUG_ON(to > PAGE_CACHE_SIZE); 6622 6623 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6624 &phys); 6625 6626 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6627 } 6628 out: 6629 if (pages) 6630 ocfs2_unlock_and_free_pages(pages, numpages); 6631 } 6632 6633 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6634 struct page **pages, int *num) 6635 { 6636 int numpages, ret = 0; 6637 struct address_space *mapping = inode->i_mapping; 6638 unsigned long index; 6639 loff_t last_page_bytes; 6640 6641 BUG_ON(start > end); 6642 6643 numpages = 0; 6644 last_page_bytes = PAGE_ALIGN(end); 6645 index = start >> PAGE_CACHE_SHIFT; 6646 do { 6647 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6648 if (!pages[numpages]) { 6649 ret = -ENOMEM; 6650 mlog_errno(ret); 6651 goto out; 6652 } 6653 6654 numpages++; 6655 index++; 6656 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6657 6658 out: 6659 if (ret != 0) { 6660 if (pages) 6661 ocfs2_unlock_and_free_pages(pages, numpages); 6662 numpages = 0; 6663 } 6664 6665 *num = numpages; 6666 6667 return ret; 6668 } 6669 6670 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6671 struct page **pages, int *num) 6672 { 6673 struct super_block *sb = inode->i_sb; 6674 6675 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6676 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6677 6678 return ocfs2_grab_pages(inode, start, end, pages, num); 6679 } 6680 6681 /* 6682 * Zero the area past i_size but still within an allocated 6683 * cluster. This avoids exposing nonzero data on subsequent file 6684 * extends. 6685 * 6686 * We need to call this before i_size is updated on the inode because 6687 * otherwise block_write_full_page() will skip writeout of pages past 6688 * i_size. The new_i_size parameter is passed for this reason. 6689 */ 6690 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6691 u64 range_start, u64 range_end) 6692 { 6693 int ret = 0, numpages; 6694 struct page **pages = NULL; 6695 u64 phys; 6696 unsigned int ext_flags; 6697 struct super_block *sb = inode->i_sb; 6698 6699 /* 6700 * File systems which don't support sparse files zero on every 6701 * extend. 6702 */ 6703 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6704 return 0; 6705 6706 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6707 sizeof(struct page *), GFP_NOFS); 6708 if (pages == NULL) { 6709 ret = -ENOMEM; 6710 mlog_errno(ret); 6711 goto out; 6712 } 6713 6714 if (range_start == range_end) 6715 goto out; 6716 6717 ret = ocfs2_extent_map_get_blocks(inode, 6718 range_start >> sb->s_blocksize_bits, 6719 &phys, NULL, &ext_flags); 6720 if (ret) { 6721 mlog_errno(ret); 6722 goto out; 6723 } 6724 6725 /* 6726 * Tail is a hole, or is marked unwritten. In either case, we 6727 * can count on read and write to return/push zero's. 6728 */ 6729 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6730 goto out; 6731 6732 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6733 &numpages); 6734 if (ret) { 6735 mlog_errno(ret); 6736 goto out; 6737 } 6738 6739 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6740 numpages, phys, handle); 6741 6742 /* 6743 * Initiate writeout of the pages we zero'd here. We don't 6744 * wait on them - the truncate_inode_pages() call later will 6745 * do that for us. 6746 */ 6747 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 6748 range_end - 1); 6749 if (ret) 6750 mlog_errno(ret); 6751 6752 out: 6753 if (pages) 6754 kfree(pages); 6755 6756 return ret; 6757 } 6758 6759 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 6760 struct ocfs2_dinode *di) 6761 { 6762 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 6763 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 6764 6765 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 6766 memset(&di->id2, 0, blocksize - 6767 offsetof(struct ocfs2_dinode, id2) - 6768 xattrsize); 6769 else 6770 memset(&di->id2, 0, blocksize - 6771 offsetof(struct ocfs2_dinode, id2)); 6772 } 6773 6774 void ocfs2_dinode_new_extent_list(struct inode *inode, 6775 struct ocfs2_dinode *di) 6776 { 6777 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6778 di->id2.i_list.l_tree_depth = 0; 6779 di->id2.i_list.l_next_free_rec = 0; 6780 di->id2.i_list.l_count = cpu_to_le16( 6781 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 6782 } 6783 6784 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 6785 { 6786 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6787 struct ocfs2_inline_data *idata = &di->id2.i_data; 6788 6789 spin_lock(&oi->ip_lock); 6790 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 6791 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6792 spin_unlock(&oi->ip_lock); 6793 6794 /* 6795 * We clear the entire i_data structure here so that all 6796 * fields can be properly initialized. 6797 */ 6798 ocfs2_zero_dinode_id2_with_xattr(inode, di); 6799 6800 idata->id_count = cpu_to_le16( 6801 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 6802 } 6803 6804 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 6805 struct buffer_head *di_bh) 6806 { 6807 int ret, i, has_data, num_pages = 0; 6808 handle_t *handle; 6809 u64 uninitialized_var(block); 6810 struct ocfs2_inode_info *oi = OCFS2_I(inode); 6811 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 6812 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6813 struct ocfs2_alloc_context *data_ac = NULL; 6814 struct page **pages = NULL; 6815 loff_t end = osb->s_clustersize; 6816 struct ocfs2_extent_tree et; 6817 int did_quota = 0; 6818 6819 has_data = i_size_read(inode) ? 1 : 0; 6820 6821 if (has_data) { 6822 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 6823 sizeof(struct page *), GFP_NOFS); 6824 if (pages == NULL) { 6825 ret = -ENOMEM; 6826 mlog_errno(ret); 6827 goto out; 6828 } 6829 6830 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 6831 if (ret) { 6832 mlog_errno(ret); 6833 goto out; 6834 } 6835 } 6836 6837 handle = ocfs2_start_trans(osb, 6838 ocfs2_inline_to_extents_credits(osb->sb)); 6839 if (IS_ERR(handle)) { 6840 ret = PTR_ERR(handle); 6841 mlog_errno(ret); 6842 goto out_unlock; 6843 } 6844 6845 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 6846 OCFS2_JOURNAL_ACCESS_WRITE); 6847 if (ret) { 6848 mlog_errno(ret); 6849 goto out_commit; 6850 } 6851 6852 if (has_data) { 6853 u32 bit_off, num; 6854 unsigned int page_end; 6855 u64 phys; 6856 6857 ret = dquot_alloc_space_nodirty(inode, 6858 ocfs2_clusters_to_bytes(osb->sb, 1)); 6859 if (ret) 6860 goto out_commit; 6861 did_quota = 1; 6862 6863 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 6864 6865 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 6866 &num); 6867 if (ret) { 6868 mlog_errno(ret); 6869 goto out_commit; 6870 } 6871 6872 /* 6873 * Save two copies, one for insert, and one that can 6874 * be changed by ocfs2_map_and_dirty_page() below. 6875 */ 6876 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 6877 6878 /* 6879 * Non sparse file systems zero on extend, so no need 6880 * to do that now. 6881 */ 6882 if (!ocfs2_sparse_alloc(osb) && 6883 PAGE_CACHE_SIZE < osb->s_clustersize) 6884 end = PAGE_CACHE_SIZE; 6885 6886 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 6887 if (ret) { 6888 mlog_errno(ret); 6889 goto out_commit; 6890 } 6891 6892 /* 6893 * This should populate the 1st page for us and mark 6894 * it up to date. 6895 */ 6896 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 6897 if (ret) { 6898 mlog_errno(ret); 6899 goto out_commit; 6900 } 6901 6902 page_end = PAGE_CACHE_SIZE; 6903 if (PAGE_CACHE_SIZE > osb->s_clustersize) 6904 page_end = osb->s_clustersize; 6905 6906 for (i = 0; i < num_pages; i++) 6907 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 6908 pages[i], i > 0, &phys); 6909 } 6910 6911 spin_lock(&oi->ip_lock); 6912 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 6913 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 6914 spin_unlock(&oi->ip_lock); 6915 6916 ocfs2_dinode_new_extent_list(inode, di); 6917 6918 ocfs2_journal_dirty(handle, di_bh); 6919 6920 if (has_data) { 6921 /* 6922 * An error at this point should be extremely rare. If 6923 * this proves to be false, we could always re-build 6924 * the in-inode data from our pages. 6925 */ 6926 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6927 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 6928 if (ret) { 6929 mlog_errno(ret); 6930 goto out_commit; 6931 } 6932 6933 inode->i_blocks = ocfs2_inode_sector_count(inode); 6934 } 6935 6936 out_commit: 6937 if (ret < 0 && did_quota) 6938 dquot_free_space_nodirty(inode, 6939 ocfs2_clusters_to_bytes(osb->sb, 1)); 6940 6941 ocfs2_commit_trans(osb, handle); 6942 6943 out_unlock: 6944 if (data_ac) 6945 ocfs2_free_alloc_context(data_ac); 6946 6947 out: 6948 if (pages) { 6949 ocfs2_unlock_and_free_pages(pages, num_pages); 6950 kfree(pages); 6951 } 6952 6953 return ret; 6954 } 6955 6956 /* 6957 * It is expected, that by the time you call this function, 6958 * inode->i_size and fe->i_size have been adjusted. 6959 * 6960 * WARNING: This will kfree the truncate context 6961 */ 6962 int ocfs2_commit_truncate(struct ocfs2_super *osb, 6963 struct inode *inode, 6964 struct buffer_head *di_bh) 6965 { 6966 int status = 0, i, flags = 0; 6967 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 6968 u64 blkno = 0; 6969 struct ocfs2_extent_list *el; 6970 struct ocfs2_extent_rec *rec; 6971 struct ocfs2_path *path = NULL; 6972 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 6973 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 6974 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 6975 struct ocfs2_extent_tree et; 6976 struct ocfs2_cached_dealloc_ctxt dealloc; 6977 6978 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 6979 ocfs2_init_dealloc_ctxt(&dealloc); 6980 6981 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 6982 i_size_read(inode)); 6983 6984 path = ocfs2_new_path(di_bh, &di->id2.i_list, 6985 ocfs2_journal_access_di); 6986 if (!path) { 6987 status = -ENOMEM; 6988 mlog_errno(status); 6989 goto bail; 6990 } 6991 6992 ocfs2_extent_map_trunc(inode, new_highest_cpos); 6993 6994 start: 6995 /* 6996 * Check that we still have allocation to delete. 6997 */ 6998 if (OCFS2_I(inode)->ip_clusters == 0) { 6999 status = 0; 7000 goto bail; 7001 } 7002 7003 /* 7004 * Truncate always works against the rightmost tree branch. 7005 */ 7006 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7007 if (status) { 7008 mlog_errno(status); 7009 goto bail; 7010 } 7011 7012 trace_ocfs2_commit_truncate( 7013 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7014 new_highest_cpos, 7015 OCFS2_I(inode)->ip_clusters, 7016 path->p_tree_depth); 7017 7018 /* 7019 * By now, el will point to the extent list on the bottom most 7020 * portion of this tree. Only the tail record is considered in 7021 * each pass. 7022 * 7023 * We handle the following cases, in order: 7024 * - empty extent: delete the remaining branch 7025 * - remove the entire record 7026 * - remove a partial record 7027 * - no record needs to be removed (truncate has completed) 7028 */ 7029 el = path_leaf_el(path); 7030 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7031 ocfs2_error(inode->i_sb, 7032 "Inode %llu has empty extent block at %llu\n", 7033 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7034 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7035 status = -EROFS; 7036 goto bail; 7037 } 7038 7039 i = le16_to_cpu(el->l_next_free_rec) - 1; 7040 rec = &el->l_recs[i]; 7041 flags = rec->e_flags; 7042 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7043 7044 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7045 /* 7046 * Lower levels depend on this never happening, but it's best 7047 * to check it up here before changing the tree. 7048 */ 7049 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7050 ocfs2_error(inode->i_sb, "Inode %lu has an empty " 7051 "extent record, depth %u\n", inode->i_ino, 7052 le16_to_cpu(root_el->l_tree_depth)); 7053 status = -EROFS; 7054 goto bail; 7055 } 7056 trunc_cpos = le32_to_cpu(rec->e_cpos); 7057 trunc_len = 0; 7058 blkno = 0; 7059 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7060 /* 7061 * Truncate entire record. 7062 */ 7063 trunc_cpos = le32_to_cpu(rec->e_cpos); 7064 trunc_len = ocfs2_rec_clusters(el, rec); 7065 blkno = le64_to_cpu(rec->e_blkno); 7066 } else if (range > new_highest_cpos) { 7067 /* 7068 * Partial truncate. it also should be 7069 * the last truncate we're doing. 7070 */ 7071 trunc_cpos = new_highest_cpos; 7072 trunc_len = range - new_highest_cpos; 7073 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7074 blkno = le64_to_cpu(rec->e_blkno) + 7075 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7076 } else { 7077 /* 7078 * Truncate completed, leave happily. 7079 */ 7080 status = 0; 7081 goto bail; 7082 } 7083 7084 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7085 7086 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7087 phys_cpos, trunc_len, flags, &dealloc, 7088 refcount_loc); 7089 if (status < 0) { 7090 mlog_errno(status); 7091 goto bail; 7092 } 7093 7094 ocfs2_reinit_path(path, 1); 7095 7096 /* 7097 * The check above will catch the case where we've truncated 7098 * away all allocation. 7099 */ 7100 goto start; 7101 7102 bail: 7103 7104 ocfs2_schedule_truncate_log_flush(osb, 1); 7105 7106 ocfs2_run_deallocs(osb, &dealloc); 7107 7108 ocfs2_free_path(path); 7109 7110 return status; 7111 } 7112 7113 /* 7114 * 'start' is inclusive, 'end' is not. 7115 */ 7116 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7117 unsigned int start, unsigned int end, int trunc) 7118 { 7119 int ret; 7120 unsigned int numbytes; 7121 handle_t *handle; 7122 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7123 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7124 struct ocfs2_inline_data *idata = &di->id2.i_data; 7125 7126 if (end > i_size_read(inode)) 7127 end = i_size_read(inode); 7128 7129 BUG_ON(start >= end); 7130 7131 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7132 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7133 !ocfs2_supports_inline_data(osb)) { 7134 ocfs2_error(inode->i_sb, 7135 "Inline data flags for inode %llu don't agree! " 7136 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7137 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7138 le16_to_cpu(di->i_dyn_features), 7139 OCFS2_I(inode)->ip_dyn_features, 7140 osb->s_feature_incompat); 7141 ret = -EROFS; 7142 goto out; 7143 } 7144 7145 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7146 if (IS_ERR(handle)) { 7147 ret = PTR_ERR(handle); 7148 mlog_errno(ret); 7149 goto out; 7150 } 7151 7152 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7153 OCFS2_JOURNAL_ACCESS_WRITE); 7154 if (ret) { 7155 mlog_errno(ret); 7156 goto out_commit; 7157 } 7158 7159 numbytes = end - start; 7160 memset(idata->id_data + start, 0, numbytes); 7161 7162 /* 7163 * No need to worry about the data page here - it's been 7164 * truncated already and inline data doesn't need it for 7165 * pushing zero's to disk, so we'll let readpage pick it up 7166 * later. 7167 */ 7168 if (trunc) { 7169 i_size_write(inode, start); 7170 di->i_size = cpu_to_le64(start); 7171 } 7172 7173 inode->i_blocks = ocfs2_inode_sector_count(inode); 7174 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7175 7176 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7177 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7178 7179 ocfs2_journal_dirty(handle, di_bh); 7180 7181 out_commit: 7182 ocfs2_commit_trans(osb, handle); 7183 7184 out: 7185 return ret; 7186 } 7187