1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * alloc.c 4 * 5 * Extent allocs and frees 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/swap.h> 15 #include <linux/quotaops.h> 16 #include <linux/blkdev.h> 17 #include <linux/sched/signal.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "aops.h" 25 #include "blockcheck.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "inode.h" 29 #include "journal.h" 30 #include "localalloc.h" 31 #include "suballoc.h" 32 #include "sysfile.h" 33 #include "file.h" 34 #include "super.h" 35 #include "uptodate.h" 36 #include "xattr.h" 37 #include "refcounttree.h" 38 #include "ocfs2_trace.h" 39 40 #include "buffer_head_io.h" 41 42 enum ocfs2_contig_type { 43 CONTIG_NONE = 0, 44 CONTIG_LEFT, 45 CONTIG_RIGHT, 46 CONTIG_LEFTRIGHT, 47 }; 48 49 static enum ocfs2_contig_type 50 ocfs2_extent_rec_contig(struct super_block *sb, 51 struct ocfs2_extent_rec *ext, 52 struct ocfs2_extent_rec *insert_rec); 53 /* 54 * Operations for a specific extent tree type. 55 * 56 * To implement an on-disk btree (extent tree) type in ocfs2, add 57 * an ocfs2_extent_tree_operations structure and the matching 58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 59 * for the allocation portion of the extent tree. 60 */ 61 struct ocfs2_extent_tree_operations { 62 /* 63 * last_eb_blk is the block number of the right most leaf extent 64 * block. Most on-disk structures containing an extent tree store 65 * this value for fast access. The ->eo_set_last_eb_blk() and 66 * ->eo_get_last_eb_blk() operations access this value. They are 67 * both required. 68 */ 69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 70 u64 blkno); 71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 72 73 /* 74 * The on-disk structure usually keeps track of how many total 75 * clusters are stored in this extent tree. This function updates 76 * that value. new_clusters is the delta, and must be 77 * added to the total. Required. 78 */ 79 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 80 u32 new_clusters); 81 82 /* 83 * If this extent tree is supported by an extent map, insert 84 * a record into the map. 85 */ 86 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 87 struct ocfs2_extent_rec *rec); 88 89 /* 90 * If this extent tree is supported by an extent map, truncate the 91 * map to clusters, 92 */ 93 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 94 u32 clusters); 95 96 /* 97 * If ->eo_insert_check() exists, it is called before rec is 98 * inserted into the extent tree. It is optional. 99 */ 100 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 103 104 /* 105 * -------------------------------------------------------------- 106 * The remaining are internal to ocfs2_extent_tree and don't have 107 * accessor functions 108 */ 109 110 /* 111 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 112 * It is required. 113 */ 114 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 115 116 /* 117 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 118 * it exists. If it does not, et->et_max_leaf_clusters is set 119 * to 0 (unlimited). Optional. 120 */ 121 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 122 123 /* 124 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 125 * are contiguous or not. Optional. Don't need to set it if use 126 * ocfs2_extent_rec as the tree leaf. 127 */ 128 enum ocfs2_contig_type 129 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 130 struct ocfs2_extent_rec *ext, 131 struct ocfs2_extent_rec *insert_rec); 132 }; 133 134 135 /* 136 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 137 * in the methods. 138 */ 139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 141 u64 blkno); 142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 143 u32 clusters); 144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *rec); 146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 147 u32 clusters); 148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 149 struct ocfs2_extent_rec *rec); 150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 152 153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 154 struct ocfs2_extent_tree *et, 155 struct buffer_head **new_eb_bh, 156 int blk_wanted, int *blk_given); 157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 158 159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 160 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 161 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 162 .eo_update_clusters = ocfs2_dinode_update_clusters, 163 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 164 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 165 .eo_insert_check = ocfs2_dinode_insert_check, 166 .eo_sanity_check = ocfs2_dinode_sanity_check, 167 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 168 }; 169 170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 171 u64 blkno) 172 { 173 struct ocfs2_dinode *di = et->et_object; 174 175 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 176 di->i_last_eb_blk = cpu_to_le64(blkno); 177 } 178 179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 return le64_to_cpu(di->i_last_eb_blk); 185 } 186 187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 188 u32 clusters) 189 { 190 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 191 struct ocfs2_dinode *di = et->et_object; 192 193 le32_add_cpu(&di->i_clusters, clusters); 194 spin_lock(&oi->ip_lock); 195 oi->ip_clusters = le32_to_cpu(di->i_clusters); 196 spin_unlock(&oi->ip_lock); 197 } 198 199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 200 struct ocfs2_extent_rec *rec) 201 { 202 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 203 204 ocfs2_extent_map_insert_rec(inode, rec); 205 } 206 207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 208 u32 clusters) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_trunc(inode, clusters); 213 } 214 215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 216 struct ocfs2_extent_rec *rec) 217 { 218 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 219 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 220 221 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 222 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 223 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 224 "Device %s, asking for sparse allocation: inode %llu, " 225 "cpos %u, clusters %u\n", 226 osb->dev_str, 227 (unsigned long long)oi->ip_blkno, 228 rec->e_cpos, oi->ip_clusters); 229 230 return 0; 231 } 232 233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 234 { 235 struct ocfs2_dinode *di = et->et_object; 236 237 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 238 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 239 240 return 0; 241 } 242 243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 244 { 245 struct ocfs2_dinode *di = et->et_object; 246 247 et->et_root_el = &di->id2.i_list; 248 } 249 250 251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_xattr_value_buf *vb = et->et_object; 254 255 et->et_root_el = &vb->vb_xv->xr_list; 256 } 257 258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 259 u64 blkno) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 264 } 265 266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 271 } 272 273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 274 u32 clusters) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 279 } 280 281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 282 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 283 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 284 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 285 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 286 }; 287 288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 289 { 290 struct ocfs2_xattr_block *xb = et->et_object; 291 292 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 293 } 294 295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 296 { 297 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 298 et->et_max_leaf_clusters = 299 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 300 } 301 302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 303 u64 blkno) 304 { 305 struct ocfs2_xattr_block *xb = et->et_object; 306 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 307 308 xt->xt_last_eb_blk = cpu_to_le64(blkno); 309 } 310 311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 return le64_to_cpu(xt->xt_last_eb_blk); 317 } 318 319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 320 u32 clusters) 321 { 322 struct ocfs2_xattr_block *xb = et->et_object; 323 324 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 325 } 326 327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 328 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 329 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 330 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 331 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 332 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 333 }; 334 335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 336 u64 blkno) 337 { 338 struct ocfs2_dx_root_block *dx_root = et->et_object; 339 340 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 341 } 342 343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 return le64_to_cpu(dx_root->dr_last_eb_blk); 348 } 349 350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 351 u32 clusters) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 le32_add_cpu(&dx_root->dr_clusters, clusters); 356 } 357 358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 363 364 return 0; 365 } 366 367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 et->et_root_el = &dx_root->dr_list; 372 } 373 374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 375 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 376 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 377 .eo_update_clusters = ocfs2_dx_root_update_clusters, 378 .eo_sanity_check = ocfs2_dx_root_sanity_check, 379 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 380 }; 381 382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 383 { 384 struct ocfs2_refcount_block *rb = et->et_object; 385 386 et->et_root_el = &rb->rf_list; 387 } 388 389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 390 u64 blkno) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 rb->rf_last_eb_blk = cpu_to_le64(blkno); 395 } 396 397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 return le64_to_cpu(rb->rf_last_eb_blk); 402 } 403 404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 405 u32 clusters) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 le32_add_cpu(&rb->rf_clusters, clusters); 410 } 411 412 static enum ocfs2_contig_type 413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 414 struct ocfs2_extent_rec *ext, 415 struct ocfs2_extent_rec *insert_rec) 416 { 417 return CONTIG_NONE; 418 } 419 420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 421 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 422 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 423 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 424 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 425 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 426 }; 427 428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 429 struct ocfs2_caching_info *ci, 430 struct buffer_head *bh, 431 ocfs2_journal_access_func access, 432 void *obj, 433 const struct ocfs2_extent_tree_operations *ops) 434 { 435 et->et_ops = ops; 436 et->et_root_bh = bh; 437 et->et_ci = ci; 438 et->et_root_journal_access = access; 439 if (!obj) 440 obj = (void *)bh->b_data; 441 et->et_object = obj; 442 et->et_dealloc = NULL; 443 444 et->et_ops->eo_fill_root_el(et); 445 if (!et->et_ops->eo_fill_max_leaf_clusters) 446 et->et_max_leaf_clusters = 0; 447 else 448 et->et_ops->eo_fill_max_leaf_clusters(et); 449 } 450 451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 452 struct ocfs2_caching_info *ci, 453 struct buffer_head *bh) 454 { 455 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 456 NULL, &ocfs2_dinode_et_ops); 457 } 458 459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 460 struct ocfs2_caching_info *ci, 461 struct buffer_head *bh) 462 { 463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 464 NULL, &ocfs2_xattr_tree_et_ops); 465 } 466 467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct ocfs2_xattr_value_buf *vb) 470 { 471 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 472 &ocfs2_xattr_value_et_ops); 473 } 474 475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct buffer_head *bh) 478 { 479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 480 NULL, &ocfs2_dx_root_et_ops); 481 } 482 483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct buffer_head *bh) 486 { 487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 488 NULL, &ocfs2_refcount_tree_et_ops); 489 } 490 491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 492 u64 new_last_eb_blk) 493 { 494 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 495 } 496 497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 498 { 499 return et->et_ops->eo_get_last_eb_blk(et); 500 } 501 502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 503 u32 clusters) 504 { 505 et->et_ops->eo_update_clusters(et, clusters); 506 } 507 508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 509 struct ocfs2_extent_rec *rec) 510 { 511 if (et->et_ops->eo_extent_map_insert) 512 et->et_ops->eo_extent_map_insert(et, rec); 513 } 514 515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 516 u32 clusters) 517 { 518 if (et->et_ops->eo_extent_map_truncate) 519 et->et_ops->eo_extent_map_truncate(et, clusters); 520 } 521 522 static inline int ocfs2_et_root_journal_access(handle_t *handle, 523 struct ocfs2_extent_tree *et, 524 int type) 525 { 526 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 527 type); 528 } 529 530 static inline enum ocfs2_contig_type 531 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 532 struct ocfs2_extent_rec *rec, 533 struct ocfs2_extent_rec *insert_rec) 534 { 535 if (et->et_ops->eo_extent_contig) 536 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 537 538 return ocfs2_extent_rec_contig( 539 ocfs2_metadata_cache_get_super(et->et_ci), 540 rec, insert_rec); 541 } 542 543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 544 struct ocfs2_extent_rec *rec) 545 { 546 int ret = 0; 547 548 if (et->et_ops->eo_insert_check) 549 ret = et->et_ops->eo_insert_check(et, rec); 550 return ret; 551 } 552 553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 554 { 555 int ret = 0; 556 557 if (et->et_ops->eo_sanity_check) 558 ret = et->et_ops->eo_sanity_check(et); 559 return ret; 560 } 561 562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 563 struct ocfs2_extent_block *eb); 564 static void ocfs2_adjust_rightmost_records(handle_t *handle, 565 struct ocfs2_extent_tree *et, 566 struct ocfs2_path *path, 567 struct ocfs2_extent_rec *insert_rec); 568 /* 569 * Reset the actual path elements so that we can re-use the structure 570 * to build another path. Generally, this involves freeing the buffer 571 * heads. 572 */ 573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 574 { 575 int i, start = 0, depth = 0; 576 struct ocfs2_path_item *node; 577 578 if (keep_root) 579 start = 1; 580 581 for(i = start; i < path_num_items(path); i++) { 582 node = &path->p_node[i]; 583 584 brelse(node->bh); 585 node->bh = NULL; 586 node->el = NULL; 587 } 588 589 /* 590 * Tree depth may change during truncate, or insert. If we're 591 * keeping the root extent list, then make sure that our path 592 * structure reflects the proper depth. 593 */ 594 if (keep_root) 595 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 596 else 597 path_root_access(path) = NULL; 598 599 path->p_tree_depth = depth; 600 } 601 602 void ocfs2_free_path(struct ocfs2_path *path) 603 { 604 if (path) { 605 ocfs2_reinit_path(path, 0); 606 kfree(path); 607 } 608 } 609 610 /* 611 * All the elements of src into dest. After this call, src could be freed 612 * without affecting dest. 613 * 614 * Both paths should have the same root. Any non-root elements of dest 615 * will be freed. 616 */ 617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 618 { 619 int i; 620 621 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 622 BUG_ON(path_root_el(dest) != path_root_el(src)); 623 BUG_ON(path_root_access(dest) != path_root_access(src)); 624 625 ocfs2_reinit_path(dest, 1); 626 627 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 628 dest->p_node[i].bh = src->p_node[i].bh; 629 dest->p_node[i].el = src->p_node[i].el; 630 631 if (dest->p_node[i].bh) 632 get_bh(dest->p_node[i].bh); 633 } 634 } 635 636 /* 637 * Make the *dest path the same as src and re-initialize src path to 638 * have a root only. 639 */ 640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 641 { 642 int i; 643 644 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 645 BUG_ON(path_root_access(dest) != path_root_access(src)); 646 647 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 648 brelse(dest->p_node[i].bh); 649 650 dest->p_node[i].bh = src->p_node[i].bh; 651 dest->p_node[i].el = src->p_node[i].el; 652 653 src->p_node[i].bh = NULL; 654 src->p_node[i].el = NULL; 655 } 656 } 657 658 /* 659 * Insert an extent block at given index. 660 * 661 * This will not take an additional reference on eb_bh. 662 */ 663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 664 struct buffer_head *eb_bh) 665 { 666 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 667 668 /* 669 * Right now, no root bh is an extent block, so this helps 670 * catch code errors with dinode trees. The assertion can be 671 * safely removed if we ever need to insert extent block 672 * structures at the root. 673 */ 674 BUG_ON(index == 0); 675 676 path->p_node[index].bh = eb_bh; 677 path->p_node[index].el = &eb->h_list; 678 } 679 680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 681 struct ocfs2_extent_list *root_el, 682 ocfs2_journal_access_func access) 683 { 684 struct ocfs2_path *path; 685 686 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 687 688 path = kzalloc(sizeof(*path), GFP_NOFS); 689 if (path) { 690 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 691 get_bh(root_bh); 692 path_root_bh(path) = root_bh; 693 path_root_el(path) = root_el; 694 path_root_access(path) = access; 695 } 696 697 return path; 698 } 699 700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 701 { 702 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 703 path_root_access(path)); 704 } 705 706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 707 { 708 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 709 et->et_root_journal_access); 710 } 711 712 /* 713 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 714 * otherwise it's the root_access function. 715 * 716 * I don't like the way this function's name looks next to 717 * ocfs2_journal_access_path(), but I don't have a better one. 718 */ 719 int ocfs2_path_bh_journal_access(handle_t *handle, 720 struct ocfs2_caching_info *ci, 721 struct ocfs2_path *path, 722 int idx) 723 { 724 ocfs2_journal_access_func access = path_root_access(path); 725 726 if (!access) 727 access = ocfs2_journal_access; 728 729 if (idx) 730 access = ocfs2_journal_access_eb; 731 732 return access(handle, ci, path->p_node[idx].bh, 733 OCFS2_JOURNAL_ACCESS_WRITE); 734 } 735 736 /* 737 * Convenience function to journal all components in a path. 738 */ 739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 740 handle_t *handle, 741 struct ocfs2_path *path) 742 { 743 int i, ret = 0; 744 745 if (!path) 746 goto out; 747 748 for(i = 0; i < path_num_items(path); i++) { 749 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 750 if (ret < 0) { 751 mlog_errno(ret); 752 goto out; 753 } 754 } 755 756 out: 757 return ret; 758 } 759 760 /* 761 * Return the index of the extent record which contains cluster #v_cluster. 762 * -1 is returned if it was not found. 763 * 764 * Should work fine on interior and exterior nodes. 765 */ 766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 767 { 768 int ret = -1; 769 int i; 770 struct ocfs2_extent_rec *rec; 771 u32 rec_end, rec_start, clusters; 772 773 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 774 rec = &el->l_recs[i]; 775 776 rec_start = le32_to_cpu(rec->e_cpos); 777 clusters = ocfs2_rec_clusters(el, rec); 778 779 rec_end = rec_start + clusters; 780 781 if (v_cluster >= rec_start && v_cluster < rec_end) { 782 ret = i; 783 break; 784 } 785 } 786 787 return ret; 788 } 789 790 /* 791 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 792 * ocfs2_extent_rec_contig only work properly against leaf nodes! 793 */ 794 static int ocfs2_block_extent_contig(struct super_block *sb, 795 struct ocfs2_extent_rec *ext, 796 u64 blkno) 797 { 798 u64 blk_end = le64_to_cpu(ext->e_blkno); 799 800 blk_end += ocfs2_clusters_to_blocks(sb, 801 le16_to_cpu(ext->e_leaf_clusters)); 802 803 return blkno == blk_end; 804 } 805 806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 807 struct ocfs2_extent_rec *right) 808 { 809 u32 left_range; 810 811 left_range = le32_to_cpu(left->e_cpos) + 812 le16_to_cpu(left->e_leaf_clusters); 813 814 return (left_range == le32_to_cpu(right->e_cpos)); 815 } 816 817 static enum ocfs2_contig_type 818 ocfs2_extent_rec_contig(struct super_block *sb, 819 struct ocfs2_extent_rec *ext, 820 struct ocfs2_extent_rec *insert_rec) 821 { 822 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 823 824 /* 825 * Refuse to coalesce extent records with different flag 826 * fields - we don't want to mix unwritten extents with user 827 * data. 828 */ 829 if (ext->e_flags != insert_rec->e_flags) 830 return CONTIG_NONE; 831 832 if (ocfs2_extents_adjacent(ext, insert_rec) && 833 ocfs2_block_extent_contig(sb, ext, blkno)) 834 return CONTIG_RIGHT; 835 836 blkno = le64_to_cpu(ext->e_blkno); 837 if (ocfs2_extents_adjacent(insert_rec, ext) && 838 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 839 return CONTIG_LEFT; 840 841 return CONTIG_NONE; 842 } 843 844 /* 845 * NOTE: We can have pretty much any combination of contiguousness and 846 * appending. 847 * 848 * The usefulness of APPEND_TAIL is more in that it lets us know that 849 * we'll have to update the path to that leaf. 850 */ 851 enum ocfs2_append_type { 852 APPEND_NONE = 0, 853 APPEND_TAIL, 854 }; 855 856 enum ocfs2_split_type { 857 SPLIT_NONE = 0, 858 SPLIT_LEFT, 859 SPLIT_RIGHT, 860 }; 861 862 struct ocfs2_insert_type { 863 enum ocfs2_split_type ins_split; 864 enum ocfs2_append_type ins_appending; 865 enum ocfs2_contig_type ins_contig; 866 int ins_contig_index; 867 int ins_tree_depth; 868 }; 869 870 struct ocfs2_merge_ctxt { 871 enum ocfs2_contig_type c_contig_type; 872 int c_has_empty_extent; 873 int c_split_covers_rec; 874 }; 875 876 static int ocfs2_validate_extent_block(struct super_block *sb, 877 struct buffer_head *bh) 878 { 879 int rc; 880 struct ocfs2_extent_block *eb = 881 (struct ocfs2_extent_block *)bh->b_data; 882 883 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 884 885 BUG_ON(!buffer_uptodate(bh)); 886 887 /* 888 * If the ecc fails, we return the error but otherwise 889 * leave the filesystem running. We know any error is 890 * local to this block. 891 */ 892 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 893 if (rc) { 894 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 895 (unsigned long long)bh->b_blocknr); 896 return rc; 897 } 898 899 /* 900 * Errors after here are fatal. 901 */ 902 903 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 904 rc = ocfs2_error(sb, 905 "Extent block #%llu has bad signature %.*s\n", 906 (unsigned long long)bh->b_blocknr, 7, 907 eb->h_signature); 908 goto bail; 909 } 910 911 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 912 rc = ocfs2_error(sb, 913 "Extent block #%llu has an invalid h_blkno of %llu\n", 914 (unsigned long long)bh->b_blocknr, 915 (unsigned long long)le64_to_cpu(eb->h_blkno)); 916 goto bail; 917 } 918 919 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 922 (unsigned long long)bh->b_blocknr, 923 le32_to_cpu(eb->h_fs_generation)); 924 bail: 925 return rc; 926 } 927 928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 929 struct buffer_head **bh) 930 { 931 int rc; 932 struct buffer_head *tmp = *bh; 933 934 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 935 ocfs2_validate_extent_block); 936 937 /* If ocfs2_read_block() got us a new bh, pass it up. */ 938 if (!rc && !*bh) 939 *bh = tmp; 940 941 return rc; 942 } 943 944 945 /* 946 * How many free extents have we got before we need more meta data? 947 */ 948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 949 { 950 int retval; 951 struct ocfs2_extent_list *el = NULL; 952 struct ocfs2_extent_block *eb; 953 struct buffer_head *eb_bh = NULL; 954 u64 last_eb_blk = 0; 955 956 el = et->et_root_el; 957 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 958 959 if (last_eb_blk) { 960 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 961 &eb_bh); 962 if (retval < 0) { 963 mlog_errno(retval); 964 goto bail; 965 } 966 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 967 el = &eb->h_list; 968 } 969 970 if (el->l_tree_depth != 0) { 971 retval = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 972 "Owner %llu has leaf extent block %llu with an invalid l_tree_depth of %u\n", 973 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 974 (unsigned long long)last_eb_blk, 975 le16_to_cpu(el->l_tree_depth)); 976 goto bail; 977 } 978 979 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 980 bail: 981 brelse(eb_bh); 982 983 trace_ocfs2_num_free_extents(retval); 984 return retval; 985 } 986 987 /* expects array to already be allocated 988 * 989 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 990 * l_count for you 991 */ 992 static int ocfs2_create_new_meta_bhs(handle_t *handle, 993 struct ocfs2_extent_tree *et, 994 int wanted, 995 struct ocfs2_alloc_context *meta_ac, 996 struct buffer_head *bhs[]) 997 { 998 int count, status, i; 999 u16 suballoc_bit_start; 1000 u32 num_got; 1001 u64 suballoc_loc, first_blkno; 1002 struct ocfs2_super *osb = 1003 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1004 struct ocfs2_extent_block *eb; 1005 1006 count = 0; 1007 while (count < wanted) { 1008 status = ocfs2_claim_metadata(handle, 1009 meta_ac, 1010 wanted - count, 1011 &suballoc_loc, 1012 &suballoc_bit_start, 1013 &num_got, 1014 &first_blkno); 1015 if (status < 0) { 1016 mlog_errno(status); 1017 goto bail; 1018 } 1019 1020 for(i = count; i < (num_got + count); i++) { 1021 bhs[i] = sb_getblk(osb->sb, first_blkno); 1022 if (bhs[i] == NULL) { 1023 status = -ENOMEM; 1024 mlog_errno(status); 1025 goto bail; 1026 } 1027 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1028 1029 status = ocfs2_journal_access_eb(handle, et->et_ci, 1030 bhs[i], 1031 OCFS2_JOURNAL_ACCESS_CREATE); 1032 if (status < 0) { 1033 mlog_errno(status); 1034 goto bail; 1035 } 1036 1037 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1038 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1039 /* Ok, setup the minimal stuff here. */ 1040 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1041 eb->h_blkno = cpu_to_le64(first_blkno); 1042 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1043 eb->h_suballoc_slot = 1044 cpu_to_le16(meta_ac->ac_alloc_slot); 1045 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1046 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1047 eb->h_list.l_count = 1048 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1049 1050 suballoc_bit_start++; 1051 first_blkno++; 1052 1053 /* We'll also be dirtied by the caller, so 1054 * this isn't absolutely necessary. */ 1055 ocfs2_journal_dirty(handle, bhs[i]); 1056 } 1057 1058 count += num_got; 1059 } 1060 1061 status = 0; 1062 bail: 1063 if (status < 0) { 1064 for(i = 0; i < wanted; i++) { 1065 brelse(bhs[i]); 1066 bhs[i] = NULL; 1067 } 1068 } 1069 return status; 1070 } 1071 1072 /* 1073 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1074 * 1075 * Returns the sum of the rightmost extent rec logical offset and 1076 * cluster count. 1077 * 1078 * ocfs2_add_branch() uses this to determine what logical cluster 1079 * value should be populated into the leftmost new branch records. 1080 * 1081 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1082 * value for the new topmost tree record. 1083 */ 1084 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1085 { 1086 int i; 1087 1088 i = le16_to_cpu(el->l_next_free_rec) - 1; 1089 1090 return le32_to_cpu(el->l_recs[i].e_cpos) + 1091 ocfs2_rec_clusters(el, &el->l_recs[i]); 1092 } 1093 1094 /* 1095 * Change range of the branches in the right most path according to the leaf 1096 * extent block's rightmost record. 1097 */ 1098 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1099 struct ocfs2_extent_tree *et) 1100 { 1101 int status; 1102 struct ocfs2_path *path = NULL; 1103 struct ocfs2_extent_list *el; 1104 struct ocfs2_extent_rec *rec; 1105 1106 path = ocfs2_new_path_from_et(et); 1107 if (!path) { 1108 status = -ENOMEM; 1109 return status; 1110 } 1111 1112 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1113 if (status < 0) { 1114 mlog_errno(status); 1115 goto out; 1116 } 1117 1118 status = ocfs2_extend_trans(handle, path_num_items(path)); 1119 if (status < 0) { 1120 mlog_errno(status); 1121 goto out; 1122 } 1123 1124 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1125 if (status < 0) { 1126 mlog_errno(status); 1127 goto out; 1128 } 1129 1130 el = path_leaf_el(path); 1131 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1132 1133 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1134 1135 out: 1136 ocfs2_free_path(path); 1137 return status; 1138 } 1139 1140 /* 1141 * Add an entire tree branch to our inode. eb_bh is the extent block 1142 * to start at, if we don't want to start the branch at the root 1143 * structure. 1144 * 1145 * last_eb_bh is required as we have to update it's next_leaf pointer 1146 * for the new last extent block. 1147 * 1148 * the new branch will be 'empty' in the sense that every block will 1149 * contain a single record with cluster count == 0. 1150 */ 1151 static int ocfs2_add_branch(handle_t *handle, 1152 struct ocfs2_extent_tree *et, 1153 struct buffer_head *eb_bh, 1154 struct buffer_head **last_eb_bh, 1155 struct ocfs2_alloc_context *meta_ac) 1156 { 1157 int status, new_blocks, i, block_given = 0; 1158 u64 next_blkno, new_last_eb_blk; 1159 struct buffer_head *bh; 1160 struct buffer_head **new_eb_bhs = NULL; 1161 struct ocfs2_extent_block *eb; 1162 struct ocfs2_extent_list *eb_el; 1163 struct ocfs2_extent_list *el; 1164 u32 new_cpos, root_end; 1165 1166 BUG_ON(!last_eb_bh || !*last_eb_bh); 1167 1168 if (eb_bh) { 1169 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1170 el = &eb->h_list; 1171 } else 1172 el = et->et_root_el; 1173 1174 /* we never add a branch to a leaf. */ 1175 BUG_ON(!el->l_tree_depth); 1176 1177 new_blocks = le16_to_cpu(el->l_tree_depth); 1178 1179 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1180 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1181 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1182 1183 /* 1184 * If there is a gap before the root end and the real end 1185 * of the righmost leaf block, we need to remove the gap 1186 * between new_cpos and root_end first so that the tree 1187 * is consistent after we add a new branch(it will start 1188 * from new_cpos). 1189 */ 1190 if (root_end > new_cpos) { 1191 trace_ocfs2_adjust_rightmost_branch( 1192 (unsigned long long) 1193 ocfs2_metadata_cache_owner(et->et_ci), 1194 root_end, new_cpos); 1195 1196 status = ocfs2_adjust_rightmost_branch(handle, et); 1197 if (status) { 1198 mlog_errno(status); 1199 goto bail; 1200 } 1201 } 1202 1203 /* allocate the number of new eb blocks we need */ 1204 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1205 GFP_KERNEL); 1206 if (!new_eb_bhs) { 1207 status = -ENOMEM; 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 1212 /* Firstyly, try to reuse dealloc since we have already estimated how 1213 * many extent blocks we may use. 1214 */ 1215 if (!ocfs2_is_dealloc_empty(et)) { 1216 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1217 new_eb_bhs, new_blocks, 1218 &block_given); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 } 1224 1225 BUG_ON(block_given > new_blocks); 1226 1227 if (block_given < new_blocks) { 1228 BUG_ON(!meta_ac); 1229 status = ocfs2_create_new_meta_bhs(handle, et, 1230 new_blocks - block_given, 1231 meta_ac, 1232 &new_eb_bhs[block_given]); 1233 if (status < 0) { 1234 mlog_errno(status); 1235 goto bail; 1236 } 1237 } 1238 1239 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1240 * linked with the rest of the tree. 1241 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1242 * 1243 * when we leave the loop, new_last_eb_blk will point to the 1244 * newest leaf, and next_blkno will point to the topmost extent 1245 * block. */ 1246 next_blkno = new_last_eb_blk = 0; 1247 for(i = 0; i < new_blocks; i++) { 1248 bh = new_eb_bhs[i]; 1249 eb = (struct ocfs2_extent_block *) bh->b_data; 1250 /* ocfs2_create_new_meta_bhs() should create it right! */ 1251 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1252 eb_el = &eb->h_list; 1253 1254 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1255 OCFS2_JOURNAL_ACCESS_CREATE); 1256 if (status < 0) { 1257 mlog_errno(status); 1258 goto bail; 1259 } 1260 1261 eb->h_next_leaf_blk = 0; 1262 eb_el->l_tree_depth = cpu_to_le16(i); 1263 eb_el->l_next_free_rec = cpu_to_le16(1); 1264 /* 1265 * This actually counts as an empty extent as 1266 * c_clusters == 0 1267 */ 1268 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1269 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1270 /* 1271 * eb_el isn't always an interior node, but even leaf 1272 * nodes want a zero'd flags and reserved field so 1273 * this gets the whole 32 bits regardless of use. 1274 */ 1275 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1276 if (!eb_el->l_tree_depth) 1277 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1278 1279 ocfs2_journal_dirty(handle, bh); 1280 next_blkno = le64_to_cpu(eb->h_blkno); 1281 } 1282 1283 /* This is a bit hairy. We want to update up to three blocks 1284 * here without leaving any of them in an inconsistent state 1285 * in case of error. We don't have to worry about 1286 * journal_dirty erroring as it won't unless we've aborted the 1287 * handle (in which case we would never be here) so reserving 1288 * the write with journal_access is all we need to do. */ 1289 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1290 OCFS2_JOURNAL_ACCESS_WRITE); 1291 if (status < 0) { 1292 mlog_errno(status); 1293 goto bail; 1294 } 1295 status = ocfs2_et_root_journal_access(handle, et, 1296 OCFS2_JOURNAL_ACCESS_WRITE); 1297 if (status < 0) { 1298 mlog_errno(status); 1299 goto bail; 1300 } 1301 if (eb_bh) { 1302 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1303 OCFS2_JOURNAL_ACCESS_WRITE); 1304 if (status < 0) { 1305 mlog_errno(status); 1306 goto bail; 1307 } 1308 } 1309 1310 /* Link the new branch into the rest of the tree (el will 1311 * either be on the root_bh, or the extent block passed in. */ 1312 i = le16_to_cpu(el->l_next_free_rec); 1313 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1314 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1315 el->l_recs[i].e_int_clusters = 0; 1316 le16_add_cpu(&el->l_next_free_rec, 1); 1317 1318 /* fe needs a new last extent block pointer, as does the 1319 * next_leaf on the previously last-extent-block. */ 1320 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1321 1322 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1323 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1324 1325 ocfs2_journal_dirty(handle, *last_eb_bh); 1326 ocfs2_journal_dirty(handle, et->et_root_bh); 1327 if (eb_bh) 1328 ocfs2_journal_dirty(handle, eb_bh); 1329 1330 /* 1331 * Some callers want to track the rightmost leaf so pass it 1332 * back here. 1333 */ 1334 brelse(*last_eb_bh); 1335 get_bh(new_eb_bhs[0]); 1336 *last_eb_bh = new_eb_bhs[0]; 1337 1338 status = 0; 1339 bail: 1340 if (new_eb_bhs) { 1341 for (i = 0; i < new_blocks; i++) 1342 brelse(new_eb_bhs[i]); 1343 kfree(new_eb_bhs); 1344 } 1345 1346 return status; 1347 } 1348 1349 /* 1350 * adds another level to the allocation tree. 1351 * returns back the new extent block so you can add a branch to it 1352 * after this call. 1353 */ 1354 static int ocfs2_shift_tree_depth(handle_t *handle, 1355 struct ocfs2_extent_tree *et, 1356 struct ocfs2_alloc_context *meta_ac, 1357 struct buffer_head **ret_new_eb_bh) 1358 { 1359 int status, i, block_given = 0; 1360 u32 new_clusters; 1361 struct buffer_head *new_eb_bh = NULL; 1362 struct ocfs2_extent_block *eb; 1363 struct ocfs2_extent_list *root_el; 1364 struct ocfs2_extent_list *eb_el; 1365 1366 if (!ocfs2_is_dealloc_empty(et)) { 1367 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1368 &new_eb_bh, 1, 1369 &block_given); 1370 } else if (meta_ac) { 1371 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1372 &new_eb_bh); 1373 1374 } else { 1375 BUG(); 1376 } 1377 1378 if (status < 0) { 1379 mlog_errno(status); 1380 goto bail; 1381 } 1382 1383 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1384 /* ocfs2_create_new_meta_bhs() should create it right! */ 1385 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1386 1387 eb_el = &eb->h_list; 1388 root_el = et->et_root_el; 1389 1390 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1391 OCFS2_JOURNAL_ACCESS_CREATE); 1392 if (status < 0) { 1393 mlog_errno(status); 1394 goto bail; 1395 } 1396 1397 /* copy the root extent list data into the new extent block */ 1398 eb_el->l_tree_depth = root_el->l_tree_depth; 1399 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1400 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1401 eb_el->l_recs[i] = root_el->l_recs[i]; 1402 1403 ocfs2_journal_dirty(handle, new_eb_bh); 1404 1405 status = ocfs2_et_root_journal_access(handle, et, 1406 OCFS2_JOURNAL_ACCESS_WRITE); 1407 if (status < 0) { 1408 mlog_errno(status); 1409 goto bail; 1410 } 1411 1412 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1413 1414 /* update root_bh now */ 1415 le16_add_cpu(&root_el->l_tree_depth, 1); 1416 root_el->l_recs[0].e_cpos = 0; 1417 root_el->l_recs[0].e_blkno = eb->h_blkno; 1418 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1419 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1420 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1421 root_el->l_next_free_rec = cpu_to_le16(1); 1422 1423 /* If this is our 1st tree depth shift, then last_eb_blk 1424 * becomes the allocated extent block */ 1425 if (root_el->l_tree_depth == cpu_to_le16(1)) 1426 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1427 1428 ocfs2_journal_dirty(handle, et->et_root_bh); 1429 1430 *ret_new_eb_bh = new_eb_bh; 1431 new_eb_bh = NULL; 1432 status = 0; 1433 bail: 1434 brelse(new_eb_bh); 1435 1436 return status; 1437 } 1438 1439 /* 1440 * Should only be called when there is no space left in any of the 1441 * leaf nodes. What we want to do is find the lowest tree depth 1442 * non-leaf extent block with room for new records. There are three 1443 * valid results of this search: 1444 * 1445 * 1) a lowest extent block is found, then we pass it back in 1446 * *lowest_eb_bh and return '0' 1447 * 1448 * 2) the search fails to find anything, but the root_el has room. We 1449 * pass NULL back in *lowest_eb_bh, but still return '0' 1450 * 1451 * 3) the search fails to find anything AND the root_el is full, in 1452 * which case we return > 0 1453 * 1454 * return status < 0 indicates an error. 1455 */ 1456 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1457 struct buffer_head **target_bh) 1458 { 1459 int status = 0, i; 1460 u64 blkno; 1461 struct ocfs2_extent_block *eb; 1462 struct ocfs2_extent_list *el; 1463 struct buffer_head *bh = NULL; 1464 struct buffer_head *lowest_bh = NULL; 1465 1466 *target_bh = NULL; 1467 1468 el = et->et_root_el; 1469 1470 while(le16_to_cpu(el->l_tree_depth) > 1) { 1471 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1472 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1473 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1474 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1475 goto bail; 1476 } 1477 i = le16_to_cpu(el->l_next_free_rec) - 1; 1478 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1479 if (!blkno) { 1480 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1481 "Owner %llu has extent list where extent # %d has no physical block start\n", 1482 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1483 goto bail; 1484 } 1485 1486 brelse(bh); 1487 bh = NULL; 1488 1489 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1490 if (status < 0) { 1491 mlog_errno(status); 1492 goto bail; 1493 } 1494 1495 eb = (struct ocfs2_extent_block *) bh->b_data; 1496 el = &eb->h_list; 1497 1498 if (le16_to_cpu(el->l_next_free_rec) < 1499 le16_to_cpu(el->l_count)) { 1500 brelse(lowest_bh); 1501 lowest_bh = bh; 1502 get_bh(lowest_bh); 1503 } 1504 } 1505 1506 /* If we didn't find one and the fe doesn't have any room, 1507 * then return '1' */ 1508 el = et->et_root_el; 1509 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1510 status = 1; 1511 1512 *target_bh = lowest_bh; 1513 bail: 1514 brelse(bh); 1515 1516 return status; 1517 } 1518 1519 /* 1520 * Grow a b-tree so that it has more records. 1521 * 1522 * We might shift the tree depth in which case existing paths should 1523 * be considered invalid. 1524 * 1525 * Tree depth after the grow is returned via *final_depth. 1526 * 1527 * *last_eb_bh will be updated by ocfs2_add_branch(). 1528 */ 1529 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1530 int *final_depth, struct buffer_head **last_eb_bh, 1531 struct ocfs2_alloc_context *meta_ac) 1532 { 1533 int ret, shift; 1534 struct ocfs2_extent_list *el = et->et_root_el; 1535 int depth = le16_to_cpu(el->l_tree_depth); 1536 struct buffer_head *bh = NULL; 1537 1538 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1539 1540 shift = ocfs2_find_branch_target(et, &bh); 1541 if (shift < 0) { 1542 ret = shift; 1543 mlog_errno(ret); 1544 goto out; 1545 } 1546 1547 /* We traveled all the way to the bottom of the allocation tree 1548 * and didn't find room for any more extents - we need to add 1549 * another tree level */ 1550 if (shift) { 1551 BUG_ON(bh); 1552 trace_ocfs2_grow_tree( 1553 (unsigned long long) 1554 ocfs2_metadata_cache_owner(et->et_ci), 1555 depth); 1556 1557 /* ocfs2_shift_tree_depth will return us a buffer with 1558 * the new extent block (so we can pass that to 1559 * ocfs2_add_branch). */ 1560 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1561 if (ret < 0) { 1562 mlog_errno(ret); 1563 goto out; 1564 } 1565 depth++; 1566 if (depth == 1) { 1567 /* 1568 * Special case: we have room now if we shifted from 1569 * tree_depth 0, so no more work needs to be done. 1570 * 1571 * We won't be calling add_branch, so pass 1572 * back *last_eb_bh as the new leaf. At depth 1573 * zero, it should always be null so there's 1574 * no reason to brelse. 1575 */ 1576 BUG_ON(*last_eb_bh); 1577 get_bh(bh); 1578 *last_eb_bh = bh; 1579 goto out; 1580 } 1581 } 1582 1583 /* call ocfs2_add_branch to add the final part of the tree with 1584 * the new data. */ 1585 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1586 meta_ac); 1587 if (ret < 0) 1588 mlog_errno(ret); 1589 1590 out: 1591 if (final_depth) 1592 *final_depth = depth; 1593 brelse(bh); 1594 return ret; 1595 } 1596 1597 /* 1598 * This function will discard the rightmost extent record. 1599 */ 1600 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1601 { 1602 int next_free = le16_to_cpu(el->l_next_free_rec); 1603 int count = le16_to_cpu(el->l_count); 1604 unsigned int num_bytes; 1605 1606 BUG_ON(!next_free); 1607 /* This will cause us to go off the end of our extent list. */ 1608 BUG_ON(next_free >= count); 1609 1610 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1611 1612 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1613 } 1614 1615 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1616 struct ocfs2_extent_rec *insert_rec) 1617 { 1618 int i, insert_index, next_free, has_empty, num_bytes; 1619 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1620 struct ocfs2_extent_rec *rec; 1621 1622 next_free = le16_to_cpu(el->l_next_free_rec); 1623 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1624 1625 BUG_ON(!next_free); 1626 1627 /* The tree code before us didn't allow enough room in the leaf. */ 1628 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1629 1630 /* 1631 * The easiest way to approach this is to just remove the 1632 * empty extent and temporarily decrement next_free. 1633 */ 1634 if (has_empty) { 1635 /* 1636 * If next_free was 1 (only an empty extent), this 1637 * loop won't execute, which is fine. We still want 1638 * the decrement above to happen. 1639 */ 1640 for(i = 0; i < (next_free - 1); i++) 1641 el->l_recs[i] = el->l_recs[i+1]; 1642 1643 next_free--; 1644 } 1645 1646 /* 1647 * Figure out what the new record index should be. 1648 */ 1649 for(i = 0; i < next_free; i++) { 1650 rec = &el->l_recs[i]; 1651 1652 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1653 break; 1654 } 1655 insert_index = i; 1656 1657 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1658 has_empty, next_free, 1659 le16_to_cpu(el->l_count)); 1660 1661 BUG_ON(insert_index < 0); 1662 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1663 BUG_ON(insert_index > next_free); 1664 1665 /* 1666 * No need to memmove if we're just adding to the tail. 1667 */ 1668 if (insert_index != next_free) { 1669 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1670 1671 num_bytes = next_free - insert_index; 1672 num_bytes *= sizeof(struct ocfs2_extent_rec); 1673 memmove(&el->l_recs[insert_index + 1], 1674 &el->l_recs[insert_index], 1675 num_bytes); 1676 } 1677 1678 /* 1679 * Either we had an empty extent, and need to re-increment or 1680 * there was no empty extent on a non full rightmost leaf node, 1681 * in which case we still need to increment. 1682 */ 1683 next_free++; 1684 el->l_next_free_rec = cpu_to_le16(next_free); 1685 /* 1686 * Make sure none of the math above just messed up our tree. 1687 */ 1688 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1689 1690 el->l_recs[insert_index] = *insert_rec; 1691 1692 } 1693 1694 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1695 { 1696 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1697 1698 BUG_ON(num_recs == 0); 1699 1700 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1701 num_recs--; 1702 size = num_recs * sizeof(struct ocfs2_extent_rec); 1703 memmove(&el->l_recs[0], &el->l_recs[1], size); 1704 memset(&el->l_recs[num_recs], 0, 1705 sizeof(struct ocfs2_extent_rec)); 1706 el->l_next_free_rec = cpu_to_le16(num_recs); 1707 } 1708 } 1709 1710 /* 1711 * Create an empty extent record . 1712 * 1713 * l_next_free_rec may be updated. 1714 * 1715 * If an empty extent already exists do nothing. 1716 */ 1717 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1718 { 1719 int next_free = le16_to_cpu(el->l_next_free_rec); 1720 1721 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1722 1723 if (next_free == 0) 1724 goto set_and_inc; 1725 1726 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1727 return; 1728 1729 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1730 "Asked to create an empty extent in a full list:\n" 1731 "count = %u, tree depth = %u", 1732 le16_to_cpu(el->l_count), 1733 le16_to_cpu(el->l_tree_depth)); 1734 1735 ocfs2_shift_records_right(el); 1736 1737 set_and_inc: 1738 le16_add_cpu(&el->l_next_free_rec, 1); 1739 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1740 } 1741 1742 /* 1743 * For a rotation which involves two leaf nodes, the "root node" is 1744 * the lowest level tree node which contains a path to both leafs. This 1745 * resulting set of information can be used to form a complete "subtree" 1746 * 1747 * This function is passed two full paths from the dinode down to a 1748 * pair of adjacent leaves. It's task is to figure out which path 1749 * index contains the subtree root - this can be the root index itself 1750 * in a worst-case rotation. 1751 * 1752 * The array index of the subtree root is passed back. 1753 */ 1754 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1755 struct ocfs2_path *left, 1756 struct ocfs2_path *right) 1757 { 1758 int i = 0; 1759 1760 /* 1761 * Check that the caller passed in two paths from the same tree. 1762 */ 1763 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1764 1765 do { 1766 i++; 1767 1768 /* 1769 * The caller didn't pass two adjacent paths. 1770 */ 1771 mlog_bug_on_msg(i > left->p_tree_depth, 1772 "Owner %llu, left depth %u, right depth %u\n" 1773 "left leaf blk %llu, right leaf blk %llu\n", 1774 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1775 left->p_tree_depth, right->p_tree_depth, 1776 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1777 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1778 } while (left->p_node[i].bh->b_blocknr == 1779 right->p_node[i].bh->b_blocknr); 1780 1781 return i - 1; 1782 } 1783 1784 typedef void (path_insert_t)(void *, struct buffer_head *); 1785 1786 /* 1787 * Traverse a btree path in search of cpos, starting at root_el. 1788 * 1789 * This code can be called with a cpos larger than the tree, in which 1790 * case it will return the rightmost path. 1791 */ 1792 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1793 struct ocfs2_extent_list *root_el, u32 cpos, 1794 path_insert_t *func, void *data) 1795 { 1796 int i, ret = 0; 1797 u32 range; 1798 u64 blkno; 1799 struct buffer_head *bh = NULL; 1800 struct ocfs2_extent_block *eb; 1801 struct ocfs2_extent_list *el; 1802 struct ocfs2_extent_rec *rec; 1803 1804 el = root_el; 1805 while (el->l_tree_depth) { 1806 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1807 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1808 "Owner %llu has empty extent list at depth %u\n", 1809 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1810 le16_to_cpu(el->l_tree_depth)); 1811 ret = -EROFS; 1812 goto out; 1813 1814 } 1815 1816 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1817 rec = &el->l_recs[i]; 1818 1819 /* 1820 * In the case that cpos is off the allocation 1821 * tree, this should just wind up returning the 1822 * rightmost record. 1823 */ 1824 range = le32_to_cpu(rec->e_cpos) + 1825 ocfs2_rec_clusters(el, rec); 1826 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1827 break; 1828 } 1829 1830 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1831 if (blkno == 0) { 1832 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1833 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1834 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1835 le16_to_cpu(el->l_tree_depth), i); 1836 ret = -EROFS; 1837 goto out; 1838 } 1839 1840 brelse(bh); 1841 bh = NULL; 1842 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1843 if (ret) { 1844 mlog_errno(ret); 1845 goto out; 1846 } 1847 1848 eb = (struct ocfs2_extent_block *) bh->b_data; 1849 el = &eb->h_list; 1850 1851 if (le16_to_cpu(el->l_next_free_rec) > 1852 le16_to_cpu(el->l_count)) { 1853 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1854 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1855 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1856 (unsigned long long)bh->b_blocknr, 1857 le16_to_cpu(el->l_next_free_rec), 1858 le16_to_cpu(el->l_count)); 1859 ret = -EROFS; 1860 goto out; 1861 } 1862 1863 if (func) 1864 func(data, bh); 1865 } 1866 1867 out: 1868 /* 1869 * Catch any trailing bh that the loop didn't handle. 1870 */ 1871 brelse(bh); 1872 1873 return ret; 1874 } 1875 1876 /* 1877 * Given an initialized path (that is, it has a valid root extent 1878 * list), this function will traverse the btree in search of the path 1879 * which would contain cpos. 1880 * 1881 * The path traveled is recorded in the path structure. 1882 * 1883 * Note that this will not do any comparisons on leaf node extent 1884 * records, so it will work fine in the case that we just added a tree 1885 * branch. 1886 */ 1887 struct find_path_data { 1888 int index; 1889 struct ocfs2_path *path; 1890 }; 1891 static void find_path_ins(void *data, struct buffer_head *bh) 1892 { 1893 struct find_path_data *fp = data; 1894 1895 get_bh(bh); 1896 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1897 fp->index++; 1898 } 1899 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1900 struct ocfs2_path *path, u32 cpos) 1901 { 1902 struct find_path_data data; 1903 1904 data.index = 1; 1905 data.path = path; 1906 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1907 find_path_ins, &data); 1908 } 1909 1910 static void find_leaf_ins(void *data, struct buffer_head *bh) 1911 { 1912 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1913 struct ocfs2_extent_list *el = &eb->h_list; 1914 struct buffer_head **ret = data; 1915 1916 /* We want to retain only the leaf block. */ 1917 if (le16_to_cpu(el->l_tree_depth) == 0) { 1918 get_bh(bh); 1919 *ret = bh; 1920 } 1921 } 1922 /* 1923 * Find the leaf block in the tree which would contain cpos. No 1924 * checking of the actual leaf is done. 1925 * 1926 * Some paths want to call this instead of allocating a path structure 1927 * and calling ocfs2_find_path(). 1928 * 1929 * This function doesn't handle non btree extent lists. 1930 */ 1931 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1932 struct ocfs2_extent_list *root_el, u32 cpos, 1933 struct buffer_head **leaf_bh) 1934 { 1935 int ret; 1936 struct buffer_head *bh = NULL; 1937 1938 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1939 if (ret) { 1940 mlog_errno(ret); 1941 goto out; 1942 } 1943 1944 *leaf_bh = bh; 1945 out: 1946 return ret; 1947 } 1948 1949 /* 1950 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1951 * 1952 * Basically, we've moved stuff around at the bottom of the tree and 1953 * we need to fix up the extent records above the changes to reflect 1954 * the new changes. 1955 * 1956 * left_rec: the record on the left. 1957 * right_rec: the record to the right of left_rec 1958 * right_child_el: is the child list pointed to by right_rec 1959 * 1960 * By definition, this only works on interior nodes. 1961 */ 1962 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1963 struct ocfs2_extent_rec *right_rec, 1964 struct ocfs2_extent_list *right_child_el) 1965 { 1966 u32 left_clusters, right_end; 1967 1968 /* 1969 * Interior nodes never have holes. Their cpos is the cpos of 1970 * the leftmost record in their child list. Their cluster 1971 * count covers the full theoretical range of their child list 1972 * - the range between their cpos and the cpos of the record 1973 * immediately to their right. 1974 */ 1975 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1976 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1977 BUG_ON(right_child_el->l_tree_depth); 1978 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1979 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1980 } 1981 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1982 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1983 1984 /* 1985 * Calculate the rightmost cluster count boundary before 1986 * moving cpos - we will need to adjust clusters after 1987 * updating e_cpos to keep the same highest cluster count. 1988 */ 1989 right_end = le32_to_cpu(right_rec->e_cpos); 1990 right_end += le32_to_cpu(right_rec->e_int_clusters); 1991 1992 right_rec->e_cpos = left_rec->e_cpos; 1993 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1994 1995 right_end -= le32_to_cpu(right_rec->e_cpos); 1996 right_rec->e_int_clusters = cpu_to_le32(right_end); 1997 } 1998 1999 /* 2000 * Adjust the adjacent root node records involved in a 2001 * rotation. left_el_blkno is passed in as a key so that we can easily 2002 * find it's index in the root list. 2003 */ 2004 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2005 struct ocfs2_extent_list *left_el, 2006 struct ocfs2_extent_list *right_el, 2007 u64 left_el_blkno) 2008 { 2009 int i; 2010 2011 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2012 le16_to_cpu(left_el->l_tree_depth)); 2013 2014 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2015 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2016 break; 2017 } 2018 2019 /* 2020 * The path walking code should have never returned a root and 2021 * two paths which are not adjacent. 2022 */ 2023 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2024 2025 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2026 &root_el->l_recs[i + 1], right_el); 2027 } 2028 2029 /* 2030 * We've changed a leaf block (in right_path) and need to reflect that 2031 * change back up the subtree. 2032 * 2033 * This happens in multiple places: 2034 * - When we've moved an extent record from the left path leaf to the right 2035 * path leaf to make room for an empty extent in the left path leaf. 2036 * - When our insert into the right path leaf is at the leftmost edge 2037 * and requires an update of the path immediately to it's left. This 2038 * can occur at the end of some types of rotation and appending inserts. 2039 * - When we've adjusted the last extent record in the left path leaf and the 2040 * 1st extent record in the right path leaf during cross extent block merge. 2041 */ 2042 static void ocfs2_complete_edge_insert(handle_t *handle, 2043 struct ocfs2_path *left_path, 2044 struct ocfs2_path *right_path, 2045 int subtree_index) 2046 { 2047 int i, idx; 2048 struct ocfs2_extent_list *el, *left_el, *right_el; 2049 struct ocfs2_extent_rec *left_rec, *right_rec; 2050 struct buffer_head *root_bh; 2051 2052 /* 2053 * Update the counts and position values within all the 2054 * interior nodes to reflect the leaf rotation we just did. 2055 * 2056 * The root node is handled below the loop. 2057 * 2058 * We begin the loop with right_el and left_el pointing to the 2059 * leaf lists and work our way up. 2060 * 2061 * NOTE: within this loop, left_el and right_el always refer 2062 * to the *child* lists. 2063 */ 2064 left_el = path_leaf_el(left_path); 2065 right_el = path_leaf_el(right_path); 2066 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2067 trace_ocfs2_complete_edge_insert(i); 2068 2069 /* 2070 * One nice property of knowing that all of these 2071 * nodes are below the root is that we only deal with 2072 * the leftmost right node record and the rightmost 2073 * left node record. 2074 */ 2075 el = left_path->p_node[i].el; 2076 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2077 left_rec = &el->l_recs[idx]; 2078 2079 el = right_path->p_node[i].el; 2080 right_rec = &el->l_recs[0]; 2081 2082 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2083 2084 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2085 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2086 2087 /* 2088 * Setup our list pointers now so that the current 2089 * parents become children in the next iteration. 2090 */ 2091 left_el = left_path->p_node[i].el; 2092 right_el = right_path->p_node[i].el; 2093 } 2094 2095 /* 2096 * At the root node, adjust the two adjacent records which 2097 * begin our path to the leaves. 2098 */ 2099 2100 el = left_path->p_node[subtree_index].el; 2101 left_el = left_path->p_node[subtree_index + 1].el; 2102 right_el = right_path->p_node[subtree_index + 1].el; 2103 2104 ocfs2_adjust_root_records(el, left_el, right_el, 2105 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2106 2107 root_bh = left_path->p_node[subtree_index].bh; 2108 2109 ocfs2_journal_dirty(handle, root_bh); 2110 } 2111 2112 static int ocfs2_rotate_subtree_right(handle_t *handle, 2113 struct ocfs2_extent_tree *et, 2114 struct ocfs2_path *left_path, 2115 struct ocfs2_path *right_path, 2116 int subtree_index) 2117 { 2118 int ret, i; 2119 struct buffer_head *right_leaf_bh; 2120 struct buffer_head *left_leaf_bh = NULL; 2121 struct buffer_head *root_bh; 2122 struct ocfs2_extent_list *right_el, *left_el; 2123 struct ocfs2_extent_rec move_rec; 2124 2125 left_leaf_bh = path_leaf_bh(left_path); 2126 left_el = path_leaf_el(left_path); 2127 2128 if (left_el->l_next_free_rec != left_el->l_count) { 2129 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2130 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2131 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2132 (unsigned long long)left_leaf_bh->b_blocknr, 2133 le16_to_cpu(left_el->l_next_free_rec)); 2134 return -EROFS; 2135 } 2136 2137 /* 2138 * This extent block may already have an empty record, so we 2139 * return early if so. 2140 */ 2141 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2142 return 0; 2143 2144 root_bh = left_path->p_node[subtree_index].bh; 2145 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2146 2147 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2148 subtree_index); 2149 if (ret) { 2150 mlog_errno(ret); 2151 goto out; 2152 } 2153 2154 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2155 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2156 right_path, i); 2157 if (ret) { 2158 mlog_errno(ret); 2159 goto out; 2160 } 2161 2162 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2163 left_path, i); 2164 if (ret) { 2165 mlog_errno(ret); 2166 goto out; 2167 } 2168 } 2169 2170 right_leaf_bh = path_leaf_bh(right_path); 2171 right_el = path_leaf_el(right_path); 2172 2173 /* This is a code error, not a disk corruption. */ 2174 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2175 "because rightmost leaf block %llu is empty\n", 2176 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2177 (unsigned long long)right_leaf_bh->b_blocknr); 2178 2179 ocfs2_create_empty_extent(right_el); 2180 2181 ocfs2_journal_dirty(handle, right_leaf_bh); 2182 2183 /* Do the copy now. */ 2184 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2185 move_rec = left_el->l_recs[i]; 2186 right_el->l_recs[0] = move_rec; 2187 2188 /* 2189 * Clear out the record we just copied and shift everything 2190 * over, leaving an empty extent in the left leaf. 2191 * 2192 * We temporarily subtract from next_free_rec so that the 2193 * shift will lose the tail record (which is now defunct). 2194 */ 2195 le16_add_cpu(&left_el->l_next_free_rec, -1); 2196 ocfs2_shift_records_right(left_el); 2197 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2198 le16_add_cpu(&left_el->l_next_free_rec, 1); 2199 2200 ocfs2_journal_dirty(handle, left_leaf_bh); 2201 2202 ocfs2_complete_edge_insert(handle, left_path, right_path, 2203 subtree_index); 2204 2205 out: 2206 return ret; 2207 } 2208 2209 /* 2210 * Given a full path, determine what cpos value would return us a path 2211 * containing the leaf immediately to the left of the current one. 2212 * 2213 * Will return zero if the path passed in is already the leftmost path. 2214 */ 2215 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2216 struct ocfs2_path *path, u32 *cpos) 2217 { 2218 int i, j, ret = 0; 2219 u64 blkno; 2220 struct ocfs2_extent_list *el; 2221 2222 BUG_ON(path->p_tree_depth == 0); 2223 2224 *cpos = 0; 2225 2226 blkno = path_leaf_bh(path)->b_blocknr; 2227 2228 /* Start at the tree node just above the leaf and work our way up. */ 2229 i = path->p_tree_depth - 1; 2230 while (i >= 0) { 2231 el = path->p_node[i].el; 2232 2233 /* 2234 * Find the extent record just before the one in our 2235 * path. 2236 */ 2237 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2238 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2239 if (j == 0) { 2240 if (i == 0) { 2241 /* 2242 * We've determined that the 2243 * path specified is already 2244 * the leftmost one - return a 2245 * cpos of zero. 2246 */ 2247 goto out; 2248 } 2249 /* 2250 * The leftmost record points to our 2251 * leaf - we need to travel up the 2252 * tree one level. 2253 */ 2254 goto next_node; 2255 } 2256 2257 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2258 *cpos = *cpos + ocfs2_rec_clusters(el, 2259 &el->l_recs[j - 1]); 2260 *cpos = *cpos - 1; 2261 goto out; 2262 } 2263 } 2264 2265 /* 2266 * If we got here, we never found a valid node where 2267 * the tree indicated one should be. 2268 */ 2269 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2270 (unsigned long long)blkno); 2271 ret = -EROFS; 2272 goto out; 2273 2274 next_node: 2275 blkno = path->p_node[i].bh->b_blocknr; 2276 i--; 2277 } 2278 2279 out: 2280 return ret; 2281 } 2282 2283 /* 2284 * Extend the transaction by enough credits to complete the rotation, 2285 * and still leave at least the original number of credits allocated 2286 * to this transaction. 2287 */ 2288 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2289 int op_credits, 2290 struct ocfs2_path *path) 2291 { 2292 int ret = 0; 2293 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2294 2295 if (jbd2_handle_buffer_credits(handle) < credits) 2296 ret = ocfs2_extend_trans(handle, 2297 credits - jbd2_handle_buffer_credits(handle)); 2298 2299 return ret; 2300 } 2301 2302 /* 2303 * Trap the case where we're inserting into the theoretical range past 2304 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2305 * whose cpos is less than ours into the right leaf. 2306 * 2307 * It's only necessary to look at the rightmost record of the left 2308 * leaf because the logic that calls us should ensure that the 2309 * theoretical ranges in the path components above the leaves are 2310 * correct. 2311 */ 2312 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2313 u32 insert_cpos) 2314 { 2315 struct ocfs2_extent_list *left_el; 2316 struct ocfs2_extent_rec *rec; 2317 int next_free; 2318 2319 left_el = path_leaf_el(left_path); 2320 next_free = le16_to_cpu(left_el->l_next_free_rec); 2321 rec = &left_el->l_recs[next_free - 1]; 2322 2323 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2324 return 1; 2325 return 0; 2326 } 2327 2328 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2329 { 2330 int next_free = le16_to_cpu(el->l_next_free_rec); 2331 unsigned int range; 2332 struct ocfs2_extent_rec *rec; 2333 2334 if (next_free == 0) 2335 return 0; 2336 2337 rec = &el->l_recs[0]; 2338 if (ocfs2_is_empty_extent(rec)) { 2339 /* Empty list. */ 2340 if (next_free == 1) 2341 return 0; 2342 rec = &el->l_recs[1]; 2343 } 2344 2345 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2346 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2347 return 1; 2348 return 0; 2349 } 2350 2351 /* 2352 * Rotate all the records in a btree right one record, starting at insert_cpos. 2353 * 2354 * The path to the rightmost leaf should be passed in. 2355 * 2356 * The array is assumed to be large enough to hold an entire path (tree depth). 2357 * 2358 * Upon successful return from this function: 2359 * 2360 * - The 'right_path' array will contain a path to the leaf block 2361 * whose range contains e_cpos. 2362 * - That leaf block will have a single empty extent in list index 0. 2363 * - In the case that the rotation requires a post-insert update, 2364 * *ret_left_path will contain a valid path which can be passed to 2365 * ocfs2_insert_path(). 2366 */ 2367 static int ocfs2_rotate_tree_right(handle_t *handle, 2368 struct ocfs2_extent_tree *et, 2369 enum ocfs2_split_type split, 2370 u32 insert_cpos, 2371 struct ocfs2_path *right_path, 2372 struct ocfs2_path **ret_left_path) 2373 { 2374 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2375 u32 cpos; 2376 struct ocfs2_path *left_path = NULL; 2377 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2378 2379 *ret_left_path = NULL; 2380 2381 left_path = ocfs2_new_path_from_path(right_path); 2382 if (!left_path) { 2383 ret = -ENOMEM; 2384 mlog_errno(ret); 2385 goto out; 2386 } 2387 2388 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2389 if (ret) { 2390 mlog_errno(ret); 2391 goto out; 2392 } 2393 2394 trace_ocfs2_rotate_tree_right( 2395 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2396 insert_cpos, cpos); 2397 2398 /* 2399 * What we want to do here is: 2400 * 2401 * 1) Start with the rightmost path. 2402 * 2403 * 2) Determine a path to the leaf block directly to the left 2404 * of that leaf. 2405 * 2406 * 3) Determine the 'subtree root' - the lowest level tree node 2407 * which contains a path to both leaves. 2408 * 2409 * 4) Rotate the subtree. 2410 * 2411 * 5) Find the next subtree by considering the left path to be 2412 * the new right path. 2413 * 2414 * The check at the top of this while loop also accepts 2415 * insert_cpos == cpos because cpos is only a _theoretical_ 2416 * value to get us the left path - insert_cpos might very well 2417 * be filling that hole. 2418 * 2419 * Stop at a cpos of '0' because we either started at the 2420 * leftmost branch (i.e., a tree with one branch and a 2421 * rotation inside of it), or we've gone as far as we can in 2422 * rotating subtrees. 2423 */ 2424 while (cpos && insert_cpos <= cpos) { 2425 trace_ocfs2_rotate_tree_right( 2426 (unsigned long long) 2427 ocfs2_metadata_cache_owner(et->et_ci), 2428 insert_cpos, cpos); 2429 2430 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2431 if (ret) { 2432 mlog_errno(ret); 2433 goto out; 2434 } 2435 2436 mlog_bug_on_msg(path_leaf_bh(left_path) == 2437 path_leaf_bh(right_path), 2438 "Owner %llu: error during insert of %u " 2439 "(left path cpos %u) results in two identical " 2440 "paths ending at %llu\n", 2441 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2442 insert_cpos, cpos, 2443 (unsigned long long) 2444 path_leaf_bh(left_path)->b_blocknr); 2445 2446 if (split == SPLIT_NONE && 2447 ocfs2_rotate_requires_path_adjustment(left_path, 2448 insert_cpos)) { 2449 2450 /* 2451 * We've rotated the tree as much as we 2452 * should. The rest is up to 2453 * ocfs2_insert_path() to complete, after the 2454 * record insertion. We indicate this 2455 * situation by returning the left path. 2456 * 2457 * The reason we don't adjust the records here 2458 * before the record insert is that an error 2459 * later might break the rule where a parent 2460 * record e_cpos will reflect the actual 2461 * e_cpos of the 1st nonempty record of the 2462 * child list. 2463 */ 2464 *ret_left_path = left_path; 2465 goto out_ret_path; 2466 } 2467 2468 start = ocfs2_find_subtree_root(et, left_path, right_path); 2469 2470 trace_ocfs2_rotate_subtree(start, 2471 (unsigned long long) 2472 right_path->p_node[start].bh->b_blocknr, 2473 right_path->p_tree_depth); 2474 2475 ret = ocfs2_extend_rotate_transaction(handle, start, 2476 orig_credits, right_path); 2477 if (ret) { 2478 mlog_errno(ret); 2479 goto out; 2480 } 2481 2482 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2483 right_path, start); 2484 if (ret) { 2485 mlog_errno(ret); 2486 goto out; 2487 } 2488 2489 if (split != SPLIT_NONE && 2490 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2491 insert_cpos)) { 2492 /* 2493 * A rotate moves the rightmost left leaf 2494 * record over to the leftmost right leaf 2495 * slot. If we're doing an extent split 2496 * instead of a real insert, then we have to 2497 * check that the extent to be split wasn't 2498 * just moved over. If it was, then we can 2499 * exit here, passing left_path back - 2500 * ocfs2_split_extent() is smart enough to 2501 * search both leaves. 2502 */ 2503 *ret_left_path = left_path; 2504 goto out_ret_path; 2505 } 2506 2507 /* 2508 * There is no need to re-read the next right path 2509 * as we know that it'll be our current left 2510 * path. Optimize by copying values instead. 2511 */ 2512 ocfs2_mv_path(right_path, left_path); 2513 2514 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2515 if (ret) { 2516 mlog_errno(ret); 2517 goto out; 2518 } 2519 } 2520 2521 out: 2522 ocfs2_free_path(left_path); 2523 2524 out_ret_path: 2525 return ret; 2526 } 2527 2528 static int ocfs2_update_edge_lengths(handle_t *handle, 2529 struct ocfs2_extent_tree *et, 2530 struct ocfs2_path *path) 2531 { 2532 int i, idx, ret; 2533 struct ocfs2_extent_rec *rec; 2534 struct ocfs2_extent_list *el; 2535 struct ocfs2_extent_block *eb; 2536 u32 range; 2537 2538 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2539 if (ret) { 2540 mlog_errno(ret); 2541 goto out; 2542 } 2543 2544 /* Path should always be rightmost. */ 2545 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2546 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2547 2548 el = &eb->h_list; 2549 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2550 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2551 rec = &el->l_recs[idx]; 2552 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2553 2554 for (i = 0; i < path->p_tree_depth; i++) { 2555 el = path->p_node[i].el; 2556 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2557 rec = &el->l_recs[idx]; 2558 2559 rec->e_int_clusters = cpu_to_le32(range); 2560 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2561 2562 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2563 } 2564 out: 2565 return ret; 2566 } 2567 2568 static void ocfs2_unlink_path(handle_t *handle, 2569 struct ocfs2_extent_tree *et, 2570 struct ocfs2_cached_dealloc_ctxt *dealloc, 2571 struct ocfs2_path *path, int unlink_start) 2572 { 2573 int ret, i; 2574 struct ocfs2_extent_block *eb; 2575 struct ocfs2_extent_list *el; 2576 struct buffer_head *bh; 2577 2578 for(i = unlink_start; i < path_num_items(path); i++) { 2579 bh = path->p_node[i].bh; 2580 2581 eb = (struct ocfs2_extent_block *)bh->b_data; 2582 /* 2583 * Not all nodes might have had their final count 2584 * decremented by the caller - handle this here. 2585 */ 2586 el = &eb->h_list; 2587 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2588 mlog(ML_ERROR, 2589 "Inode %llu, attempted to remove extent block " 2590 "%llu with %u records\n", 2591 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2592 (unsigned long long)le64_to_cpu(eb->h_blkno), 2593 le16_to_cpu(el->l_next_free_rec)); 2594 2595 ocfs2_journal_dirty(handle, bh); 2596 ocfs2_remove_from_cache(et->et_ci, bh); 2597 continue; 2598 } 2599 2600 el->l_next_free_rec = 0; 2601 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2602 2603 ocfs2_journal_dirty(handle, bh); 2604 2605 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2606 if (ret) 2607 mlog_errno(ret); 2608 2609 ocfs2_remove_from_cache(et->et_ci, bh); 2610 } 2611 } 2612 2613 static void ocfs2_unlink_subtree(handle_t *handle, 2614 struct ocfs2_extent_tree *et, 2615 struct ocfs2_path *left_path, 2616 struct ocfs2_path *right_path, 2617 int subtree_index, 2618 struct ocfs2_cached_dealloc_ctxt *dealloc) 2619 { 2620 int i; 2621 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2622 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2623 struct ocfs2_extent_block *eb; 2624 2625 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2626 2627 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2628 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2629 break; 2630 2631 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2632 2633 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2634 le16_add_cpu(&root_el->l_next_free_rec, -1); 2635 2636 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2637 eb->h_next_leaf_blk = 0; 2638 2639 ocfs2_journal_dirty(handle, root_bh); 2640 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2641 2642 ocfs2_unlink_path(handle, et, dealloc, right_path, 2643 subtree_index + 1); 2644 } 2645 2646 static int ocfs2_rotate_subtree_left(handle_t *handle, 2647 struct ocfs2_extent_tree *et, 2648 struct ocfs2_path *left_path, 2649 struct ocfs2_path *right_path, 2650 int subtree_index, 2651 struct ocfs2_cached_dealloc_ctxt *dealloc, 2652 int *deleted) 2653 { 2654 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2655 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2656 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2657 struct ocfs2_extent_block *eb; 2658 2659 *deleted = 0; 2660 2661 right_leaf_el = path_leaf_el(right_path); 2662 left_leaf_el = path_leaf_el(left_path); 2663 root_bh = left_path->p_node[subtree_index].bh; 2664 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2665 2666 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2667 return 0; 2668 2669 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2670 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2671 /* 2672 * It's legal for us to proceed if the right leaf is 2673 * the rightmost one and it has an empty extent. There 2674 * are two cases to handle - whether the leaf will be 2675 * empty after removal or not. If the leaf isn't empty 2676 * then just remove the empty extent up front. The 2677 * next block will handle empty leaves by flagging 2678 * them for unlink. 2679 * 2680 * Non rightmost leaves will throw -EAGAIN and the 2681 * caller can manually move the subtree and retry. 2682 */ 2683 2684 if (eb->h_next_leaf_blk != 0ULL) 2685 return -EAGAIN; 2686 2687 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2688 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2689 path_leaf_bh(right_path), 2690 OCFS2_JOURNAL_ACCESS_WRITE); 2691 if (ret) { 2692 mlog_errno(ret); 2693 goto out; 2694 } 2695 2696 ocfs2_remove_empty_extent(right_leaf_el); 2697 } else 2698 right_has_empty = 1; 2699 } 2700 2701 if (eb->h_next_leaf_blk == 0ULL && 2702 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2703 /* 2704 * We have to update i_last_eb_blk during the meta 2705 * data delete. 2706 */ 2707 ret = ocfs2_et_root_journal_access(handle, et, 2708 OCFS2_JOURNAL_ACCESS_WRITE); 2709 if (ret) { 2710 mlog_errno(ret); 2711 goto out; 2712 } 2713 2714 del_right_subtree = 1; 2715 } 2716 2717 /* 2718 * Getting here with an empty extent in the right path implies 2719 * that it's the rightmost path and will be deleted. 2720 */ 2721 BUG_ON(right_has_empty && !del_right_subtree); 2722 2723 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2724 subtree_index); 2725 if (ret) { 2726 mlog_errno(ret); 2727 goto out; 2728 } 2729 2730 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2731 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2732 right_path, i); 2733 if (ret) { 2734 mlog_errno(ret); 2735 goto out; 2736 } 2737 2738 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2739 left_path, i); 2740 if (ret) { 2741 mlog_errno(ret); 2742 goto out; 2743 } 2744 } 2745 2746 if (!right_has_empty) { 2747 /* 2748 * Only do this if we're moving a real 2749 * record. Otherwise, the action is delayed until 2750 * after removal of the right path in which case we 2751 * can do a simple shift to remove the empty extent. 2752 */ 2753 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2754 memset(&right_leaf_el->l_recs[0], 0, 2755 sizeof(struct ocfs2_extent_rec)); 2756 } 2757 if (eb->h_next_leaf_blk == 0ULL) { 2758 /* 2759 * Move recs over to get rid of empty extent, decrease 2760 * next_free. This is allowed to remove the last 2761 * extent in our leaf (setting l_next_free_rec to 2762 * zero) - the delete code below won't care. 2763 */ 2764 ocfs2_remove_empty_extent(right_leaf_el); 2765 } 2766 2767 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2768 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2769 2770 if (del_right_subtree) { 2771 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2772 subtree_index, dealloc); 2773 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2774 if (ret) { 2775 mlog_errno(ret); 2776 goto out; 2777 } 2778 2779 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2780 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2781 2782 /* 2783 * Removal of the extent in the left leaf was skipped 2784 * above so we could delete the right path 2785 * 1st. 2786 */ 2787 if (right_has_empty) 2788 ocfs2_remove_empty_extent(left_leaf_el); 2789 2790 ocfs2_journal_dirty(handle, et_root_bh); 2791 2792 *deleted = 1; 2793 } else 2794 ocfs2_complete_edge_insert(handle, left_path, right_path, 2795 subtree_index); 2796 2797 out: 2798 return ret; 2799 } 2800 2801 /* 2802 * Given a full path, determine what cpos value would return us a path 2803 * containing the leaf immediately to the right of the current one. 2804 * 2805 * Will return zero if the path passed in is already the rightmost path. 2806 * 2807 * This looks similar, but is subtly different to 2808 * ocfs2_find_cpos_for_left_leaf(). 2809 */ 2810 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2811 struct ocfs2_path *path, u32 *cpos) 2812 { 2813 int i, j, ret = 0; 2814 u64 blkno; 2815 struct ocfs2_extent_list *el; 2816 2817 *cpos = 0; 2818 2819 if (path->p_tree_depth == 0) 2820 return 0; 2821 2822 blkno = path_leaf_bh(path)->b_blocknr; 2823 2824 /* Start at the tree node just above the leaf and work our way up. */ 2825 i = path->p_tree_depth - 1; 2826 while (i >= 0) { 2827 int next_free; 2828 2829 el = path->p_node[i].el; 2830 2831 /* 2832 * Find the extent record just after the one in our 2833 * path. 2834 */ 2835 next_free = le16_to_cpu(el->l_next_free_rec); 2836 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2837 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2838 if (j == (next_free - 1)) { 2839 if (i == 0) { 2840 /* 2841 * We've determined that the 2842 * path specified is already 2843 * the rightmost one - return a 2844 * cpos of zero. 2845 */ 2846 goto out; 2847 } 2848 /* 2849 * The rightmost record points to our 2850 * leaf - we need to travel up the 2851 * tree one level. 2852 */ 2853 goto next_node; 2854 } 2855 2856 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2857 goto out; 2858 } 2859 } 2860 2861 /* 2862 * If we got here, we never found a valid node where 2863 * the tree indicated one should be. 2864 */ 2865 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2866 (unsigned long long)blkno); 2867 ret = -EROFS; 2868 goto out; 2869 2870 next_node: 2871 blkno = path->p_node[i].bh->b_blocknr; 2872 i--; 2873 } 2874 2875 out: 2876 return ret; 2877 } 2878 2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2880 struct ocfs2_extent_tree *et, 2881 struct ocfs2_path *path) 2882 { 2883 int ret; 2884 struct buffer_head *bh = path_leaf_bh(path); 2885 struct ocfs2_extent_list *el = path_leaf_el(path); 2886 2887 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2888 return 0; 2889 2890 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2891 path_num_items(path) - 1); 2892 if (ret) { 2893 mlog_errno(ret); 2894 goto out; 2895 } 2896 2897 ocfs2_remove_empty_extent(el); 2898 ocfs2_journal_dirty(handle, bh); 2899 2900 out: 2901 return ret; 2902 } 2903 2904 static int __ocfs2_rotate_tree_left(handle_t *handle, 2905 struct ocfs2_extent_tree *et, 2906 int orig_credits, 2907 struct ocfs2_path *path, 2908 struct ocfs2_cached_dealloc_ctxt *dealloc, 2909 struct ocfs2_path **empty_extent_path) 2910 { 2911 int ret, subtree_root, deleted; 2912 u32 right_cpos; 2913 struct ocfs2_path *left_path = NULL; 2914 struct ocfs2_path *right_path = NULL; 2915 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2916 2917 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2918 return 0; 2919 2920 *empty_extent_path = NULL; 2921 2922 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2923 if (ret) { 2924 mlog_errno(ret); 2925 goto out; 2926 } 2927 2928 left_path = ocfs2_new_path_from_path(path); 2929 if (!left_path) { 2930 ret = -ENOMEM; 2931 mlog_errno(ret); 2932 goto out; 2933 } 2934 2935 ocfs2_cp_path(left_path, path); 2936 2937 right_path = ocfs2_new_path_from_path(path); 2938 if (!right_path) { 2939 ret = -ENOMEM; 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 while (right_cpos) { 2945 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2946 if (ret) { 2947 mlog_errno(ret); 2948 goto out; 2949 } 2950 2951 subtree_root = ocfs2_find_subtree_root(et, left_path, 2952 right_path); 2953 2954 trace_ocfs2_rotate_subtree(subtree_root, 2955 (unsigned long long) 2956 right_path->p_node[subtree_root].bh->b_blocknr, 2957 right_path->p_tree_depth); 2958 2959 ret = ocfs2_extend_rotate_transaction(handle, 0, 2960 orig_credits, left_path); 2961 if (ret) { 2962 mlog_errno(ret); 2963 goto out; 2964 } 2965 2966 /* 2967 * Caller might still want to make changes to the 2968 * tree root, so re-add it to the journal here. 2969 */ 2970 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2971 left_path, 0); 2972 if (ret) { 2973 mlog_errno(ret); 2974 goto out; 2975 } 2976 2977 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2978 right_path, subtree_root, 2979 dealloc, &deleted); 2980 if (ret == -EAGAIN) { 2981 /* 2982 * The rotation has to temporarily stop due to 2983 * the right subtree having an empty 2984 * extent. Pass it back to the caller for a 2985 * fixup. 2986 */ 2987 *empty_extent_path = right_path; 2988 right_path = NULL; 2989 goto out; 2990 } 2991 if (ret) { 2992 mlog_errno(ret); 2993 goto out; 2994 } 2995 2996 /* 2997 * The subtree rotate might have removed records on 2998 * the rightmost edge. If so, then rotation is 2999 * complete. 3000 */ 3001 if (deleted) 3002 break; 3003 3004 ocfs2_mv_path(left_path, right_path); 3005 3006 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3007 &right_cpos); 3008 if (ret) { 3009 mlog_errno(ret); 3010 goto out; 3011 } 3012 } 3013 3014 out: 3015 ocfs2_free_path(right_path); 3016 ocfs2_free_path(left_path); 3017 3018 return ret; 3019 } 3020 3021 static int ocfs2_remove_rightmost_path(handle_t *handle, 3022 struct ocfs2_extent_tree *et, 3023 struct ocfs2_path *path, 3024 struct ocfs2_cached_dealloc_ctxt *dealloc) 3025 { 3026 int ret, subtree_index; 3027 u32 cpos; 3028 struct ocfs2_path *left_path = NULL; 3029 struct ocfs2_extent_block *eb; 3030 struct ocfs2_extent_list *el; 3031 3032 ret = ocfs2_et_sanity_check(et); 3033 if (ret) 3034 goto out; 3035 3036 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3037 if (ret) { 3038 mlog_errno(ret); 3039 goto out; 3040 } 3041 3042 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3043 path, &cpos); 3044 if (ret) { 3045 mlog_errno(ret); 3046 goto out; 3047 } 3048 3049 if (cpos) { 3050 /* 3051 * We have a path to the left of this one - it needs 3052 * an update too. 3053 */ 3054 left_path = ocfs2_new_path_from_path(path); 3055 if (!left_path) { 3056 ret = -ENOMEM; 3057 mlog_errno(ret); 3058 goto out; 3059 } 3060 3061 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3062 if (ret) { 3063 mlog_errno(ret); 3064 goto out; 3065 } 3066 3067 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3068 if (ret) { 3069 mlog_errno(ret); 3070 goto out; 3071 } 3072 3073 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3074 3075 ocfs2_unlink_subtree(handle, et, left_path, path, 3076 subtree_index, dealloc); 3077 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3078 if (ret) { 3079 mlog_errno(ret); 3080 goto out; 3081 } 3082 3083 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3084 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3085 } else { 3086 /* 3087 * 'path' is also the leftmost path which 3088 * means it must be the only one. This gets 3089 * handled differently because we want to 3090 * revert the root back to having extents 3091 * in-line. 3092 */ 3093 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3094 3095 el = et->et_root_el; 3096 el->l_tree_depth = 0; 3097 el->l_next_free_rec = 0; 3098 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3099 3100 ocfs2_et_set_last_eb_blk(et, 0); 3101 } 3102 3103 ocfs2_journal_dirty(handle, path_root_bh(path)); 3104 3105 out: 3106 ocfs2_free_path(left_path); 3107 return ret; 3108 } 3109 3110 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3111 struct ocfs2_extent_tree *et, 3112 struct ocfs2_path *path, 3113 struct ocfs2_cached_dealloc_ctxt *dealloc) 3114 { 3115 handle_t *handle; 3116 int ret; 3117 int credits = path->p_tree_depth * 2 + 1; 3118 3119 handle = ocfs2_start_trans(osb, credits); 3120 if (IS_ERR(handle)) { 3121 ret = PTR_ERR(handle); 3122 mlog_errno(ret); 3123 return ret; 3124 } 3125 3126 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3127 if (ret) 3128 mlog_errno(ret); 3129 3130 ocfs2_commit_trans(osb, handle); 3131 return ret; 3132 } 3133 3134 /* 3135 * Left rotation of btree records. 3136 * 3137 * In many ways, this is (unsurprisingly) the opposite of right 3138 * rotation. We start at some non-rightmost path containing an empty 3139 * extent in the leaf block. The code works its way to the rightmost 3140 * path by rotating records to the left in every subtree. 3141 * 3142 * This is used by any code which reduces the number of extent records 3143 * in a leaf. After removal, an empty record should be placed in the 3144 * leftmost list position. 3145 * 3146 * This won't handle a length update of the rightmost path records if 3147 * the rightmost tree leaf record is removed so the caller is 3148 * responsible for detecting and correcting that. 3149 */ 3150 static int ocfs2_rotate_tree_left(handle_t *handle, 3151 struct ocfs2_extent_tree *et, 3152 struct ocfs2_path *path, 3153 struct ocfs2_cached_dealloc_ctxt *dealloc) 3154 { 3155 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3156 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3157 struct ocfs2_extent_block *eb; 3158 struct ocfs2_extent_list *el; 3159 3160 el = path_leaf_el(path); 3161 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3162 return 0; 3163 3164 if (path->p_tree_depth == 0) { 3165 rightmost_no_delete: 3166 /* 3167 * Inline extents. This is trivially handled, so do 3168 * it up front. 3169 */ 3170 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3171 if (ret) 3172 mlog_errno(ret); 3173 goto out; 3174 } 3175 3176 /* 3177 * Handle rightmost branch now. There's several cases: 3178 * 1) simple rotation leaving records in there. That's trivial. 3179 * 2) rotation requiring a branch delete - there's no more 3180 * records left. Two cases of this: 3181 * a) There are branches to the left. 3182 * b) This is also the leftmost (the only) branch. 3183 * 3184 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3185 * 2a) we need the left branch so that we can update it with the unlink 3186 * 2b) we need to bring the root back to inline extents. 3187 */ 3188 3189 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3190 el = &eb->h_list; 3191 if (eb->h_next_leaf_blk == 0) { 3192 /* 3193 * This gets a bit tricky if we're going to delete the 3194 * rightmost path. Get the other cases out of the way 3195 * 1st. 3196 */ 3197 if (le16_to_cpu(el->l_next_free_rec) > 1) 3198 goto rightmost_no_delete; 3199 3200 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3201 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3202 "Owner %llu has empty extent block at %llu\n", 3203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3204 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3205 goto out; 3206 } 3207 3208 /* 3209 * XXX: The caller can not trust "path" any more after 3210 * this as it will have been deleted. What do we do? 3211 * 3212 * In theory the rotate-for-merge code will never get 3213 * here because it'll always ask for a rotate in a 3214 * nonempty list. 3215 */ 3216 3217 ret = ocfs2_remove_rightmost_path(handle, et, path, 3218 dealloc); 3219 if (ret) 3220 mlog_errno(ret); 3221 goto out; 3222 } 3223 3224 /* 3225 * Now we can loop, remembering the path we get from -EAGAIN 3226 * and restarting from there. 3227 */ 3228 try_rotate: 3229 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3230 dealloc, &restart_path); 3231 if (ret && ret != -EAGAIN) { 3232 mlog_errno(ret); 3233 goto out; 3234 } 3235 3236 while (ret == -EAGAIN) { 3237 tmp_path = restart_path; 3238 restart_path = NULL; 3239 3240 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3241 tmp_path, dealloc, 3242 &restart_path); 3243 if (ret && ret != -EAGAIN) { 3244 mlog_errno(ret); 3245 goto out; 3246 } 3247 3248 ocfs2_free_path(tmp_path); 3249 tmp_path = NULL; 3250 3251 if (ret == 0) 3252 goto try_rotate; 3253 } 3254 3255 out: 3256 ocfs2_free_path(tmp_path); 3257 ocfs2_free_path(restart_path); 3258 return ret; 3259 } 3260 3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3262 int index) 3263 { 3264 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3265 unsigned int size; 3266 3267 if (rec->e_leaf_clusters == 0) { 3268 /* 3269 * We consumed all of the merged-from record. An empty 3270 * extent cannot exist anywhere but the 1st array 3271 * position, so move things over if the merged-from 3272 * record doesn't occupy that position. 3273 * 3274 * This creates a new empty extent so the caller 3275 * should be smart enough to have removed any existing 3276 * ones. 3277 */ 3278 if (index > 0) { 3279 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3280 size = index * sizeof(struct ocfs2_extent_rec); 3281 memmove(&el->l_recs[1], &el->l_recs[0], size); 3282 } 3283 3284 /* 3285 * Always memset - the caller doesn't check whether it 3286 * created an empty extent, so there could be junk in 3287 * the other fields. 3288 */ 3289 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3290 } 3291 } 3292 3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3294 struct ocfs2_path *left_path, 3295 struct ocfs2_path **ret_right_path) 3296 { 3297 int ret; 3298 u32 right_cpos; 3299 struct ocfs2_path *right_path = NULL; 3300 struct ocfs2_extent_list *left_el; 3301 3302 *ret_right_path = NULL; 3303 3304 /* This function shouldn't be called for non-trees. */ 3305 BUG_ON(left_path->p_tree_depth == 0); 3306 3307 left_el = path_leaf_el(left_path); 3308 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3309 3310 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3311 left_path, &right_cpos); 3312 if (ret) { 3313 mlog_errno(ret); 3314 goto out; 3315 } 3316 3317 /* This function shouldn't be called for the rightmost leaf. */ 3318 BUG_ON(right_cpos == 0); 3319 3320 right_path = ocfs2_new_path_from_path(left_path); 3321 if (!right_path) { 3322 ret = -ENOMEM; 3323 mlog_errno(ret); 3324 goto out; 3325 } 3326 3327 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3328 if (ret) { 3329 mlog_errno(ret); 3330 goto out; 3331 } 3332 3333 *ret_right_path = right_path; 3334 out: 3335 if (ret) 3336 ocfs2_free_path(right_path); 3337 return ret; 3338 } 3339 3340 /* 3341 * Remove split_rec clusters from the record at index and merge them 3342 * onto the beginning of the record "next" to it. 3343 * For index < l_count - 1, the next means the extent rec at index + 1. 3344 * For index == l_count - 1, the "next" means the 1st extent rec of the 3345 * next extent block. 3346 */ 3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3348 handle_t *handle, 3349 struct ocfs2_extent_tree *et, 3350 struct ocfs2_extent_rec *split_rec, 3351 int index) 3352 { 3353 int ret, next_free, i; 3354 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3355 struct ocfs2_extent_rec *left_rec; 3356 struct ocfs2_extent_rec *right_rec; 3357 struct ocfs2_extent_list *right_el; 3358 struct ocfs2_path *right_path = NULL; 3359 int subtree_index = 0; 3360 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3361 struct buffer_head *bh = path_leaf_bh(left_path); 3362 struct buffer_head *root_bh = NULL; 3363 3364 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3365 left_rec = &el->l_recs[index]; 3366 3367 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3368 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3369 /* we meet with a cross extent block merge. */ 3370 ret = ocfs2_get_right_path(et, left_path, &right_path); 3371 if (ret) { 3372 mlog_errno(ret); 3373 return ret; 3374 } 3375 3376 right_el = path_leaf_el(right_path); 3377 next_free = le16_to_cpu(right_el->l_next_free_rec); 3378 BUG_ON(next_free <= 0); 3379 right_rec = &right_el->l_recs[0]; 3380 if (ocfs2_is_empty_extent(right_rec)) { 3381 BUG_ON(next_free <= 1); 3382 right_rec = &right_el->l_recs[1]; 3383 } 3384 3385 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3386 le16_to_cpu(left_rec->e_leaf_clusters) != 3387 le32_to_cpu(right_rec->e_cpos)); 3388 3389 subtree_index = ocfs2_find_subtree_root(et, left_path, 3390 right_path); 3391 3392 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3393 jbd2_handle_buffer_credits(handle), 3394 right_path); 3395 if (ret) { 3396 mlog_errno(ret); 3397 goto out; 3398 } 3399 3400 root_bh = left_path->p_node[subtree_index].bh; 3401 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3402 3403 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3404 subtree_index); 3405 if (ret) { 3406 mlog_errno(ret); 3407 goto out; 3408 } 3409 3410 for (i = subtree_index + 1; 3411 i < path_num_items(right_path); i++) { 3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3413 right_path, i); 3414 if (ret) { 3415 mlog_errno(ret); 3416 goto out; 3417 } 3418 3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3420 left_path, i); 3421 if (ret) { 3422 mlog_errno(ret); 3423 goto out; 3424 } 3425 } 3426 3427 } else { 3428 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3429 right_rec = &el->l_recs[index + 1]; 3430 } 3431 3432 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3433 path_num_items(left_path) - 1); 3434 if (ret) { 3435 mlog_errno(ret); 3436 goto out; 3437 } 3438 3439 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3440 3441 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3442 le64_add_cpu(&right_rec->e_blkno, 3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3444 split_clusters)); 3445 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3446 3447 ocfs2_cleanup_merge(el, index); 3448 3449 ocfs2_journal_dirty(handle, bh); 3450 if (right_path) { 3451 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3452 ocfs2_complete_edge_insert(handle, left_path, right_path, 3453 subtree_index); 3454 } 3455 out: 3456 ocfs2_free_path(right_path); 3457 return ret; 3458 } 3459 3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3461 struct ocfs2_path *right_path, 3462 struct ocfs2_path **ret_left_path) 3463 { 3464 int ret; 3465 u32 left_cpos; 3466 struct ocfs2_path *left_path = NULL; 3467 3468 *ret_left_path = NULL; 3469 3470 /* This function shouldn't be called for non-trees. */ 3471 BUG_ON(right_path->p_tree_depth == 0); 3472 3473 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3474 right_path, &left_cpos); 3475 if (ret) { 3476 mlog_errno(ret); 3477 goto out; 3478 } 3479 3480 /* This function shouldn't be called for the leftmost leaf. */ 3481 BUG_ON(left_cpos == 0); 3482 3483 left_path = ocfs2_new_path_from_path(right_path); 3484 if (!left_path) { 3485 ret = -ENOMEM; 3486 mlog_errno(ret); 3487 goto out; 3488 } 3489 3490 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3491 if (ret) { 3492 mlog_errno(ret); 3493 goto out; 3494 } 3495 3496 *ret_left_path = left_path; 3497 out: 3498 if (ret) 3499 ocfs2_free_path(left_path); 3500 return ret; 3501 } 3502 3503 /* 3504 * Remove split_rec clusters from the record at index and merge them 3505 * onto the tail of the record "before" it. 3506 * For index > 0, the "before" means the extent rec at index - 1. 3507 * 3508 * For index == 0, the "before" means the last record of the previous 3509 * extent block. And there is also a situation that we may need to 3510 * remove the rightmost leaf extent block in the right_path and change 3511 * the right path to indicate the new rightmost path. 3512 */ 3513 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3514 handle_t *handle, 3515 struct ocfs2_extent_tree *et, 3516 struct ocfs2_extent_rec *split_rec, 3517 struct ocfs2_cached_dealloc_ctxt *dealloc, 3518 int index) 3519 { 3520 int ret, i, subtree_index = 0, has_empty_extent = 0; 3521 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3522 struct ocfs2_extent_rec *left_rec; 3523 struct ocfs2_extent_rec *right_rec; 3524 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3525 struct buffer_head *bh = path_leaf_bh(right_path); 3526 struct buffer_head *root_bh = NULL; 3527 struct ocfs2_path *left_path = NULL; 3528 struct ocfs2_extent_list *left_el; 3529 3530 BUG_ON(index < 0); 3531 3532 right_rec = &el->l_recs[index]; 3533 if (index == 0) { 3534 /* we meet with a cross extent block merge. */ 3535 ret = ocfs2_get_left_path(et, right_path, &left_path); 3536 if (ret) { 3537 mlog_errno(ret); 3538 return ret; 3539 } 3540 3541 left_el = path_leaf_el(left_path); 3542 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3543 le16_to_cpu(left_el->l_count)); 3544 3545 left_rec = &left_el->l_recs[ 3546 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3547 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3548 le16_to_cpu(left_rec->e_leaf_clusters) != 3549 le32_to_cpu(split_rec->e_cpos)); 3550 3551 subtree_index = ocfs2_find_subtree_root(et, left_path, 3552 right_path); 3553 3554 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3555 jbd2_handle_buffer_credits(handle), 3556 left_path); 3557 if (ret) { 3558 mlog_errno(ret); 3559 goto out; 3560 } 3561 3562 root_bh = left_path->p_node[subtree_index].bh; 3563 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3564 3565 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3566 subtree_index); 3567 if (ret) { 3568 mlog_errno(ret); 3569 goto out; 3570 } 3571 3572 for (i = subtree_index + 1; 3573 i < path_num_items(right_path); i++) { 3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3575 right_path, i); 3576 if (ret) { 3577 mlog_errno(ret); 3578 goto out; 3579 } 3580 3581 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3582 left_path, i); 3583 if (ret) { 3584 mlog_errno(ret); 3585 goto out; 3586 } 3587 } 3588 } else { 3589 left_rec = &el->l_recs[index - 1]; 3590 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3591 has_empty_extent = 1; 3592 } 3593 3594 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3595 path_num_items(right_path) - 1); 3596 if (ret) { 3597 mlog_errno(ret); 3598 goto out; 3599 } 3600 3601 if (has_empty_extent && index == 1) { 3602 /* 3603 * The easy case - we can just plop the record right in. 3604 */ 3605 *left_rec = *split_rec; 3606 } else 3607 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3608 3609 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3610 le64_add_cpu(&right_rec->e_blkno, 3611 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3612 split_clusters)); 3613 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3614 3615 ocfs2_cleanup_merge(el, index); 3616 3617 ocfs2_journal_dirty(handle, bh); 3618 if (left_path) { 3619 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3620 3621 /* 3622 * In the situation that the right_rec is empty and the extent 3623 * block is empty also, ocfs2_complete_edge_insert can't handle 3624 * it and we need to delete the right extent block. 3625 */ 3626 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3627 le16_to_cpu(el->l_next_free_rec) == 1) { 3628 /* extend credit for ocfs2_remove_rightmost_path */ 3629 ret = ocfs2_extend_rotate_transaction(handle, 0, 3630 jbd2_handle_buffer_credits(handle), 3631 right_path); 3632 if (ret) { 3633 mlog_errno(ret); 3634 goto out; 3635 } 3636 3637 ret = ocfs2_remove_rightmost_path(handle, et, 3638 right_path, 3639 dealloc); 3640 if (ret) { 3641 mlog_errno(ret); 3642 goto out; 3643 } 3644 3645 /* Now the rightmost extent block has been deleted. 3646 * So we use the new rightmost path. 3647 */ 3648 ocfs2_mv_path(right_path, left_path); 3649 left_path = NULL; 3650 } else 3651 ocfs2_complete_edge_insert(handle, left_path, 3652 right_path, subtree_index); 3653 } 3654 out: 3655 ocfs2_free_path(left_path); 3656 return ret; 3657 } 3658 3659 static int ocfs2_try_to_merge_extent(handle_t *handle, 3660 struct ocfs2_extent_tree *et, 3661 struct ocfs2_path *path, 3662 int split_index, 3663 struct ocfs2_extent_rec *split_rec, 3664 struct ocfs2_cached_dealloc_ctxt *dealloc, 3665 struct ocfs2_merge_ctxt *ctxt) 3666 { 3667 int ret = 0; 3668 struct ocfs2_extent_list *el = path_leaf_el(path); 3669 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3670 3671 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3672 3673 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3674 /* extend credit for ocfs2_remove_rightmost_path */ 3675 ret = ocfs2_extend_rotate_transaction(handle, 0, 3676 jbd2_handle_buffer_credits(handle), 3677 path); 3678 if (ret) { 3679 mlog_errno(ret); 3680 goto out; 3681 } 3682 /* 3683 * The merge code will need to create an empty 3684 * extent to take the place of the newly 3685 * emptied slot. Remove any pre-existing empty 3686 * extents - having more than one in a leaf is 3687 * illegal. 3688 */ 3689 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3690 if (ret) { 3691 mlog_errno(ret); 3692 goto out; 3693 } 3694 split_index--; 3695 rec = &el->l_recs[split_index]; 3696 } 3697 3698 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3699 /* 3700 * Left-right contig implies this. 3701 */ 3702 BUG_ON(!ctxt->c_split_covers_rec); 3703 3704 /* 3705 * Since the leftright insert always covers the entire 3706 * extent, this call will delete the insert record 3707 * entirely, resulting in an empty extent record added to 3708 * the extent block. 3709 * 3710 * Since the adding of an empty extent shifts 3711 * everything back to the right, there's no need to 3712 * update split_index here. 3713 * 3714 * When the split_index is zero, we need to merge it to the 3715 * prevoius extent block. It is more efficient and easier 3716 * if we do merge_right first and merge_left later. 3717 */ 3718 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3719 split_index); 3720 if (ret) { 3721 mlog_errno(ret); 3722 goto out; 3723 } 3724 3725 /* 3726 * We can only get this from logic error above. 3727 */ 3728 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3729 3730 /* extend credit for ocfs2_remove_rightmost_path */ 3731 ret = ocfs2_extend_rotate_transaction(handle, 0, 3732 jbd2_handle_buffer_credits(handle), 3733 path); 3734 if (ret) { 3735 mlog_errno(ret); 3736 goto out; 3737 } 3738 3739 /* The merge left us with an empty extent, remove it. */ 3740 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3741 if (ret) { 3742 mlog_errno(ret); 3743 goto out; 3744 } 3745 3746 rec = &el->l_recs[split_index]; 3747 3748 /* 3749 * Note that we don't pass split_rec here on purpose - 3750 * we've merged it into the rec already. 3751 */ 3752 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3753 dealloc, split_index); 3754 3755 if (ret) { 3756 mlog_errno(ret); 3757 goto out; 3758 } 3759 3760 /* extend credit for ocfs2_remove_rightmost_path */ 3761 ret = ocfs2_extend_rotate_transaction(handle, 0, 3762 jbd2_handle_buffer_credits(handle), 3763 path); 3764 if (ret) { 3765 mlog_errno(ret); 3766 goto out; 3767 } 3768 3769 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3770 /* 3771 * Error from this last rotate is not critical, so 3772 * print but don't bubble it up. 3773 */ 3774 if (ret) 3775 mlog_errno(ret); 3776 ret = 0; 3777 } else { 3778 /* 3779 * Merge a record to the left or right. 3780 * 3781 * 'contig_type' is relative to the existing record, 3782 * so for example, if we're "right contig", it's to 3783 * the record on the left (hence the left merge). 3784 */ 3785 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3786 ret = ocfs2_merge_rec_left(path, handle, et, 3787 split_rec, dealloc, 3788 split_index); 3789 if (ret) { 3790 mlog_errno(ret); 3791 goto out; 3792 } 3793 } else { 3794 ret = ocfs2_merge_rec_right(path, handle, 3795 et, split_rec, 3796 split_index); 3797 if (ret) { 3798 mlog_errno(ret); 3799 goto out; 3800 } 3801 } 3802 3803 if (ctxt->c_split_covers_rec) { 3804 /* extend credit for ocfs2_remove_rightmost_path */ 3805 ret = ocfs2_extend_rotate_transaction(handle, 0, 3806 jbd2_handle_buffer_credits(handle), 3807 path); 3808 if (ret) { 3809 mlog_errno(ret); 3810 ret = 0; 3811 goto out; 3812 } 3813 3814 /* 3815 * The merge may have left an empty extent in 3816 * our leaf. Try to rotate it away. 3817 */ 3818 ret = ocfs2_rotate_tree_left(handle, et, path, 3819 dealloc); 3820 if (ret) 3821 mlog_errno(ret); 3822 ret = 0; 3823 } 3824 } 3825 3826 out: 3827 return ret; 3828 } 3829 3830 static void ocfs2_subtract_from_rec(struct super_block *sb, 3831 enum ocfs2_split_type split, 3832 struct ocfs2_extent_rec *rec, 3833 struct ocfs2_extent_rec *split_rec) 3834 { 3835 u64 len_blocks; 3836 3837 len_blocks = ocfs2_clusters_to_blocks(sb, 3838 le16_to_cpu(split_rec->e_leaf_clusters)); 3839 3840 if (split == SPLIT_LEFT) { 3841 /* 3842 * Region is on the left edge of the existing 3843 * record. 3844 */ 3845 le32_add_cpu(&rec->e_cpos, 3846 le16_to_cpu(split_rec->e_leaf_clusters)); 3847 le64_add_cpu(&rec->e_blkno, len_blocks); 3848 le16_add_cpu(&rec->e_leaf_clusters, 3849 -le16_to_cpu(split_rec->e_leaf_clusters)); 3850 } else { 3851 /* 3852 * Region is on the right edge of the existing 3853 * record. 3854 */ 3855 le16_add_cpu(&rec->e_leaf_clusters, 3856 -le16_to_cpu(split_rec->e_leaf_clusters)); 3857 } 3858 } 3859 3860 /* 3861 * Do the final bits of extent record insertion at the target leaf 3862 * list. If this leaf is part of an allocation tree, it is assumed 3863 * that the tree above has been prepared. 3864 */ 3865 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3866 struct ocfs2_extent_rec *insert_rec, 3867 struct ocfs2_extent_list *el, 3868 struct ocfs2_insert_type *insert) 3869 { 3870 int i = insert->ins_contig_index; 3871 unsigned int range; 3872 struct ocfs2_extent_rec *rec; 3873 3874 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3875 3876 if (insert->ins_split != SPLIT_NONE) { 3877 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3878 BUG_ON(i == -1); 3879 rec = &el->l_recs[i]; 3880 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3881 insert->ins_split, rec, 3882 insert_rec); 3883 goto rotate; 3884 } 3885 3886 /* 3887 * Contiguous insert - either left or right. 3888 */ 3889 if (insert->ins_contig != CONTIG_NONE) { 3890 rec = &el->l_recs[i]; 3891 if (insert->ins_contig == CONTIG_LEFT) { 3892 rec->e_blkno = insert_rec->e_blkno; 3893 rec->e_cpos = insert_rec->e_cpos; 3894 } 3895 le16_add_cpu(&rec->e_leaf_clusters, 3896 le16_to_cpu(insert_rec->e_leaf_clusters)); 3897 return; 3898 } 3899 3900 /* 3901 * Handle insert into an empty leaf. 3902 */ 3903 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3904 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3905 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3906 el->l_recs[0] = *insert_rec; 3907 el->l_next_free_rec = cpu_to_le16(1); 3908 return; 3909 } 3910 3911 /* 3912 * Appending insert. 3913 */ 3914 if (insert->ins_appending == APPEND_TAIL) { 3915 i = le16_to_cpu(el->l_next_free_rec) - 1; 3916 rec = &el->l_recs[i]; 3917 range = le32_to_cpu(rec->e_cpos) 3918 + le16_to_cpu(rec->e_leaf_clusters); 3919 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3920 3921 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3922 le16_to_cpu(el->l_count), 3923 "owner %llu, depth %u, count %u, next free %u, " 3924 "rec.cpos %u, rec.clusters %u, " 3925 "insert.cpos %u, insert.clusters %u\n", 3926 ocfs2_metadata_cache_owner(et->et_ci), 3927 le16_to_cpu(el->l_tree_depth), 3928 le16_to_cpu(el->l_count), 3929 le16_to_cpu(el->l_next_free_rec), 3930 le32_to_cpu(el->l_recs[i].e_cpos), 3931 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3932 le32_to_cpu(insert_rec->e_cpos), 3933 le16_to_cpu(insert_rec->e_leaf_clusters)); 3934 i++; 3935 el->l_recs[i] = *insert_rec; 3936 le16_add_cpu(&el->l_next_free_rec, 1); 3937 return; 3938 } 3939 3940 rotate: 3941 /* 3942 * Ok, we have to rotate. 3943 * 3944 * At this point, it is safe to assume that inserting into an 3945 * empty leaf and appending to a leaf have both been handled 3946 * above. 3947 * 3948 * This leaf needs to have space, either by the empty 1st 3949 * extent record, or by virtue of an l_next_free_rec < l_count. 3950 */ 3951 ocfs2_rotate_leaf(el, insert_rec); 3952 } 3953 3954 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3955 struct ocfs2_extent_tree *et, 3956 struct ocfs2_path *path, 3957 struct ocfs2_extent_rec *insert_rec) 3958 { 3959 int i, next_free; 3960 struct buffer_head *bh; 3961 struct ocfs2_extent_list *el; 3962 struct ocfs2_extent_rec *rec; 3963 3964 /* 3965 * Update everything except the leaf block. 3966 */ 3967 for (i = 0; i < path->p_tree_depth; i++) { 3968 bh = path->p_node[i].bh; 3969 el = path->p_node[i].el; 3970 3971 next_free = le16_to_cpu(el->l_next_free_rec); 3972 if (next_free == 0) { 3973 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3974 "Owner %llu has a bad extent list\n", 3975 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3976 return; 3977 } 3978 3979 rec = &el->l_recs[next_free - 1]; 3980 3981 rec->e_int_clusters = insert_rec->e_cpos; 3982 le32_add_cpu(&rec->e_int_clusters, 3983 le16_to_cpu(insert_rec->e_leaf_clusters)); 3984 le32_add_cpu(&rec->e_int_clusters, 3985 -le32_to_cpu(rec->e_cpos)); 3986 3987 ocfs2_journal_dirty(handle, bh); 3988 } 3989 } 3990 3991 static int ocfs2_append_rec_to_path(handle_t *handle, 3992 struct ocfs2_extent_tree *et, 3993 struct ocfs2_extent_rec *insert_rec, 3994 struct ocfs2_path *right_path, 3995 struct ocfs2_path **ret_left_path) 3996 { 3997 int ret, next_free; 3998 struct ocfs2_extent_list *el; 3999 struct ocfs2_path *left_path = NULL; 4000 4001 *ret_left_path = NULL; 4002 4003 /* 4004 * This shouldn't happen for non-trees. The extent rec cluster 4005 * count manipulation below only works for interior nodes. 4006 */ 4007 BUG_ON(right_path->p_tree_depth == 0); 4008 4009 /* 4010 * If our appending insert is at the leftmost edge of a leaf, 4011 * then we might need to update the rightmost records of the 4012 * neighboring path. 4013 */ 4014 el = path_leaf_el(right_path); 4015 next_free = le16_to_cpu(el->l_next_free_rec); 4016 if (next_free == 0 || 4017 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4018 u32 left_cpos; 4019 4020 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4021 right_path, &left_cpos); 4022 if (ret) { 4023 mlog_errno(ret); 4024 goto out; 4025 } 4026 4027 trace_ocfs2_append_rec_to_path( 4028 (unsigned long long) 4029 ocfs2_metadata_cache_owner(et->et_ci), 4030 le32_to_cpu(insert_rec->e_cpos), 4031 left_cpos); 4032 4033 /* 4034 * No need to worry if the append is already in the 4035 * leftmost leaf. 4036 */ 4037 if (left_cpos) { 4038 left_path = ocfs2_new_path_from_path(right_path); 4039 if (!left_path) { 4040 ret = -ENOMEM; 4041 mlog_errno(ret); 4042 goto out; 4043 } 4044 4045 ret = ocfs2_find_path(et->et_ci, left_path, 4046 left_cpos); 4047 if (ret) { 4048 mlog_errno(ret); 4049 goto out; 4050 } 4051 4052 /* 4053 * ocfs2_insert_path() will pass the left_path to the 4054 * journal for us. 4055 */ 4056 } 4057 } 4058 4059 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4060 if (ret) { 4061 mlog_errno(ret); 4062 goto out; 4063 } 4064 4065 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4066 4067 *ret_left_path = left_path; 4068 ret = 0; 4069 out: 4070 if (ret != 0) 4071 ocfs2_free_path(left_path); 4072 4073 return ret; 4074 } 4075 4076 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4077 struct ocfs2_path *left_path, 4078 struct ocfs2_path *right_path, 4079 struct ocfs2_extent_rec *split_rec, 4080 enum ocfs2_split_type split) 4081 { 4082 int index; 4083 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4084 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4085 struct ocfs2_extent_rec *rec, *tmprec; 4086 4087 right_el = path_leaf_el(right_path); 4088 if (left_path) 4089 left_el = path_leaf_el(left_path); 4090 4091 el = right_el; 4092 insert_el = right_el; 4093 index = ocfs2_search_extent_list(el, cpos); 4094 if (index != -1) { 4095 if (index == 0 && left_path) { 4096 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4097 4098 /* 4099 * This typically means that the record 4100 * started in the left path but moved to the 4101 * right as a result of rotation. We either 4102 * move the existing record to the left, or we 4103 * do the later insert there. 4104 * 4105 * In this case, the left path should always 4106 * exist as the rotate code will have passed 4107 * it back for a post-insert update. 4108 */ 4109 4110 if (split == SPLIT_LEFT) { 4111 /* 4112 * It's a left split. Since we know 4113 * that the rotate code gave us an 4114 * empty extent in the left path, we 4115 * can just do the insert there. 4116 */ 4117 insert_el = left_el; 4118 } else { 4119 /* 4120 * Right split - we have to move the 4121 * existing record over to the left 4122 * leaf. The insert will be into the 4123 * newly created empty extent in the 4124 * right leaf. 4125 */ 4126 tmprec = &right_el->l_recs[index]; 4127 ocfs2_rotate_leaf(left_el, tmprec); 4128 el = left_el; 4129 4130 memset(tmprec, 0, sizeof(*tmprec)); 4131 index = ocfs2_search_extent_list(left_el, cpos); 4132 BUG_ON(index == -1); 4133 } 4134 } 4135 } else { 4136 BUG_ON(!left_path); 4137 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4138 /* 4139 * Left path is easy - we can just allow the insert to 4140 * happen. 4141 */ 4142 el = left_el; 4143 insert_el = left_el; 4144 index = ocfs2_search_extent_list(el, cpos); 4145 BUG_ON(index == -1); 4146 } 4147 4148 rec = &el->l_recs[index]; 4149 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4150 split, rec, split_rec); 4151 ocfs2_rotate_leaf(insert_el, split_rec); 4152 } 4153 4154 /* 4155 * This function only does inserts on an allocation b-tree. For tree 4156 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4157 * 4158 * right_path is the path we want to do the actual insert 4159 * in. left_path should only be passed in if we need to update that 4160 * portion of the tree after an edge insert. 4161 */ 4162 static int ocfs2_insert_path(handle_t *handle, 4163 struct ocfs2_extent_tree *et, 4164 struct ocfs2_path *left_path, 4165 struct ocfs2_path *right_path, 4166 struct ocfs2_extent_rec *insert_rec, 4167 struct ocfs2_insert_type *insert) 4168 { 4169 int ret, subtree_index; 4170 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4171 4172 if (left_path) { 4173 /* 4174 * There's a chance that left_path got passed back to 4175 * us without being accounted for in the 4176 * journal. Extend our transaction here to be sure we 4177 * can change those blocks. 4178 */ 4179 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4180 if (ret < 0) { 4181 mlog_errno(ret); 4182 goto out; 4183 } 4184 4185 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4186 if (ret < 0) { 4187 mlog_errno(ret); 4188 goto out; 4189 } 4190 } 4191 4192 /* 4193 * Pass both paths to the journal. The majority of inserts 4194 * will be touching all components anyway. 4195 */ 4196 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4197 if (ret < 0) { 4198 mlog_errno(ret); 4199 goto out; 4200 } 4201 4202 if (insert->ins_split != SPLIT_NONE) { 4203 /* 4204 * We could call ocfs2_insert_at_leaf() for some types 4205 * of splits, but it's easier to just let one separate 4206 * function sort it all out. 4207 */ 4208 ocfs2_split_record(et, left_path, right_path, 4209 insert_rec, insert->ins_split); 4210 4211 /* 4212 * Split might have modified either leaf and we don't 4213 * have a guarantee that the later edge insert will 4214 * dirty this for us. 4215 */ 4216 if (left_path) 4217 ocfs2_journal_dirty(handle, 4218 path_leaf_bh(left_path)); 4219 } else 4220 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4221 insert); 4222 4223 ocfs2_journal_dirty(handle, leaf_bh); 4224 4225 if (left_path) { 4226 /* 4227 * The rotate code has indicated that we need to fix 4228 * up portions of the tree after the insert. 4229 * 4230 * XXX: Should we extend the transaction here? 4231 */ 4232 subtree_index = ocfs2_find_subtree_root(et, left_path, 4233 right_path); 4234 ocfs2_complete_edge_insert(handle, left_path, right_path, 4235 subtree_index); 4236 } 4237 4238 ret = 0; 4239 out: 4240 return ret; 4241 } 4242 4243 static int ocfs2_do_insert_extent(handle_t *handle, 4244 struct ocfs2_extent_tree *et, 4245 struct ocfs2_extent_rec *insert_rec, 4246 struct ocfs2_insert_type *type) 4247 { 4248 int ret, rotate = 0; 4249 u32 cpos; 4250 struct ocfs2_path *right_path = NULL; 4251 struct ocfs2_path *left_path = NULL; 4252 struct ocfs2_extent_list *el; 4253 4254 el = et->et_root_el; 4255 4256 ret = ocfs2_et_root_journal_access(handle, et, 4257 OCFS2_JOURNAL_ACCESS_WRITE); 4258 if (ret) { 4259 mlog_errno(ret); 4260 goto out; 4261 } 4262 4263 if (le16_to_cpu(el->l_tree_depth) == 0) { 4264 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4265 goto out_update_clusters; 4266 } 4267 4268 right_path = ocfs2_new_path_from_et(et); 4269 if (!right_path) { 4270 ret = -ENOMEM; 4271 mlog_errno(ret); 4272 goto out; 4273 } 4274 4275 /* 4276 * Determine the path to start with. Rotations need the 4277 * rightmost path, everything else can go directly to the 4278 * target leaf. 4279 */ 4280 cpos = le32_to_cpu(insert_rec->e_cpos); 4281 if (type->ins_appending == APPEND_NONE && 4282 type->ins_contig == CONTIG_NONE) { 4283 rotate = 1; 4284 cpos = UINT_MAX; 4285 } 4286 4287 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4288 if (ret) { 4289 mlog_errno(ret); 4290 goto out; 4291 } 4292 4293 /* 4294 * Rotations and appends need special treatment - they modify 4295 * parts of the tree's above them. 4296 * 4297 * Both might pass back a path immediate to the left of the 4298 * one being inserted to. This will be cause 4299 * ocfs2_insert_path() to modify the rightmost records of 4300 * left_path to account for an edge insert. 4301 * 4302 * XXX: When modifying this code, keep in mind that an insert 4303 * can wind up skipping both of these two special cases... 4304 */ 4305 if (rotate) { 4306 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4307 le32_to_cpu(insert_rec->e_cpos), 4308 right_path, &left_path); 4309 if (ret) { 4310 mlog_errno(ret); 4311 goto out; 4312 } 4313 4314 /* 4315 * ocfs2_rotate_tree_right() might have extended the 4316 * transaction without re-journaling our tree root. 4317 */ 4318 ret = ocfs2_et_root_journal_access(handle, et, 4319 OCFS2_JOURNAL_ACCESS_WRITE); 4320 if (ret) { 4321 mlog_errno(ret); 4322 goto out; 4323 } 4324 } else if (type->ins_appending == APPEND_TAIL 4325 && type->ins_contig != CONTIG_LEFT) { 4326 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4327 right_path, &left_path); 4328 if (ret) { 4329 mlog_errno(ret); 4330 goto out; 4331 } 4332 } 4333 4334 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4335 insert_rec, type); 4336 if (ret) { 4337 mlog_errno(ret); 4338 goto out; 4339 } 4340 4341 out_update_clusters: 4342 if (type->ins_split == SPLIT_NONE) 4343 ocfs2_et_update_clusters(et, 4344 le16_to_cpu(insert_rec->e_leaf_clusters)); 4345 4346 ocfs2_journal_dirty(handle, et->et_root_bh); 4347 4348 out: 4349 ocfs2_free_path(left_path); 4350 ocfs2_free_path(right_path); 4351 4352 return ret; 4353 } 4354 4355 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4356 struct ocfs2_path *path, 4357 struct ocfs2_extent_list *el, int index, 4358 struct ocfs2_extent_rec *split_rec, 4359 struct ocfs2_merge_ctxt *ctxt) 4360 { 4361 int status = 0; 4362 enum ocfs2_contig_type ret = CONTIG_NONE; 4363 u32 left_cpos, right_cpos; 4364 struct ocfs2_extent_rec *rec = NULL; 4365 struct ocfs2_extent_list *new_el; 4366 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4367 struct buffer_head *bh; 4368 struct ocfs2_extent_block *eb; 4369 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4370 4371 if (index > 0) { 4372 rec = &el->l_recs[index - 1]; 4373 } else if (path->p_tree_depth > 0) { 4374 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4375 if (status) 4376 goto exit; 4377 4378 if (left_cpos != 0) { 4379 left_path = ocfs2_new_path_from_path(path); 4380 if (!left_path) { 4381 status = -ENOMEM; 4382 mlog_errno(status); 4383 goto exit; 4384 } 4385 4386 status = ocfs2_find_path(et->et_ci, left_path, 4387 left_cpos); 4388 if (status) 4389 goto free_left_path; 4390 4391 new_el = path_leaf_el(left_path); 4392 4393 if (le16_to_cpu(new_el->l_next_free_rec) != 4394 le16_to_cpu(new_el->l_count)) { 4395 bh = path_leaf_bh(left_path); 4396 eb = (struct ocfs2_extent_block *)bh->b_data; 4397 status = ocfs2_error(sb, 4398 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4399 (unsigned long long)le64_to_cpu(eb->h_blkno), 4400 le16_to_cpu(new_el->l_next_free_rec), 4401 le16_to_cpu(new_el->l_count)); 4402 goto free_left_path; 4403 } 4404 rec = &new_el->l_recs[ 4405 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4406 } 4407 } 4408 4409 /* 4410 * We're careful to check for an empty extent record here - 4411 * the merge code will know what to do if it sees one. 4412 */ 4413 if (rec) { 4414 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4415 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4416 ret = CONTIG_RIGHT; 4417 } else { 4418 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4419 } 4420 } 4421 4422 rec = NULL; 4423 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4424 rec = &el->l_recs[index + 1]; 4425 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4426 path->p_tree_depth > 0) { 4427 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4428 if (status) 4429 goto free_left_path; 4430 4431 if (right_cpos == 0) 4432 goto free_left_path; 4433 4434 right_path = ocfs2_new_path_from_path(path); 4435 if (!right_path) { 4436 status = -ENOMEM; 4437 mlog_errno(status); 4438 goto free_left_path; 4439 } 4440 4441 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4442 if (status) 4443 goto free_right_path; 4444 4445 new_el = path_leaf_el(right_path); 4446 rec = &new_el->l_recs[0]; 4447 if (ocfs2_is_empty_extent(rec)) { 4448 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4449 bh = path_leaf_bh(right_path); 4450 eb = (struct ocfs2_extent_block *)bh->b_data; 4451 status = ocfs2_error(sb, 4452 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4453 (unsigned long long)le64_to_cpu(eb->h_blkno), 4454 le16_to_cpu(new_el->l_next_free_rec)); 4455 goto free_right_path; 4456 } 4457 rec = &new_el->l_recs[1]; 4458 } 4459 } 4460 4461 if (rec) { 4462 enum ocfs2_contig_type contig_type; 4463 4464 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4465 4466 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4467 ret = CONTIG_LEFTRIGHT; 4468 else if (ret == CONTIG_NONE) 4469 ret = contig_type; 4470 } 4471 4472 free_right_path: 4473 ocfs2_free_path(right_path); 4474 free_left_path: 4475 ocfs2_free_path(left_path); 4476 exit: 4477 if (status == 0) 4478 ctxt->c_contig_type = ret; 4479 4480 return status; 4481 } 4482 4483 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4484 struct ocfs2_insert_type *insert, 4485 struct ocfs2_extent_list *el, 4486 struct ocfs2_extent_rec *insert_rec) 4487 { 4488 int i; 4489 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4490 4491 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4492 4493 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4494 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4495 insert_rec); 4496 if (contig_type != CONTIG_NONE) { 4497 insert->ins_contig_index = i; 4498 break; 4499 } 4500 } 4501 insert->ins_contig = contig_type; 4502 4503 if (insert->ins_contig != CONTIG_NONE) { 4504 struct ocfs2_extent_rec *rec = 4505 &el->l_recs[insert->ins_contig_index]; 4506 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4507 le16_to_cpu(insert_rec->e_leaf_clusters); 4508 4509 /* 4510 * Caller might want us to limit the size of extents, don't 4511 * calculate contiguousness if we might exceed that limit. 4512 */ 4513 if (et->et_max_leaf_clusters && 4514 (len > et->et_max_leaf_clusters)) 4515 insert->ins_contig = CONTIG_NONE; 4516 } 4517 } 4518 4519 /* 4520 * This should only be called against the righmost leaf extent list. 4521 * 4522 * ocfs2_figure_appending_type() will figure out whether we'll have to 4523 * insert at the tail of the rightmost leaf. 4524 * 4525 * This should also work against the root extent list for tree's with 0 4526 * depth. If we consider the root extent list to be the rightmost leaf node 4527 * then the logic here makes sense. 4528 */ 4529 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4530 struct ocfs2_extent_list *el, 4531 struct ocfs2_extent_rec *insert_rec) 4532 { 4533 int i; 4534 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4535 struct ocfs2_extent_rec *rec; 4536 4537 insert->ins_appending = APPEND_NONE; 4538 4539 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4540 4541 if (!el->l_next_free_rec) 4542 goto set_tail_append; 4543 4544 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4545 /* Were all records empty? */ 4546 if (le16_to_cpu(el->l_next_free_rec) == 1) 4547 goto set_tail_append; 4548 } 4549 4550 i = le16_to_cpu(el->l_next_free_rec) - 1; 4551 rec = &el->l_recs[i]; 4552 4553 if (cpos >= 4554 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4555 goto set_tail_append; 4556 4557 return; 4558 4559 set_tail_append: 4560 insert->ins_appending = APPEND_TAIL; 4561 } 4562 4563 /* 4564 * Helper function called at the beginning of an insert. 4565 * 4566 * This computes a few things that are commonly used in the process of 4567 * inserting into the btree: 4568 * - Whether the new extent is contiguous with an existing one. 4569 * - The current tree depth. 4570 * - Whether the insert is an appending one. 4571 * - The total # of free records in the tree. 4572 * 4573 * All of the information is stored on the ocfs2_insert_type 4574 * structure. 4575 */ 4576 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4577 struct buffer_head **last_eb_bh, 4578 struct ocfs2_extent_rec *insert_rec, 4579 int *free_records, 4580 struct ocfs2_insert_type *insert) 4581 { 4582 int ret; 4583 struct ocfs2_extent_block *eb; 4584 struct ocfs2_extent_list *el; 4585 struct ocfs2_path *path = NULL; 4586 struct buffer_head *bh = NULL; 4587 4588 insert->ins_split = SPLIT_NONE; 4589 4590 el = et->et_root_el; 4591 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4592 4593 if (el->l_tree_depth) { 4594 /* 4595 * If we have tree depth, we read in the 4596 * rightmost extent block ahead of time as 4597 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4598 * may want it later. 4599 */ 4600 ret = ocfs2_read_extent_block(et->et_ci, 4601 ocfs2_et_get_last_eb_blk(et), 4602 &bh); 4603 if (ret) { 4604 mlog_errno(ret); 4605 goto out; 4606 } 4607 eb = (struct ocfs2_extent_block *) bh->b_data; 4608 el = &eb->h_list; 4609 } 4610 4611 /* 4612 * Unless we have a contiguous insert, we'll need to know if 4613 * there is room left in our allocation tree for another 4614 * extent record. 4615 * 4616 * XXX: This test is simplistic, we can search for empty 4617 * extent records too. 4618 */ 4619 *free_records = le16_to_cpu(el->l_count) - 4620 le16_to_cpu(el->l_next_free_rec); 4621 4622 if (!insert->ins_tree_depth) { 4623 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4624 ocfs2_figure_appending_type(insert, el, insert_rec); 4625 return 0; 4626 } 4627 4628 path = ocfs2_new_path_from_et(et); 4629 if (!path) { 4630 ret = -ENOMEM; 4631 mlog_errno(ret); 4632 goto out; 4633 } 4634 4635 /* 4636 * In the case that we're inserting past what the tree 4637 * currently accounts for, ocfs2_find_path() will return for 4638 * us the rightmost tree path. This is accounted for below in 4639 * the appending code. 4640 */ 4641 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4642 if (ret) { 4643 mlog_errno(ret); 4644 goto out; 4645 } 4646 4647 el = path_leaf_el(path); 4648 4649 /* 4650 * Now that we have the path, there's two things we want to determine: 4651 * 1) Contiguousness (also set contig_index if this is so) 4652 * 4653 * 2) Are we doing an append? We can trivially break this up 4654 * into two types of appends: simple record append, or a 4655 * rotate inside the tail leaf. 4656 */ 4657 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4658 4659 /* 4660 * The insert code isn't quite ready to deal with all cases of 4661 * left contiguousness. Specifically, if it's an insert into 4662 * the 1st record in a leaf, it will require the adjustment of 4663 * cluster count on the last record of the path directly to it's 4664 * left. For now, just catch that case and fool the layers 4665 * above us. This works just fine for tree_depth == 0, which 4666 * is why we allow that above. 4667 */ 4668 if (insert->ins_contig == CONTIG_LEFT && 4669 insert->ins_contig_index == 0) 4670 insert->ins_contig = CONTIG_NONE; 4671 4672 /* 4673 * Ok, so we can simply compare against last_eb to figure out 4674 * whether the path doesn't exist. This will only happen in 4675 * the case that we're doing a tail append, so maybe we can 4676 * take advantage of that information somehow. 4677 */ 4678 if (ocfs2_et_get_last_eb_blk(et) == 4679 path_leaf_bh(path)->b_blocknr) { 4680 /* 4681 * Ok, ocfs2_find_path() returned us the rightmost 4682 * tree path. This might be an appending insert. There are 4683 * two cases: 4684 * 1) We're doing a true append at the tail: 4685 * -This might even be off the end of the leaf 4686 * 2) We're "appending" by rotating in the tail 4687 */ 4688 ocfs2_figure_appending_type(insert, el, insert_rec); 4689 } 4690 4691 out: 4692 ocfs2_free_path(path); 4693 4694 if (ret == 0) 4695 *last_eb_bh = bh; 4696 else 4697 brelse(bh); 4698 return ret; 4699 } 4700 4701 /* 4702 * Insert an extent into a btree. 4703 * 4704 * The caller needs to update the owning btree's cluster count. 4705 */ 4706 int ocfs2_insert_extent(handle_t *handle, 4707 struct ocfs2_extent_tree *et, 4708 u32 cpos, 4709 u64 start_blk, 4710 u32 new_clusters, 4711 u8 flags, 4712 struct ocfs2_alloc_context *meta_ac) 4713 { 4714 int status; 4715 int free_records; 4716 struct buffer_head *last_eb_bh = NULL; 4717 struct ocfs2_insert_type insert = {0, }; 4718 struct ocfs2_extent_rec rec; 4719 4720 trace_ocfs2_insert_extent_start( 4721 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4722 cpos, new_clusters); 4723 4724 memset(&rec, 0, sizeof(rec)); 4725 rec.e_cpos = cpu_to_le32(cpos); 4726 rec.e_blkno = cpu_to_le64(start_blk); 4727 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4728 rec.e_flags = flags; 4729 status = ocfs2_et_insert_check(et, &rec); 4730 if (status) { 4731 mlog_errno(status); 4732 goto bail; 4733 } 4734 4735 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4736 &free_records, &insert); 4737 if (status < 0) { 4738 mlog_errno(status); 4739 goto bail; 4740 } 4741 4742 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4743 insert.ins_contig_index, free_records, 4744 insert.ins_tree_depth); 4745 4746 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4747 status = ocfs2_grow_tree(handle, et, 4748 &insert.ins_tree_depth, &last_eb_bh, 4749 meta_ac); 4750 if (status) { 4751 mlog_errno(status); 4752 goto bail; 4753 } 4754 } 4755 4756 /* Finally, we can add clusters. This might rotate the tree for us. */ 4757 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4758 if (status < 0) 4759 mlog_errno(status); 4760 else 4761 ocfs2_et_extent_map_insert(et, &rec); 4762 4763 bail: 4764 brelse(last_eb_bh); 4765 4766 return status; 4767 } 4768 4769 /* 4770 * Allocate and add clusters into the extent b-tree. 4771 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4772 * The extent b-tree's root is specified by et, and 4773 * it is not limited to the file storage. Any extent tree can use this 4774 * function if it implements the proper ocfs2_extent_tree. 4775 */ 4776 int ocfs2_add_clusters_in_btree(handle_t *handle, 4777 struct ocfs2_extent_tree *et, 4778 u32 *logical_offset, 4779 u32 clusters_to_add, 4780 int mark_unwritten, 4781 struct ocfs2_alloc_context *data_ac, 4782 struct ocfs2_alloc_context *meta_ac, 4783 enum ocfs2_alloc_restarted *reason_ret) 4784 { 4785 int status = 0, err = 0; 4786 int need_free = 0; 4787 int free_extents; 4788 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4789 u32 bit_off, num_bits; 4790 u64 block; 4791 u8 flags = 0; 4792 struct ocfs2_super *osb = 4793 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4794 4795 BUG_ON(!clusters_to_add); 4796 4797 if (mark_unwritten) 4798 flags = OCFS2_EXT_UNWRITTEN; 4799 4800 free_extents = ocfs2_num_free_extents(et); 4801 if (free_extents < 0) { 4802 status = free_extents; 4803 mlog_errno(status); 4804 goto leave; 4805 } 4806 4807 /* there are two cases which could cause us to EAGAIN in the 4808 * we-need-more-metadata case: 4809 * 1) we haven't reserved *any* 4810 * 2) we are so fragmented, we've needed to add metadata too 4811 * many times. */ 4812 if (!free_extents && !meta_ac) { 4813 err = -1; 4814 status = -EAGAIN; 4815 reason = RESTART_META; 4816 goto leave; 4817 } else if ((!free_extents) 4818 && (ocfs2_alloc_context_bits_left(meta_ac) 4819 < ocfs2_extend_meta_needed(et->et_root_el))) { 4820 err = -2; 4821 status = -EAGAIN; 4822 reason = RESTART_META; 4823 goto leave; 4824 } 4825 4826 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4827 clusters_to_add, &bit_off, &num_bits); 4828 if (status < 0) { 4829 if (status != -ENOSPC) 4830 mlog_errno(status); 4831 goto leave; 4832 } 4833 4834 BUG_ON(num_bits > clusters_to_add); 4835 4836 /* reserve our write early -- insert_extent may update the tree root */ 4837 status = ocfs2_et_root_journal_access(handle, et, 4838 OCFS2_JOURNAL_ACCESS_WRITE); 4839 if (status < 0) { 4840 mlog_errno(status); 4841 need_free = 1; 4842 goto bail; 4843 } 4844 4845 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4846 trace_ocfs2_add_clusters_in_btree( 4847 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4848 bit_off, num_bits); 4849 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4850 num_bits, flags, meta_ac); 4851 if (status < 0) { 4852 mlog_errno(status); 4853 need_free = 1; 4854 goto bail; 4855 } 4856 4857 ocfs2_journal_dirty(handle, et->et_root_bh); 4858 4859 clusters_to_add -= num_bits; 4860 *logical_offset += num_bits; 4861 4862 if (clusters_to_add) { 4863 err = clusters_to_add; 4864 status = -EAGAIN; 4865 reason = RESTART_TRANS; 4866 } 4867 4868 bail: 4869 if (need_free) { 4870 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4871 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4872 bit_off, num_bits); 4873 else 4874 ocfs2_free_clusters(handle, 4875 data_ac->ac_inode, 4876 data_ac->ac_bh, 4877 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4878 num_bits); 4879 } 4880 4881 leave: 4882 if (reason_ret) 4883 *reason_ret = reason; 4884 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4885 return status; 4886 } 4887 4888 static void ocfs2_make_right_split_rec(struct super_block *sb, 4889 struct ocfs2_extent_rec *split_rec, 4890 u32 cpos, 4891 struct ocfs2_extent_rec *rec) 4892 { 4893 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4894 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4895 4896 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4897 4898 split_rec->e_cpos = cpu_to_le32(cpos); 4899 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4900 4901 split_rec->e_blkno = rec->e_blkno; 4902 le64_add_cpu(&split_rec->e_blkno, 4903 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4904 4905 split_rec->e_flags = rec->e_flags; 4906 } 4907 4908 static int ocfs2_split_and_insert(handle_t *handle, 4909 struct ocfs2_extent_tree *et, 4910 struct ocfs2_path *path, 4911 struct buffer_head **last_eb_bh, 4912 int split_index, 4913 struct ocfs2_extent_rec *orig_split_rec, 4914 struct ocfs2_alloc_context *meta_ac) 4915 { 4916 int ret = 0, depth; 4917 unsigned int insert_range, rec_range, do_leftright = 0; 4918 struct ocfs2_extent_rec tmprec; 4919 struct ocfs2_extent_list *rightmost_el; 4920 struct ocfs2_extent_rec rec; 4921 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4922 struct ocfs2_insert_type insert; 4923 struct ocfs2_extent_block *eb; 4924 4925 leftright: 4926 /* 4927 * Store a copy of the record on the stack - it might move 4928 * around as the tree is manipulated below. 4929 */ 4930 rec = path_leaf_el(path)->l_recs[split_index]; 4931 4932 rightmost_el = et->et_root_el; 4933 4934 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4935 if (depth) { 4936 BUG_ON(!(*last_eb_bh)); 4937 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4938 rightmost_el = &eb->h_list; 4939 } 4940 4941 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4942 le16_to_cpu(rightmost_el->l_count)) { 4943 ret = ocfs2_grow_tree(handle, et, 4944 &depth, last_eb_bh, meta_ac); 4945 if (ret) { 4946 mlog_errno(ret); 4947 goto out; 4948 } 4949 } 4950 4951 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4952 insert.ins_appending = APPEND_NONE; 4953 insert.ins_contig = CONTIG_NONE; 4954 insert.ins_tree_depth = depth; 4955 4956 insert_range = le32_to_cpu(split_rec.e_cpos) + 4957 le16_to_cpu(split_rec.e_leaf_clusters); 4958 rec_range = le32_to_cpu(rec.e_cpos) + 4959 le16_to_cpu(rec.e_leaf_clusters); 4960 4961 if (split_rec.e_cpos == rec.e_cpos) { 4962 insert.ins_split = SPLIT_LEFT; 4963 } else if (insert_range == rec_range) { 4964 insert.ins_split = SPLIT_RIGHT; 4965 } else { 4966 /* 4967 * Left/right split. We fake this as a right split 4968 * first and then make a second pass as a left split. 4969 */ 4970 insert.ins_split = SPLIT_RIGHT; 4971 4972 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4973 &tmprec, insert_range, &rec); 4974 4975 split_rec = tmprec; 4976 4977 BUG_ON(do_leftright); 4978 do_leftright = 1; 4979 } 4980 4981 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4982 if (ret) { 4983 mlog_errno(ret); 4984 goto out; 4985 } 4986 4987 if (do_leftright == 1) { 4988 u32 cpos; 4989 struct ocfs2_extent_list *el; 4990 4991 do_leftright++; 4992 split_rec = *orig_split_rec; 4993 4994 ocfs2_reinit_path(path, 1); 4995 4996 cpos = le32_to_cpu(split_rec.e_cpos); 4997 ret = ocfs2_find_path(et->et_ci, path, cpos); 4998 if (ret) { 4999 mlog_errno(ret); 5000 goto out; 5001 } 5002 5003 el = path_leaf_el(path); 5004 split_index = ocfs2_search_extent_list(el, cpos); 5005 if (split_index == -1) { 5006 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5007 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5008 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5009 cpos); 5010 ret = -EROFS; 5011 goto out; 5012 } 5013 goto leftright; 5014 } 5015 out: 5016 5017 return ret; 5018 } 5019 5020 static int ocfs2_replace_extent_rec(handle_t *handle, 5021 struct ocfs2_extent_tree *et, 5022 struct ocfs2_path *path, 5023 struct ocfs2_extent_list *el, 5024 int split_index, 5025 struct ocfs2_extent_rec *split_rec) 5026 { 5027 int ret; 5028 5029 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5030 path_num_items(path) - 1); 5031 if (ret) { 5032 mlog_errno(ret); 5033 goto out; 5034 } 5035 5036 el->l_recs[split_index] = *split_rec; 5037 5038 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5039 out: 5040 return ret; 5041 } 5042 5043 /* 5044 * Split part or all of the extent record at split_index in the leaf 5045 * pointed to by path. Merge with the contiguous extent record if needed. 5046 * 5047 * Care is taken to handle contiguousness so as to not grow the tree. 5048 * 5049 * meta_ac is not strictly necessary - we only truly need it if growth 5050 * of the tree is required. All other cases will degrade into a less 5051 * optimal tree layout. 5052 * 5053 * last_eb_bh should be the rightmost leaf block for any extent 5054 * btree. Since a split may grow the tree or a merge might shrink it, 5055 * the caller cannot trust the contents of that buffer after this call. 5056 * 5057 * This code is optimized for readability - several passes might be 5058 * made over certain portions of the tree. All of those blocks will 5059 * have been brought into cache (and pinned via the journal), so the 5060 * extra overhead is not expressed in terms of disk reads. 5061 */ 5062 int ocfs2_split_extent(handle_t *handle, 5063 struct ocfs2_extent_tree *et, 5064 struct ocfs2_path *path, 5065 int split_index, 5066 struct ocfs2_extent_rec *split_rec, 5067 struct ocfs2_alloc_context *meta_ac, 5068 struct ocfs2_cached_dealloc_ctxt *dealloc) 5069 { 5070 int ret = 0; 5071 struct ocfs2_extent_list *el = path_leaf_el(path); 5072 struct buffer_head *last_eb_bh = NULL; 5073 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5074 struct ocfs2_merge_ctxt ctxt; 5075 5076 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5077 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5078 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5079 ret = -EIO; 5080 mlog_errno(ret); 5081 goto out; 5082 } 5083 5084 ret = ocfs2_figure_merge_contig_type(et, path, el, 5085 split_index, 5086 split_rec, 5087 &ctxt); 5088 if (ret) { 5089 mlog_errno(ret); 5090 goto out; 5091 } 5092 5093 /* 5094 * The core merge / split code wants to know how much room is 5095 * left in this allocation tree, so we pass the 5096 * rightmost extent list. 5097 */ 5098 if (path->p_tree_depth) { 5099 ret = ocfs2_read_extent_block(et->et_ci, 5100 ocfs2_et_get_last_eb_blk(et), 5101 &last_eb_bh); 5102 if (ret) { 5103 mlog_errno(ret); 5104 goto out; 5105 } 5106 } 5107 5108 if (rec->e_cpos == split_rec->e_cpos && 5109 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5110 ctxt.c_split_covers_rec = 1; 5111 else 5112 ctxt.c_split_covers_rec = 0; 5113 5114 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5115 5116 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5117 ctxt.c_has_empty_extent, 5118 ctxt.c_split_covers_rec); 5119 5120 if (ctxt.c_contig_type == CONTIG_NONE) { 5121 if (ctxt.c_split_covers_rec) 5122 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5123 split_index, split_rec); 5124 else 5125 ret = ocfs2_split_and_insert(handle, et, path, 5126 &last_eb_bh, split_index, 5127 split_rec, meta_ac); 5128 if (ret) 5129 mlog_errno(ret); 5130 } else { 5131 ret = ocfs2_try_to_merge_extent(handle, et, path, 5132 split_index, split_rec, 5133 dealloc, &ctxt); 5134 if (ret) 5135 mlog_errno(ret); 5136 } 5137 5138 out: 5139 brelse(last_eb_bh); 5140 return ret; 5141 } 5142 5143 /* 5144 * Change the flags of the already-existing extent at cpos for len clusters. 5145 * 5146 * new_flags: the flags we want to set. 5147 * clear_flags: the flags we want to clear. 5148 * phys: the new physical offset we want this new extent starts from. 5149 * 5150 * If the existing extent is larger than the request, initiate a 5151 * split. An attempt will be made at merging with adjacent extents. 5152 * 5153 * The caller is responsible for passing down meta_ac if we'll need it. 5154 */ 5155 int ocfs2_change_extent_flag(handle_t *handle, 5156 struct ocfs2_extent_tree *et, 5157 u32 cpos, u32 len, u32 phys, 5158 struct ocfs2_alloc_context *meta_ac, 5159 struct ocfs2_cached_dealloc_ctxt *dealloc, 5160 int new_flags, int clear_flags) 5161 { 5162 int ret, index; 5163 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5164 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5165 struct ocfs2_extent_rec split_rec; 5166 struct ocfs2_path *left_path = NULL; 5167 struct ocfs2_extent_list *el; 5168 struct ocfs2_extent_rec *rec; 5169 5170 left_path = ocfs2_new_path_from_et(et); 5171 if (!left_path) { 5172 ret = -ENOMEM; 5173 mlog_errno(ret); 5174 goto out; 5175 } 5176 5177 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5178 if (ret) { 5179 mlog_errno(ret); 5180 goto out; 5181 } 5182 el = path_leaf_el(left_path); 5183 5184 index = ocfs2_search_extent_list(el, cpos); 5185 if (index == -1) { 5186 ocfs2_error(sb, 5187 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5188 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5189 cpos); 5190 ret = -EROFS; 5191 goto out; 5192 } 5193 5194 ret = -EIO; 5195 rec = &el->l_recs[index]; 5196 if (new_flags && (rec->e_flags & new_flags)) { 5197 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5198 "extent that already had them\n", 5199 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5200 new_flags); 5201 goto out; 5202 } 5203 5204 if (clear_flags && !(rec->e_flags & clear_flags)) { 5205 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5206 "extent that didn't have them\n", 5207 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5208 clear_flags); 5209 goto out; 5210 } 5211 5212 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5213 split_rec.e_cpos = cpu_to_le32(cpos); 5214 split_rec.e_leaf_clusters = cpu_to_le16(len); 5215 split_rec.e_blkno = cpu_to_le64(start_blkno); 5216 split_rec.e_flags = rec->e_flags; 5217 if (new_flags) 5218 split_rec.e_flags |= new_flags; 5219 if (clear_flags) 5220 split_rec.e_flags &= ~clear_flags; 5221 5222 ret = ocfs2_split_extent(handle, et, left_path, 5223 index, &split_rec, meta_ac, 5224 dealloc); 5225 if (ret) 5226 mlog_errno(ret); 5227 5228 out: 5229 ocfs2_free_path(left_path); 5230 return ret; 5231 5232 } 5233 5234 /* 5235 * Mark the already-existing extent at cpos as written for len clusters. 5236 * This removes the unwritten extent flag. 5237 * 5238 * If the existing extent is larger than the request, initiate a 5239 * split. An attempt will be made at merging with adjacent extents. 5240 * 5241 * The caller is responsible for passing down meta_ac if we'll need it. 5242 */ 5243 int ocfs2_mark_extent_written(struct inode *inode, 5244 struct ocfs2_extent_tree *et, 5245 handle_t *handle, u32 cpos, u32 len, u32 phys, 5246 struct ocfs2_alloc_context *meta_ac, 5247 struct ocfs2_cached_dealloc_ctxt *dealloc) 5248 { 5249 int ret; 5250 5251 trace_ocfs2_mark_extent_written( 5252 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5253 cpos, len, phys); 5254 5255 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5256 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5257 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5258 ret = -EROFS; 5259 goto out; 5260 } 5261 5262 /* 5263 * XXX: This should be fixed up so that we just re-insert the 5264 * next extent records. 5265 */ 5266 ocfs2_et_extent_map_truncate(et, 0); 5267 5268 ret = ocfs2_change_extent_flag(handle, et, cpos, 5269 len, phys, meta_ac, dealloc, 5270 0, OCFS2_EXT_UNWRITTEN); 5271 if (ret) 5272 mlog_errno(ret); 5273 5274 out: 5275 return ret; 5276 } 5277 5278 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5279 struct ocfs2_path *path, 5280 int index, u32 new_range, 5281 struct ocfs2_alloc_context *meta_ac) 5282 { 5283 int ret, depth, credits; 5284 struct buffer_head *last_eb_bh = NULL; 5285 struct ocfs2_extent_block *eb; 5286 struct ocfs2_extent_list *rightmost_el, *el; 5287 struct ocfs2_extent_rec split_rec; 5288 struct ocfs2_extent_rec *rec; 5289 struct ocfs2_insert_type insert; 5290 5291 /* 5292 * Setup the record to split before we grow the tree. 5293 */ 5294 el = path_leaf_el(path); 5295 rec = &el->l_recs[index]; 5296 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5297 &split_rec, new_range, rec); 5298 5299 depth = path->p_tree_depth; 5300 if (depth > 0) { 5301 ret = ocfs2_read_extent_block(et->et_ci, 5302 ocfs2_et_get_last_eb_blk(et), 5303 &last_eb_bh); 5304 if (ret < 0) { 5305 mlog_errno(ret); 5306 goto out; 5307 } 5308 5309 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5310 rightmost_el = &eb->h_list; 5311 } else 5312 rightmost_el = path_leaf_el(path); 5313 5314 credits = path->p_tree_depth + 5315 ocfs2_extend_meta_needed(et->et_root_el); 5316 ret = ocfs2_extend_trans(handle, credits); 5317 if (ret) { 5318 mlog_errno(ret); 5319 goto out; 5320 } 5321 5322 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5323 le16_to_cpu(rightmost_el->l_count)) { 5324 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5325 meta_ac); 5326 if (ret) { 5327 mlog_errno(ret); 5328 goto out; 5329 } 5330 } 5331 5332 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5333 insert.ins_appending = APPEND_NONE; 5334 insert.ins_contig = CONTIG_NONE; 5335 insert.ins_split = SPLIT_RIGHT; 5336 insert.ins_tree_depth = depth; 5337 5338 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5339 if (ret) 5340 mlog_errno(ret); 5341 5342 out: 5343 brelse(last_eb_bh); 5344 return ret; 5345 } 5346 5347 static int ocfs2_truncate_rec(handle_t *handle, 5348 struct ocfs2_extent_tree *et, 5349 struct ocfs2_path *path, int index, 5350 struct ocfs2_cached_dealloc_ctxt *dealloc, 5351 u32 cpos, u32 len) 5352 { 5353 int ret; 5354 u32 left_cpos, rec_range, trunc_range; 5355 int is_rightmost_tree_rec = 0; 5356 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5357 struct ocfs2_path *left_path = NULL; 5358 struct ocfs2_extent_list *el = path_leaf_el(path); 5359 struct ocfs2_extent_rec *rec; 5360 struct ocfs2_extent_block *eb; 5361 5362 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5363 /* extend credit for ocfs2_remove_rightmost_path */ 5364 ret = ocfs2_extend_rotate_transaction(handle, 0, 5365 jbd2_handle_buffer_credits(handle), 5366 path); 5367 if (ret) { 5368 mlog_errno(ret); 5369 goto out; 5370 } 5371 5372 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5373 if (ret) { 5374 mlog_errno(ret); 5375 goto out; 5376 } 5377 5378 index--; 5379 } 5380 5381 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5382 path->p_tree_depth) { 5383 /* 5384 * Check whether this is the rightmost tree record. If 5385 * we remove all of this record or part of its right 5386 * edge then an update of the record lengths above it 5387 * will be required. 5388 */ 5389 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5390 if (eb->h_next_leaf_blk == 0) 5391 is_rightmost_tree_rec = 1; 5392 } 5393 5394 rec = &el->l_recs[index]; 5395 if (index == 0 && path->p_tree_depth && 5396 le32_to_cpu(rec->e_cpos) == cpos) { 5397 /* 5398 * Changing the leftmost offset (via partial or whole 5399 * record truncate) of an interior (or rightmost) path 5400 * means we have to update the subtree that is formed 5401 * by this leaf and the one to it's left. 5402 * 5403 * There are two cases we can skip: 5404 * 1) Path is the leftmost one in our btree. 5405 * 2) The leaf is rightmost and will be empty after 5406 * we remove the extent record - the rotate code 5407 * knows how to update the newly formed edge. 5408 */ 5409 5410 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5411 if (ret) { 5412 mlog_errno(ret); 5413 goto out; 5414 } 5415 5416 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5417 left_path = ocfs2_new_path_from_path(path); 5418 if (!left_path) { 5419 ret = -ENOMEM; 5420 mlog_errno(ret); 5421 goto out; 5422 } 5423 5424 ret = ocfs2_find_path(et->et_ci, left_path, 5425 left_cpos); 5426 if (ret) { 5427 mlog_errno(ret); 5428 goto out; 5429 } 5430 } 5431 } 5432 5433 ret = ocfs2_extend_rotate_transaction(handle, 0, 5434 jbd2_handle_buffer_credits(handle), 5435 path); 5436 if (ret) { 5437 mlog_errno(ret); 5438 goto out; 5439 } 5440 5441 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5442 if (ret) { 5443 mlog_errno(ret); 5444 goto out; 5445 } 5446 5447 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5448 if (ret) { 5449 mlog_errno(ret); 5450 goto out; 5451 } 5452 5453 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5454 trunc_range = cpos + len; 5455 5456 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5457 int next_free; 5458 5459 memset(rec, 0, sizeof(*rec)); 5460 ocfs2_cleanup_merge(el, index); 5461 5462 next_free = le16_to_cpu(el->l_next_free_rec); 5463 if (is_rightmost_tree_rec && next_free > 1) { 5464 /* 5465 * We skip the edge update if this path will 5466 * be deleted by the rotate code. 5467 */ 5468 rec = &el->l_recs[next_free - 1]; 5469 ocfs2_adjust_rightmost_records(handle, et, path, 5470 rec); 5471 } 5472 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5473 /* Remove leftmost portion of the record. */ 5474 le32_add_cpu(&rec->e_cpos, len); 5475 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5476 le16_add_cpu(&rec->e_leaf_clusters, -len); 5477 } else if (rec_range == trunc_range) { 5478 /* Remove rightmost portion of the record */ 5479 le16_add_cpu(&rec->e_leaf_clusters, -len); 5480 if (is_rightmost_tree_rec) 5481 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5482 } else { 5483 /* Caller should have trapped this. */ 5484 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5485 "(%u, %u)\n", 5486 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5487 le32_to_cpu(rec->e_cpos), 5488 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5489 BUG(); 5490 } 5491 5492 if (left_path) { 5493 int subtree_index; 5494 5495 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5496 ocfs2_complete_edge_insert(handle, left_path, path, 5497 subtree_index); 5498 } 5499 5500 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5501 5502 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5503 if (ret) 5504 mlog_errno(ret); 5505 5506 out: 5507 ocfs2_free_path(left_path); 5508 return ret; 5509 } 5510 5511 int ocfs2_remove_extent(handle_t *handle, 5512 struct ocfs2_extent_tree *et, 5513 u32 cpos, u32 len, 5514 struct ocfs2_alloc_context *meta_ac, 5515 struct ocfs2_cached_dealloc_ctxt *dealloc) 5516 { 5517 int ret, index; 5518 u32 rec_range, trunc_range; 5519 struct ocfs2_extent_rec *rec; 5520 struct ocfs2_extent_list *el; 5521 struct ocfs2_path *path = NULL; 5522 5523 /* 5524 * XXX: Why are we truncating to 0 instead of wherever this 5525 * affects us? 5526 */ 5527 ocfs2_et_extent_map_truncate(et, 0); 5528 5529 path = ocfs2_new_path_from_et(et); 5530 if (!path) { 5531 ret = -ENOMEM; 5532 mlog_errno(ret); 5533 goto out; 5534 } 5535 5536 ret = ocfs2_find_path(et->et_ci, path, cpos); 5537 if (ret) { 5538 mlog_errno(ret); 5539 goto out; 5540 } 5541 5542 el = path_leaf_el(path); 5543 index = ocfs2_search_extent_list(el, cpos); 5544 if (index == -1) { 5545 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5546 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5547 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5548 cpos); 5549 ret = -EROFS; 5550 goto out; 5551 } 5552 5553 /* 5554 * We have 3 cases of extent removal: 5555 * 1) Range covers the entire extent rec 5556 * 2) Range begins or ends on one edge of the extent rec 5557 * 3) Range is in the middle of the extent rec (no shared edges) 5558 * 5559 * For case 1 we remove the extent rec and left rotate to 5560 * fill the hole. 5561 * 5562 * For case 2 we just shrink the existing extent rec, with a 5563 * tree update if the shrinking edge is also the edge of an 5564 * extent block. 5565 * 5566 * For case 3 we do a right split to turn the extent rec into 5567 * something case 2 can handle. 5568 */ 5569 rec = &el->l_recs[index]; 5570 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5571 trunc_range = cpos + len; 5572 5573 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5574 5575 trace_ocfs2_remove_extent( 5576 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5577 cpos, len, index, le32_to_cpu(rec->e_cpos), 5578 ocfs2_rec_clusters(el, rec)); 5579 5580 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5581 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5582 cpos, len); 5583 if (ret) { 5584 mlog_errno(ret); 5585 goto out; 5586 } 5587 } else { 5588 ret = ocfs2_split_tree(handle, et, path, index, 5589 trunc_range, meta_ac); 5590 if (ret) { 5591 mlog_errno(ret); 5592 goto out; 5593 } 5594 5595 /* 5596 * The split could have manipulated the tree enough to 5597 * move the record location, so we have to look for it again. 5598 */ 5599 ocfs2_reinit_path(path, 1); 5600 5601 ret = ocfs2_find_path(et->et_ci, path, cpos); 5602 if (ret) { 5603 mlog_errno(ret); 5604 goto out; 5605 } 5606 5607 el = path_leaf_el(path); 5608 index = ocfs2_search_extent_list(el, cpos); 5609 if (index == -1) { 5610 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5611 "Owner %llu: split at cpos %u lost record\n", 5612 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5613 cpos); 5614 ret = -EROFS; 5615 goto out; 5616 } 5617 5618 /* 5619 * Double check our values here. If anything is fishy, 5620 * it's easier to catch it at the top level. 5621 */ 5622 rec = &el->l_recs[index]; 5623 rec_range = le32_to_cpu(rec->e_cpos) + 5624 ocfs2_rec_clusters(el, rec); 5625 if (rec_range != trunc_range) { 5626 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5627 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5628 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5629 cpos, len, le32_to_cpu(rec->e_cpos), 5630 ocfs2_rec_clusters(el, rec)); 5631 ret = -EROFS; 5632 goto out; 5633 } 5634 5635 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5636 cpos, len); 5637 if (ret) 5638 mlog_errno(ret); 5639 } 5640 5641 out: 5642 ocfs2_free_path(path); 5643 return ret; 5644 } 5645 5646 /* 5647 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5648 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5649 * number to reserve some extra blocks, and it only handles meta 5650 * data allocations. 5651 * 5652 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5653 * and punching holes. 5654 */ 5655 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5656 struct ocfs2_extent_tree *et, 5657 u32 extents_to_split, 5658 struct ocfs2_alloc_context **ac, 5659 int extra_blocks) 5660 { 5661 int ret = 0, num_free_extents; 5662 unsigned int max_recs_needed = 2 * extents_to_split; 5663 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5664 5665 *ac = NULL; 5666 5667 num_free_extents = ocfs2_num_free_extents(et); 5668 if (num_free_extents < 0) { 5669 ret = num_free_extents; 5670 mlog_errno(ret); 5671 goto out; 5672 } 5673 5674 if (!num_free_extents || 5675 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5676 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5677 5678 if (extra_blocks) { 5679 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5680 if (ret < 0) { 5681 if (ret != -ENOSPC) 5682 mlog_errno(ret); 5683 } 5684 } 5685 5686 out: 5687 if (ret) { 5688 if (*ac) { 5689 ocfs2_free_alloc_context(*ac); 5690 *ac = NULL; 5691 } 5692 } 5693 5694 return ret; 5695 } 5696 5697 int ocfs2_remove_btree_range(struct inode *inode, 5698 struct ocfs2_extent_tree *et, 5699 u32 cpos, u32 phys_cpos, u32 len, int flags, 5700 struct ocfs2_cached_dealloc_ctxt *dealloc, 5701 u64 refcount_loc, bool refcount_tree_locked) 5702 { 5703 int ret, credits = 0, extra_blocks = 0; 5704 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5705 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5706 struct inode *tl_inode = osb->osb_tl_inode; 5707 handle_t *handle; 5708 struct ocfs2_alloc_context *meta_ac = NULL; 5709 struct ocfs2_refcount_tree *ref_tree = NULL; 5710 5711 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5712 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5713 5714 if (!refcount_tree_locked) { 5715 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5716 &ref_tree, NULL); 5717 if (ret) { 5718 mlog_errno(ret); 5719 goto bail; 5720 } 5721 } 5722 5723 ret = ocfs2_prepare_refcount_change_for_del(inode, 5724 refcount_loc, 5725 phys_blkno, 5726 len, 5727 &credits, 5728 &extra_blocks); 5729 if (ret < 0) { 5730 mlog_errno(ret); 5731 goto bail; 5732 } 5733 } 5734 5735 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5736 extra_blocks); 5737 if (ret) { 5738 mlog_errno(ret); 5739 goto bail; 5740 } 5741 5742 inode_lock(tl_inode); 5743 5744 if (ocfs2_truncate_log_needs_flush(osb)) { 5745 ret = __ocfs2_flush_truncate_log(osb); 5746 if (ret < 0) { 5747 mlog_errno(ret); 5748 goto out; 5749 } 5750 } 5751 5752 handle = ocfs2_start_trans(osb, 5753 ocfs2_remove_extent_credits(osb->sb) + credits); 5754 if (IS_ERR(handle)) { 5755 ret = PTR_ERR(handle); 5756 mlog_errno(ret); 5757 goto out; 5758 } 5759 5760 ret = ocfs2_et_root_journal_access(handle, et, 5761 OCFS2_JOURNAL_ACCESS_WRITE); 5762 if (ret) { 5763 mlog_errno(ret); 5764 goto out_commit; 5765 } 5766 5767 dquot_free_space_nodirty(inode, 5768 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5769 5770 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5771 if (ret) { 5772 mlog_errno(ret); 5773 goto out_commit; 5774 } 5775 5776 ocfs2_et_update_clusters(et, -len); 5777 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5778 5779 ocfs2_journal_dirty(handle, et->et_root_bh); 5780 5781 if (phys_blkno) { 5782 if (flags & OCFS2_EXT_REFCOUNTED) 5783 ret = ocfs2_decrease_refcount(inode, handle, 5784 ocfs2_blocks_to_clusters(osb->sb, 5785 phys_blkno), 5786 len, meta_ac, 5787 dealloc, 1); 5788 else 5789 ret = ocfs2_truncate_log_append(osb, handle, 5790 phys_blkno, len); 5791 if (ret) 5792 mlog_errno(ret); 5793 5794 } 5795 5796 out_commit: 5797 ocfs2_commit_trans(osb, handle); 5798 out: 5799 inode_unlock(tl_inode); 5800 bail: 5801 if (meta_ac) 5802 ocfs2_free_alloc_context(meta_ac); 5803 5804 if (ref_tree) 5805 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5806 5807 return ret; 5808 } 5809 5810 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5811 { 5812 struct buffer_head *tl_bh = osb->osb_tl_bh; 5813 struct ocfs2_dinode *di; 5814 struct ocfs2_truncate_log *tl; 5815 5816 di = (struct ocfs2_dinode *) tl_bh->b_data; 5817 tl = &di->id2.i_dealloc; 5818 5819 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5820 "slot %d, invalid truncate log parameters: used = " 5821 "%u, count = %u\n", osb->slot_num, 5822 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5823 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5824 } 5825 5826 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5827 unsigned int new_start) 5828 { 5829 unsigned int tail_index; 5830 unsigned int current_tail; 5831 5832 /* No records, nothing to coalesce */ 5833 if (!le16_to_cpu(tl->tl_used)) 5834 return 0; 5835 5836 tail_index = le16_to_cpu(tl->tl_used) - 1; 5837 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5838 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5839 5840 return current_tail == new_start; 5841 } 5842 5843 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5844 handle_t *handle, 5845 u64 start_blk, 5846 unsigned int num_clusters) 5847 { 5848 int status, index; 5849 unsigned int start_cluster, tl_count; 5850 struct inode *tl_inode = osb->osb_tl_inode; 5851 struct buffer_head *tl_bh = osb->osb_tl_bh; 5852 struct ocfs2_dinode *di; 5853 struct ocfs2_truncate_log *tl; 5854 5855 BUG_ON(inode_trylock(tl_inode)); 5856 5857 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5858 5859 di = (struct ocfs2_dinode *) tl_bh->b_data; 5860 5861 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5862 * by the underlying call to ocfs2_read_inode_block(), so any 5863 * corruption is a code bug */ 5864 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5865 5866 tl = &di->id2.i_dealloc; 5867 tl_count = le16_to_cpu(tl->tl_count); 5868 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5869 tl_count == 0, 5870 "Truncate record count on #%llu invalid " 5871 "wanted %u, actual %u\n", 5872 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5873 ocfs2_truncate_recs_per_inode(osb->sb), 5874 le16_to_cpu(tl->tl_count)); 5875 5876 /* Caller should have known to flush before calling us. */ 5877 index = le16_to_cpu(tl->tl_used); 5878 if (index >= tl_count) { 5879 status = -ENOSPC; 5880 mlog_errno(status); 5881 goto bail; 5882 } 5883 5884 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5885 OCFS2_JOURNAL_ACCESS_WRITE); 5886 if (status < 0) { 5887 mlog_errno(status); 5888 goto bail; 5889 } 5890 5891 trace_ocfs2_truncate_log_append( 5892 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5893 start_cluster, num_clusters); 5894 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5895 /* 5896 * Move index back to the record we are coalescing with. 5897 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5898 */ 5899 index--; 5900 5901 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5902 trace_ocfs2_truncate_log_append( 5903 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5904 index, le32_to_cpu(tl->tl_recs[index].t_start), 5905 num_clusters); 5906 } else { 5907 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5908 tl->tl_used = cpu_to_le16(index + 1); 5909 } 5910 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5911 5912 ocfs2_journal_dirty(handle, tl_bh); 5913 5914 osb->truncated_clusters += num_clusters; 5915 bail: 5916 return status; 5917 } 5918 5919 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5920 struct inode *data_alloc_inode, 5921 struct buffer_head *data_alloc_bh) 5922 { 5923 int status = 0; 5924 int i; 5925 unsigned int num_clusters; 5926 u64 start_blk; 5927 struct ocfs2_truncate_rec rec; 5928 struct ocfs2_dinode *di; 5929 struct ocfs2_truncate_log *tl; 5930 struct inode *tl_inode = osb->osb_tl_inode; 5931 struct buffer_head *tl_bh = osb->osb_tl_bh; 5932 handle_t *handle; 5933 5934 di = (struct ocfs2_dinode *) tl_bh->b_data; 5935 tl = &di->id2.i_dealloc; 5936 i = le16_to_cpu(tl->tl_used) - 1; 5937 while (i >= 0) { 5938 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5939 if (IS_ERR(handle)) { 5940 status = PTR_ERR(handle); 5941 mlog_errno(status); 5942 goto bail; 5943 } 5944 5945 /* Caller has given us at least enough credits to 5946 * update the truncate log dinode */ 5947 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5948 OCFS2_JOURNAL_ACCESS_WRITE); 5949 if (status < 0) { 5950 ocfs2_commit_trans(osb, handle); 5951 mlog_errno(status); 5952 goto bail; 5953 } 5954 5955 tl->tl_used = cpu_to_le16(i); 5956 5957 ocfs2_journal_dirty(handle, tl_bh); 5958 5959 rec = tl->tl_recs[i]; 5960 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5961 le32_to_cpu(rec.t_start)); 5962 num_clusters = le32_to_cpu(rec.t_clusters); 5963 5964 /* if start_blk is not set, we ignore the record as 5965 * invalid. */ 5966 if (start_blk) { 5967 trace_ocfs2_replay_truncate_records( 5968 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5969 i, le32_to_cpu(rec.t_start), num_clusters); 5970 5971 status = ocfs2_free_clusters(handle, data_alloc_inode, 5972 data_alloc_bh, start_blk, 5973 num_clusters); 5974 if (status < 0) { 5975 ocfs2_commit_trans(osb, handle); 5976 mlog_errno(status); 5977 goto bail; 5978 } 5979 } 5980 5981 ocfs2_commit_trans(osb, handle); 5982 i--; 5983 } 5984 5985 osb->truncated_clusters = 0; 5986 5987 bail: 5988 return status; 5989 } 5990 5991 /* Expects you to already be holding tl_inode->i_rwsem */ 5992 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5993 { 5994 int status; 5995 unsigned int num_to_flush; 5996 struct inode *tl_inode = osb->osb_tl_inode; 5997 struct inode *data_alloc_inode = NULL; 5998 struct buffer_head *tl_bh = osb->osb_tl_bh; 5999 struct buffer_head *data_alloc_bh = NULL; 6000 struct ocfs2_dinode *di; 6001 struct ocfs2_truncate_log *tl; 6002 struct ocfs2_journal *journal = osb->journal; 6003 6004 BUG_ON(inode_trylock(tl_inode)); 6005 6006 di = (struct ocfs2_dinode *) tl_bh->b_data; 6007 6008 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6009 * by the underlying call to ocfs2_read_inode_block(), so any 6010 * corruption is a code bug */ 6011 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6012 6013 tl = &di->id2.i_dealloc; 6014 num_to_flush = le16_to_cpu(tl->tl_used); 6015 trace_ocfs2_flush_truncate_log( 6016 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6017 num_to_flush); 6018 if (!num_to_flush) { 6019 status = 0; 6020 goto out; 6021 } 6022 6023 /* Appending truncate log(TA) and flushing truncate log(TF) are 6024 * two separated transactions. They can be both committed but not 6025 * checkpointed. If crash occurs then, both two transaction will be 6026 * replayed with several already released to global bitmap clusters. 6027 * Then truncate log will be replayed resulting in cluster double free. 6028 */ 6029 jbd2_journal_lock_updates(journal->j_journal); 6030 status = jbd2_journal_flush(journal->j_journal, 0); 6031 jbd2_journal_unlock_updates(journal->j_journal); 6032 if (status < 0) { 6033 mlog_errno(status); 6034 goto out; 6035 } 6036 6037 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6038 GLOBAL_BITMAP_SYSTEM_INODE, 6039 OCFS2_INVALID_SLOT); 6040 if (!data_alloc_inode) { 6041 status = -EINVAL; 6042 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6043 goto out; 6044 } 6045 6046 inode_lock(data_alloc_inode); 6047 6048 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6049 if (status < 0) { 6050 mlog_errno(status); 6051 goto out_mutex; 6052 } 6053 6054 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6055 data_alloc_bh); 6056 if (status < 0) 6057 mlog_errno(status); 6058 6059 brelse(data_alloc_bh); 6060 ocfs2_inode_unlock(data_alloc_inode, 1); 6061 6062 out_mutex: 6063 inode_unlock(data_alloc_inode); 6064 iput(data_alloc_inode); 6065 6066 out: 6067 return status; 6068 } 6069 6070 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6071 { 6072 int status; 6073 struct inode *tl_inode = osb->osb_tl_inode; 6074 6075 inode_lock(tl_inode); 6076 status = __ocfs2_flush_truncate_log(osb); 6077 inode_unlock(tl_inode); 6078 6079 return status; 6080 } 6081 6082 static void ocfs2_truncate_log_worker(struct work_struct *work) 6083 { 6084 int status; 6085 struct ocfs2_super *osb = 6086 container_of(work, struct ocfs2_super, 6087 osb_truncate_log_wq.work); 6088 6089 status = ocfs2_flush_truncate_log(osb); 6090 if (status < 0) 6091 mlog_errno(status); 6092 else 6093 ocfs2_init_steal_slots(osb); 6094 } 6095 6096 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6097 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6098 int cancel) 6099 { 6100 if (osb->osb_tl_inode && 6101 atomic_read(&osb->osb_tl_disable) == 0) { 6102 /* We want to push off log flushes while truncates are 6103 * still running. */ 6104 if (cancel) 6105 cancel_delayed_work(&osb->osb_truncate_log_wq); 6106 6107 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6108 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6109 } 6110 } 6111 6112 /* 6113 * Try to flush truncate logs if we can free enough clusters from it. 6114 * As for return value, "< 0" means error, "0" no space and "1" means 6115 * we have freed enough spaces and let the caller try to allocate again. 6116 */ 6117 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6118 unsigned int needed) 6119 { 6120 tid_t target; 6121 int ret = 0; 6122 unsigned int truncated_clusters; 6123 6124 inode_lock(osb->osb_tl_inode); 6125 truncated_clusters = osb->truncated_clusters; 6126 inode_unlock(osb->osb_tl_inode); 6127 6128 /* 6129 * Check whether we can succeed in allocating if we free 6130 * the truncate log. 6131 */ 6132 if (truncated_clusters < needed) 6133 goto out; 6134 6135 ret = ocfs2_flush_truncate_log(osb); 6136 if (ret) { 6137 mlog_errno(ret); 6138 goto out; 6139 } 6140 6141 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6142 jbd2_log_wait_commit(osb->journal->j_journal, target); 6143 ret = 1; 6144 } 6145 out: 6146 return ret; 6147 } 6148 6149 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6150 int slot_num, 6151 struct inode **tl_inode, 6152 struct buffer_head **tl_bh) 6153 { 6154 int status; 6155 struct inode *inode = NULL; 6156 struct buffer_head *bh = NULL; 6157 6158 inode = ocfs2_get_system_file_inode(osb, 6159 TRUNCATE_LOG_SYSTEM_INODE, 6160 slot_num); 6161 if (!inode) { 6162 status = -EINVAL; 6163 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6164 goto bail; 6165 } 6166 6167 status = ocfs2_read_inode_block(inode, &bh); 6168 if (status < 0) { 6169 iput(inode); 6170 mlog_errno(status); 6171 goto bail; 6172 } 6173 6174 *tl_inode = inode; 6175 *tl_bh = bh; 6176 bail: 6177 return status; 6178 } 6179 6180 /* called during the 1st stage of node recovery. we stamp a clean 6181 * truncate log and pass back a copy for processing later. if the 6182 * truncate log does not require processing, a *tl_copy is set to 6183 * NULL. */ 6184 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6185 int slot_num, 6186 struct ocfs2_dinode **tl_copy) 6187 { 6188 int status; 6189 struct inode *tl_inode = NULL; 6190 struct buffer_head *tl_bh = NULL; 6191 struct ocfs2_dinode *di; 6192 struct ocfs2_truncate_log *tl; 6193 6194 *tl_copy = NULL; 6195 6196 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6197 6198 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6199 if (status < 0) { 6200 mlog_errno(status); 6201 goto bail; 6202 } 6203 6204 di = (struct ocfs2_dinode *) tl_bh->b_data; 6205 6206 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6207 * validated by the underlying call to ocfs2_read_inode_block(), 6208 * so any corruption is a code bug */ 6209 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6210 6211 tl = &di->id2.i_dealloc; 6212 if (le16_to_cpu(tl->tl_used)) { 6213 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6214 6215 /* 6216 * Assuming the write-out below goes well, this copy will be 6217 * passed back to recovery for processing. 6218 */ 6219 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6220 if (!(*tl_copy)) { 6221 status = -ENOMEM; 6222 mlog_errno(status); 6223 goto bail; 6224 } 6225 6226 /* All we need to do to clear the truncate log is set 6227 * tl_used. */ 6228 tl->tl_used = 0; 6229 6230 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6231 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6232 if (status < 0) { 6233 mlog_errno(status); 6234 goto bail; 6235 } 6236 } 6237 6238 bail: 6239 iput(tl_inode); 6240 brelse(tl_bh); 6241 6242 if (status < 0) { 6243 kfree(*tl_copy); 6244 *tl_copy = NULL; 6245 mlog_errno(status); 6246 } 6247 6248 return status; 6249 } 6250 6251 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6252 struct ocfs2_dinode *tl_copy) 6253 { 6254 int status = 0; 6255 int i; 6256 unsigned int clusters, num_recs, start_cluster; 6257 u64 start_blk; 6258 handle_t *handle; 6259 struct inode *tl_inode = osb->osb_tl_inode; 6260 struct ocfs2_truncate_log *tl; 6261 6262 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6263 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6264 return -EINVAL; 6265 } 6266 6267 tl = &tl_copy->id2.i_dealloc; 6268 num_recs = le16_to_cpu(tl->tl_used); 6269 trace_ocfs2_complete_truncate_log_recovery( 6270 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6271 num_recs); 6272 6273 inode_lock(tl_inode); 6274 for(i = 0; i < num_recs; i++) { 6275 if (ocfs2_truncate_log_needs_flush(osb)) { 6276 status = __ocfs2_flush_truncate_log(osb); 6277 if (status < 0) { 6278 mlog_errno(status); 6279 goto bail_up; 6280 } 6281 } 6282 6283 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6284 if (IS_ERR(handle)) { 6285 status = PTR_ERR(handle); 6286 mlog_errno(status); 6287 goto bail_up; 6288 } 6289 6290 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6291 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6292 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6293 6294 status = ocfs2_truncate_log_append(osb, handle, 6295 start_blk, clusters); 6296 ocfs2_commit_trans(osb, handle); 6297 if (status < 0) { 6298 mlog_errno(status); 6299 goto bail_up; 6300 } 6301 } 6302 6303 bail_up: 6304 inode_unlock(tl_inode); 6305 6306 return status; 6307 } 6308 6309 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6310 { 6311 int status; 6312 struct inode *tl_inode = osb->osb_tl_inode; 6313 6314 atomic_set(&osb->osb_tl_disable, 1); 6315 6316 if (tl_inode) { 6317 cancel_delayed_work(&osb->osb_truncate_log_wq); 6318 flush_workqueue(osb->ocfs2_wq); 6319 6320 status = ocfs2_flush_truncate_log(osb); 6321 if (status < 0) 6322 mlog_errno(status); 6323 6324 brelse(osb->osb_tl_bh); 6325 iput(osb->osb_tl_inode); 6326 } 6327 } 6328 6329 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6330 { 6331 int status; 6332 struct inode *tl_inode = NULL; 6333 struct buffer_head *tl_bh = NULL; 6334 6335 status = ocfs2_get_truncate_log_info(osb, 6336 osb->slot_num, 6337 &tl_inode, 6338 &tl_bh); 6339 if (status < 0) 6340 mlog_errno(status); 6341 6342 /* ocfs2_truncate_log_shutdown keys on the existence of 6343 * osb->osb_tl_inode so we don't set any of the osb variables 6344 * until we're sure all is well. */ 6345 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6346 ocfs2_truncate_log_worker); 6347 atomic_set(&osb->osb_tl_disable, 0); 6348 osb->osb_tl_bh = tl_bh; 6349 osb->osb_tl_inode = tl_inode; 6350 6351 return status; 6352 } 6353 6354 /* 6355 * Delayed de-allocation of suballocator blocks. 6356 * 6357 * Some sets of block de-allocations might involve multiple suballocator inodes. 6358 * 6359 * The locking for this can get extremely complicated, especially when 6360 * the suballocator inodes to delete from aren't known until deep 6361 * within an unrelated codepath. 6362 * 6363 * ocfs2_extent_block structures are a good example of this - an inode 6364 * btree could have been grown by any number of nodes each allocating 6365 * out of their own suballoc inode. 6366 * 6367 * These structures allow the delay of block de-allocation until a 6368 * later time, when locking of multiple cluster inodes won't cause 6369 * deadlock. 6370 */ 6371 6372 /* 6373 * Describe a single bit freed from a suballocator. For the block 6374 * suballocators, it represents one block. For the global cluster 6375 * allocator, it represents some clusters and free_bit indicates 6376 * clusters number. 6377 */ 6378 struct ocfs2_cached_block_free { 6379 struct ocfs2_cached_block_free *free_next; 6380 u64 free_bg; 6381 u64 free_blk; 6382 unsigned int free_bit; 6383 }; 6384 6385 struct ocfs2_per_slot_free_list { 6386 struct ocfs2_per_slot_free_list *f_next_suballocator; 6387 int f_inode_type; 6388 int f_slot; 6389 struct ocfs2_cached_block_free *f_first; 6390 }; 6391 6392 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6393 int sysfile_type, 6394 int slot, 6395 struct ocfs2_cached_block_free *head) 6396 { 6397 int ret; 6398 u64 bg_blkno; 6399 handle_t *handle; 6400 struct inode *inode; 6401 struct buffer_head *di_bh = NULL; 6402 struct ocfs2_cached_block_free *tmp; 6403 6404 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6405 if (!inode) { 6406 ret = -EINVAL; 6407 mlog_errno(ret); 6408 goto out; 6409 } 6410 6411 inode_lock(inode); 6412 6413 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6414 if (ret) { 6415 mlog_errno(ret); 6416 goto out_mutex; 6417 } 6418 6419 while (head) { 6420 if (head->free_bg) 6421 bg_blkno = head->free_bg; 6422 else 6423 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6424 head->free_bit); 6425 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6426 if (IS_ERR(handle)) { 6427 ret = PTR_ERR(handle); 6428 mlog_errno(ret); 6429 goto out_unlock; 6430 } 6431 6432 trace_ocfs2_free_cached_blocks( 6433 (unsigned long long)head->free_blk, head->free_bit); 6434 6435 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6436 head->free_bit, bg_blkno, 1); 6437 if (ret) 6438 mlog_errno(ret); 6439 6440 ocfs2_commit_trans(osb, handle); 6441 6442 tmp = head; 6443 head = head->free_next; 6444 kfree(tmp); 6445 } 6446 6447 out_unlock: 6448 ocfs2_inode_unlock(inode, 1); 6449 brelse(di_bh); 6450 out_mutex: 6451 inode_unlock(inode); 6452 iput(inode); 6453 out: 6454 while(head) { 6455 /* Premature exit may have left some dangling items. */ 6456 tmp = head; 6457 head = head->free_next; 6458 kfree(tmp); 6459 } 6460 6461 return ret; 6462 } 6463 6464 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6465 u64 blkno, unsigned int bit) 6466 { 6467 int ret = 0; 6468 struct ocfs2_cached_block_free *item; 6469 6470 item = kzalloc(sizeof(*item), GFP_NOFS); 6471 if (item == NULL) { 6472 ret = -ENOMEM; 6473 mlog_errno(ret); 6474 return ret; 6475 } 6476 6477 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6478 6479 item->free_blk = blkno; 6480 item->free_bit = bit; 6481 item->free_next = ctxt->c_global_allocator; 6482 6483 ctxt->c_global_allocator = item; 6484 return ret; 6485 } 6486 6487 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6488 struct ocfs2_cached_block_free *head) 6489 { 6490 struct ocfs2_cached_block_free *tmp; 6491 struct inode *tl_inode = osb->osb_tl_inode; 6492 handle_t *handle; 6493 int ret = 0; 6494 6495 inode_lock(tl_inode); 6496 6497 while (head) { 6498 if (ocfs2_truncate_log_needs_flush(osb)) { 6499 ret = __ocfs2_flush_truncate_log(osb); 6500 if (ret < 0) { 6501 mlog_errno(ret); 6502 break; 6503 } 6504 } 6505 6506 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6507 if (IS_ERR(handle)) { 6508 ret = PTR_ERR(handle); 6509 mlog_errno(ret); 6510 break; 6511 } 6512 6513 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6514 head->free_bit); 6515 6516 ocfs2_commit_trans(osb, handle); 6517 tmp = head; 6518 head = head->free_next; 6519 kfree(tmp); 6520 6521 if (ret < 0) { 6522 mlog_errno(ret); 6523 break; 6524 } 6525 } 6526 6527 inode_unlock(tl_inode); 6528 6529 while (head) { 6530 /* Premature exit may have left some dangling items. */ 6531 tmp = head; 6532 head = head->free_next; 6533 kfree(tmp); 6534 } 6535 6536 return ret; 6537 } 6538 6539 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6540 struct ocfs2_cached_dealloc_ctxt *ctxt) 6541 { 6542 int ret = 0, ret2; 6543 struct ocfs2_per_slot_free_list *fl; 6544 6545 if (!ctxt) 6546 return 0; 6547 6548 while (ctxt->c_first_suballocator) { 6549 fl = ctxt->c_first_suballocator; 6550 6551 if (fl->f_first) { 6552 trace_ocfs2_run_deallocs(fl->f_inode_type, 6553 fl->f_slot); 6554 ret2 = ocfs2_free_cached_blocks(osb, 6555 fl->f_inode_type, 6556 fl->f_slot, 6557 fl->f_first); 6558 if (ret2) 6559 mlog_errno(ret2); 6560 if (!ret) 6561 ret = ret2; 6562 } 6563 6564 ctxt->c_first_suballocator = fl->f_next_suballocator; 6565 kfree(fl); 6566 } 6567 6568 if (ctxt->c_global_allocator) { 6569 ret2 = ocfs2_free_cached_clusters(osb, 6570 ctxt->c_global_allocator); 6571 if (ret2) 6572 mlog_errno(ret2); 6573 if (!ret) 6574 ret = ret2; 6575 6576 ctxt->c_global_allocator = NULL; 6577 } 6578 6579 return ret; 6580 } 6581 6582 static struct ocfs2_per_slot_free_list * 6583 ocfs2_find_per_slot_free_list(int type, 6584 int slot, 6585 struct ocfs2_cached_dealloc_ctxt *ctxt) 6586 { 6587 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6588 6589 while (fl) { 6590 if (fl->f_inode_type == type && fl->f_slot == slot) 6591 return fl; 6592 6593 fl = fl->f_next_suballocator; 6594 } 6595 6596 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6597 if (fl) { 6598 fl->f_inode_type = type; 6599 fl->f_slot = slot; 6600 fl->f_first = NULL; 6601 fl->f_next_suballocator = ctxt->c_first_suballocator; 6602 6603 ctxt->c_first_suballocator = fl; 6604 } 6605 return fl; 6606 } 6607 6608 static struct ocfs2_per_slot_free_list * 6609 ocfs2_find_preferred_free_list(int type, 6610 int preferred_slot, 6611 int *real_slot, 6612 struct ocfs2_cached_dealloc_ctxt *ctxt) 6613 { 6614 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6615 6616 while (fl) { 6617 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6618 *real_slot = fl->f_slot; 6619 return fl; 6620 } 6621 6622 fl = fl->f_next_suballocator; 6623 } 6624 6625 /* If we can't find any free list matching preferred slot, just use 6626 * the first one. 6627 */ 6628 fl = ctxt->c_first_suballocator; 6629 *real_slot = fl->f_slot; 6630 6631 return fl; 6632 } 6633 6634 /* Return Value 1 indicates empty */ 6635 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6636 { 6637 struct ocfs2_per_slot_free_list *fl = NULL; 6638 6639 if (!et->et_dealloc) 6640 return 1; 6641 6642 fl = et->et_dealloc->c_first_suballocator; 6643 if (!fl) 6644 return 1; 6645 6646 if (!fl->f_first) 6647 return 1; 6648 6649 return 0; 6650 } 6651 6652 /* If extent was deleted from tree due to extent rotation and merging, and 6653 * no metadata is reserved ahead of time. Try to reuse some extents 6654 * just deleted. This is only used to reuse extent blocks. 6655 * It is supposed to find enough extent blocks in dealloc if our estimation 6656 * on metadata is accurate. 6657 */ 6658 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6659 struct ocfs2_extent_tree *et, 6660 struct buffer_head **new_eb_bh, 6661 int blk_wanted, int *blk_given) 6662 { 6663 int i, status = 0, real_slot; 6664 struct ocfs2_cached_dealloc_ctxt *dealloc; 6665 struct ocfs2_per_slot_free_list *fl; 6666 struct ocfs2_cached_block_free *bf; 6667 struct ocfs2_extent_block *eb; 6668 struct ocfs2_super *osb = 6669 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6670 6671 *blk_given = 0; 6672 6673 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6674 * tell upper caller dealloc can't provide any block and it should 6675 * ask for alloc to claim more space. 6676 */ 6677 dealloc = et->et_dealloc; 6678 if (!dealloc) 6679 goto bail; 6680 6681 for (i = 0; i < blk_wanted; i++) { 6682 /* Prefer to use local slot */ 6683 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6684 osb->slot_num, &real_slot, 6685 dealloc); 6686 /* If no more block can be reused, we should claim more 6687 * from alloc. Just return here normally. 6688 */ 6689 if (!fl) { 6690 status = 0; 6691 break; 6692 } 6693 6694 bf = fl->f_first; 6695 fl->f_first = bf->free_next; 6696 6697 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6698 if (new_eb_bh[i] == NULL) { 6699 status = -ENOMEM; 6700 mlog_errno(status); 6701 goto bail; 6702 } 6703 6704 mlog(0, "Reusing block(%llu) from " 6705 "dealloc(local slot:%d, real slot:%d)\n", 6706 bf->free_blk, osb->slot_num, real_slot); 6707 6708 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6709 6710 status = ocfs2_journal_access_eb(handle, et->et_ci, 6711 new_eb_bh[i], 6712 OCFS2_JOURNAL_ACCESS_CREATE); 6713 if (status < 0) { 6714 mlog_errno(status); 6715 goto bail; 6716 } 6717 6718 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6719 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6720 6721 /* We can't guarantee that buffer head is still cached, so 6722 * polutlate the extent block again. 6723 */ 6724 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6725 eb->h_blkno = cpu_to_le64(bf->free_blk); 6726 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6727 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6728 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6729 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6730 eb->h_list.l_count = 6731 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6732 6733 /* We'll also be dirtied by the caller, so 6734 * this isn't absolutely necessary. 6735 */ 6736 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6737 6738 if (!fl->f_first) { 6739 dealloc->c_first_suballocator = fl->f_next_suballocator; 6740 kfree(fl); 6741 } 6742 kfree(bf); 6743 } 6744 6745 *blk_given = i; 6746 6747 bail: 6748 if (unlikely(status < 0)) { 6749 for (i = 0; i < blk_wanted; i++) 6750 brelse(new_eb_bh[i]); 6751 } 6752 6753 return status; 6754 } 6755 6756 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6757 int type, int slot, u64 suballoc, 6758 u64 blkno, unsigned int bit) 6759 { 6760 int ret; 6761 struct ocfs2_per_slot_free_list *fl; 6762 struct ocfs2_cached_block_free *item; 6763 6764 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6765 if (fl == NULL) { 6766 ret = -ENOMEM; 6767 mlog_errno(ret); 6768 goto out; 6769 } 6770 6771 item = kzalloc(sizeof(*item), GFP_NOFS); 6772 if (item == NULL) { 6773 ret = -ENOMEM; 6774 mlog_errno(ret); 6775 goto out; 6776 } 6777 6778 trace_ocfs2_cache_block_dealloc(type, slot, 6779 (unsigned long long)suballoc, 6780 (unsigned long long)blkno, bit); 6781 6782 item->free_bg = suballoc; 6783 item->free_blk = blkno; 6784 item->free_bit = bit; 6785 item->free_next = fl->f_first; 6786 6787 fl->f_first = item; 6788 6789 ret = 0; 6790 out: 6791 return ret; 6792 } 6793 6794 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6795 struct ocfs2_extent_block *eb) 6796 { 6797 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6798 le16_to_cpu(eb->h_suballoc_slot), 6799 le64_to_cpu(eb->h_suballoc_loc), 6800 le64_to_cpu(eb->h_blkno), 6801 le16_to_cpu(eb->h_suballoc_bit)); 6802 } 6803 6804 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6805 { 6806 set_buffer_uptodate(bh); 6807 mark_buffer_dirty(bh); 6808 return 0; 6809 } 6810 6811 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6812 unsigned int from, unsigned int to, 6813 struct page *page, int zero, u64 *phys) 6814 { 6815 int ret, partial = 0; 6816 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from; 6817 loff_t length = to - from; 6818 6819 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6820 if (ret) 6821 mlog_errno(ret); 6822 6823 if (zero) 6824 zero_user_segment(page, from, to); 6825 6826 /* 6827 * Need to set the buffers we zero'd into uptodate 6828 * here if they aren't - ocfs2_map_page_blocks() 6829 * might've skipped some 6830 */ 6831 ret = walk_page_buffers(handle, page_buffers(page), 6832 from, to, &partial, 6833 ocfs2_zero_func); 6834 if (ret < 0) 6835 mlog_errno(ret); 6836 else if (ocfs2_should_order_data(inode)) { 6837 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6838 start_byte, length); 6839 if (ret < 0) 6840 mlog_errno(ret); 6841 } 6842 6843 if (!partial) 6844 SetPageUptodate(page); 6845 6846 flush_dcache_page(page); 6847 } 6848 6849 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6850 loff_t end, struct page **pages, 6851 int numpages, u64 phys, handle_t *handle) 6852 { 6853 int i; 6854 struct page *page; 6855 unsigned int from, to = PAGE_SIZE; 6856 struct super_block *sb = inode->i_sb; 6857 6858 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6859 6860 if (numpages == 0) 6861 goto out; 6862 6863 to = PAGE_SIZE; 6864 for(i = 0; i < numpages; i++) { 6865 page = pages[i]; 6866 6867 from = start & (PAGE_SIZE - 1); 6868 if ((end >> PAGE_SHIFT) == page->index) 6869 to = end & (PAGE_SIZE - 1); 6870 6871 BUG_ON(from > PAGE_SIZE); 6872 BUG_ON(to > PAGE_SIZE); 6873 6874 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6875 &phys); 6876 6877 start = (page->index + 1) << PAGE_SHIFT; 6878 } 6879 out: 6880 if (pages) 6881 ocfs2_unlock_and_free_pages(pages, numpages); 6882 } 6883 6884 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6885 struct page **pages, int *num) 6886 { 6887 int numpages, ret = 0; 6888 struct address_space *mapping = inode->i_mapping; 6889 unsigned long index; 6890 loff_t last_page_bytes; 6891 6892 BUG_ON(start > end); 6893 6894 numpages = 0; 6895 last_page_bytes = PAGE_ALIGN(end); 6896 index = start >> PAGE_SHIFT; 6897 do { 6898 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6899 if (!pages[numpages]) { 6900 ret = -ENOMEM; 6901 mlog_errno(ret); 6902 goto out; 6903 } 6904 6905 numpages++; 6906 index++; 6907 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6908 6909 out: 6910 if (ret != 0) { 6911 if (pages) 6912 ocfs2_unlock_and_free_pages(pages, numpages); 6913 numpages = 0; 6914 } 6915 6916 *num = numpages; 6917 6918 return ret; 6919 } 6920 6921 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6922 struct page **pages, int *num) 6923 { 6924 struct super_block *sb = inode->i_sb; 6925 6926 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6927 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6928 6929 return ocfs2_grab_pages(inode, start, end, pages, num); 6930 } 6931 6932 /* 6933 * Zero partial cluster for a hole punch or truncate. This avoids exposing 6934 * nonzero data on subsequent file extends. 6935 * 6936 * We need to call this before i_size is updated on the inode because 6937 * otherwise block_write_full_folio() will skip writeout of pages past 6938 * i_size. 6939 */ 6940 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6941 u64 range_start, u64 range_end) 6942 { 6943 int ret = 0, numpages; 6944 struct page **pages = NULL; 6945 u64 phys; 6946 unsigned int ext_flags; 6947 struct super_block *sb = inode->i_sb; 6948 6949 /* 6950 * File systems which don't support sparse files zero on every 6951 * extend. 6952 */ 6953 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6954 return 0; 6955 6956 /* 6957 * Avoid zeroing pages fully beyond current i_size. It is pointless as 6958 * underlying blocks of those pages should be already zeroed out and 6959 * page writeback will skip them anyway. 6960 */ 6961 range_end = min_t(u64, range_end, i_size_read(inode)); 6962 if (range_start >= range_end) 6963 return 0; 6964 6965 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6966 sizeof(struct page *), GFP_NOFS); 6967 if (pages == NULL) { 6968 ret = -ENOMEM; 6969 mlog_errno(ret); 6970 goto out; 6971 } 6972 6973 ret = ocfs2_extent_map_get_blocks(inode, 6974 range_start >> sb->s_blocksize_bits, 6975 &phys, NULL, &ext_flags); 6976 if (ret) { 6977 mlog_errno(ret); 6978 goto out; 6979 } 6980 6981 /* 6982 * Tail is a hole, or is marked unwritten. In either case, we 6983 * can count on read and write to return/push zero's. 6984 */ 6985 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6986 goto out; 6987 6988 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6989 &numpages); 6990 if (ret) { 6991 mlog_errno(ret); 6992 goto out; 6993 } 6994 6995 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6996 numpages, phys, handle); 6997 6998 /* 6999 * Initiate writeout of the pages we zero'd here. We don't 7000 * wait on them - the truncate_inode_pages() call later will 7001 * do that for us. 7002 */ 7003 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 7004 range_end - 1); 7005 if (ret) 7006 mlog_errno(ret); 7007 7008 out: 7009 kfree(pages); 7010 7011 return ret; 7012 } 7013 7014 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7015 struct ocfs2_dinode *di) 7016 { 7017 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7018 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7019 7020 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7021 memset(&di->id2, 0, blocksize - 7022 offsetof(struct ocfs2_dinode, id2) - 7023 xattrsize); 7024 else 7025 memset(&di->id2, 0, blocksize - 7026 offsetof(struct ocfs2_dinode, id2)); 7027 } 7028 7029 void ocfs2_dinode_new_extent_list(struct inode *inode, 7030 struct ocfs2_dinode *di) 7031 { 7032 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7033 di->id2.i_list.l_tree_depth = 0; 7034 di->id2.i_list.l_next_free_rec = 0; 7035 di->id2.i_list.l_count = cpu_to_le16( 7036 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7037 } 7038 7039 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7040 { 7041 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7042 struct ocfs2_inline_data *idata = &di->id2.i_data; 7043 7044 spin_lock(&oi->ip_lock); 7045 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7046 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7047 spin_unlock(&oi->ip_lock); 7048 7049 /* 7050 * We clear the entire i_data structure here so that all 7051 * fields can be properly initialized. 7052 */ 7053 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7054 7055 idata->id_count = cpu_to_le16( 7056 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7057 } 7058 7059 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7060 struct buffer_head *di_bh) 7061 { 7062 int ret, has_data, num_pages = 0; 7063 int need_free = 0; 7064 u32 bit_off, num; 7065 handle_t *handle; 7066 u64 block; 7067 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7068 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7069 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7070 struct ocfs2_alloc_context *data_ac = NULL; 7071 struct page *page = NULL; 7072 struct ocfs2_extent_tree et; 7073 int did_quota = 0; 7074 7075 has_data = i_size_read(inode) ? 1 : 0; 7076 7077 if (has_data) { 7078 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7079 if (ret) { 7080 mlog_errno(ret); 7081 goto out; 7082 } 7083 } 7084 7085 handle = ocfs2_start_trans(osb, 7086 ocfs2_inline_to_extents_credits(osb->sb)); 7087 if (IS_ERR(handle)) { 7088 ret = PTR_ERR(handle); 7089 mlog_errno(ret); 7090 goto out; 7091 } 7092 7093 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7094 OCFS2_JOURNAL_ACCESS_WRITE); 7095 if (ret) { 7096 mlog_errno(ret); 7097 goto out_commit; 7098 } 7099 7100 if (has_data) { 7101 unsigned int page_end = min_t(unsigned, PAGE_SIZE, 7102 osb->s_clustersize); 7103 u64 phys; 7104 7105 ret = dquot_alloc_space_nodirty(inode, 7106 ocfs2_clusters_to_bytes(osb->sb, 1)); 7107 if (ret) 7108 goto out_commit; 7109 did_quota = 1; 7110 7111 data_ac->ac_resv = &oi->ip_la_data_resv; 7112 7113 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7114 &num); 7115 if (ret) { 7116 mlog_errno(ret); 7117 goto out_commit; 7118 } 7119 7120 /* 7121 * Save two copies, one for insert, and one that can 7122 * be changed by ocfs2_map_and_dirty_page() below. 7123 */ 7124 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7125 7126 ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page, 7127 &num_pages); 7128 if (ret) { 7129 mlog_errno(ret); 7130 need_free = 1; 7131 goto out_commit; 7132 } 7133 7134 /* 7135 * This should populate the 1st page for us and mark 7136 * it up to date. 7137 */ 7138 ret = ocfs2_read_inline_data(inode, page, di_bh); 7139 if (ret) { 7140 mlog_errno(ret); 7141 need_free = 1; 7142 goto out_unlock; 7143 } 7144 7145 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0, 7146 &phys); 7147 } 7148 7149 spin_lock(&oi->ip_lock); 7150 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7151 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7152 spin_unlock(&oi->ip_lock); 7153 7154 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7155 ocfs2_dinode_new_extent_list(inode, di); 7156 7157 ocfs2_journal_dirty(handle, di_bh); 7158 7159 if (has_data) { 7160 /* 7161 * An error at this point should be extremely rare. If 7162 * this proves to be false, we could always re-build 7163 * the in-inode data from our pages. 7164 */ 7165 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7166 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7167 if (ret) { 7168 mlog_errno(ret); 7169 need_free = 1; 7170 goto out_unlock; 7171 } 7172 7173 inode->i_blocks = ocfs2_inode_sector_count(inode); 7174 } 7175 7176 out_unlock: 7177 if (page) 7178 ocfs2_unlock_and_free_pages(&page, num_pages); 7179 7180 out_commit: 7181 if (ret < 0 && did_quota) 7182 dquot_free_space_nodirty(inode, 7183 ocfs2_clusters_to_bytes(osb->sb, 1)); 7184 7185 if (need_free) { 7186 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7187 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7188 bit_off, num); 7189 else 7190 ocfs2_free_clusters(handle, 7191 data_ac->ac_inode, 7192 data_ac->ac_bh, 7193 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7194 num); 7195 } 7196 7197 ocfs2_commit_trans(osb, handle); 7198 7199 out: 7200 if (data_ac) 7201 ocfs2_free_alloc_context(data_ac); 7202 return ret; 7203 } 7204 7205 /* 7206 * It is expected, that by the time you call this function, 7207 * inode->i_size and fe->i_size have been adjusted. 7208 * 7209 * WARNING: This will kfree the truncate context 7210 */ 7211 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7212 struct inode *inode, 7213 struct buffer_head *di_bh) 7214 { 7215 int status = 0, i, flags = 0; 7216 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7217 u64 blkno = 0; 7218 struct ocfs2_extent_list *el; 7219 struct ocfs2_extent_rec *rec; 7220 struct ocfs2_path *path = NULL; 7221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7222 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7223 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7224 struct ocfs2_extent_tree et; 7225 struct ocfs2_cached_dealloc_ctxt dealloc; 7226 struct ocfs2_refcount_tree *ref_tree = NULL; 7227 7228 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7229 ocfs2_init_dealloc_ctxt(&dealloc); 7230 7231 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7232 i_size_read(inode)); 7233 7234 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7235 ocfs2_journal_access_di); 7236 if (!path) { 7237 status = -ENOMEM; 7238 mlog_errno(status); 7239 goto bail; 7240 } 7241 7242 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7243 7244 start: 7245 /* 7246 * Check that we still have allocation to delete. 7247 */ 7248 if (OCFS2_I(inode)->ip_clusters == 0) { 7249 status = 0; 7250 goto bail; 7251 } 7252 7253 /* 7254 * Truncate always works against the rightmost tree branch. 7255 */ 7256 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7257 if (status) { 7258 mlog_errno(status); 7259 goto bail; 7260 } 7261 7262 trace_ocfs2_commit_truncate( 7263 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7264 new_highest_cpos, 7265 OCFS2_I(inode)->ip_clusters, 7266 path->p_tree_depth); 7267 7268 /* 7269 * By now, el will point to the extent list on the bottom most 7270 * portion of this tree. Only the tail record is considered in 7271 * each pass. 7272 * 7273 * We handle the following cases, in order: 7274 * - empty extent: delete the remaining branch 7275 * - remove the entire record 7276 * - remove a partial record 7277 * - no record needs to be removed (truncate has completed) 7278 */ 7279 el = path_leaf_el(path); 7280 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7281 ocfs2_error(inode->i_sb, 7282 "Inode %llu has empty extent block at %llu\n", 7283 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7284 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7285 status = -EROFS; 7286 goto bail; 7287 } 7288 7289 i = le16_to_cpu(el->l_next_free_rec) - 1; 7290 rec = &el->l_recs[i]; 7291 flags = rec->e_flags; 7292 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7293 7294 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7295 /* 7296 * Lower levels depend on this never happening, but it's best 7297 * to check it up here before changing the tree. 7298 */ 7299 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7300 mlog(ML_ERROR, "Inode %lu has an empty " 7301 "extent record, depth %u\n", inode->i_ino, 7302 le16_to_cpu(root_el->l_tree_depth)); 7303 status = ocfs2_remove_rightmost_empty_extent(osb, 7304 &et, path, &dealloc); 7305 if (status) { 7306 mlog_errno(status); 7307 goto bail; 7308 } 7309 7310 ocfs2_reinit_path(path, 1); 7311 goto start; 7312 } else { 7313 trunc_cpos = le32_to_cpu(rec->e_cpos); 7314 trunc_len = 0; 7315 blkno = 0; 7316 } 7317 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7318 /* 7319 * Truncate entire record. 7320 */ 7321 trunc_cpos = le32_to_cpu(rec->e_cpos); 7322 trunc_len = ocfs2_rec_clusters(el, rec); 7323 blkno = le64_to_cpu(rec->e_blkno); 7324 } else if (range > new_highest_cpos) { 7325 /* 7326 * Partial truncate. it also should be 7327 * the last truncate we're doing. 7328 */ 7329 trunc_cpos = new_highest_cpos; 7330 trunc_len = range - new_highest_cpos; 7331 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7332 blkno = le64_to_cpu(rec->e_blkno) + 7333 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7334 } else { 7335 /* 7336 * Truncate completed, leave happily. 7337 */ 7338 status = 0; 7339 goto bail; 7340 } 7341 7342 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7343 7344 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7345 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7346 &ref_tree, NULL); 7347 if (status) { 7348 mlog_errno(status); 7349 goto bail; 7350 } 7351 } 7352 7353 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7354 phys_cpos, trunc_len, flags, &dealloc, 7355 refcount_loc, true); 7356 if (status < 0) { 7357 mlog_errno(status); 7358 goto bail; 7359 } 7360 7361 ocfs2_reinit_path(path, 1); 7362 7363 /* 7364 * The check above will catch the case where we've truncated 7365 * away all allocation. 7366 */ 7367 goto start; 7368 7369 bail: 7370 if (ref_tree) 7371 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7372 7373 ocfs2_schedule_truncate_log_flush(osb, 1); 7374 7375 ocfs2_run_deallocs(osb, &dealloc); 7376 7377 ocfs2_free_path(path); 7378 7379 return status; 7380 } 7381 7382 /* 7383 * 'start' is inclusive, 'end' is not. 7384 */ 7385 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7386 unsigned int start, unsigned int end, int trunc) 7387 { 7388 int ret; 7389 unsigned int numbytes; 7390 handle_t *handle; 7391 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7392 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7393 struct ocfs2_inline_data *idata = &di->id2.i_data; 7394 7395 /* No need to punch hole beyond i_size. */ 7396 if (start >= i_size_read(inode)) 7397 return 0; 7398 7399 if (end > i_size_read(inode)) 7400 end = i_size_read(inode); 7401 7402 BUG_ON(start > end); 7403 7404 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7405 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7406 !ocfs2_supports_inline_data(osb)) { 7407 ocfs2_error(inode->i_sb, 7408 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7409 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7410 le16_to_cpu(di->i_dyn_features), 7411 OCFS2_I(inode)->ip_dyn_features, 7412 osb->s_feature_incompat); 7413 ret = -EROFS; 7414 goto out; 7415 } 7416 7417 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7418 if (IS_ERR(handle)) { 7419 ret = PTR_ERR(handle); 7420 mlog_errno(ret); 7421 goto out; 7422 } 7423 7424 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7425 OCFS2_JOURNAL_ACCESS_WRITE); 7426 if (ret) { 7427 mlog_errno(ret); 7428 goto out_commit; 7429 } 7430 7431 numbytes = end - start; 7432 memset(idata->id_data + start, 0, numbytes); 7433 7434 /* 7435 * No need to worry about the data page here - it's been 7436 * truncated already and inline data doesn't need it for 7437 * pushing zero's to disk, so we'll let read_folio pick it up 7438 * later. 7439 */ 7440 if (trunc) { 7441 i_size_write(inode, start); 7442 di->i_size = cpu_to_le64(start); 7443 } 7444 7445 inode->i_blocks = ocfs2_inode_sector_count(inode); 7446 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7447 7448 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode)); 7449 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 7450 7451 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7452 ocfs2_journal_dirty(handle, di_bh); 7453 7454 out_commit: 7455 ocfs2_commit_trans(osb, handle); 7456 7457 out: 7458 return ret; 7459 } 7460 7461 static int ocfs2_trim_extent(struct super_block *sb, 7462 struct ocfs2_group_desc *gd, 7463 u64 group, u32 start, u32 count) 7464 { 7465 u64 discard, bcount; 7466 struct ocfs2_super *osb = OCFS2_SB(sb); 7467 7468 bcount = ocfs2_clusters_to_blocks(sb, count); 7469 discard = ocfs2_clusters_to_blocks(sb, start); 7470 7471 /* 7472 * For the first cluster group, the gd->bg_blkno is not at the start 7473 * of the group, but at an offset from the start. If we add it while 7474 * calculating discard for first group, we will wrongly start fstrim a 7475 * few blocks after the desried start block and the range can cross 7476 * over into the next cluster group. So, add it only if this is not 7477 * the first cluster group. 7478 */ 7479 if (group != osb->first_cluster_group_blkno) 7480 discard += le64_to_cpu(gd->bg_blkno); 7481 7482 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7483 7484 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7485 } 7486 7487 static int ocfs2_trim_group(struct super_block *sb, 7488 struct ocfs2_group_desc *gd, u64 group, 7489 u32 start, u32 max, u32 minbits) 7490 { 7491 int ret = 0, count = 0, next; 7492 void *bitmap = gd->bg_bitmap; 7493 7494 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7495 return 0; 7496 7497 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7498 start, max, minbits); 7499 7500 while (start < max) { 7501 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7502 if (start >= max) 7503 break; 7504 next = ocfs2_find_next_bit(bitmap, max, start); 7505 7506 if ((next - start) >= minbits) { 7507 ret = ocfs2_trim_extent(sb, gd, group, 7508 start, next - start); 7509 if (ret < 0) { 7510 mlog_errno(ret); 7511 break; 7512 } 7513 count += next - start; 7514 } 7515 start = next + 1; 7516 7517 if (fatal_signal_pending(current)) { 7518 count = -ERESTARTSYS; 7519 break; 7520 } 7521 7522 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7523 break; 7524 } 7525 7526 if (ret < 0) 7527 count = ret; 7528 7529 return count; 7530 } 7531 7532 static 7533 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7534 { 7535 struct ocfs2_super *osb = OCFS2_SB(sb); 7536 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7537 int ret, cnt; 7538 u32 first_bit, last_bit, minlen; 7539 struct buffer_head *main_bm_bh = NULL; 7540 struct inode *main_bm_inode = NULL; 7541 struct buffer_head *gd_bh = NULL; 7542 struct ocfs2_dinode *main_bm; 7543 struct ocfs2_group_desc *gd = NULL; 7544 7545 start = range->start >> osb->s_clustersize_bits; 7546 len = range->len >> osb->s_clustersize_bits; 7547 minlen = range->minlen >> osb->s_clustersize_bits; 7548 7549 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7550 return -EINVAL; 7551 7552 trace_ocfs2_trim_mainbm(start, len, minlen); 7553 7554 next_group: 7555 main_bm_inode = ocfs2_get_system_file_inode(osb, 7556 GLOBAL_BITMAP_SYSTEM_INODE, 7557 OCFS2_INVALID_SLOT); 7558 if (!main_bm_inode) { 7559 ret = -EIO; 7560 mlog_errno(ret); 7561 goto out; 7562 } 7563 7564 inode_lock(main_bm_inode); 7565 7566 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7567 if (ret < 0) { 7568 mlog_errno(ret); 7569 goto out_mutex; 7570 } 7571 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7572 7573 /* 7574 * Do some check before trim the first group. 7575 */ 7576 if (!group) { 7577 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7578 ret = -EINVAL; 7579 goto out_unlock; 7580 } 7581 7582 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7583 len = le32_to_cpu(main_bm->i_clusters) - start; 7584 7585 /* 7586 * Determine first and last group to examine based on 7587 * start and len 7588 */ 7589 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7590 if (first_group == osb->first_cluster_group_blkno) 7591 first_bit = start; 7592 else 7593 first_bit = start - ocfs2_blocks_to_clusters(sb, 7594 first_group); 7595 last_group = ocfs2_which_cluster_group(main_bm_inode, 7596 start + len - 1); 7597 group = first_group; 7598 } 7599 7600 do { 7601 if (first_bit + len >= osb->bitmap_cpg) 7602 last_bit = osb->bitmap_cpg; 7603 else 7604 last_bit = first_bit + len; 7605 7606 ret = ocfs2_read_group_descriptor(main_bm_inode, 7607 main_bm, group, 7608 &gd_bh); 7609 if (ret < 0) { 7610 mlog_errno(ret); 7611 break; 7612 } 7613 7614 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7615 cnt = ocfs2_trim_group(sb, gd, group, 7616 first_bit, last_bit, minlen); 7617 brelse(gd_bh); 7618 gd_bh = NULL; 7619 if (cnt < 0) { 7620 ret = cnt; 7621 mlog_errno(ret); 7622 break; 7623 } 7624 7625 trimmed += cnt; 7626 len -= osb->bitmap_cpg - first_bit; 7627 first_bit = 0; 7628 if (group == osb->first_cluster_group_blkno) 7629 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7630 else 7631 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7632 } while (0); 7633 7634 out_unlock: 7635 ocfs2_inode_unlock(main_bm_inode, 0); 7636 brelse(main_bm_bh); 7637 main_bm_bh = NULL; 7638 out_mutex: 7639 inode_unlock(main_bm_inode); 7640 iput(main_bm_inode); 7641 7642 /* 7643 * If all the groups trim are not done or failed, but we should release 7644 * main_bm related locks for avoiding the current IO starve, then go to 7645 * trim the next group 7646 */ 7647 if (ret >= 0 && group <= last_group) { 7648 cond_resched(); 7649 goto next_group; 7650 } 7651 out: 7652 range->len = trimmed * osb->s_clustersize; 7653 return ret; 7654 } 7655 7656 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7657 { 7658 int ret; 7659 struct ocfs2_super *osb = OCFS2_SB(sb); 7660 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7661 7662 ocfs2_trim_fs_lock_res_init(osb); 7663 7664 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7665 7666 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7667 if (ret < 0) { 7668 if (ret != -EAGAIN) { 7669 mlog_errno(ret); 7670 ocfs2_trim_fs_lock_res_uninit(osb); 7671 return ret; 7672 } 7673 7674 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7675 "finish, which is running from another node.\n", 7676 osb->dev_str); 7677 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7678 if (ret < 0) { 7679 mlog_errno(ret); 7680 ocfs2_trim_fs_lock_res_uninit(osb); 7681 return ret; 7682 } 7683 7684 if (info.tf_valid && info.tf_success && 7685 info.tf_start == range->start && 7686 info.tf_len == range->len && 7687 info.tf_minlen == range->minlen) { 7688 /* Avoid sending duplicated trim to a shared device */ 7689 mlog(ML_NOTICE, "The same trim on device (%s) was " 7690 "just done from node (%u), return.\n", 7691 osb->dev_str, info.tf_nodenum); 7692 range->len = info.tf_trimlen; 7693 goto out; 7694 } 7695 } 7696 7697 info.tf_nodenum = osb->node_num; 7698 info.tf_start = range->start; 7699 info.tf_len = range->len; 7700 info.tf_minlen = range->minlen; 7701 7702 ret = ocfs2_trim_mainbm(sb, range); 7703 7704 info.tf_trimlen = range->len; 7705 info.tf_success = (ret < 0 ? 0 : 1); 7706 pinfo = &info; 7707 out: 7708 ocfs2_trim_fs_unlock(osb, pinfo); 7709 ocfs2_trim_fs_lock_res_uninit(osb); 7710 return ret; 7711 } 7712