1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * alloc.c 4 * 5 * Extent allocs and frees 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/swap.h> 15 #include <linux/quotaops.h> 16 #include <linux/blkdev.h> 17 #include <linux/sched/signal.h> 18 19 #include <cluster/masklog.h> 20 21 #include "ocfs2.h" 22 23 #include "alloc.h" 24 #include "aops.h" 25 #include "blockcheck.h" 26 #include "dlmglue.h" 27 #include "extent_map.h" 28 #include "inode.h" 29 #include "journal.h" 30 #include "localalloc.h" 31 #include "suballoc.h" 32 #include "sysfile.h" 33 #include "file.h" 34 #include "super.h" 35 #include "uptodate.h" 36 #include "xattr.h" 37 #include "refcounttree.h" 38 #include "ocfs2_trace.h" 39 40 #include "buffer_head_io.h" 41 42 enum ocfs2_contig_type { 43 CONTIG_NONE = 0, 44 CONTIG_LEFT, 45 CONTIG_RIGHT, 46 CONTIG_LEFTRIGHT, 47 }; 48 49 static enum ocfs2_contig_type 50 ocfs2_extent_rec_contig(struct super_block *sb, 51 struct ocfs2_extent_rec *ext, 52 struct ocfs2_extent_rec *insert_rec); 53 /* 54 * Operations for a specific extent tree type. 55 * 56 * To implement an on-disk btree (extent tree) type in ocfs2, add 57 * an ocfs2_extent_tree_operations structure and the matching 58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 59 * for the allocation portion of the extent tree. 60 */ 61 struct ocfs2_extent_tree_operations { 62 /* 63 * last_eb_blk is the block number of the right most leaf extent 64 * block. Most on-disk structures containing an extent tree store 65 * this value for fast access. The ->eo_set_last_eb_blk() and 66 * ->eo_get_last_eb_blk() operations access this value. They are 67 * both required. 68 */ 69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 70 u64 blkno); 71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 72 73 /* 74 * The on-disk structure usually keeps track of how many total 75 * clusters are stored in this extent tree. This function updates 76 * that value. new_clusters is the delta, and must be 77 * added to the total. Required. 78 */ 79 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 80 u32 new_clusters); 81 82 /* 83 * If this extent tree is supported by an extent map, insert 84 * a record into the map. 85 */ 86 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 87 struct ocfs2_extent_rec *rec); 88 89 /* 90 * If this extent tree is supported by an extent map, truncate the 91 * map to clusters, 92 */ 93 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 94 u32 clusters); 95 96 /* 97 * If ->eo_insert_check() exists, it is called before rec is 98 * inserted into the extent tree. It is optional. 99 */ 100 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 101 struct ocfs2_extent_rec *rec); 102 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 103 104 /* 105 * -------------------------------------------------------------- 106 * The remaining are internal to ocfs2_extent_tree and don't have 107 * accessor functions 108 */ 109 110 /* 111 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 112 * It is required. 113 */ 114 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 115 116 /* 117 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 118 * it exists. If it does not, et->et_max_leaf_clusters is set 119 * to 0 (unlimited). Optional. 120 */ 121 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 122 123 /* 124 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 125 * are contiguous or not. Optional. Don't need to set it if use 126 * ocfs2_extent_rec as the tree leaf. 127 */ 128 enum ocfs2_contig_type 129 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 130 struct ocfs2_extent_rec *ext, 131 struct ocfs2_extent_rec *insert_rec); 132 }; 133 134 135 /* 136 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 137 * in the methods. 138 */ 139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 141 u64 blkno); 142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 143 u32 clusters); 144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 145 struct ocfs2_extent_rec *rec); 146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 147 u32 clusters); 148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 149 struct ocfs2_extent_rec *rec); 150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 152 153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 154 struct ocfs2_extent_tree *et, 155 struct buffer_head **new_eb_bh, 156 int blk_wanted, int *blk_given); 157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 158 159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 160 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 161 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 162 .eo_update_clusters = ocfs2_dinode_update_clusters, 163 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 164 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 165 .eo_insert_check = ocfs2_dinode_insert_check, 166 .eo_sanity_check = ocfs2_dinode_sanity_check, 167 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 168 }; 169 170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 171 u64 blkno) 172 { 173 struct ocfs2_dinode *di = et->et_object; 174 175 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 176 di->i_last_eb_blk = cpu_to_le64(blkno); 177 } 178 179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 180 { 181 struct ocfs2_dinode *di = et->et_object; 182 183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 184 return le64_to_cpu(di->i_last_eb_blk); 185 } 186 187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 188 u32 clusters) 189 { 190 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 191 struct ocfs2_dinode *di = et->et_object; 192 193 le32_add_cpu(&di->i_clusters, clusters); 194 spin_lock(&oi->ip_lock); 195 oi->ip_clusters = le32_to_cpu(di->i_clusters); 196 spin_unlock(&oi->ip_lock); 197 } 198 199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 200 struct ocfs2_extent_rec *rec) 201 { 202 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 203 204 ocfs2_extent_map_insert_rec(inode, rec); 205 } 206 207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 208 u32 clusters) 209 { 210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 211 212 ocfs2_extent_map_trunc(inode, clusters); 213 } 214 215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 216 struct ocfs2_extent_rec *rec) 217 { 218 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 219 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 220 221 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 222 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 223 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 224 "Device %s, asking for sparse allocation: inode %llu, " 225 "cpos %u, clusters %u\n", 226 osb->dev_str, 227 (unsigned long long)oi->ip_blkno, 228 rec->e_cpos, oi->ip_clusters); 229 230 return 0; 231 } 232 233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 234 { 235 struct ocfs2_dinode *di = et->et_object; 236 237 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 238 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 239 240 return 0; 241 } 242 243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 244 { 245 struct ocfs2_dinode *di = et->et_object; 246 247 et->et_root_el = &di->id2.i_list; 248 } 249 250 251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 252 { 253 struct ocfs2_xattr_value_buf *vb = et->et_object; 254 255 et->et_root_el = &vb->vb_xv->xr_list; 256 } 257 258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 259 u64 blkno) 260 { 261 struct ocfs2_xattr_value_buf *vb = et->et_object; 262 263 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 264 } 265 266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 267 { 268 struct ocfs2_xattr_value_buf *vb = et->et_object; 269 270 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 271 } 272 273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 274 u32 clusters) 275 { 276 struct ocfs2_xattr_value_buf *vb = et->et_object; 277 278 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 279 } 280 281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 282 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 283 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 284 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 285 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 286 }; 287 288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 289 { 290 struct ocfs2_xattr_block *xb = et->et_object; 291 292 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 293 } 294 295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 296 { 297 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 298 et->et_max_leaf_clusters = 299 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 300 } 301 302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 303 u64 blkno) 304 { 305 struct ocfs2_xattr_block *xb = et->et_object; 306 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 307 308 xt->xt_last_eb_blk = cpu_to_le64(blkno); 309 } 310 311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 312 { 313 struct ocfs2_xattr_block *xb = et->et_object; 314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 315 316 return le64_to_cpu(xt->xt_last_eb_blk); 317 } 318 319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 320 u32 clusters) 321 { 322 struct ocfs2_xattr_block *xb = et->et_object; 323 324 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 325 } 326 327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 328 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 329 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 330 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 331 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 332 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 333 }; 334 335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 336 u64 blkno) 337 { 338 struct ocfs2_dx_root_block *dx_root = et->et_object; 339 340 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 341 } 342 343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 344 { 345 struct ocfs2_dx_root_block *dx_root = et->et_object; 346 347 return le64_to_cpu(dx_root->dr_last_eb_blk); 348 } 349 350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 351 u32 clusters) 352 { 353 struct ocfs2_dx_root_block *dx_root = et->et_object; 354 355 le32_add_cpu(&dx_root->dr_clusters, clusters); 356 } 357 358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 359 { 360 struct ocfs2_dx_root_block *dx_root = et->et_object; 361 362 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 363 364 return 0; 365 } 366 367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 et->et_root_el = &dx_root->dr_list; 372 } 373 374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 375 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 376 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 377 .eo_update_clusters = ocfs2_dx_root_update_clusters, 378 .eo_sanity_check = ocfs2_dx_root_sanity_check, 379 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 380 }; 381 382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 383 { 384 struct ocfs2_refcount_block *rb = et->et_object; 385 386 et->et_root_el = &rb->rf_list; 387 } 388 389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 390 u64 blkno) 391 { 392 struct ocfs2_refcount_block *rb = et->et_object; 393 394 rb->rf_last_eb_blk = cpu_to_le64(blkno); 395 } 396 397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 398 { 399 struct ocfs2_refcount_block *rb = et->et_object; 400 401 return le64_to_cpu(rb->rf_last_eb_blk); 402 } 403 404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 405 u32 clusters) 406 { 407 struct ocfs2_refcount_block *rb = et->et_object; 408 409 le32_add_cpu(&rb->rf_clusters, clusters); 410 } 411 412 static enum ocfs2_contig_type 413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 414 struct ocfs2_extent_rec *ext, 415 struct ocfs2_extent_rec *insert_rec) 416 { 417 return CONTIG_NONE; 418 } 419 420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 421 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 422 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 423 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 424 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 425 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 426 }; 427 428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 429 struct ocfs2_caching_info *ci, 430 struct buffer_head *bh, 431 ocfs2_journal_access_func access, 432 void *obj, 433 const struct ocfs2_extent_tree_operations *ops) 434 { 435 et->et_ops = ops; 436 et->et_root_bh = bh; 437 et->et_ci = ci; 438 et->et_root_journal_access = access; 439 if (!obj) 440 obj = (void *)bh->b_data; 441 et->et_object = obj; 442 et->et_dealloc = NULL; 443 444 et->et_ops->eo_fill_root_el(et); 445 if (!et->et_ops->eo_fill_max_leaf_clusters) 446 et->et_max_leaf_clusters = 0; 447 else 448 et->et_ops->eo_fill_max_leaf_clusters(et); 449 } 450 451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 452 struct ocfs2_caching_info *ci, 453 struct buffer_head *bh) 454 { 455 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 456 NULL, &ocfs2_dinode_et_ops); 457 } 458 459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 460 struct ocfs2_caching_info *ci, 461 struct buffer_head *bh) 462 { 463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 464 NULL, &ocfs2_xattr_tree_et_ops); 465 } 466 467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct ocfs2_xattr_value_buf *vb) 470 { 471 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 472 &ocfs2_xattr_value_et_ops); 473 } 474 475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct buffer_head *bh) 478 { 479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 480 NULL, &ocfs2_dx_root_et_ops); 481 } 482 483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct buffer_head *bh) 486 { 487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 488 NULL, &ocfs2_refcount_tree_et_ops); 489 } 490 491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 492 u64 new_last_eb_blk) 493 { 494 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 495 } 496 497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 498 { 499 return et->et_ops->eo_get_last_eb_blk(et); 500 } 501 502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 503 u32 clusters) 504 { 505 et->et_ops->eo_update_clusters(et, clusters); 506 } 507 508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 509 struct ocfs2_extent_rec *rec) 510 { 511 if (et->et_ops->eo_extent_map_insert) 512 et->et_ops->eo_extent_map_insert(et, rec); 513 } 514 515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 516 u32 clusters) 517 { 518 if (et->et_ops->eo_extent_map_truncate) 519 et->et_ops->eo_extent_map_truncate(et, clusters); 520 } 521 522 static inline int ocfs2_et_root_journal_access(handle_t *handle, 523 struct ocfs2_extent_tree *et, 524 int type) 525 { 526 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 527 type); 528 } 529 530 static inline enum ocfs2_contig_type 531 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 532 struct ocfs2_extent_rec *rec, 533 struct ocfs2_extent_rec *insert_rec) 534 { 535 if (et->et_ops->eo_extent_contig) 536 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 537 538 return ocfs2_extent_rec_contig( 539 ocfs2_metadata_cache_get_super(et->et_ci), 540 rec, insert_rec); 541 } 542 543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 544 struct ocfs2_extent_rec *rec) 545 { 546 int ret = 0; 547 548 if (et->et_ops->eo_insert_check) 549 ret = et->et_ops->eo_insert_check(et, rec); 550 return ret; 551 } 552 553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 554 { 555 int ret = 0; 556 557 if (et->et_ops->eo_sanity_check) 558 ret = et->et_ops->eo_sanity_check(et); 559 return ret; 560 } 561 562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 563 struct ocfs2_extent_block *eb); 564 static void ocfs2_adjust_rightmost_records(handle_t *handle, 565 struct ocfs2_extent_tree *et, 566 struct ocfs2_path *path, 567 struct ocfs2_extent_rec *insert_rec); 568 /* 569 * Reset the actual path elements so that we can reuse the structure 570 * to build another path. Generally, this involves freeing the buffer 571 * heads. 572 */ 573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 574 { 575 int i, start = 0, depth = 0; 576 struct ocfs2_path_item *node; 577 578 if (keep_root) 579 start = 1; 580 581 for(i = start; i < path_num_items(path); i++) { 582 node = &path->p_node[i]; 583 584 brelse(node->bh); 585 node->bh = NULL; 586 node->el = NULL; 587 } 588 589 /* 590 * Tree depth may change during truncate, or insert. If we're 591 * keeping the root extent list, then make sure that our path 592 * structure reflects the proper depth. 593 */ 594 if (keep_root) 595 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 596 else 597 path_root_access(path) = NULL; 598 599 path->p_tree_depth = depth; 600 } 601 602 void ocfs2_free_path(struct ocfs2_path *path) 603 { 604 if (path) { 605 ocfs2_reinit_path(path, 0); 606 kfree(path); 607 } 608 } 609 610 /* 611 * All the elements of src into dest. After this call, src could be freed 612 * without affecting dest. 613 * 614 * Both paths should have the same root. Any non-root elements of dest 615 * will be freed. 616 */ 617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 618 { 619 int i; 620 621 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 622 BUG_ON(path_root_el(dest) != path_root_el(src)); 623 BUG_ON(path_root_access(dest) != path_root_access(src)); 624 625 ocfs2_reinit_path(dest, 1); 626 627 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 628 dest->p_node[i].bh = src->p_node[i].bh; 629 dest->p_node[i].el = src->p_node[i].el; 630 631 if (dest->p_node[i].bh) 632 get_bh(dest->p_node[i].bh); 633 } 634 } 635 636 /* 637 * Make the *dest path the same as src and re-initialize src path to 638 * have a root only. 639 */ 640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 641 { 642 int i; 643 644 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 645 BUG_ON(path_root_access(dest) != path_root_access(src)); 646 647 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 648 brelse(dest->p_node[i].bh); 649 650 dest->p_node[i].bh = src->p_node[i].bh; 651 dest->p_node[i].el = src->p_node[i].el; 652 653 src->p_node[i].bh = NULL; 654 src->p_node[i].el = NULL; 655 } 656 } 657 658 /* 659 * Insert an extent block at given index. 660 * 661 * This will not take an additional reference on eb_bh. 662 */ 663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 664 struct buffer_head *eb_bh) 665 { 666 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 667 668 /* 669 * Right now, no root bh is an extent block, so this helps 670 * catch code errors with dinode trees. The assertion can be 671 * safely removed if we ever need to insert extent block 672 * structures at the root. 673 */ 674 BUG_ON(index == 0); 675 676 path->p_node[index].bh = eb_bh; 677 path->p_node[index].el = &eb->h_list; 678 } 679 680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 681 struct ocfs2_extent_list *root_el, 682 ocfs2_journal_access_func access) 683 { 684 struct ocfs2_path *path; 685 686 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 687 688 path = kzalloc(sizeof(*path), GFP_NOFS); 689 if (path) { 690 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 691 get_bh(root_bh); 692 path_root_bh(path) = root_bh; 693 path_root_el(path) = root_el; 694 path_root_access(path) = access; 695 } 696 697 return path; 698 } 699 700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 701 { 702 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 703 path_root_access(path)); 704 } 705 706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 707 { 708 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 709 et->et_root_journal_access); 710 } 711 712 /* 713 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 714 * otherwise it's the root_access function. 715 * 716 * I don't like the way this function's name looks next to 717 * ocfs2_journal_access_path(), but I don't have a better one. 718 */ 719 int ocfs2_path_bh_journal_access(handle_t *handle, 720 struct ocfs2_caching_info *ci, 721 struct ocfs2_path *path, 722 int idx) 723 { 724 ocfs2_journal_access_func access = path_root_access(path); 725 726 if (!access) 727 access = ocfs2_journal_access; 728 729 if (idx) 730 access = ocfs2_journal_access_eb; 731 732 return access(handle, ci, path->p_node[idx].bh, 733 OCFS2_JOURNAL_ACCESS_WRITE); 734 } 735 736 /* 737 * Convenience function to journal all components in a path. 738 */ 739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 740 handle_t *handle, 741 struct ocfs2_path *path) 742 { 743 int i, ret = 0; 744 745 if (!path) 746 goto out; 747 748 for(i = 0; i < path_num_items(path); i++) { 749 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 750 if (ret < 0) { 751 mlog_errno(ret); 752 goto out; 753 } 754 } 755 756 out: 757 return ret; 758 } 759 760 /* 761 * Return the index of the extent record which contains cluster #v_cluster. 762 * -1 is returned if it was not found. 763 * 764 * Should work fine on interior and exterior nodes. 765 */ 766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 767 { 768 int ret = -1; 769 int i; 770 struct ocfs2_extent_rec *rec; 771 u32 rec_end, rec_start, clusters; 772 773 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 774 rec = &el->l_recs[i]; 775 776 rec_start = le32_to_cpu(rec->e_cpos); 777 clusters = ocfs2_rec_clusters(el, rec); 778 779 rec_end = rec_start + clusters; 780 781 if (v_cluster >= rec_start && v_cluster < rec_end) { 782 ret = i; 783 break; 784 } 785 } 786 787 return ret; 788 } 789 790 /* 791 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 792 * ocfs2_extent_rec_contig only work properly against leaf nodes! 793 */ 794 static int ocfs2_block_extent_contig(struct super_block *sb, 795 struct ocfs2_extent_rec *ext, 796 u64 blkno) 797 { 798 u64 blk_end = le64_to_cpu(ext->e_blkno); 799 800 blk_end += ocfs2_clusters_to_blocks(sb, 801 le16_to_cpu(ext->e_leaf_clusters)); 802 803 return blkno == blk_end; 804 } 805 806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 807 struct ocfs2_extent_rec *right) 808 { 809 u32 left_range; 810 811 left_range = le32_to_cpu(left->e_cpos) + 812 le16_to_cpu(left->e_leaf_clusters); 813 814 return (left_range == le32_to_cpu(right->e_cpos)); 815 } 816 817 static enum ocfs2_contig_type 818 ocfs2_extent_rec_contig(struct super_block *sb, 819 struct ocfs2_extent_rec *ext, 820 struct ocfs2_extent_rec *insert_rec) 821 { 822 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 823 824 /* 825 * Refuse to coalesce extent records with different flag 826 * fields - we don't want to mix unwritten extents with user 827 * data. 828 */ 829 if (ext->e_flags != insert_rec->e_flags) 830 return CONTIG_NONE; 831 832 if (ocfs2_extents_adjacent(ext, insert_rec) && 833 ocfs2_block_extent_contig(sb, ext, blkno)) 834 return CONTIG_RIGHT; 835 836 blkno = le64_to_cpu(ext->e_blkno); 837 if (ocfs2_extents_adjacent(insert_rec, ext) && 838 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 839 return CONTIG_LEFT; 840 841 return CONTIG_NONE; 842 } 843 844 /* 845 * NOTE: We can have pretty much any combination of contiguousness and 846 * appending. 847 * 848 * The usefulness of APPEND_TAIL is more in that it lets us know that 849 * we'll have to update the path to that leaf. 850 */ 851 enum ocfs2_append_type { 852 APPEND_NONE = 0, 853 APPEND_TAIL, 854 }; 855 856 enum ocfs2_split_type { 857 SPLIT_NONE = 0, 858 SPLIT_LEFT, 859 SPLIT_RIGHT, 860 }; 861 862 struct ocfs2_insert_type { 863 enum ocfs2_split_type ins_split; 864 enum ocfs2_append_type ins_appending; 865 enum ocfs2_contig_type ins_contig; 866 int ins_contig_index; 867 int ins_tree_depth; 868 }; 869 870 struct ocfs2_merge_ctxt { 871 enum ocfs2_contig_type c_contig_type; 872 int c_has_empty_extent; 873 int c_split_covers_rec; 874 }; 875 876 static int ocfs2_validate_extent_block(struct super_block *sb, 877 struct buffer_head *bh) 878 { 879 int rc; 880 struct ocfs2_extent_block *eb = 881 (struct ocfs2_extent_block *)bh->b_data; 882 883 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 884 885 BUG_ON(!buffer_uptodate(bh)); 886 887 /* 888 * If the ecc fails, we return the error but otherwise 889 * leave the filesystem running. We know any error is 890 * local to this block. 891 */ 892 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 893 if (rc) { 894 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 895 (unsigned long long)bh->b_blocknr); 896 return rc; 897 } 898 899 /* 900 * Errors after here are fatal. 901 */ 902 903 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 904 rc = ocfs2_error(sb, 905 "Extent block #%llu has bad signature %.*s\n", 906 (unsigned long long)bh->b_blocknr, 7, 907 eb->h_signature); 908 goto bail; 909 } 910 911 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 912 rc = ocfs2_error(sb, 913 "Extent block #%llu has an invalid h_blkno of %llu\n", 914 (unsigned long long)bh->b_blocknr, 915 (unsigned long long)le64_to_cpu(eb->h_blkno)); 916 goto bail; 917 } 918 919 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 922 (unsigned long long)bh->b_blocknr, 923 le32_to_cpu(eb->h_fs_generation)); 924 bail: 925 return rc; 926 } 927 928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 929 struct buffer_head **bh) 930 { 931 int rc; 932 struct buffer_head *tmp = *bh; 933 934 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 935 ocfs2_validate_extent_block); 936 937 /* If ocfs2_read_block() got us a new bh, pass it up. */ 938 if (!rc && !*bh) 939 *bh = tmp; 940 941 return rc; 942 } 943 944 945 /* 946 * How many free extents have we got before we need more meta data? 947 */ 948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 949 { 950 int retval; 951 struct ocfs2_extent_list *el = NULL; 952 struct ocfs2_extent_block *eb; 953 struct buffer_head *eb_bh = NULL; 954 u64 last_eb_blk = 0; 955 956 el = et->et_root_el; 957 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 958 959 if (last_eb_blk) { 960 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 961 &eb_bh); 962 if (retval < 0) { 963 mlog_errno(retval); 964 goto bail; 965 } 966 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 967 el = &eb->h_list; 968 } 969 970 if (el->l_tree_depth != 0) { 971 retval = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 972 "Owner %llu has leaf extent block %llu with an invalid l_tree_depth of %u\n", 973 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 974 (unsigned long long)last_eb_blk, 975 le16_to_cpu(el->l_tree_depth)); 976 goto bail; 977 } 978 979 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 980 bail: 981 brelse(eb_bh); 982 983 trace_ocfs2_num_free_extents(retval); 984 return retval; 985 } 986 987 /* expects array to already be allocated 988 * 989 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 990 * l_count for you 991 */ 992 static int ocfs2_create_new_meta_bhs(handle_t *handle, 993 struct ocfs2_extent_tree *et, 994 int wanted, 995 struct ocfs2_alloc_context *meta_ac, 996 struct buffer_head *bhs[]) 997 { 998 int count, status, i; 999 u16 suballoc_bit_start; 1000 u32 num_got; 1001 u64 suballoc_loc, first_blkno; 1002 struct ocfs2_super *osb = 1003 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1004 struct ocfs2_extent_block *eb; 1005 1006 count = 0; 1007 while (count < wanted) { 1008 status = ocfs2_claim_metadata(handle, 1009 meta_ac, 1010 wanted - count, 1011 &suballoc_loc, 1012 &suballoc_bit_start, 1013 &num_got, 1014 &first_blkno); 1015 if (status < 0) { 1016 mlog_errno(status); 1017 goto bail; 1018 } 1019 1020 for(i = count; i < (num_got + count); i++) { 1021 bhs[i] = sb_getblk(osb->sb, first_blkno); 1022 if (bhs[i] == NULL) { 1023 status = -ENOMEM; 1024 mlog_errno(status); 1025 goto bail; 1026 } 1027 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1028 1029 status = ocfs2_journal_access_eb(handle, et->et_ci, 1030 bhs[i], 1031 OCFS2_JOURNAL_ACCESS_CREATE); 1032 if (status < 0) { 1033 mlog_errno(status); 1034 goto bail; 1035 } 1036 1037 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1038 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1039 /* Ok, setup the minimal stuff here. */ 1040 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1041 eb->h_blkno = cpu_to_le64(first_blkno); 1042 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1043 eb->h_suballoc_slot = 1044 cpu_to_le16(meta_ac->ac_alloc_slot); 1045 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1046 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1047 eb->h_list.l_count = 1048 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1049 1050 suballoc_bit_start++; 1051 first_blkno++; 1052 1053 /* We'll also be dirtied by the caller, so 1054 * this isn't absolutely necessary. */ 1055 ocfs2_journal_dirty(handle, bhs[i]); 1056 } 1057 1058 count += num_got; 1059 } 1060 1061 status = 0; 1062 bail: 1063 if (status < 0) { 1064 for(i = 0; i < wanted; i++) { 1065 brelse(bhs[i]); 1066 bhs[i] = NULL; 1067 } 1068 } 1069 return status; 1070 } 1071 1072 /* 1073 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1074 * 1075 * Returns the sum of the rightmost extent rec logical offset and 1076 * cluster count. 1077 * 1078 * ocfs2_add_branch() uses this to determine what logical cluster 1079 * value should be populated into the leftmost new branch records. 1080 * 1081 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1082 * value for the new topmost tree record. 1083 */ 1084 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1085 { 1086 int i; 1087 1088 i = le16_to_cpu(el->l_next_free_rec) - 1; 1089 1090 return le32_to_cpu(el->l_recs[i].e_cpos) + 1091 ocfs2_rec_clusters(el, &el->l_recs[i]); 1092 } 1093 1094 /* 1095 * Change range of the branches in the right most path according to the leaf 1096 * extent block's rightmost record. 1097 */ 1098 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1099 struct ocfs2_extent_tree *et) 1100 { 1101 int status; 1102 struct ocfs2_path *path = NULL; 1103 struct ocfs2_extent_list *el; 1104 struct ocfs2_extent_rec *rec; 1105 1106 path = ocfs2_new_path_from_et(et); 1107 if (!path) { 1108 status = -ENOMEM; 1109 return status; 1110 } 1111 1112 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1113 if (status < 0) { 1114 mlog_errno(status); 1115 goto out; 1116 } 1117 1118 status = ocfs2_extend_trans(handle, path_num_items(path)); 1119 if (status < 0) { 1120 mlog_errno(status); 1121 goto out; 1122 } 1123 1124 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1125 if (status < 0) { 1126 mlog_errno(status); 1127 goto out; 1128 } 1129 1130 el = path_leaf_el(path); 1131 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1132 1133 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1134 1135 out: 1136 ocfs2_free_path(path); 1137 return status; 1138 } 1139 1140 /* 1141 * Add an entire tree branch to our inode. eb_bh is the extent block 1142 * to start at, if we don't want to start the branch at the root 1143 * structure. 1144 * 1145 * last_eb_bh is required as we have to update it's next_leaf pointer 1146 * for the new last extent block. 1147 * 1148 * the new branch will be 'empty' in the sense that every block will 1149 * contain a single record with cluster count == 0. 1150 */ 1151 static int ocfs2_add_branch(handle_t *handle, 1152 struct ocfs2_extent_tree *et, 1153 struct buffer_head *eb_bh, 1154 struct buffer_head **last_eb_bh, 1155 struct ocfs2_alloc_context *meta_ac) 1156 { 1157 int status, new_blocks, i, block_given = 0; 1158 u64 next_blkno, new_last_eb_blk; 1159 struct buffer_head *bh; 1160 struct buffer_head **new_eb_bhs = NULL; 1161 struct ocfs2_extent_block *eb; 1162 struct ocfs2_extent_list *eb_el; 1163 struct ocfs2_extent_list *el; 1164 u32 new_cpos, root_end; 1165 1166 BUG_ON(!last_eb_bh || !*last_eb_bh); 1167 1168 if (eb_bh) { 1169 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1170 el = &eb->h_list; 1171 } else 1172 el = et->et_root_el; 1173 1174 /* we never add a branch to a leaf. */ 1175 BUG_ON(!el->l_tree_depth); 1176 1177 new_blocks = le16_to_cpu(el->l_tree_depth); 1178 1179 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1180 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1181 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1182 1183 /* 1184 * If there is a gap before the root end and the real end 1185 * of the rightmost leaf block, we need to remove the gap 1186 * between new_cpos and root_end first so that the tree 1187 * is consistent after we add a new branch(it will start 1188 * from new_cpos). 1189 */ 1190 if (root_end > new_cpos) { 1191 trace_ocfs2_adjust_rightmost_branch( 1192 (unsigned long long) 1193 ocfs2_metadata_cache_owner(et->et_ci), 1194 root_end, new_cpos); 1195 1196 status = ocfs2_adjust_rightmost_branch(handle, et); 1197 if (status) { 1198 mlog_errno(status); 1199 goto bail; 1200 } 1201 } 1202 1203 /* allocate the number of new eb blocks we need */ 1204 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1205 GFP_KERNEL); 1206 if (!new_eb_bhs) { 1207 status = -ENOMEM; 1208 mlog_errno(status); 1209 goto bail; 1210 } 1211 1212 /* Firstyly, try to reuse dealloc since we have already estimated how 1213 * many extent blocks we may use. 1214 */ 1215 if (!ocfs2_is_dealloc_empty(et)) { 1216 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1217 new_eb_bhs, new_blocks, 1218 &block_given); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 } 1224 1225 BUG_ON(block_given > new_blocks); 1226 1227 if (block_given < new_blocks) { 1228 BUG_ON(!meta_ac); 1229 status = ocfs2_create_new_meta_bhs(handle, et, 1230 new_blocks - block_given, 1231 meta_ac, 1232 &new_eb_bhs[block_given]); 1233 if (status < 0) { 1234 mlog_errno(status); 1235 goto bail; 1236 } 1237 } 1238 1239 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1240 * linked with the rest of the tree. 1241 * conversely, new_eb_bhs[0] is the new bottommost leaf. 1242 * 1243 * when we leave the loop, new_last_eb_blk will point to the 1244 * newest leaf, and next_blkno will point to the topmost extent 1245 * block. */ 1246 next_blkno = new_last_eb_blk = 0; 1247 for(i = 0; i < new_blocks; i++) { 1248 bh = new_eb_bhs[i]; 1249 eb = (struct ocfs2_extent_block *) bh->b_data; 1250 /* ocfs2_create_new_meta_bhs() should create it right! */ 1251 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1252 eb_el = &eb->h_list; 1253 1254 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1255 OCFS2_JOURNAL_ACCESS_CREATE); 1256 if (status < 0) { 1257 mlog_errno(status); 1258 goto bail; 1259 } 1260 1261 eb->h_next_leaf_blk = 0; 1262 eb_el->l_tree_depth = cpu_to_le16(i); 1263 eb_el->l_next_free_rec = cpu_to_le16(1); 1264 /* 1265 * This actually counts as an empty extent as 1266 * c_clusters == 0 1267 */ 1268 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1269 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1270 /* 1271 * eb_el isn't always an interior node, but even leaf 1272 * nodes want a zero'd flags and reserved field so 1273 * this gets the whole 32 bits regardless of use. 1274 */ 1275 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1276 if (!eb_el->l_tree_depth) 1277 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1278 1279 ocfs2_journal_dirty(handle, bh); 1280 next_blkno = le64_to_cpu(eb->h_blkno); 1281 } 1282 1283 /* This is a bit hairy. We want to update up to three blocks 1284 * here without leaving any of them in an inconsistent state 1285 * in case of error. We don't have to worry about 1286 * journal_dirty erroring as it won't unless we've aborted the 1287 * handle (in which case we would never be here) so reserving 1288 * the write with journal_access is all we need to do. */ 1289 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1290 OCFS2_JOURNAL_ACCESS_WRITE); 1291 if (status < 0) { 1292 mlog_errno(status); 1293 goto bail; 1294 } 1295 status = ocfs2_et_root_journal_access(handle, et, 1296 OCFS2_JOURNAL_ACCESS_WRITE); 1297 if (status < 0) { 1298 mlog_errno(status); 1299 goto bail; 1300 } 1301 if (eb_bh) { 1302 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1303 OCFS2_JOURNAL_ACCESS_WRITE); 1304 if (status < 0) { 1305 mlog_errno(status); 1306 goto bail; 1307 } 1308 } 1309 1310 /* Link the new branch into the rest of the tree (el will 1311 * either be on the root_bh, or the extent block passed in. */ 1312 i = le16_to_cpu(el->l_next_free_rec); 1313 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1314 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1315 el->l_recs[i].e_int_clusters = 0; 1316 le16_add_cpu(&el->l_next_free_rec, 1); 1317 1318 /* fe needs a new last extent block pointer, as does the 1319 * next_leaf on the previously last-extent-block. */ 1320 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1321 1322 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1323 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1324 1325 ocfs2_journal_dirty(handle, *last_eb_bh); 1326 ocfs2_journal_dirty(handle, et->et_root_bh); 1327 if (eb_bh) 1328 ocfs2_journal_dirty(handle, eb_bh); 1329 1330 /* 1331 * Some callers want to track the rightmost leaf so pass it 1332 * back here. 1333 */ 1334 brelse(*last_eb_bh); 1335 get_bh(new_eb_bhs[0]); 1336 *last_eb_bh = new_eb_bhs[0]; 1337 1338 status = 0; 1339 bail: 1340 if (new_eb_bhs) { 1341 for (i = 0; i < new_blocks; i++) 1342 brelse(new_eb_bhs[i]); 1343 kfree(new_eb_bhs); 1344 } 1345 1346 return status; 1347 } 1348 1349 /* 1350 * adds another level to the allocation tree. 1351 * returns back the new extent block so you can add a branch to it 1352 * after this call. 1353 */ 1354 static int ocfs2_shift_tree_depth(handle_t *handle, 1355 struct ocfs2_extent_tree *et, 1356 struct ocfs2_alloc_context *meta_ac, 1357 struct buffer_head **ret_new_eb_bh) 1358 { 1359 int status, i, block_given = 0; 1360 u32 new_clusters; 1361 struct buffer_head *new_eb_bh = NULL; 1362 struct ocfs2_extent_block *eb; 1363 struct ocfs2_extent_list *root_el; 1364 struct ocfs2_extent_list *eb_el; 1365 1366 if (!ocfs2_is_dealloc_empty(et)) { 1367 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1368 &new_eb_bh, 1, 1369 &block_given); 1370 } else if (meta_ac) { 1371 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1372 &new_eb_bh); 1373 1374 } else { 1375 BUG(); 1376 } 1377 1378 if (status < 0) { 1379 mlog_errno(status); 1380 goto bail; 1381 } 1382 1383 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1384 /* ocfs2_create_new_meta_bhs() should create it right! */ 1385 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1386 1387 eb_el = &eb->h_list; 1388 root_el = et->et_root_el; 1389 1390 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1391 OCFS2_JOURNAL_ACCESS_CREATE); 1392 if (status < 0) { 1393 mlog_errno(status); 1394 goto bail; 1395 } 1396 1397 /* copy the root extent list data into the new extent block */ 1398 eb_el->l_tree_depth = root_el->l_tree_depth; 1399 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1400 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1401 eb_el->l_recs[i] = root_el->l_recs[i]; 1402 1403 ocfs2_journal_dirty(handle, new_eb_bh); 1404 1405 status = ocfs2_et_root_journal_access(handle, et, 1406 OCFS2_JOURNAL_ACCESS_WRITE); 1407 if (status < 0) { 1408 mlog_errno(status); 1409 goto bail; 1410 } 1411 1412 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1413 1414 /* update root_bh now */ 1415 le16_add_cpu(&root_el->l_tree_depth, 1); 1416 root_el->l_recs[0].e_cpos = 0; 1417 root_el->l_recs[0].e_blkno = eb->h_blkno; 1418 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1419 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1420 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1421 root_el->l_next_free_rec = cpu_to_le16(1); 1422 1423 /* If this is our 1st tree depth shift, then last_eb_blk 1424 * becomes the allocated extent block */ 1425 if (root_el->l_tree_depth == cpu_to_le16(1)) 1426 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1427 1428 ocfs2_journal_dirty(handle, et->et_root_bh); 1429 1430 *ret_new_eb_bh = new_eb_bh; 1431 new_eb_bh = NULL; 1432 status = 0; 1433 bail: 1434 brelse(new_eb_bh); 1435 1436 return status; 1437 } 1438 1439 /* 1440 * Should only be called when there is no space left in any of the 1441 * leaf nodes. What we want to do is find the lowest tree depth 1442 * non-leaf extent block with room for new records. There are three 1443 * valid results of this search: 1444 * 1445 * 1) a lowest extent block is found, then we pass it back in 1446 * *lowest_eb_bh and return '0' 1447 * 1448 * 2) the search fails to find anything, but the root_el has room. We 1449 * pass NULL back in *lowest_eb_bh, but still return '0' 1450 * 1451 * 3) the search fails to find anything AND the root_el is full, in 1452 * which case we return > 0 1453 * 1454 * return status < 0 indicates an error. 1455 */ 1456 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1457 struct buffer_head **target_bh) 1458 { 1459 int status = 0, i; 1460 u64 blkno; 1461 struct ocfs2_extent_block *eb; 1462 struct ocfs2_extent_list *el; 1463 struct buffer_head *bh = NULL; 1464 struct buffer_head *lowest_bh = NULL; 1465 1466 *target_bh = NULL; 1467 1468 el = et->et_root_el; 1469 1470 while(le16_to_cpu(el->l_tree_depth) > 1) { 1471 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1472 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1473 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1474 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1475 goto bail; 1476 } 1477 i = le16_to_cpu(el->l_next_free_rec) - 1; 1478 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1479 if (!blkno) { 1480 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1481 "Owner %llu has extent list where extent # %d has no physical block start\n", 1482 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1483 goto bail; 1484 } 1485 1486 brelse(bh); 1487 bh = NULL; 1488 1489 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1490 if (status < 0) { 1491 mlog_errno(status); 1492 goto bail; 1493 } 1494 1495 eb = (struct ocfs2_extent_block *) bh->b_data; 1496 el = &eb->h_list; 1497 1498 if (le16_to_cpu(el->l_next_free_rec) < 1499 le16_to_cpu(el->l_count)) { 1500 brelse(lowest_bh); 1501 lowest_bh = bh; 1502 get_bh(lowest_bh); 1503 } 1504 } 1505 1506 /* If we didn't find one and the fe doesn't have any room, 1507 * then return '1' */ 1508 el = et->et_root_el; 1509 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1510 status = 1; 1511 1512 *target_bh = lowest_bh; 1513 bail: 1514 brelse(bh); 1515 1516 return status; 1517 } 1518 1519 /* 1520 * Grow a b-tree so that it has more records. 1521 * 1522 * We might shift the tree depth in which case existing paths should 1523 * be considered invalid. 1524 * 1525 * Tree depth after the grow is returned via *final_depth. 1526 * 1527 * *last_eb_bh will be updated by ocfs2_add_branch(). 1528 */ 1529 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1530 int *final_depth, struct buffer_head **last_eb_bh, 1531 struct ocfs2_alloc_context *meta_ac) 1532 { 1533 int ret, shift; 1534 struct ocfs2_extent_list *el = et->et_root_el; 1535 int depth = le16_to_cpu(el->l_tree_depth); 1536 struct buffer_head *bh = NULL; 1537 1538 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1539 1540 shift = ocfs2_find_branch_target(et, &bh); 1541 if (shift < 0) { 1542 ret = shift; 1543 mlog_errno(ret); 1544 goto out; 1545 } 1546 1547 /* We traveled all the way to the bottom of the allocation tree 1548 * and didn't find room for any more extents - we need to add 1549 * another tree level */ 1550 if (shift) { 1551 BUG_ON(bh); 1552 trace_ocfs2_grow_tree( 1553 (unsigned long long) 1554 ocfs2_metadata_cache_owner(et->et_ci), 1555 depth); 1556 1557 /* ocfs2_shift_tree_depth will return us a buffer with 1558 * the new extent block (so we can pass that to 1559 * ocfs2_add_branch). */ 1560 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1561 if (ret < 0) { 1562 mlog_errno(ret); 1563 goto out; 1564 } 1565 depth++; 1566 if (depth == 1) { 1567 /* 1568 * Special case: we have room now if we shifted from 1569 * tree_depth 0, so no more work needs to be done. 1570 * 1571 * We won't be calling add_branch, so pass 1572 * back *last_eb_bh as the new leaf. At depth 1573 * zero, it should always be null so there's 1574 * no reason to brelse. 1575 */ 1576 BUG_ON(*last_eb_bh); 1577 get_bh(bh); 1578 *last_eb_bh = bh; 1579 goto out; 1580 } 1581 } 1582 1583 /* call ocfs2_add_branch to add the final part of the tree with 1584 * the new data. */ 1585 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1586 meta_ac); 1587 if (ret < 0) 1588 mlog_errno(ret); 1589 1590 out: 1591 if (final_depth) 1592 *final_depth = depth; 1593 brelse(bh); 1594 return ret; 1595 } 1596 1597 /* 1598 * This function will discard the rightmost extent record. 1599 */ 1600 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1601 { 1602 int next_free = le16_to_cpu(el->l_next_free_rec); 1603 int count = le16_to_cpu(el->l_count); 1604 unsigned int num_bytes; 1605 1606 BUG_ON(!next_free); 1607 /* This will cause us to go off the end of our extent list. */ 1608 BUG_ON(next_free >= count); 1609 1610 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1611 1612 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1613 } 1614 1615 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1616 struct ocfs2_extent_rec *insert_rec) 1617 { 1618 int i, insert_index, next_free, has_empty, num_bytes; 1619 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1620 struct ocfs2_extent_rec *rec; 1621 1622 next_free = le16_to_cpu(el->l_next_free_rec); 1623 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1624 1625 BUG_ON(!next_free); 1626 1627 /* The tree code before us didn't allow enough room in the leaf. */ 1628 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1629 1630 /* 1631 * The easiest way to approach this is to just remove the 1632 * empty extent and temporarily decrement next_free. 1633 */ 1634 if (has_empty) { 1635 /* 1636 * If next_free was 1 (only an empty extent), this 1637 * loop won't execute, which is fine. We still want 1638 * the decrement above to happen. 1639 */ 1640 for(i = 0; i < (next_free - 1); i++) 1641 el->l_recs[i] = el->l_recs[i+1]; 1642 1643 next_free--; 1644 } 1645 1646 /* 1647 * Figure out what the new record index should be. 1648 */ 1649 for(i = 0; i < next_free; i++) { 1650 rec = &el->l_recs[i]; 1651 1652 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1653 break; 1654 } 1655 insert_index = i; 1656 1657 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1658 has_empty, next_free, 1659 le16_to_cpu(el->l_count)); 1660 1661 BUG_ON(insert_index < 0); 1662 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1663 BUG_ON(insert_index > next_free); 1664 1665 /* 1666 * No need to memmove if we're just adding to the tail. 1667 */ 1668 if (insert_index != next_free) { 1669 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1670 1671 num_bytes = next_free - insert_index; 1672 num_bytes *= sizeof(struct ocfs2_extent_rec); 1673 memmove(&el->l_recs[insert_index + 1], 1674 &el->l_recs[insert_index], 1675 num_bytes); 1676 } 1677 1678 /* 1679 * Either we had an empty extent, and need to re-increment or 1680 * there was no empty extent on a non full rightmost leaf node, 1681 * in which case we still need to increment. 1682 */ 1683 next_free++; 1684 el->l_next_free_rec = cpu_to_le16(next_free); 1685 /* 1686 * Make sure none of the math above just messed up our tree. 1687 */ 1688 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1689 1690 el->l_recs[insert_index] = *insert_rec; 1691 1692 } 1693 1694 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1695 { 1696 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1697 1698 BUG_ON(num_recs == 0); 1699 1700 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1701 num_recs--; 1702 size = num_recs * sizeof(struct ocfs2_extent_rec); 1703 memmove(&el->l_recs[0], &el->l_recs[1], size); 1704 memset(&el->l_recs[num_recs], 0, 1705 sizeof(struct ocfs2_extent_rec)); 1706 el->l_next_free_rec = cpu_to_le16(num_recs); 1707 } 1708 } 1709 1710 /* 1711 * Create an empty extent record . 1712 * 1713 * l_next_free_rec may be updated. 1714 * 1715 * If an empty extent already exists do nothing. 1716 */ 1717 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1718 { 1719 int next_free = le16_to_cpu(el->l_next_free_rec); 1720 1721 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1722 1723 if (next_free == 0) 1724 goto set_and_inc; 1725 1726 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1727 return; 1728 1729 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1730 "Asked to create an empty extent in a full list:\n" 1731 "count = %u, tree depth = %u", 1732 le16_to_cpu(el->l_count), 1733 le16_to_cpu(el->l_tree_depth)); 1734 1735 ocfs2_shift_records_right(el); 1736 1737 set_and_inc: 1738 le16_add_cpu(&el->l_next_free_rec, 1); 1739 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1740 } 1741 1742 /* 1743 * For a rotation which involves two leaf nodes, the "root node" is 1744 * the lowest level tree node which contains a path to both leafs. This 1745 * resulting set of information can be used to form a complete "subtree" 1746 * 1747 * This function is passed two full paths from the dinode down to a 1748 * pair of adjacent leaves. It's task is to figure out which path 1749 * index contains the subtree root - this can be the root index itself 1750 * in a worst-case rotation. 1751 * 1752 * The array index of the subtree root is passed back. 1753 */ 1754 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1755 struct ocfs2_path *left, 1756 struct ocfs2_path *right) 1757 { 1758 int i = 0; 1759 1760 /* 1761 * Check that the caller passed in two paths from the same tree. 1762 */ 1763 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1764 1765 do { 1766 i++; 1767 1768 /* 1769 * The caller didn't pass two adjacent paths. 1770 */ 1771 mlog_bug_on_msg(i > left->p_tree_depth, 1772 "Owner %llu, left depth %u, right depth %u\n" 1773 "left leaf blk %llu, right leaf blk %llu\n", 1774 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1775 left->p_tree_depth, right->p_tree_depth, 1776 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1777 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1778 } while (left->p_node[i].bh->b_blocknr == 1779 right->p_node[i].bh->b_blocknr); 1780 1781 return i - 1; 1782 } 1783 1784 typedef void (path_insert_t)(void *, struct buffer_head *); 1785 1786 /* 1787 * Traverse a btree path in search of cpos, starting at root_el. 1788 * 1789 * This code can be called with a cpos larger than the tree, in which 1790 * case it will return the rightmost path. 1791 */ 1792 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1793 struct ocfs2_extent_list *root_el, u32 cpos, 1794 path_insert_t *func, void *data) 1795 { 1796 int i, ret = 0; 1797 u32 range; 1798 u64 blkno; 1799 struct buffer_head *bh = NULL; 1800 struct ocfs2_extent_block *eb; 1801 struct ocfs2_extent_list *el; 1802 struct ocfs2_extent_rec *rec; 1803 1804 el = root_el; 1805 while (el->l_tree_depth) { 1806 if (unlikely(le16_to_cpu(el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH)) { 1807 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1808 "Owner %llu has invalid tree depth %u in extent list\n", 1809 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1810 le16_to_cpu(el->l_tree_depth)); 1811 ret = -EROFS; 1812 goto out; 1813 } 1814 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1815 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1816 "Owner %llu has empty extent list at depth %u\n", 1817 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1818 le16_to_cpu(el->l_tree_depth)); 1819 ret = -EROFS; 1820 goto out; 1821 1822 } 1823 1824 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1825 rec = &el->l_recs[i]; 1826 1827 /* 1828 * In the case that cpos is off the allocation 1829 * tree, this should just wind up returning the 1830 * rightmost record. 1831 */ 1832 range = le32_to_cpu(rec->e_cpos) + 1833 ocfs2_rec_clusters(el, rec); 1834 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1835 break; 1836 } 1837 1838 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1839 if (blkno == 0) { 1840 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1841 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1842 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1843 le16_to_cpu(el->l_tree_depth), i); 1844 ret = -EROFS; 1845 goto out; 1846 } 1847 1848 brelse(bh); 1849 bh = NULL; 1850 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1851 if (ret) { 1852 mlog_errno(ret); 1853 goto out; 1854 } 1855 1856 eb = (struct ocfs2_extent_block *) bh->b_data; 1857 el = &eb->h_list; 1858 1859 if (le16_to_cpu(el->l_next_free_rec) > 1860 le16_to_cpu(el->l_count)) { 1861 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1862 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1863 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1864 (unsigned long long)bh->b_blocknr, 1865 le16_to_cpu(el->l_next_free_rec), 1866 le16_to_cpu(el->l_count)); 1867 ret = -EROFS; 1868 goto out; 1869 } 1870 1871 if (func) 1872 func(data, bh); 1873 } 1874 1875 out: 1876 /* 1877 * Catch any trailing bh that the loop didn't handle. 1878 */ 1879 brelse(bh); 1880 1881 return ret; 1882 } 1883 1884 /* 1885 * Given an initialized path (that is, it has a valid root extent 1886 * list), this function will traverse the btree in search of the path 1887 * which would contain cpos. 1888 * 1889 * The path traveled is recorded in the path structure. 1890 * 1891 * Note that this will not do any comparisons on leaf node extent 1892 * records, so it will work fine in the case that we just added a tree 1893 * branch. 1894 */ 1895 struct find_path_data { 1896 int index; 1897 struct ocfs2_path *path; 1898 }; 1899 static void find_path_ins(void *data, struct buffer_head *bh) 1900 { 1901 struct find_path_data *fp = data; 1902 1903 get_bh(bh); 1904 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1905 fp->index++; 1906 } 1907 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1908 struct ocfs2_path *path, u32 cpos) 1909 { 1910 struct find_path_data data; 1911 1912 data.index = 1; 1913 data.path = path; 1914 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1915 find_path_ins, &data); 1916 } 1917 1918 static void find_leaf_ins(void *data, struct buffer_head *bh) 1919 { 1920 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1921 struct ocfs2_extent_list *el = &eb->h_list; 1922 struct buffer_head **ret = data; 1923 1924 /* We want to retain only the leaf block. */ 1925 if (le16_to_cpu(el->l_tree_depth) == 0) { 1926 get_bh(bh); 1927 *ret = bh; 1928 } 1929 } 1930 /* 1931 * Find the leaf block in the tree which would contain cpos. No 1932 * checking of the actual leaf is done. 1933 * 1934 * Some paths want to call this instead of allocating a path structure 1935 * and calling ocfs2_find_path(). 1936 * 1937 * This function doesn't handle non btree extent lists. 1938 */ 1939 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1940 struct ocfs2_extent_list *root_el, u32 cpos, 1941 struct buffer_head **leaf_bh) 1942 { 1943 int ret; 1944 struct buffer_head *bh = NULL; 1945 1946 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1947 if (ret) { 1948 mlog_errno(ret); 1949 goto out; 1950 } 1951 1952 *leaf_bh = bh; 1953 out: 1954 return ret; 1955 } 1956 1957 /* 1958 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1959 * 1960 * Basically, we've moved stuff around at the bottom of the tree and 1961 * we need to fix up the extent records above the changes to reflect 1962 * the new changes. 1963 * 1964 * left_rec: the record on the left. 1965 * right_rec: the record to the right of left_rec 1966 * right_child_el: is the child list pointed to by right_rec 1967 * 1968 * By definition, this only works on interior nodes. 1969 */ 1970 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1971 struct ocfs2_extent_rec *right_rec, 1972 struct ocfs2_extent_list *right_child_el) 1973 { 1974 u32 left_clusters, right_end; 1975 1976 /* 1977 * Interior nodes never have holes. Their cpos is the cpos of 1978 * the leftmost record in their child list. Their cluster 1979 * count covers the full theoretical range of their child list 1980 * - the range between their cpos and the cpos of the record 1981 * immediately to their right. 1982 */ 1983 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1984 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1985 BUG_ON(right_child_el->l_tree_depth); 1986 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1987 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1988 } 1989 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1990 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1991 1992 /* 1993 * Calculate the rightmost cluster count boundary before 1994 * moving cpos - we will need to adjust clusters after 1995 * updating e_cpos to keep the same highest cluster count. 1996 */ 1997 right_end = le32_to_cpu(right_rec->e_cpos); 1998 right_end += le32_to_cpu(right_rec->e_int_clusters); 1999 2000 right_rec->e_cpos = left_rec->e_cpos; 2001 le32_add_cpu(&right_rec->e_cpos, left_clusters); 2002 2003 right_end -= le32_to_cpu(right_rec->e_cpos); 2004 right_rec->e_int_clusters = cpu_to_le32(right_end); 2005 } 2006 2007 /* 2008 * Adjust the adjacent root node records involved in a 2009 * rotation. left_el_blkno is passed in as a key so that we can easily 2010 * find it's index in the root list. 2011 */ 2012 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2013 struct ocfs2_extent_list *left_el, 2014 struct ocfs2_extent_list *right_el, 2015 u64 left_el_blkno) 2016 { 2017 int i; 2018 2019 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2020 le16_to_cpu(left_el->l_tree_depth)); 2021 2022 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2023 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2024 break; 2025 } 2026 2027 /* 2028 * The path walking code should have never returned a root and 2029 * two paths which are not adjacent. 2030 */ 2031 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2032 2033 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2034 &root_el->l_recs[i + 1], right_el); 2035 } 2036 2037 /* 2038 * We've changed a leaf block (in right_path) and need to reflect that 2039 * change back up the subtree. 2040 * 2041 * This happens in multiple places: 2042 * - When we've moved an extent record from the left path leaf to the right 2043 * path leaf to make room for an empty extent in the left path leaf. 2044 * - When our insert into the right path leaf is at the leftmost edge 2045 * and requires an update of the path immediately to it's left. This 2046 * can occur at the end of some types of rotation and appending inserts. 2047 * - When we've adjusted the last extent record in the left path leaf and the 2048 * 1st extent record in the right path leaf during cross extent block merge. 2049 */ 2050 static void ocfs2_complete_edge_insert(handle_t *handle, 2051 struct ocfs2_path *left_path, 2052 struct ocfs2_path *right_path, 2053 int subtree_index) 2054 { 2055 int i, idx; 2056 struct ocfs2_extent_list *el, *left_el, *right_el; 2057 struct ocfs2_extent_rec *left_rec, *right_rec; 2058 struct buffer_head *root_bh; 2059 2060 /* 2061 * Update the counts and position values within all the 2062 * interior nodes to reflect the leaf rotation we just did. 2063 * 2064 * The root node is handled below the loop. 2065 * 2066 * We begin the loop with right_el and left_el pointing to the 2067 * leaf lists and work our way up. 2068 * 2069 * NOTE: within this loop, left_el and right_el always refer 2070 * to the *child* lists. 2071 */ 2072 left_el = path_leaf_el(left_path); 2073 right_el = path_leaf_el(right_path); 2074 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2075 trace_ocfs2_complete_edge_insert(i); 2076 2077 /* 2078 * One nice property of knowing that all of these 2079 * nodes are below the root is that we only deal with 2080 * the leftmost right node record and the rightmost 2081 * left node record. 2082 */ 2083 el = left_path->p_node[i].el; 2084 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2085 left_rec = &el->l_recs[idx]; 2086 2087 el = right_path->p_node[i].el; 2088 right_rec = &el->l_recs[0]; 2089 2090 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2091 2092 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2093 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2094 2095 /* 2096 * Setup our list pointers now so that the current 2097 * parents become children in the next iteration. 2098 */ 2099 left_el = left_path->p_node[i].el; 2100 right_el = right_path->p_node[i].el; 2101 } 2102 2103 /* 2104 * At the root node, adjust the two adjacent records which 2105 * begin our path to the leaves. 2106 */ 2107 2108 el = left_path->p_node[subtree_index].el; 2109 left_el = left_path->p_node[subtree_index + 1].el; 2110 right_el = right_path->p_node[subtree_index + 1].el; 2111 2112 ocfs2_adjust_root_records(el, left_el, right_el, 2113 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2114 2115 root_bh = left_path->p_node[subtree_index].bh; 2116 2117 ocfs2_journal_dirty(handle, root_bh); 2118 } 2119 2120 static int ocfs2_rotate_subtree_right(handle_t *handle, 2121 struct ocfs2_extent_tree *et, 2122 struct ocfs2_path *left_path, 2123 struct ocfs2_path *right_path, 2124 int subtree_index) 2125 { 2126 int ret, i; 2127 struct buffer_head *right_leaf_bh; 2128 struct buffer_head *left_leaf_bh = NULL; 2129 struct buffer_head *root_bh; 2130 struct ocfs2_extent_list *right_el, *left_el; 2131 struct ocfs2_extent_rec move_rec; 2132 2133 left_leaf_bh = path_leaf_bh(left_path); 2134 left_el = path_leaf_el(left_path); 2135 2136 if (left_el->l_next_free_rec != left_el->l_count) { 2137 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2138 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2139 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2140 (unsigned long long)left_leaf_bh->b_blocknr, 2141 le16_to_cpu(left_el->l_next_free_rec)); 2142 return -EROFS; 2143 } 2144 2145 /* 2146 * This extent block may already have an empty record, so we 2147 * return early if so. 2148 */ 2149 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2150 return 0; 2151 2152 root_bh = left_path->p_node[subtree_index].bh; 2153 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2154 2155 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2156 subtree_index); 2157 if (ret) { 2158 mlog_errno(ret); 2159 goto out; 2160 } 2161 2162 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2163 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2164 right_path, i); 2165 if (ret) { 2166 mlog_errno(ret); 2167 goto out; 2168 } 2169 2170 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2171 left_path, i); 2172 if (ret) { 2173 mlog_errno(ret); 2174 goto out; 2175 } 2176 } 2177 2178 right_leaf_bh = path_leaf_bh(right_path); 2179 right_el = path_leaf_el(right_path); 2180 2181 /* This is a code error, not a disk corruption. */ 2182 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2183 "because rightmost leaf block %llu is empty\n", 2184 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2185 (unsigned long long)right_leaf_bh->b_blocknr); 2186 2187 ocfs2_create_empty_extent(right_el); 2188 2189 ocfs2_journal_dirty(handle, right_leaf_bh); 2190 2191 /* Do the copy now. */ 2192 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2193 move_rec = left_el->l_recs[i]; 2194 right_el->l_recs[0] = move_rec; 2195 2196 /* 2197 * Clear out the record we just copied and shift everything 2198 * over, leaving an empty extent in the left leaf. 2199 * 2200 * We temporarily subtract from next_free_rec so that the 2201 * shift will lose the tail record (which is now defunct). 2202 */ 2203 le16_add_cpu(&left_el->l_next_free_rec, -1); 2204 ocfs2_shift_records_right(left_el); 2205 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2206 le16_add_cpu(&left_el->l_next_free_rec, 1); 2207 2208 ocfs2_journal_dirty(handle, left_leaf_bh); 2209 2210 ocfs2_complete_edge_insert(handle, left_path, right_path, 2211 subtree_index); 2212 2213 out: 2214 return ret; 2215 } 2216 2217 /* 2218 * Given a full path, determine what cpos value would return us a path 2219 * containing the leaf immediately to the left of the current one. 2220 * 2221 * Will return zero if the path passed in is already the leftmost path. 2222 */ 2223 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2224 struct ocfs2_path *path, u32 *cpos) 2225 { 2226 int i, j, ret = 0; 2227 u64 blkno; 2228 struct ocfs2_extent_list *el; 2229 2230 BUG_ON(path->p_tree_depth == 0); 2231 2232 *cpos = 0; 2233 2234 blkno = path_leaf_bh(path)->b_blocknr; 2235 2236 /* Start at the tree node just above the leaf and work our way up. */ 2237 i = path->p_tree_depth - 1; 2238 while (i >= 0) { 2239 el = path->p_node[i].el; 2240 2241 /* 2242 * Find the extent record just before the one in our 2243 * path. 2244 */ 2245 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2246 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2247 if (j == 0) { 2248 if (i == 0) { 2249 /* 2250 * We've determined that the 2251 * path specified is already 2252 * the leftmost one - return a 2253 * cpos of zero. 2254 */ 2255 goto out; 2256 } 2257 /* 2258 * The leftmost record points to our 2259 * leaf - we need to travel up the 2260 * tree one level. 2261 */ 2262 goto next_node; 2263 } 2264 2265 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2266 *cpos = *cpos + ocfs2_rec_clusters(el, 2267 &el->l_recs[j - 1]); 2268 *cpos = *cpos - 1; 2269 goto out; 2270 } 2271 } 2272 2273 /* 2274 * If we got here, we never found a valid node where 2275 * the tree indicated one should be. 2276 */ 2277 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2278 (unsigned long long)blkno); 2279 ret = -EROFS; 2280 goto out; 2281 2282 next_node: 2283 blkno = path->p_node[i].bh->b_blocknr; 2284 i--; 2285 } 2286 2287 out: 2288 return ret; 2289 } 2290 2291 /* 2292 * Extend the transaction by enough credits to complete the rotation, 2293 * and still leave at least the original number of credits allocated 2294 * to this transaction. 2295 */ 2296 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2297 int op_credits, 2298 struct ocfs2_path *path) 2299 { 2300 int ret = 0; 2301 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2302 2303 if (jbd2_handle_buffer_credits(handle) < credits) 2304 ret = ocfs2_extend_trans(handle, 2305 credits - jbd2_handle_buffer_credits(handle)); 2306 2307 return ret; 2308 } 2309 2310 /* 2311 * Trap the case where we're inserting into the theoretical range past 2312 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2313 * whose cpos is less than ours into the right leaf. 2314 * 2315 * It's only necessary to look at the rightmost record of the left 2316 * leaf because the logic that calls us should ensure that the 2317 * theoretical ranges in the path components above the leaves are 2318 * correct. 2319 */ 2320 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2321 u32 insert_cpos) 2322 { 2323 struct ocfs2_extent_list *left_el; 2324 struct ocfs2_extent_rec *rec; 2325 int next_free; 2326 2327 left_el = path_leaf_el(left_path); 2328 next_free = le16_to_cpu(left_el->l_next_free_rec); 2329 rec = &left_el->l_recs[next_free - 1]; 2330 2331 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2332 return 1; 2333 return 0; 2334 } 2335 2336 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2337 { 2338 int next_free = le16_to_cpu(el->l_next_free_rec); 2339 unsigned int range; 2340 struct ocfs2_extent_rec *rec; 2341 2342 if (next_free == 0) 2343 return 0; 2344 2345 rec = &el->l_recs[0]; 2346 if (ocfs2_is_empty_extent(rec)) { 2347 /* Empty list. */ 2348 if (next_free == 1) 2349 return 0; 2350 rec = &el->l_recs[1]; 2351 } 2352 2353 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2354 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2355 return 1; 2356 return 0; 2357 } 2358 2359 /* 2360 * Rotate all the records in a btree right one record, starting at insert_cpos. 2361 * 2362 * The path to the rightmost leaf should be passed in. 2363 * 2364 * The array is assumed to be large enough to hold an entire path (tree depth). 2365 * 2366 * Upon successful return from this function: 2367 * 2368 * - The 'right_path' array will contain a path to the leaf block 2369 * whose range contains e_cpos. 2370 * - That leaf block will have a single empty extent in list index 0. 2371 * - In the case that the rotation requires a post-insert update, 2372 * *ret_left_path will contain a valid path which can be passed to 2373 * ocfs2_insert_path(). 2374 */ 2375 static int ocfs2_rotate_tree_right(handle_t *handle, 2376 struct ocfs2_extent_tree *et, 2377 enum ocfs2_split_type split, 2378 u32 insert_cpos, 2379 struct ocfs2_path *right_path, 2380 struct ocfs2_path **ret_left_path) 2381 { 2382 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle); 2383 u32 cpos; 2384 struct ocfs2_path *left_path = NULL; 2385 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2386 2387 *ret_left_path = NULL; 2388 2389 left_path = ocfs2_new_path_from_path(right_path); 2390 if (!left_path) { 2391 ret = -ENOMEM; 2392 mlog_errno(ret); 2393 goto out; 2394 } 2395 2396 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2397 if (ret) { 2398 mlog_errno(ret); 2399 goto out; 2400 } 2401 2402 trace_ocfs2_rotate_tree_right( 2403 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2404 insert_cpos, cpos); 2405 2406 /* 2407 * What we want to do here is: 2408 * 2409 * 1) Start with the rightmost path. 2410 * 2411 * 2) Determine a path to the leaf block directly to the left 2412 * of that leaf. 2413 * 2414 * 3) Determine the 'subtree root' - the lowest level tree node 2415 * which contains a path to both leaves. 2416 * 2417 * 4) Rotate the subtree. 2418 * 2419 * 5) Find the next subtree by considering the left path to be 2420 * the new right path. 2421 * 2422 * The check at the top of this while loop also accepts 2423 * insert_cpos == cpos because cpos is only a _theoretical_ 2424 * value to get us the left path - insert_cpos might very well 2425 * be filling that hole. 2426 * 2427 * Stop at a cpos of '0' because we either started at the 2428 * leftmost branch (i.e., a tree with one branch and a 2429 * rotation inside of it), or we've gone as far as we can in 2430 * rotating subtrees. 2431 */ 2432 while (cpos && insert_cpos <= cpos) { 2433 trace_ocfs2_rotate_tree_right( 2434 (unsigned long long) 2435 ocfs2_metadata_cache_owner(et->et_ci), 2436 insert_cpos, cpos); 2437 2438 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2439 if (ret) { 2440 mlog_errno(ret); 2441 goto out; 2442 } 2443 2444 mlog_bug_on_msg(path_leaf_bh(left_path) == 2445 path_leaf_bh(right_path), 2446 "Owner %llu: error during insert of %u " 2447 "(left path cpos %u) results in two identical " 2448 "paths ending at %llu\n", 2449 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2450 insert_cpos, cpos, 2451 (unsigned long long) 2452 path_leaf_bh(left_path)->b_blocknr); 2453 2454 if (split == SPLIT_NONE && 2455 ocfs2_rotate_requires_path_adjustment(left_path, 2456 insert_cpos)) { 2457 2458 /* 2459 * We've rotated the tree as much as we 2460 * should. The rest is up to 2461 * ocfs2_insert_path() to complete, after the 2462 * record insertion. We indicate this 2463 * situation by returning the left path. 2464 * 2465 * The reason we don't adjust the records here 2466 * before the record insert is that an error 2467 * later might break the rule where a parent 2468 * record e_cpos will reflect the actual 2469 * e_cpos of the 1st nonempty record of the 2470 * child list. 2471 */ 2472 *ret_left_path = left_path; 2473 goto out_ret_path; 2474 } 2475 2476 start = ocfs2_find_subtree_root(et, left_path, right_path); 2477 2478 trace_ocfs2_rotate_subtree(start, 2479 (unsigned long long) 2480 right_path->p_node[start].bh->b_blocknr, 2481 right_path->p_tree_depth); 2482 2483 ret = ocfs2_extend_rotate_transaction(handle, start, 2484 orig_credits, right_path); 2485 if (ret) { 2486 mlog_errno(ret); 2487 goto out; 2488 } 2489 2490 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2491 right_path, start); 2492 if (ret) { 2493 mlog_errno(ret); 2494 goto out; 2495 } 2496 2497 if (split != SPLIT_NONE && 2498 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2499 insert_cpos)) { 2500 /* 2501 * A rotate moves the rightmost left leaf 2502 * record over to the leftmost right leaf 2503 * slot. If we're doing an extent split 2504 * instead of a real insert, then we have to 2505 * check that the extent to be split wasn't 2506 * just moved over. If it was, then we can 2507 * exit here, passing left_path back - 2508 * ocfs2_split_extent() is smart enough to 2509 * search both leaves. 2510 */ 2511 *ret_left_path = left_path; 2512 goto out_ret_path; 2513 } 2514 2515 /* 2516 * There is no need to re-read the next right path 2517 * as we know that it'll be our current left 2518 * path. Optimize by copying values instead. 2519 */ 2520 ocfs2_mv_path(right_path, left_path); 2521 2522 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2523 if (ret) { 2524 mlog_errno(ret); 2525 goto out; 2526 } 2527 } 2528 2529 out: 2530 ocfs2_free_path(left_path); 2531 2532 out_ret_path: 2533 return ret; 2534 } 2535 2536 static int ocfs2_update_edge_lengths(handle_t *handle, 2537 struct ocfs2_extent_tree *et, 2538 struct ocfs2_path *path) 2539 { 2540 int i, idx, ret; 2541 struct ocfs2_extent_rec *rec; 2542 struct ocfs2_extent_list *el; 2543 struct ocfs2_extent_block *eb; 2544 u32 range; 2545 2546 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2547 if (ret) { 2548 mlog_errno(ret); 2549 goto out; 2550 } 2551 2552 /* Path should always be rightmost. */ 2553 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2554 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2555 2556 el = &eb->h_list; 2557 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2558 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2559 rec = &el->l_recs[idx]; 2560 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2561 2562 for (i = 0; i < path->p_tree_depth; i++) { 2563 el = path->p_node[i].el; 2564 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2565 rec = &el->l_recs[idx]; 2566 2567 rec->e_int_clusters = cpu_to_le32(range); 2568 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2569 2570 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2571 } 2572 out: 2573 return ret; 2574 } 2575 2576 static void ocfs2_unlink_path(handle_t *handle, 2577 struct ocfs2_extent_tree *et, 2578 struct ocfs2_cached_dealloc_ctxt *dealloc, 2579 struct ocfs2_path *path, int unlink_start) 2580 { 2581 int ret, i; 2582 struct ocfs2_extent_block *eb; 2583 struct ocfs2_extent_list *el; 2584 struct buffer_head *bh; 2585 2586 for(i = unlink_start; i < path_num_items(path); i++) { 2587 bh = path->p_node[i].bh; 2588 2589 eb = (struct ocfs2_extent_block *)bh->b_data; 2590 /* 2591 * Not all nodes might have had their final count 2592 * decremented by the caller - handle this here. 2593 */ 2594 el = &eb->h_list; 2595 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2596 mlog(ML_ERROR, 2597 "Inode %llu, attempted to remove extent block " 2598 "%llu with %u records\n", 2599 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2600 (unsigned long long)le64_to_cpu(eb->h_blkno), 2601 le16_to_cpu(el->l_next_free_rec)); 2602 2603 ocfs2_journal_dirty(handle, bh); 2604 ocfs2_remove_from_cache(et->et_ci, bh); 2605 continue; 2606 } 2607 2608 el->l_next_free_rec = 0; 2609 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2610 2611 ocfs2_journal_dirty(handle, bh); 2612 2613 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2614 if (ret) 2615 mlog_errno(ret); 2616 2617 ocfs2_remove_from_cache(et->et_ci, bh); 2618 } 2619 } 2620 2621 static void ocfs2_unlink_subtree(handle_t *handle, 2622 struct ocfs2_extent_tree *et, 2623 struct ocfs2_path *left_path, 2624 struct ocfs2_path *right_path, 2625 int subtree_index, 2626 struct ocfs2_cached_dealloc_ctxt *dealloc) 2627 { 2628 int i; 2629 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2630 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2631 struct ocfs2_extent_block *eb; 2632 2633 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2634 2635 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2636 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2637 break; 2638 2639 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2640 2641 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2642 le16_add_cpu(&root_el->l_next_free_rec, -1); 2643 2644 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2645 eb->h_next_leaf_blk = 0; 2646 2647 ocfs2_journal_dirty(handle, root_bh); 2648 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2649 2650 ocfs2_unlink_path(handle, et, dealloc, right_path, 2651 subtree_index + 1); 2652 } 2653 2654 static int ocfs2_rotate_subtree_left(handle_t *handle, 2655 struct ocfs2_extent_tree *et, 2656 struct ocfs2_path *left_path, 2657 struct ocfs2_path *right_path, 2658 int subtree_index, 2659 struct ocfs2_cached_dealloc_ctxt *dealloc, 2660 int *deleted) 2661 { 2662 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2663 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2664 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2665 struct ocfs2_extent_block *eb; 2666 2667 *deleted = 0; 2668 2669 right_leaf_el = path_leaf_el(right_path); 2670 left_leaf_el = path_leaf_el(left_path); 2671 root_bh = left_path->p_node[subtree_index].bh; 2672 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2673 2674 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2675 return 0; 2676 2677 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2678 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2679 /* 2680 * It's legal for us to proceed if the right leaf is 2681 * the rightmost one and it has an empty extent. There 2682 * are two cases to handle - whether the leaf will be 2683 * empty after removal or not. If the leaf isn't empty 2684 * then just remove the empty extent up front. The 2685 * next block will handle empty leaves by flagging 2686 * them for unlink. 2687 * 2688 * Non rightmost leaves will throw -EAGAIN and the 2689 * caller can manually move the subtree and retry. 2690 */ 2691 2692 if (eb->h_next_leaf_blk != 0ULL) 2693 return -EAGAIN; 2694 2695 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2696 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2697 path_leaf_bh(right_path), 2698 OCFS2_JOURNAL_ACCESS_WRITE); 2699 if (ret) { 2700 mlog_errno(ret); 2701 goto out; 2702 } 2703 2704 ocfs2_remove_empty_extent(right_leaf_el); 2705 } else 2706 right_has_empty = 1; 2707 } 2708 2709 if (eb->h_next_leaf_blk == 0ULL && 2710 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2711 /* 2712 * We have to update i_last_eb_blk during the meta 2713 * data delete. 2714 */ 2715 ret = ocfs2_et_root_journal_access(handle, et, 2716 OCFS2_JOURNAL_ACCESS_WRITE); 2717 if (ret) { 2718 mlog_errno(ret); 2719 goto out; 2720 } 2721 2722 del_right_subtree = 1; 2723 } 2724 2725 /* 2726 * Getting here with an empty extent in the right path implies 2727 * that it's the rightmost path and will be deleted. 2728 */ 2729 BUG_ON(right_has_empty && !del_right_subtree); 2730 2731 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2732 subtree_index); 2733 if (ret) { 2734 mlog_errno(ret); 2735 goto out; 2736 } 2737 2738 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2739 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2740 right_path, i); 2741 if (ret) { 2742 mlog_errno(ret); 2743 goto out; 2744 } 2745 2746 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2747 left_path, i); 2748 if (ret) { 2749 mlog_errno(ret); 2750 goto out; 2751 } 2752 } 2753 2754 if (!right_has_empty) { 2755 /* 2756 * Only do this if we're moving a real 2757 * record. Otherwise, the action is delayed until 2758 * after removal of the right path in which case we 2759 * can do a simple shift to remove the empty extent. 2760 */ 2761 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2762 memset(&right_leaf_el->l_recs[0], 0, 2763 sizeof(struct ocfs2_extent_rec)); 2764 } 2765 if (eb->h_next_leaf_blk == 0ULL) { 2766 /* 2767 * Move recs over to get rid of empty extent, decrease 2768 * next_free. This is allowed to remove the last 2769 * extent in our leaf (setting l_next_free_rec to 2770 * zero) - the delete code below won't care. 2771 */ 2772 ocfs2_remove_empty_extent(right_leaf_el); 2773 } 2774 2775 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2776 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2777 2778 if (del_right_subtree) { 2779 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2780 subtree_index, dealloc); 2781 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2782 if (ret) { 2783 mlog_errno(ret); 2784 goto out; 2785 } 2786 2787 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2788 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2789 2790 /* 2791 * Removal of the extent in the left leaf was skipped 2792 * above so we could delete the right path 2793 * 1st. 2794 */ 2795 if (right_has_empty) 2796 ocfs2_remove_empty_extent(left_leaf_el); 2797 2798 ocfs2_journal_dirty(handle, et_root_bh); 2799 2800 *deleted = 1; 2801 } else 2802 ocfs2_complete_edge_insert(handle, left_path, right_path, 2803 subtree_index); 2804 2805 out: 2806 return ret; 2807 } 2808 2809 /* 2810 * Given a full path, determine what cpos value would return us a path 2811 * containing the leaf immediately to the right of the current one. 2812 * 2813 * Will return zero if the path passed in is already the rightmost path. 2814 * 2815 * This looks similar, but is subtly different to 2816 * ocfs2_find_cpos_for_left_leaf(). 2817 */ 2818 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2819 struct ocfs2_path *path, u32 *cpos) 2820 { 2821 int i, j, ret = 0; 2822 u64 blkno; 2823 struct ocfs2_extent_list *el; 2824 2825 *cpos = 0; 2826 2827 if (path->p_tree_depth == 0) 2828 return 0; 2829 2830 blkno = path_leaf_bh(path)->b_blocknr; 2831 2832 /* Start at the tree node just above the leaf and work our way up. */ 2833 i = path->p_tree_depth - 1; 2834 while (i >= 0) { 2835 int next_free; 2836 2837 el = path->p_node[i].el; 2838 2839 /* 2840 * Find the extent record just after the one in our 2841 * path. 2842 */ 2843 next_free = le16_to_cpu(el->l_next_free_rec); 2844 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2845 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2846 if (j == (next_free - 1)) { 2847 if (i == 0) { 2848 /* 2849 * We've determined that the 2850 * path specified is already 2851 * the rightmost one - return a 2852 * cpos of zero. 2853 */ 2854 goto out; 2855 } 2856 /* 2857 * The rightmost record points to our 2858 * leaf - we need to travel up the 2859 * tree one level. 2860 */ 2861 goto next_node; 2862 } 2863 2864 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2865 goto out; 2866 } 2867 } 2868 2869 /* 2870 * If we got here, we never found a valid node where 2871 * the tree indicated one should be. 2872 */ 2873 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2874 (unsigned long long)blkno); 2875 ret = -EROFS; 2876 goto out; 2877 2878 next_node: 2879 blkno = path->p_node[i].bh->b_blocknr; 2880 i--; 2881 } 2882 2883 out: 2884 return ret; 2885 } 2886 2887 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2888 struct ocfs2_extent_tree *et, 2889 struct ocfs2_path *path) 2890 { 2891 int ret; 2892 struct buffer_head *bh = path_leaf_bh(path); 2893 struct ocfs2_extent_list *el = path_leaf_el(path); 2894 2895 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2896 return 0; 2897 2898 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2899 path_num_items(path) - 1); 2900 if (ret) { 2901 mlog_errno(ret); 2902 goto out; 2903 } 2904 2905 ocfs2_remove_empty_extent(el); 2906 ocfs2_journal_dirty(handle, bh); 2907 2908 out: 2909 return ret; 2910 } 2911 2912 static int __ocfs2_rotate_tree_left(handle_t *handle, 2913 struct ocfs2_extent_tree *et, 2914 int orig_credits, 2915 struct ocfs2_path *path, 2916 struct ocfs2_cached_dealloc_ctxt *dealloc, 2917 struct ocfs2_path **empty_extent_path) 2918 { 2919 int ret, subtree_root, deleted; 2920 u32 right_cpos; 2921 struct ocfs2_path *left_path = NULL; 2922 struct ocfs2_path *right_path = NULL; 2923 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2924 2925 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2926 return 0; 2927 2928 *empty_extent_path = NULL; 2929 2930 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2931 if (ret) { 2932 mlog_errno(ret); 2933 goto out; 2934 } 2935 2936 left_path = ocfs2_new_path_from_path(path); 2937 if (!left_path) { 2938 ret = -ENOMEM; 2939 mlog_errno(ret); 2940 goto out; 2941 } 2942 2943 ocfs2_cp_path(left_path, path); 2944 2945 right_path = ocfs2_new_path_from_path(path); 2946 if (!right_path) { 2947 ret = -ENOMEM; 2948 mlog_errno(ret); 2949 goto out; 2950 } 2951 2952 while (right_cpos) { 2953 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2954 if (ret) { 2955 mlog_errno(ret); 2956 goto out; 2957 } 2958 2959 subtree_root = ocfs2_find_subtree_root(et, left_path, 2960 right_path); 2961 2962 trace_ocfs2_rotate_subtree(subtree_root, 2963 (unsigned long long) 2964 right_path->p_node[subtree_root].bh->b_blocknr, 2965 right_path->p_tree_depth); 2966 2967 ret = ocfs2_extend_rotate_transaction(handle, 0, 2968 orig_credits, left_path); 2969 if (ret) { 2970 mlog_errno(ret); 2971 goto out; 2972 } 2973 2974 /* 2975 * Caller might still want to make changes to the 2976 * tree root, so re-add it to the journal here. 2977 */ 2978 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2979 left_path, 0); 2980 if (ret) { 2981 mlog_errno(ret); 2982 goto out; 2983 } 2984 2985 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2986 right_path, subtree_root, 2987 dealloc, &deleted); 2988 if (ret == -EAGAIN) { 2989 /* 2990 * The rotation has to temporarily stop due to 2991 * the right subtree having an empty 2992 * extent. Pass it back to the caller for a 2993 * fixup. 2994 */ 2995 *empty_extent_path = right_path; 2996 right_path = NULL; 2997 goto out; 2998 } 2999 if (ret) { 3000 mlog_errno(ret); 3001 goto out; 3002 } 3003 3004 /* 3005 * The subtree rotate might have removed records on 3006 * the rightmost edge. If so, then rotation is 3007 * complete. 3008 */ 3009 if (deleted) 3010 break; 3011 3012 ocfs2_mv_path(left_path, right_path); 3013 3014 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3015 &right_cpos); 3016 if (ret) { 3017 mlog_errno(ret); 3018 goto out; 3019 } 3020 } 3021 3022 out: 3023 ocfs2_free_path(right_path); 3024 ocfs2_free_path(left_path); 3025 3026 return ret; 3027 } 3028 3029 static int ocfs2_remove_rightmost_path(handle_t *handle, 3030 struct ocfs2_extent_tree *et, 3031 struct ocfs2_path *path, 3032 struct ocfs2_cached_dealloc_ctxt *dealloc) 3033 { 3034 int ret, subtree_index; 3035 u32 cpos; 3036 struct ocfs2_path *left_path = NULL; 3037 struct ocfs2_extent_block *eb; 3038 struct ocfs2_extent_list *el; 3039 3040 ret = ocfs2_et_sanity_check(et); 3041 if (ret) 3042 goto out; 3043 3044 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3045 if (ret) { 3046 mlog_errno(ret); 3047 goto out; 3048 } 3049 3050 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3051 path, &cpos); 3052 if (ret) { 3053 mlog_errno(ret); 3054 goto out; 3055 } 3056 3057 if (cpos) { 3058 /* 3059 * We have a path to the left of this one - it needs 3060 * an update too. 3061 */ 3062 left_path = ocfs2_new_path_from_path(path); 3063 if (!left_path) { 3064 ret = -ENOMEM; 3065 mlog_errno(ret); 3066 goto out; 3067 } 3068 3069 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3070 if (ret) { 3071 mlog_errno(ret); 3072 goto out; 3073 } 3074 3075 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3076 if (ret) { 3077 mlog_errno(ret); 3078 goto out; 3079 } 3080 3081 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3082 3083 ocfs2_unlink_subtree(handle, et, left_path, path, 3084 subtree_index, dealloc); 3085 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3086 if (ret) { 3087 mlog_errno(ret); 3088 goto out; 3089 } 3090 3091 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3092 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3093 } else { 3094 /* 3095 * 'path' is also the leftmost path which 3096 * means it must be the only one. This gets 3097 * handled differently because we want to 3098 * revert the root back to having extents 3099 * in-line. 3100 */ 3101 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3102 3103 el = et->et_root_el; 3104 el->l_tree_depth = 0; 3105 el->l_next_free_rec = 0; 3106 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3107 3108 ocfs2_et_set_last_eb_blk(et, 0); 3109 } 3110 3111 ocfs2_journal_dirty(handle, path_root_bh(path)); 3112 3113 out: 3114 ocfs2_free_path(left_path); 3115 return ret; 3116 } 3117 3118 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3119 struct ocfs2_extent_tree *et, 3120 struct ocfs2_path *path, 3121 struct ocfs2_cached_dealloc_ctxt *dealloc) 3122 { 3123 handle_t *handle; 3124 int ret; 3125 int credits = path->p_tree_depth * 2 + 1; 3126 3127 handle = ocfs2_start_trans(osb, credits); 3128 if (IS_ERR(handle)) { 3129 ret = PTR_ERR(handle); 3130 mlog_errno(ret); 3131 return ret; 3132 } 3133 3134 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3135 if (ret) 3136 mlog_errno(ret); 3137 3138 ocfs2_commit_trans(osb, handle); 3139 return ret; 3140 } 3141 3142 /* 3143 * Left rotation of btree records. 3144 * 3145 * In many ways, this is (unsurprisingly) the opposite of right 3146 * rotation. We start at some non-rightmost path containing an empty 3147 * extent in the leaf block. The code works its way to the rightmost 3148 * path by rotating records to the left in every subtree. 3149 * 3150 * This is used by any code which reduces the number of extent records 3151 * in a leaf. After removal, an empty record should be placed in the 3152 * leftmost list position. 3153 * 3154 * This won't handle a length update of the rightmost path records if 3155 * the rightmost tree leaf record is removed so the caller is 3156 * responsible for detecting and correcting that. 3157 */ 3158 static int ocfs2_rotate_tree_left(handle_t *handle, 3159 struct ocfs2_extent_tree *et, 3160 struct ocfs2_path *path, 3161 struct ocfs2_cached_dealloc_ctxt *dealloc) 3162 { 3163 int ret, orig_credits = jbd2_handle_buffer_credits(handle); 3164 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3165 struct ocfs2_extent_block *eb; 3166 struct ocfs2_extent_list *el; 3167 3168 el = path_leaf_el(path); 3169 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3170 return 0; 3171 3172 if (path->p_tree_depth == 0) { 3173 rightmost_no_delete: 3174 /* 3175 * Inline extents. This is trivially handled, so do 3176 * it up front. 3177 */ 3178 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3179 if (ret) 3180 mlog_errno(ret); 3181 goto out; 3182 } 3183 3184 /* 3185 * Handle rightmost branch now. There's several cases: 3186 * 1) simple rotation leaving records in there. That's trivial. 3187 * 2) rotation requiring a branch delete - there's no more 3188 * records left. Two cases of this: 3189 * a) There are branches to the left. 3190 * b) This is also the leftmost (the only) branch. 3191 * 3192 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3193 * 2a) we need the left branch so that we can update it with the unlink 3194 * 2b) we need to bring the root back to inline extents. 3195 */ 3196 3197 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3198 el = &eb->h_list; 3199 if (eb->h_next_leaf_blk == 0) { 3200 /* 3201 * This gets a bit tricky if we're going to delete the 3202 * rightmost path. Get the other cases out of the way 3203 * 1st. 3204 */ 3205 if (le16_to_cpu(el->l_next_free_rec) > 1) 3206 goto rightmost_no_delete; 3207 3208 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3209 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3210 "Owner %llu has empty extent block at %llu\n", 3211 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3212 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3213 goto out; 3214 } 3215 3216 /* 3217 * XXX: The caller can not trust "path" any more after 3218 * this as it will have been deleted. What do we do? 3219 * 3220 * In theory the rotate-for-merge code will never get 3221 * here because it'll always ask for a rotate in a 3222 * nonempty list. 3223 */ 3224 3225 ret = ocfs2_remove_rightmost_path(handle, et, path, 3226 dealloc); 3227 if (ret) 3228 mlog_errno(ret); 3229 goto out; 3230 } 3231 3232 /* 3233 * Now we can loop, remembering the path we get from -EAGAIN 3234 * and restarting from there. 3235 */ 3236 try_rotate: 3237 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3238 dealloc, &restart_path); 3239 if (ret && ret != -EAGAIN) { 3240 mlog_errno(ret); 3241 goto out; 3242 } 3243 3244 while (ret == -EAGAIN) { 3245 tmp_path = restart_path; 3246 restart_path = NULL; 3247 3248 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3249 tmp_path, dealloc, 3250 &restart_path); 3251 if (ret && ret != -EAGAIN) { 3252 mlog_errno(ret); 3253 goto out; 3254 } 3255 3256 ocfs2_free_path(tmp_path); 3257 tmp_path = NULL; 3258 3259 if (ret == 0) 3260 goto try_rotate; 3261 } 3262 3263 out: 3264 ocfs2_free_path(tmp_path); 3265 ocfs2_free_path(restart_path); 3266 return ret; 3267 } 3268 3269 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3270 int index) 3271 { 3272 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3273 unsigned int size; 3274 3275 if (rec->e_leaf_clusters == 0) { 3276 /* 3277 * We consumed all of the merged-from record. An empty 3278 * extent cannot exist anywhere but the 1st array 3279 * position, so move things over if the merged-from 3280 * record doesn't occupy that position. 3281 * 3282 * This creates a new empty extent so the caller 3283 * should be smart enough to have removed any existing 3284 * ones. 3285 */ 3286 if (index > 0) { 3287 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3288 size = index * sizeof(struct ocfs2_extent_rec); 3289 memmove(&el->l_recs[1], &el->l_recs[0], size); 3290 } 3291 3292 /* 3293 * Always memset - the caller doesn't check whether it 3294 * created an empty extent, so there could be junk in 3295 * the other fields. 3296 */ 3297 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3298 } 3299 } 3300 3301 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3302 struct ocfs2_path *left_path, 3303 struct ocfs2_path **ret_right_path) 3304 { 3305 int ret; 3306 u32 right_cpos; 3307 struct ocfs2_path *right_path = NULL; 3308 struct ocfs2_extent_list *left_el; 3309 3310 *ret_right_path = NULL; 3311 3312 /* This function shouldn't be called for non-trees. */ 3313 BUG_ON(left_path->p_tree_depth == 0); 3314 3315 left_el = path_leaf_el(left_path); 3316 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3317 3318 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3319 left_path, &right_cpos); 3320 if (ret) { 3321 mlog_errno(ret); 3322 goto out; 3323 } 3324 3325 /* This function shouldn't be called for the rightmost leaf. */ 3326 BUG_ON(right_cpos == 0); 3327 3328 right_path = ocfs2_new_path_from_path(left_path); 3329 if (!right_path) { 3330 ret = -ENOMEM; 3331 mlog_errno(ret); 3332 goto out; 3333 } 3334 3335 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3336 if (ret) { 3337 mlog_errno(ret); 3338 goto out; 3339 } 3340 3341 *ret_right_path = right_path; 3342 out: 3343 if (ret) 3344 ocfs2_free_path(right_path); 3345 return ret; 3346 } 3347 3348 /* 3349 * Remove split_rec clusters from the record at index and merge them 3350 * onto the beginning of the record "next" to it. 3351 * For index < l_count - 1, the next means the extent rec at index + 1. 3352 * For index == l_count - 1, the "next" means the 1st extent rec of the 3353 * next extent block. 3354 */ 3355 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3356 handle_t *handle, 3357 struct ocfs2_extent_tree *et, 3358 struct ocfs2_extent_rec *split_rec, 3359 int index) 3360 { 3361 int ret, next_free, i; 3362 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3363 struct ocfs2_extent_rec *left_rec; 3364 struct ocfs2_extent_rec *right_rec; 3365 struct ocfs2_extent_list *right_el; 3366 struct ocfs2_path *right_path = NULL; 3367 int subtree_index = 0; 3368 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3369 struct buffer_head *bh = path_leaf_bh(left_path); 3370 struct buffer_head *root_bh = NULL; 3371 3372 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3373 left_rec = &el->l_recs[index]; 3374 3375 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3376 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3377 /* we meet with a cross extent block merge. */ 3378 ret = ocfs2_get_right_path(et, left_path, &right_path); 3379 if (ret) { 3380 mlog_errno(ret); 3381 return ret; 3382 } 3383 3384 right_el = path_leaf_el(right_path); 3385 next_free = le16_to_cpu(right_el->l_next_free_rec); 3386 BUG_ON(next_free <= 0); 3387 right_rec = &right_el->l_recs[0]; 3388 if (ocfs2_is_empty_extent(right_rec)) { 3389 BUG_ON(next_free <= 1); 3390 right_rec = &right_el->l_recs[1]; 3391 } 3392 3393 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3394 le16_to_cpu(left_rec->e_leaf_clusters) != 3395 le32_to_cpu(right_rec->e_cpos)); 3396 3397 subtree_index = ocfs2_find_subtree_root(et, left_path, 3398 right_path); 3399 3400 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3401 jbd2_handle_buffer_credits(handle), 3402 right_path); 3403 if (ret) { 3404 mlog_errno(ret); 3405 goto out; 3406 } 3407 3408 root_bh = left_path->p_node[subtree_index].bh; 3409 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3410 3411 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3412 subtree_index); 3413 if (ret) { 3414 mlog_errno(ret); 3415 goto out; 3416 } 3417 3418 for (i = subtree_index + 1; 3419 i < path_num_items(right_path); i++) { 3420 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3421 right_path, i); 3422 if (ret) { 3423 mlog_errno(ret); 3424 goto out; 3425 } 3426 3427 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3428 left_path, i); 3429 if (ret) { 3430 mlog_errno(ret); 3431 goto out; 3432 } 3433 } 3434 3435 } else { 3436 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3437 right_rec = &el->l_recs[index + 1]; 3438 } 3439 3440 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3441 path_num_items(left_path) - 1); 3442 if (ret) { 3443 mlog_errno(ret); 3444 goto out; 3445 } 3446 3447 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3448 3449 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3450 le64_add_cpu(&right_rec->e_blkno, 3451 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3452 split_clusters)); 3453 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3454 3455 ocfs2_cleanup_merge(el, index); 3456 3457 ocfs2_journal_dirty(handle, bh); 3458 if (right_path) { 3459 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3460 ocfs2_complete_edge_insert(handle, left_path, right_path, 3461 subtree_index); 3462 } 3463 out: 3464 ocfs2_free_path(right_path); 3465 return ret; 3466 } 3467 3468 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3469 struct ocfs2_path *right_path, 3470 struct ocfs2_path **ret_left_path) 3471 { 3472 int ret; 3473 u32 left_cpos; 3474 struct ocfs2_path *left_path = NULL; 3475 3476 *ret_left_path = NULL; 3477 3478 /* This function shouldn't be called for non-trees. */ 3479 BUG_ON(right_path->p_tree_depth == 0); 3480 3481 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3482 right_path, &left_cpos); 3483 if (ret) { 3484 mlog_errno(ret); 3485 goto out; 3486 } 3487 3488 /* This function shouldn't be called for the leftmost leaf. */ 3489 BUG_ON(left_cpos == 0); 3490 3491 left_path = ocfs2_new_path_from_path(right_path); 3492 if (!left_path) { 3493 ret = -ENOMEM; 3494 mlog_errno(ret); 3495 goto out; 3496 } 3497 3498 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3499 if (ret) { 3500 mlog_errno(ret); 3501 goto out; 3502 } 3503 3504 *ret_left_path = left_path; 3505 out: 3506 if (ret) 3507 ocfs2_free_path(left_path); 3508 return ret; 3509 } 3510 3511 /* 3512 * Remove split_rec clusters from the record at index and merge them 3513 * onto the tail of the record "before" it. 3514 * For index > 0, the "before" means the extent rec at index - 1. 3515 * 3516 * For index == 0, the "before" means the last record of the previous 3517 * extent block. And there is also a situation that we may need to 3518 * remove the rightmost leaf extent block in the right_path and change 3519 * the right path to indicate the new rightmost path. 3520 */ 3521 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3522 handle_t *handle, 3523 struct ocfs2_extent_tree *et, 3524 struct ocfs2_extent_rec *split_rec, 3525 struct ocfs2_cached_dealloc_ctxt *dealloc, 3526 int index) 3527 { 3528 int ret, i, subtree_index = 0, has_empty_extent = 0; 3529 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3530 struct ocfs2_extent_rec *left_rec; 3531 struct ocfs2_extent_rec *right_rec; 3532 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3533 struct buffer_head *bh = path_leaf_bh(right_path); 3534 struct buffer_head *root_bh = NULL; 3535 struct ocfs2_path *left_path = NULL; 3536 struct ocfs2_extent_list *left_el; 3537 3538 BUG_ON(index < 0); 3539 3540 right_rec = &el->l_recs[index]; 3541 if (index == 0) { 3542 /* we meet with a cross extent block merge. */ 3543 ret = ocfs2_get_left_path(et, right_path, &left_path); 3544 if (ret) { 3545 mlog_errno(ret); 3546 return ret; 3547 } 3548 3549 left_el = path_leaf_el(left_path); 3550 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3551 le16_to_cpu(left_el->l_count)); 3552 3553 left_rec = &left_el->l_recs[ 3554 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3555 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3556 le16_to_cpu(left_rec->e_leaf_clusters) != 3557 le32_to_cpu(split_rec->e_cpos)); 3558 3559 subtree_index = ocfs2_find_subtree_root(et, left_path, 3560 right_path); 3561 3562 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3563 jbd2_handle_buffer_credits(handle), 3564 left_path); 3565 if (ret) { 3566 mlog_errno(ret); 3567 goto out; 3568 } 3569 3570 root_bh = left_path->p_node[subtree_index].bh; 3571 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3572 3573 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3574 subtree_index); 3575 if (ret) { 3576 mlog_errno(ret); 3577 goto out; 3578 } 3579 3580 for (i = subtree_index + 1; 3581 i < path_num_items(right_path); i++) { 3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3583 right_path, i); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 3589 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3590 left_path, i); 3591 if (ret) { 3592 mlog_errno(ret); 3593 goto out; 3594 } 3595 } 3596 } else { 3597 left_rec = &el->l_recs[index - 1]; 3598 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3599 has_empty_extent = 1; 3600 } 3601 3602 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3603 path_num_items(right_path) - 1); 3604 if (ret) { 3605 mlog_errno(ret); 3606 goto out; 3607 } 3608 3609 if (has_empty_extent && index == 1) { 3610 /* 3611 * The easy case - we can just plop the record right in. 3612 */ 3613 *left_rec = *split_rec; 3614 } else 3615 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3616 3617 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3618 le64_add_cpu(&right_rec->e_blkno, 3619 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3620 split_clusters)); 3621 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3622 3623 ocfs2_cleanup_merge(el, index); 3624 3625 ocfs2_journal_dirty(handle, bh); 3626 if (left_path) { 3627 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3628 3629 /* 3630 * In the situation that the right_rec is empty and the extent 3631 * block is empty also, ocfs2_complete_edge_insert can't handle 3632 * it and we need to delete the right extent block. 3633 */ 3634 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3635 le16_to_cpu(el->l_next_free_rec) == 1) { 3636 /* extend credit for ocfs2_remove_rightmost_path */ 3637 ret = ocfs2_extend_rotate_transaction(handle, 0, 3638 jbd2_handle_buffer_credits(handle), 3639 right_path); 3640 if (ret) { 3641 mlog_errno(ret); 3642 goto out; 3643 } 3644 3645 ret = ocfs2_remove_rightmost_path(handle, et, 3646 right_path, 3647 dealloc); 3648 if (ret) { 3649 mlog_errno(ret); 3650 goto out; 3651 } 3652 3653 /* Now the rightmost extent block has been deleted. 3654 * So we use the new rightmost path. 3655 */ 3656 ocfs2_mv_path(right_path, left_path); 3657 left_path = NULL; 3658 } else 3659 ocfs2_complete_edge_insert(handle, left_path, 3660 right_path, subtree_index); 3661 } 3662 out: 3663 ocfs2_free_path(left_path); 3664 return ret; 3665 } 3666 3667 static int ocfs2_try_to_merge_extent(handle_t *handle, 3668 struct ocfs2_extent_tree *et, 3669 struct ocfs2_path *path, 3670 int split_index, 3671 struct ocfs2_extent_rec *split_rec, 3672 struct ocfs2_cached_dealloc_ctxt *dealloc, 3673 struct ocfs2_merge_ctxt *ctxt) 3674 { 3675 int ret = 0; 3676 struct ocfs2_extent_list *el = path_leaf_el(path); 3677 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3678 3679 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3680 3681 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3682 /* extend credit for ocfs2_remove_rightmost_path */ 3683 ret = ocfs2_extend_rotate_transaction(handle, 0, 3684 jbd2_handle_buffer_credits(handle), 3685 path); 3686 if (ret) { 3687 mlog_errno(ret); 3688 goto out; 3689 } 3690 /* 3691 * The merge code will need to create an empty 3692 * extent to take the place of the newly 3693 * emptied slot. Remove any pre-existing empty 3694 * extents - having more than one in a leaf is 3695 * illegal. 3696 */ 3697 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3698 if (ret) { 3699 mlog_errno(ret); 3700 goto out; 3701 } 3702 split_index--; 3703 rec = &el->l_recs[split_index]; 3704 } 3705 3706 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3707 /* 3708 * Left-right contig implies this. 3709 */ 3710 BUG_ON(!ctxt->c_split_covers_rec); 3711 3712 /* 3713 * Since the leftright insert always covers the entire 3714 * extent, this call will delete the insert record 3715 * entirely, resulting in an empty extent record added to 3716 * the extent block. 3717 * 3718 * Since the adding of an empty extent shifts 3719 * everything back to the right, there's no need to 3720 * update split_index here. 3721 * 3722 * When the split_index is zero, we need to merge it to the 3723 * previous extent block. It is more efficient and easier 3724 * if we do merge_right first and merge_left later. 3725 */ 3726 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3727 split_index); 3728 if (ret) { 3729 mlog_errno(ret); 3730 goto out; 3731 } 3732 3733 /* 3734 * We can only get this from logic error above. 3735 */ 3736 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3737 3738 /* extend credit for ocfs2_remove_rightmost_path */ 3739 ret = ocfs2_extend_rotate_transaction(handle, 0, 3740 jbd2_handle_buffer_credits(handle), 3741 path); 3742 if (ret) { 3743 mlog_errno(ret); 3744 goto out; 3745 } 3746 3747 /* The merge left us with an empty extent, remove it. */ 3748 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3749 if (ret) { 3750 mlog_errno(ret); 3751 goto out; 3752 } 3753 3754 rec = &el->l_recs[split_index]; 3755 3756 /* 3757 * Note that we don't pass split_rec here on purpose - 3758 * we've merged it into the rec already. 3759 */ 3760 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3761 dealloc, split_index); 3762 3763 if (ret) { 3764 mlog_errno(ret); 3765 goto out; 3766 } 3767 3768 /* extend credit for ocfs2_remove_rightmost_path */ 3769 ret = ocfs2_extend_rotate_transaction(handle, 0, 3770 jbd2_handle_buffer_credits(handle), 3771 path); 3772 if (ret) { 3773 mlog_errno(ret); 3774 goto out; 3775 } 3776 3777 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3778 /* 3779 * Error from this last rotate is not critical, so 3780 * print but don't bubble it up. 3781 */ 3782 if (ret) 3783 mlog_errno(ret); 3784 ret = 0; 3785 } else { 3786 /* 3787 * Merge a record to the left or right. 3788 * 3789 * 'contig_type' is relative to the existing record, 3790 * so for example, if we're "right contig", it's to 3791 * the record on the left (hence the left merge). 3792 */ 3793 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3794 ret = ocfs2_merge_rec_left(path, handle, et, 3795 split_rec, dealloc, 3796 split_index); 3797 if (ret) { 3798 mlog_errno(ret); 3799 goto out; 3800 } 3801 } else { 3802 ret = ocfs2_merge_rec_right(path, handle, 3803 et, split_rec, 3804 split_index); 3805 if (ret) { 3806 mlog_errno(ret); 3807 goto out; 3808 } 3809 } 3810 3811 if (ctxt->c_split_covers_rec) { 3812 /* extend credit for ocfs2_remove_rightmost_path */ 3813 ret = ocfs2_extend_rotate_transaction(handle, 0, 3814 jbd2_handle_buffer_credits(handle), 3815 path); 3816 if (ret) { 3817 mlog_errno(ret); 3818 ret = 0; 3819 goto out; 3820 } 3821 3822 /* 3823 * The merge may have left an empty extent in 3824 * our leaf. Try to rotate it away. 3825 */ 3826 ret = ocfs2_rotate_tree_left(handle, et, path, 3827 dealloc); 3828 if (ret) 3829 mlog_errno(ret); 3830 ret = 0; 3831 } 3832 } 3833 3834 out: 3835 return ret; 3836 } 3837 3838 static void ocfs2_subtract_from_rec(struct super_block *sb, 3839 enum ocfs2_split_type split, 3840 struct ocfs2_extent_rec *rec, 3841 struct ocfs2_extent_rec *split_rec) 3842 { 3843 u64 len_blocks; 3844 3845 len_blocks = ocfs2_clusters_to_blocks(sb, 3846 le16_to_cpu(split_rec->e_leaf_clusters)); 3847 3848 if (split == SPLIT_LEFT) { 3849 /* 3850 * Region is on the left edge of the existing 3851 * record. 3852 */ 3853 le32_add_cpu(&rec->e_cpos, 3854 le16_to_cpu(split_rec->e_leaf_clusters)); 3855 le64_add_cpu(&rec->e_blkno, len_blocks); 3856 le16_add_cpu(&rec->e_leaf_clusters, 3857 -le16_to_cpu(split_rec->e_leaf_clusters)); 3858 } else { 3859 /* 3860 * Region is on the right edge of the existing 3861 * record. 3862 */ 3863 le16_add_cpu(&rec->e_leaf_clusters, 3864 -le16_to_cpu(split_rec->e_leaf_clusters)); 3865 } 3866 } 3867 3868 /* 3869 * Do the final bits of extent record insertion at the target leaf 3870 * list. If this leaf is part of an allocation tree, it is assumed 3871 * that the tree above has been prepared. 3872 */ 3873 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3874 struct ocfs2_extent_rec *insert_rec, 3875 struct ocfs2_extent_list *el, 3876 struct ocfs2_insert_type *insert) 3877 { 3878 int i = insert->ins_contig_index; 3879 unsigned int range; 3880 struct ocfs2_extent_rec *rec; 3881 3882 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3883 3884 if (insert->ins_split != SPLIT_NONE) { 3885 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3886 BUG_ON(i == -1); 3887 rec = &el->l_recs[i]; 3888 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3889 insert->ins_split, rec, 3890 insert_rec); 3891 goto rotate; 3892 } 3893 3894 /* 3895 * Contiguous insert - either left or right. 3896 */ 3897 if (insert->ins_contig != CONTIG_NONE) { 3898 rec = &el->l_recs[i]; 3899 if (insert->ins_contig == CONTIG_LEFT) { 3900 rec->e_blkno = insert_rec->e_blkno; 3901 rec->e_cpos = insert_rec->e_cpos; 3902 } 3903 le16_add_cpu(&rec->e_leaf_clusters, 3904 le16_to_cpu(insert_rec->e_leaf_clusters)); 3905 return; 3906 } 3907 3908 /* 3909 * Handle insert into an empty leaf. 3910 */ 3911 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3912 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3913 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3914 el->l_recs[0] = *insert_rec; 3915 el->l_next_free_rec = cpu_to_le16(1); 3916 return; 3917 } 3918 3919 /* 3920 * Appending insert. 3921 */ 3922 if (insert->ins_appending == APPEND_TAIL) { 3923 i = le16_to_cpu(el->l_next_free_rec) - 1; 3924 rec = &el->l_recs[i]; 3925 range = le32_to_cpu(rec->e_cpos) 3926 + le16_to_cpu(rec->e_leaf_clusters); 3927 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3928 3929 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3930 le16_to_cpu(el->l_count), 3931 "owner %llu, depth %u, count %u, next free %u, " 3932 "rec.cpos %u, rec.clusters %u, " 3933 "insert.cpos %u, insert.clusters %u\n", 3934 ocfs2_metadata_cache_owner(et->et_ci), 3935 le16_to_cpu(el->l_tree_depth), 3936 le16_to_cpu(el->l_count), 3937 le16_to_cpu(el->l_next_free_rec), 3938 le32_to_cpu(el->l_recs[i].e_cpos), 3939 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3940 le32_to_cpu(insert_rec->e_cpos), 3941 le16_to_cpu(insert_rec->e_leaf_clusters)); 3942 i++; 3943 el->l_recs[i] = *insert_rec; 3944 le16_add_cpu(&el->l_next_free_rec, 1); 3945 return; 3946 } 3947 3948 rotate: 3949 /* 3950 * Ok, we have to rotate. 3951 * 3952 * At this point, it is safe to assume that inserting into an 3953 * empty leaf and appending to a leaf have both been handled 3954 * above. 3955 * 3956 * This leaf needs to have space, either by the empty 1st 3957 * extent record, or by virtue of an l_next_free_rec < l_count. 3958 */ 3959 ocfs2_rotate_leaf(el, insert_rec); 3960 } 3961 3962 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3963 struct ocfs2_extent_tree *et, 3964 struct ocfs2_path *path, 3965 struct ocfs2_extent_rec *insert_rec) 3966 { 3967 int i, next_free; 3968 struct buffer_head *bh; 3969 struct ocfs2_extent_list *el; 3970 struct ocfs2_extent_rec *rec; 3971 3972 /* 3973 * Update everything except the leaf block. 3974 */ 3975 for (i = 0; i < path->p_tree_depth; i++) { 3976 bh = path->p_node[i].bh; 3977 el = path->p_node[i].el; 3978 3979 next_free = le16_to_cpu(el->l_next_free_rec); 3980 if (next_free == 0) { 3981 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3982 "Owner %llu has a bad extent list\n", 3983 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3984 return; 3985 } 3986 3987 rec = &el->l_recs[next_free - 1]; 3988 3989 rec->e_int_clusters = insert_rec->e_cpos; 3990 le32_add_cpu(&rec->e_int_clusters, 3991 le16_to_cpu(insert_rec->e_leaf_clusters)); 3992 le32_add_cpu(&rec->e_int_clusters, 3993 -le32_to_cpu(rec->e_cpos)); 3994 3995 ocfs2_journal_dirty(handle, bh); 3996 } 3997 } 3998 3999 static int ocfs2_append_rec_to_path(handle_t *handle, 4000 struct ocfs2_extent_tree *et, 4001 struct ocfs2_extent_rec *insert_rec, 4002 struct ocfs2_path *right_path, 4003 struct ocfs2_path **ret_left_path) 4004 { 4005 int ret, next_free; 4006 struct ocfs2_extent_list *el; 4007 struct ocfs2_path *left_path = NULL; 4008 4009 *ret_left_path = NULL; 4010 4011 /* 4012 * This shouldn't happen for non-trees. The extent rec cluster 4013 * count manipulation below only works for interior nodes. 4014 */ 4015 BUG_ON(right_path->p_tree_depth == 0); 4016 4017 /* 4018 * If our appending insert is at the leftmost edge of a leaf, 4019 * then we might need to update the rightmost records of the 4020 * neighboring path. 4021 */ 4022 el = path_leaf_el(right_path); 4023 next_free = le16_to_cpu(el->l_next_free_rec); 4024 if (next_free == 0 || 4025 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4026 u32 left_cpos; 4027 4028 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4029 right_path, &left_cpos); 4030 if (ret) { 4031 mlog_errno(ret); 4032 goto out; 4033 } 4034 4035 trace_ocfs2_append_rec_to_path( 4036 (unsigned long long) 4037 ocfs2_metadata_cache_owner(et->et_ci), 4038 le32_to_cpu(insert_rec->e_cpos), 4039 left_cpos); 4040 4041 /* 4042 * No need to worry if the append is already in the 4043 * leftmost leaf. 4044 */ 4045 if (left_cpos) { 4046 left_path = ocfs2_new_path_from_path(right_path); 4047 if (!left_path) { 4048 ret = -ENOMEM; 4049 mlog_errno(ret); 4050 goto out; 4051 } 4052 4053 ret = ocfs2_find_path(et->et_ci, left_path, 4054 left_cpos); 4055 if (ret) { 4056 mlog_errno(ret); 4057 goto out; 4058 } 4059 4060 /* 4061 * ocfs2_insert_path() will pass the left_path to the 4062 * journal for us. 4063 */ 4064 } 4065 } 4066 4067 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4068 if (ret) { 4069 mlog_errno(ret); 4070 goto out; 4071 } 4072 4073 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4074 4075 *ret_left_path = left_path; 4076 ret = 0; 4077 out: 4078 if (ret != 0) 4079 ocfs2_free_path(left_path); 4080 4081 return ret; 4082 } 4083 4084 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4085 struct ocfs2_path *left_path, 4086 struct ocfs2_path *right_path, 4087 struct ocfs2_extent_rec *split_rec, 4088 enum ocfs2_split_type split) 4089 { 4090 int index; 4091 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4092 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4093 struct ocfs2_extent_rec *rec, *tmprec; 4094 4095 right_el = path_leaf_el(right_path); 4096 if (left_path) 4097 left_el = path_leaf_el(left_path); 4098 4099 el = right_el; 4100 insert_el = right_el; 4101 index = ocfs2_search_extent_list(el, cpos); 4102 if (index != -1) { 4103 if (index == 0 && left_path) { 4104 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4105 4106 /* 4107 * This typically means that the record 4108 * started in the left path but moved to the 4109 * right as a result of rotation. We either 4110 * move the existing record to the left, or we 4111 * do the later insert there. 4112 * 4113 * In this case, the left path should always 4114 * exist as the rotate code will have passed 4115 * it back for a post-insert update. 4116 */ 4117 4118 if (split == SPLIT_LEFT) { 4119 /* 4120 * It's a left split. Since we know 4121 * that the rotate code gave us an 4122 * empty extent in the left path, we 4123 * can just do the insert there. 4124 */ 4125 insert_el = left_el; 4126 } else { 4127 /* 4128 * Right split - we have to move the 4129 * existing record over to the left 4130 * leaf. The insert will be into the 4131 * newly created empty extent in the 4132 * right leaf. 4133 */ 4134 tmprec = &right_el->l_recs[index]; 4135 ocfs2_rotate_leaf(left_el, tmprec); 4136 el = left_el; 4137 4138 memset(tmprec, 0, sizeof(*tmprec)); 4139 index = ocfs2_search_extent_list(left_el, cpos); 4140 BUG_ON(index == -1); 4141 } 4142 } 4143 } else { 4144 BUG_ON(!left_path); 4145 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4146 /* 4147 * Left path is easy - we can just allow the insert to 4148 * happen. 4149 */ 4150 el = left_el; 4151 insert_el = left_el; 4152 index = ocfs2_search_extent_list(el, cpos); 4153 BUG_ON(index == -1); 4154 } 4155 4156 rec = &el->l_recs[index]; 4157 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4158 split, rec, split_rec); 4159 ocfs2_rotate_leaf(insert_el, split_rec); 4160 } 4161 4162 /* 4163 * This function only does inserts on an allocation b-tree. For tree 4164 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4165 * 4166 * right_path is the path we want to do the actual insert 4167 * in. left_path should only be passed in if we need to update that 4168 * portion of the tree after an edge insert. 4169 */ 4170 static int ocfs2_insert_path(handle_t *handle, 4171 struct ocfs2_extent_tree *et, 4172 struct ocfs2_path *left_path, 4173 struct ocfs2_path *right_path, 4174 struct ocfs2_extent_rec *insert_rec, 4175 struct ocfs2_insert_type *insert) 4176 { 4177 int ret, subtree_index; 4178 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4179 4180 if (left_path) { 4181 /* 4182 * There's a chance that left_path got passed back to 4183 * us without being accounted for in the 4184 * journal. Extend our transaction here to be sure we 4185 * can change those blocks. 4186 */ 4187 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4188 if (ret < 0) { 4189 mlog_errno(ret); 4190 goto out; 4191 } 4192 4193 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4194 if (ret < 0) { 4195 mlog_errno(ret); 4196 goto out; 4197 } 4198 } 4199 4200 /* 4201 * Pass both paths to the journal. The majority of inserts 4202 * will be touching all components anyway. 4203 */ 4204 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4205 if (ret < 0) { 4206 mlog_errno(ret); 4207 goto out; 4208 } 4209 4210 if (insert->ins_split != SPLIT_NONE) { 4211 /* 4212 * We could call ocfs2_insert_at_leaf() for some types 4213 * of splits, but it's easier to just let one separate 4214 * function sort it all out. 4215 */ 4216 ocfs2_split_record(et, left_path, right_path, 4217 insert_rec, insert->ins_split); 4218 4219 /* 4220 * Split might have modified either leaf and we don't 4221 * have a guarantee that the later edge insert will 4222 * dirty this for us. 4223 */ 4224 if (left_path) 4225 ocfs2_journal_dirty(handle, 4226 path_leaf_bh(left_path)); 4227 } else 4228 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4229 insert); 4230 4231 ocfs2_journal_dirty(handle, leaf_bh); 4232 4233 if (left_path) { 4234 /* 4235 * The rotate code has indicated that we need to fix 4236 * up portions of the tree after the insert. 4237 * 4238 * XXX: Should we extend the transaction here? 4239 */ 4240 subtree_index = ocfs2_find_subtree_root(et, left_path, 4241 right_path); 4242 ocfs2_complete_edge_insert(handle, left_path, right_path, 4243 subtree_index); 4244 } 4245 4246 ret = 0; 4247 out: 4248 return ret; 4249 } 4250 4251 static int ocfs2_do_insert_extent(handle_t *handle, 4252 struct ocfs2_extent_tree *et, 4253 struct ocfs2_extent_rec *insert_rec, 4254 struct ocfs2_insert_type *type) 4255 { 4256 int ret, rotate = 0; 4257 u32 cpos; 4258 struct ocfs2_path *right_path = NULL; 4259 struct ocfs2_path *left_path = NULL; 4260 struct ocfs2_extent_list *el; 4261 4262 el = et->et_root_el; 4263 4264 ret = ocfs2_et_root_journal_access(handle, et, 4265 OCFS2_JOURNAL_ACCESS_WRITE); 4266 if (ret) { 4267 mlog_errno(ret); 4268 goto out; 4269 } 4270 4271 if (le16_to_cpu(el->l_tree_depth) == 0) { 4272 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4273 goto out_update_clusters; 4274 } 4275 4276 right_path = ocfs2_new_path_from_et(et); 4277 if (!right_path) { 4278 ret = -ENOMEM; 4279 mlog_errno(ret); 4280 goto out; 4281 } 4282 4283 /* 4284 * Determine the path to start with. Rotations need the 4285 * rightmost path, everything else can go directly to the 4286 * target leaf. 4287 */ 4288 cpos = le32_to_cpu(insert_rec->e_cpos); 4289 if (type->ins_appending == APPEND_NONE && 4290 type->ins_contig == CONTIG_NONE) { 4291 rotate = 1; 4292 cpos = UINT_MAX; 4293 } 4294 4295 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4296 if (ret) { 4297 mlog_errno(ret); 4298 goto out; 4299 } 4300 4301 /* 4302 * Rotations and appends need special treatment - they modify 4303 * parts of the tree's above them. 4304 * 4305 * Both might pass back a path immediate to the left of the 4306 * one being inserted to. This will be cause 4307 * ocfs2_insert_path() to modify the rightmost records of 4308 * left_path to account for an edge insert. 4309 * 4310 * XXX: When modifying this code, keep in mind that an insert 4311 * can wind up skipping both of these two special cases... 4312 */ 4313 if (rotate) { 4314 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4315 le32_to_cpu(insert_rec->e_cpos), 4316 right_path, &left_path); 4317 if (ret) { 4318 mlog_errno(ret); 4319 goto out; 4320 } 4321 4322 /* 4323 * ocfs2_rotate_tree_right() might have extended the 4324 * transaction without re-journaling our tree root. 4325 */ 4326 ret = ocfs2_et_root_journal_access(handle, et, 4327 OCFS2_JOURNAL_ACCESS_WRITE); 4328 if (ret) { 4329 mlog_errno(ret); 4330 goto out; 4331 } 4332 } else if (type->ins_appending == APPEND_TAIL 4333 && type->ins_contig != CONTIG_LEFT) { 4334 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4335 right_path, &left_path); 4336 if (ret) { 4337 mlog_errno(ret); 4338 goto out; 4339 } 4340 } 4341 4342 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4343 insert_rec, type); 4344 if (ret) { 4345 mlog_errno(ret); 4346 goto out; 4347 } 4348 4349 out_update_clusters: 4350 if (type->ins_split == SPLIT_NONE) 4351 ocfs2_et_update_clusters(et, 4352 le16_to_cpu(insert_rec->e_leaf_clusters)); 4353 4354 ocfs2_journal_dirty(handle, et->et_root_bh); 4355 4356 out: 4357 ocfs2_free_path(left_path); 4358 ocfs2_free_path(right_path); 4359 4360 return ret; 4361 } 4362 4363 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4364 struct ocfs2_path *path, 4365 struct ocfs2_extent_list *el, int index, 4366 struct ocfs2_extent_rec *split_rec, 4367 struct ocfs2_merge_ctxt *ctxt) 4368 { 4369 int status = 0; 4370 enum ocfs2_contig_type ret = CONTIG_NONE; 4371 u32 left_cpos, right_cpos; 4372 struct ocfs2_extent_rec *rec = NULL; 4373 struct ocfs2_extent_list *new_el; 4374 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4375 struct buffer_head *bh; 4376 struct ocfs2_extent_block *eb; 4377 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4378 4379 if (index > 0) { 4380 rec = &el->l_recs[index - 1]; 4381 } else if (path->p_tree_depth > 0) { 4382 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4383 if (status) 4384 goto exit; 4385 4386 if (left_cpos != 0) { 4387 left_path = ocfs2_new_path_from_path(path); 4388 if (!left_path) { 4389 status = -ENOMEM; 4390 mlog_errno(status); 4391 goto exit; 4392 } 4393 4394 status = ocfs2_find_path(et->et_ci, left_path, 4395 left_cpos); 4396 if (status) 4397 goto free_left_path; 4398 4399 new_el = path_leaf_el(left_path); 4400 4401 if (le16_to_cpu(new_el->l_next_free_rec) != 4402 le16_to_cpu(new_el->l_count)) { 4403 bh = path_leaf_bh(left_path); 4404 eb = (struct ocfs2_extent_block *)bh->b_data; 4405 status = ocfs2_error(sb, 4406 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4407 (unsigned long long)le64_to_cpu(eb->h_blkno), 4408 le16_to_cpu(new_el->l_next_free_rec), 4409 le16_to_cpu(new_el->l_count)); 4410 goto free_left_path; 4411 } 4412 rec = &new_el->l_recs[ 4413 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4414 } 4415 } 4416 4417 /* 4418 * We're careful to check for an empty extent record here - 4419 * the merge code will know what to do if it sees one. 4420 */ 4421 if (rec) { 4422 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4423 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4424 ret = CONTIG_RIGHT; 4425 } else { 4426 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4427 } 4428 } 4429 4430 rec = NULL; 4431 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4432 rec = &el->l_recs[index + 1]; 4433 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4434 path->p_tree_depth > 0) { 4435 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4436 if (status) 4437 goto free_left_path; 4438 4439 if (right_cpos == 0) 4440 goto free_left_path; 4441 4442 right_path = ocfs2_new_path_from_path(path); 4443 if (!right_path) { 4444 status = -ENOMEM; 4445 mlog_errno(status); 4446 goto free_left_path; 4447 } 4448 4449 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4450 if (status) 4451 goto free_right_path; 4452 4453 new_el = path_leaf_el(right_path); 4454 rec = &new_el->l_recs[0]; 4455 if (ocfs2_is_empty_extent(rec)) { 4456 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4457 bh = path_leaf_bh(right_path); 4458 eb = (struct ocfs2_extent_block *)bh->b_data; 4459 status = ocfs2_error(sb, 4460 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4461 (unsigned long long)le64_to_cpu(eb->h_blkno), 4462 le16_to_cpu(new_el->l_next_free_rec)); 4463 goto free_right_path; 4464 } 4465 rec = &new_el->l_recs[1]; 4466 } 4467 } 4468 4469 if (rec) { 4470 enum ocfs2_contig_type contig_type; 4471 4472 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4473 4474 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4475 ret = CONTIG_LEFTRIGHT; 4476 else if (ret == CONTIG_NONE) 4477 ret = contig_type; 4478 } 4479 4480 free_right_path: 4481 ocfs2_free_path(right_path); 4482 free_left_path: 4483 ocfs2_free_path(left_path); 4484 exit: 4485 if (status == 0) 4486 ctxt->c_contig_type = ret; 4487 4488 return status; 4489 } 4490 4491 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4492 struct ocfs2_insert_type *insert, 4493 struct ocfs2_extent_list *el, 4494 struct ocfs2_extent_rec *insert_rec) 4495 { 4496 int i; 4497 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4498 4499 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4500 4501 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4502 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4503 insert_rec); 4504 if (contig_type != CONTIG_NONE) { 4505 insert->ins_contig_index = i; 4506 break; 4507 } 4508 } 4509 insert->ins_contig = contig_type; 4510 4511 if (insert->ins_contig != CONTIG_NONE) { 4512 struct ocfs2_extent_rec *rec = 4513 &el->l_recs[insert->ins_contig_index]; 4514 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4515 le16_to_cpu(insert_rec->e_leaf_clusters); 4516 4517 /* 4518 * Caller might want us to limit the size of extents, don't 4519 * calculate contiguousness if we might exceed that limit. 4520 */ 4521 if (et->et_max_leaf_clusters && 4522 (len > et->et_max_leaf_clusters)) 4523 insert->ins_contig = CONTIG_NONE; 4524 } 4525 } 4526 4527 /* 4528 * This should only be called against the rightmost leaf extent list. 4529 * 4530 * ocfs2_figure_appending_type() will figure out whether we'll have to 4531 * insert at the tail of the rightmost leaf. 4532 * 4533 * This should also work against the root extent list for tree's with 0 4534 * depth. If we consider the root extent list to be the rightmost leaf node 4535 * then the logic here makes sense. 4536 */ 4537 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4538 struct ocfs2_extent_list *el, 4539 struct ocfs2_extent_rec *insert_rec) 4540 { 4541 int i; 4542 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4543 struct ocfs2_extent_rec *rec; 4544 4545 insert->ins_appending = APPEND_NONE; 4546 4547 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4548 4549 if (!el->l_next_free_rec) 4550 goto set_tail_append; 4551 4552 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4553 /* Were all records empty? */ 4554 if (le16_to_cpu(el->l_next_free_rec) == 1) 4555 goto set_tail_append; 4556 } 4557 4558 i = le16_to_cpu(el->l_next_free_rec) - 1; 4559 rec = &el->l_recs[i]; 4560 4561 if (cpos >= 4562 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4563 goto set_tail_append; 4564 4565 return; 4566 4567 set_tail_append: 4568 insert->ins_appending = APPEND_TAIL; 4569 } 4570 4571 /* 4572 * Helper function called at the beginning of an insert. 4573 * 4574 * This computes a few things that are commonly used in the process of 4575 * inserting into the btree: 4576 * - Whether the new extent is contiguous with an existing one. 4577 * - The current tree depth. 4578 * - Whether the insert is an appending one. 4579 * - The total # of free records in the tree. 4580 * 4581 * All of the information is stored on the ocfs2_insert_type 4582 * structure. 4583 */ 4584 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4585 struct buffer_head **last_eb_bh, 4586 struct ocfs2_extent_rec *insert_rec, 4587 int *free_records, 4588 struct ocfs2_insert_type *insert) 4589 { 4590 int ret; 4591 struct ocfs2_extent_block *eb; 4592 struct ocfs2_extent_list *el; 4593 struct ocfs2_path *path = NULL; 4594 struct buffer_head *bh = NULL; 4595 4596 insert->ins_split = SPLIT_NONE; 4597 4598 el = et->et_root_el; 4599 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4600 4601 if (el->l_tree_depth) { 4602 /* 4603 * If we have tree depth, we read in the 4604 * rightmost extent block ahead of time as 4605 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4606 * may want it later. 4607 */ 4608 ret = ocfs2_read_extent_block(et->et_ci, 4609 ocfs2_et_get_last_eb_blk(et), 4610 &bh); 4611 if (ret) { 4612 mlog_errno(ret); 4613 goto out; 4614 } 4615 eb = (struct ocfs2_extent_block *) bh->b_data; 4616 el = &eb->h_list; 4617 } 4618 4619 /* 4620 * Unless we have a contiguous insert, we'll need to know if 4621 * there is room left in our allocation tree for another 4622 * extent record. 4623 * 4624 * XXX: This test is simplistic, we can search for empty 4625 * extent records too. 4626 */ 4627 *free_records = le16_to_cpu(el->l_count) - 4628 le16_to_cpu(el->l_next_free_rec); 4629 4630 if (!insert->ins_tree_depth) { 4631 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4632 ocfs2_figure_appending_type(insert, el, insert_rec); 4633 return 0; 4634 } 4635 4636 path = ocfs2_new_path_from_et(et); 4637 if (!path) { 4638 ret = -ENOMEM; 4639 mlog_errno(ret); 4640 goto out; 4641 } 4642 4643 /* 4644 * In the case that we're inserting past what the tree 4645 * currently accounts for, ocfs2_find_path() will return for 4646 * us the rightmost tree path. This is accounted for below in 4647 * the appending code. 4648 */ 4649 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4650 if (ret) { 4651 mlog_errno(ret); 4652 goto out; 4653 } 4654 4655 el = path_leaf_el(path); 4656 4657 /* 4658 * Now that we have the path, there's two things we want to determine: 4659 * 1) Contiguousness (also set contig_index if this is so) 4660 * 4661 * 2) Are we doing an append? We can trivially break this up 4662 * into two types of appends: simple record append, or a 4663 * rotate inside the tail leaf. 4664 */ 4665 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4666 4667 /* 4668 * The insert code isn't quite ready to deal with all cases of 4669 * left contiguousness. Specifically, if it's an insert into 4670 * the 1st record in a leaf, it will require the adjustment of 4671 * cluster count on the last record of the path directly to it's 4672 * left. For now, just catch that case and fool the layers 4673 * above us. This works just fine for tree_depth == 0, which 4674 * is why we allow that above. 4675 */ 4676 if (insert->ins_contig == CONTIG_LEFT && 4677 insert->ins_contig_index == 0) 4678 insert->ins_contig = CONTIG_NONE; 4679 4680 /* 4681 * Ok, so we can simply compare against last_eb to figure out 4682 * whether the path doesn't exist. This will only happen in 4683 * the case that we're doing a tail append, so maybe we can 4684 * take advantage of that information somehow. 4685 */ 4686 if (ocfs2_et_get_last_eb_blk(et) == 4687 path_leaf_bh(path)->b_blocknr) { 4688 /* 4689 * Ok, ocfs2_find_path() returned us the rightmost 4690 * tree path. This might be an appending insert. There are 4691 * two cases: 4692 * 1) We're doing a true append at the tail: 4693 * -This might even be off the end of the leaf 4694 * 2) We're "appending" by rotating in the tail 4695 */ 4696 ocfs2_figure_appending_type(insert, el, insert_rec); 4697 } 4698 4699 out: 4700 ocfs2_free_path(path); 4701 4702 if (ret == 0) 4703 *last_eb_bh = bh; 4704 else 4705 brelse(bh); 4706 return ret; 4707 } 4708 4709 /* 4710 * Insert an extent into a btree. 4711 * 4712 * The caller needs to update the owning btree's cluster count. 4713 */ 4714 int ocfs2_insert_extent(handle_t *handle, 4715 struct ocfs2_extent_tree *et, 4716 u32 cpos, 4717 u64 start_blk, 4718 u32 new_clusters, 4719 u8 flags, 4720 struct ocfs2_alloc_context *meta_ac) 4721 { 4722 int status; 4723 int free_records; 4724 struct buffer_head *last_eb_bh = NULL; 4725 struct ocfs2_insert_type insert = {0, }; 4726 struct ocfs2_extent_rec rec; 4727 4728 trace_ocfs2_insert_extent_start( 4729 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4730 cpos, new_clusters); 4731 4732 memset(&rec, 0, sizeof(rec)); 4733 rec.e_cpos = cpu_to_le32(cpos); 4734 rec.e_blkno = cpu_to_le64(start_blk); 4735 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4736 rec.e_flags = flags; 4737 status = ocfs2_et_insert_check(et, &rec); 4738 if (status) { 4739 mlog_errno(status); 4740 goto bail; 4741 } 4742 4743 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4744 &free_records, &insert); 4745 if (status < 0) { 4746 mlog_errno(status); 4747 goto bail; 4748 } 4749 4750 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4751 insert.ins_contig_index, free_records, 4752 insert.ins_tree_depth); 4753 4754 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4755 status = ocfs2_grow_tree(handle, et, 4756 &insert.ins_tree_depth, &last_eb_bh, 4757 meta_ac); 4758 if (status) { 4759 mlog_errno(status); 4760 goto bail; 4761 } 4762 } 4763 4764 /* Finally, we can add clusters. This might rotate the tree for us. */ 4765 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4766 if (status < 0) 4767 mlog_errno(status); 4768 else 4769 ocfs2_et_extent_map_insert(et, &rec); 4770 4771 bail: 4772 brelse(last_eb_bh); 4773 4774 return status; 4775 } 4776 4777 /* 4778 * Allocate and add clusters into the extent b-tree. 4779 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4780 * The extent b-tree's root is specified by et, and 4781 * it is not limited to the file storage. Any extent tree can use this 4782 * function if it implements the proper ocfs2_extent_tree. 4783 */ 4784 int ocfs2_add_clusters_in_btree(handle_t *handle, 4785 struct ocfs2_extent_tree *et, 4786 u32 *logical_offset, 4787 u32 clusters_to_add, 4788 int mark_unwritten, 4789 struct ocfs2_alloc_context *data_ac, 4790 struct ocfs2_alloc_context *meta_ac, 4791 enum ocfs2_alloc_restarted *reason_ret) 4792 { 4793 int status = 0, err = 0; 4794 int need_free = 0; 4795 int free_extents; 4796 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4797 u32 bit_off, num_bits; 4798 u64 block; 4799 u8 flags = 0; 4800 struct ocfs2_super *osb = 4801 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4802 4803 BUG_ON(!clusters_to_add); 4804 4805 if (mark_unwritten) 4806 flags = OCFS2_EXT_UNWRITTEN; 4807 4808 free_extents = ocfs2_num_free_extents(et); 4809 if (free_extents < 0) { 4810 status = free_extents; 4811 mlog_errno(status); 4812 goto leave; 4813 } 4814 4815 /* there are two cases which could cause us to EAGAIN in the 4816 * we-need-more-metadata case: 4817 * 1) we haven't reserved *any* 4818 * 2) we are so fragmented, we've needed to add metadata too 4819 * many times. */ 4820 if (!free_extents && !meta_ac) { 4821 err = -1; 4822 status = -EAGAIN; 4823 reason = RESTART_META; 4824 goto leave; 4825 } else if ((!free_extents) 4826 && (ocfs2_alloc_context_bits_left(meta_ac) 4827 < ocfs2_extend_meta_needed(et->et_root_el))) { 4828 err = -2; 4829 status = -EAGAIN; 4830 reason = RESTART_META; 4831 goto leave; 4832 } 4833 4834 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4835 clusters_to_add, &bit_off, &num_bits); 4836 if (status < 0) { 4837 if (status != -ENOSPC) 4838 mlog_errno(status); 4839 goto leave; 4840 } 4841 4842 BUG_ON(num_bits > clusters_to_add); 4843 4844 /* reserve our write early -- insert_extent may update the tree root */ 4845 status = ocfs2_et_root_journal_access(handle, et, 4846 OCFS2_JOURNAL_ACCESS_WRITE); 4847 if (status < 0) { 4848 mlog_errno(status); 4849 need_free = 1; 4850 goto bail; 4851 } 4852 4853 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4854 trace_ocfs2_add_clusters_in_btree( 4855 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4856 bit_off, num_bits); 4857 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4858 num_bits, flags, meta_ac); 4859 if (status < 0) { 4860 mlog_errno(status); 4861 need_free = 1; 4862 goto bail; 4863 } 4864 4865 ocfs2_journal_dirty(handle, et->et_root_bh); 4866 4867 clusters_to_add -= num_bits; 4868 *logical_offset += num_bits; 4869 4870 if (clusters_to_add) { 4871 err = clusters_to_add; 4872 status = -EAGAIN; 4873 reason = RESTART_TRANS; 4874 } 4875 4876 bail: 4877 if (need_free) { 4878 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4879 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4880 bit_off, num_bits); 4881 else 4882 ocfs2_free_clusters(handle, 4883 data_ac->ac_inode, 4884 data_ac->ac_bh, 4885 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4886 num_bits); 4887 } 4888 4889 leave: 4890 if (reason_ret) 4891 *reason_ret = reason; 4892 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4893 return status; 4894 } 4895 4896 static void ocfs2_make_right_split_rec(struct super_block *sb, 4897 struct ocfs2_extent_rec *split_rec, 4898 u32 cpos, 4899 struct ocfs2_extent_rec *rec) 4900 { 4901 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4902 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4903 4904 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4905 4906 split_rec->e_cpos = cpu_to_le32(cpos); 4907 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4908 4909 split_rec->e_blkno = rec->e_blkno; 4910 le64_add_cpu(&split_rec->e_blkno, 4911 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4912 4913 split_rec->e_flags = rec->e_flags; 4914 } 4915 4916 static int ocfs2_split_and_insert(handle_t *handle, 4917 struct ocfs2_extent_tree *et, 4918 struct ocfs2_path *path, 4919 struct buffer_head **last_eb_bh, 4920 int split_index, 4921 struct ocfs2_extent_rec *orig_split_rec, 4922 struct ocfs2_alloc_context *meta_ac) 4923 { 4924 int ret = 0, depth; 4925 unsigned int insert_range, rec_range, do_leftright = 0; 4926 struct ocfs2_extent_rec tmprec; 4927 struct ocfs2_extent_list *rightmost_el; 4928 struct ocfs2_extent_rec rec; 4929 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4930 struct ocfs2_insert_type insert; 4931 struct ocfs2_extent_block *eb; 4932 4933 leftright: 4934 /* 4935 * Store a copy of the record on the stack - it might move 4936 * around as the tree is manipulated below. 4937 */ 4938 rec = path_leaf_el(path)->l_recs[split_index]; 4939 4940 rightmost_el = et->et_root_el; 4941 4942 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4943 if (depth) { 4944 BUG_ON(!(*last_eb_bh)); 4945 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4946 rightmost_el = &eb->h_list; 4947 } 4948 4949 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4950 le16_to_cpu(rightmost_el->l_count)) { 4951 ret = ocfs2_grow_tree(handle, et, 4952 &depth, last_eb_bh, meta_ac); 4953 if (ret) { 4954 mlog_errno(ret); 4955 goto out; 4956 } 4957 } 4958 4959 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4960 insert.ins_appending = APPEND_NONE; 4961 insert.ins_contig = CONTIG_NONE; 4962 insert.ins_tree_depth = depth; 4963 4964 insert_range = le32_to_cpu(split_rec.e_cpos) + 4965 le16_to_cpu(split_rec.e_leaf_clusters); 4966 rec_range = le32_to_cpu(rec.e_cpos) + 4967 le16_to_cpu(rec.e_leaf_clusters); 4968 4969 if (split_rec.e_cpos == rec.e_cpos) { 4970 insert.ins_split = SPLIT_LEFT; 4971 } else if (insert_range == rec_range) { 4972 insert.ins_split = SPLIT_RIGHT; 4973 } else { 4974 /* 4975 * Left/right split. We fake this as a right split 4976 * first and then make a second pass as a left split. 4977 */ 4978 insert.ins_split = SPLIT_RIGHT; 4979 4980 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4981 &tmprec, insert_range, &rec); 4982 4983 split_rec = tmprec; 4984 4985 BUG_ON(do_leftright); 4986 do_leftright = 1; 4987 } 4988 4989 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 4990 if (ret) { 4991 mlog_errno(ret); 4992 goto out; 4993 } 4994 4995 if (do_leftright == 1) { 4996 u32 cpos; 4997 struct ocfs2_extent_list *el; 4998 4999 do_leftright++; 5000 split_rec = *orig_split_rec; 5001 5002 ocfs2_reinit_path(path, 1); 5003 5004 cpos = le32_to_cpu(split_rec.e_cpos); 5005 ret = ocfs2_find_path(et->et_ci, path, cpos); 5006 if (ret) { 5007 mlog_errno(ret); 5008 goto out; 5009 } 5010 5011 el = path_leaf_el(path); 5012 split_index = ocfs2_search_extent_list(el, cpos); 5013 if (split_index == -1) { 5014 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5015 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5016 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5017 cpos); 5018 ret = -EROFS; 5019 goto out; 5020 } 5021 goto leftright; 5022 } 5023 out: 5024 5025 return ret; 5026 } 5027 5028 static int ocfs2_replace_extent_rec(handle_t *handle, 5029 struct ocfs2_extent_tree *et, 5030 struct ocfs2_path *path, 5031 struct ocfs2_extent_list *el, 5032 int split_index, 5033 struct ocfs2_extent_rec *split_rec) 5034 { 5035 int ret; 5036 5037 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5038 path_num_items(path) - 1); 5039 if (ret) { 5040 mlog_errno(ret); 5041 goto out; 5042 } 5043 5044 el->l_recs[split_index] = *split_rec; 5045 5046 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5047 out: 5048 return ret; 5049 } 5050 5051 /* 5052 * Split part or all of the extent record at split_index in the leaf 5053 * pointed to by path. Merge with the contiguous extent record if needed. 5054 * 5055 * Care is taken to handle contiguousness so as to not grow the tree. 5056 * 5057 * meta_ac is not strictly necessary - we only truly need it if growth 5058 * of the tree is required. All other cases will degrade into a less 5059 * optimal tree layout. 5060 * 5061 * last_eb_bh should be the rightmost leaf block for any extent 5062 * btree. Since a split may grow the tree or a merge might shrink it, 5063 * the caller cannot trust the contents of that buffer after this call. 5064 * 5065 * This code is optimized for readability - several passes might be 5066 * made over certain portions of the tree. All of those blocks will 5067 * have been brought into cache (and pinned via the journal), so the 5068 * extra overhead is not expressed in terms of disk reads. 5069 */ 5070 int ocfs2_split_extent(handle_t *handle, 5071 struct ocfs2_extent_tree *et, 5072 struct ocfs2_path *path, 5073 int split_index, 5074 struct ocfs2_extent_rec *split_rec, 5075 struct ocfs2_alloc_context *meta_ac, 5076 struct ocfs2_cached_dealloc_ctxt *dealloc) 5077 { 5078 int ret = 0; 5079 struct ocfs2_extent_list *el = path_leaf_el(path); 5080 struct buffer_head *last_eb_bh = NULL; 5081 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5082 struct ocfs2_merge_ctxt ctxt; 5083 5084 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5085 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5086 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5087 ret = -EIO; 5088 mlog_errno(ret); 5089 goto out; 5090 } 5091 5092 ret = ocfs2_figure_merge_contig_type(et, path, el, 5093 split_index, 5094 split_rec, 5095 &ctxt); 5096 if (ret) { 5097 mlog_errno(ret); 5098 goto out; 5099 } 5100 5101 /* 5102 * The core merge / split code wants to know how much room is 5103 * left in this allocation tree, so we pass the 5104 * rightmost extent list. 5105 */ 5106 if (path->p_tree_depth) { 5107 ret = ocfs2_read_extent_block(et->et_ci, 5108 ocfs2_et_get_last_eb_blk(et), 5109 &last_eb_bh); 5110 if (ret) { 5111 mlog_errno(ret); 5112 goto out; 5113 } 5114 } 5115 5116 if (rec->e_cpos == split_rec->e_cpos && 5117 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5118 ctxt.c_split_covers_rec = 1; 5119 else 5120 ctxt.c_split_covers_rec = 0; 5121 5122 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5123 5124 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5125 ctxt.c_has_empty_extent, 5126 ctxt.c_split_covers_rec); 5127 5128 if (ctxt.c_contig_type == CONTIG_NONE) { 5129 if (ctxt.c_split_covers_rec) 5130 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5131 split_index, split_rec); 5132 else 5133 ret = ocfs2_split_and_insert(handle, et, path, 5134 &last_eb_bh, split_index, 5135 split_rec, meta_ac); 5136 if (ret) 5137 mlog_errno(ret); 5138 } else { 5139 ret = ocfs2_try_to_merge_extent(handle, et, path, 5140 split_index, split_rec, 5141 dealloc, &ctxt); 5142 if (ret) 5143 mlog_errno(ret); 5144 } 5145 5146 out: 5147 brelse(last_eb_bh); 5148 return ret; 5149 } 5150 5151 /* 5152 * Change the flags of the already-existing extent at cpos for len clusters. 5153 * 5154 * new_flags: the flags we want to set. 5155 * clear_flags: the flags we want to clear. 5156 * phys: the new physical offset we want this new extent starts from. 5157 * 5158 * If the existing extent is larger than the request, initiate a 5159 * split. An attempt will be made at merging with adjacent extents. 5160 * 5161 * The caller is responsible for passing down meta_ac if we'll need it. 5162 */ 5163 int ocfs2_change_extent_flag(handle_t *handle, 5164 struct ocfs2_extent_tree *et, 5165 u32 cpos, u32 len, u32 phys, 5166 struct ocfs2_alloc_context *meta_ac, 5167 struct ocfs2_cached_dealloc_ctxt *dealloc, 5168 int new_flags, int clear_flags) 5169 { 5170 int ret, index; 5171 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5172 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5173 struct ocfs2_extent_rec split_rec; 5174 struct ocfs2_path *left_path = NULL; 5175 struct ocfs2_extent_list *el; 5176 struct ocfs2_extent_rec *rec; 5177 5178 left_path = ocfs2_new_path_from_et(et); 5179 if (!left_path) { 5180 ret = -ENOMEM; 5181 mlog_errno(ret); 5182 goto out; 5183 } 5184 5185 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5186 if (ret) { 5187 mlog_errno(ret); 5188 goto out; 5189 } 5190 el = path_leaf_el(left_path); 5191 5192 index = ocfs2_search_extent_list(el, cpos); 5193 if (index == -1) { 5194 ocfs2_error(sb, 5195 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5196 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5197 cpos); 5198 ret = -EROFS; 5199 goto out; 5200 } 5201 5202 ret = -EIO; 5203 rec = &el->l_recs[index]; 5204 if (new_flags && (rec->e_flags & new_flags)) { 5205 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5206 "extent that already had them\n", 5207 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5208 new_flags); 5209 goto out; 5210 } 5211 5212 if (clear_flags && !(rec->e_flags & clear_flags)) { 5213 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5214 "extent that didn't have them\n", 5215 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5216 clear_flags); 5217 goto out; 5218 } 5219 5220 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5221 split_rec.e_cpos = cpu_to_le32(cpos); 5222 split_rec.e_leaf_clusters = cpu_to_le16(len); 5223 split_rec.e_blkno = cpu_to_le64(start_blkno); 5224 split_rec.e_flags = rec->e_flags; 5225 if (new_flags) 5226 split_rec.e_flags |= new_flags; 5227 if (clear_flags) 5228 split_rec.e_flags &= ~clear_flags; 5229 5230 ret = ocfs2_split_extent(handle, et, left_path, 5231 index, &split_rec, meta_ac, 5232 dealloc); 5233 if (ret) 5234 mlog_errno(ret); 5235 5236 out: 5237 ocfs2_free_path(left_path); 5238 return ret; 5239 5240 } 5241 5242 /* 5243 * Mark the already-existing extent at cpos as written for len clusters. 5244 * This removes the unwritten extent flag. 5245 * 5246 * If the existing extent is larger than the request, initiate a 5247 * split. An attempt will be made at merging with adjacent extents. 5248 * 5249 * The caller is responsible for passing down meta_ac if we'll need it. 5250 */ 5251 int ocfs2_mark_extent_written(struct inode *inode, 5252 struct ocfs2_extent_tree *et, 5253 handle_t *handle, u32 cpos, u32 len, u32 phys, 5254 struct ocfs2_alloc_context *meta_ac, 5255 struct ocfs2_cached_dealloc_ctxt *dealloc) 5256 { 5257 int ret; 5258 5259 trace_ocfs2_mark_extent_written( 5260 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5261 cpos, len, phys); 5262 5263 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5264 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5265 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5266 ret = -EROFS; 5267 goto out; 5268 } 5269 5270 /* 5271 * XXX: This should be fixed up so that we just re-insert the 5272 * next extent records. 5273 */ 5274 ocfs2_et_extent_map_truncate(et, 0); 5275 5276 ret = ocfs2_change_extent_flag(handle, et, cpos, 5277 len, phys, meta_ac, dealloc, 5278 0, OCFS2_EXT_UNWRITTEN); 5279 if (ret) 5280 mlog_errno(ret); 5281 5282 out: 5283 return ret; 5284 } 5285 5286 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5287 struct ocfs2_path *path, 5288 int index, u32 new_range, 5289 struct ocfs2_alloc_context *meta_ac) 5290 { 5291 int ret, depth, credits; 5292 struct buffer_head *last_eb_bh = NULL; 5293 struct ocfs2_extent_block *eb; 5294 struct ocfs2_extent_list *rightmost_el, *el; 5295 struct ocfs2_extent_rec split_rec; 5296 struct ocfs2_extent_rec *rec; 5297 struct ocfs2_insert_type insert; 5298 5299 /* 5300 * Setup the record to split before we grow the tree. 5301 */ 5302 el = path_leaf_el(path); 5303 rec = &el->l_recs[index]; 5304 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5305 &split_rec, new_range, rec); 5306 5307 depth = path->p_tree_depth; 5308 if (depth > 0) { 5309 ret = ocfs2_read_extent_block(et->et_ci, 5310 ocfs2_et_get_last_eb_blk(et), 5311 &last_eb_bh); 5312 if (ret < 0) { 5313 mlog_errno(ret); 5314 goto out; 5315 } 5316 5317 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5318 rightmost_el = &eb->h_list; 5319 } else 5320 rightmost_el = path_leaf_el(path); 5321 5322 credits = path->p_tree_depth + 5323 ocfs2_extend_meta_needed(et->et_root_el); 5324 ret = ocfs2_extend_trans(handle, credits); 5325 if (ret) { 5326 mlog_errno(ret); 5327 goto out; 5328 } 5329 5330 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5331 le16_to_cpu(rightmost_el->l_count)) { 5332 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5333 meta_ac); 5334 if (ret) { 5335 mlog_errno(ret); 5336 goto out; 5337 } 5338 } 5339 5340 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5341 insert.ins_appending = APPEND_NONE; 5342 insert.ins_contig = CONTIG_NONE; 5343 insert.ins_split = SPLIT_RIGHT; 5344 insert.ins_tree_depth = depth; 5345 5346 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5347 if (ret) 5348 mlog_errno(ret); 5349 5350 out: 5351 brelse(last_eb_bh); 5352 return ret; 5353 } 5354 5355 static int ocfs2_truncate_rec(handle_t *handle, 5356 struct ocfs2_extent_tree *et, 5357 struct ocfs2_path *path, int index, 5358 struct ocfs2_cached_dealloc_ctxt *dealloc, 5359 u32 cpos, u32 len) 5360 { 5361 int ret; 5362 u32 left_cpos, rec_range, trunc_range; 5363 int is_rightmost_tree_rec = 0; 5364 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5365 struct ocfs2_path *left_path = NULL; 5366 struct ocfs2_extent_list *el = path_leaf_el(path); 5367 struct ocfs2_extent_rec *rec; 5368 struct ocfs2_extent_block *eb; 5369 5370 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5371 /* extend credit for ocfs2_remove_rightmost_path */ 5372 ret = ocfs2_extend_rotate_transaction(handle, 0, 5373 jbd2_handle_buffer_credits(handle), 5374 path); 5375 if (ret) { 5376 mlog_errno(ret); 5377 goto out; 5378 } 5379 5380 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5381 if (ret) { 5382 mlog_errno(ret); 5383 goto out; 5384 } 5385 5386 index--; 5387 } 5388 5389 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5390 path->p_tree_depth) { 5391 /* 5392 * Check whether this is the rightmost tree record. If 5393 * we remove all of this record or part of its right 5394 * edge then an update of the record lengths above it 5395 * will be required. 5396 */ 5397 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5398 if (eb->h_next_leaf_blk == 0) 5399 is_rightmost_tree_rec = 1; 5400 } 5401 5402 rec = &el->l_recs[index]; 5403 if (index == 0 && path->p_tree_depth && 5404 le32_to_cpu(rec->e_cpos) == cpos) { 5405 /* 5406 * Changing the leftmost offset (via partial or whole 5407 * record truncate) of an interior (or rightmost) path 5408 * means we have to update the subtree that is formed 5409 * by this leaf and the one to it's left. 5410 * 5411 * There are two cases we can skip: 5412 * 1) Path is the leftmost one in our btree. 5413 * 2) The leaf is rightmost and will be empty after 5414 * we remove the extent record - the rotate code 5415 * knows how to update the newly formed edge. 5416 */ 5417 5418 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5419 if (ret) { 5420 mlog_errno(ret); 5421 goto out; 5422 } 5423 5424 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5425 left_path = ocfs2_new_path_from_path(path); 5426 if (!left_path) { 5427 ret = -ENOMEM; 5428 mlog_errno(ret); 5429 goto out; 5430 } 5431 5432 ret = ocfs2_find_path(et->et_ci, left_path, 5433 left_cpos); 5434 if (ret) { 5435 mlog_errno(ret); 5436 goto out; 5437 } 5438 } 5439 } 5440 5441 ret = ocfs2_extend_rotate_transaction(handle, 0, 5442 jbd2_handle_buffer_credits(handle), 5443 path); 5444 if (ret) { 5445 mlog_errno(ret); 5446 goto out; 5447 } 5448 5449 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5450 if (ret) { 5451 mlog_errno(ret); 5452 goto out; 5453 } 5454 5455 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5456 if (ret) { 5457 mlog_errno(ret); 5458 goto out; 5459 } 5460 5461 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5462 trunc_range = cpos + len; 5463 5464 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5465 int next_free; 5466 5467 memset(rec, 0, sizeof(*rec)); 5468 ocfs2_cleanup_merge(el, index); 5469 5470 next_free = le16_to_cpu(el->l_next_free_rec); 5471 if (is_rightmost_tree_rec && next_free > 1) { 5472 /* 5473 * We skip the edge update if this path will 5474 * be deleted by the rotate code. 5475 */ 5476 rec = &el->l_recs[next_free - 1]; 5477 ocfs2_adjust_rightmost_records(handle, et, path, 5478 rec); 5479 } 5480 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5481 /* Remove leftmost portion of the record. */ 5482 le32_add_cpu(&rec->e_cpos, len); 5483 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5484 le16_add_cpu(&rec->e_leaf_clusters, -len); 5485 } else if (rec_range == trunc_range) { 5486 /* Remove rightmost portion of the record */ 5487 le16_add_cpu(&rec->e_leaf_clusters, -len); 5488 if (is_rightmost_tree_rec) 5489 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5490 } else { 5491 /* Caller should have trapped this. */ 5492 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5493 "(%u, %u)\n", 5494 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5495 le32_to_cpu(rec->e_cpos), 5496 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5497 BUG(); 5498 } 5499 5500 if (left_path) { 5501 int subtree_index; 5502 5503 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5504 ocfs2_complete_edge_insert(handle, left_path, path, 5505 subtree_index); 5506 } 5507 5508 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5509 5510 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5511 if (ret) 5512 mlog_errno(ret); 5513 5514 out: 5515 ocfs2_free_path(left_path); 5516 return ret; 5517 } 5518 5519 int ocfs2_remove_extent(handle_t *handle, 5520 struct ocfs2_extent_tree *et, 5521 u32 cpos, u32 len, 5522 struct ocfs2_alloc_context *meta_ac, 5523 struct ocfs2_cached_dealloc_ctxt *dealloc) 5524 { 5525 int ret, index; 5526 u32 rec_range, trunc_range; 5527 struct ocfs2_extent_rec *rec; 5528 struct ocfs2_extent_list *el; 5529 struct ocfs2_path *path = NULL; 5530 5531 /* 5532 * XXX: Why are we truncating to 0 instead of wherever this 5533 * affects us? 5534 */ 5535 ocfs2_et_extent_map_truncate(et, 0); 5536 5537 path = ocfs2_new_path_from_et(et); 5538 if (!path) { 5539 ret = -ENOMEM; 5540 mlog_errno(ret); 5541 goto out; 5542 } 5543 5544 ret = ocfs2_find_path(et->et_ci, path, cpos); 5545 if (ret) { 5546 mlog_errno(ret); 5547 goto out; 5548 } 5549 5550 el = path_leaf_el(path); 5551 index = ocfs2_search_extent_list(el, cpos); 5552 if (index == -1) { 5553 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5554 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5555 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5556 cpos); 5557 ret = -EROFS; 5558 goto out; 5559 } 5560 5561 /* 5562 * We have 3 cases of extent removal: 5563 * 1) Range covers the entire extent rec 5564 * 2) Range begins or ends on one edge of the extent rec 5565 * 3) Range is in the middle of the extent rec (no shared edges) 5566 * 5567 * For case 1 we remove the extent rec and left rotate to 5568 * fill the hole. 5569 * 5570 * For case 2 we just shrink the existing extent rec, with a 5571 * tree update if the shrinking edge is also the edge of an 5572 * extent block. 5573 * 5574 * For case 3 we do a right split to turn the extent rec into 5575 * something case 2 can handle. 5576 */ 5577 rec = &el->l_recs[index]; 5578 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5579 trunc_range = cpos + len; 5580 5581 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5582 5583 trace_ocfs2_remove_extent( 5584 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5585 cpos, len, index, le32_to_cpu(rec->e_cpos), 5586 ocfs2_rec_clusters(el, rec)); 5587 5588 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5589 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5590 cpos, len); 5591 if (ret) { 5592 mlog_errno(ret); 5593 goto out; 5594 } 5595 } else { 5596 ret = ocfs2_split_tree(handle, et, path, index, 5597 trunc_range, meta_ac); 5598 if (ret) { 5599 mlog_errno(ret); 5600 goto out; 5601 } 5602 5603 /* 5604 * The split could have manipulated the tree enough to 5605 * move the record location, so we have to look for it again. 5606 */ 5607 ocfs2_reinit_path(path, 1); 5608 5609 ret = ocfs2_find_path(et->et_ci, path, cpos); 5610 if (ret) { 5611 mlog_errno(ret); 5612 goto out; 5613 } 5614 5615 el = path_leaf_el(path); 5616 index = ocfs2_search_extent_list(el, cpos); 5617 if (index == -1) { 5618 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5619 "Owner %llu: split at cpos %u lost record\n", 5620 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5621 cpos); 5622 ret = -EROFS; 5623 goto out; 5624 } 5625 5626 /* 5627 * Double check our values here. If anything is fishy, 5628 * it's easier to catch it at the top level. 5629 */ 5630 rec = &el->l_recs[index]; 5631 rec_range = le32_to_cpu(rec->e_cpos) + 5632 ocfs2_rec_clusters(el, rec); 5633 if (rec_range != trunc_range) { 5634 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5635 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5636 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5637 cpos, len, le32_to_cpu(rec->e_cpos), 5638 ocfs2_rec_clusters(el, rec)); 5639 ret = -EROFS; 5640 goto out; 5641 } 5642 5643 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5644 cpos, len); 5645 if (ret) 5646 mlog_errno(ret); 5647 } 5648 5649 out: 5650 ocfs2_free_path(path); 5651 return ret; 5652 } 5653 5654 /* 5655 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5656 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5657 * number to reserve some extra blocks, and it only handles meta 5658 * data allocations. 5659 * 5660 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5661 * and punching holes. 5662 */ 5663 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5664 struct ocfs2_extent_tree *et, 5665 u32 extents_to_split, 5666 struct ocfs2_alloc_context **ac, 5667 int extra_blocks) 5668 { 5669 int ret = 0, num_free_extents; 5670 unsigned int max_recs_needed = 2 * extents_to_split; 5671 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5672 5673 *ac = NULL; 5674 5675 num_free_extents = ocfs2_num_free_extents(et); 5676 if (num_free_extents < 0) { 5677 ret = num_free_extents; 5678 mlog_errno(ret); 5679 goto out; 5680 } 5681 5682 if (!num_free_extents || 5683 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5684 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5685 5686 if (extra_blocks) { 5687 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5688 if (ret < 0) { 5689 if (ret != -ENOSPC) 5690 mlog_errno(ret); 5691 } 5692 } 5693 5694 out: 5695 if (ret) { 5696 if (*ac) { 5697 ocfs2_free_alloc_context(*ac); 5698 *ac = NULL; 5699 } 5700 } 5701 5702 return ret; 5703 } 5704 5705 int ocfs2_remove_btree_range(struct inode *inode, 5706 struct ocfs2_extent_tree *et, 5707 u32 cpos, u32 phys_cpos, u32 len, int flags, 5708 struct ocfs2_cached_dealloc_ctxt *dealloc, 5709 u64 refcount_loc, bool refcount_tree_locked) 5710 { 5711 int ret, credits = 0, extra_blocks = 0; 5712 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5714 struct inode *tl_inode = osb->osb_tl_inode; 5715 handle_t *handle; 5716 struct ocfs2_alloc_context *meta_ac = NULL; 5717 struct ocfs2_refcount_tree *ref_tree = NULL; 5718 5719 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5720 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5721 5722 if (!refcount_tree_locked) { 5723 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5724 &ref_tree, NULL); 5725 if (ret) { 5726 mlog_errno(ret); 5727 goto bail; 5728 } 5729 } 5730 5731 ret = ocfs2_prepare_refcount_change_for_del(inode, 5732 refcount_loc, 5733 phys_blkno, 5734 len, 5735 &credits, 5736 &extra_blocks); 5737 if (ret < 0) { 5738 mlog_errno(ret); 5739 goto bail; 5740 } 5741 } 5742 5743 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5744 extra_blocks); 5745 if (ret) { 5746 mlog_errno(ret); 5747 goto bail; 5748 } 5749 5750 inode_lock(tl_inode); 5751 5752 if (ocfs2_truncate_log_needs_flush(osb)) { 5753 ret = __ocfs2_flush_truncate_log(osb); 5754 if (ret < 0) { 5755 mlog_errno(ret); 5756 goto out; 5757 } 5758 } 5759 5760 handle = ocfs2_start_trans(osb, 5761 ocfs2_remove_extent_credits(osb->sb) + credits); 5762 if (IS_ERR(handle)) { 5763 ret = PTR_ERR(handle); 5764 mlog_errno(ret); 5765 goto out; 5766 } 5767 5768 ret = ocfs2_et_root_journal_access(handle, et, 5769 OCFS2_JOURNAL_ACCESS_WRITE); 5770 if (ret) { 5771 mlog_errno(ret); 5772 goto out_commit; 5773 } 5774 5775 dquot_free_space_nodirty(inode, 5776 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5777 5778 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5779 if (ret) { 5780 mlog_errno(ret); 5781 goto out_commit; 5782 } 5783 5784 ocfs2_et_update_clusters(et, -len); 5785 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5786 5787 ocfs2_journal_dirty(handle, et->et_root_bh); 5788 5789 if (phys_blkno) { 5790 if (flags & OCFS2_EXT_REFCOUNTED) 5791 ret = ocfs2_decrease_refcount(inode, handle, 5792 ocfs2_blocks_to_clusters(osb->sb, 5793 phys_blkno), 5794 len, meta_ac, 5795 dealloc, 1); 5796 else 5797 ret = ocfs2_truncate_log_append(osb, handle, 5798 phys_blkno, len); 5799 if (ret) 5800 mlog_errno(ret); 5801 5802 } 5803 5804 out_commit: 5805 ocfs2_commit_trans(osb, handle); 5806 out: 5807 inode_unlock(tl_inode); 5808 bail: 5809 if (meta_ac) 5810 ocfs2_free_alloc_context(meta_ac); 5811 5812 if (ref_tree) 5813 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5814 5815 return ret; 5816 } 5817 5818 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5819 { 5820 struct buffer_head *tl_bh = osb->osb_tl_bh; 5821 struct ocfs2_dinode *di; 5822 struct ocfs2_truncate_log *tl; 5823 5824 di = (struct ocfs2_dinode *) tl_bh->b_data; 5825 tl = &di->id2.i_dealloc; 5826 5827 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5828 "slot %d, invalid truncate log parameters: used = " 5829 "%u, count = %u\n", osb->slot_num, 5830 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5831 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5832 } 5833 5834 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5835 unsigned int new_start) 5836 { 5837 unsigned int tail_index; 5838 unsigned int current_tail; 5839 5840 /* No records, nothing to coalesce */ 5841 if (!le16_to_cpu(tl->tl_used)) 5842 return 0; 5843 5844 tail_index = le16_to_cpu(tl->tl_used) - 1; 5845 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5846 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5847 5848 return current_tail == new_start; 5849 } 5850 5851 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5852 handle_t *handle, 5853 u64 start_blk, 5854 unsigned int num_clusters) 5855 { 5856 int status, index; 5857 unsigned int start_cluster, tl_count; 5858 struct inode *tl_inode = osb->osb_tl_inode; 5859 struct buffer_head *tl_bh = osb->osb_tl_bh; 5860 struct ocfs2_dinode *di; 5861 struct ocfs2_truncate_log *tl; 5862 5863 BUG_ON(inode_trylock(tl_inode)); 5864 5865 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5866 5867 di = (struct ocfs2_dinode *) tl_bh->b_data; 5868 5869 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5870 * by the underlying call to ocfs2_read_inode_block(), so any 5871 * corruption is a code bug */ 5872 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5873 5874 tl = &di->id2.i_dealloc; 5875 tl_count = le16_to_cpu(tl->tl_count); 5876 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5877 tl_count == 0, 5878 "Truncate record count on #%llu invalid " 5879 "wanted %u, actual %u\n", 5880 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5881 ocfs2_truncate_recs_per_inode(osb->sb), 5882 le16_to_cpu(tl->tl_count)); 5883 5884 /* Caller should have known to flush before calling us. */ 5885 index = le16_to_cpu(tl->tl_used); 5886 if (index >= tl_count) { 5887 status = -ENOSPC; 5888 mlog_errno(status); 5889 goto bail; 5890 } 5891 5892 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5893 OCFS2_JOURNAL_ACCESS_WRITE); 5894 if (status < 0) { 5895 mlog_errno(status); 5896 goto bail; 5897 } 5898 5899 trace_ocfs2_truncate_log_append( 5900 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5901 start_cluster, num_clusters); 5902 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5903 /* 5904 * Move index back to the record we are coalescing with. 5905 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5906 */ 5907 index--; 5908 5909 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5910 trace_ocfs2_truncate_log_append( 5911 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5912 index, le32_to_cpu(tl->tl_recs[index].t_start), 5913 num_clusters); 5914 } else { 5915 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5916 tl->tl_used = cpu_to_le16(index + 1); 5917 } 5918 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5919 5920 ocfs2_journal_dirty(handle, tl_bh); 5921 5922 osb->truncated_clusters += num_clusters; 5923 bail: 5924 return status; 5925 } 5926 5927 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5928 struct inode *data_alloc_inode, 5929 struct buffer_head *data_alloc_bh) 5930 { 5931 int status = 0; 5932 int i; 5933 unsigned int num_clusters; 5934 u64 start_blk; 5935 struct ocfs2_truncate_rec rec; 5936 struct ocfs2_dinode *di; 5937 struct ocfs2_truncate_log *tl; 5938 struct inode *tl_inode = osb->osb_tl_inode; 5939 struct buffer_head *tl_bh = osb->osb_tl_bh; 5940 handle_t *handle; 5941 5942 di = (struct ocfs2_dinode *) tl_bh->b_data; 5943 tl = &di->id2.i_dealloc; 5944 i = le16_to_cpu(tl->tl_used) - 1; 5945 while (i >= 0) { 5946 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5947 if (IS_ERR(handle)) { 5948 status = PTR_ERR(handle); 5949 mlog_errno(status); 5950 goto bail; 5951 } 5952 5953 /* Caller has given us at least enough credits to 5954 * update the truncate log dinode */ 5955 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5956 OCFS2_JOURNAL_ACCESS_WRITE); 5957 if (status < 0) { 5958 ocfs2_commit_trans(osb, handle); 5959 mlog_errno(status); 5960 goto bail; 5961 } 5962 5963 tl->tl_used = cpu_to_le16(i); 5964 5965 ocfs2_journal_dirty(handle, tl_bh); 5966 5967 rec = tl->tl_recs[i]; 5968 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5969 le32_to_cpu(rec.t_start)); 5970 num_clusters = le32_to_cpu(rec.t_clusters); 5971 5972 /* if start_blk is not set, we ignore the record as 5973 * invalid. */ 5974 if (start_blk) { 5975 trace_ocfs2_replay_truncate_records( 5976 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5977 i, le32_to_cpu(rec.t_start), num_clusters); 5978 5979 status = ocfs2_free_clusters(handle, data_alloc_inode, 5980 data_alloc_bh, start_blk, 5981 num_clusters); 5982 if (status < 0) { 5983 ocfs2_commit_trans(osb, handle); 5984 mlog_errno(status); 5985 goto bail; 5986 } 5987 } 5988 5989 ocfs2_commit_trans(osb, handle); 5990 i--; 5991 } 5992 5993 osb->truncated_clusters = 0; 5994 5995 bail: 5996 return status; 5997 } 5998 5999 /* Expects you to already be holding tl_inode->i_rwsem */ 6000 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6001 { 6002 int status; 6003 unsigned int num_to_flush; 6004 struct inode *tl_inode = osb->osb_tl_inode; 6005 struct inode *data_alloc_inode = NULL; 6006 struct buffer_head *tl_bh = osb->osb_tl_bh; 6007 struct buffer_head *data_alloc_bh = NULL; 6008 struct ocfs2_dinode *di; 6009 struct ocfs2_truncate_log *tl; 6010 struct ocfs2_journal *journal = osb->journal; 6011 6012 BUG_ON(inode_trylock(tl_inode)); 6013 6014 di = (struct ocfs2_dinode *) tl_bh->b_data; 6015 6016 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6017 * by the underlying call to ocfs2_read_inode_block(), so any 6018 * corruption is a code bug */ 6019 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6020 6021 tl = &di->id2.i_dealloc; 6022 num_to_flush = le16_to_cpu(tl->tl_used); 6023 trace_ocfs2_flush_truncate_log( 6024 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6025 num_to_flush); 6026 if (!num_to_flush) { 6027 status = 0; 6028 goto out; 6029 } 6030 6031 /* Appending truncate log(TA) and flushing truncate log(TF) are 6032 * two separated transactions. They can be both committed but not 6033 * checkpointed. If crash occurs then, both two transaction will be 6034 * replayed with several already released to global bitmap clusters. 6035 * Then truncate log will be replayed resulting in cluster double free. 6036 */ 6037 jbd2_journal_lock_updates(journal->j_journal); 6038 status = jbd2_journal_flush(journal->j_journal, 0); 6039 jbd2_journal_unlock_updates(journal->j_journal); 6040 if (status < 0) { 6041 mlog_errno(status); 6042 goto out; 6043 } 6044 6045 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6046 GLOBAL_BITMAP_SYSTEM_INODE, 6047 OCFS2_INVALID_SLOT); 6048 if (!data_alloc_inode) { 6049 status = -EINVAL; 6050 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6051 goto out; 6052 } 6053 6054 inode_lock(data_alloc_inode); 6055 6056 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6057 if (status < 0) { 6058 mlog_errno(status); 6059 goto out_mutex; 6060 } 6061 6062 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6063 data_alloc_bh); 6064 if (status < 0) 6065 mlog_errno(status); 6066 6067 brelse(data_alloc_bh); 6068 ocfs2_inode_unlock(data_alloc_inode, 1); 6069 6070 out_mutex: 6071 inode_unlock(data_alloc_inode); 6072 iput(data_alloc_inode); 6073 6074 out: 6075 return status; 6076 } 6077 6078 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6079 { 6080 int status; 6081 struct inode *tl_inode = osb->osb_tl_inode; 6082 6083 inode_lock(tl_inode); 6084 status = __ocfs2_flush_truncate_log(osb); 6085 inode_unlock(tl_inode); 6086 6087 return status; 6088 } 6089 6090 static void ocfs2_truncate_log_worker(struct work_struct *work) 6091 { 6092 int status; 6093 struct ocfs2_super *osb = 6094 container_of(work, struct ocfs2_super, 6095 osb_truncate_log_wq.work); 6096 6097 status = ocfs2_flush_truncate_log(osb); 6098 if (status < 0) 6099 mlog_errno(status); 6100 else 6101 ocfs2_init_steal_slots(osb); 6102 } 6103 6104 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6105 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6106 int cancel) 6107 { 6108 if (osb->osb_tl_inode && 6109 atomic_read(&osb->osb_tl_disable) == 0) { 6110 /* We want to push off log flushes while truncates are 6111 * still running. */ 6112 if (cancel) 6113 cancel_delayed_work(&osb->osb_truncate_log_wq); 6114 6115 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6116 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6117 } 6118 } 6119 6120 /* 6121 * Try to flush truncate logs if we can free enough clusters from it. 6122 * As for return value, "< 0" means error, "0" no space and "1" means 6123 * we have freed enough spaces and let the caller try to allocate again. 6124 */ 6125 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6126 unsigned int needed) 6127 { 6128 tid_t target; 6129 int ret = 0; 6130 unsigned int truncated_clusters; 6131 6132 inode_lock(osb->osb_tl_inode); 6133 truncated_clusters = osb->truncated_clusters; 6134 inode_unlock(osb->osb_tl_inode); 6135 6136 /* 6137 * Check whether we can succeed in allocating if we free 6138 * the truncate log. 6139 */ 6140 if (truncated_clusters < needed) 6141 goto out; 6142 6143 ret = ocfs2_flush_truncate_log(osb); 6144 if (ret) { 6145 mlog_errno(ret); 6146 goto out; 6147 } 6148 6149 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6150 jbd2_log_wait_commit(osb->journal->j_journal, target); 6151 ret = 1; 6152 } 6153 out: 6154 return ret; 6155 } 6156 6157 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6158 int slot_num, 6159 struct inode **tl_inode, 6160 struct buffer_head **tl_bh) 6161 { 6162 int status; 6163 struct inode *inode = NULL; 6164 struct buffer_head *bh = NULL; 6165 struct ocfs2_dinode *di; 6166 struct ocfs2_truncate_log *tl; 6167 unsigned int tl_count; 6168 6169 inode = ocfs2_get_system_file_inode(osb, 6170 TRUNCATE_LOG_SYSTEM_INODE, 6171 slot_num); 6172 if (!inode) { 6173 status = -EINVAL; 6174 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6175 goto bail; 6176 } 6177 6178 status = ocfs2_read_inode_block(inode, &bh); 6179 if (status < 0) { 6180 iput(inode); 6181 mlog_errno(status); 6182 goto bail; 6183 } 6184 6185 di = (struct ocfs2_dinode *)bh->b_data; 6186 tl = &di->id2.i_dealloc; 6187 tl_count = le16_to_cpu(tl->tl_count); 6188 if (unlikely(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 6189 tl_count == 0)) { 6190 status = -EFSCORRUPTED; 6191 iput(inode); 6192 brelse(bh); 6193 mlog_errno(status); 6194 goto bail; 6195 } 6196 6197 *tl_inode = inode; 6198 *tl_bh = bh; 6199 bail: 6200 return status; 6201 } 6202 6203 /* called during the 1st stage of node recovery. we stamp a clean 6204 * truncate log and pass back a copy for processing later. if the 6205 * truncate log does not require processing, a *tl_copy is set to 6206 * NULL. */ 6207 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6208 int slot_num, 6209 struct ocfs2_dinode **tl_copy) 6210 { 6211 int status; 6212 struct inode *tl_inode = NULL; 6213 struct buffer_head *tl_bh = NULL; 6214 struct ocfs2_dinode *di; 6215 struct ocfs2_truncate_log *tl; 6216 6217 *tl_copy = NULL; 6218 6219 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6220 6221 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6222 if (status < 0) { 6223 mlog_errno(status); 6224 goto bail; 6225 } 6226 6227 di = (struct ocfs2_dinode *) tl_bh->b_data; 6228 6229 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6230 * validated by the underlying call to ocfs2_read_inode_block(), 6231 * so any corruption is a code bug */ 6232 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6233 6234 tl = &di->id2.i_dealloc; 6235 if (le16_to_cpu(tl->tl_used)) { 6236 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6237 6238 /* 6239 * Assuming the write-out below goes well, this copy will be 6240 * passed back to recovery for processing. 6241 */ 6242 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL); 6243 if (!(*tl_copy)) { 6244 status = -ENOMEM; 6245 mlog_errno(status); 6246 goto bail; 6247 } 6248 6249 /* All we need to do to clear the truncate log is set 6250 * tl_used. */ 6251 tl->tl_used = 0; 6252 6253 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6254 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6255 if (status < 0) { 6256 mlog_errno(status); 6257 goto bail; 6258 } 6259 } 6260 6261 bail: 6262 iput(tl_inode); 6263 brelse(tl_bh); 6264 6265 if (status < 0) { 6266 kfree(*tl_copy); 6267 *tl_copy = NULL; 6268 mlog_errno(status); 6269 } 6270 6271 return status; 6272 } 6273 6274 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6275 struct ocfs2_dinode *tl_copy) 6276 { 6277 int status = 0; 6278 int i; 6279 unsigned int clusters, num_recs, start_cluster; 6280 u64 start_blk; 6281 handle_t *handle; 6282 struct inode *tl_inode = osb->osb_tl_inode; 6283 struct ocfs2_truncate_log *tl; 6284 6285 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6286 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6287 return -EINVAL; 6288 } 6289 6290 tl = &tl_copy->id2.i_dealloc; 6291 num_recs = le16_to_cpu(tl->tl_used); 6292 trace_ocfs2_complete_truncate_log_recovery( 6293 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6294 num_recs); 6295 6296 inode_lock(tl_inode); 6297 for(i = 0; i < num_recs; i++) { 6298 if (ocfs2_truncate_log_needs_flush(osb)) { 6299 status = __ocfs2_flush_truncate_log(osb); 6300 if (status < 0) { 6301 mlog_errno(status); 6302 goto bail_up; 6303 } 6304 } 6305 6306 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6307 if (IS_ERR(handle)) { 6308 status = PTR_ERR(handle); 6309 mlog_errno(status); 6310 goto bail_up; 6311 } 6312 6313 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6314 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6315 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6316 6317 status = ocfs2_truncate_log_append(osb, handle, 6318 start_blk, clusters); 6319 ocfs2_commit_trans(osb, handle); 6320 if (status < 0) { 6321 mlog_errno(status); 6322 goto bail_up; 6323 } 6324 } 6325 6326 bail_up: 6327 inode_unlock(tl_inode); 6328 6329 return status; 6330 } 6331 6332 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6333 { 6334 int status; 6335 struct inode *tl_inode = osb->osb_tl_inode; 6336 6337 atomic_set(&osb->osb_tl_disable, 1); 6338 6339 if (tl_inode) { 6340 cancel_delayed_work(&osb->osb_truncate_log_wq); 6341 flush_workqueue(osb->ocfs2_wq); 6342 6343 status = ocfs2_flush_truncate_log(osb); 6344 if (status < 0) 6345 mlog_errno(status); 6346 6347 brelse(osb->osb_tl_bh); 6348 iput(osb->osb_tl_inode); 6349 } 6350 } 6351 6352 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6353 { 6354 int status; 6355 struct inode *tl_inode = NULL; 6356 struct buffer_head *tl_bh = NULL; 6357 6358 status = ocfs2_get_truncate_log_info(osb, 6359 osb->slot_num, 6360 &tl_inode, 6361 &tl_bh); 6362 if (status < 0) 6363 mlog_errno(status); 6364 6365 /* ocfs2_truncate_log_shutdown keys on the existence of 6366 * osb->osb_tl_inode so we don't set any of the osb variables 6367 * until we're sure all is well. */ 6368 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6369 ocfs2_truncate_log_worker); 6370 atomic_set(&osb->osb_tl_disable, 0); 6371 osb->osb_tl_bh = tl_bh; 6372 osb->osb_tl_inode = tl_inode; 6373 6374 return status; 6375 } 6376 6377 /* 6378 * Delayed de-allocation of suballocator blocks. 6379 * 6380 * Some sets of block de-allocations might involve multiple suballocator inodes. 6381 * 6382 * The locking for this can get extremely complicated, especially when 6383 * the suballocator inodes to delete from aren't known until deep 6384 * within an unrelated codepath. 6385 * 6386 * ocfs2_extent_block structures are a good example of this - an inode 6387 * btree could have been grown by any number of nodes each allocating 6388 * out of their own suballoc inode. 6389 * 6390 * These structures allow the delay of block de-allocation until a 6391 * later time, when locking of multiple cluster inodes won't cause 6392 * deadlock. 6393 */ 6394 6395 /* 6396 * Describe a single bit freed from a suballocator. For the block 6397 * suballocators, it represents one block. For the global cluster 6398 * allocator, it represents some clusters and free_bit indicates 6399 * clusters number. 6400 */ 6401 struct ocfs2_cached_block_free { 6402 struct ocfs2_cached_block_free *free_next; 6403 u64 free_bg; 6404 u64 free_blk; 6405 unsigned int free_bit; 6406 }; 6407 6408 struct ocfs2_per_slot_free_list { 6409 struct ocfs2_per_slot_free_list *f_next_suballocator; 6410 int f_inode_type; 6411 int f_slot; 6412 struct ocfs2_cached_block_free *f_first; 6413 }; 6414 6415 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6416 int sysfile_type, 6417 int slot, 6418 struct ocfs2_cached_block_free *head) 6419 { 6420 int ret; 6421 u64 bg_blkno; 6422 handle_t *handle; 6423 struct inode *inode; 6424 struct buffer_head *di_bh = NULL; 6425 struct ocfs2_cached_block_free *tmp; 6426 6427 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6428 if (!inode) { 6429 ret = -EINVAL; 6430 mlog_errno(ret); 6431 goto out; 6432 } 6433 6434 inode_lock(inode); 6435 6436 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6437 if (ret) { 6438 mlog_errno(ret); 6439 goto out_mutex; 6440 } 6441 6442 while (head) { 6443 if (head->free_bg) 6444 bg_blkno = head->free_bg; 6445 else 6446 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6447 head->free_bit); 6448 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6449 if (IS_ERR(handle)) { 6450 ret = PTR_ERR(handle); 6451 mlog_errno(ret); 6452 goto out_unlock; 6453 } 6454 6455 trace_ocfs2_free_cached_blocks( 6456 (unsigned long long)head->free_blk, head->free_bit); 6457 6458 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6459 head->free_bit, bg_blkno, 1); 6460 if (ret) 6461 mlog_errno(ret); 6462 6463 ocfs2_commit_trans(osb, handle); 6464 6465 tmp = head; 6466 head = head->free_next; 6467 kfree(tmp); 6468 } 6469 6470 out_unlock: 6471 ocfs2_inode_unlock(inode, 1); 6472 brelse(di_bh); 6473 out_mutex: 6474 inode_unlock(inode); 6475 iput(inode); 6476 out: 6477 while(head) { 6478 /* Premature exit may have left some dangling items. */ 6479 tmp = head; 6480 head = head->free_next; 6481 kfree(tmp); 6482 } 6483 6484 return ret; 6485 } 6486 6487 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6488 u64 blkno, unsigned int bit) 6489 { 6490 int ret = 0; 6491 struct ocfs2_cached_block_free *item; 6492 6493 item = kzalloc(sizeof(*item), GFP_NOFS); 6494 if (item == NULL) { 6495 ret = -ENOMEM; 6496 mlog_errno(ret); 6497 return ret; 6498 } 6499 6500 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6501 6502 item->free_blk = blkno; 6503 item->free_bit = bit; 6504 item->free_next = ctxt->c_global_allocator; 6505 6506 ctxt->c_global_allocator = item; 6507 return ret; 6508 } 6509 6510 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6511 struct ocfs2_cached_block_free *head) 6512 { 6513 struct ocfs2_cached_block_free *tmp; 6514 struct inode *tl_inode = osb->osb_tl_inode; 6515 handle_t *handle; 6516 int ret = 0; 6517 6518 inode_lock(tl_inode); 6519 6520 while (head) { 6521 if (ocfs2_truncate_log_needs_flush(osb)) { 6522 ret = __ocfs2_flush_truncate_log(osb); 6523 if (ret < 0) { 6524 mlog_errno(ret); 6525 break; 6526 } 6527 } 6528 6529 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6530 if (IS_ERR(handle)) { 6531 ret = PTR_ERR(handle); 6532 mlog_errno(ret); 6533 break; 6534 } 6535 6536 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6537 head->free_bit); 6538 6539 ocfs2_commit_trans(osb, handle); 6540 tmp = head; 6541 head = head->free_next; 6542 kfree(tmp); 6543 6544 if (ret < 0) { 6545 mlog_errno(ret); 6546 break; 6547 } 6548 } 6549 6550 inode_unlock(tl_inode); 6551 6552 while (head) { 6553 /* Premature exit may have left some dangling items. */ 6554 tmp = head; 6555 head = head->free_next; 6556 kfree(tmp); 6557 } 6558 6559 return ret; 6560 } 6561 6562 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6563 struct ocfs2_cached_dealloc_ctxt *ctxt) 6564 { 6565 int ret = 0, ret2; 6566 struct ocfs2_per_slot_free_list *fl; 6567 6568 if (!ctxt) 6569 return 0; 6570 6571 while (ctxt->c_first_suballocator) { 6572 fl = ctxt->c_first_suballocator; 6573 6574 if (fl->f_first) { 6575 trace_ocfs2_run_deallocs(fl->f_inode_type, 6576 fl->f_slot); 6577 ret2 = ocfs2_free_cached_blocks(osb, 6578 fl->f_inode_type, 6579 fl->f_slot, 6580 fl->f_first); 6581 if (ret2) 6582 mlog_errno(ret2); 6583 if (!ret) 6584 ret = ret2; 6585 } 6586 6587 ctxt->c_first_suballocator = fl->f_next_suballocator; 6588 kfree(fl); 6589 } 6590 6591 if (ctxt->c_global_allocator) { 6592 ret2 = ocfs2_free_cached_clusters(osb, 6593 ctxt->c_global_allocator); 6594 if (ret2) 6595 mlog_errno(ret2); 6596 if (!ret) 6597 ret = ret2; 6598 6599 ctxt->c_global_allocator = NULL; 6600 } 6601 6602 return ret; 6603 } 6604 6605 static struct ocfs2_per_slot_free_list * 6606 ocfs2_find_per_slot_free_list(int type, 6607 int slot, 6608 struct ocfs2_cached_dealloc_ctxt *ctxt) 6609 { 6610 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6611 6612 while (fl) { 6613 if (fl->f_inode_type == type && fl->f_slot == slot) 6614 return fl; 6615 6616 fl = fl->f_next_suballocator; 6617 } 6618 6619 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6620 if (fl) { 6621 fl->f_inode_type = type; 6622 fl->f_slot = slot; 6623 fl->f_first = NULL; 6624 fl->f_next_suballocator = ctxt->c_first_suballocator; 6625 6626 ctxt->c_first_suballocator = fl; 6627 } 6628 return fl; 6629 } 6630 6631 static struct ocfs2_per_slot_free_list * 6632 ocfs2_find_preferred_free_list(int type, 6633 int preferred_slot, 6634 int *real_slot, 6635 struct ocfs2_cached_dealloc_ctxt *ctxt) 6636 { 6637 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6638 6639 while (fl) { 6640 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6641 *real_slot = fl->f_slot; 6642 return fl; 6643 } 6644 6645 fl = fl->f_next_suballocator; 6646 } 6647 6648 /* If we can't find any free list matching preferred slot, just use 6649 * the first one. 6650 */ 6651 fl = ctxt->c_first_suballocator; 6652 *real_slot = fl->f_slot; 6653 6654 return fl; 6655 } 6656 6657 /* Return Value 1 indicates empty */ 6658 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6659 { 6660 struct ocfs2_per_slot_free_list *fl = NULL; 6661 6662 if (!et->et_dealloc) 6663 return 1; 6664 6665 fl = et->et_dealloc->c_first_suballocator; 6666 if (!fl) 6667 return 1; 6668 6669 if (!fl->f_first) 6670 return 1; 6671 6672 return 0; 6673 } 6674 6675 /* If extent was deleted from tree due to extent rotation and merging, and 6676 * no metadata is reserved ahead of time. Try to reuse some extents 6677 * just deleted. This is only used to reuse extent blocks. 6678 * It is supposed to find enough extent blocks in dealloc if our estimation 6679 * on metadata is accurate. 6680 */ 6681 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6682 struct ocfs2_extent_tree *et, 6683 struct buffer_head **new_eb_bh, 6684 int blk_wanted, int *blk_given) 6685 { 6686 int i, status = 0, real_slot; 6687 struct ocfs2_cached_dealloc_ctxt *dealloc; 6688 struct ocfs2_per_slot_free_list *fl; 6689 struct ocfs2_cached_block_free *bf; 6690 struct ocfs2_extent_block *eb; 6691 struct ocfs2_super *osb = 6692 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6693 6694 *blk_given = 0; 6695 6696 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6697 * tell upper caller dealloc can't provide any block and it should 6698 * ask for alloc to claim more space. 6699 */ 6700 dealloc = et->et_dealloc; 6701 if (!dealloc) 6702 goto bail; 6703 6704 for (i = 0; i < blk_wanted; i++) { 6705 /* Prefer to use local slot */ 6706 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6707 osb->slot_num, &real_slot, 6708 dealloc); 6709 /* If no more block can be reused, we should claim more 6710 * from alloc. Just return here normally. 6711 */ 6712 if (!fl) { 6713 status = 0; 6714 break; 6715 } 6716 6717 bf = fl->f_first; 6718 fl->f_first = bf->free_next; 6719 6720 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6721 if (new_eb_bh[i] == NULL) { 6722 status = -ENOMEM; 6723 mlog_errno(status); 6724 goto bail; 6725 } 6726 6727 mlog(0, "Reusing block(%llu) from " 6728 "dealloc(local slot:%d, real slot:%d)\n", 6729 bf->free_blk, osb->slot_num, real_slot); 6730 6731 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6732 6733 status = ocfs2_journal_access_eb(handle, et->et_ci, 6734 new_eb_bh[i], 6735 OCFS2_JOURNAL_ACCESS_CREATE); 6736 if (status < 0) { 6737 mlog_errno(status); 6738 goto bail; 6739 } 6740 6741 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6742 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6743 6744 /* We can't guarantee that buffer head is still cached, so 6745 * polutlate the extent block again. 6746 */ 6747 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6748 eb->h_blkno = cpu_to_le64(bf->free_blk); 6749 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6750 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6751 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6752 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6753 eb->h_list.l_count = 6754 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6755 6756 /* We'll also be dirtied by the caller, so 6757 * this isn't absolutely necessary. 6758 */ 6759 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6760 6761 if (!fl->f_first) { 6762 dealloc->c_first_suballocator = fl->f_next_suballocator; 6763 kfree(fl); 6764 } 6765 kfree(bf); 6766 } 6767 6768 *blk_given = i; 6769 6770 bail: 6771 if (unlikely(status < 0)) { 6772 for (i = 0; i < blk_wanted; i++) 6773 brelse(new_eb_bh[i]); 6774 } 6775 6776 return status; 6777 } 6778 6779 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6780 int type, int slot, u64 suballoc, 6781 u64 blkno, unsigned int bit) 6782 { 6783 int ret; 6784 struct ocfs2_per_slot_free_list *fl; 6785 struct ocfs2_cached_block_free *item; 6786 6787 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6788 if (fl == NULL) { 6789 ret = -ENOMEM; 6790 mlog_errno(ret); 6791 goto out; 6792 } 6793 6794 item = kzalloc(sizeof(*item), GFP_NOFS); 6795 if (item == NULL) { 6796 ret = -ENOMEM; 6797 mlog_errno(ret); 6798 goto out; 6799 } 6800 6801 trace_ocfs2_cache_block_dealloc(type, slot, 6802 (unsigned long long)suballoc, 6803 (unsigned long long)blkno, bit); 6804 6805 item->free_bg = suballoc; 6806 item->free_blk = blkno; 6807 item->free_bit = bit; 6808 item->free_next = fl->f_first; 6809 6810 fl->f_first = item; 6811 6812 ret = 0; 6813 out: 6814 return ret; 6815 } 6816 6817 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6818 struct ocfs2_extent_block *eb) 6819 { 6820 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6821 le16_to_cpu(eb->h_suballoc_slot), 6822 le64_to_cpu(eb->h_suballoc_loc), 6823 le64_to_cpu(eb->h_blkno), 6824 le16_to_cpu(eb->h_suballoc_bit)); 6825 } 6826 6827 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6828 { 6829 set_buffer_uptodate(bh); 6830 mark_buffer_dirty(bh); 6831 return 0; 6832 } 6833 6834 void ocfs2_map_and_dirty_folio(struct inode *inode, handle_t *handle, 6835 size_t from, size_t to, struct folio *folio, int zero, 6836 u64 *phys) 6837 { 6838 int ret, partial = 0; 6839 loff_t start_byte = folio_pos(folio) + from; 6840 loff_t length = to - from; 6841 6842 ret = ocfs2_map_folio_blocks(folio, phys, inode, from, to, 0); 6843 if (ret) 6844 mlog_errno(ret); 6845 6846 if (zero) 6847 folio_zero_segment(folio, from, to); 6848 6849 /* 6850 * Need to set the buffers we zero'd into uptodate 6851 * here if they aren't - ocfs2_map_page_blocks() 6852 * might've skipped some 6853 */ 6854 ret = walk_page_buffers(handle, folio_buffers(folio), 6855 from, to, &partial, 6856 ocfs2_zero_func); 6857 if (ret < 0) 6858 mlog_errno(ret); 6859 else if (ocfs2_should_order_data(inode)) { 6860 ret = ocfs2_jbd2_inode_add_write(handle, inode, 6861 start_byte, length); 6862 if (ret < 0) 6863 mlog_errno(ret); 6864 } 6865 6866 if (!partial) 6867 folio_mark_uptodate(folio); 6868 6869 flush_dcache_folio(folio); 6870 } 6871 6872 static void ocfs2_zero_cluster_folios(struct inode *inode, loff_t start, 6873 loff_t end, struct folio **folios, int numfolios, 6874 u64 phys, handle_t *handle) 6875 { 6876 int i; 6877 struct super_block *sb = inode->i_sb; 6878 6879 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6880 6881 if (numfolios == 0) 6882 goto out; 6883 6884 for (i = 0; i < numfolios; i++) { 6885 struct folio *folio = folios[i]; 6886 size_t to = folio_size(folio); 6887 size_t from = offset_in_folio(folio, start); 6888 6889 if (to > end - folio_pos(folio)) 6890 to = end - folio_pos(folio); 6891 6892 ocfs2_map_and_dirty_folio(inode, handle, from, to, folio, 1, 6893 &phys); 6894 6895 start = folio_next_index(folio) << PAGE_SHIFT; 6896 } 6897 out: 6898 if (folios) 6899 ocfs2_unlock_and_free_folios(folios, numfolios); 6900 } 6901 6902 static int ocfs2_grab_folios(struct inode *inode, loff_t start, loff_t end, 6903 struct folio **folios, int *num) 6904 { 6905 int numfolios, ret = 0; 6906 struct address_space *mapping = inode->i_mapping; 6907 unsigned long index; 6908 loff_t last_page_bytes; 6909 6910 BUG_ON(start > end); 6911 6912 numfolios = 0; 6913 last_page_bytes = PAGE_ALIGN(end); 6914 index = start >> PAGE_SHIFT; 6915 do { 6916 folios[numfolios] = __filemap_get_folio(mapping, index, 6917 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS); 6918 if (IS_ERR(folios[numfolios])) { 6919 ret = PTR_ERR(folios[numfolios]); 6920 mlog_errno(ret); 6921 goto out; 6922 } 6923 6924 index = folio_next_index(folios[numfolios]); 6925 numfolios++; 6926 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6927 6928 out: 6929 if (ret != 0) { 6930 if (folios) 6931 ocfs2_unlock_and_free_folios(folios, numfolios); 6932 numfolios = 0; 6933 } 6934 6935 *num = numfolios; 6936 6937 return ret; 6938 } 6939 6940 static int ocfs2_grab_eof_folios(struct inode *inode, loff_t start, loff_t end, 6941 struct folio **folios, int *num) 6942 { 6943 struct super_block *sb = inode->i_sb; 6944 6945 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6946 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6947 6948 return ocfs2_grab_folios(inode, start, end, folios, num); 6949 } 6950 6951 /* 6952 * Zero partial cluster for a hole punch or truncate. This avoids exposing 6953 * nonzero data on subsequent file extends. 6954 * 6955 * We need to call this before i_size is updated on the inode because 6956 * otherwise block_write_full_folio() will skip writeout of pages past 6957 * i_size. 6958 */ 6959 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6960 u64 range_start, u64 range_end) 6961 { 6962 int ret = 0, numfolios; 6963 struct folio **folios = NULL; 6964 u64 phys; 6965 unsigned int ext_flags; 6966 struct super_block *sb = inode->i_sb; 6967 6968 /* 6969 * File systems which don't support sparse files zero on every 6970 * extend. 6971 */ 6972 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6973 return 0; 6974 6975 /* 6976 * Avoid zeroing folios fully beyond current i_size. It is pointless as 6977 * underlying blocks of those folios should be already zeroed out and 6978 * page writeback will skip them anyway. 6979 */ 6980 range_end = min_t(u64, range_end, i_size_read(inode)); 6981 if (range_start >= range_end) 6982 return 0; 6983 6984 folios = kcalloc(ocfs2_pages_per_cluster(sb), 6985 sizeof(struct folio *), GFP_NOFS); 6986 if (folios == NULL) { 6987 ret = -ENOMEM; 6988 mlog_errno(ret); 6989 goto out; 6990 } 6991 6992 ret = ocfs2_extent_map_get_blocks(inode, 6993 range_start >> sb->s_blocksize_bits, 6994 &phys, NULL, &ext_flags); 6995 if (ret) { 6996 mlog_errno(ret); 6997 goto out; 6998 } 6999 7000 /* 7001 * Tail is a hole, or is marked unwritten. In either case, we 7002 * can count on read and write to return/push zero's. 7003 */ 7004 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 7005 goto out; 7006 7007 ret = ocfs2_grab_eof_folios(inode, range_start, range_end, folios, 7008 &numfolios); 7009 if (ret) { 7010 mlog_errno(ret); 7011 goto out; 7012 } 7013 7014 ocfs2_zero_cluster_folios(inode, range_start, range_end, folios, 7015 numfolios, phys, handle); 7016 7017 /* 7018 * Initiate writeout of the folios we zero'd here. We don't 7019 * wait on them - the truncate_inode_pages() call later will 7020 * do that for us. 7021 */ 7022 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 7023 range_end - 1); 7024 if (ret) 7025 mlog_errno(ret); 7026 7027 out: 7028 kfree(folios); 7029 7030 return ret; 7031 } 7032 7033 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7034 struct ocfs2_dinode *di) 7035 { 7036 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7037 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7038 7039 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7040 memset(&di->id2, 0, blocksize - 7041 offsetof(struct ocfs2_dinode, id2) - 7042 xattrsize); 7043 else 7044 memset(&di->id2, 0, blocksize - 7045 offsetof(struct ocfs2_dinode, id2)); 7046 } 7047 7048 void ocfs2_dinode_new_extent_list(struct inode *inode, 7049 struct ocfs2_dinode *di) 7050 { 7051 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7052 di->id2.i_list.l_tree_depth = 0; 7053 di->id2.i_list.l_next_free_rec = 0; 7054 di->id2.i_list.l_count = cpu_to_le16( 7055 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7056 } 7057 7058 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7059 { 7060 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7061 struct ocfs2_inline_data *idata = &di->id2.i_data; 7062 7063 spin_lock(&oi->ip_lock); 7064 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7065 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7066 spin_unlock(&oi->ip_lock); 7067 7068 /* 7069 * We clear the entire i_data structure here so that all 7070 * fields can be properly initialized. 7071 */ 7072 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7073 7074 idata->id_count = cpu_to_le16( 7075 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7076 } 7077 7078 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7079 struct buffer_head *di_bh) 7080 { 7081 int ret, has_data, num_folios = 0; 7082 int need_free = 0; 7083 u32 bit_off, num; 7084 handle_t *handle; 7085 u64 block; 7086 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7087 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7088 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7089 struct ocfs2_alloc_context *data_ac = NULL; 7090 struct folio *folio = NULL; 7091 struct ocfs2_extent_tree et; 7092 int did_quota = 0; 7093 7094 has_data = i_size_read(inode) ? 1 : 0; 7095 7096 if (has_data) { 7097 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7098 if (ret) { 7099 mlog_errno(ret); 7100 goto out; 7101 } 7102 } 7103 7104 handle = ocfs2_start_trans(osb, 7105 ocfs2_inline_to_extents_credits(osb->sb)); 7106 if (IS_ERR(handle)) { 7107 ret = PTR_ERR(handle); 7108 mlog_errno(ret); 7109 goto out; 7110 } 7111 7112 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7113 OCFS2_JOURNAL_ACCESS_WRITE); 7114 if (ret) { 7115 mlog_errno(ret); 7116 goto out_commit; 7117 } 7118 7119 if (has_data) { 7120 unsigned int page_end = min_t(unsigned, PAGE_SIZE, 7121 osb->s_clustersize); 7122 u64 phys; 7123 7124 ret = dquot_alloc_space_nodirty(inode, 7125 ocfs2_clusters_to_bytes(osb->sb, 1)); 7126 if (ret) 7127 goto out_commit; 7128 did_quota = 1; 7129 7130 data_ac->ac_resv = &oi->ip_la_data_resv; 7131 7132 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7133 &num); 7134 if (ret) { 7135 mlog_errno(ret); 7136 goto out_commit; 7137 } 7138 7139 /* 7140 * Save two copies, one for insert, and one that can 7141 * be changed by ocfs2_map_and_dirty_folio() below. 7142 */ 7143 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7144 7145 ret = ocfs2_grab_eof_folios(inode, 0, page_end, &folio, 7146 &num_folios); 7147 if (ret) { 7148 mlog_errno(ret); 7149 need_free = 1; 7150 goto out_commit; 7151 } 7152 7153 /* 7154 * This should populate the 1st page for us and mark 7155 * it up to date. 7156 */ 7157 ret = ocfs2_read_inline_data(inode, folio, di_bh); 7158 if (ret) { 7159 mlog_errno(ret); 7160 need_free = 1; 7161 goto out_unlock; 7162 } 7163 7164 ocfs2_map_and_dirty_folio(inode, handle, 0, page_end, folio, 0, 7165 &phys); 7166 } 7167 7168 spin_lock(&oi->ip_lock); 7169 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7170 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7171 spin_unlock(&oi->ip_lock); 7172 7173 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7174 ocfs2_dinode_new_extent_list(inode, di); 7175 7176 ocfs2_journal_dirty(handle, di_bh); 7177 7178 if (has_data) { 7179 /* 7180 * An error at this point should be extremely rare. If 7181 * this proves to be false, we could always re-build 7182 * the in-inode data from our pages. 7183 */ 7184 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7185 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7186 if (ret) { 7187 mlog_errno(ret); 7188 need_free = 1; 7189 goto out_unlock; 7190 } 7191 7192 inode->i_blocks = ocfs2_inode_sector_count(inode); 7193 } 7194 7195 out_unlock: 7196 if (folio) 7197 ocfs2_unlock_and_free_folios(&folio, num_folios); 7198 7199 out_commit: 7200 if (ret < 0 && did_quota) 7201 dquot_free_space_nodirty(inode, 7202 ocfs2_clusters_to_bytes(osb->sb, 1)); 7203 7204 if (need_free) { 7205 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7206 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7207 bit_off, num); 7208 else 7209 ocfs2_free_clusters(handle, 7210 data_ac->ac_inode, 7211 data_ac->ac_bh, 7212 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7213 num); 7214 } 7215 7216 ocfs2_commit_trans(osb, handle); 7217 7218 out: 7219 if (data_ac) 7220 ocfs2_free_alloc_context(data_ac); 7221 return ret; 7222 } 7223 7224 /* 7225 * It is expected, that by the time you call this function, 7226 * inode->i_size and fe->i_size have been adjusted. 7227 * 7228 * WARNING: This will kfree the truncate context 7229 */ 7230 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7231 struct inode *inode, 7232 struct buffer_head *di_bh) 7233 { 7234 int status = 0, i, flags = 0; 7235 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7236 u64 blkno = 0; 7237 struct ocfs2_extent_list *el; 7238 struct ocfs2_extent_rec *rec; 7239 struct ocfs2_path *path = NULL; 7240 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7241 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7242 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7243 struct ocfs2_extent_tree et; 7244 struct ocfs2_cached_dealloc_ctxt dealloc; 7245 struct ocfs2_refcount_tree *ref_tree = NULL; 7246 7247 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7248 ocfs2_init_dealloc_ctxt(&dealloc); 7249 7250 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7251 i_size_read(inode)); 7252 7253 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7254 ocfs2_journal_access_di); 7255 if (!path) { 7256 status = -ENOMEM; 7257 mlog_errno(status); 7258 goto bail; 7259 } 7260 7261 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7262 7263 start: 7264 /* 7265 * Check that we still have allocation to delete. 7266 */ 7267 if (OCFS2_I(inode)->ip_clusters == 0) { 7268 status = 0; 7269 goto bail; 7270 } 7271 7272 /* 7273 * Truncate always works against the rightmost tree branch. 7274 */ 7275 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7276 if (status) { 7277 mlog_errno(status); 7278 goto bail; 7279 } 7280 7281 trace_ocfs2_commit_truncate( 7282 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7283 new_highest_cpos, 7284 OCFS2_I(inode)->ip_clusters, 7285 path->p_tree_depth); 7286 7287 /* 7288 * By now, el will point to the extent list on the bottom most 7289 * portion of this tree. Only the tail record is considered in 7290 * each pass. 7291 * 7292 * We handle the following cases, in order: 7293 * - empty extent: delete the remaining branch 7294 * - remove the entire record 7295 * - remove a partial record 7296 * - no record needs to be removed (truncate has completed) 7297 */ 7298 el = path_leaf_el(path); 7299 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7300 ocfs2_error(inode->i_sb, 7301 "Inode %llu has empty extent block at %llu\n", 7302 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7303 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7304 status = -EROFS; 7305 goto bail; 7306 } 7307 7308 i = le16_to_cpu(el->l_next_free_rec) - 1; 7309 rec = &el->l_recs[i]; 7310 flags = rec->e_flags; 7311 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7312 7313 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7314 /* 7315 * Lower levels depend on this never happening, but it's best 7316 * to check it up here before changing the tree. 7317 */ 7318 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7319 mlog(ML_ERROR, "Inode %lu has an empty " 7320 "extent record, depth %u\n", inode->i_ino, 7321 le16_to_cpu(root_el->l_tree_depth)); 7322 status = ocfs2_remove_rightmost_empty_extent(osb, 7323 &et, path, &dealloc); 7324 if (status) { 7325 mlog_errno(status); 7326 goto bail; 7327 } 7328 7329 ocfs2_reinit_path(path, 1); 7330 goto start; 7331 } else { 7332 trunc_cpos = le32_to_cpu(rec->e_cpos); 7333 trunc_len = 0; 7334 blkno = 0; 7335 } 7336 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7337 /* 7338 * Truncate entire record. 7339 */ 7340 trunc_cpos = le32_to_cpu(rec->e_cpos); 7341 trunc_len = ocfs2_rec_clusters(el, rec); 7342 blkno = le64_to_cpu(rec->e_blkno); 7343 } else if (range > new_highest_cpos) { 7344 /* 7345 * Partial truncate. it also should be 7346 * the last truncate we're doing. 7347 */ 7348 trunc_cpos = new_highest_cpos; 7349 trunc_len = range - new_highest_cpos; 7350 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7351 blkno = le64_to_cpu(rec->e_blkno) + 7352 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7353 } else { 7354 /* 7355 * Truncate completed, leave happily. 7356 */ 7357 status = 0; 7358 goto bail; 7359 } 7360 7361 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7362 7363 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7364 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7365 &ref_tree, NULL); 7366 if (status) { 7367 mlog_errno(status); 7368 goto bail; 7369 } 7370 } 7371 7372 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7373 phys_cpos, trunc_len, flags, &dealloc, 7374 refcount_loc, true); 7375 if (status < 0) { 7376 mlog_errno(status); 7377 goto bail; 7378 } 7379 7380 ocfs2_reinit_path(path, 1); 7381 7382 /* 7383 * The check above will catch the case where we've truncated 7384 * away all allocation. 7385 */ 7386 goto start; 7387 7388 bail: 7389 if (ref_tree) 7390 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7391 7392 ocfs2_schedule_truncate_log_flush(osb, 1); 7393 7394 ocfs2_run_deallocs(osb, &dealloc); 7395 7396 ocfs2_free_path(path); 7397 7398 return status; 7399 } 7400 7401 /* 7402 * 'start' is inclusive, 'end' is not. 7403 */ 7404 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7405 unsigned int start, unsigned int end, int trunc) 7406 { 7407 int ret; 7408 unsigned int numbytes; 7409 handle_t *handle; 7410 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7411 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7412 struct ocfs2_inline_data *idata = &di->id2.i_data; 7413 7414 /* No need to punch hole beyond i_size. */ 7415 if (start >= i_size_read(inode)) 7416 return 0; 7417 7418 if (end > i_size_read(inode)) 7419 end = i_size_read(inode); 7420 7421 BUG_ON(start > end); 7422 7423 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7424 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7425 !ocfs2_supports_inline_data(osb)) { 7426 ocfs2_error(inode->i_sb, 7427 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7428 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7429 le16_to_cpu(di->i_dyn_features), 7430 OCFS2_I(inode)->ip_dyn_features, 7431 osb->s_feature_incompat); 7432 ret = -EROFS; 7433 goto out; 7434 } 7435 7436 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7437 if (IS_ERR(handle)) { 7438 ret = PTR_ERR(handle); 7439 mlog_errno(ret); 7440 goto out; 7441 } 7442 7443 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7444 OCFS2_JOURNAL_ACCESS_WRITE); 7445 if (ret) { 7446 mlog_errno(ret); 7447 goto out_commit; 7448 } 7449 7450 numbytes = end - start; 7451 memset(idata->id_data + start, 0, numbytes); 7452 7453 /* 7454 * No need to worry about the data page here - it's been 7455 * truncated already and inline data doesn't need it for 7456 * pushing zero's to disk, so we'll let read_folio pick it up 7457 * later. 7458 */ 7459 if (trunc) { 7460 i_size_write(inode, start); 7461 di->i_size = cpu_to_le64(start); 7462 } 7463 7464 inode->i_blocks = ocfs2_inode_sector_count(inode); 7465 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7466 7467 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode)); 7468 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 7469 7470 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7471 ocfs2_journal_dirty(handle, di_bh); 7472 7473 out_commit: 7474 ocfs2_commit_trans(osb, handle); 7475 7476 out: 7477 return ret; 7478 } 7479 7480 static int ocfs2_trim_extent(struct super_block *sb, 7481 struct ocfs2_group_desc *gd, 7482 u64 group, u32 start, u32 count) 7483 { 7484 u64 discard, bcount; 7485 struct ocfs2_super *osb = OCFS2_SB(sb); 7486 7487 bcount = ocfs2_clusters_to_blocks(sb, count); 7488 discard = ocfs2_clusters_to_blocks(sb, start); 7489 7490 /* 7491 * For the first cluster group, the gd->bg_blkno is not at the start 7492 * of the group, but at an offset from the start. If we add it while 7493 * calculating discard for first group, we will wrongly start fstrim a 7494 * few blocks after the desried start block and the range can cross 7495 * over into the next cluster group. So, add it only if this is not 7496 * the first cluster group. 7497 */ 7498 if (group != osb->first_cluster_group_blkno) 7499 discard += le64_to_cpu(gd->bg_blkno); 7500 7501 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7502 7503 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7504 } 7505 7506 static int ocfs2_trim_group(struct super_block *sb, 7507 struct ocfs2_group_desc *gd, u64 group, 7508 u32 start, u32 max, u32 minbits) 7509 { 7510 int ret = 0, count = 0, next; 7511 void *bitmap = gd->bg_bitmap; 7512 7513 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7514 return 0; 7515 7516 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7517 start, max, minbits); 7518 7519 while (start < max) { 7520 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7521 if (start >= max) 7522 break; 7523 next = ocfs2_find_next_bit(bitmap, max, start); 7524 7525 if ((next - start) >= minbits) { 7526 ret = ocfs2_trim_extent(sb, gd, group, 7527 start, next - start); 7528 if (ret < 0) { 7529 mlog_errno(ret); 7530 break; 7531 } 7532 count += next - start; 7533 } 7534 start = next + 1; 7535 7536 if (fatal_signal_pending(current)) { 7537 count = -ERESTARTSYS; 7538 break; 7539 } 7540 7541 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7542 break; 7543 } 7544 7545 if (ret < 0) 7546 count = ret; 7547 7548 return count; 7549 } 7550 7551 static 7552 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range) 7553 { 7554 struct ocfs2_super *osb = OCFS2_SB(sb); 7555 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0; 7556 int ret, cnt; 7557 u32 first_bit, last_bit, minlen; 7558 struct buffer_head *main_bm_bh = NULL; 7559 struct inode *main_bm_inode = NULL; 7560 struct buffer_head *gd_bh = NULL; 7561 struct ocfs2_dinode *main_bm; 7562 struct ocfs2_group_desc *gd = NULL; 7563 7564 start = range->start >> osb->s_clustersize_bits; 7565 len = range->len >> osb->s_clustersize_bits; 7566 minlen = range->minlen >> osb->s_clustersize_bits; 7567 7568 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7569 return -EINVAL; 7570 7571 trace_ocfs2_trim_mainbm(start, len, minlen); 7572 7573 next_group: 7574 main_bm_inode = ocfs2_get_system_file_inode(osb, 7575 GLOBAL_BITMAP_SYSTEM_INODE, 7576 OCFS2_INVALID_SLOT); 7577 if (!main_bm_inode) { 7578 ret = -EIO; 7579 mlog_errno(ret); 7580 goto out; 7581 } 7582 7583 inode_lock(main_bm_inode); 7584 7585 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7586 if (ret < 0) { 7587 mlog_errno(ret); 7588 goto out_mutex; 7589 } 7590 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7591 7592 /* 7593 * Do some check before trim the first group. 7594 */ 7595 if (!group) { 7596 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7597 ret = -EINVAL; 7598 goto out_unlock; 7599 } 7600 7601 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7602 len = le32_to_cpu(main_bm->i_clusters) - start; 7603 7604 /* 7605 * Determine first and last group to examine based on 7606 * start and len 7607 */ 7608 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7609 if (first_group == osb->first_cluster_group_blkno) 7610 first_bit = start; 7611 else 7612 first_bit = start - ocfs2_blocks_to_clusters(sb, 7613 first_group); 7614 last_group = ocfs2_which_cluster_group(main_bm_inode, 7615 start + len - 1); 7616 group = first_group; 7617 } 7618 7619 do { 7620 if (first_bit + len >= osb->bitmap_cpg) 7621 last_bit = osb->bitmap_cpg; 7622 else 7623 last_bit = first_bit + len; 7624 7625 ret = ocfs2_read_group_descriptor(main_bm_inode, 7626 main_bm, group, 7627 &gd_bh); 7628 if (ret < 0) { 7629 mlog_errno(ret); 7630 break; 7631 } 7632 7633 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7634 cnt = ocfs2_trim_group(sb, gd, group, 7635 first_bit, last_bit, minlen); 7636 brelse(gd_bh); 7637 gd_bh = NULL; 7638 if (cnt < 0) { 7639 ret = cnt; 7640 mlog_errno(ret); 7641 break; 7642 } 7643 7644 trimmed += cnt; 7645 len -= osb->bitmap_cpg - first_bit; 7646 first_bit = 0; 7647 if (group == osb->first_cluster_group_blkno) 7648 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7649 else 7650 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7651 } while (0); 7652 7653 out_unlock: 7654 ocfs2_inode_unlock(main_bm_inode, 0); 7655 brelse(main_bm_bh); 7656 main_bm_bh = NULL; 7657 out_mutex: 7658 inode_unlock(main_bm_inode); 7659 iput(main_bm_inode); 7660 7661 /* 7662 * If all the groups trim are not done or failed, but we should release 7663 * main_bm related locks for avoiding the current IO starve, then go to 7664 * trim the next group 7665 */ 7666 if (ret >= 0 && group <= last_group) { 7667 cond_resched(); 7668 goto next_group; 7669 } 7670 out: 7671 range->len = trimmed * osb->s_clustersize; 7672 return ret; 7673 } 7674 7675 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7676 { 7677 int ret; 7678 struct ocfs2_super *osb = OCFS2_SB(sb); 7679 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7680 7681 ocfs2_trim_fs_lock_res_init(osb); 7682 7683 trace_ocfs2_trim_fs(range->start, range->len, range->minlen); 7684 7685 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7686 if (ret < 0) { 7687 if (ret != -EAGAIN) { 7688 mlog_errno(ret); 7689 ocfs2_trim_fs_lock_res_uninit(osb); 7690 return ret; 7691 } 7692 7693 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7694 "finish, which is running from another node.\n", 7695 osb->dev_str); 7696 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7697 if (ret < 0) { 7698 mlog_errno(ret); 7699 ocfs2_trim_fs_lock_res_uninit(osb); 7700 return ret; 7701 } 7702 7703 if (info.tf_valid && info.tf_success && 7704 info.tf_start == range->start && 7705 info.tf_len == range->len && 7706 info.tf_minlen == range->minlen) { 7707 /* Avoid sending duplicated trim to a shared device */ 7708 mlog(ML_NOTICE, "The same trim on device (%s) was " 7709 "just done from node (%u), return.\n", 7710 osb->dev_str, info.tf_nodenum); 7711 range->len = info.tf_trimlen; 7712 goto out; 7713 } 7714 } 7715 7716 info.tf_nodenum = osb->node_num; 7717 info.tf_start = range->start; 7718 info.tf_len = range->len; 7719 info.tf_minlen = range->minlen; 7720 7721 ret = ocfs2_trim_mainbm(sb, range); 7722 7723 info.tf_trimlen = range->len; 7724 info.tf_success = (ret < 0 ? 0 : 1); 7725 pinfo = &info; 7726 out: 7727 ocfs2_trim_fs_unlock(osb, pinfo); 7728 ocfs2_trim_fs_lock_res_uninit(osb); 7729 return ret; 7730 } 7731