1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 #include <linux/blkdev.h> 33 #include <linux/sched/signal.h> 34 35 #include <cluster/masklog.h> 36 37 #include "ocfs2.h" 38 39 #include "alloc.h" 40 #include "aops.h" 41 #include "blockcheck.h" 42 #include "dlmglue.h" 43 #include "extent_map.h" 44 #include "inode.h" 45 #include "journal.h" 46 #include "localalloc.h" 47 #include "suballoc.h" 48 #include "sysfile.h" 49 #include "file.h" 50 #include "super.h" 51 #include "uptodate.h" 52 #include "xattr.h" 53 #include "refcounttree.h" 54 #include "ocfs2_trace.h" 55 56 #include "buffer_head_io.h" 57 58 enum ocfs2_contig_type { 59 CONTIG_NONE = 0, 60 CONTIG_LEFT, 61 CONTIG_RIGHT, 62 CONTIG_LEFTRIGHT, 63 }; 64 65 static enum ocfs2_contig_type 66 ocfs2_extent_rec_contig(struct super_block *sb, 67 struct ocfs2_extent_rec *ext, 68 struct ocfs2_extent_rec *insert_rec); 69 /* 70 * Operations for a specific extent tree type. 71 * 72 * To implement an on-disk btree (extent tree) type in ocfs2, add 73 * an ocfs2_extent_tree_operations structure and the matching 74 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 75 * for the allocation portion of the extent tree. 76 */ 77 struct ocfs2_extent_tree_operations { 78 /* 79 * last_eb_blk is the block number of the right most leaf extent 80 * block. Most on-disk structures containing an extent tree store 81 * this value for fast access. The ->eo_set_last_eb_blk() and 82 * ->eo_get_last_eb_blk() operations access this value. They are 83 * both required. 84 */ 85 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 86 u64 blkno); 87 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 88 89 /* 90 * The on-disk structure usually keeps track of how many total 91 * clusters are stored in this extent tree. This function updates 92 * that value. new_clusters is the delta, and must be 93 * added to the total. Required. 94 */ 95 void (*eo_update_clusters)(struct ocfs2_extent_tree *et, 96 u32 new_clusters); 97 98 /* 99 * If this extent tree is supported by an extent map, insert 100 * a record into the map. 101 */ 102 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et, 103 struct ocfs2_extent_rec *rec); 104 105 /* 106 * If this extent tree is supported by an extent map, truncate the 107 * map to clusters, 108 */ 109 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et, 110 u32 clusters); 111 112 /* 113 * If ->eo_insert_check() exists, it is called before rec is 114 * inserted into the extent tree. It is optional. 115 */ 116 int (*eo_insert_check)(struct ocfs2_extent_tree *et, 117 struct ocfs2_extent_rec *rec); 118 int (*eo_sanity_check)(struct ocfs2_extent_tree *et); 119 120 /* 121 * -------------------------------------------------------------- 122 * The remaining are internal to ocfs2_extent_tree and don't have 123 * accessor functions 124 */ 125 126 /* 127 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 128 * It is required. 129 */ 130 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 131 132 /* 133 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 134 * it exists. If it does not, et->et_max_leaf_clusters is set 135 * to 0 (unlimited). Optional. 136 */ 137 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et); 138 139 /* 140 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec 141 * are contiguous or not. Optional. Don't need to set it if use 142 * ocfs2_extent_rec as the tree leaf. 143 */ 144 enum ocfs2_contig_type 145 (*eo_extent_contig)(struct ocfs2_extent_tree *et, 146 struct ocfs2_extent_rec *ext, 147 struct ocfs2_extent_rec *insert_rec); 148 }; 149 150 151 /* 152 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 153 * in the methods. 154 */ 155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 157 u64 blkno); 158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 159 u32 clusters); 160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 161 struct ocfs2_extent_rec *rec); 162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 163 u32 clusters); 164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 165 struct ocfs2_extent_rec *rec); 166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et); 167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 168 169 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 170 struct ocfs2_extent_tree *et, 171 struct buffer_head **new_eb_bh, 172 int blk_wanted, int *blk_given); 173 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et); 174 175 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 176 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 177 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 178 .eo_update_clusters = ocfs2_dinode_update_clusters, 179 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert, 180 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate, 181 .eo_insert_check = ocfs2_dinode_insert_check, 182 .eo_sanity_check = ocfs2_dinode_sanity_check, 183 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 184 }; 185 186 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 187 u64 blkno) 188 { 189 struct ocfs2_dinode *di = et->et_object; 190 191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 192 di->i_last_eb_blk = cpu_to_le64(blkno); 193 } 194 195 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 196 { 197 struct ocfs2_dinode *di = et->et_object; 198 199 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 200 return le64_to_cpu(di->i_last_eb_blk); 201 } 202 203 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et, 204 u32 clusters) 205 { 206 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 207 struct ocfs2_dinode *di = et->et_object; 208 209 le32_add_cpu(&di->i_clusters, clusters); 210 spin_lock(&oi->ip_lock); 211 oi->ip_clusters = le32_to_cpu(di->i_clusters); 212 spin_unlock(&oi->ip_lock); 213 } 214 215 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et, 216 struct ocfs2_extent_rec *rec) 217 { 218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 219 220 ocfs2_extent_map_insert_rec(inode, rec); 221 } 222 223 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et, 224 u32 clusters) 225 { 226 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode; 227 228 ocfs2_extent_map_trunc(inode, clusters); 229 } 230 231 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et, 232 struct ocfs2_extent_rec *rec) 233 { 234 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci); 235 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb); 236 237 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL); 238 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 239 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)), 240 "Device %s, asking for sparse allocation: inode %llu, " 241 "cpos %u, clusters %u\n", 242 osb->dev_str, 243 (unsigned long long)oi->ip_blkno, 244 rec->e_cpos, oi->ip_clusters); 245 246 return 0; 247 } 248 249 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et) 250 { 251 struct ocfs2_dinode *di = et->et_object; 252 253 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 254 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 255 256 return 0; 257 } 258 259 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 260 { 261 struct ocfs2_dinode *di = et->et_object; 262 263 et->et_root_el = &di->id2.i_list; 264 } 265 266 267 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 268 { 269 struct ocfs2_xattr_value_buf *vb = et->et_object; 270 271 et->et_root_el = &vb->vb_xv->xr_list; 272 } 273 274 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 275 u64 blkno) 276 { 277 struct ocfs2_xattr_value_buf *vb = et->et_object; 278 279 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 280 } 281 282 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 283 { 284 struct ocfs2_xattr_value_buf *vb = et->et_object; 285 286 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 287 } 288 289 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et, 290 u32 clusters) 291 { 292 struct ocfs2_xattr_value_buf *vb = et->et_object; 293 294 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 295 } 296 297 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 298 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 299 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 300 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 301 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 302 }; 303 304 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 305 { 306 struct ocfs2_xattr_block *xb = et->et_object; 307 308 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 309 } 310 311 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et) 312 { 313 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 314 et->et_max_leaf_clusters = 315 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 316 } 317 318 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 319 u64 blkno) 320 { 321 struct ocfs2_xattr_block *xb = et->et_object; 322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 323 324 xt->xt_last_eb_blk = cpu_to_le64(blkno); 325 } 326 327 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 328 { 329 struct ocfs2_xattr_block *xb = et->et_object; 330 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 331 332 return le64_to_cpu(xt->xt_last_eb_blk); 333 } 334 335 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et, 336 u32 clusters) 337 { 338 struct ocfs2_xattr_block *xb = et->et_object; 339 340 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 341 } 342 343 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 344 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 345 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 346 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 347 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 348 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 349 }; 350 351 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 352 u64 blkno) 353 { 354 struct ocfs2_dx_root_block *dx_root = et->et_object; 355 356 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 357 } 358 359 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 360 { 361 struct ocfs2_dx_root_block *dx_root = et->et_object; 362 363 return le64_to_cpu(dx_root->dr_last_eb_blk); 364 } 365 366 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et, 367 u32 clusters) 368 { 369 struct ocfs2_dx_root_block *dx_root = et->et_object; 370 371 le32_add_cpu(&dx_root->dr_clusters, clusters); 372 } 373 374 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et) 375 { 376 struct ocfs2_dx_root_block *dx_root = et->et_object; 377 378 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 379 380 return 0; 381 } 382 383 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 384 { 385 struct ocfs2_dx_root_block *dx_root = et->et_object; 386 387 et->et_root_el = &dx_root->dr_list; 388 } 389 390 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 391 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 392 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 393 .eo_update_clusters = ocfs2_dx_root_update_clusters, 394 .eo_sanity_check = ocfs2_dx_root_sanity_check, 395 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 396 }; 397 398 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et) 399 { 400 struct ocfs2_refcount_block *rb = et->et_object; 401 402 et->et_root_el = &rb->rf_list; 403 } 404 405 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 406 u64 blkno) 407 { 408 struct ocfs2_refcount_block *rb = et->et_object; 409 410 rb->rf_last_eb_blk = cpu_to_le64(blkno); 411 } 412 413 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 414 { 415 struct ocfs2_refcount_block *rb = et->et_object; 416 417 return le64_to_cpu(rb->rf_last_eb_blk); 418 } 419 420 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et, 421 u32 clusters) 422 { 423 struct ocfs2_refcount_block *rb = et->et_object; 424 425 le32_add_cpu(&rb->rf_clusters, clusters); 426 } 427 428 static enum ocfs2_contig_type 429 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et, 430 struct ocfs2_extent_rec *ext, 431 struct ocfs2_extent_rec *insert_rec) 432 { 433 return CONTIG_NONE; 434 } 435 436 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = { 437 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk, 438 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk, 439 .eo_update_clusters = ocfs2_refcount_tree_update_clusters, 440 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el, 441 .eo_extent_contig = ocfs2_refcount_tree_extent_contig, 442 }; 443 444 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 445 struct ocfs2_caching_info *ci, 446 struct buffer_head *bh, 447 ocfs2_journal_access_func access, 448 void *obj, 449 const struct ocfs2_extent_tree_operations *ops) 450 { 451 et->et_ops = ops; 452 et->et_root_bh = bh; 453 et->et_ci = ci; 454 et->et_root_journal_access = access; 455 if (!obj) 456 obj = (void *)bh->b_data; 457 et->et_object = obj; 458 et->et_dealloc = NULL; 459 460 et->et_ops->eo_fill_root_el(et); 461 if (!et->et_ops->eo_fill_max_leaf_clusters) 462 et->et_max_leaf_clusters = 0; 463 else 464 et->et_ops->eo_fill_max_leaf_clusters(et); 465 } 466 467 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 468 struct ocfs2_caching_info *ci, 469 struct buffer_head *bh) 470 { 471 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di, 472 NULL, &ocfs2_dinode_et_ops); 473 } 474 475 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 476 struct ocfs2_caching_info *ci, 477 struct buffer_head *bh) 478 { 479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb, 480 NULL, &ocfs2_xattr_tree_et_ops); 481 } 482 483 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 484 struct ocfs2_caching_info *ci, 485 struct ocfs2_xattr_value_buf *vb) 486 { 487 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb, 488 &ocfs2_xattr_value_et_ops); 489 } 490 491 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 492 struct ocfs2_caching_info *ci, 493 struct buffer_head *bh) 494 { 495 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr, 496 NULL, &ocfs2_dx_root_et_ops); 497 } 498 499 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 500 struct ocfs2_caching_info *ci, 501 struct buffer_head *bh) 502 { 503 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb, 504 NULL, &ocfs2_refcount_tree_et_ops); 505 } 506 507 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 508 u64 new_last_eb_blk) 509 { 510 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 511 } 512 513 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 514 { 515 return et->et_ops->eo_get_last_eb_blk(et); 516 } 517 518 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et, 519 u32 clusters) 520 { 521 et->et_ops->eo_update_clusters(et, clusters); 522 } 523 524 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et, 525 struct ocfs2_extent_rec *rec) 526 { 527 if (et->et_ops->eo_extent_map_insert) 528 et->et_ops->eo_extent_map_insert(et, rec); 529 } 530 531 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et, 532 u32 clusters) 533 { 534 if (et->et_ops->eo_extent_map_truncate) 535 et->et_ops->eo_extent_map_truncate(et, clusters); 536 } 537 538 static inline int ocfs2_et_root_journal_access(handle_t *handle, 539 struct ocfs2_extent_tree *et, 540 int type) 541 { 542 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh, 543 type); 544 } 545 546 static inline enum ocfs2_contig_type 547 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et, 548 struct ocfs2_extent_rec *rec, 549 struct ocfs2_extent_rec *insert_rec) 550 { 551 if (et->et_ops->eo_extent_contig) 552 return et->et_ops->eo_extent_contig(et, rec, insert_rec); 553 554 return ocfs2_extent_rec_contig( 555 ocfs2_metadata_cache_get_super(et->et_ci), 556 rec, insert_rec); 557 } 558 559 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et, 560 struct ocfs2_extent_rec *rec) 561 { 562 int ret = 0; 563 564 if (et->et_ops->eo_insert_check) 565 ret = et->et_ops->eo_insert_check(et, rec); 566 return ret; 567 } 568 569 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et) 570 { 571 int ret = 0; 572 573 if (et->et_ops->eo_sanity_check) 574 ret = et->et_ops->eo_sanity_check(et); 575 return ret; 576 } 577 578 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 579 struct ocfs2_extent_block *eb); 580 static void ocfs2_adjust_rightmost_records(handle_t *handle, 581 struct ocfs2_extent_tree *et, 582 struct ocfs2_path *path, 583 struct ocfs2_extent_rec *insert_rec); 584 /* 585 * Reset the actual path elements so that we can re-use the structure 586 * to build another path. Generally, this involves freeing the buffer 587 * heads. 588 */ 589 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 590 { 591 int i, start = 0, depth = 0; 592 struct ocfs2_path_item *node; 593 594 if (keep_root) 595 start = 1; 596 597 for(i = start; i < path_num_items(path); i++) { 598 node = &path->p_node[i]; 599 600 brelse(node->bh); 601 node->bh = NULL; 602 node->el = NULL; 603 } 604 605 /* 606 * Tree depth may change during truncate, or insert. If we're 607 * keeping the root extent list, then make sure that our path 608 * structure reflects the proper depth. 609 */ 610 if (keep_root) 611 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 612 else 613 path_root_access(path) = NULL; 614 615 path->p_tree_depth = depth; 616 } 617 618 void ocfs2_free_path(struct ocfs2_path *path) 619 { 620 if (path) { 621 ocfs2_reinit_path(path, 0); 622 kfree(path); 623 } 624 } 625 626 /* 627 * All the elements of src into dest. After this call, src could be freed 628 * without affecting dest. 629 * 630 * Both paths should have the same root. Any non-root elements of dest 631 * will be freed. 632 */ 633 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 634 { 635 int i; 636 637 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 638 BUG_ON(path_root_el(dest) != path_root_el(src)); 639 BUG_ON(path_root_access(dest) != path_root_access(src)); 640 641 ocfs2_reinit_path(dest, 1); 642 643 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 644 dest->p_node[i].bh = src->p_node[i].bh; 645 dest->p_node[i].el = src->p_node[i].el; 646 647 if (dest->p_node[i].bh) 648 get_bh(dest->p_node[i].bh); 649 } 650 } 651 652 /* 653 * Make the *dest path the same as src and re-initialize src path to 654 * have a root only. 655 */ 656 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 657 { 658 int i; 659 660 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 661 BUG_ON(path_root_access(dest) != path_root_access(src)); 662 663 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 664 brelse(dest->p_node[i].bh); 665 666 dest->p_node[i].bh = src->p_node[i].bh; 667 dest->p_node[i].el = src->p_node[i].el; 668 669 src->p_node[i].bh = NULL; 670 src->p_node[i].el = NULL; 671 } 672 } 673 674 /* 675 * Insert an extent block at given index. 676 * 677 * This will not take an additional reference on eb_bh. 678 */ 679 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 680 struct buffer_head *eb_bh) 681 { 682 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 683 684 /* 685 * Right now, no root bh is an extent block, so this helps 686 * catch code errors with dinode trees. The assertion can be 687 * safely removed if we ever need to insert extent block 688 * structures at the root. 689 */ 690 BUG_ON(index == 0); 691 692 path->p_node[index].bh = eb_bh; 693 path->p_node[index].el = &eb->h_list; 694 } 695 696 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 697 struct ocfs2_extent_list *root_el, 698 ocfs2_journal_access_func access) 699 { 700 struct ocfs2_path *path; 701 702 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 703 704 path = kzalloc(sizeof(*path), GFP_NOFS); 705 if (path) { 706 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 707 get_bh(root_bh); 708 path_root_bh(path) = root_bh; 709 path_root_el(path) = root_el; 710 path_root_access(path) = access; 711 } 712 713 return path; 714 } 715 716 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 717 { 718 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 719 path_root_access(path)); 720 } 721 722 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 723 { 724 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 725 et->et_root_journal_access); 726 } 727 728 /* 729 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 730 * otherwise it's the root_access function. 731 * 732 * I don't like the way this function's name looks next to 733 * ocfs2_journal_access_path(), but I don't have a better one. 734 */ 735 int ocfs2_path_bh_journal_access(handle_t *handle, 736 struct ocfs2_caching_info *ci, 737 struct ocfs2_path *path, 738 int idx) 739 { 740 ocfs2_journal_access_func access = path_root_access(path); 741 742 if (!access) 743 access = ocfs2_journal_access; 744 745 if (idx) 746 access = ocfs2_journal_access_eb; 747 748 return access(handle, ci, path->p_node[idx].bh, 749 OCFS2_JOURNAL_ACCESS_WRITE); 750 } 751 752 /* 753 * Convenience function to journal all components in a path. 754 */ 755 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 756 handle_t *handle, 757 struct ocfs2_path *path) 758 { 759 int i, ret = 0; 760 761 if (!path) 762 goto out; 763 764 for(i = 0; i < path_num_items(path); i++) { 765 ret = ocfs2_path_bh_journal_access(handle, ci, path, i); 766 if (ret < 0) { 767 mlog_errno(ret); 768 goto out; 769 } 770 } 771 772 out: 773 return ret; 774 } 775 776 /* 777 * Return the index of the extent record which contains cluster #v_cluster. 778 * -1 is returned if it was not found. 779 * 780 * Should work fine on interior and exterior nodes. 781 */ 782 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 783 { 784 int ret = -1; 785 int i; 786 struct ocfs2_extent_rec *rec; 787 u32 rec_end, rec_start, clusters; 788 789 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 790 rec = &el->l_recs[i]; 791 792 rec_start = le32_to_cpu(rec->e_cpos); 793 clusters = ocfs2_rec_clusters(el, rec); 794 795 rec_end = rec_start + clusters; 796 797 if (v_cluster >= rec_start && v_cluster < rec_end) { 798 ret = i; 799 break; 800 } 801 } 802 803 return ret; 804 } 805 806 /* 807 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 808 * ocfs2_extent_rec_contig only work properly against leaf nodes! 809 */ 810 static int ocfs2_block_extent_contig(struct super_block *sb, 811 struct ocfs2_extent_rec *ext, 812 u64 blkno) 813 { 814 u64 blk_end = le64_to_cpu(ext->e_blkno); 815 816 blk_end += ocfs2_clusters_to_blocks(sb, 817 le16_to_cpu(ext->e_leaf_clusters)); 818 819 return blkno == blk_end; 820 } 821 822 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 823 struct ocfs2_extent_rec *right) 824 { 825 u32 left_range; 826 827 left_range = le32_to_cpu(left->e_cpos) + 828 le16_to_cpu(left->e_leaf_clusters); 829 830 return (left_range == le32_to_cpu(right->e_cpos)); 831 } 832 833 static enum ocfs2_contig_type 834 ocfs2_extent_rec_contig(struct super_block *sb, 835 struct ocfs2_extent_rec *ext, 836 struct ocfs2_extent_rec *insert_rec) 837 { 838 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 839 840 /* 841 * Refuse to coalesce extent records with different flag 842 * fields - we don't want to mix unwritten extents with user 843 * data. 844 */ 845 if (ext->e_flags != insert_rec->e_flags) 846 return CONTIG_NONE; 847 848 if (ocfs2_extents_adjacent(ext, insert_rec) && 849 ocfs2_block_extent_contig(sb, ext, blkno)) 850 return CONTIG_RIGHT; 851 852 blkno = le64_to_cpu(ext->e_blkno); 853 if (ocfs2_extents_adjacent(insert_rec, ext) && 854 ocfs2_block_extent_contig(sb, insert_rec, blkno)) 855 return CONTIG_LEFT; 856 857 return CONTIG_NONE; 858 } 859 860 /* 861 * NOTE: We can have pretty much any combination of contiguousness and 862 * appending. 863 * 864 * The usefulness of APPEND_TAIL is more in that it lets us know that 865 * we'll have to update the path to that leaf. 866 */ 867 enum ocfs2_append_type { 868 APPEND_NONE = 0, 869 APPEND_TAIL, 870 }; 871 872 enum ocfs2_split_type { 873 SPLIT_NONE = 0, 874 SPLIT_LEFT, 875 SPLIT_RIGHT, 876 }; 877 878 struct ocfs2_insert_type { 879 enum ocfs2_split_type ins_split; 880 enum ocfs2_append_type ins_appending; 881 enum ocfs2_contig_type ins_contig; 882 int ins_contig_index; 883 int ins_tree_depth; 884 }; 885 886 struct ocfs2_merge_ctxt { 887 enum ocfs2_contig_type c_contig_type; 888 int c_has_empty_extent; 889 int c_split_covers_rec; 890 }; 891 892 static int ocfs2_validate_extent_block(struct super_block *sb, 893 struct buffer_head *bh) 894 { 895 int rc; 896 struct ocfs2_extent_block *eb = 897 (struct ocfs2_extent_block *)bh->b_data; 898 899 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr); 900 901 BUG_ON(!buffer_uptodate(bh)); 902 903 /* 904 * If the ecc fails, we return the error but otherwise 905 * leave the filesystem running. We know any error is 906 * local to this block. 907 */ 908 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 909 if (rc) { 910 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 911 (unsigned long long)bh->b_blocknr); 912 return rc; 913 } 914 915 /* 916 * Errors after here are fatal. 917 */ 918 919 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 920 rc = ocfs2_error(sb, 921 "Extent block #%llu has bad signature %.*s\n", 922 (unsigned long long)bh->b_blocknr, 7, 923 eb->h_signature); 924 goto bail; 925 } 926 927 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 928 rc = ocfs2_error(sb, 929 "Extent block #%llu has an invalid h_blkno of %llu\n", 930 (unsigned long long)bh->b_blocknr, 931 (unsigned long long)le64_to_cpu(eb->h_blkno)); 932 goto bail; 933 } 934 935 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 936 rc = ocfs2_error(sb, 937 "Extent block #%llu has an invalid h_fs_generation of #%u\n", 938 (unsigned long long)bh->b_blocknr, 939 le32_to_cpu(eb->h_fs_generation)); 940 goto bail; 941 } 942 bail: 943 return rc; 944 } 945 946 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 947 struct buffer_head **bh) 948 { 949 int rc; 950 struct buffer_head *tmp = *bh; 951 952 rc = ocfs2_read_block(ci, eb_blkno, &tmp, 953 ocfs2_validate_extent_block); 954 955 /* If ocfs2_read_block() got us a new bh, pass it up. */ 956 if (!rc && !*bh) 957 *bh = tmp; 958 959 return rc; 960 } 961 962 963 /* 964 * How many free extents have we got before we need more meta data? 965 */ 966 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et) 967 { 968 int retval; 969 struct ocfs2_extent_list *el = NULL; 970 struct ocfs2_extent_block *eb; 971 struct buffer_head *eb_bh = NULL; 972 u64 last_eb_blk = 0; 973 974 el = et->et_root_el; 975 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 976 977 if (last_eb_blk) { 978 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk, 979 &eb_bh); 980 if (retval < 0) { 981 mlog_errno(retval); 982 goto bail; 983 } 984 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 985 el = &eb->h_list; 986 } 987 988 BUG_ON(el->l_tree_depth != 0); 989 990 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 991 bail: 992 brelse(eb_bh); 993 994 trace_ocfs2_num_free_extents(retval); 995 return retval; 996 } 997 998 /* expects array to already be allocated 999 * 1000 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 1001 * l_count for you 1002 */ 1003 static int ocfs2_create_new_meta_bhs(handle_t *handle, 1004 struct ocfs2_extent_tree *et, 1005 int wanted, 1006 struct ocfs2_alloc_context *meta_ac, 1007 struct buffer_head *bhs[]) 1008 { 1009 int count, status, i; 1010 u16 suballoc_bit_start; 1011 u32 num_got; 1012 u64 suballoc_loc, first_blkno; 1013 struct ocfs2_super *osb = 1014 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 1015 struct ocfs2_extent_block *eb; 1016 1017 count = 0; 1018 while (count < wanted) { 1019 status = ocfs2_claim_metadata(handle, 1020 meta_ac, 1021 wanted - count, 1022 &suballoc_loc, 1023 &suballoc_bit_start, 1024 &num_got, 1025 &first_blkno); 1026 if (status < 0) { 1027 mlog_errno(status); 1028 goto bail; 1029 } 1030 1031 for(i = count; i < (num_got + count); i++) { 1032 bhs[i] = sb_getblk(osb->sb, first_blkno); 1033 if (bhs[i] == NULL) { 1034 status = -ENOMEM; 1035 mlog_errno(status); 1036 goto bail; 1037 } 1038 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]); 1039 1040 status = ocfs2_journal_access_eb(handle, et->et_ci, 1041 bhs[i], 1042 OCFS2_JOURNAL_ACCESS_CREATE); 1043 if (status < 0) { 1044 mlog_errno(status); 1045 goto bail; 1046 } 1047 1048 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 1049 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 1050 /* Ok, setup the minimal stuff here. */ 1051 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 1052 eb->h_blkno = cpu_to_le64(first_blkno); 1053 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 1054 eb->h_suballoc_slot = 1055 cpu_to_le16(meta_ac->ac_alloc_slot); 1056 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc); 1057 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 1058 eb->h_list.l_count = 1059 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 1060 1061 suballoc_bit_start++; 1062 first_blkno++; 1063 1064 /* We'll also be dirtied by the caller, so 1065 * this isn't absolutely necessary. */ 1066 ocfs2_journal_dirty(handle, bhs[i]); 1067 } 1068 1069 count += num_got; 1070 } 1071 1072 status = 0; 1073 bail: 1074 if (status < 0) { 1075 for(i = 0; i < wanted; i++) { 1076 brelse(bhs[i]); 1077 bhs[i] = NULL; 1078 } 1079 mlog_errno(status); 1080 } 1081 return status; 1082 } 1083 1084 /* 1085 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1086 * 1087 * Returns the sum of the rightmost extent rec logical offset and 1088 * cluster count. 1089 * 1090 * ocfs2_add_branch() uses this to determine what logical cluster 1091 * value should be populated into the leftmost new branch records. 1092 * 1093 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1094 * value for the new topmost tree record. 1095 */ 1096 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1097 { 1098 int i; 1099 1100 i = le16_to_cpu(el->l_next_free_rec) - 1; 1101 1102 return le32_to_cpu(el->l_recs[i].e_cpos) + 1103 ocfs2_rec_clusters(el, &el->l_recs[i]); 1104 } 1105 1106 /* 1107 * Change range of the branches in the right most path according to the leaf 1108 * extent block's rightmost record. 1109 */ 1110 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1111 struct ocfs2_extent_tree *et) 1112 { 1113 int status; 1114 struct ocfs2_path *path = NULL; 1115 struct ocfs2_extent_list *el; 1116 struct ocfs2_extent_rec *rec; 1117 1118 path = ocfs2_new_path_from_et(et); 1119 if (!path) { 1120 status = -ENOMEM; 1121 return status; 1122 } 1123 1124 status = ocfs2_find_path(et->et_ci, path, UINT_MAX); 1125 if (status < 0) { 1126 mlog_errno(status); 1127 goto out; 1128 } 1129 1130 status = ocfs2_extend_trans(handle, path_num_items(path)); 1131 if (status < 0) { 1132 mlog_errno(status); 1133 goto out; 1134 } 1135 1136 status = ocfs2_journal_access_path(et->et_ci, handle, path); 1137 if (status < 0) { 1138 mlog_errno(status); 1139 goto out; 1140 } 1141 1142 el = path_leaf_el(path); 1143 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1]; 1144 1145 ocfs2_adjust_rightmost_records(handle, et, path, rec); 1146 1147 out: 1148 ocfs2_free_path(path); 1149 return status; 1150 } 1151 1152 /* 1153 * Add an entire tree branch to our inode. eb_bh is the extent block 1154 * to start at, if we don't want to start the branch at the root 1155 * structure. 1156 * 1157 * last_eb_bh is required as we have to update it's next_leaf pointer 1158 * for the new last extent block. 1159 * 1160 * the new branch will be 'empty' in the sense that every block will 1161 * contain a single record with cluster count == 0. 1162 */ 1163 static int ocfs2_add_branch(handle_t *handle, 1164 struct ocfs2_extent_tree *et, 1165 struct buffer_head *eb_bh, 1166 struct buffer_head **last_eb_bh, 1167 struct ocfs2_alloc_context *meta_ac) 1168 { 1169 int status, new_blocks, i, block_given = 0; 1170 u64 next_blkno, new_last_eb_blk; 1171 struct buffer_head *bh; 1172 struct buffer_head **new_eb_bhs = NULL; 1173 struct ocfs2_extent_block *eb; 1174 struct ocfs2_extent_list *eb_el; 1175 struct ocfs2_extent_list *el; 1176 u32 new_cpos, root_end; 1177 1178 BUG_ON(!last_eb_bh || !*last_eb_bh); 1179 1180 if (eb_bh) { 1181 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1182 el = &eb->h_list; 1183 } else 1184 el = et->et_root_el; 1185 1186 /* we never add a branch to a leaf. */ 1187 BUG_ON(!el->l_tree_depth); 1188 1189 new_blocks = le16_to_cpu(el->l_tree_depth); 1190 1191 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1192 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1193 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1194 1195 /* 1196 * If there is a gap before the root end and the real end 1197 * of the righmost leaf block, we need to remove the gap 1198 * between new_cpos and root_end first so that the tree 1199 * is consistent after we add a new branch(it will start 1200 * from new_cpos). 1201 */ 1202 if (root_end > new_cpos) { 1203 trace_ocfs2_adjust_rightmost_branch( 1204 (unsigned long long) 1205 ocfs2_metadata_cache_owner(et->et_ci), 1206 root_end, new_cpos); 1207 1208 status = ocfs2_adjust_rightmost_branch(handle, et); 1209 if (status) { 1210 mlog_errno(status); 1211 goto bail; 1212 } 1213 } 1214 1215 /* allocate the number of new eb blocks we need */ 1216 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1217 GFP_KERNEL); 1218 if (!new_eb_bhs) { 1219 status = -ENOMEM; 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 1224 /* Firstyly, try to reuse dealloc since we have already estimated how 1225 * many extent blocks we may use. 1226 */ 1227 if (!ocfs2_is_dealloc_empty(et)) { 1228 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1229 new_eb_bhs, new_blocks, 1230 &block_given); 1231 if (status < 0) { 1232 mlog_errno(status); 1233 goto bail; 1234 } 1235 } 1236 1237 BUG_ON(block_given > new_blocks); 1238 1239 if (block_given < new_blocks) { 1240 BUG_ON(!meta_ac); 1241 status = ocfs2_create_new_meta_bhs(handle, et, 1242 new_blocks - block_given, 1243 meta_ac, 1244 &new_eb_bhs[block_given]); 1245 if (status < 0) { 1246 mlog_errno(status); 1247 goto bail; 1248 } 1249 } 1250 1251 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1252 * linked with the rest of the tree. 1253 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1254 * 1255 * when we leave the loop, new_last_eb_blk will point to the 1256 * newest leaf, and next_blkno will point to the topmost extent 1257 * block. */ 1258 next_blkno = new_last_eb_blk = 0; 1259 for(i = 0; i < new_blocks; i++) { 1260 bh = new_eb_bhs[i]; 1261 eb = (struct ocfs2_extent_block *) bh->b_data; 1262 /* ocfs2_create_new_meta_bhs() should create it right! */ 1263 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1264 eb_el = &eb->h_list; 1265 1266 status = ocfs2_journal_access_eb(handle, et->et_ci, bh, 1267 OCFS2_JOURNAL_ACCESS_CREATE); 1268 if (status < 0) { 1269 mlog_errno(status); 1270 goto bail; 1271 } 1272 1273 eb->h_next_leaf_blk = 0; 1274 eb_el->l_tree_depth = cpu_to_le16(i); 1275 eb_el->l_next_free_rec = cpu_to_le16(1); 1276 /* 1277 * This actually counts as an empty extent as 1278 * c_clusters == 0 1279 */ 1280 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1281 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1282 /* 1283 * eb_el isn't always an interior node, but even leaf 1284 * nodes want a zero'd flags and reserved field so 1285 * this gets the whole 32 bits regardless of use. 1286 */ 1287 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1288 if (!eb_el->l_tree_depth) 1289 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1290 1291 ocfs2_journal_dirty(handle, bh); 1292 next_blkno = le64_to_cpu(eb->h_blkno); 1293 } 1294 1295 /* This is a bit hairy. We want to update up to three blocks 1296 * here without leaving any of them in an inconsistent state 1297 * in case of error. We don't have to worry about 1298 * journal_dirty erroring as it won't unless we've aborted the 1299 * handle (in which case we would never be here) so reserving 1300 * the write with journal_access is all we need to do. */ 1301 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh, 1302 OCFS2_JOURNAL_ACCESS_WRITE); 1303 if (status < 0) { 1304 mlog_errno(status); 1305 goto bail; 1306 } 1307 status = ocfs2_et_root_journal_access(handle, et, 1308 OCFS2_JOURNAL_ACCESS_WRITE); 1309 if (status < 0) { 1310 mlog_errno(status); 1311 goto bail; 1312 } 1313 if (eb_bh) { 1314 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh, 1315 OCFS2_JOURNAL_ACCESS_WRITE); 1316 if (status < 0) { 1317 mlog_errno(status); 1318 goto bail; 1319 } 1320 } 1321 1322 /* Link the new branch into the rest of the tree (el will 1323 * either be on the root_bh, or the extent block passed in. */ 1324 i = le16_to_cpu(el->l_next_free_rec); 1325 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1326 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1327 el->l_recs[i].e_int_clusters = 0; 1328 le16_add_cpu(&el->l_next_free_rec, 1); 1329 1330 /* fe needs a new last extent block pointer, as does the 1331 * next_leaf on the previously last-extent-block. */ 1332 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1333 1334 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1335 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1336 1337 ocfs2_journal_dirty(handle, *last_eb_bh); 1338 ocfs2_journal_dirty(handle, et->et_root_bh); 1339 if (eb_bh) 1340 ocfs2_journal_dirty(handle, eb_bh); 1341 1342 /* 1343 * Some callers want to track the rightmost leaf so pass it 1344 * back here. 1345 */ 1346 brelse(*last_eb_bh); 1347 get_bh(new_eb_bhs[0]); 1348 *last_eb_bh = new_eb_bhs[0]; 1349 1350 status = 0; 1351 bail: 1352 if (new_eb_bhs) { 1353 for (i = 0; i < new_blocks; i++) 1354 brelse(new_eb_bhs[i]); 1355 kfree(new_eb_bhs); 1356 } 1357 1358 return status; 1359 } 1360 1361 /* 1362 * adds another level to the allocation tree. 1363 * returns back the new extent block so you can add a branch to it 1364 * after this call. 1365 */ 1366 static int ocfs2_shift_tree_depth(handle_t *handle, 1367 struct ocfs2_extent_tree *et, 1368 struct ocfs2_alloc_context *meta_ac, 1369 struct buffer_head **ret_new_eb_bh) 1370 { 1371 int status, i, block_given = 0; 1372 u32 new_clusters; 1373 struct buffer_head *new_eb_bh = NULL; 1374 struct ocfs2_extent_block *eb; 1375 struct ocfs2_extent_list *root_el; 1376 struct ocfs2_extent_list *eb_el; 1377 1378 if (!ocfs2_is_dealloc_empty(et)) { 1379 status = ocfs2_reuse_blk_from_dealloc(handle, et, 1380 &new_eb_bh, 1, 1381 &block_given); 1382 } else if (meta_ac) { 1383 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac, 1384 &new_eb_bh); 1385 1386 } else { 1387 BUG(); 1388 } 1389 1390 if (status < 0) { 1391 mlog_errno(status); 1392 goto bail; 1393 } 1394 1395 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1396 /* ocfs2_create_new_meta_bhs() should create it right! */ 1397 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1398 1399 eb_el = &eb->h_list; 1400 root_el = et->et_root_el; 1401 1402 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh, 1403 OCFS2_JOURNAL_ACCESS_CREATE); 1404 if (status < 0) { 1405 mlog_errno(status); 1406 goto bail; 1407 } 1408 1409 /* copy the root extent list data into the new extent block */ 1410 eb_el->l_tree_depth = root_el->l_tree_depth; 1411 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1412 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1413 eb_el->l_recs[i] = root_el->l_recs[i]; 1414 1415 ocfs2_journal_dirty(handle, new_eb_bh); 1416 1417 status = ocfs2_et_root_journal_access(handle, et, 1418 OCFS2_JOURNAL_ACCESS_WRITE); 1419 if (status < 0) { 1420 mlog_errno(status); 1421 goto bail; 1422 } 1423 1424 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1425 1426 /* update root_bh now */ 1427 le16_add_cpu(&root_el->l_tree_depth, 1); 1428 root_el->l_recs[0].e_cpos = 0; 1429 root_el->l_recs[0].e_blkno = eb->h_blkno; 1430 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1431 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1432 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1433 root_el->l_next_free_rec = cpu_to_le16(1); 1434 1435 /* If this is our 1st tree depth shift, then last_eb_blk 1436 * becomes the allocated extent block */ 1437 if (root_el->l_tree_depth == cpu_to_le16(1)) 1438 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1439 1440 ocfs2_journal_dirty(handle, et->et_root_bh); 1441 1442 *ret_new_eb_bh = new_eb_bh; 1443 new_eb_bh = NULL; 1444 status = 0; 1445 bail: 1446 brelse(new_eb_bh); 1447 1448 return status; 1449 } 1450 1451 /* 1452 * Should only be called when there is no space left in any of the 1453 * leaf nodes. What we want to do is find the lowest tree depth 1454 * non-leaf extent block with room for new records. There are three 1455 * valid results of this search: 1456 * 1457 * 1) a lowest extent block is found, then we pass it back in 1458 * *lowest_eb_bh and return '0' 1459 * 1460 * 2) the search fails to find anything, but the root_el has room. We 1461 * pass NULL back in *lowest_eb_bh, but still return '0' 1462 * 1463 * 3) the search fails to find anything AND the root_el is full, in 1464 * which case we return > 0 1465 * 1466 * return status < 0 indicates an error. 1467 */ 1468 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et, 1469 struct buffer_head **target_bh) 1470 { 1471 int status = 0, i; 1472 u64 blkno; 1473 struct ocfs2_extent_block *eb; 1474 struct ocfs2_extent_list *el; 1475 struct buffer_head *bh = NULL; 1476 struct buffer_head *lowest_bh = NULL; 1477 1478 *target_bh = NULL; 1479 1480 el = et->et_root_el; 1481 1482 while(le16_to_cpu(el->l_tree_depth) > 1) { 1483 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1484 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1485 "Owner %llu has empty extent list (next_free_rec == 0)\n", 1486 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 1487 status = -EIO; 1488 goto bail; 1489 } 1490 i = le16_to_cpu(el->l_next_free_rec) - 1; 1491 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1492 if (!blkno) { 1493 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 1494 "Owner %llu has extent list where extent # %d has no physical block start\n", 1495 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i); 1496 status = -EIO; 1497 goto bail; 1498 } 1499 1500 brelse(bh); 1501 bh = NULL; 1502 1503 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh); 1504 if (status < 0) { 1505 mlog_errno(status); 1506 goto bail; 1507 } 1508 1509 eb = (struct ocfs2_extent_block *) bh->b_data; 1510 el = &eb->h_list; 1511 1512 if (le16_to_cpu(el->l_next_free_rec) < 1513 le16_to_cpu(el->l_count)) { 1514 brelse(lowest_bh); 1515 lowest_bh = bh; 1516 get_bh(lowest_bh); 1517 } 1518 } 1519 1520 /* If we didn't find one and the fe doesn't have any room, 1521 * then return '1' */ 1522 el = et->et_root_el; 1523 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1524 status = 1; 1525 1526 *target_bh = lowest_bh; 1527 bail: 1528 brelse(bh); 1529 1530 return status; 1531 } 1532 1533 /* 1534 * Grow a b-tree so that it has more records. 1535 * 1536 * We might shift the tree depth in which case existing paths should 1537 * be considered invalid. 1538 * 1539 * Tree depth after the grow is returned via *final_depth. 1540 * 1541 * *last_eb_bh will be updated by ocfs2_add_branch(). 1542 */ 1543 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et, 1544 int *final_depth, struct buffer_head **last_eb_bh, 1545 struct ocfs2_alloc_context *meta_ac) 1546 { 1547 int ret, shift; 1548 struct ocfs2_extent_list *el = et->et_root_el; 1549 int depth = le16_to_cpu(el->l_tree_depth); 1550 struct buffer_head *bh = NULL; 1551 1552 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et)); 1553 1554 shift = ocfs2_find_branch_target(et, &bh); 1555 if (shift < 0) { 1556 ret = shift; 1557 mlog_errno(ret); 1558 goto out; 1559 } 1560 1561 /* We traveled all the way to the bottom of the allocation tree 1562 * and didn't find room for any more extents - we need to add 1563 * another tree level */ 1564 if (shift) { 1565 BUG_ON(bh); 1566 trace_ocfs2_grow_tree( 1567 (unsigned long long) 1568 ocfs2_metadata_cache_owner(et->et_ci), 1569 depth); 1570 1571 /* ocfs2_shift_tree_depth will return us a buffer with 1572 * the new extent block (so we can pass that to 1573 * ocfs2_add_branch). */ 1574 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh); 1575 if (ret < 0) { 1576 mlog_errno(ret); 1577 goto out; 1578 } 1579 depth++; 1580 if (depth == 1) { 1581 /* 1582 * Special case: we have room now if we shifted from 1583 * tree_depth 0, so no more work needs to be done. 1584 * 1585 * We won't be calling add_branch, so pass 1586 * back *last_eb_bh as the new leaf. At depth 1587 * zero, it should always be null so there's 1588 * no reason to brelse. 1589 */ 1590 BUG_ON(*last_eb_bh); 1591 get_bh(bh); 1592 *last_eb_bh = bh; 1593 goto out; 1594 } 1595 } 1596 1597 /* call ocfs2_add_branch to add the final part of the tree with 1598 * the new data. */ 1599 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh, 1600 meta_ac); 1601 if (ret < 0) { 1602 mlog_errno(ret); 1603 goto out; 1604 } 1605 1606 out: 1607 if (final_depth) 1608 *final_depth = depth; 1609 brelse(bh); 1610 return ret; 1611 } 1612 1613 /* 1614 * This function will discard the rightmost extent record. 1615 */ 1616 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1617 { 1618 int next_free = le16_to_cpu(el->l_next_free_rec); 1619 int count = le16_to_cpu(el->l_count); 1620 unsigned int num_bytes; 1621 1622 BUG_ON(!next_free); 1623 /* This will cause us to go off the end of our extent list. */ 1624 BUG_ON(next_free >= count); 1625 1626 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1627 1628 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1629 } 1630 1631 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1632 struct ocfs2_extent_rec *insert_rec) 1633 { 1634 int i, insert_index, next_free, has_empty, num_bytes; 1635 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1636 struct ocfs2_extent_rec *rec; 1637 1638 next_free = le16_to_cpu(el->l_next_free_rec); 1639 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1640 1641 BUG_ON(!next_free); 1642 1643 /* The tree code before us didn't allow enough room in the leaf. */ 1644 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1645 1646 /* 1647 * The easiest way to approach this is to just remove the 1648 * empty extent and temporarily decrement next_free. 1649 */ 1650 if (has_empty) { 1651 /* 1652 * If next_free was 1 (only an empty extent), this 1653 * loop won't execute, which is fine. We still want 1654 * the decrement above to happen. 1655 */ 1656 for(i = 0; i < (next_free - 1); i++) 1657 el->l_recs[i] = el->l_recs[i+1]; 1658 1659 next_free--; 1660 } 1661 1662 /* 1663 * Figure out what the new record index should be. 1664 */ 1665 for(i = 0; i < next_free; i++) { 1666 rec = &el->l_recs[i]; 1667 1668 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1669 break; 1670 } 1671 insert_index = i; 1672 1673 trace_ocfs2_rotate_leaf(insert_cpos, insert_index, 1674 has_empty, next_free, 1675 le16_to_cpu(el->l_count)); 1676 1677 BUG_ON(insert_index < 0); 1678 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1679 BUG_ON(insert_index > next_free); 1680 1681 /* 1682 * No need to memmove if we're just adding to the tail. 1683 */ 1684 if (insert_index != next_free) { 1685 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1686 1687 num_bytes = next_free - insert_index; 1688 num_bytes *= sizeof(struct ocfs2_extent_rec); 1689 memmove(&el->l_recs[insert_index + 1], 1690 &el->l_recs[insert_index], 1691 num_bytes); 1692 } 1693 1694 /* 1695 * Either we had an empty extent, and need to re-increment or 1696 * there was no empty extent on a non full rightmost leaf node, 1697 * in which case we still need to increment. 1698 */ 1699 next_free++; 1700 el->l_next_free_rec = cpu_to_le16(next_free); 1701 /* 1702 * Make sure none of the math above just messed up our tree. 1703 */ 1704 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1705 1706 el->l_recs[insert_index] = *insert_rec; 1707 1708 } 1709 1710 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1711 { 1712 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1713 1714 BUG_ON(num_recs == 0); 1715 1716 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1717 num_recs--; 1718 size = num_recs * sizeof(struct ocfs2_extent_rec); 1719 memmove(&el->l_recs[0], &el->l_recs[1], size); 1720 memset(&el->l_recs[num_recs], 0, 1721 sizeof(struct ocfs2_extent_rec)); 1722 el->l_next_free_rec = cpu_to_le16(num_recs); 1723 } 1724 } 1725 1726 /* 1727 * Create an empty extent record . 1728 * 1729 * l_next_free_rec may be updated. 1730 * 1731 * If an empty extent already exists do nothing. 1732 */ 1733 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1734 { 1735 int next_free = le16_to_cpu(el->l_next_free_rec); 1736 1737 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1738 1739 if (next_free == 0) 1740 goto set_and_inc; 1741 1742 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1743 return; 1744 1745 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1746 "Asked to create an empty extent in a full list:\n" 1747 "count = %u, tree depth = %u", 1748 le16_to_cpu(el->l_count), 1749 le16_to_cpu(el->l_tree_depth)); 1750 1751 ocfs2_shift_records_right(el); 1752 1753 set_and_inc: 1754 le16_add_cpu(&el->l_next_free_rec, 1); 1755 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1756 } 1757 1758 /* 1759 * For a rotation which involves two leaf nodes, the "root node" is 1760 * the lowest level tree node which contains a path to both leafs. This 1761 * resulting set of information can be used to form a complete "subtree" 1762 * 1763 * This function is passed two full paths from the dinode down to a 1764 * pair of adjacent leaves. It's task is to figure out which path 1765 * index contains the subtree root - this can be the root index itself 1766 * in a worst-case rotation. 1767 * 1768 * The array index of the subtree root is passed back. 1769 */ 1770 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 1771 struct ocfs2_path *left, 1772 struct ocfs2_path *right) 1773 { 1774 int i = 0; 1775 1776 /* 1777 * Check that the caller passed in two paths from the same tree. 1778 */ 1779 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1780 1781 do { 1782 i++; 1783 1784 /* 1785 * The caller didn't pass two adjacent paths. 1786 */ 1787 mlog_bug_on_msg(i > left->p_tree_depth, 1788 "Owner %llu, left depth %u, right depth %u\n" 1789 "left leaf blk %llu, right leaf blk %llu\n", 1790 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 1791 left->p_tree_depth, right->p_tree_depth, 1792 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1793 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1794 } while (left->p_node[i].bh->b_blocknr == 1795 right->p_node[i].bh->b_blocknr); 1796 1797 return i - 1; 1798 } 1799 1800 typedef void (path_insert_t)(void *, struct buffer_head *); 1801 1802 /* 1803 * Traverse a btree path in search of cpos, starting at root_el. 1804 * 1805 * This code can be called with a cpos larger than the tree, in which 1806 * case it will return the rightmost path. 1807 */ 1808 static int __ocfs2_find_path(struct ocfs2_caching_info *ci, 1809 struct ocfs2_extent_list *root_el, u32 cpos, 1810 path_insert_t *func, void *data) 1811 { 1812 int i, ret = 0; 1813 u32 range; 1814 u64 blkno; 1815 struct buffer_head *bh = NULL; 1816 struct ocfs2_extent_block *eb; 1817 struct ocfs2_extent_list *el; 1818 struct ocfs2_extent_rec *rec; 1819 1820 el = root_el; 1821 while (el->l_tree_depth) { 1822 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1823 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1824 "Owner %llu has empty extent list at depth %u\n", 1825 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1826 le16_to_cpu(el->l_tree_depth)); 1827 ret = -EROFS; 1828 goto out; 1829 1830 } 1831 1832 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1833 rec = &el->l_recs[i]; 1834 1835 /* 1836 * In the case that cpos is off the allocation 1837 * tree, this should just wind up returning the 1838 * rightmost record. 1839 */ 1840 range = le32_to_cpu(rec->e_cpos) + 1841 ocfs2_rec_clusters(el, rec); 1842 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1843 break; 1844 } 1845 1846 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1847 if (blkno == 0) { 1848 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1849 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n", 1850 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1851 le16_to_cpu(el->l_tree_depth), i); 1852 ret = -EROFS; 1853 goto out; 1854 } 1855 1856 brelse(bh); 1857 bh = NULL; 1858 ret = ocfs2_read_extent_block(ci, blkno, &bh); 1859 if (ret) { 1860 mlog_errno(ret); 1861 goto out; 1862 } 1863 1864 eb = (struct ocfs2_extent_block *) bh->b_data; 1865 el = &eb->h_list; 1866 1867 if (le16_to_cpu(el->l_next_free_rec) > 1868 le16_to_cpu(el->l_count)) { 1869 ocfs2_error(ocfs2_metadata_cache_get_super(ci), 1870 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n", 1871 (unsigned long long)ocfs2_metadata_cache_owner(ci), 1872 (unsigned long long)bh->b_blocknr, 1873 le16_to_cpu(el->l_next_free_rec), 1874 le16_to_cpu(el->l_count)); 1875 ret = -EROFS; 1876 goto out; 1877 } 1878 1879 if (func) 1880 func(data, bh); 1881 } 1882 1883 out: 1884 /* 1885 * Catch any trailing bh that the loop didn't handle. 1886 */ 1887 brelse(bh); 1888 1889 return ret; 1890 } 1891 1892 /* 1893 * Given an initialized path (that is, it has a valid root extent 1894 * list), this function will traverse the btree in search of the path 1895 * which would contain cpos. 1896 * 1897 * The path traveled is recorded in the path structure. 1898 * 1899 * Note that this will not do any comparisons on leaf node extent 1900 * records, so it will work fine in the case that we just added a tree 1901 * branch. 1902 */ 1903 struct find_path_data { 1904 int index; 1905 struct ocfs2_path *path; 1906 }; 1907 static void find_path_ins(void *data, struct buffer_head *bh) 1908 { 1909 struct find_path_data *fp = data; 1910 1911 get_bh(bh); 1912 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1913 fp->index++; 1914 } 1915 int ocfs2_find_path(struct ocfs2_caching_info *ci, 1916 struct ocfs2_path *path, u32 cpos) 1917 { 1918 struct find_path_data data; 1919 1920 data.index = 1; 1921 data.path = path; 1922 return __ocfs2_find_path(ci, path_root_el(path), cpos, 1923 find_path_ins, &data); 1924 } 1925 1926 static void find_leaf_ins(void *data, struct buffer_head *bh) 1927 { 1928 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1929 struct ocfs2_extent_list *el = &eb->h_list; 1930 struct buffer_head **ret = data; 1931 1932 /* We want to retain only the leaf block. */ 1933 if (le16_to_cpu(el->l_tree_depth) == 0) { 1934 get_bh(bh); 1935 *ret = bh; 1936 } 1937 } 1938 /* 1939 * Find the leaf block in the tree which would contain cpos. No 1940 * checking of the actual leaf is done. 1941 * 1942 * Some paths want to call this instead of allocating a path structure 1943 * and calling ocfs2_find_path(). 1944 * 1945 * This function doesn't handle non btree extent lists. 1946 */ 1947 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 1948 struct ocfs2_extent_list *root_el, u32 cpos, 1949 struct buffer_head **leaf_bh) 1950 { 1951 int ret; 1952 struct buffer_head *bh = NULL; 1953 1954 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh); 1955 if (ret) { 1956 mlog_errno(ret); 1957 goto out; 1958 } 1959 1960 *leaf_bh = bh; 1961 out: 1962 return ret; 1963 } 1964 1965 /* 1966 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1967 * 1968 * Basically, we've moved stuff around at the bottom of the tree and 1969 * we need to fix up the extent records above the changes to reflect 1970 * the new changes. 1971 * 1972 * left_rec: the record on the left. 1973 * right_rec: the record to the right of left_rec 1974 * right_child_el: is the child list pointed to by right_rec 1975 * 1976 * By definition, this only works on interior nodes. 1977 */ 1978 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1979 struct ocfs2_extent_rec *right_rec, 1980 struct ocfs2_extent_list *right_child_el) 1981 { 1982 u32 left_clusters, right_end; 1983 1984 /* 1985 * Interior nodes never have holes. Their cpos is the cpos of 1986 * the leftmost record in their child list. Their cluster 1987 * count covers the full theoretical range of their child list 1988 * - the range between their cpos and the cpos of the record 1989 * immediately to their right. 1990 */ 1991 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1992 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) { 1993 BUG_ON(right_child_el->l_tree_depth); 1994 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1995 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1996 } 1997 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1998 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1999 2000 /* 2001 * Calculate the rightmost cluster count boundary before 2002 * moving cpos - we will need to adjust clusters after 2003 * updating e_cpos to keep the same highest cluster count. 2004 */ 2005 right_end = le32_to_cpu(right_rec->e_cpos); 2006 right_end += le32_to_cpu(right_rec->e_int_clusters); 2007 2008 right_rec->e_cpos = left_rec->e_cpos; 2009 le32_add_cpu(&right_rec->e_cpos, left_clusters); 2010 2011 right_end -= le32_to_cpu(right_rec->e_cpos); 2012 right_rec->e_int_clusters = cpu_to_le32(right_end); 2013 } 2014 2015 /* 2016 * Adjust the adjacent root node records involved in a 2017 * rotation. left_el_blkno is passed in as a key so that we can easily 2018 * find it's index in the root list. 2019 */ 2020 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 2021 struct ocfs2_extent_list *left_el, 2022 struct ocfs2_extent_list *right_el, 2023 u64 left_el_blkno) 2024 { 2025 int i; 2026 2027 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 2028 le16_to_cpu(left_el->l_tree_depth)); 2029 2030 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 2031 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 2032 break; 2033 } 2034 2035 /* 2036 * The path walking code should have never returned a root and 2037 * two paths which are not adjacent. 2038 */ 2039 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 2040 2041 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], 2042 &root_el->l_recs[i + 1], right_el); 2043 } 2044 2045 /* 2046 * We've changed a leaf block (in right_path) and need to reflect that 2047 * change back up the subtree. 2048 * 2049 * This happens in multiple places: 2050 * - When we've moved an extent record from the left path leaf to the right 2051 * path leaf to make room for an empty extent in the left path leaf. 2052 * - When our insert into the right path leaf is at the leftmost edge 2053 * and requires an update of the path immediately to it's left. This 2054 * can occur at the end of some types of rotation and appending inserts. 2055 * - When we've adjusted the last extent record in the left path leaf and the 2056 * 1st extent record in the right path leaf during cross extent block merge. 2057 */ 2058 static void ocfs2_complete_edge_insert(handle_t *handle, 2059 struct ocfs2_path *left_path, 2060 struct ocfs2_path *right_path, 2061 int subtree_index) 2062 { 2063 int i, idx; 2064 struct ocfs2_extent_list *el, *left_el, *right_el; 2065 struct ocfs2_extent_rec *left_rec, *right_rec; 2066 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2067 2068 /* 2069 * Update the counts and position values within all the 2070 * interior nodes to reflect the leaf rotation we just did. 2071 * 2072 * The root node is handled below the loop. 2073 * 2074 * We begin the loop with right_el and left_el pointing to the 2075 * leaf lists and work our way up. 2076 * 2077 * NOTE: within this loop, left_el and right_el always refer 2078 * to the *child* lists. 2079 */ 2080 left_el = path_leaf_el(left_path); 2081 right_el = path_leaf_el(right_path); 2082 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2083 trace_ocfs2_complete_edge_insert(i); 2084 2085 /* 2086 * One nice property of knowing that all of these 2087 * nodes are below the root is that we only deal with 2088 * the leftmost right node record and the rightmost 2089 * left node record. 2090 */ 2091 el = left_path->p_node[i].el; 2092 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2093 left_rec = &el->l_recs[idx]; 2094 2095 el = right_path->p_node[i].el; 2096 right_rec = &el->l_recs[0]; 2097 2098 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el); 2099 2100 ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2101 ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2102 2103 /* 2104 * Setup our list pointers now so that the current 2105 * parents become children in the next iteration. 2106 */ 2107 left_el = left_path->p_node[i].el; 2108 right_el = right_path->p_node[i].el; 2109 } 2110 2111 /* 2112 * At the root node, adjust the two adjacent records which 2113 * begin our path to the leaves. 2114 */ 2115 2116 el = left_path->p_node[subtree_index].el; 2117 left_el = left_path->p_node[subtree_index + 1].el; 2118 right_el = right_path->p_node[subtree_index + 1].el; 2119 2120 ocfs2_adjust_root_records(el, left_el, right_el, 2121 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2122 2123 root_bh = left_path->p_node[subtree_index].bh; 2124 2125 ocfs2_journal_dirty(handle, root_bh); 2126 } 2127 2128 static int ocfs2_rotate_subtree_right(handle_t *handle, 2129 struct ocfs2_extent_tree *et, 2130 struct ocfs2_path *left_path, 2131 struct ocfs2_path *right_path, 2132 int subtree_index) 2133 { 2134 int ret, i; 2135 struct buffer_head *right_leaf_bh; 2136 struct buffer_head *left_leaf_bh = NULL; 2137 struct buffer_head *root_bh; 2138 struct ocfs2_extent_list *right_el, *left_el; 2139 struct ocfs2_extent_rec move_rec; 2140 2141 left_leaf_bh = path_leaf_bh(left_path); 2142 left_el = path_leaf_el(left_path); 2143 2144 if (left_el->l_next_free_rec != left_el->l_count) { 2145 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 2146 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n", 2147 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2148 (unsigned long long)left_leaf_bh->b_blocknr, 2149 le16_to_cpu(left_el->l_next_free_rec)); 2150 return -EROFS; 2151 } 2152 2153 /* 2154 * This extent block may already have an empty record, so we 2155 * return early if so. 2156 */ 2157 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2158 return 0; 2159 2160 root_bh = left_path->p_node[subtree_index].bh; 2161 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2162 2163 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2164 subtree_index); 2165 if (ret) { 2166 mlog_errno(ret); 2167 goto out; 2168 } 2169 2170 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2171 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2172 right_path, i); 2173 if (ret) { 2174 mlog_errno(ret); 2175 goto out; 2176 } 2177 2178 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2179 left_path, i); 2180 if (ret) { 2181 mlog_errno(ret); 2182 goto out; 2183 } 2184 } 2185 2186 right_leaf_bh = path_leaf_bh(right_path); 2187 right_el = path_leaf_el(right_path); 2188 2189 /* This is a code error, not a disk corruption. */ 2190 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2191 "because rightmost leaf block %llu is empty\n", 2192 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2193 (unsigned long long)right_leaf_bh->b_blocknr); 2194 2195 ocfs2_create_empty_extent(right_el); 2196 2197 ocfs2_journal_dirty(handle, right_leaf_bh); 2198 2199 /* Do the copy now. */ 2200 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2201 move_rec = left_el->l_recs[i]; 2202 right_el->l_recs[0] = move_rec; 2203 2204 /* 2205 * Clear out the record we just copied and shift everything 2206 * over, leaving an empty extent in the left leaf. 2207 * 2208 * We temporarily subtract from next_free_rec so that the 2209 * shift will lose the tail record (which is now defunct). 2210 */ 2211 le16_add_cpu(&left_el->l_next_free_rec, -1); 2212 ocfs2_shift_records_right(left_el); 2213 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2214 le16_add_cpu(&left_el->l_next_free_rec, 1); 2215 2216 ocfs2_journal_dirty(handle, left_leaf_bh); 2217 2218 ocfs2_complete_edge_insert(handle, left_path, right_path, 2219 subtree_index); 2220 2221 out: 2222 return ret; 2223 } 2224 2225 /* 2226 * Given a full path, determine what cpos value would return us a path 2227 * containing the leaf immediately to the left of the current one. 2228 * 2229 * Will return zero if the path passed in is already the leftmost path. 2230 */ 2231 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2232 struct ocfs2_path *path, u32 *cpos) 2233 { 2234 int i, j, ret = 0; 2235 u64 blkno; 2236 struct ocfs2_extent_list *el; 2237 2238 BUG_ON(path->p_tree_depth == 0); 2239 2240 *cpos = 0; 2241 2242 blkno = path_leaf_bh(path)->b_blocknr; 2243 2244 /* Start at the tree node just above the leaf and work our way up. */ 2245 i = path->p_tree_depth - 1; 2246 while (i >= 0) { 2247 el = path->p_node[i].el; 2248 2249 /* 2250 * Find the extent record just before the one in our 2251 * path. 2252 */ 2253 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2254 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2255 if (j == 0) { 2256 if (i == 0) { 2257 /* 2258 * We've determined that the 2259 * path specified is already 2260 * the leftmost one - return a 2261 * cpos of zero. 2262 */ 2263 goto out; 2264 } 2265 /* 2266 * The leftmost record points to our 2267 * leaf - we need to travel up the 2268 * tree one level. 2269 */ 2270 goto next_node; 2271 } 2272 2273 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2274 *cpos = *cpos + ocfs2_rec_clusters(el, 2275 &el->l_recs[j - 1]); 2276 *cpos = *cpos - 1; 2277 goto out; 2278 } 2279 } 2280 2281 /* 2282 * If we got here, we never found a valid node where 2283 * the tree indicated one should be. 2284 */ 2285 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2286 (unsigned long long)blkno); 2287 ret = -EROFS; 2288 goto out; 2289 2290 next_node: 2291 blkno = path->p_node[i].bh->b_blocknr; 2292 i--; 2293 } 2294 2295 out: 2296 return ret; 2297 } 2298 2299 /* 2300 * Extend the transaction by enough credits to complete the rotation, 2301 * and still leave at least the original number of credits allocated 2302 * to this transaction. 2303 */ 2304 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2305 int op_credits, 2306 struct ocfs2_path *path) 2307 { 2308 int ret = 0; 2309 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2310 2311 if (handle->h_buffer_credits < credits) 2312 ret = ocfs2_extend_trans(handle, 2313 credits - handle->h_buffer_credits); 2314 2315 return ret; 2316 } 2317 2318 /* 2319 * Trap the case where we're inserting into the theoretical range past 2320 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2321 * whose cpos is less than ours into the right leaf. 2322 * 2323 * It's only necessary to look at the rightmost record of the left 2324 * leaf because the logic that calls us should ensure that the 2325 * theoretical ranges in the path components above the leaves are 2326 * correct. 2327 */ 2328 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2329 u32 insert_cpos) 2330 { 2331 struct ocfs2_extent_list *left_el; 2332 struct ocfs2_extent_rec *rec; 2333 int next_free; 2334 2335 left_el = path_leaf_el(left_path); 2336 next_free = le16_to_cpu(left_el->l_next_free_rec); 2337 rec = &left_el->l_recs[next_free - 1]; 2338 2339 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2340 return 1; 2341 return 0; 2342 } 2343 2344 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2345 { 2346 int next_free = le16_to_cpu(el->l_next_free_rec); 2347 unsigned int range; 2348 struct ocfs2_extent_rec *rec; 2349 2350 if (next_free == 0) 2351 return 0; 2352 2353 rec = &el->l_recs[0]; 2354 if (ocfs2_is_empty_extent(rec)) { 2355 /* Empty list. */ 2356 if (next_free == 1) 2357 return 0; 2358 rec = &el->l_recs[1]; 2359 } 2360 2361 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2362 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2363 return 1; 2364 return 0; 2365 } 2366 2367 /* 2368 * Rotate all the records in a btree right one record, starting at insert_cpos. 2369 * 2370 * The path to the rightmost leaf should be passed in. 2371 * 2372 * The array is assumed to be large enough to hold an entire path (tree depth). 2373 * 2374 * Upon successful return from this function: 2375 * 2376 * - The 'right_path' array will contain a path to the leaf block 2377 * whose range contains e_cpos. 2378 * - That leaf block will have a single empty extent in list index 0. 2379 * - In the case that the rotation requires a post-insert update, 2380 * *ret_left_path will contain a valid path which can be passed to 2381 * ocfs2_insert_path(). 2382 */ 2383 static int ocfs2_rotate_tree_right(handle_t *handle, 2384 struct ocfs2_extent_tree *et, 2385 enum ocfs2_split_type split, 2386 u32 insert_cpos, 2387 struct ocfs2_path *right_path, 2388 struct ocfs2_path **ret_left_path) 2389 { 2390 int ret, start, orig_credits = handle->h_buffer_credits; 2391 u32 cpos; 2392 struct ocfs2_path *left_path = NULL; 2393 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2394 2395 *ret_left_path = NULL; 2396 2397 left_path = ocfs2_new_path_from_path(right_path); 2398 if (!left_path) { 2399 ret = -ENOMEM; 2400 mlog_errno(ret); 2401 goto out; 2402 } 2403 2404 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2405 if (ret) { 2406 mlog_errno(ret); 2407 goto out; 2408 } 2409 2410 trace_ocfs2_rotate_tree_right( 2411 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2412 insert_cpos, cpos); 2413 2414 /* 2415 * What we want to do here is: 2416 * 2417 * 1) Start with the rightmost path. 2418 * 2419 * 2) Determine a path to the leaf block directly to the left 2420 * of that leaf. 2421 * 2422 * 3) Determine the 'subtree root' - the lowest level tree node 2423 * which contains a path to both leaves. 2424 * 2425 * 4) Rotate the subtree. 2426 * 2427 * 5) Find the next subtree by considering the left path to be 2428 * the new right path. 2429 * 2430 * The check at the top of this while loop also accepts 2431 * insert_cpos == cpos because cpos is only a _theoretical_ 2432 * value to get us the left path - insert_cpos might very well 2433 * be filling that hole. 2434 * 2435 * Stop at a cpos of '0' because we either started at the 2436 * leftmost branch (i.e., a tree with one branch and a 2437 * rotation inside of it), or we've gone as far as we can in 2438 * rotating subtrees. 2439 */ 2440 while (cpos && insert_cpos <= cpos) { 2441 trace_ocfs2_rotate_tree_right( 2442 (unsigned long long) 2443 ocfs2_metadata_cache_owner(et->et_ci), 2444 insert_cpos, cpos); 2445 2446 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 2447 if (ret) { 2448 mlog_errno(ret); 2449 goto out; 2450 } 2451 2452 mlog_bug_on_msg(path_leaf_bh(left_path) == 2453 path_leaf_bh(right_path), 2454 "Owner %llu: error during insert of %u " 2455 "(left path cpos %u) results in two identical " 2456 "paths ending at %llu\n", 2457 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2458 insert_cpos, cpos, 2459 (unsigned long long) 2460 path_leaf_bh(left_path)->b_blocknr); 2461 2462 if (split == SPLIT_NONE && 2463 ocfs2_rotate_requires_path_adjustment(left_path, 2464 insert_cpos)) { 2465 2466 /* 2467 * We've rotated the tree as much as we 2468 * should. The rest is up to 2469 * ocfs2_insert_path() to complete, after the 2470 * record insertion. We indicate this 2471 * situation by returning the left path. 2472 * 2473 * The reason we don't adjust the records here 2474 * before the record insert is that an error 2475 * later might break the rule where a parent 2476 * record e_cpos will reflect the actual 2477 * e_cpos of the 1st nonempty record of the 2478 * child list. 2479 */ 2480 *ret_left_path = left_path; 2481 goto out_ret_path; 2482 } 2483 2484 start = ocfs2_find_subtree_root(et, left_path, right_path); 2485 2486 trace_ocfs2_rotate_subtree(start, 2487 (unsigned long long) 2488 right_path->p_node[start].bh->b_blocknr, 2489 right_path->p_tree_depth); 2490 2491 ret = ocfs2_extend_rotate_transaction(handle, start, 2492 orig_credits, right_path); 2493 if (ret) { 2494 mlog_errno(ret); 2495 goto out; 2496 } 2497 2498 ret = ocfs2_rotate_subtree_right(handle, et, left_path, 2499 right_path, start); 2500 if (ret) { 2501 mlog_errno(ret); 2502 goto out; 2503 } 2504 2505 if (split != SPLIT_NONE && 2506 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2507 insert_cpos)) { 2508 /* 2509 * A rotate moves the rightmost left leaf 2510 * record over to the leftmost right leaf 2511 * slot. If we're doing an extent split 2512 * instead of a real insert, then we have to 2513 * check that the extent to be split wasn't 2514 * just moved over. If it was, then we can 2515 * exit here, passing left_path back - 2516 * ocfs2_split_extent() is smart enough to 2517 * search both leaves. 2518 */ 2519 *ret_left_path = left_path; 2520 goto out_ret_path; 2521 } 2522 2523 /* 2524 * There is no need to re-read the next right path 2525 * as we know that it'll be our current left 2526 * path. Optimize by copying values instead. 2527 */ 2528 ocfs2_mv_path(right_path, left_path); 2529 2530 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos); 2531 if (ret) { 2532 mlog_errno(ret); 2533 goto out; 2534 } 2535 } 2536 2537 out: 2538 ocfs2_free_path(left_path); 2539 2540 out_ret_path: 2541 return ret; 2542 } 2543 2544 static int ocfs2_update_edge_lengths(handle_t *handle, 2545 struct ocfs2_extent_tree *et, 2546 struct ocfs2_path *path) 2547 { 2548 int i, idx, ret; 2549 struct ocfs2_extent_rec *rec; 2550 struct ocfs2_extent_list *el; 2551 struct ocfs2_extent_block *eb; 2552 u32 range; 2553 2554 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 2555 if (ret) { 2556 mlog_errno(ret); 2557 goto out; 2558 } 2559 2560 /* Path should always be rightmost. */ 2561 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2562 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2563 2564 el = &eb->h_list; 2565 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2566 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2567 rec = &el->l_recs[idx]; 2568 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2569 2570 for (i = 0; i < path->p_tree_depth; i++) { 2571 el = path->p_node[i].el; 2572 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2573 rec = &el->l_recs[idx]; 2574 2575 rec->e_int_clusters = cpu_to_le32(range); 2576 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2577 2578 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2579 } 2580 out: 2581 return ret; 2582 } 2583 2584 static void ocfs2_unlink_path(handle_t *handle, 2585 struct ocfs2_extent_tree *et, 2586 struct ocfs2_cached_dealloc_ctxt *dealloc, 2587 struct ocfs2_path *path, int unlink_start) 2588 { 2589 int ret, i; 2590 struct ocfs2_extent_block *eb; 2591 struct ocfs2_extent_list *el; 2592 struct buffer_head *bh; 2593 2594 for(i = unlink_start; i < path_num_items(path); i++) { 2595 bh = path->p_node[i].bh; 2596 2597 eb = (struct ocfs2_extent_block *)bh->b_data; 2598 /* 2599 * Not all nodes might have had their final count 2600 * decremented by the caller - handle this here. 2601 */ 2602 el = &eb->h_list; 2603 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2604 mlog(ML_ERROR, 2605 "Inode %llu, attempted to remove extent block " 2606 "%llu with %u records\n", 2607 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 2608 (unsigned long long)le64_to_cpu(eb->h_blkno), 2609 le16_to_cpu(el->l_next_free_rec)); 2610 2611 ocfs2_journal_dirty(handle, bh); 2612 ocfs2_remove_from_cache(et->et_ci, bh); 2613 continue; 2614 } 2615 2616 el->l_next_free_rec = 0; 2617 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2618 2619 ocfs2_journal_dirty(handle, bh); 2620 2621 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2622 if (ret) 2623 mlog_errno(ret); 2624 2625 ocfs2_remove_from_cache(et->et_ci, bh); 2626 } 2627 } 2628 2629 static void ocfs2_unlink_subtree(handle_t *handle, 2630 struct ocfs2_extent_tree *et, 2631 struct ocfs2_path *left_path, 2632 struct ocfs2_path *right_path, 2633 int subtree_index, 2634 struct ocfs2_cached_dealloc_ctxt *dealloc) 2635 { 2636 int i; 2637 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2638 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2639 struct ocfs2_extent_block *eb; 2640 2641 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2642 2643 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2644 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2645 break; 2646 2647 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2648 2649 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2650 le16_add_cpu(&root_el->l_next_free_rec, -1); 2651 2652 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2653 eb->h_next_leaf_blk = 0; 2654 2655 ocfs2_journal_dirty(handle, root_bh); 2656 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2657 2658 ocfs2_unlink_path(handle, et, dealloc, right_path, 2659 subtree_index + 1); 2660 } 2661 2662 static int ocfs2_rotate_subtree_left(handle_t *handle, 2663 struct ocfs2_extent_tree *et, 2664 struct ocfs2_path *left_path, 2665 struct ocfs2_path *right_path, 2666 int subtree_index, 2667 struct ocfs2_cached_dealloc_ctxt *dealloc, 2668 int *deleted) 2669 { 2670 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2671 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2672 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2673 struct ocfs2_extent_block *eb; 2674 2675 *deleted = 0; 2676 2677 right_leaf_el = path_leaf_el(right_path); 2678 left_leaf_el = path_leaf_el(left_path); 2679 root_bh = left_path->p_node[subtree_index].bh; 2680 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2681 2682 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2683 return 0; 2684 2685 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2686 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2687 /* 2688 * It's legal for us to proceed if the right leaf is 2689 * the rightmost one and it has an empty extent. There 2690 * are two cases to handle - whether the leaf will be 2691 * empty after removal or not. If the leaf isn't empty 2692 * then just remove the empty extent up front. The 2693 * next block will handle empty leaves by flagging 2694 * them for unlink. 2695 * 2696 * Non rightmost leaves will throw -EAGAIN and the 2697 * caller can manually move the subtree and retry. 2698 */ 2699 2700 if (eb->h_next_leaf_blk != 0ULL) 2701 return -EAGAIN; 2702 2703 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2704 ret = ocfs2_journal_access_eb(handle, et->et_ci, 2705 path_leaf_bh(right_path), 2706 OCFS2_JOURNAL_ACCESS_WRITE); 2707 if (ret) { 2708 mlog_errno(ret); 2709 goto out; 2710 } 2711 2712 ocfs2_remove_empty_extent(right_leaf_el); 2713 } else 2714 right_has_empty = 1; 2715 } 2716 2717 if (eb->h_next_leaf_blk == 0ULL && 2718 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2719 /* 2720 * We have to update i_last_eb_blk during the meta 2721 * data delete. 2722 */ 2723 ret = ocfs2_et_root_journal_access(handle, et, 2724 OCFS2_JOURNAL_ACCESS_WRITE); 2725 if (ret) { 2726 mlog_errno(ret); 2727 goto out; 2728 } 2729 2730 del_right_subtree = 1; 2731 } 2732 2733 /* 2734 * Getting here with an empty extent in the right path implies 2735 * that it's the rightmost path and will be deleted. 2736 */ 2737 BUG_ON(right_has_empty && !del_right_subtree); 2738 2739 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 2740 subtree_index); 2741 if (ret) { 2742 mlog_errno(ret); 2743 goto out; 2744 } 2745 2746 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2748 right_path, i); 2749 if (ret) { 2750 mlog_errno(ret); 2751 goto out; 2752 } 2753 2754 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2755 left_path, i); 2756 if (ret) { 2757 mlog_errno(ret); 2758 goto out; 2759 } 2760 } 2761 2762 if (!right_has_empty) { 2763 /* 2764 * Only do this if we're moving a real 2765 * record. Otherwise, the action is delayed until 2766 * after removal of the right path in which case we 2767 * can do a simple shift to remove the empty extent. 2768 */ 2769 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2770 memset(&right_leaf_el->l_recs[0], 0, 2771 sizeof(struct ocfs2_extent_rec)); 2772 } 2773 if (eb->h_next_leaf_blk == 0ULL) { 2774 /* 2775 * Move recs over to get rid of empty extent, decrease 2776 * next_free. This is allowed to remove the last 2777 * extent in our leaf (setting l_next_free_rec to 2778 * zero) - the delete code below won't care. 2779 */ 2780 ocfs2_remove_empty_extent(right_leaf_el); 2781 } 2782 2783 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2784 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2785 2786 if (del_right_subtree) { 2787 ocfs2_unlink_subtree(handle, et, left_path, right_path, 2788 subtree_index, dealloc); 2789 ret = ocfs2_update_edge_lengths(handle, et, left_path); 2790 if (ret) { 2791 mlog_errno(ret); 2792 goto out; 2793 } 2794 2795 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2796 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2797 2798 /* 2799 * Removal of the extent in the left leaf was skipped 2800 * above so we could delete the right path 2801 * 1st. 2802 */ 2803 if (right_has_empty) 2804 ocfs2_remove_empty_extent(left_leaf_el); 2805 2806 ocfs2_journal_dirty(handle, et_root_bh); 2807 2808 *deleted = 1; 2809 } else 2810 ocfs2_complete_edge_insert(handle, left_path, right_path, 2811 subtree_index); 2812 2813 out: 2814 return ret; 2815 } 2816 2817 /* 2818 * Given a full path, determine what cpos value would return us a path 2819 * containing the leaf immediately to the right of the current one. 2820 * 2821 * Will return zero if the path passed in is already the rightmost path. 2822 * 2823 * This looks similar, but is subtly different to 2824 * ocfs2_find_cpos_for_left_leaf(). 2825 */ 2826 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2827 struct ocfs2_path *path, u32 *cpos) 2828 { 2829 int i, j, ret = 0; 2830 u64 blkno; 2831 struct ocfs2_extent_list *el; 2832 2833 *cpos = 0; 2834 2835 if (path->p_tree_depth == 0) 2836 return 0; 2837 2838 blkno = path_leaf_bh(path)->b_blocknr; 2839 2840 /* Start at the tree node just above the leaf and work our way up. */ 2841 i = path->p_tree_depth - 1; 2842 while (i >= 0) { 2843 int next_free; 2844 2845 el = path->p_node[i].el; 2846 2847 /* 2848 * Find the extent record just after the one in our 2849 * path. 2850 */ 2851 next_free = le16_to_cpu(el->l_next_free_rec); 2852 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2853 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2854 if (j == (next_free - 1)) { 2855 if (i == 0) { 2856 /* 2857 * We've determined that the 2858 * path specified is already 2859 * the rightmost one - return a 2860 * cpos of zero. 2861 */ 2862 goto out; 2863 } 2864 /* 2865 * The rightmost record points to our 2866 * leaf - we need to travel up the 2867 * tree one level. 2868 */ 2869 goto next_node; 2870 } 2871 2872 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2873 goto out; 2874 } 2875 } 2876 2877 /* 2878 * If we got here, we never found a valid node where 2879 * the tree indicated one should be. 2880 */ 2881 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n", 2882 (unsigned long long)blkno); 2883 ret = -EROFS; 2884 goto out; 2885 2886 next_node: 2887 blkno = path->p_node[i].bh->b_blocknr; 2888 i--; 2889 } 2890 2891 out: 2892 return ret; 2893 } 2894 2895 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle, 2896 struct ocfs2_extent_tree *et, 2897 struct ocfs2_path *path) 2898 { 2899 int ret; 2900 struct buffer_head *bh = path_leaf_bh(path); 2901 struct ocfs2_extent_list *el = path_leaf_el(path); 2902 2903 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2904 return 0; 2905 2906 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 2907 path_num_items(path) - 1); 2908 if (ret) { 2909 mlog_errno(ret); 2910 goto out; 2911 } 2912 2913 ocfs2_remove_empty_extent(el); 2914 ocfs2_journal_dirty(handle, bh); 2915 2916 out: 2917 return ret; 2918 } 2919 2920 static int __ocfs2_rotate_tree_left(handle_t *handle, 2921 struct ocfs2_extent_tree *et, 2922 int orig_credits, 2923 struct ocfs2_path *path, 2924 struct ocfs2_cached_dealloc_ctxt *dealloc, 2925 struct ocfs2_path **empty_extent_path) 2926 { 2927 int ret, subtree_root, deleted; 2928 u32 right_cpos; 2929 struct ocfs2_path *left_path = NULL; 2930 struct ocfs2_path *right_path = NULL; 2931 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 2932 2933 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))) 2934 return 0; 2935 2936 *empty_extent_path = NULL; 2937 2938 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 2939 if (ret) { 2940 mlog_errno(ret); 2941 goto out; 2942 } 2943 2944 left_path = ocfs2_new_path_from_path(path); 2945 if (!left_path) { 2946 ret = -ENOMEM; 2947 mlog_errno(ret); 2948 goto out; 2949 } 2950 2951 ocfs2_cp_path(left_path, path); 2952 2953 right_path = ocfs2_new_path_from_path(path); 2954 if (!right_path) { 2955 ret = -ENOMEM; 2956 mlog_errno(ret); 2957 goto out; 2958 } 2959 2960 while (right_cpos) { 2961 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 2962 if (ret) { 2963 mlog_errno(ret); 2964 goto out; 2965 } 2966 2967 subtree_root = ocfs2_find_subtree_root(et, left_path, 2968 right_path); 2969 2970 trace_ocfs2_rotate_subtree(subtree_root, 2971 (unsigned long long) 2972 right_path->p_node[subtree_root].bh->b_blocknr, 2973 right_path->p_tree_depth); 2974 2975 ret = ocfs2_extend_rotate_transaction(handle, 0, 2976 orig_credits, left_path); 2977 if (ret) { 2978 mlog_errno(ret); 2979 goto out; 2980 } 2981 2982 /* 2983 * Caller might still want to make changes to the 2984 * tree root, so re-add it to the journal here. 2985 */ 2986 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 2987 left_path, 0); 2988 if (ret) { 2989 mlog_errno(ret); 2990 goto out; 2991 } 2992 2993 ret = ocfs2_rotate_subtree_left(handle, et, left_path, 2994 right_path, subtree_root, 2995 dealloc, &deleted); 2996 if (ret == -EAGAIN) { 2997 /* 2998 * The rotation has to temporarily stop due to 2999 * the right subtree having an empty 3000 * extent. Pass it back to the caller for a 3001 * fixup. 3002 */ 3003 *empty_extent_path = right_path; 3004 right_path = NULL; 3005 goto out; 3006 } 3007 if (ret) { 3008 mlog_errno(ret); 3009 goto out; 3010 } 3011 3012 /* 3013 * The subtree rotate might have removed records on 3014 * the rightmost edge. If so, then rotation is 3015 * complete. 3016 */ 3017 if (deleted) 3018 break; 3019 3020 ocfs2_mv_path(left_path, right_path); 3021 3022 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path, 3023 &right_cpos); 3024 if (ret) { 3025 mlog_errno(ret); 3026 goto out; 3027 } 3028 } 3029 3030 out: 3031 ocfs2_free_path(right_path); 3032 ocfs2_free_path(left_path); 3033 3034 return ret; 3035 } 3036 3037 static int ocfs2_remove_rightmost_path(handle_t *handle, 3038 struct ocfs2_extent_tree *et, 3039 struct ocfs2_path *path, 3040 struct ocfs2_cached_dealloc_ctxt *dealloc) 3041 { 3042 int ret, subtree_index; 3043 u32 cpos; 3044 struct ocfs2_path *left_path = NULL; 3045 struct ocfs2_extent_block *eb; 3046 struct ocfs2_extent_list *el; 3047 3048 ret = ocfs2_et_sanity_check(et); 3049 if (ret) 3050 goto out; 3051 3052 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 3053 if (ret) { 3054 mlog_errno(ret); 3055 goto out; 3056 } 3057 3058 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3059 path, &cpos); 3060 if (ret) { 3061 mlog_errno(ret); 3062 goto out; 3063 } 3064 3065 if (cpos) { 3066 /* 3067 * We have a path to the left of this one - it needs 3068 * an update too. 3069 */ 3070 left_path = ocfs2_new_path_from_path(path); 3071 if (!left_path) { 3072 ret = -ENOMEM; 3073 mlog_errno(ret); 3074 goto out; 3075 } 3076 3077 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 3078 if (ret) { 3079 mlog_errno(ret); 3080 goto out; 3081 } 3082 3083 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 3084 if (ret) { 3085 mlog_errno(ret); 3086 goto out; 3087 } 3088 3089 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 3090 3091 ocfs2_unlink_subtree(handle, et, left_path, path, 3092 subtree_index, dealloc); 3093 ret = ocfs2_update_edge_lengths(handle, et, left_path); 3094 if (ret) { 3095 mlog_errno(ret); 3096 goto out; 3097 } 3098 3099 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3100 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3101 } else { 3102 /* 3103 * 'path' is also the leftmost path which 3104 * means it must be the only one. This gets 3105 * handled differently because we want to 3106 * revert the root back to having extents 3107 * in-line. 3108 */ 3109 ocfs2_unlink_path(handle, et, dealloc, path, 1); 3110 3111 el = et->et_root_el; 3112 el->l_tree_depth = 0; 3113 el->l_next_free_rec = 0; 3114 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3115 3116 ocfs2_et_set_last_eb_blk(et, 0); 3117 } 3118 3119 ocfs2_journal_dirty(handle, path_root_bh(path)); 3120 3121 out: 3122 ocfs2_free_path(left_path); 3123 return ret; 3124 } 3125 3126 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb, 3127 struct ocfs2_extent_tree *et, 3128 struct ocfs2_path *path, 3129 struct ocfs2_cached_dealloc_ctxt *dealloc) 3130 { 3131 handle_t *handle; 3132 int ret; 3133 int credits = path->p_tree_depth * 2 + 1; 3134 3135 handle = ocfs2_start_trans(osb, credits); 3136 if (IS_ERR(handle)) { 3137 ret = PTR_ERR(handle); 3138 mlog_errno(ret); 3139 return ret; 3140 } 3141 3142 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc); 3143 if (ret) 3144 mlog_errno(ret); 3145 3146 ocfs2_commit_trans(osb, handle); 3147 return ret; 3148 } 3149 3150 /* 3151 * Left rotation of btree records. 3152 * 3153 * In many ways, this is (unsurprisingly) the opposite of right 3154 * rotation. We start at some non-rightmost path containing an empty 3155 * extent in the leaf block. The code works its way to the rightmost 3156 * path by rotating records to the left in every subtree. 3157 * 3158 * This is used by any code which reduces the number of extent records 3159 * in a leaf. After removal, an empty record should be placed in the 3160 * leftmost list position. 3161 * 3162 * This won't handle a length update of the rightmost path records if 3163 * the rightmost tree leaf record is removed so the caller is 3164 * responsible for detecting and correcting that. 3165 */ 3166 static int ocfs2_rotate_tree_left(handle_t *handle, 3167 struct ocfs2_extent_tree *et, 3168 struct ocfs2_path *path, 3169 struct ocfs2_cached_dealloc_ctxt *dealloc) 3170 { 3171 int ret, orig_credits = handle->h_buffer_credits; 3172 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3173 struct ocfs2_extent_block *eb; 3174 struct ocfs2_extent_list *el; 3175 3176 el = path_leaf_el(path); 3177 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3178 return 0; 3179 3180 if (path->p_tree_depth == 0) { 3181 rightmost_no_delete: 3182 /* 3183 * Inline extents. This is trivially handled, so do 3184 * it up front. 3185 */ 3186 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path); 3187 if (ret) 3188 mlog_errno(ret); 3189 goto out; 3190 } 3191 3192 /* 3193 * Handle rightmost branch now. There's several cases: 3194 * 1) simple rotation leaving records in there. That's trivial. 3195 * 2) rotation requiring a branch delete - there's no more 3196 * records left. Two cases of this: 3197 * a) There are branches to the left. 3198 * b) This is also the leftmost (the only) branch. 3199 * 3200 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3201 * 2a) we need the left branch so that we can update it with the unlink 3202 * 2b) we need to bring the root back to inline extents. 3203 */ 3204 3205 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3206 el = &eb->h_list; 3207 if (eb->h_next_leaf_blk == 0) { 3208 /* 3209 * This gets a bit tricky if we're going to delete the 3210 * rightmost path. Get the other cases out of the way 3211 * 1st. 3212 */ 3213 if (le16_to_cpu(el->l_next_free_rec) > 1) 3214 goto rightmost_no_delete; 3215 3216 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3217 ret = -EIO; 3218 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3219 "Owner %llu has empty extent block at %llu\n", 3220 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 3221 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3222 goto out; 3223 } 3224 3225 /* 3226 * XXX: The caller can not trust "path" any more after 3227 * this as it will have been deleted. What do we do? 3228 * 3229 * In theory the rotate-for-merge code will never get 3230 * here because it'll always ask for a rotate in a 3231 * nonempty list. 3232 */ 3233 3234 ret = ocfs2_remove_rightmost_path(handle, et, path, 3235 dealloc); 3236 if (ret) 3237 mlog_errno(ret); 3238 goto out; 3239 } 3240 3241 /* 3242 * Now we can loop, remembering the path we get from -EAGAIN 3243 * and restarting from there. 3244 */ 3245 try_rotate: 3246 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path, 3247 dealloc, &restart_path); 3248 if (ret && ret != -EAGAIN) { 3249 mlog_errno(ret); 3250 goto out; 3251 } 3252 3253 while (ret == -EAGAIN) { 3254 tmp_path = restart_path; 3255 restart_path = NULL; 3256 3257 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, 3258 tmp_path, dealloc, 3259 &restart_path); 3260 if (ret && ret != -EAGAIN) { 3261 mlog_errno(ret); 3262 goto out; 3263 } 3264 3265 ocfs2_free_path(tmp_path); 3266 tmp_path = NULL; 3267 3268 if (ret == 0) 3269 goto try_rotate; 3270 } 3271 3272 out: 3273 ocfs2_free_path(tmp_path); 3274 ocfs2_free_path(restart_path); 3275 return ret; 3276 } 3277 3278 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3279 int index) 3280 { 3281 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3282 unsigned int size; 3283 3284 if (rec->e_leaf_clusters == 0) { 3285 /* 3286 * We consumed all of the merged-from record. An empty 3287 * extent cannot exist anywhere but the 1st array 3288 * position, so move things over if the merged-from 3289 * record doesn't occupy that position. 3290 * 3291 * This creates a new empty extent so the caller 3292 * should be smart enough to have removed any existing 3293 * ones. 3294 */ 3295 if (index > 0) { 3296 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3297 size = index * sizeof(struct ocfs2_extent_rec); 3298 memmove(&el->l_recs[1], &el->l_recs[0], size); 3299 } 3300 3301 /* 3302 * Always memset - the caller doesn't check whether it 3303 * created an empty extent, so there could be junk in 3304 * the other fields. 3305 */ 3306 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3307 } 3308 } 3309 3310 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et, 3311 struct ocfs2_path *left_path, 3312 struct ocfs2_path **ret_right_path) 3313 { 3314 int ret; 3315 u32 right_cpos; 3316 struct ocfs2_path *right_path = NULL; 3317 struct ocfs2_extent_list *left_el; 3318 3319 *ret_right_path = NULL; 3320 3321 /* This function shouldn't be called for non-trees. */ 3322 BUG_ON(left_path->p_tree_depth == 0); 3323 3324 left_el = path_leaf_el(left_path); 3325 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3326 3327 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3328 left_path, &right_cpos); 3329 if (ret) { 3330 mlog_errno(ret); 3331 goto out; 3332 } 3333 3334 /* This function shouldn't be called for the rightmost leaf. */ 3335 BUG_ON(right_cpos == 0); 3336 3337 right_path = ocfs2_new_path_from_path(left_path); 3338 if (!right_path) { 3339 ret = -ENOMEM; 3340 mlog_errno(ret); 3341 goto out; 3342 } 3343 3344 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos); 3345 if (ret) { 3346 mlog_errno(ret); 3347 goto out; 3348 } 3349 3350 *ret_right_path = right_path; 3351 out: 3352 if (ret) 3353 ocfs2_free_path(right_path); 3354 return ret; 3355 } 3356 3357 /* 3358 * Remove split_rec clusters from the record at index and merge them 3359 * onto the beginning of the record "next" to it. 3360 * For index < l_count - 1, the next means the extent rec at index + 1. 3361 * For index == l_count - 1, the "next" means the 1st extent rec of the 3362 * next extent block. 3363 */ 3364 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path, 3365 handle_t *handle, 3366 struct ocfs2_extent_tree *et, 3367 struct ocfs2_extent_rec *split_rec, 3368 int index) 3369 { 3370 int ret, next_free, i; 3371 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3372 struct ocfs2_extent_rec *left_rec; 3373 struct ocfs2_extent_rec *right_rec; 3374 struct ocfs2_extent_list *right_el; 3375 struct ocfs2_path *right_path = NULL; 3376 int subtree_index = 0; 3377 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3378 struct buffer_head *bh = path_leaf_bh(left_path); 3379 struct buffer_head *root_bh = NULL; 3380 3381 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3382 left_rec = &el->l_recs[index]; 3383 3384 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3385 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3386 /* we meet with a cross extent block merge. */ 3387 ret = ocfs2_get_right_path(et, left_path, &right_path); 3388 if (ret) { 3389 mlog_errno(ret); 3390 return ret; 3391 } 3392 3393 right_el = path_leaf_el(right_path); 3394 next_free = le16_to_cpu(right_el->l_next_free_rec); 3395 BUG_ON(next_free <= 0); 3396 right_rec = &right_el->l_recs[0]; 3397 if (ocfs2_is_empty_extent(right_rec)) { 3398 BUG_ON(next_free <= 1); 3399 right_rec = &right_el->l_recs[1]; 3400 } 3401 3402 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3403 le16_to_cpu(left_rec->e_leaf_clusters) != 3404 le32_to_cpu(right_rec->e_cpos)); 3405 3406 subtree_index = ocfs2_find_subtree_root(et, left_path, 3407 right_path); 3408 3409 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3410 handle->h_buffer_credits, 3411 right_path); 3412 if (ret) { 3413 mlog_errno(ret); 3414 goto out; 3415 } 3416 3417 root_bh = left_path->p_node[subtree_index].bh; 3418 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3419 3420 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3421 subtree_index); 3422 if (ret) { 3423 mlog_errno(ret); 3424 goto out; 3425 } 3426 3427 for (i = subtree_index + 1; 3428 i < path_num_items(right_path); i++) { 3429 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3430 right_path, i); 3431 if (ret) { 3432 mlog_errno(ret); 3433 goto out; 3434 } 3435 3436 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3437 left_path, i); 3438 if (ret) { 3439 mlog_errno(ret); 3440 goto out; 3441 } 3442 } 3443 3444 } else { 3445 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3446 right_rec = &el->l_recs[index + 1]; 3447 } 3448 3449 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path, 3450 path_num_items(left_path) - 1); 3451 if (ret) { 3452 mlog_errno(ret); 3453 goto out; 3454 } 3455 3456 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3457 3458 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3459 le64_add_cpu(&right_rec->e_blkno, 3460 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3461 split_clusters)); 3462 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3463 3464 ocfs2_cleanup_merge(el, index); 3465 3466 ocfs2_journal_dirty(handle, bh); 3467 if (right_path) { 3468 ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3469 ocfs2_complete_edge_insert(handle, left_path, right_path, 3470 subtree_index); 3471 } 3472 out: 3473 ocfs2_free_path(right_path); 3474 return ret; 3475 } 3476 3477 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et, 3478 struct ocfs2_path *right_path, 3479 struct ocfs2_path **ret_left_path) 3480 { 3481 int ret; 3482 u32 left_cpos; 3483 struct ocfs2_path *left_path = NULL; 3484 3485 *ret_left_path = NULL; 3486 3487 /* This function shouldn't be called for non-trees. */ 3488 BUG_ON(right_path->p_tree_depth == 0); 3489 3490 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 3491 right_path, &left_cpos); 3492 if (ret) { 3493 mlog_errno(ret); 3494 goto out; 3495 } 3496 3497 /* This function shouldn't be called for the leftmost leaf. */ 3498 BUG_ON(left_cpos == 0); 3499 3500 left_path = ocfs2_new_path_from_path(right_path); 3501 if (!left_path) { 3502 ret = -ENOMEM; 3503 mlog_errno(ret); 3504 goto out; 3505 } 3506 3507 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos); 3508 if (ret) { 3509 mlog_errno(ret); 3510 goto out; 3511 } 3512 3513 *ret_left_path = left_path; 3514 out: 3515 if (ret) 3516 ocfs2_free_path(left_path); 3517 return ret; 3518 } 3519 3520 /* 3521 * Remove split_rec clusters from the record at index and merge them 3522 * onto the tail of the record "before" it. 3523 * For index > 0, the "before" means the extent rec at index - 1. 3524 * 3525 * For index == 0, the "before" means the last record of the previous 3526 * extent block. And there is also a situation that we may need to 3527 * remove the rightmost leaf extent block in the right_path and change 3528 * the right path to indicate the new rightmost path. 3529 */ 3530 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path, 3531 handle_t *handle, 3532 struct ocfs2_extent_tree *et, 3533 struct ocfs2_extent_rec *split_rec, 3534 struct ocfs2_cached_dealloc_ctxt *dealloc, 3535 int index) 3536 { 3537 int ret, i, subtree_index = 0, has_empty_extent = 0; 3538 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3539 struct ocfs2_extent_rec *left_rec; 3540 struct ocfs2_extent_rec *right_rec; 3541 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3542 struct buffer_head *bh = path_leaf_bh(right_path); 3543 struct buffer_head *root_bh = NULL; 3544 struct ocfs2_path *left_path = NULL; 3545 struct ocfs2_extent_list *left_el; 3546 3547 BUG_ON(index < 0); 3548 3549 right_rec = &el->l_recs[index]; 3550 if (index == 0) { 3551 /* we meet with a cross extent block merge. */ 3552 ret = ocfs2_get_left_path(et, right_path, &left_path); 3553 if (ret) { 3554 mlog_errno(ret); 3555 return ret; 3556 } 3557 3558 left_el = path_leaf_el(left_path); 3559 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3560 le16_to_cpu(left_el->l_count)); 3561 3562 left_rec = &left_el->l_recs[ 3563 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3564 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3565 le16_to_cpu(left_rec->e_leaf_clusters) != 3566 le32_to_cpu(split_rec->e_cpos)); 3567 3568 subtree_index = ocfs2_find_subtree_root(et, left_path, 3569 right_path); 3570 3571 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3572 handle->h_buffer_credits, 3573 left_path); 3574 if (ret) { 3575 mlog_errno(ret); 3576 goto out; 3577 } 3578 3579 root_bh = left_path->p_node[subtree_index].bh; 3580 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3581 3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3583 subtree_index); 3584 if (ret) { 3585 mlog_errno(ret); 3586 goto out; 3587 } 3588 3589 for (i = subtree_index + 1; 3590 i < path_num_items(right_path); i++) { 3591 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3592 right_path, i); 3593 if (ret) { 3594 mlog_errno(ret); 3595 goto out; 3596 } 3597 3598 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, 3599 left_path, i); 3600 if (ret) { 3601 mlog_errno(ret); 3602 goto out; 3603 } 3604 } 3605 } else { 3606 left_rec = &el->l_recs[index - 1]; 3607 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3608 has_empty_extent = 1; 3609 } 3610 3611 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path, 3612 path_num_items(right_path) - 1); 3613 if (ret) { 3614 mlog_errno(ret); 3615 goto out; 3616 } 3617 3618 if (has_empty_extent && index == 1) { 3619 /* 3620 * The easy case - we can just plop the record right in. 3621 */ 3622 *left_rec = *split_rec; 3623 } else 3624 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3625 3626 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3627 le64_add_cpu(&right_rec->e_blkno, 3628 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci), 3629 split_clusters)); 3630 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3631 3632 ocfs2_cleanup_merge(el, index); 3633 3634 ocfs2_journal_dirty(handle, bh); 3635 if (left_path) { 3636 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3637 3638 /* 3639 * In the situation that the right_rec is empty and the extent 3640 * block is empty also, ocfs2_complete_edge_insert can't handle 3641 * it and we need to delete the right extent block. 3642 */ 3643 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3644 le16_to_cpu(el->l_next_free_rec) == 1) { 3645 /* extend credit for ocfs2_remove_rightmost_path */ 3646 ret = ocfs2_extend_rotate_transaction(handle, 0, 3647 handle->h_buffer_credits, 3648 right_path); 3649 if (ret) { 3650 mlog_errno(ret); 3651 goto out; 3652 } 3653 3654 ret = ocfs2_remove_rightmost_path(handle, et, 3655 right_path, 3656 dealloc); 3657 if (ret) { 3658 mlog_errno(ret); 3659 goto out; 3660 } 3661 3662 /* Now the rightmost extent block has been deleted. 3663 * So we use the new rightmost path. 3664 */ 3665 ocfs2_mv_path(right_path, left_path); 3666 left_path = NULL; 3667 } else 3668 ocfs2_complete_edge_insert(handle, left_path, 3669 right_path, subtree_index); 3670 } 3671 out: 3672 ocfs2_free_path(left_path); 3673 return ret; 3674 } 3675 3676 static int ocfs2_try_to_merge_extent(handle_t *handle, 3677 struct ocfs2_extent_tree *et, 3678 struct ocfs2_path *path, 3679 int split_index, 3680 struct ocfs2_extent_rec *split_rec, 3681 struct ocfs2_cached_dealloc_ctxt *dealloc, 3682 struct ocfs2_merge_ctxt *ctxt) 3683 { 3684 int ret = 0; 3685 struct ocfs2_extent_list *el = path_leaf_el(path); 3686 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3687 3688 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3689 3690 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3691 /* extend credit for ocfs2_remove_rightmost_path */ 3692 ret = ocfs2_extend_rotate_transaction(handle, 0, 3693 handle->h_buffer_credits, 3694 path); 3695 if (ret) { 3696 mlog_errno(ret); 3697 goto out; 3698 } 3699 /* 3700 * The merge code will need to create an empty 3701 * extent to take the place of the newly 3702 * emptied slot. Remove any pre-existing empty 3703 * extents - having more than one in a leaf is 3704 * illegal. 3705 */ 3706 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3707 if (ret) { 3708 mlog_errno(ret); 3709 goto out; 3710 } 3711 split_index--; 3712 rec = &el->l_recs[split_index]; 3713 } 3714 3715 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3716 /* 3717 * Left-right contig implies this. 3718 */ 3719 BUG_ON(!ctxt->c_split_covers_rec); 3720 3721 /* 3722 * Since the leftright insert always covers the entire 3723 * extent, this call will delete the insert record 3724 * entirely, resulting in an empty extent record added to 3725 * the extent block. 3726 * 3727 * Since the adding of an empty extent shifts 3728 * everything back to the right, there's no need to 3729 * update split_index here. 3730 * 3731 * When the split_index is zero, we need to merge it to the 3732 * prevoius extent block. It is more efficient and easier 3733 * if we do merge_right first and merge_left later. 3734 */ 3735 ret = ocfs2_merge_rec_right(path, handle, et, split_rec, 3736 split_index); 3737 if (ret) { 3738 mlog_errno(ret); 3739 goto out; 3740 } 3741 3742 /* 3743 * We can only get this from logic error above. 3744 */ 3745 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3746 3747 /* extend credit for ocfs2_remove_rightmost_path */ 3748 ret = ocfs2_extend_rotate_transaction(handle, 0, 3749 handle->h_buffer_credits, 3750 path); 3751 if (ret) { 3752 mlog_errno(ret); 3753 goto out; 3754 } 3755 3756 /* The merge left us with an empty extent, remove it. */ 3757 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3758 if (ret) { 3759 mlog_errno(ret); 3760 goto out; 3761 } 3762 3763 rec = &el->l_recs[split_index]; 3764 3765 /* 3766 * Note that we don't pass split_rec here on purpose - 3767 * we've merged it into the rec already. 3768 */ 3769 ret = ocfs2_merge_rec_left(path, handle, et, rec, 3770 dealloc, split_index); 3771 3772 if (ret) { 3773 mlog_errno(ret); 3774 goto out; 3775 } 3776 3777 /* extend credit for ocfs2_remove_rightmost_path */ 3778 ret = ocfs2_extend_rotate_transaction(handle, 0, 3779 handle->h_buffer_credits, 3780 path); 3781 if (ret) { 3782 mlog_errno(ret); 3783 goto out; 3784 } 3785 3786 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 3787 /* 3788 * Error from this last rotate is not critical, so 3789 * print but don't bubble it up. 3790 */ 3791 if (ret) 3792 mlog_errno(ret); 3793 ret = 0; 3794 } else { 3795 /* 3796 * Merge a record to the left or right. 3797 * 3798 * 'contig_type' is relative to the existing record, 3799 * so for example, if we're "right contig", it's to 3800 * the record on the left (hence the left merge). 3801 */ 3802 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3803 ret = ocfs2_merge_rec_left(path, handle, et, 3804 split_rec, dealloc, 3805 split_index); 3806 if (ret) { 3807 mlog_errno(ret); 3808 goto out; 3809 } 3810 } else { 3811 ret = ocfs2_merge_rec_right(path, handle, 3812 et, split_rec, 3813 split_index); 3814 if (ret) { 3815 mlog_errno(ret); 3816 goto out; 3817 } 3818 } 3819 3820 if (ctxt->c_split_covers_rec) { 3821 /* extend credit for ocfs2_remove_rightmost_path */ 3822 ret = ocfs2_extend_rotate_transaction(handle, 0, 3823 handle->h_buffer_credits, 3824 path); 3825 if (ret) { 3826 mlog_errno(ret); 3827 ret = 0; 3828 goto out; 3829 } 3830 3831 /* 3832 * The merge may have left an empty extent in 3833 * our leaf. Try to rotate it away. 3834 */ 3835 ret = ocfs2_rotate_tree_left(handle, et, path, 3836 dealloc); 3837 if (ret) 3838 mlog_errno(ret); 3839 ret = 0; 3840 } 3841 } 3842 3843 out: 3844 return ret; 3845 } 3846 3847 static void ocfs2_subtract_from_rec(struct super_block *sb, 3848 enum ocfs2_split_type split, 3849 struct ocfs2_extent_rec *rec, 3850 struct ocfs2_extent_rec *split_rec) 3851 { 3852 u64 len_blocks; 3853 3854 len_blocks = ocfs2_clusters_to_blocks(sb, 3855 le16_to_cpu(split_rec->e_leaf_clusters)); 3856 3857 if (split == SPLIT_LEFT) { 3858 /* 3859 * Region is on the left edge of the existing 3860 * record. 3861 */ 3862 le32_add_cpu(&rec->e_cpos, 3863 le16_to_cpu(split_rec->e_leaf_clusters)); 3864 le64_add_cpu(&rec->e_blkno, len_blocks); 3865 le16_add_cpu(&rec->e_leaf_clusters, 3866 -le16_to_cpu(split_rec->e_leaf_clusters)); 3867 } else { 3868 /* 3869 * Region is on the right edge of the existing 3870 * record. 3871 */ 3872 le16_add_cpu(&rec->e_leaf_clusters, 3873 -le16_to_cpu(split_rec->e_leaf_clusters)); 3874 } 3875 } 3876 3877 /* 3878 * Do the final bits of extent record insertion at the target leaf 3879 * list. If this leaf is part of an allocation tree, it is assumed 3880 * that the tree above has been prepared. 3881 */ 3882 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et, 3883 struct ocfs2_extent_rec *insert_rec, 3884 struct ocfs2_extent_list *el, 3885 struct ocfs2_insert_type *insert) 3886 { 3887 int i = insert->ins_contig_index; 3888 unsigned int range; 3889 struct ocfs2_extent_rec *rec; 3890 3891 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3892 3893 if (insert->ins_split != SPLIT_NONE) { 3894 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3895 BUG_ON(i == -1); 3896 rec = &el->l_recs[i]; 3897 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 3898 insert->ins_split, rec, 3899 insert_rec); 3900 goto rotate; 3901 } 3902 3903 /* 3904 * Contiguous insert - either left or right. 3905 */ 3906 if (insert->ins_contig != CONTIG_NONE) { 3907 rec = &el->l_recs[i]; 3908 if (insert->ins_contig == CONTIG_LEFT) { 3909 rec->e_blkno = insert_rec->e_blkno; 3910 rec->e_cpos = insert_rec->e_cpos; 3911 } 3912 le16_add_cpu(&rec->e_leaf_clusters, 3913 le16_to_cpu(insert_rec->e_leaf_clusters)); 3914 return; 3915 } 3916 3917 /* 3918 * Handle insert into an empty leaf. 3919 */ 3920 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3921 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3922 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3923 el->l_recs[0] = *insert_rec; 3924 el->l_next_free_rec = cpu_to_le16(1); 3925 return; 3926 } 3927 3928 /* 3929 * Appending insert. 3930 */ 3931 if (insert->ins_appending == APPEND_TAIL) { 3932 i = le16_to_cpu(el->l_next_free_rec) - 1; 3933 rec = &el->l_recs[i]; 3934 range = le32_to_cpu(rec->e_cpos) 3935 + le16_to_cpu(rec->e_leaf_clusters); 3936 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3937 3938 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3939 le16_to_cpu(el->l_count), 3940 "owner %llu, depth %u, count %u, next free %u, " 3941 "rec.cpos %u, rec.clusters %u, " 3942 "insert.cpos %u, insert.clusters %u\n", 3943 ocfs2_metadata_cache_owner(et->et_ci), 3944 le16_to_cpu(el->l_tree_depth), 3945 le16_to_cpu(el->l_count), 3946 le16_to_cpu(el->l_next_free_rec), 3947 le32_to_cpu(el->l_recs[i].e_cpos), 3948 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3949 le32_to_cpu(insert_rec->e_cpos), 3950 le16_to_cpu(insert_rec->e_leaf_clusters)); 3951 i++; 3952 el->l_recs[i] = *insert_rec; 3953 le16_add_cpu(&el->l_next_free_rec, 1); 3954 return; 3955 } 3956 3957 rotate: 3958 /* 3959 * Ok, we have to rotate. 3960 * 3961 * At this point, it is safe to assume that inserting into an 3962 * empty leaf and appending to a leaf have both been handled 3963 * above. 3964 * 3965 * This leaf needs to have space, either by the empty 1st 3966 * extent record, or by virtue of an l_next_rec < l_count. 3967 */ 3968 ocfs2_rotate_leaf(el, insert_rec); 3969 } 3970 3971 static void ocfs2_adjust_rightmost_records(handle_t *handle, 3972 struct ocfs2_extent_tree *et, 3973 struct ocfs2_path *path, 3974 struct ocfs2_extent_rec *insert_rec) 3975 { 3976 int i, next_free; 3977 struct buffer_head *bh; 3978 struct ocfs2_extent_list *el; 3979 struct ocfs2_extent_rec *rec; 3980 3981 /* 3982 * Update everything except the leaf block. 3983 */ 3984 for (i = 0; i < path->p_tree_depth; i++) { 3985 bh = path->p_node[i].bh; 3986 el = path->p_node[i].el; 3987 3988 next_free = le16_to_cpu(el->l_next_free_rec); 3989 if (next_free == 0) { 3990 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 3991 "Owner %llu has a bad extent list\n", 3992 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci)); 3993 return; 3994 } 3995 3996 rec = &el->l_recs[next_free - 1]; 3997 3998 rec->e_int_clusters = insert_rec->e_cpos; 3999 le32_add_cpu(&rec->e_int_clusters, 4000 le16_to_cpu(insert_rec->e_leaf_clusters)); 4001 le32_add_cpu(&rec->e_int_clusters, 4002 -le32_to_cpu(rec->e_cpos)); 4003 4004 ocfs2_journal_dirty(handle, bh); 4005 } 4006 } 4007 4008 static int ocfs2_append_rec_to_path(handle_t *handle, 4009 struct ocfs2_extent_tree *et, 4010 struct ocfs2_extent_rec *insert_rec, 4011 struct ocfs2_path *right_path, 4012 struct ocfs2_path **ret_left_path) 4013 { 4014 int ret, next_free; 4015 struct ocfs2_extent_list *el; 4016 struct ocfs2_path *left_path = NULL; 4017 4018 *ret_left_path = NULL; 4019 4020 /* 4021 * This shouldn't happen for non-trees. The extent rec cluster 4022 * count manipulation below only works for interior nodes. 4023 */ 4024 BUG_ON(right_path->p_tree_depth == 0); 4025 4026 /* 4027 * If our appending insert is at the leftmost edge of a leaf, 4028 * then we might need to update the rightmost records of the 4029 * neighboring path. 4030 */ 4031 el = path_leaf_el(right_path); 4032 next_free = le16_to_cpu(el->l_next_free_rec); 4033 if (next_free == 0 || 4034 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 4035 u32 left_cpos; 4036 4037 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci), 4038 right_path, &left_cpos); 4039 if (ret) { 4040 mlog_errno(ret); 4041 goto out; 4042 } 4043 4044 trace_ocfs2_append_rec_to_path( 4045 (unsigned long long) 4046 ocfs2_metadata_cache_owner(et->et_ci), 4047 le32_to_cpu(insert_rec->e_cpos), 4048 left_cpos); 4049 4050 /* 4051 * No need to worry if the append is already in the 4052 * leftmost leaf. 4053 */ 4054 if (left_cpos) { 4055 left_path = ocfs2_new_path_from_path(right_path); 4056 if (!left_path) { 4057 ret = -ENOMEM; 4058 mlog_errno(ret); 4059 goto out; 4060 } 4061 4062 ret = ocfs2_find_path(et->et_ci, left_path, 4063 left_cpos); 4064 if (ret) { 4065 mlog_errno(ret); 4066 goto out; 4067 } 4068 4069 /* 4070 * ocfs2_insert_path() will pass the left_path to the 4071 * journal for us. 4072 */ 4073 } 4074 } 4075 4076 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4077 if (ret) { 4078 mlog_errno(ret); 4079 goto out; 4080 } 4081 4082 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec); 4083 4084 *ret_left_path = left_path; 4085 ret = 0; 4086 out: 4087 if (ret != 0) 4088 ocfs2_free_path(left_path); 4089 4090 return ret; 4091 } 4092 4093 static void ocfs2_split_record(struct ocfs2_extent_tree *et, 4094 struct ocfs2_path *left_path, 4095 struct ocfs2_path *right_path, 4096 struct ocfs2_extent_rec *split_rec, 4097 enum ocfs2_split_type split) 4098 { 4099 int index; 4100 u32 cpos = le32_to_cpu(split_rec->e_cpos); 4101 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 4102 struct ocfs2_extent_rec *rec, *tmprec; 4103 4104 right_el = path_leaf_el(right_path); 4105 if (left_path) 4106 left_el = path_leaf_el(left_path); 4107 4108 el = right_el; 4109 insert_el = right_el; 4110 index = ocfs2_search_extent_list(el, cpos); 4111 if (index != -1) { 4112 if (index == 0 && left_path) { 4113 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4114 4115 /* 4116 * This typically means that the record 4117 * started in the left path but moved to the 4118 * right as a result of rotation. We either 4119 * move the existing record to the left, or we 4120 * do the later insert there. 4121 * 4122 * In this case, the left path should always 4123 * exist as the rotate code will have passed 4124 * it back for a post-insert update. 4125 */ 4126 4127 if (split == SPLIT_LEFT) { 4128 /* 4129 * It's a left split. Since we know 4130 * that the rotate code gave us an 4131 * empty extent in the left path, we 4132 * can just do the insert there. 4133 */ 4134 insert_el = left_el; 4135 } else { 4136 /* 4137 * Right split - we have to move the 4138 * existing record over to the left 4139 * leaf. The insert will be into the 4140 * newly created empty extent in the 4141 * right leaf. 4142 */ 4143 tmprec = &right_el->l_recs[index]; 4144 ocfs2_rotate_leaf(left_el, tmprec); 4145 el = left_el; 4146 4147 memset(tmprec, 0, sizeof(*tmprec)); 4148 index = ocfs2_search_extent_list(left_el, cpos); 4149 BUG_ON(index == -1); 4150 } 4151 } 4152 } else { 4153 BUG_ON(!left_path); 4154 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4155 /* 4156 * Left path is easy - we can just allow the insert to 4157 * happen. 4158 */ 4159 el = left_el; 4160 insert_el = left_el; 4161 index = ocfs2_search_extent_list(el, cpos); 4162 BUG_ON(index == -1); 4163 } 4164 4165 rec = &el->l_recs[index]; 4166 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4167 split, rec, split_rec); 4168 ocfs2_rotate_leaf(insert_el, split_rec); 4169 } 4170 4171 /* 4172 * This function only does inserts on an allocation b-tree. For tree 4173 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4174 * 4175 * right_path is the path we want to do the actual insert 4176 * in. left_path should only be passed in if we need to update that 4177 * portion of the tree after an edge insert. 4178 */ 4179 static int ocfs2_insert_path(handle_t *handle, 4180 struct ocfs2_extent_tree *et, 4181 struct ocfs2_path *left_path, 4182 struct ocfs2_path *right_path, 4183 struct ocfs2_extent_rec *insert_rec, 4184 struct ocfs2_insert_type *insert) 4185 { 4186 int ret, subtree_index; 4187 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4188 4189 if (left_path) { 4190 /* 4191 * There's a chance that left_path got passed back to 4192 * us without being accounted for in the 4193 * journal. Extend our transaction here to be sure we 4194 * can change those blocks. 4195 */ 4196 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth); 4197 if (ret < 0) { 4198 mlog_errno(ret); 4199 goto out; 4200 } 4201 4202 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 4203 if (ret < 0) { 4204 mlog_errno(ret); 4205 goto out; 4206 } 4207 } 4208 4209 /* 4210 * Pass both paths to the journal. The majority of inserts 4211 * will be touching all components anyway. 4212 */ 4213 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path); 4214 if (ret < 0) { 4215 mlog_errno(ret); 4216 goto out; 4217 } 4218 4219 if (insert->ins_split != SPLIT_NONE) { 4220 /* 4221 * We could call ocfs2_insert_at_leaf() for some types 4222 * of splits, but it's easier to just let one separate 4223 * function sort it all out. 4224 */ 4225 ocfs2_split_record(et, left_path, right_path, 4226 insert_rec, insert->ins_split); 4227 4228 /* 4229 * Split might have modified either leaf and we don't 4230 * have a guarantee that the later edge insert will 4231 * dirty this for us. 4232 */ 4233 if (left_path) 4234 ocfs2_journal_dirty(handle, 4235 path_leaf_bh(left_path)); 4236 } else 4237 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path), 4238 insert); 4239 4240 ocfs2_journal_dirty(handle, leaf_bh); 4241 4242 if (left_path) { 4243 /* 4244 * The rotate code has indicated that we need to fix 4245 * up portions of the tree after the insert. 4246 * 4247 * XXX: Should we extend the transaction here? 4248 */ 4249 subtree_index = ocfs2_find_subtree_root(et, left_path, 4250 right_path); 4251 ocfs2_complete_edge_insert(handle, left_path, right_path, 4252 subtree_index); 4253 } 4254 4255 ret = 0; 4256 out: 4257 return ret; 4258 } 4259 4260 static int ocfs2_do_insert_extent(handle_t *handle, 4261 struct ocfs2_extent_tree *et, 4262 struct ocfs2_extent_rec *insert_rec, 4263 struct ocfs2_insert_type *type) 4264 { 4265 int ret, rotate = 0; 4266 u32 cpos; 4267 struct ocfs2_path *right_path = NULL; 4268 struct ocfs2_path *left_path = NULL; 4269 struct ocfs2_extent_list *el; 4270 4271 el = et->et_root_el; 4272 4273 ret = ocfs2_et_root_journal_access(handle, et, 4274 OCFS2_JOURNAL_ACCESS_WRITE); 4275 if (ret) { 4276 mlog_errno(ret); 4277 goto out; 4278 } 4279 4280 if (le16_to_cpu(el->l_tree_depth) == 0) { 4281 ocfs2_insert_at_leaf(et, insert_rec, el, type); 4282 goto out_update_clusters; 4283 } 4284 4285 right_path = ocfs2_new_path_from_et(et); 4286 if (!right_path) { 4287 ret = -ENOMEM; 4288 mlog_errno(ret); 4289 goto out; 4290 } 4291 4292 /* 4293 * Determine the path to start with. Rotations need the 4294 * rightmost path, everything else can go directly to the 4295 * target leaf. 4296 */ 4297 cpos = le32_to_cpu(insert_rec->e_cpos); 4298 if (type->ins_appending == APPEND_NONE && 4299 type->ins_contig == CONTIG_NONE) { 4300 rotate = 1; 4301 cpos = UINT_MAX; 4302 } 4303 4304 ret = ocfs2_find_path(et->et_ci, right_path, cpos); 4305 if (ret) { 4306 mlog_errno(ret); 4307 goto out; 4308 } 4309 4310 /* 4311 * Rotations and appends need special treatment - they modify 4312 * parts of the tree's above them. 4313 * 4314 * Both might pass back a path immediate to the left of the 4315 * one being inserted to. This will be cause 4316 * ocfs2_insert_path() to modify the rightmost records of 4317 * left_path to account for an edge insert. 4318 * 4319 * XXX: When modifying this code, keep in mind that an insert 4320 * can wind up skipping both of these two special cases... 4321 */ 4322 if (rotate) { 4323 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split, 4324 le32_to_cpu(insert_rec->e_cpos), 4325 right_path, &left_path); 4326 if (ret) { 4327 mlog_errno(ret); 4328 goto out; 4329 } 4330 4331 /* 4332 * ocfs2_rotate_tree_right() might have extended the 4333 * transaction without re-journaling our tree root. 4334 */ 4335 ret = ocfs2_et_root_journal_access(handle, et, 4336 OCFS2_JOURNAL_ACCESS_WRITE); 4337 if (ret) { 4338 mlog_errno(ret); 4339 goto out; 4340 } 4341 } else if (type->ins_appending == APPEND_TAIL 4342 && type->ins_contig != CONTIG_LEFT) { 4343 ret = ocfs2_append_rec_to_path(handle, et, insert_rec, 4344 right_path, &left_path); 4345 if (ret) { 4346 mlog_errno(ret); 4347 goto out; 4348 } 4349 } 4350 4351 ret = ocfs2_insert_path(handle, et, left_path, right_path, 4352 insert_rec, type); 4353 if (ret) { 4354 mlog_errno(ret); 4355 goto out; 4356 } 4357 4358 out_update_clusters: 4359 if (type->ins_split == SPLIT_NONE) 4360 ocfs2_et_update_clusters(et, 4361 le16_to_cpu(insert_rec->e_leaf_clusters)); 4362 4363 ocfs2_journal_dirty(handle, et->et_root_bh); 4364 4365 out: 4366 ocfs2_free_path(left_path); 4367 ocfs2_free_path(right_path); 4368 4369 return ret; 4370 } 4371 4372 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et, 4373 struct ocfs2_path *path, 4374 struct ocfs2_extent_list *el, int index, 4375 struct ocfs2_extent_rec *split_rec, 4376 struct ocfs2_merge_ctxt *ctxt) 4377 { 4378 int status = 0; 4379 enum ocfs2_contig_type ret = CONTIG_NONE; 4380 u32 left_cpos, right_cpos; 4381 struct ocfs2_extent_rec *rec = NULL; 4382 struct ocfs2_extent_list *new_el; 4383 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4384 struct buffer_head *bh; 4385 struct ocfs2_extent_block *eb; 4386 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 4387 4388 if (index > 0) { 4389 rec = &el->l_recs[index - 1]; 4390 } else if (path->p_tree_depth > 0) { 4391 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 4392 if (status) 4393 goto exit; 4394 4395 if (left_cpos != 0) { 4396 left_path = ocfs2_new_path_from_path(path); 4397 if (!left_path) { 4398 status = -ENOMEM; 4399 mlog_errno(status); 4400 goto exit; 4401 } 4402 4403 status = ocfs2_find_path(et->et_ci, left_path, 4404 left_cpos); 4405 if (status) 4406 goto free_left_path; 4407 4408 new_el = path_leaf_el(left_path); 4409 4410 if (le16_to_cpu(new_el->l_next_free_rec) != 4411 le16_to_cpu(new_el->l_count)) { 4412 bh = path_leaf_bh(left_path); 4413 eb = (struct ocfs2_extent_block *)bh->b_data; 4414 ocfs2_error(sb, 4415 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n", 4416 (unsigned long long)le64_to_cpu(eb->h_blkno), 4417 le16_to_cpu(new_el->l_next_free_rec), 4418 le16_to_cpu(new_el->l_count)); 4419 status = -EINVAL; 4420 goto free_left_path; 4421 } 4422 rec = &new_el->l_recs[ 4423 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4424 } 4425 } 4426 4427 /* 4428 * We're careful to check for an empty extent record here - 4429 * the merge code will know what to do if it sees one. 4430 */ 4431 if (rec) { 4432 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4433 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4434 ret = CONTIG_RIGHT; 4435 } else { 4436 ret = ocfs2_et_extent_contig(et, rec, split_rec); 4437 } 4438 } 4439 4440 rec = NULL; 4441 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4442 rec = &el->l_recs[index + 1]; 4443 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4444 path->p_tree_depth > 0) { 4445 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos); 4446 if (status) 4447 goto free_left_path; 4448 4449 if (right_cpos == 0) 4450 goto free_left_path; 4451 4452 right_path = ocfs2_new_path_from_path(path); 4453 if (!right_path) { 4454 status = -ENOMEM; 4455 mlog_errno(status); 4456 goto free_left_path; 4457 } 4458 4459 status = ocfs2_find_path(et->et_ci, right_path, right_cpos); 4460 if (status) 4461 goto free_right_path; 4462 4463 new_el = path_leaf_el(right_path); 4464 rec = &new_el->l_recs[0]; 4465 if (ocfs2_is_empty_extent(rec)) { 4466 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4467 bh = path_leaf_bh(right_path); 4468 eb = (struct ocfs2_extent_block *)bh->b_data; 4469 ocfs2_error(sb, 4470 "Extent block #%llu has an invalid l_next_free_rec of %d\n", 4471 (unsigned long long)le64_to_cpu(eb->h_blkno), 4472 le16_to_cpu(new_el->l_next_free_rec)); 4473 status = -EINVAL; 4474 goto free_right_path; 4475 } 4476 rec = &new_el->l_recs[1]; 4477 } 4478 } 4479 4480 if (rec) { 4481 enum ocfs2_contig_type contig_type; 4482 4483 contig_type = ocfs2_et_extent_contig(et, rec, split_rec); 4484 4485 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4486 ret = CONTIG_LEFTRIGHT; 4487 else if (ret == CONTIG_NONE) 4488 ret = contig_type; 4489 } 4490 4491 free_right_path: 4492 ocfs2_free_path(right_path); 4493 free_left_path: 4494 ocfs2_free_path(left_path); 4495 exit: 4496 if (status == 0) 4497 ctxt->c_contig_type = ret; 4498 4499 return status; 4500 } 4501 4502 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et, 4503 struct ocfs2_insert_type *insert, 4504 struct ocfs2_extent_list *el, 4505 struct ocfs2_extent_rec *insert_rec) 4506 { 4507 int i; 4508 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4509 4510 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4511 4512 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4513 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i], 4514 insert_rec); 4515 if (contig_type != CONTIG_NONE) { 4516 insert->ins_contig_index = i; 4517 break; 4518 } 4519 } 4520 insert->ins_contig = contig_type; 4521 4522 if (insert->ins_contig != CONTIG_NONE) { 4523 struct ocfs2_extent_rec *rec = 4524 &el->l_recs[insert->ins_contig_index]; 4525 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4526 le16_to_cpu(insert_rec->e_leaf_clusters); 4527 4528 /* 4529 * Caller might want us to limit the size of extents, don't 4530 * calculate contiguousness if we might exceed that limit. 4531 */ 4532 if (et->et_max_leaf_clusters && 4533 (len > et->et_max_leaf_clusters)) 4534 insert->ins_contig = CONTIG_NONE; 4535 } 4536 } 4537 4538 /* 4539 * This should only be called against the righmost leaf extent list. 4540 * 4541 * ocfs2_figure_appending_type() will figure out whether we'll have to 4542 * insert at the tail of the rightmost leaf. 4543 * 4544 * This should also work against the root extent list for tree's with 0 4545 * depth. If we consider the root extent list to be the rightmost leaf node 4546 * then the logic here makes sense. 4547 */ 4548 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4549 struct ocfs2_extent_list *el, 4550 struct ocfs2_extent_rec *insert_rec) 4551 { 4552 int i; 4553 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4554 struct ocfs2_extent_rec *rec; 4555 4556 insert->ins_appending = APPEND_NONE; 4557 4558 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4559 4560 if (!el->l_next_free_rec) 4561 goto set_tail_append; 4562 4563 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4564 /* Were all records empty? */ 4565 if (le16_to_cpu(el->l_next_free_rec) == 1) 4566 goto set_tail_append; 4567 } 4568 4569 i = le16_to_cpu(el->l_next_free_rec) - 1; 4570 rec = &el->l_recs[i]; 4571 4572 if (cpos >= 4573 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4574 goto set_tail_append; 4575 4576 return; 4577 4578 set_tail_append: 4579 insert->ins_appending = APPEND_TAIL; 4580 } 4581 4582 /* 4583 * Helper function called at the beginning of an insert. 4584 * 4585 * This computes a few things that are commonly used in the process of 4586 * inserting into the btree: 4587 * - Whether the new extent is contiguous with an existing one. 4588 * - The current tree depth. 4589 * - Whether the insert is an appending one. 4590 * - The total # of free records in the tree. 4591 * 4592 * All of the information is stored on the ocfs2_insert_type 4593 * structure. 4594 */ 4595 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et, 4596 struct buffer_head **last_eb_bh, 4597 struct ocfs2_extent_rec *insert_rec, 4598 int *free_records, 4599 struct ocfs2_insert_type *insert) 4600 { 4601 int ret; 4602 struct ocfs2_extent_block *eb; 4603 struct ocfs2_extent_list *el; 4604 struct ocfs2_path *path = NULL; 4605 struct buffer_head *bh = NULL; 4606 4607 insert->ins_split = SPLIT_NONE; 4608 4609 el = et->et_root_el; 4610 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4611 4612 if (el->l_tree_depth) { 4613 /* 4614 * If we have tree depth, we read in the 4615 * rightmost extent block ahead of time as 4616 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4617 * may want it later. 4618 */ 4619 ret = ocfs2_read_extent_block(et->et_ci, 4620 ocfs2_et_get_last_eb_blk(et), 4621 &bh); 4622 if (ret) { 4623 mlog_errno(ret); 4624 goto out; 4625 } 4626 eb = (struct ocfs2_extent_block *) bh->b_data; 4627 el = &eb->h_list; 4628 } 4629 4630 /* 4631 * Unless we have a contiguous insert, we'll need to know if 4632 * there is room left in our allocation tree for another 4633 * extent record. 4634 * 4635 * XXX: This test is simplistic, we can search for empty 4636 * extent records too. 4637 */ 4638 *free_records = le16_to_cpu(el->l_count) - 4639 le16_to_cpu(el->l_next_free_rec); 4640 4641 if (!insert->ins_tree_depth) { 4642 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4643 ocfs2_figure_appending_type(insert, el, insert_rec); 4644 return 0; 4645 } 4646 4647 path = ocfs2_new_path_from_et(et); 4648 if (!path) { 4649 ret = -ENOMEM; 4650 mlog_errno(ret); 4651 goto out; 4652 } 4653 4654 /* 4655 * In the case that we're inserting past what the tree 4656 * currently accounts for, ocfs2_find_path() will return for 4657 * us the rightmost tree path. This is accounted for below in 4658 * the appending code. 4659 */ 4660 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos)); 4661 if (ret) { 4662 mlog_errno(ret); 4663 goto out; 4664 } 4665 4666 el = path_leaf_el(path); 4667 4668 /* 4669 * Now that we have the path, there's two things we want to determine: 4670 * 1) Contiguousness (also set contig_index if this is so) 4671 * 4672 * 2) Are we doing an append? We can trivially break this up 4673 * into two types of appends: simple record append, or a 4674 * rotate inside the tail leaf. 4675 */ 4676 ocfs2_figure_contig_type(et, insert, el, insert_rec); 4677 4678 /* 4679 * The insert code isn't quite ready to deal with all cases of 4680 * left contiguousness. Specifically, if it's an insert into 4681 * the 1st record in a leaf, it will require the adjustment of 4682 * cluster count on the last record of the path directly to it's 4683 * left. For now, just catch that case and fool the layers 4684 * above us. This works just fine for tree_depth == 0, which 4685 * is why we allow that above. 4686 */ 4687 if (insert->ins_contig == CONTIG_LEFT && 4688 insert->ins_contig_index == 0) 4689 insert->ins_contig = CONTIG_NONE; 4690 4691 /* 4692 * Ok, so we can simply compare against last_eb to figure out 4693 * whether the path doesn't exist. This will only happen in 4694 * the case that we're doing a tail append, so maybe we can 4695 * take advantage of that information somehow. 4696 */ 4697 if (ocfs2_et_get_last_eb_blk(et) == 4698 path_leaf_bh(path)->b_blocknr) { 4699 /* 4700 * Ok, ocfs2_find_path() returned us the rightmost 4701 * tree path. This might be an appending insert. There are 4702 * two cases: 4703 * 1) We're doing a true append at the tail: 4704 * -This might even be off the end of the leaf 4705 * 2) We're "appending" by rotating in the tail 4706 */ 4707 ocfs2_figure_appending_type(insert, el, insert_rec); 4708 } 4709 4710 out: 4711 ocfs2_free_path(path); 4712 4713 if (ret == 0) 4714 *last_eb_bh = bh; 4715 else 4716 brelse(bh); 4717 return ret; 4718 } 4719 4720 /* 4721 * Insert an extent into a btree. 4722 * 4723 * The caller needs to update the owning btree's cluster count. 4724 */ 4725 int ocfs2_insert_extent(handle_t *handle, 4726 struct ocfs2_extent_tree *et, 4727 u32 cpos, 4728 u64 start_blk, 4729 u32 new_clusters, 4730 u8 flags, 4731 struct ocfs2_alloc_context *meta_ac) 4732 { 4733 int status; 4734 int uninitialized_var(free_records); 4735 struct buffer_head *last_eb_bh = NULL; 4736 struct ocfs2_insert_type insert = {0, }; 4737 struct ocfs2_extent_rec rec; 4738 4739 trace_ocfs2_insert_extent_start( 4740 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4741 cpos, new_clusters); 4742 4743 memset(&rec, 0, sizeof(rec)); 4744 rec.e_cpos = cpu_to_le32(cpos); 4745 rec.e_blkno = cpu_to_le64(start_blk); 4746 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4747 rec.e_flags = flags; 4748 status = ocfs2_et_insert_check(et, &rec); 4749 if (status) { 4750 mlog_errno(status); 4751 goto bail; 4752 } 4753 4754 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec, 4755 &free_records, &insert); 4756 if (status < 0) { 4757 mlog_errno(status); 4758 goto bail; 4759 } 4760 4761 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig, 4762 insert.ins_contig_index, free_records, 4763 insert.ins_tree_depth); 4764 4765 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4766 status = ocfs2_grow_tree(handle, et, 4767 &insert.ins_tree_depth, &last_eb_bh, 4768 meta_ac); 4769 if (status) { 4770 mlog_errno(status); 4771 goto bail; 4772 } 4773 } 4774 4775 /* Finally, we can add clusters. This might rotate the tree for us. */ 4776 status = ocfs2_do_insert_extent(handle, et, &rec, &insert); 4777 if (status < 0) 4778 mlog_errno(status); 4779 else 4780 ocfs2_et_extent_map_insert(et, &rec); 4781 4782 bail: 4783 brelse(last_eb_bh); 4784 4785 return status; 4786 } 4787 4788 /* 4789 * Allcate and add clusters into the extent b-tree. 4790 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4791 * The extent b-tree's root is specified by et, and 4792 * it is not limited to the file storage. Any extent tree can use this 4793 * function if it implements the proper ocfs2_extent_tree. 4794 */ 4795 int ocfs2_add_clusters_in_btree(handle_t *handle, 4796 struct ocfs2_extent_tree *et, 4797 u32 *logical_offset, 4798 u32 clusters_to_add, 4799 int mark_unwritten, 4800 struct ocfs2_alloc_context *data_ac, 4801 struct ocfs2_alloc_context *meta_ac, 4802 enum ocfs2_alloc_restarted *reason_ret) 4803 { 4804 int status = 0, err = 0; 4805 int need_free = 0; 4806 int free_extents; 4807 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4808 u32 bit_off, num_bits; 4809 u64 block; 4810 u8 flags = 0; 4811 struct ocfs2_super *osb = 4812 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 4813 4814 BUG_ON(!clusters_to_add); 4815 4816 if (mark_unwritten) 4817 flags = OCFS2_EXT_UNWRITTEN; 4818 4819 free_extents = ocfs2_num_free_extents(et); 4820 if (free_extents < 0) { 4821 status = free_extents; 4822 mlog_errno(status); 4823 goto leave; 4824 } 4825 4826 /* there are two cases which could cause us to EAGAIN in the 4827 * we-need-more-metadata case: 4828 * 1) we haven't reserved *any* 4829 * 2) we are so fragmented, we've needed to add metadata too 4830 * many times. */ 4831 if (!free_extents && !meta_ac) { 4832 err = -1; 4833 status = -EAGAIN; 4834 reason = RESTART_META; 4835 goto leave; 4836 } else if ((!free_extents) 4837 && (ocfs2_alloc_context_bits_left(meta_ac) 4838 < ocfs2_extend_meta_needed(et->et_root_el))) { 4839 err = -2; 4840 status = -EAGAIN; 4841 reason = RESTART_META; 4842 goto leave; 4843 } 4844 4845 status = __ocfs2_claim_clusters(handle, data_ac, 1, 4846 clusters_to_add, &bit_off, &num_bits); 4847 if (status < 0) { 4848 if (status != -ENOSPC) 4849 mlog_errno(status); 4850 goto leave; 4851 } 4852 4853 BUG_ON(num_bits > clusters_to_add); 4854 4855 /* reserve our write early -- insert_extent may update the tree root */ 4856 status = ocfs2_et_root_journal_access(handle, et, 4857 OCFS2_JOURNAL_ACCESS_WRITE); 4858 if (status < 0) { 4859 mlog_errno(status); 4860 need_free = 1; 4861 goto bail; 4862 } 4863 4864 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4865 trace_ocfs2_add_clusters_in_btree( 4866 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 4867 bit_off, num_bits); 4868 status = ocfs2_insert_extent(handle, et, *logical_offset, block, 4869 num_bits, flags, meta_ac); 4870 if (status < 0) { 4871 mlog_errno(status); 4872 need_free = 1; 4873 goto bail; 4874 } 4875 4876 ocfs2_journal_dirty(handle, et->et_root_bh); 4877 4878 clusters_to_add -= num_bits; 4879 *logical_offset += num_bits; 4880 4881 if (clusters_to_add) { 4882 err = clusters_to_add; 4883 status = -EAGAIN; 4884 reason = RESTART_TRANS; 4885 } 4886 4887 bail: 4888 if (need_free) { 4889 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 4890 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 4891 bit_off, num_bits); 4892 else 4893 ocfs2_free_clusters(handle, 4894 data_ac->ac_inode, 4895 data_ac->ac_bh, 4896 ocfs2_clusters_to_blocks(osb->sb, bit_off), 4897 num_bits); 4898 } 4899 4900 leave: 4901 if (reason_ret) 4902 *reason_ret = reason; 4903 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err); 4904 return status; 4905 } 4906 4907 static void ocfs2_make_right_split_rec(struct super_block *sb, 4908 struct ocfs2_extent_rec *split_rec, 4909 u32 cpos, 4910 struct ocfs2_extent_rec *rec) 4911 { 4912 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4913 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4914 4915 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4916 4917 split_rec->e_cpos = cpu_to_le32(cpos); 4918 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4919 4920 split_rec->e_blkno = rec->e_blkno; 4921 le64_add_cpu(&split_rec->e_blkno, 4922 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4923 4924 split_rec->e_flags = rec->e_flags; 4925 } 4926 4927 static int ocfs2_split_and_insert(handle_t *handle, 4928 struct ocfs2_extent_tree *et, 4929 struct ocfs2_path *path, 4930 struct buffer_head **last_eb_bh, 4931 int split_index, 4932 struct ocfs2_extent_rec *orig_split_rec, 4933 struct ocfs2_alloc_context *meta_ac) 4934 { 4935 int ret = 0, depth; 4936 unsigned int insert_range, rec_range, do_leftright = 0; 4937 struct ocfs2_extent_rec tmprec; 4938 struct ocfs2_extent_list *rightmost_el; 4939 struct ocfs2_extent_rec rec; 4940 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4941 struct ocfs2_insert_type insert; 4942 struct ocfs2_extent_block *eb; 4943 4944 leftright: 4945 /* 4946 * Store a copy of the record on the stack - it might move 4947 * around as the tree is manipulated below. 4948 */ 4949 rec = path_leaf_el(path)->l_recs[split_index]; 4950 4951 rightmost_el = et->et_root_el; 4952 4953 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4954 if (depth) { 4955 BUG_ON(!(*last_eb_bh)); 4956 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4957 rightmost_el = &eb->h_list; 4958 } 4959 4960 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4961 le16_to_cpu(rightmost_el->l_count)) { 4962 ret = ocfs2_grow_tree(handle, et, 4963 &depth, last_eb_bh, meta_ac); 4964 if (ret) { 4965 mlog_errno(ret); 4966 goto out; 4967 } 4968 } 4969 4970 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4971 insert.ins_appending = APPEND_NONE; 4972 insert.ins_contig = CONTIG_NONE; 4973 insert.ins_tree_depth = depth; 4974 4975 insert_range = le32_to_cpu(split_rec.e_cpos) + 4976 le16_to_cpu(split_rec.e_leaf_clusters); 4977 rec_range = le32_to_cpu(rec.e_cpos) + 4978 le16_to_cpu(rec.e_leaf_clusters); 4979 4980 if (split_rec.e_cpos == rec.e_cpos) { 4981 insert.ins_split = SPLIT_LEFT; 4982 } else if (insert_range == rec_range) { 4983 insert.ins_split = SPLIT_RIGHT; 4984 } else { 4985 /* 4986 * Left/right split. We fake this as a right split 4987 * first and then make a second pass as a left split. 4988 */ 4989 insert.ins_split = SPLIT_RIGHT; 4990 4991 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 4992 &tmprec, insert_range, &rec); 4993 4994 split_rec = tmprec; 4995 4996 BUG_ON(do_leftright); 4997 do_leftright = 1; 4998 } 4999 5000 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5001 if (ret) { 5002 mlog_errno(ret); 5003 goto out; 5004 } 5005 5006 if (do_leftright == 1) { 5007 u32 cpos; 5008 struct ocfs2_extent_list *el; 5009 5010 do_leftright++; 5011 split_rec = *orig_split_rec; 5012 5013 ocfs2_reinit_path(path, 1); 5014 5015 cpos = le32_to_cpu(split_rec.e_cpos); 5016 ret = ocfs2_find_path(et->et_ci, path, cpos); 5017 if (ret) { 5018 mlog_errno(ret); 5019 goto out; 5020 } 5021 5022 el = path_leaf_el(path); 5023 split_index = ocfs2_search_extent_list(el, cpos); 5024 if (split_index == -1) { 5025 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5026 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5027 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5028 cpos); 5029 ret = -EROFS; 5030 goto out; 5031 } 5032 goto leftright; 5033 } 5034 out: 5035 5036 return ret; 5037 } 5038 5039 static int ocfs2_replace_extent_rec(handle_t *handle, 5040 struct ocfs2_extent_tree *et, 5041 struct ocfs2_path *path, 5042 struct ocfs2_extent_list *el, 5043 int split_index, 5044 struct ocfs2_extent_rec *split_rec) 5045 { 5046 int ret; 5047 5048 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path, 5049 path_num_items(path) - 1); 5050 if (ret) { 5051 mlog_errno(ret); 5052 goto out; 5053 } 5054 5055 el->l_recs[split_index] = *split_rec; 5056 5057 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5058 out: 5059 return ret; 5060 } 5061 5062 /* 5063 * Split part or all of the extent record at split_index in the leaf 5064 * pointed to by path. Merge with the contiguous extent record if needed. 5065 * 5066 * Care is taken to handle contiguousness so as to not grow the tree. 5067 * 5068 * meta_ac is not strictly necessary - we only truly need it if growth 5069 * of the tree is required. All other cases will degrade into a less 5070 * optimal tree layout. 5071 * 5072 * last_eb_bh should be the rightmost leaf block for any extent 5073 * btree. Since a split may grow the tree or a merge might shrink it, 5074 * the caller cannot trust the contents of that buffer after this call. 5075 * 5076 * This code is optimized for readability - several passes might be 5077 * made over certain portions of the tree. All of those blocks will 5078 * have been brought into cache (and pinned via the journal), so the 5079 * extra overhead is not expressed in terms of disk reads. 5080 */ 5081 int ocfs2_split_extent(handle_t *handle, 5082 struct ocfs2_extent_tree *et, 5083 struct ocfs2_path *path, 5084 int split_index, 5085 struct ocfs2_extent_rec *split_rec, 5086 struct ocfs2_alloc_context *meta_ac, 5087 struct ocfs2_cached_dealloc_ctxt *dealloc) 5088 { 5089 int ret = 0; 5090 struct ocfs2_extent_list *el = path_leaf_el(path); 5091 struct buffer_head *last_eb_bh = NULL; 5092 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 5093 struct ocfs2_merge_ctxt ctxt; 5094 5095 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 5096 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 5097 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 5098 ret = -EIO; 5099 mlog_errno(ret); 5100 goto out; 5101 } 5102 5103 ret = ocfs2_figure_merge_contig_type(et, path, el, 5104 split_index, 5105 split_rec, 5106 &ctxt); 5107 if (ret) { 5108 mlog_errno(ret); 5109 goto out; 5110 } 5111 5112 /* 5113 * The core merge / split code wants to know how much room is 5114 * left in this allocation tree, so we pass the 5115 * rightmost extent list. 5116 */ 5117 if (path->p_tree_depth) { 5118 struct ocfs2_extent_block *eb; 5119 5120 ret = ocfs2_read_extent_block(et->et_ci, 5121 ocfs2_et_get_last_eb_blk(et), 5122 &last_eb_bh); 5123 if (ret) { 5124 mlog_errno(ret); 5125 goto out; 5126 } 5127 5128 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5129 } 5130 5131 if (rec->e_cpos == split_rec->e_cpos && 5132 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5133 ctxt.c_split_covers_rec = 1; 5134 else 5135 ctxt.c_split_covers_rec = 0; 5136 5137 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5138 5139 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type, 5140 ctxt.c_has_empty_extent, 5141 ctxt.c_split_covers_rec); 5142 5143 if (ctxt.c_contig_type == CONTIG_NONE) { 5144 if (ctxt.c_split_covers_rec) 5145 ret = ocfs2_replace_extent_rec(handle, et, path, el, 5146 split_index, split_rec); 5147 else 5148 ret = ocfs2_split_and_insert(handle, et, path, 5149 &last_eb_bh, split_index, 5150 split_rec, meta_ac); 5151 if (ret) 5152 mlog_errno(ret); 5153 } else { 5154 ret = ocfs2_try_to_merge_extent(handle, et, path, 5155 split_index, split_rec, 5156 dealloc, &ctxt); 5157 if (ret) 5158 mlog_errno(ret); 5159 } 5160 5161 out: 5162 brelse(last_eb_bh); 5163 return ret; 5164 } 5165 5166 /* 5167 * Change the flags of the already-existing extent at cpos for len clusters. 5168 * 5169 * new_flags: the flags we want to set. 5170 * clear_flags: the flags we want to clear. 5171 * phys: the new physical offset we want this new extent starts from. 5172 * 5173 * If the existing extent is larger than the request, initiate a 5174 * split. An attempt will be made at merging with adjacent extents. 5175 * 5176 * The caller is responsible for passing down meta_ac if we'll need it. 5177 */ 5178 int ocfs2_change_extent_flag(handle_t *handle, 5179 struct ocfs2_extent_tree *et, 5180 u32 cpos, u32 len, u32 phys, 5181 struct ocfs2_alloc_context *meta_ac, 5182 struct ocfs2_cached_dealloc_ctxt *dealloc, 5183 int new_flags, int clear_flags) 5184 { 5185 int ret, index; 5186 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5187 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys); 5188 struct ocfs2_extent_rec split_rec; 5189 struct ocfs2_path *left_path = NULL; 5190 struct ocfs2_extent_list *el; 5191 struct ocfs2_extent_rec *rec; 5192 5193 left_path = ocfs2_new_path_from_et(et); 5194 if (!left_path) { 5195 ret = -ENOMEM; 5196 mlog_errno(ret); 5197 goto out; 5198 } 5199 5200 ret = ocfs2_find_path(et->et_ci, left_path, cpos); 5201 if (ret) { 5202 mlog_errno(ret); 5203 goto out; 5204 } 5205 el = path_leaf_el(left_path); 5206 5207 index = ocfs2_search_extent_list(el, cpos); 5208 if (index == -1) { 5209 ocfs2_error(sb, 5210 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5211 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5212 cpos); 5213 ret = -EROFS; 5214 goto out; 5215 } 5216 5217 ret = -EIO; 5218 rec = &el->l_recs[index]; 5219 if (new_flags && (rec->e_flags & new_flags)) { 5220 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an " 5221 "extent that already had them\n", 5222 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5223 new_flags); 5224 goto out; 5225 } 5226 5227 if (clear_flags && !(rec->e_flags & clear_flags)) { 5228 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an " 5229 "extent that didn't have them\n", 5230 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5231 clear_flags); 5232 goto out; 5233 } 5234 5235 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5236 split_rec.e_cpos = cpu_to_le32(cpos); 5237 split_rec.e_leaf_clusters = cpu_to_le16(len); 5238 split_rec.e_blkno = cpu_to_le64(start_blkno); 5239 split_rec.e_flags = rec->e_flags; 5240 if (new_flags) 5241 split_rec.e_flags |= new_flags; 5242 if (clear_flags) 5243 split_rec.e_flags &= ~clear_flags; 5244 5245 ret = ocfs2_split_extent(handle, et, left_path, 5246 index, &split_rec, meta_ac, 5247 dealloc); 5248 if (ret) 5249 mlog_errno(ret); 5250 5251 out: 5252 ocfs2_free_path(left_path); 5253 return ret; 5254 5255 } 5256 5257 /* 5258 * Mark the already-existing extent at cpos as written for len clusters. 5259 * This removes the unwritten extent flag. 5260 * 5261 * If the existing extent is larger than the request, initiate a 5262 * split. An attempt will be made at merging with adjacent extents. 5263 * 5264 * The caller is responsible for passing down meta_ac if we'll need it. 5265 */ 5266 int ocfs2_mark_extent_written(struct inode *inode, 5267 struct ocfs2_extent_tree *et, 5268 handle_t *handle, u32 cpos, u32 len, u32 phys, 5269 struct ocfs2_alloc_context *meta_ac, 5270 struct ocfs2_cached_dealloc_ctxt *dealloc) 5271 { 5272 int ret; 5273 5274 trace_ocfs2_mark_extent_written( 5275 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5276 cpos, len, phys); 5277 5278 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5279 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n", 5280 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5281 ret = -EROFS; 5282 goto out; 5283 } 5284 5285 /* 5286 * XXX: This should be fixed up so that we just re-insert the 5287 * next extent records. 5288 */ 5289 ocfs2_et_extent_map_truncate(et, 0); 5290 5291 ret = ocfs2_change_extent_flag(handle, et, cpos, 5292 len, phys, meta_ac, dealloc, 5293 0, OCFS2_EXT_UNWRITTEN); 5294 if (ret) 5295 mlog_errno(ret); 5296 5297 out: 5298 return ret; 5299 } 5300 5301 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et, 5302 struct ocfs2_path *path, 5303 int index, u32 new_range, 5304 struct ocfs2_alloc_context *meta_ac) 5305 { 5306 int ret, depth, credits; 5307 struct buffer_head *last_eb_bh = NULL; 5308 struct ocfs2_extent_block *eb; 5309 struct ocfs2_extent_list *rightmost_el, *el; 5310 struct ocfs2_extent_rec split_rec; 5311 struct ocfs2_extent_rec *rec; 5312 struct ocfs2_insert_type insert; 5313 5314 /* 5315 * Setup the record to split before we grow the tree. 5316 */ 5317 el = path_leaf_el(path); 5318 rec = &el->l_recs[index]; 5319 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci), 5320 &split_rec, new_range, rec); 5321 5322 depth = path->p_tree_depth; 5323 if (depth > 0) { 5324 ret = ocfs2_read_extent_block(et->et_ci, 5325 ocfs2_et_get_last_eb_blk(et), 5326 &last_eb_bh); 5327 if (ret < 0) { 5328 mlog_errno(ret); 5329 goto out; 5330 } 5331 5332 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5333 rightmost_el = &eb->h_list; 5334 } else 5335 rightmost_el = path_leaf_el(path); 5336 5337 credits = path->p_tree_depth + 5338 ocfs2_extend_meta_needed(et->et_root_el); 5339 ret = ocfs2_extend_trans(handle, credits); 5340 if (ret) { 5341 mlog_errno(ret); 5342 goto out; 5343 } 5344 5345 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5346 le16_to_cpu(rightmost_el->l_count)) { 5347 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh, 5348 meta_ac); 5349 if (ret) { 5350 mlog_errno(ret); 5351 goto out; 5352 } 5353 } 5354 5355 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5356 insert.ins_appending = APPEND_NONE; 5357 insert.ins_contig = CONTIG_NONE; 5358 insert.ins_split = SPLIT_RIGHT; 5359 insert.ins_tree_depth = depth; 5360 5361 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert); 5362 if (ret) 5363 mlog_errno(ret); 5364 5365 out: 5366 brelse(last_eb_bh); 5367 return ret; 5368 } 5369 5370 static int ocfs2_truncate_rec(handle_t *handle, 5371 struct ocfs2_extent_tree *et, 5372 struct ocfs2_path *path, int index, 5373 struct ocfs2_cached_dealloc_ctxt *dealloc, 5374 u32 cpos, u32 len) 5375 { 5376 int ret; 5377 u32 left_cpos, rec_range, trunc_range; 5378 int is_rightmost_tree_rec = 0; 5379 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci); 5380 struct ocfs2_path *left_path = NULL; 5381 struct ocfs2_extent_list *el = path_leaf_el(path); 5382 struct ocfs2_extent_rec *rec; 5383 struct ocfs2_extent_block *eb; 5384 5385 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5386 /* extend credit for ocfs2_remove_rightmost_path */ 5387 ret = ocfs2_extend_rotate_transaction(handle, 0, 5388 handle->h_buffer_credits, 5389 path); 5390 if (ret) { 5391 mlog_errno(ret); 5392 goto out; 5393 } 5394 5395 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5396 if (ret) { 5397 mlog_errno(ret); 5398 goto out; 5399 } 5400 5401 index--; 5402 } 5403 5404 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5405 path->p_tree_depth) { 5406 /* 5407 * Check whether this is the rightmost tree record. If 5408 * we remove all of this record or part of its right 5409 * edge then an update of the record lengths above it 5410 * will be required. 5411 */ 5412 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5413 if (eb->h_next_leaf_blk == 0) 5414 is_rightmost_tree_rec = 1; 5415 } 5416 5417 rec = &el->l_recs[index]; 5418 if (index == 0 && path->p_tree_depth && 5419 le32_to_cpu(rec->e_cpos) == cpos) { 5420 /* 5421 * Changing the leftmost offset (via partial or whole 5422 * record truncate) of an interior (or rightmost) path 5423 * means we have to update the subtree that is formed 5424 * by this leaf and the one to it's left. 5425 * 5426 * There are two cases we can skip: 5427 * 1) Path is the leftmost one in our btree. 5428 * 2) The leaf is rightmost and will be empty after 5429 * we remove the extent record - the rotate code 5430 * knows how to update the newly formed edge. 5431 */ 5432 5433 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos); 5434 if (ret) { 5435 mlog_errno(ret); 5436 goto out; 5437 } 5438 5439 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5440 left_path = ocfs2_new_path_from_path(path); 5441 if (!left_path) { 5442 ret = -ENOMEM; 5443 mlog_errno(ret); 5444 goto out; 5445 } 5446 5447 ret = ocfs2_find_path(et->et_ci, left_path, 5448 left_cpos); 5449 if (ret) { 5450 mlog_errno(ret); 5451 goto out; 5452 } 5453 } 5454 } 5455 5456 ret = ocfs2_extend_rotate_transaction(handle, 0, 5457 handle->h_buffer_credits, 5458 path); 5459 if (ret) { 5460 mlog_errno(ret); 5461 goto out; 5462 } 5463 5464 ret = ocfs2_journal_access_path(et->et_ci, handle, path); 5465 if (ret) { 5466 mlog_errno(ret); 5467 goto out; 5468 } 5469 5470 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path); 5471 if (ret) { 5472 mlog_errno(ret); 5473 goto out; 5474 } 5475 5476 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5477 trunc_range = cpos + len; 5478 5479 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5480 int next_free; 5481 5482 memset(rec, 0, sizeof(*rec)); 5483 ocfs2_cleanup_merge(el, index); 5484 5485 next_free = le16_to_cpu(el->l_next_free_rec); 5486 if (is_rightmost_tree_rec && next_free > 1) { 5487 /* 5488 * We skip the edge update if this path will 5489 * be deleted by the rotate code. 5490 */ 5491 rec = &el->l_recs[next_free - 1]; 5492 ocfs2_adjust_rightmost_records(handle, et, path, 5493 rec); 5494 } 5495 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5496 /* Remove leftmost portion of the record. */ 5497 le32_add_cpu(&rec->e_cpos, len); 5498 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5499 le16_add_cpu(&rec->e_leaf_clusters, -len); 5500 } else if (rec_range == trunc_range) { 5501 /* Remove rightmost portion of the record */ 5502 le16_add_cpu(&rec->e_leaf_clusters, -len); 5503 if (is_rightmost_tree_rec) 5504 ocfs2_adjust_rightmost_records(handle, et, path, rec); 5505 } else { 5506 /* Caller should have trapped this. */ 5507 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) " 5508 "(%u, %u)\n", 5509 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5510 le32_to_cpu(rec->e_cpos), 5511 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5512 BUG(); 5513 } 5514 5515 if (left_path) { 5516 int subtree_index; 5517 5518 subtree_index = ocfs2_find_subtree_root(et, left_path, path); 5519 ocfs2_complete_edge_insert(handle, left_path, path, 5520 subtree_index); 5521 } 5522 5523 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5524 5525 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc); 5526 if (ret) { 5527 mlog_errno(ret); 5528 goto out; 5529 } 5530 5531 out: 5532 ocfs2_free_path(left_path); 5533 return ret; 5534 } 5535 5536 int ocfs2_remove_extent(handle_t *handle, 5537 struct ocfs2_extent_tree *et, 5538 u32 cpos, u32 len, 5539 struct ocfs2_alloc_context *meta_ac, 5540 struct ocfs2_cached_dealloc_ctxt *dealloc) 5541 { 5542 int ret, index; 5543 u32 rec_range, trunc_range; 5544 struct ocfs2_extent_rec *rec; 5545 struct ocfs2_extent_list *el; 5546 struct ocfs2_path *path = NULL; 5547 5548 /* 5549 * XXX: Why are we truncating to 0 instead of wherever this 5550 * affects us? 5551 */ 5552 ocfs2_et_extent_map_truncate(et, 0); 5553 5554 path = ocfs2_new_path_from_et(et); 5555 if (!path) { 5556 ret = -ENOMEM; 5557 mlog_errno(ret); 5558 goto out; 5559 } 5560 5561 ret = ocfs2_find_path(et->et_ci, path, cpos); 5562 if (ret) { 5563 mlog_errno(ret); 5564 goto out; 5565 } 5566 5567 el = path_leaf_el(path); 5568 index = ocfs2_search_extent_list(el, cpos); 5569 if (index == -1) { 5570 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5571 "Owner %llu has an extent at cpos %u which can no longer be found\n", 5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5573 cpos); 5574 ret = -EROFS; 5575 goto out; 5576 } 5577 5578 /* 5579 * We have 3 cases of extent removal: 5580 * 1) Range covers the entire extent rec 5581 * 2) Range begins or ends on one edge of the extent rec 5582 * 3) Range is in the middle of the extent rec (no shared edges) 5583 * 5584 * For case 1 we remove the extent rec and left rotate to 5585 * fill the hole. 5586 * 5587 * For case 2 we just shrink the existing extent rec, with a 5588 * tree update if the shrinking edge is also the edge of an 5589 * extent block. 5590 * 5591 * For case 3 we do a right split to turn the extent rec into 5592 * something case 2 can handle. 5593 */ 5594 rec = &el->l_recs[index]; 5595 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5596 trunc_range = cpos + len; 5597 5598 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5599 5600 trace_ocfs2_remove_extent( 5601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5602 cpos, len, index, le32_to_cpu(rec->e_cpos), 5603 ocfs2_rec_clusters(el, rec)); 5604 5605 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5606 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5607 cpos, len); 5608 if (ret) { 5609 mlog_errno(ret); 5610 goto out; 5611 } 5612 } else { 5613 ret = ocfs2_split_tree(handle, et, path, index, 5614 trunc_range, meta_ac); 5615 if (ret) { 5616 mlog_errno(ret); 5617 goto out; 5618 } 5619 5620 /* 5621 * The split could have manipulated the tree enough to 5622 * move the record location, so we have to look for it again. 5623 */ 5624 ocfs2_reinit_path(path, 1); 5625 5626 ret = ocfs2_find_path(et->et_ci, path, cpos); 5627 if (ret) { 5628 mlog_errno(ret); 5629 goto out; 5630 } 5631 5632 el = path_leaf_el(path); 5633 index = ocfs2_search_extent_list(el, cpos); 5634 if (index == -1) { 5635 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5636 "Owner %llu: split at cpos %u lost record\n", 5637 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5638 cpos); 5639 ret = -EROFS; 5640 goto out; 5641 } 5642 5643 /* 5644 * Double check our values here. If anything is fishy, 5645 * it's easier to catch it at the top level. 5646 */ 5647 rec = &el->l_recs[index]; 5648 rec_range = le32_to_cpu(rec->e_cpos) + 5649 ocfs2_rec_clusters(el, rec); 5650 if (rec_range != trunc_range) { 5651 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci), 5652 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n", 5653 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), 5654 cpos, len, le32_to_cpu(rec->e_cpos), 5655 ocfs2_rec_clusters(el, rec)); 5656 ret = -EROFS; 5657 goto out; 5658 } 5659 5660 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc, 5661 cpos, len); 5662 if (ret) { 5663 mlog_errno(ret); 5664 goto out; 5665 } 5666 } 5667 5668 out: 5669 ocfs2_free_path(path); 5670 return ret; 5671 } 5672 5673 /* 5674 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the 5675 * same as ocfs2_lock_alloctors(), except for it accepts a blocks 5676 * number to reserve some extra blocks, and it only handles meta 5677 * data allocations. 5678 * 5679 * Currently, only ocfs2_remove_btree_range() uses it for truncating 5680 * and punching holes. 5681 */ 5682 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode, 5683 struct ocfs2_extent_tree *et, 5684 u32 extents_to_split, 5685 struct ocfs2_alloc_context **ac, 5686 int extra_blocks) 5687 { 5688 int ret = 0, num_free_extents; 5689 unsigned int max_recs_needed = 2 * extents_to_split; 5690 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5691 5692 *ac = NULL; 5693 5694 num_free_extents = ocfs2_num_free_extents(et); 5695 if (num_free_extents < 0) { 5696 ret = num_free_extents; 5697 mlog_errno(ret); 5698 goto out; 5699 } 5700 5701 if (!num_free_extents || 5702 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed)) 5703 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el); 5704 5705 if (extra_blocks) { 5706 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac); 5707 if (ret < 0) { 5708 if (ret != -ENOSPC) 5709 mlog_errno(ret); 5710 goto out; 5711 } 5712 } 5713 5714 out: 5715 if (ret) { 5716 if (*ac) { 5717 ocfs2_free_alloc_context(*ac); 5718 *ac = NULL; 5719 } 5720 } 5721 5722 return ret; 5723 } 5724 5725 int ocfs2_remove_btree_range(struct inode *inode, 5726 struct ocfs2_extent_tree *et, 5727 u32 cpos, u32 phys_cpos, u32 len, int flags, 5728 struct ocfs2_cached_dealloc_ctxt *dealloc, 5729 u64 refcount_loc, bool refcount_tree_locked) 5730 { 5731 int ret, credits = 0, extra_blocks = 0; 5732 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5733 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5734 struct inode *tl_inode = osb->osb_tl_inode; 5735 handle_t *handle; 5736 struct ocfs2_alloc_context *meta_ac = NULL; 5737 struct ocfs2_refcount_tree *ref_tree = NULL; 5738 5739 if ((flags & OCFS2_EXT_REFCOUNTED) && len) { 5740 BUG_ON(!ocfs2_is_refcount_inode(inode)); 5741 5742 if (!refcount_tree_locked) { 5743 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 5744 &ref_tree, NULL); 5745 if (ret) { 5746 mlog_errno(ret); 5747 goto bail; 5748 } 5749 } 5750 5751 ret = ocfs2_prepare_refcount_change_for_del(inode, 5752 refcount_loc, 5753 phys_blkno, 5754 len, 5755 &credits, 5756 &extra_blocks); 5757 if (ret < 0) { 5758 mlog_errno(ret); 5759 goto bail; 5760 } 5761 } 5762 5763 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac, 5764 extra_blocks); 5765 if (ret) { 5766 mlog_errno(ret); 5767 goto bail; 5768 } 5769 5770 inode_lock(tl_inode); 5771 5772 if (ocfs2_truncate_log_needs_flush(osb)) { 5773 ret = __ocfs2_flush_truncate_log(osb); 5774 if (ret < 0) { 5775 mlog_errno(ret); 5776 goto out; 5777 } 5778 } 5779 5780 handle = ocfs2_start_trans(osb, 5781 ocfs2_remove_extent_credits(osb->sb) + credits); 5782 if (IS_ERR(handle)) { 5783 ret = PTR_ERR(handle); 5784 mlog_errno(ret); 5785 goto out; 5786 } 5787 5788 ret = ocfs2_et_root_journal_access(handle, et, 5789 OCFS2_JOURNAL_ACCESS_WRITE); 5790 if (ret) { 5791 mlog_errno(ret); 5792 goto out_commit; 5793 } 5794 5795 dquot_free_space_nodirty(inode, 5796 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5797 5798 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc); 5799 if (ret) { 5800 mlog_errno(ret); 5801 goto out_commit; 5802 } 5803 5804 ocfs2_et_update_clusters(et, -len); 5805 ocfs2_update_inode_fsync_trans(handle, inode, 1); 5806 5807 ocfs2_journal_dirty(handle, et->et_root_bh); 5808 5809 if (phys_blkno) { 5810 if (flags & OCFS2_EXT_REFCOUNTED) 5811 ret = ocfs2_decrease_refcount(inode, handle, 5812 ocfs2_blocks_to_clusters(osb->sb, 5813 phys_blkno), 5814 len, meta_ac, 5815 dealloc, 1); 5816 else 5817 ret = ocfs2_truncate_log_append(osb, handle, 5818 phys_blkno, len); 5819 if (ret) 5820 mlog_errno(ret); 5821 5822 } 5823 5824 out_commit: 5825 ocfs2_commit_trans(osb, handle); 5826 out: 5827 inode_unlock(tl_inode); 5828 bail: 5829 if (meta_ac) 5830 ocfs2_free_alloc_context(meta_ac); 5831 5832 if (ref_tree) 5833 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 5834 5835 return ret; 5836 } 5837 5838 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5839 { 5840 struct buffer_head *tl_bh = osb->osb_tl_bh; 5841 struct ocfs2_dinode *di; 5842 struct ocfs2_truncate_log *tl; 5843 5844 di = (struct ocfs2_dinode *) tl_bh->b_data; 5845 tl = &di->id2.i_dealloc; 5846 5847 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5848 "slot %d, invalid truncate log parameters: used = " 5849 "%u, count = %u\n", osb->slot_num, 5850 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5851 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5852 } 5853 5854 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5855 unsigned int new_start) 5856 { 5857 unsigned int tail_index; 5858 unsigned int current_tail; 5859 5860 /* No records, nothing to coalesce */ 5861 if (!le16_to_cpu(tl->tl_used)) 5862 return 0; 5863 5864 tail_index = le16_to_cpu(tl->tl_used) - 1; 5865 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5866 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5867 5868 return current_tail == new_start; 5869 } 5870 5871 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5872 handle_t *handle, 5873 u64 start_blk, 5874 unsigned int num_clusters) 5875 { 5876 int status, index; 5877 unsigned int start_cluster, tl_count; 5878 struct inode *tl_inode = osb->osb_tl_inode; 5879 struct buffer_head *tl_bh = osb->osb_tl_bh; 5880 struct ocfs2_dinode *di; 5881 struct ocfs2_truncate_log *tl; 5882 5883 BUG_ON(inode_trylock(tl_inode)); 5884 5885 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5886 5887 di = (struct ocfs2_dinode *) tl_bh->b_data; 5888 5889 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5890 * by the underlying call to ocfs2_read_inode_block(), so any 5891 * corruption is a code bug */ 5892 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5893 5894 tl = &di->id2.i_dealloc; 5895 tl_count = le16_to_cpu(tl->tl_count); 5896 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5897 tl_count == 0, 5898 "Truncate record count on #%llu invalid " 5899 "wanted %u, actual %u\n", 5900 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5901 ocfs2_truncate_recs_per_inode(osb->sb), 5902 le16_to_cpu(tl->tl_count)); 5903 5904 /* Caller should have known to flush before calling us. */ 5905 index = le16_to_cpu(tl->tl_used); 5906 if (index >= tl_count) { 5907 status = -ENOSPC; 5908 mlog_errno(status); 5909 goto bail; 5910 } 5911 5912 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5913 OCFS2_JOURNAL_ACCESS_WRITE); 5914 if (status < 0) { 5915 mlog_errno(status); 5916 goto bail; 5917 } 5918 5919 trace_ocfs2_truncate_log_append( 5920 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index, 5921 start_cluster, num_clusters); 5922 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5923 /* 5924 * Move index back to the record we are coalescing with. 5925 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5926 */ 5927 index--; 5928 5929 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5930 trace_ocfs2_truncate_log_append( 5931 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5932 index, le32_to_cpu(tl->tl_recs[index].t_start), 5933 num_clusters); 5934 } else { 5935 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5936 tl->tl_used = cpu_to_le16(index + 1); 5937 } 5938 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5939 5940 ocfs2_journal_dirty(handle, tl_bh); 5941 5942 osb->truncated_clusters += num_clusters; 5943 bail: 5944 return status; 5945 } 5946 5947 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5948 struct inode *data_alloc_inode, 5949 struct buffer_head *data_alloc_bh) 5950 { 5951 int status = 0; 5952 int i; 5953 unsigned int num_clusters; 5954 u64 start_blk; 5955 struct ocfs2_truncate_rec rec; 5956 struct ocfs2_dinode *di; 5957 struct ocfs2_truncate_log *tl; 5958 struct inode *tl_inode = osb->osb_tl_inode; 5959 struct buffer_head *tl_bh = osb->osb_tl_bh; 5960 handle_t *handle; 5961 5962 di = (struct ocfs2_dinode *) tl_bh->b_data; 5963 tl = &di->id2.i_dealloc; 5964 i = le16_to_cpu(tl->tl_used) - 1; 5965 while (i >= 0) { 5966 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5967 if (IS_ERR(handle)) { 5968 status = PTR_ERR(handle); 5969 mlog_errno(status); 5970 goto bail; 5971 } 5972 5973 /* Caller has given us at least enough credits to 5974 * update the truncate log dinode */ 5975 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh, 5976 OCFS2_JOURNAL_ACCESS_WRITE); 5977 if (status < 0) { 5978 mlog_errno(status); 5979 goto bail; 5980 } 5981 5982 tl->tl_used = cpu_to_le16(i); 5983 5984 ocfs2_journal_dirty(handle, tl_bh); 5985 5986 rec = tl->tl_recs[i]; 5987 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5988 le32_to_cpu(rec.t_start)); 5989 num_clusters = le32_to_cpu(rec.t_clusters); 5990 5991 /* if start_blk is not set, we ignore the record as 5992 * invalid. */ 5993 if (start_blk) { 5994 trace_ocfs2_replay_truncate_records( 5995 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5996 i, le32_to_cpu(rec.t_start), num_clusters); 5997 5998 status = ocfs2_free_clusters(handle, data_alloc_inode, 5999 data_alloc_bh, start_blk, 6000 num_clusters); 6001 if (status < 0) { 6002 mlog_errno(status); 6003 goto bail; 6004 } 6005 } 6006 6007 ocfs2_commit_trans(osb, handle); 6008 i--; 6009 } 6010 6011 osb->truncated_clusters = 0; 6012 6013 bail: 6014 return status; 6015 } 6016 6017 /* Expects you to already be holding tl_inode->i_mutex */ 6018 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6019 { 6020 int status; 6021 unsigned int num_to_flush; 6022 struct inode *tl_inode = osb->osb_tl_inode; 6023 struct inode *data_alloc_inode = NULL; 6024 struct buffer_head *tl_bh = osb->osb_tl_bh; 6025 struct buffer_head *data_alloc_bh = NULL; 6026 struct ocfs2_dinode *di; 6027 struct ocfs2_truncate_log *tl; 6028 6029 BUG_ON(inode_trylock(tl_inode)); 6030 6031 di = (struct ocfs2_dinode *) tl_bh->b_data; 6032 6033 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 6034 * by the underlying call to ocfs2_read_inode_block(), so any 6035 * corruption is a code bug */ 6036 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6037 6038 tl = &di->id2.i_dealloc; 6039 num_to_flush = le16_to_cpu(tl->tl_used); 6040 trace_ocfs2_flush_truncate_log( 6041 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 6042 num_to_flush); 6043 if (!num_to_flush) { 6044 status = 0; 6045 goto out; 6046 } 6047 6048 data_alloc_inode = ocfs2_get_system_file_inode(osb, 6049 GLOBAL_BITMAP_SYSTEM_INODE, 6050 OCFS2_INVALID_SLOT); 6051 if (!data_alloc_inode) { 6052 status = -EINVAL; 6053 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 6054 goto out; 6055 } 6056 6057 inode_lock(data_alloc_inode); 6058 6059 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 6060 if (status < 0) { 6061 mlog_errno(status); 6062 goto out_mutex; 6063 } 6064 6065 status = ocfs2_replay_truncate_records(osb, data_alloc_inode, 6066 data_alloc_bh); 6067 if (status < 0) 6068 mlog_errno(status); 6069 6070 brelse(data_alloc_bh); 6071 ocfs2_inode_unlock(data_alloc_inode, 1); 6072 6073 out_mutex: 6074 inode_unlock(data_alloc_inode); 6075 iput(data_alloc_inode); 6076 6077 out: 6078 return status; 6079 } 6080 6081 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 6082 { 6083 int status; 6084 struct inode *tl_inode = osb->osb_tl_inode; 6085 6086 inode_lock(tl_inode); 6087 status = __ocfs2_flush_truncate_log(osb); 6088 inode_unlock(tl_inode); 6089 6090 return status; 6091 } 6092 6093 static void ocfs2_truncate_log_worker(struct work_struct *work) 6094 { 6095 int status; 6096 struct ocfs2_super *osb = 6097 container_of(work, struct ocfs2_super, 6098 osb_truncate_log_wq.work); 6099 6100 status = ocfs2_flush_truncate_log(osb); 6101 if (status < 0) 6102 mlog_errno(status); 6103 else 6104 ocfs2_init_steal_slots(osb); 6105 } 6106 6107 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 6108 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 6109 int cancel) 6110 { 6111 if (osb->osb_tl_inode && 6112 atomic_read(&osb->osb_tl_disable) == 0) { 6113 /* We want to push off log flushes while truncates are 6114 * still running. */ 6115 if (cancel) 6116 cancel_delayed_work(&osb->osb_truncate_log_wq); 6117 6118 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq, 6119 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 6120 } 6121 } 6122 6123 /* 6124 * Try to flush truncate logs if we can free enough clusters from it. 6125 * As for return value, "< 0" means error, "0" no space and "1" means 6126 * we have freed enough spaces and let the caller try to allocate again. 6127 */ 6128 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 6129 unsigned int needed) 6130 { 6131 tid_t target; 6132 int ret = 0; 6133 unsigned int truncated_clusters; 6134 6135 inode_lock(osb->osb_tl_inode); 6136 truncated_clusters = osb->truncated_clusters; 6137 inode_unlock(osb->osb_tl_inode); 6138 6139 /* 6140 * Check whether we can succeed in allocating if we free 6141 * the truncate log. 6142 */ 6143 if (truncated_clusters < needed) 6144 goto out; 6145 6146 ret = ocfs2_flush_truncate_log(osb); 6147 if (ret) { 6148 mlog_errno(ret); 6149 goto out; 6150 } 6151 6152 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 6153 jbd2_log_wait_commit(osb->journal->j_journal, target); 6154 ret = 1; 6155 } 6156 out: 6157 return ret; 6158 } 6159 6160 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 6161 int slot_num, 6162 struct inode **tl_inode, 6163 struct buffer_head **tl_bh) 6164 { 6165 int status; 6166 struct inode *inode = NULL; 6167 struct buffer_head *bh = NULL; 6168 6169 inode = ocfs2_get_system_file_inode(osb, 6170 TRUNCATE_LOG_SYSTEM_INODE, 6171 slot_num); 6172 if (!inode) { 6173 status = -EINVAL; 6174 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 6175 goto bail; 6176 } 6177 6178 status = ocfs2_read_inode_block(inode, &bh); 6179 if (status < 0) { 6180 iput(inode); 6181 mlog_errno(status); 6182 goto bail; 6183 } 6184 6185 *tl_inode = inode; 6186 *tl_bh = bh; 6187 bail: 6188 return status; 6189 } 6190 6191 /* called during the 1st stage of node recovery. we stamp a clean 6192 * truncate log and pass back a copy for processing later. if the 6193 * truncate log does not require processing, a *tl_copy is set to 6194 * NULL. */ 6195 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 6196 int slot_num, 6197 struct ocfs2_dinode **tl_copy) 6198 { 6199 int status; 6200 struct inode *tl_inode = NULL; 6201 struct buffer_head *tl_bh = NULL; 6202 struct ocfs2_dinode *di; 6203 struct ocfs2_truncate_log *tl; 6204 6205 *tl_copy = NULL; 6206 6207 trace_ocfs2_begin_truncate_log_recovery(slot_num); 6208 6209 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 6210 if (status < 0) { 6211 mlog_errno(status); 6212 goto bail; 6213 } 6214 6215 di = (struct ocfs2_dinode *) tl_bh->b_data; 6216 6217 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 6218 * validated by the underlying call to ocfs2_read_inode_block(), 6219 * so any corruption is a code bug */ 6220 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 6221 6222 tl = &di->id2.i_dealloc; 6223 if (le16_to_cpu(tl->tl_used)) { 6224 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used)); 6225 6226 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 6227 if (!(*tl_copy)) { 6228 status = -ENOMEM; 6229 mlog_errno(status); 6230 goto bail; 6231 } 6232 6233 /* Assuming the write-out below goes well, this copy 6234 * will be passed back to recovery for processing. */ 6235 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 6236 6237 /* All we need to do to clear the truncate log is set 6238 * tl_used. */ 6239 tl->tl_used = 0; 6240 6241 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 6242 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode)); 6243 if (status < 0) { 6244 mlog_errno(status); 6245 goto bail; 6246 } 6247 } 6248 6249 bail: 6250 iput(tl_inode); 6251 brelse(tl_bh); 6252 6253 if (status < 0) { 6254 kfree(*tl_copy); 6255 *tl_copy = NULL; 6256 mlog_errno(status); 6257 } 6258 6259 return status; 6260 } 6261 6262 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6263 struct ocfs2_dinode *tl_copy) 6264 { 6265 int status = 0; 6266 int i; 6267 unsigned int clusters, num_recs, start_cluster; 6268 u64 start_blk; 6269 handle_t *handle; 6270 struct inode *tl_inode = osb->osb_tl_inode; 6271 struct ocfs2_truncate_log *tl; 6272 6273 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6274 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6275 return -EINVAL; 6276 } 6277 6278 tl = &tl_copy->id2.i_dealloc; 6279 num_recs = le16_to_cpu(tl->tl_used); 6280 trace_ocfs2_complete_truncate_log_recovery( 6281 (unsigned long long)le64_to_cpu(tl_copy->i_blkno), 6282 num_recs); 6283 6284 inode_lock(tl_inode); 6285 for(i = 0; i < num_recs; i++) { 6286 if (ocfs2_truncate_log_needs_flush(osb)) { 6287 status = __ocfs2_flush_truncate_log(osb); 6288 if (status < 0) { 6289 mlog_errno(status); 6290 goto bail_up; 6291 } 6292 } 6293 6294 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6295 if (IS_ERR(handle)) { 6296 status = PTR_ERR(handle); 6297 mlog_errno(status); 6298 goto bail_up; 6299 } 6300 6301 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6302 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6303 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6304 6305 status = ocfs2_truncate_log_append(osb, handle, 6306 start_blk, clusters); 6307 ocfs2_commit_trans(osb, handle); 6308 if (status < 0) { 6309 mlog_errno(status); 6310 goto bail_up; 6311 } 6312 } 6313 6314 bail_up: 6315 inode_unlock(tl_inode); 6316 6317 return status; 6318 } 6319 6320 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6321 { 6322 int status; 6323 struct inode *tl_inode = osb->osb_tl_inode; 6324 6325 atomic_set(&osb->osb_tl_disable, 1); 6326 6327 if (tl_inode) { 6328 cancel_delayed_work(&osb->osb_truncate_log_wq); 6329 flush_workqueue(osb->ocfs2_wq); 6330 6331 status = ocfs2_flush_truncate_log(osb); 6332 if (status < 0) 6333 mlog_errno(status); 6334 6335 brelse(osb->osb_tl_bh); 6336 iput(osb->osb_tl_inode); 6337 } 6338 } 6339 6340 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6341 { 6342 int status; 6343 struct inode *tl_inode = NULL; 6344 struct buffer_head *tl_bh = NULL; 6345 6346 status = ocfs2_get_truncate_log_info(osb, 6347 osb->slot_num, 6348 &tl_inode, 6349 &tl_bh); 6350 if (status < 0) 6351 mlog_errno(status); 6352 6353 /* ocfs2_truncate_log_shutdown keys on the existence of 6354 * osb->osb_tl_inode so we don't set any of the osb variables 6355 * until we're sure all is well. */ 6356 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6357 ocfs2_truncate_log_worker); 6358 atomic_set(&osb->osb_tl_disable, 0); 6359 osb->osb_tl_bh = tl_bh; 6360 osb->osb_tl_inode = tl_inode; 6361 6362 return status; 6363 } 6364 6365 /* 6366 * Delayed de-allocation of suballocator blocks. 6367 * 6368 * Some sets of block de-allocations might involve multiple suballocator inodes. 6369 * 6370 * The locking for this can get extremely complicated, especially when 6371 * the suballocator inodes to delete from aren't known until deep 6372 * within an unrelated codepath. 6373 * 6374 * ocfs2_extent_block structures are a good example of this - an inode 6375 * btree could have been grown by any number of nodes each allocating 6376 * out of their own suballoc inode. 6377 * 6378 * These structures allow the delay of block de-allocation until a 6379 * later time, when locking of multiple cluster inodes won't cause 6380 * deadlock. 6381 */ 6382 6383 /* 6384 * Describe a single bit freed from a suballocator. For the block 6385 * suballocators, it represents one block. For the global cluster 6386 * allocator, it represents some clusters and free_bit indicates 6387 * clusters number. 6388 */ 6389 struct ocfs2_cached_block_free { 6390 struct ocfs2_cached_block_free *free_next; 6391 u64 free_bg; 6392 u64 free_blk; 6393 unsigned int free_bit; 6394 }; 6395 6396 struct ocfs2_per_slot_free_list { 6397 struct ocfs2_per_slot_free_list *f_next_suballocator; 6398 int f_inode_type; 6399 int f_slot; 6400 struct ocfs2_cached_block_free *f_first; 6401 }; 6402 6403 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6404 int sysfile_type, 6405 int slot, 6406 struct ocfs2_cached_block_free *head) 6407 { 6408 int ret; 6409 u64 bg_blkno; 6410 handle_t *handle; 6411 struct inode *inode; 6412 struct buffer_head *di_bh = NULL; 6413 struct ocfs2_cached_block_free *tmp; 6414 6415 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6416 if (!inode) { 6417 ret = -EINVAL; 6418 mlog_errno(ret); 6419 goto out; 6420 } 6421 6422 inode_lock(inode); 6423 6424 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6425 if (ret) { 6426 mlog_errno(ret); 6427 goto out_mutex; 6428 } 6429 6430 while (head) { 6431 if (head->free_bg) 6432 bg_blkno = head->free_bg; 6433 else 6434 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6435 head->free_bit); 6436 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6437 if (IS_ERR(handle)) { 6438 ret = PTR_ERR(handle); 6439 mlog_errno(ret); 6440 goto out_unlock; 6441 } 6442 6443 trace_ocfs2_free_cached_blocks( 6444 (unsigned long long)head->free_blk, head->free_bit); 6445 6446 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6447 head->free_bit, bg_blkno, 1); 6448 if (ret) 6449 mlog_errno(ret); 6450 6451 ocfs2_commit_trans(osb, handle); 6452 6453 tmp = head; 6454 head = head->free_next; 6455 kfree(tmp); 6456 } 6457 6458 out_unlock: 6459 ocfs2_inode_unlock(inode, 1); 6460 brelse(di_bh); 6461 out_mutex: 6462 inode_unlock(inode); 6463 iput(inode); 6464 out: 6465 while(head) { 6466 /* Premature exit may have left some dangling items. */ 6467 tmp = head; 6468 head = head->free_next; 6469 kfree(tmp); 6470 } 6471 6472 return ret; 6473 } 6474 6475 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6476 u64 blkno, unsigned int bit) 6477 { 6478 int ret = 0; 6479 struct ocfs2_cached_block_free *item; 6480 6481 item = kzalloc(sizeof(*item), GFP_NOFS); 6482 if (item == NULL) { 6483 ret = -ENOMEM; 6484 mlog_errno(ret); 6485 return ret; 6486 } 6487 6488 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit); 6489 6490 item->free_blk = blkno; 6491 item->free_bit = bit; 6492 item->free_next = ctxt->c_global_allocator; 6493 6494 ctxt->c_global_allocator = item; 6495 return ret; 6496 } 6497 6498 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6499 struct ocfs2_cached_block_free *head) 6500 { 6501 struct ocfs2_cached_block_free *tmp; 6502 struct inode *tl_inode = osb->osb_tl_inode; 6503 handle_t *handle; 6504 int ret = 0; 6505 6506 inode_lock(tl_inode); 6507 6508 while (head) { 6509 if (ocfs2_truncate_log_needs_flush(osb)) { 6510 ret = __ocfs2_flush_truncate_log(osb); 6511 if (ret < 0) { 6512 mlog_errno(ret); 6513 break; 6514 } 6515 } 6516 6517 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6518 if (IS_ERR(handle)) { 6519 ret = PTR_ERR(handle); 6520 mlog_errno(ret); 6521 break; 6522 } 6523 6524 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6525 head->free_bit); 6526 6527 ocfs2_commit_trans(osb, handle); 6528 tmp = head; 6529 head = head->free_next; 6530 kfree(tmp); 6531 6532 if (ret < 0) { 6533 mlog_errno(ret); 6534 break; 6535 } 6536 } 6537 6538 inode_unlock(tl_inode); 6539 6540 while (head) { 6541 /* Premature exit may have left some dangling items. */ 6542 tmp = head; 6543 head = head->free_next; 6544 kfree(tmp); 6545 } 6546 6547 return ret; 6548 } 6549 6550 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6551 struct ocfs2_cached_dealloc_ctxt *ctxt) 6552 { 6553 int ret = 0, ret2; 6554 struct ocfs2_per_slot_free_list *fl; 6555 6556 if (!ctxt) 6557 return 0; 6558 6559 while (ctxt->c_first_suballocator) { 6560 fl = ctxt->c_first_suballocator; 6561 6562 if (fl->f_first) { 6563 trace_ocfs2_run_deallocs(fl->f_inode_type, 6564 fl->f_slot); 6565 ret2 = ocfs2_free_cached_blocks(osb, 6566 fl->f_inode_type, 6567 fl->f_slot, 6568 fl->f_first); 6569 if (ret2) 6570 mlog_errno(ret2); 6571 if (!ret) 6572 ret = ret2; 6573 } 6574 6575 ctxt->c_first_suballocator = fl->f_next_suballocator; 6576 kfree(fl); 6577 } 6578 6579 if (ctxt->c_global_allocator) { 6580 ret2 = ocfs2_free_cached_clusters(osb, 6581 ctxt->c_global_allocator); 6582 if (ret2) 6583 mlog_errno(ret2); 6584 if (!ret) 6585 ret = ret2; 6586 6587 ctxt->c_global_allocator = NULL; 6588 } 6589 6590 return ret; 6591 } 6592 6593 static struct ocfs2_per_slot_free_list * 6594 ocfs2_find_per_slot_free_list(int type, 6595 int slot, 6596 struct ocfs2_cached_dealloc_ctxt *ctxt) 6597 { 6598 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6599 6600 while (fl) { 6601 if (fl->f_inode_type == type && fl->f_slot == slot) 6602 return fl; 6603 6604 fl = fl->f_next_suballocator; 6605 } 6606 6607 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6608 if (fl) { 6609 fl->f_inode_type = type; 6610 fl->f_slot = slot; 6611 fl->f_first = NULL; 6612 fl->f_next_suballocator = ctxt->c_first_suballocator; 6613 6614 ctxt->c_first_suballocator = fl; 6615 } 6616 return fl; 6617 } 6618 6619 static struct ocfs2_per_slot_free_list * 6620 ocfs2_find_preferred_free_list(int type, 6621 int preferred_slot, 6622 int *real_slot, 6623 struct ocfs2_cached_dealloc_ctxt *ctxt) 6624 { 6625 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6626 6627 while (fl) { 6628 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) { 6629 *real_slot = fl->f_slot; 6630 return fl; 6631 } 6632 6633 fl = fl->f_next_suballocator; 6634 } 6635 6636 /* If we can't find any free list matching preferred slot, just use 6637 * the first one. 6638 */ 6639 fl = ctxt->c_first_suballocator; 6640 *real_slot = fl->f_slot; 6641 6642 return fl; 6643 } 6644 6645 /* Return Value 1 indicates empty */ 6646 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et) 6647 { 6648 struct ocfs2_per_slot_free_list *fl = NULL; 6649 6650 if (!et->et_dealloc) 6651 return 1; 6652 6653 fl = et->et_dealloc->c_first_suballocator; 6654 if (!fl) 6655 return 1; 6656 6657 if (!fl->f_first) 6658 return 1; 6659 6660 return 0; 6661 } 6662 6663 /* If extent was deleted from tree due to extent rotation and merging, and 6664 * no metadata is reserved ahead of time. Try to reuse some extents 6665 * just deleted. This is only used to reuse extent blocks. 6666 * It is supposed to find enough extent blocks in dealloc if our estimation 6667 * on metadata is accurate. 6668 */ 6669 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle, 6670 struct ocfs2_extent_tree *et, 6671 struct buffer_head **new_eb_bh, 6672 int blk_wanted, int *blk_given) 6673 { 6674 int i, status = 0, real_slot; 6675 struct ocfs2_cached_dealloc_ctxt *dealloc; 6676 struct ocfs2_per_slot_free_list *fl; 6677 struct ocfs2_cached_block_free *bf; 6678 struct ocfs2_extent_block *eb; 6679 struct ocfs2_super *osb = 6680 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci)); 6681 6682 *blk_given = 0; 6683 6684 /* If extent tree doesn't have a dealloc, this is not faulty. Just 6685 * tell upper caller dealloc can't provide any block and it should 6686 * ask for alloc to claim more space. 6687 */ 6688 dealloc = et->et_dealloc; 6689 if (!dealloc) 6690 goto bail; 6691 6692 for (i = 0; i < blk_wanted; i++) { 6693 /* Prefer to use local slot */ 6694 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE, 6695 osb->slot_num, &real_slot, 6696 dealloc); 6697 /* If no more block can be reused, we should claim more 6698 * from alloc. Just return here normally. 6699 */ 6700 if (!fl) { 6701 status = 0; 6702 break; 6703 } 6704 6705 bf = fl->f_first; 6706 fl->f_first = bf->free_next; 6707 6708 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk); 6709 if (new_eb_bh[i] == NULL) { 6710 status = -ENOMEM; 6711 mlog_errno(status); 6712 goto bail; 6713 } 6714 6715 mlog(0, "Reusing block(%llu) from " 6716 "dealloc(local slot:%d, real slot:%d)\n", 6717 bf->free_blk, osb->slot_num, real_slot); 6718 6719 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]); 6720 6721 status = ocfs2_journal_access_eb(handle, et->et_ci, 6722 new_eb_bh[i], 6723 OCFS2_JOURNAL_ACCESS_CREATE); 6724 if (status < 0) { 6725 mlog_errno(status); 6726 goto bail; 6727 } 6728 6729 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize); 6730 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data; 6731 6732 /* We can't guarantee that buffer head is still cached, so 6733 * polutlate the extent block again. 6734 */ 6735 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 6736 eb->h_blkno = cpu_to_le64(bf->free_blk); 6737 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 6738 eb->h_suballoc_slot = cpu_to_le16(real_slot); 6739 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg); 6740 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit); 6741 eb->h_list.l_count = 6742 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 6743 6744 /* We'll also be dirtied by the caller, so 6745 * this isn't absolutely necessary. 6746 */ 6747 ocfs2_journal_dirty(handle, new_eb_bh[i]); 6748 6749 if (!fl->f_first) { 6750 dealloc->c_first_suballocator = fl->f_next_suballocator; 6751 kfree(fl); 6752 } 6753 kfree(bf); 6754 } 6755 6756 *blk_given = i; 6757 6758 bail: 6759 if (unlikely(status < 0)) { 6760 for (i = 0; i < blk_wanted; i++) 6761 brelse(new_eb_bh[i]); 6762 } 6763 6764 return status; 6765 } 6766 6767 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6768 int type, int slot, u64 suballoc, 6769 u64 blkno, unsigned int bit) 6770 { 6771 int ret; 6772 struct ocfs2_per_slot_free_list *fl; 6773 struct ocfs2_cached_block_free *item; 6774 6775 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6776 if (fl == NULL) { 6777 ret = -ENOMEM; 6778 mlog_errno(ret); 6779 goto out; 6780 } 6781 6782 item = kzalloc(sizeof(*item), GFP_NOFS); 6783 if (item == NULL) { 6784 ret = -ENOMEM; 6785 mlog_errno(ret); 6786 goto out; 6787 } 6788 6789 trace_ocfs2_cache_block_dealloc(type, slot, 6790 (unsigned long long)suballoc, 6791 (unsigned long long)blkno, bit); 6792 6793 item->free_bg = suballoc; 6794 item->free_blk = blkno; 6795 item->free_bit = bit; 6796 item->free_next = fl->f_first; 6797 6798 fl->f_first = item; 6799 6800 ret = 0; 6801 out: 6802 return ret; 6803 } 6804 6805 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6806 struct ocfs2_extent_block *eb) 6807 { 6808 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6809 le16_to_cpu(eb->h_suballoc_slot), 6810 le64_to_cpu(eb->h_suballoc_loc), 6811 le64_to_cpu(eb->h_blkno), 6812 le16_to_cpu(eb->h_suballoc_bit)); 6813 } 6814 6815 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6816 { 6817 set_buffer_uptodate(bh); 6818 mark_buffer_dirty(bh); 6819 return 0; 6820 } 6821 6822 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6823 unsigned int from, unsigned int to, 6824 struct page *page, int zero, u64 *phys) 6825 { 6826 int ret, partial = 0; 6827 6828 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6829 if (ret) 6830 mlog_errno(ret); 6831 6832 if (zero) 6833 zero_user_segment(page, from, to); 6834 6835 /* 6836 * Need to set the buffers we zero'd into uptodate 6837 * here if they aren't - ocfs2_map_page_blocks() 6838 * might've skipped some 6839 */ 6840 ret = walk_page_buffers(handle, page_buffers(page), 6841 from, to, &partial, 6842 ocfs2_zero_func); 6843 if (ret < 0) 6844 mlog_errno(ret); 6845 else if (ocfs2_should_order_data(inode)) { 6846 ret = ocfs2_jbd2_file_inode(handle, inode); 6847 if (ret < 0) 6848 mlog_errno(ret); 6849 } 6850 6851 if (!partial) 6852 SetPageUptodate(page); 6853 6854 flush_dcache_page(page); 6855 } 6856 6857 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6858 loff_t end, struct page **pages, 6859 int numpages, u64 phys, handle_t *handle) 6860 { 6861 int i; 6862 struct page *page; 6863 unsigned int from, to = PAGE_SIZE; 6864 struct super_block *sb = inode->i_sb; 6865 6866 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6867 6868 if (numpages == 0) 6869 goto out; 6870 6871 to = PAGE_SIZE; 6872 for(i = 0; i < numpages; i++) { 6873 page = pages[i]; 6874 6875 from = start & (PAGE_SIZE - 1); 6876 if ((end >> PAGE_SHIFT) == page->index) 6877 to = end & (PAGE_SIZE - 1); 6878 6879 BUG_ON(from > PAGE_SIZE); 6880 BUG_ON(to > PAGE_SIZE); 6881 6882 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6883 &phys); 6884 6885 start = (page->index + 1) << PAGE_SHIFT; 6886 } 6887 out: 6888 if (pages) 6889 ocfs2_unlock_and_free_pages(pages, numpages); 6890 } 6891 6892 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 6893 struct page **pages, int *num) 6894 { 6895 int numpages, ret = 0; 6896 struct address_space *mapping = inode->i_mapping; 6897 unsigned long index; 6898 loff_t last_page_bytes; 6899 6900 BUG_ON(start > end); 6901 6902 numpages = 0; 6903 last_page_bytes = PAGE_ALIGN(end); 6904 index = start >> PAGE_SHIFT; 6905 do { 6906 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS); 6907 if (!pages[numpages]) { 6908 ret = -ENOMEM; 6909 mlog_errno(ret); 6910 goto out; 6911 } 6912 6913 numpages++; 6914 index++; 6915 } while (index < (last_page_bytes >> PAGE_SHIFT)); 6916 6917 out: 6918 if (ret != 0) { 6919 if (pages) 6920 ocfs2_unlock_and_free_pages(pages, numpages); 6921 numpages = 0; 6922 } 6923 6924 *num = numpages; 6925 6926 return ret; 6927 } 6928 6929 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6930 struct page **pages, int *num) 6931 { 6932 struct super_block *sb = inode->i_sb; 6933 6934 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6935 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6936 6937 return ocfs2_grab_pages(inode, start, end, pages, num); 6938 } 6939 6940 /* 6941 * Zero the area past i_size but still within an allocated 6942 * cluster. This avoids exposing nonzero data on subsequent file 6943 * extends. 6944 * 6945 * We need to call this before i_size is updated on the inode because 6946 * otherwise block_write_full_page() will skip writeout of pages past 6947 * i_size. The new_i_size parameter is passed for this reason. 6948 */ 6949 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6950 u64 range_start, u64 range_end) 6951 { 6952 int ret = 0, numpages; 6953 struct page **pages = NULL; 6954 u64 phys; 6955 unsigned int ext_flags; 6956 struct super_block *sb = inode->i_sb; 6957 6958 /* 6959 * File systems which don't support sparse files zero on every 6960 * extend. 6961 */ 6962 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6963 return 0; 6964 6965 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6966 sizeof(struct page *), GFP_NOFS); 6967 if (pages == NULL) { 6968 ret = -ENOMEM; 6969 mlog_errno(ret); 6970 goto out; 6971 } 6972 6973 if (range_start == range_end) 6974 goto out; 6975 6976 ret = ocfs2_extent_map_get_blocks(inode, 6977 range_start >> sb->s_blocksize_bits, 6978 &phys, NULL, &ext_flags); 6979 if (ret) { 6980 mlog_errno(ret); 6981 goto out; 6982 } 6983 6984 /* 6985 * Tail is a hole, or is marked unwritten. In either case, we 6986 * can count on read and write to return/push zero's. 6987 */ 6988 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6989 goto out; 6990 6991 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6992 &numpages); 6993 if (ret) { 6994 mlog_errno(ret); 6995 goto out; 6996 } 6997 6998 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 6999 numpages, phys, handle); 7000 7001 /* 7002 * Initiate writeout of the pages we zero'd here. We don't 7003 * wait on them - the truncate_inode_pages() call later will 7004 * do that for us. 7005 */ 7006 ret = filemap_fdatawrite_range(inode->i_mapping, range_start, 7007 range_end - 1); 7008 if (ret) 7009 mlog_errno(ret); 7010 7011 out: 7012 kfree(pages); 7013 7014 return ret; 7015 } 7016 7017 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7018 struct ocfs2_dinode *di) 7019 { 7020 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7021 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7022 7023 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7024 memset(&di->id2, 0, blocksize - 7025 offsetof(struct ocfs2_dinode, id2) - 7026 xattrsize); 7027 else 7028 memset(&di->id2, 0, blocksize - 7029 offsetof(struct ocfs2_dinode, id2)); 7030 } 7031 7032 void ocfs2_dinode_new_extent_list(struct inode *inode, 7033 struct ocfs2_dinode *di) 7034 { 7035 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7036 di->id2.i_list.l_tree_depth = 0; 7037 di->id2.i_list.l_next_free_rec = 0; 7038 di->id2.i_list.l_count = cpu_to_le16( 7039 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7040 } 7041 7042 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7043 { 7044 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7045 struct ocfs2_inline_data *idata = &di->id2.i_data; 7046 7047 spin_lock(&oi->ip_lock); 7048 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7049 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7050 spin_unlock(&oi->ip_lock); 7051 7052 /* 7053 * We clear the entire i_data structure here so that all 7054 * fields can be properly initialized. 7055 */ 7056 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7057 7058 idata->id_count = cpu_to_le16( 7059 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7060 } 7061 7062 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7063 struct buffer_head *di_bh) 7064 { 7065 int ret, i, has_data, num_pages = 0; 7066 int need_free = 0; 7067 u32 bit_off, num; 7068 handle_t *handle; 7069 u64 uninitialized_var(block); 7070 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7071 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7072 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7073 struct ocfs2_alloc_context *data_ac = NULL; 7074 struct page **pages = NULL; 7075 loff_t end = osb->s_clustersize; 7076 struct ocfs2_extent_tree et; 7077 int did_quota = 0; 7078 7079 has_data = i_size_read(inode) ? 1 : 0; 7080 7081 if (has_data) { 7082 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7083 sizeof(struct page *), GFP_NOFS); 7084 if (pages == NULL) { 7085 ret = -ENOMEM; 7086 mlog_errno(ret); 7087 return ret; 7088 } 7089 7090 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7091 if (ret) { 7092 mlog_errno(ret); 7093 goto free_pages; 7094 } 7095 } 7096 7097 handle = ocfs2_start_trans(osb, 7098 ocfs2_inline_to_extents_credits(osb->sb)); 7099 if (IS_ERR(handle)) { 7100 ret = PTR_ERR(handle); 7101 mlog_errno(ret); 7102 goto out; 7103 } 7104 7105 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7106 OCFS2_JOURNAL_ACCESS_WRITE); 7107 if (ret) { 7108 mlog_errno(ret); 7109 goto out_commit; 7110 } 7111 7112 if (has_data) { 7113 unsigned int page_end; 7114 u64 phys; 7115 7116 ret = dquot_alloc_space_nodirty(inode, 7117 ocfs2_clusters_to_bytes(osb->sb, 1)); 7118 if (ret) 7119 goto out_commit; 7120 did_quota = 1; 7121 7122 data_ac->ac_resv = &oi->ip_la_data_resv; 7123 7124 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off, 7125 &num); 7126 if (ret) { 7127 mlog_errno(ret); 7128 goto out_commit; 7129 } 7130 7131 /* 7132 * Save two copies, one for insert, and one that can 7133 * be changed by ocfs2_map_and_dirty_page() below. 7134 */ 7135 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7136 7137 /* 7138 * Non sparse file systems zero on extend, so no need 7139 * to do that now. 7140 */ 7141 if (!ocfs2_sparse_alloc(osb) && 7142 PAGE_SIZE < osb->s_clustersize) 7143 end = PAGE_SIZE; 7144 7145 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7146 if (ret) { 7147 mlog_errno(ret); 7148 need_free = 1; 7149 goto out_commit; 7150 } 7151 7152 /* 7153 * This should populate the 1st page for us and mark 7154 * it up to date. 7155 */ 7156 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7157 if (ret) { 7158 mlog_errno(ret); 7159 need_free = 1; 7160 goto out_unlock; 7161 } 7162 7163 page_end = PAGE_SIZE; 7164 if (PAGE_SIZE > osb->s_clustersize) 7165 page_end = osb->s_clustersize; 7166 7167 for (i = 0; i < num_pages; i++) 7168 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7169 pages[i], i > 0, &phys); 7170 } 7171 7172 spin_lock(&oi->ip_lock); 7173 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7174 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7175 spin_unlock(&oi->ip_lock); 7176 7177 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7178 ocfs2_dinode_new_extent_list(inode, di); 7179 7180 ocfs2_journal_dirty(handle, di_bh); 7181 7182 if (has_data) { 7183 /* 7184 * An error at this point should be extremely rare. If 7185 * this proves to be false, we could always re-build 7186 * the in-inode data from our pages. 7187 */ 7188 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7189 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL); 7190 if (ret) { 7191 mlog_errno(ret); 7192 need_free = 1; 7193 goto out_unlock; 7194 } 7195 7196 inode->i_blocks = ocfs2_inode_sector_count(inode); 7197 } 7198 7199 out_unlock: 7200 if (pages) 7201 ocfs2_unlock_and_free_pages(pages, num_pages); 7202 7203 out_commit: 7204 if (ret < 0 && did_quota) 7205 dquot_free_space_nodirty(inode, 7206 ocfs2_clusters_to_bytes(osb->sb, 1)); 7207 7208 if (need_free) { 7209 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL) 7210 ocfs2_free_local_alloc_bits(osb, handle, data_ac, 7211 bit_off, num); 7212 else 7213 ocfs2_free_clusters(handle, 7214 data_ac->ac_inode, 7215 data_ac->ac_bh, 7216 ocfs2_clusters_to_blocks(osb->sb, bit_off), 7217 num); 7218 } 7219 7220 ocfs2_commit_trans(osb, handle); 7221 7222 out: 7223 if (data_ac) 7224 ocfs2_free_alloc_context(data_ac); 7225 free_pages: 7226 kfree(pages); 7227 return ret; 7228 } 7229 7230 /* 7231 * It is expected, that by the time you call this function, 7232 * inode->i_size and fe->i_size have been adjusted. 7233 * 7234 * WARNING: This will kfree the truncate context 7235 */ 7236 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7237 struct inode *inode, 7238 struct buffer_head *di_bh) 7239 { 7240 int status = 0, i, flags = 0; 7241 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff; 7242 u64 blkno = 0; 7243 struct ocfs2_extent_list *el; 7244 struct ocfs2_extent_rec *rec; 7245 struct ocfs2_path *path = NULL; 7246 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7247 struct ocfs2_extent_list *root_el = &(di->id2.i_list); 7248 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc); 7249 struct ocfs2_extent_tree et; 7250 struct ocfs2_cached_dealloc_ctxt dealloc; 7251 struct ocfs2_refcount_tree *ref_tree = NULL; 7252 7253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 7254 ocfs2_init_dealloc_ctxt(&dealloc); 7255 7256 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7257 i_size_read(inode)); 7258 7259 path = ocfs2_new_path(di_bh, &di->id2.i_list, 7260 ocfs2_journal_access_di); 7261 if (!path) { 7262 status = -ENOMEM; 7263 mlog_errno(status); 7264 goto bail; 7265 } 7266 7267 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7268 7269 start: 7270 /* 7271 * Check that we still have allocation to delete. 7272 */ 7273 if (OCFS2_I(inode)->ip_clusters == 0) { 7274 status = 0; 7275 goto bail; 7276 } 7277 7278 /* 7279 * Truncate always works against the rightmost tree branch. 7280 */ 7281 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX); 7282 if (status) { 7283 mlog_errno(status); 7284 goto bail; 7285 } 7286 7287 trace_ocfs2_commit_truncate( 7288 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7289 new_highest_cpos, 7290 OCFS2_I(inode)->ip_clusters, 7291 path->p_tree_depth); 7292 7293 /* 7294 * By now, el will point to the extent list on the bottom most 7295 * portion of this tree. Only the tail record is considered in 7296 * each pass. 7297 * 7298 * We handle the following cases, in order: 7299 * - empty extent: delete the remaining branch 7300 * - remove the entire record 7301 * - remove a partial record 7302 * - no record needs to be removed (truncate has completed) 7303 */ 7304 el = path_leaf_el(path); 7305 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7306 ocfs2_error(inode->i_sb, 7307 "Inode %llu has empty extent block at %llu\n", 7308 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7309 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7310 status = -EROFS; 7311 goto bail; 7312 } 7313 7314 i = le16_to_cpu(el->l_next_free_rec) - 1; 7315 rec = &el->l_recs[i]; 7316 flags = rec->e_flags; 7317 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 7318 7319 if (i == 0 && ocfs2_is_empty_extent(rec)) { 7320 /* 7321 * Lower levels depend on this never happening, but it's best 7322 * to check it up here before changing the tree. 7323 */ 7324 if (root_el->l_tree_depth && rec->e_int_clusters == 0) { 7325 mlog(ML_ERROR, "Inode %lu has an empty " 7326 "extent record, depth %u\n", inode->i_ino, 7327 le16_to_cpu(root_el->l_tree_depth)); 7328 status = ocfs2_remove_rightmost_empty_extent(osb, 7329 &et, path, &dealloc); 7330 if (status) { 7331 mlog_errno(status); 7332 goto bail; 7333 } 7334 7335 ocfs2_reinit_path(path, 1); 7336 goto start; 7337 } else { 7338 trunc_cpos = le32_to_cpu(rec->e_cpos); 7339 trunc_len = 0; 7340 blkno = 0; 7341 } 7342 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) { 7343 /* 7344 * Truncate entire record. 7345 */ 7346 trunc_cpos = le32_to_cpu(rec->e_cpos); 7347 trunc_len = ocfs2_rec_clusters(el, rec); 7348 blkno = le64_to_cpu(rec->e_blkno); 7349 } else if (range > new_highest_cpos) { 7350 /* 7351 * Partial truncate. it also should be 7352 * the last truncate we're doing. 7353 */ 7354 trunc_cpos = new_highest_cpos; 7355 trunc_len = range - new_highest_cpos; 7356 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos); 7357 blkno = le64_to_cpu(rec->e_blkno) + 7358 ocfs2_clusters_to_blocks(inode->i_sb, coff); 7359 } else { 7360 /* 7361 * Truncate completed, leave happily. 7362 */ 7363 status = 0; 7364 goto bail; 7365 } 7366 7367 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 7368 7369 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) { 7370 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1, 7371 &ref_tree, NULL); 7372 if (status) { 7373 mlog_errno(status); 7374 goto bail; 7375 } 7376 } 7377 7378 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 7379 phys_cpos, trunc_len, flags, &dealloc, 7380 refcount_loc, true); 7381 if (status < 0) { 7382 mlog_errno(status); 7383 goto bail; 7384 } 7385 7386 ocfs2_reinit_path(path, 1); 7387 7388 /* 7389 * The check above will catch the case where we've truncated 7390 * away all allocation. 7391 */ 7392 goto start; 7393 7394 bail: 7395 if (ref_tree) 7396 ocfs2_unlock_refcount_tree(osb, ref_tree, 1); 7397 7398 ocfs2_schedule_truncate_log_flush(osb, 1); 7399 7400 ocfs2_run_deallocs(osb, &dealloc); 7401 7402 ocfs2_free_path(path); 7403 7404 return status; 7405 } 7406 7407 /* 7408 * 'start' is inclusive, 'end' is not. 7409 */ 7410 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7411 unsigned int start, unsigned int end, int trunc) 7412 { 7413 int ret; 7414 unsigned int numbytes; 7415 handle_t *handle; 7416 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7417 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7418 struct ocfs2_inline_data *idata = &di->id2.i_data; 7419 7420 if (end > i_size_read(inode)) 7421 end = i_size_read(inode); 7422 7423 BUG_ON(start > end); 7424 7425 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7426 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7427 !ocfs2_supports_inline_data(osb)) { 7428 ocfs2_error(inode->i_sb, 7429 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7430 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7431 le16_to_cpu(di->i_dyn_features), 7432 OCFS2_I(inode)->ip_dyn_features, 7433 osb->s_feature_incompat); 7434 ret = -EROFS; 7435 goto out; 7436 } 7437 7438 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7439 if (IS_ERR(handle)) { 7440 ret = PTR_ERR(handle); 7441 mlog_errno(ret); 7442 goto out; 7443 } 7444 7445 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 7446 OCFS2_JOURNAL_ACCESS_WRITE); 7447 if (ret) { 7448 mlog_errno(ret); 7449 goto out_commit; 7450 } 7451 7452 numbytes = end - start; 7453 memset(idata->id_data + start, 0, numbytes); 7454 7455 /* 7456 * No need to worry about the data page here - it's been 7457 * truncated already and inline data doesn't need it for 7458 * pushing zero's to disk, so we'll let readpage pick it up 7459 * later. 7460 */ 7461 if (trunc) { 7462 i_size_write(inode, start); 7463 di->i_size = cpu_to_le64(start); 7464 } 7465 7466 inode->i_blocks = ocfs2_inode_sector_count(inode); 7467 inode->i_ctime = inode->i_mtime = current_time(inode); 7468 7469 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7470 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7471 7472 ocfs2_update_inode_fsync_trans(handle, inode, 1); 7473 ocfs2_journal_dirty(handle, di_bh); 7474 7475 out_commit: 7476 ocfs2_commit_trans(osb, handle); 7477 7478 out: 7479 return ret; 7480 } 7481 7482 static int ocfs2_trim_extent(struct super_block *sb, 7483 struct ocfs2_group_desc *gd, 7484 u64 group, u32 start, u32 count) 7485 { 7486 u64 discard, bcount; 7487 struct ocfs2_super *osb = OCFS2_SB(sb); 7488 7489 bcount = ocfs2_clusters_to_blocks(sb, count); 7490 discard = ocfs2_clusters_to_blocks(sb, start); 7491 7492 /* 7493 * For the first cluster group, the gd->bg_blkno is not at the start 7494 * of the group, but at an offset from the start. If we add it while 7495 * calculating discard for first group, we will wrongly start fstrim a 7496 * few blocks after the desried start block and the range can cross 7497 * over into the next cluster group. So, add it only if this is not 7498 * the first cluster group. 7499 */ 7500 if (group != osb->first_cluster_group_blkno) 7501 discard += le64_to_cpu(gd->bg_blkno); 7502 7503 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount); 7504 7505 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0); 7506 } 7507 7508 static int ocfs2_trim_group(struct super_block *sb, 7509 struct ocfs2_group_desc *gd, u64 group, 7510 u32 start, u32 max, u32 minbits) 7511 { 7512 int ret = 0, count = 0, next; 7513 void *bitmap = gd->bg_bitmap; 7514 7515 if (le16_to_cpu(gd->bg_free_bits_count) < minbits) 7516 return 0; 7517 7518 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno), 7519 start, max, minbits); 7520 7521 while (start < max) { 7522 start = ocfs2_find_next_zero_bit(bitmap, max, start); 7523 if (start >= max) 7524 break; 7525 next = ocfs2_find_next_bit(bitmap, max, start); 7526 7527 if ((next - start) >= minbits) { 7528 ret = ocfs2_trim_extent(sb, gd, group, 7529 start, next - start); 7530 if (ret < 0) { 7531 mlog_errno(ret); 7532 break; 7533 } 7534 count += next - start; 7535 } 7536 start = next + 1; 7537 7538 if (fatal_signal_pending(current)) { 7539 count = -ERESTARTSYS; 7540 break; 7541 } 7542 7543 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits) 7544 break; 7545 } 7546 7547 if (ret < 0) 7548 count = ret; 7549 7550 return count; 7551 } 7552 7553 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range) 7554 { 7555 struct ocfs2_super *osb = OCFS2_SB(sb); 7556 u64 start, len, trimmed, first_group, last_group, group; 7557 int ret, cnt; 7558 u32 first_bit, last_bit, minlen; 7559 struct buffer_head *main_bm_bh = NULL; 7560 struct inode *main_bm_inode = NULL; 7561 struct buffer_head *gd_bh = NULL; 7562 struct ocfs2_dinode *main_bm; 7563 struct ocfs2_group_desc *gd = NULL; 7564 struct ocfs2_trim_fs_info info, *pinfo = NULL; 7565 7566 start = range->start >> osb->s_clustersize_bits; 7567 len = range->len >> osb->s_clustersize_bits; 7568 minlen = range->minlen >> osb->s_clustersize_bits; 7569 7570 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize) 7571 return -EINVAL; 7572 7573 main_bm_inode = ocfs2_get_system_file_inode(osb, 7574 GLOBAL_BITMAP_SYSTEM_INODE, 7575 OCFS2_INVALID_SLOT); 7576 if (!main_bm_inode) { 7577 ret = -EIO; 7578 mlog_errno(ret); 7579 goto out; 7580 } 7581 7582 inode_lock(main_bm_inode); 7583 7584 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0); 7585 if (ret < 0) { 7586 mlog_errno(ret); 7587 goto out_mutex; 7588 } 7589 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data; 7590 7591 if (start >= le32_to_cpu(main_bm->i_clusters)) { 7592 ret = -EINVAL; 7593 goto out_unlock; 7594 } 7595 7596 len = range->len >> osb->s_clustersize_bits; 7597 if (start + len > le32_to_cpu(main_bm->i_clusters)) 7598 len = le32_to_cpu(main_bm->i_clusters) - start; 7599 7600 trace_ocfs2_trim_fs(start, len, minlen); 7601 7602 ocfs2_trim_fs_lock_res_init(osb); 7603 ret = ocfs2_trim_fs_lock(osb, NULL, 1); 7604 if (ret < 0) { 7605 if (ret != -EAGAIN) { 7606 mlog_errno(ret); 7607 ocfs2_trim_fs_lock_res_uninit(osb); 7608 goto out_unlock; 7609 } 7610 7611 mlog(ML_NOTICE, "Wait for trim on device (%s) to " 7612 "finish, which is running from another node.\n", 7613 osb->dev_str); 7614 ret = ocfs2_trim_fs_lock(osb, &info, 0); 7615 if (ret < 0) { 7616 mlog_errno(ret); 7617 ocfs2_trim_fs_lock_res_uninit(osb); 7618 goto out_unlock; 7619 } 7620 7621 if (info.tf_valid && info.tf_success && 7622 info.tf_start == start && info.tf_len == len && 7623 info.tf_minlen == minlen) { 7624 /* Avoid sending duplicated trim to a shared device */ 7625 mlog(ML_NOTICE, "The same trim on device (%s) was " 7626 "just done from node (%u), return.\n", 7627 osb->dev_str, info.tf_nodenum); 7628 range->len = info.tf_trimlen; 7629 goto out_trimunlock; 7630 } 7631 } 7632 7633 info.tf_nodenum = osb->node_num; 7634 info.tf_start = start; 7635 info.tf_len = len; 7636 info.tf_minlen = minlen; 7637 7638 /* Determine first and last group to examine based on start and len */ 7639 first_group = ocfs2_which_cluster_group(main_bm_inode, start); 7640 if (first_group == osb->first_cluster_group_blkno) 7641 first_bit = start; 7642 else 7643 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group); 7644 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1); 7645 last_bit = osb->bitmap_cpg; 7646 7647 trimmed = 0; 7648 for (group = first_group; group <= last_group;) { 7649 if (first_bit + len >= osb->bitmap_cpg) 7650 last_bit = osb->bitmap_cpg; 7651 else 7652 last_bit = first_bit + len; 7653 7654 ret = ocfs2_read_group_descriptor(main_bm_inode, 7655 main_bm, group, 7656 &gd_bh); 7657 if (ret < 0) { 7658 mlog_errno(ret); 7659 break; 7660 } 7661 7662 gd = (struct ocfs2_group_desc *)gd_bh->b_data; 7663 cnt = ocfs2_trim_group(sb, gd, group, 7664 first_bit, last_bit, minlen); 7665 brelse(gd_bh); 7666 gd_bh = NULL; 7667 if (cnt < 0) { 7668 ret = cnt; 7669 mlog_errno(ret); 7670 break; 7671 } 7672 7673 trimmed += cnt; 7674 len -= osb->bitmap_cpg - first_bit; 7675 first_bit = 0; 7676 if (group == osb->first_cluster_group_blkno) 7677 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7678 else 7679 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg); 7680 } 7681 range->len = trimmed * sb->s_blocksize; 7682 7683 info.tf_trimlen = range->len; 7684 info.tf_success = (ret ? 0 : 1); 7685 pinfo = &info; 7686 out_trimunlock: 7687 ocfs2_trim_fs_unlock(osb, pinfo); 7688 ocfs2_trim_fs_lock_res_uninit(osb); 7689 out_unlock: 7690 ocfs2_inode_unlock(main_bm_inode, 0); 7691 brelse(main_bm_bh); 7692 out_mutex: 7693 inode_unlock(main_bm_inode); 7694 iput(main_bm_inode); 7695 out: 7696 return ret; 7697 } 7698