xref: /linux/fs/ocfs2/alloc.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters !=
180 			 le32_to_cpu(rec->e_cpos)),
181 			"Device %s, asking for sparse allocation: inode %llu, "
182 			"cpos %u, clusters %u\n",
183 			osb->dev_str,
184 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
185 			rec->e_cpos,
186 			OCFS2_I(inode)->ip_clusters);
187 
188 	return 0;
189 }
190 
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 				     struct ocfs2_extent_tree *et)
193 {
194 	struct ocfs2_dinode *di = et->et_object;
195 
196 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198 
199 	return 0;
200 }
201 
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 	struct ocfs2_dinode *di = et->et_object;
205 
206 	et->et_root_el = &di->id2.i_list;
207 }
208 
209 
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 	struct ocfs2_xattr_value_buf *vb = et->et_object;
213 
214 	et->et_root_el = &vb->vb_xv->xr_list;
215 }
216 
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 					      u64 blkno)
219 {
220 	struct ocfs2_xattr_value_buf *vb = et->et_object;
221 
222 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224 
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 	struct ocfs2_xattr_value_buf *vb = et->et_object;
228 
229 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231 
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 					      struct ocfs2_extent_tree *et,
234 					      u32 clusters)
235 {
236 	struct ocfs2_xattr_value_buf *vb = et->et_object;
237 
238 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240 
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
243 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
244 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
245 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
246 };
247 
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 	struct ocfs2_xattr_block *xb = et->et_object;
251 
252 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254 
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 						    struct ocfs2_extent_tree *et)
257 {
258 	et->et_max_leaf_clusters =
259 		ocfs2_clusters_for_bytes(inode->i_sb,
260 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262 
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 					     u64 blkno)
265 {
266 	struct ocfs2_xattr_block *xb = et->et_object;
267 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 
269 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271 
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 	struct ocfs2_xattr_block *xb = et->et_object;
275 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 
277 	return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279 
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 					     struct ocfs2_extent_tree *et,
282 					     u32 clusters)
283 {
284 	struct ocfs2_xattr_block *xb = et->et_object;
285 
286 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
294 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296 
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298 					  u64 blkno)
299 {
300 	struct ocfs2_dx_root_block *dx_root = et->et_object;
301 
302 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304 
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307 	struct ocfs2_dx_root_block *dx_root = et->et_object;
308 
309 	return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311 
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313 					  struct ocfs2_extent_tree *et,
314 					  u32 clusters)
315 {
316 	struct ocfs2_dx_root_block *dx_root = et->et_object;
317 
318 	le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320 
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322 				      struct ocfs2_extent_tree *et)
323 {
324 	struct ocfs2_dx_root_block *dx_root = et->et_object;
325 
326 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327 
328 	return 0;
329 }
330 
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333 	struct ocfs2_dx_root_block *dx_root = et->et_object;
334 
335 	et->et_root_el = &dx_root->dr_list;
336 }
337 
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
340 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
341 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
342 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
343 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
344 };
345 
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347 				     struct inode *inode,
348 				     struct buffer_head *bh,
349 				     ocfs2_journal_access_func access,
350 				     void *obj,
351 				     struct ocfs2_extent_tree_operations *ops)
352 {
353 	et->et_ops = ops;
354 	et->et_root_bh = bh;
355 	et->et_root_journal_access = access;
356 	if (!obj)
357 		obj = (void *)bh->b_data;
358 	et->et_object = obj;
359 
360 	et->et_ops->eo_fill_root_el(et);
361 	if (!et->et_ops->eo_fill_max_leaf_clusters)
362 		et->et_max_leaf_clusters = 0;
363 	else
364 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366 
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368 				   struct inode *inode,
369 				   struct buffer_head *bh)
370 {
371 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372 				 NULL, &ocfs2_dinode_et_ops);
373 }
374 
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376 				       struct inode *inode,
377 				       struct buffer_head *bh)
378 {
379 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380 				 NULL, &ocfs2_xattr_tree_et_ops);
381 }
382 
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384 					struct inode *inode,
385 					struct ocfs2_xattr_value_buf *vb)
386 {
387 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388 				 &ocfs2_xattr_value_et_ops);
389 }
390 
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392 				    struct inode *inode,
393 				    struct buffer_head *bh)
394 {
395 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396 				 NULL, &ocfs2_dx_root_et_ops);
397 }
398 
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 					    u64 new_last_eb_blk)
401 {
402 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404 
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 	return et->et_ops->eo_get_last_eb_blk(et);
408 }
409 
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411 					    struct ocfs2_extent_tree *et,
412 					    u32 clusters)
413 {
414 	et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416 
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418 					       struct inode *inode,
419 					       struct ocfs2_extent_tree *et,
420 					       int type)
421 {
422 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
423 					  type);
424 }
425 
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427 					struct ocfs2_extent_tree *et,
428 					struct ocfs2_extent_rec *rec)
429 {
430 	int ret = 0;
431 
432 	if (et->et_ops->eo_insert_check)
433 		ret = et->et_ops->eo_insert_check(inode, et, rec);
434 	return ret;
435 }
436 
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438 					struct ocfs2_extent_tree *et)
439 {
440 	int ret = 0;
441 
442 	if (et->et_ops->eo_sanity_check)
443 		ret = et->et_ops->eo_sanity_check(inode, et);
444 	return ret;
445 }
446 
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449 					 struct ocfs2_extent_block *eb);
450 
451 /*
452  * Structures which describe a path through a btree, and functions to
453  * manipulate them.
454  *
455  * The idea here is to be as generic as possible with the tree
456  * manipulation code.
457  */
458 struct ocfs2_path_item {
459 	struct buffer_head		*bh;
460 	struct ocfs2_extent_list	*el;
461 };
462 
463 #define OCFS2_MAX_PATH_DEPTH	5
464 
465 struct ocfs2_path {
466 	int				p_tree_depth;
467 	ocfs2_journal_access_func	p_root_access;
468 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470 
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477 
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479 			   u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481 					   handle_t *handle,
482 					   struct ocfs2_path *path,
483 					   struct ocfs2_extent_rec *insert_rec);
484 /*
485  * Reset the actual path elements so that we can re-use the structure
486  * to build another path. Generally, this involves freeing the buffer
487  * heads.
488  */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491 	int i, start = 0, depth = 0;
492 	struct ocfs2_path_item *node;
493 
494 	if (keep_root)
495 		start = 1;
496 
497 	for(i = start; i < path_num_items(path); i++) {
498 		node = &path->p_node[i];
499 
500 		brelse(node->bh);
501 		node->bh = NULL;
502 		node->el = NULL;
503 	}
504 
505 	/*
506 	 * Tree depth may change during truncate, or insert. If we're
507 	 * keeping the root extent list, then make sure that our path
508 	 * structure reflects the proper depth.
509 	 */
510 	if (keep_root)
511 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512 	else
513 		path_root_access(path) = NULL;
514 
515 	path->p_tree_depth = depth;
516 }
517 
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520 	if (path) {
521 		ocfs2_reinit_path(path, 0);
522 		kfree(path);
523 	}
524 }
525 
526 /*
527  * All the elements of src into dest. After this call, src could be freed
528  * without affecting dest.
529  *
530  * Both paths should have the same root. Any non-root elements of dest
531  * will be freed.
532  */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535 	int i;
536 
537 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
538 	BUG_ON(path_root_el(dest) != path_root_el(src));
539 	BUG_ON(path_root_access(dest) != path_root_access(src));
540 
541 	ocfs2_reinit_path(dest, 1);
542 
543 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544 		dest->p_node[i].bh = src->p_node[i].bh;
545 		dest->p_node[i].el = src->p_node[i].el;
546 
547 		if (dest->p_node[i].bh)
548 			get_bh(dest->p_node[i].bh);
549 	}
550 }
551 
552 /*
553  * Make the *dest path the same as src and re-initialize src path to
554  * have a root only.
555  */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558 	int i;
559 
560 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
561 	BUG_ON(path_root_access(dest) != path_root_access(src));
562 
563 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564 		brelse(dest->p_node[i].bh);
565 
566 		dest->p_node[i].bh = src->p_node[i].bh;
567 		dest->p_node[i].el = src->p_node[i].el;
568 
569 		src->p_node[i].bh = NULL;
570 		src->p_node[i].el = NULL;
571 	}
572 }
573 
574 /*
575  * Insert an extent block at given index.
576  *
577  * This will not take an additional reference on eb_bh.
578  */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580 					struct buffer_head *eb_bh)
581 {
582 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583 
584 	/*
585 	 * Right now, no root bh is an extent block, so this helps
586 	 * catch code errors with dinode trees. The assertion can be
587 	 * safely removed if we ever need to insert extent block
588 	 * structures at the root.
589 	 */
590 	BUG_ON(index == 0);
591 
592 	path->p_node[index].bh = eb_bh;
593 	path->p_node[index].el = &eb->h_list;
594 }
595 
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597 					 struct ocfs2_extent_list *root_el,
598 					 ocfs2_journal_access_func access)
599 {
600 	struct ocfs2_path *path;
601 
602 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603 
604 	path = kzalloc(sizeof(*path), GFP_NOFS);
605 	if (path) {
606 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607 		get_bh(root_bh);
608 		path_root_bh(path) = root_bh;
609 		path_root_el(path) = root_el;
610 		path_root_access(path) = access;
611 	}
612 
613 	return path;
614 }
615 
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619 			      path_root_access(path));
620 }
621 
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625 			      et->et_root_journal_access);
626 }
627 
628 /*
629  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
630  * otherwise it's the root_access function.
631  *
632  * I don't like the way this function's name looks next to
633  * ocfs2_journal_access_path(), but I don't have a better one.
634  */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636 					struct inode *inode,
637 					struct ocfs2_path *path,
638 					int idx)
639 {
640 	ocfs2_journal_access_func access = path_root_access(path);
641 
642 	if (!access)
643 		access = ocfs2_journal_access;
644 
645 	if (idx)
646 		access = ocfs2_journal_access_eb;
647 
648 	return access(handle, inode, path->p_node[idx].bh,
649 		      OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651 
652 /*
653  * Convenience function to journal all components in a path.
654  */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656 				     struct ocfs2_path *path)
657 {
658 	int i, ret = 0;
659 
660 	if (!path)
661 		goto out;
662 
663 	for(i = 0; i < path_num_items(path); i++) {
664 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665 		if (ret < 0) {
666 			mlog_errno(ret);
667 			goto out;
668 		}
669 	}
670 
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Return the index of the extent record which contains cluster #v_cluster.
677  * -1 is returned if it was not found.
678  *
679  * Should work fine on interior and exterior nodes.
680  */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683 	int ret = -1;
684 	int i;
685 	struct ocfs2_extent_rec *rec;
686 	u32 rec_end, rec_start, clusters;
687 
688 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689 		rec = &el->l_recs[i];
690 
691 		rec_start = le32_to_cpu(rec->e_cpos);
692 		clusters = ocfs2_rec_clusters(el, rec);
693 
694 		rec_end = rec_start + clusters;
695 
696 		if (v_cluster >= rec_start && v_cluster < rec_end) {
697 			ret = i;
698 			break;
699 		}
700 	}
701 
702 	return ret;
703 }
704 
705 enum ocfs2_contig_type {
706 	CONTIG_NONE = 0,
707 	CONTIG_LEFT,
708 	CONTIG_RIGHT,
709 	CONTIG_LEFTRIGHT,
710 };
711 
712 
713 /*
714  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715  * ocfs2_extent_contig only work properly against leaf nodes!
716  */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718 				     struct ocfs2_extent_rec *ext,
719 				     u64 blkno)
720 {
721 	u64 blk_end = le64_to_cpu(ext->e_blkno);
722 
723 	blk_end += ocfs2_clusters_to_blocks(sb,
724 				    le16_to_cpu(ext->e_leaf_clusters));
725 
726 	return blkno == blk_end;
727 }
728 
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730 				  struct ocfs2_extent_rec *right)
731 {
732 	u32 left_range;
733 
734 	left_range = le32_to_cpu(left->e_cpos) +
735 		le16_to_cpu(left->e_leaf_clusters);
736 
737 	return (left_range == le32_to_cpu(right->e_cpos));
738 }
739 
740 static enum ocfs2_contig_type
741 	ocfs2_extent_contig(struct inode *inode,
742 			    struct ocfs2_extent_rec *ext,
743 			    struct ocfs2_extent_rec *insert_rec)
744 {
745 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746 
747 	/*
748 	 * Refuse to coalesce extent records with different flag
749 	 * fields - we don't want to mix unwritten extents with user
750 	 * data.
751 	 */
752 	if (ext->e_flags != insert_rec->e_flags)
753 		return CONTIG_NONE;
754 
755 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
756 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757 			return CONTIG_RIGHT;
758 
759 	blkno = le64_to_cpu(ext->e_blkno);
760 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
761 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762 		return CONTIG_LEFT;
763 
764 	return CONTIG_NONE;
765 }
766 
767 /*
768  * NOTE: We can have pretty much any combination of contiguousness and
769  * appending.
770  *
771  * The usefulness of APPEND_TAIL is more in that it lets us know that
772  * we'll have to update the path to that leaf.
773  */
774 enum ocfs2_append_type {
775 	APPEND_NONE = 0,
776 	APPEND_TAIL,
777 };
778 
779 enum ocfs2_split_type {
780 	SPLIT_NONE = 0,
781 	SPLIT_LEFT,
782 	SPLIT_RIGHT,
783 };
784 
785 struct ocfs2_insert_type {
786 	enum ocfs2_split_type	ins_split;
787 	enum ocfs2_append_type	ins_appending;
788 	enum ocfs2_contig_type	ins_contig;
789 	int			ins_contig_index;
790 	int			ins_tree_depth;
791 };
792 
793 struct ocfs2_merge_ctxt {
794 	enum ocfs2_contig_type	c_contig_type;
795 	int			c_has_empty_extent;
796 	int			c_split_covers_rec;
797 };
798 
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800 				       struct buffer_head *bh)
801 {
802 	int rc;
803 	struct ocfs2_extent_block *eb =
804 		(struct ocfs2_extent_block *)bh->b_data;
805 
806 	mlog(0, "Validating extent block %llu\n",
807 	     (unsigned long long)bh->b_blocknr);
808 
809 	BUG_ON(!buffer_uptodate(bh));
810 
811 	/*
812 	 * If the ecc fails, we return the error but otherwise
813 	 * leave the filesystem running.  We know any error is
814 	 * local to this block.
815 	 */
816 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817 	if (rc) {
818 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819 		     (unsigned long long)bh->b_blocknr);
820 		return rc;
821 	}
822 
823 	/*
824 	 * Errors after here are fatal.
825 	 */
826 
827 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828 		ocfs2_error(sb,
829 			    "Extent block #%llu has bad signature %.*s",
830 			    (unsigned long long)bh->b_blocknr, 7,
831 			    eb->h_signature);
832 		return -EINVAL;
833 	}
834 
835 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836 		ocfs2_error(sb,
837 			    "Extent block #%llu has an invalid h_blkno "
838 			    "of %llu",
839 			    (unsigned long long)bh->b_blocknr,
840 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
841 		return -EINVAL;
842 	}
843 
844 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845 		ocfs2_error(sb,
846 			    "Extent block #%llu has an invalid "
847 			    "h_fs_generation of #%u",
848 			    (unsigned long long)bh->b_blocknr,
849 			    le32_to_cpu(eb->h_fs_generation));
850 		return -EINVAL;
851 	}
852 
853 	return 0;
854 }
855 
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857 			    struct buffer_head **bh)
858 {
859 	int rc;
860 	struct buffer_head *tmp = *bh;
861 
862 	rc = ocfs2_read_block(inode, eb_blkno, &tmp,
863 			      ocfs2_validate_extent_block);
864 
865 	/* If ocfs2_read_block() got us a new bh, pass it up. */
866 	if (!rc && !*bh)
867 		*bh = tmp;
868 
869 	return rc;
870 }
871 
872 
873 /*
874  * How many free extents have we got before we need more meta data?
875  */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877 			   struct inode *inode,
878 			   struct ocfs2_extent_tree *et)
879 {
880 	int retval;
881 	struct ocfs2_extent_list *el = NULL;
882 	struct ocfs2_extent_block *eb;
883 	struct buffer_head *eb_bh = NULL;
884 	u64 last_eb_blk = 0;
885 
886 	mlog_entry_void();
887 
888 	el = et->et_root_el;
889 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890 
891 	if (last_eb_blk) {
892 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893 		if (retval < 0) {
894 			mlog_errno(retval);
895 			goto bail;
896 		}
897 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898 		el = &eb->h_list;
899 	}
900 
901 	BUG_ON(el->l_tree_depth != 0);
902 
903 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905 	brelse(eb_bh);
906 
907 	mlog_exit(retval);
908 	return retval;
909 }
910 
911 /* expects array to already be allocated
912  *
913  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914  * l_count for you
915  */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917 				     handle_t *handle,
918 				     struct inode *inode,
919 				     int wanted,
920 				     struct ocfs2_alloc_context *meta_ac,
921 				     struct buffer_head *bhs[])
922 {
923 	int count, status, i;
924 	u16 suballoc_bit_start;
925 	u32 num_got;
926 	u64 first_blkno;
927 	struct ocfs2_extent_block *eb;
928 
929 	mlog_entry_void();
930 
931 	count = 0;
932 	while (count < wanted) {
933 		status = ocfs2_claim_metadata(osb,
934 					      handle,
935 					      meta_ac,
936 					      wanted - count,
937 					      &suballoc_bit_start,
938 					      &num_got,
939 					      &first_blkno);
940 		if (status < 0) {
941 			mlog_errno(status);
942 			goto bail;
943 		}
944 
945 		for(i = count;  i < (num_got + count); i++) {
946 			bhs[i] = sb_getblk(osb->sb, first_blkno);
947 			if (bhs[i] == NULL) {
948 				status = -EIO;
949 				mlog_errno(status);
950 				goto bail;
951 			}
952 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
953 
954 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
955 							 OCFS2_JOURNAL_ACCESS_CREATE);
956 			if (status < 0) {
957 				mlog_errno(status);
958 				goto bail;
959 			}
960 
961 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
962 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
963 			/* Ok, setup the minimal stuff here. */
964 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
965 			eb->h_blkno = cpu_to_le64(first_blkno);
966 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
967 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
968 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
969 			eb->h_list.l_count =
970 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
971 
972 			suballoc_bit_start++;
973 			first_blkno++;
974 
975 			/* We'll also be dirtied by the caller, so
976 			 * this isn't absolutely necessary. */
977 			status = ocfs2_journal_dirty(handle, bhs[i]);
978 			if (status < 0) {
979 				mlog_errno(status);
980 				goto bail;
981 			}
982 		}
983 
984 		count += num_got;
985 	}
986 
987 	status = 0;
988 bail:
989 	if (status < 0) {
990 		for(i = 0; i < wanted; i++) {
991 			brelse(bhs[i]);
992 			bhs[i] = NULL;
993 		}
994 	}
995 	mlog_exit(status);
996 	return status;
997 }
998 
999 /*
1000  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1001  *
1002  * Returns the sum of the rightmost extent rec logical offset and
1003  * cluster count.
1004  *
1005  * ocfs2_add_branch() uses this to determine what logical cluster
1006  * value should be populated into the leftmost new branch records.
1007  *
1008  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1009  * value for the new topmost tree record.
1010  */
1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1012 {
1013 	int i;
1014 
1015 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1016 
1017 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1018 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1019 }
1020 
1021 /*
1022  * Change range of the branches in the right most path according to the leaf
1023  * extent block's rightmost record.
1024  */
1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1026 					 struct inode *inode,
1027 					 struct ocfs2_extent_tree *et)
1028 {
1029 	int status;
1030 	struct ocfs2_path *path = NULL;
1031 	struct ocfs2_extent_list *el;
1032 	struct ocfs2_extent_rec *rec;
1033 
1034 	path = ocfs2_new_path_from_et(et);
1035 	if (!path) {
1036 		status = -ENOMEM;
1037 		return status;
1038 	}
1039 
1040 	status = ocfs2_find_path(inode, path, UINT_MAX);
1041 	if (status < 0) {
1042 		mlog_errno(status);
1043 		goto out;
1044 	}
1045 
1046 	status = ocfs2_extend_trans(handle, path_num_items(path) +
1047 				    handle->h_buffer_credits);
1048 	if (status < 0) {
1049 		mlog_errno(status);
1050 		goto out;
1051 	}
1052 
1053 	status = ocfs2_journal_access_path(inode, handle, path);
1054 	if (status < 0) {
1055 		mlog_errno(status);
1056 		goto out;
1057 	}
1058 
1059 	el = path_leaf_el(path);
1060 	rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1061 
1062 	ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1063 
1064 out:
1065 	ocfs2_free_path(path);
1066 	return status;
1067 }
1068 
1069 /*
1070  * Add an entire tree branch to our inode. eb_bh is the extent block
1071  * to start at, if we don't want to start the branch at the dinode
1072  * structure.
1073  *
1074  * last_eb_bh is required as we have to update it's next_leaf pointer
1075  * for the new last extent block.
1076  *
1077  * the new branch will be 'empty' in the sense that every block will
1078  * contain a single record with cluster count == 0.
1079  */
1080 static int ocfs2_add_branch(struct ocfs2_super *osb,
1081 			    handle_t *handle,
1082 			    struct inode *inode,
1083 			    struct ocfs2_extent_tree *et,
1084 			    struct buffer_head *eb_bh,
1085 			    struct buffer_head **last_eb_bh,
1086 			    struct ocfs2_alloc_context *meta_ac)
1087 {
1088 	int status, new_blocks, i;
1089 	u64 next_blkno, new_last_eb_blk;
1090 	struct buffer_head *bh;
1091 	struct buffer_head **new_eb_bhs = NULL;
1092 	struct ocfs2_extent_block *eb;
1093 	struct ocfs2_extent_list  *eb_el;
1094 	struct ocfs2_extent_list  *el;
1095 	u32 new_cpos, root_end;
1096 
1097 	mlog_entry_void();
1098 
1099 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1100 
1101 	if (eb_bh) {
1102 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1103 		el = &eb->h_list;
1104 	} else
1105 		el = et->et_root_el;
1106 
1107 	/* we never add a branch to a leaf. */
1108 	BUG_ON(!el->l_tree_depth);
1109 
1110 	new_blocks = le16_to_cpu(el->l_tree_depth);
1111 
1112 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1113 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1114 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1115 
1116 	/*
1117 	 * If there is a gap before the root end and the real end
1118 	 * of the righmost leaf block, we need to remove the gap
1119 	 * between new_cpos and root_end first so that the tree
1120 	 * is consistent after we add a new branch(it will start
1121 	 * from new_cpos).
1122 	 */
1123 	if (root_end > new_cpos) {
1124 		mlog(0, "adjust the cluster end from %u to %u\n",
1125 		     root_end, new_cpos);
1126 		status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1127 		if (status) {
1128 			mlog_errno(status);
1129 			goto bail;
1130 		}
1131 	}
1132 
1133 	/* allocate the number of new eb blocks we need */
1134 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1135 			     GFP_KERNEL);
1136 	if (!new_eb_bhs) {
1137 		status = -ENOMEM;
1138 		mlog_errno(status);
1139 		goto bail;
1140 	}
1141 
1142 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1143 					   meta_ac, new_eb_bhs);
1144 	if (status < 0) {
1145 		mlog_errno(status);
1146 		goto bail;
1147 	}
1148 
1149 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1150 	 * linked with the rest of the tree.
1151 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1152 	 *
1153 	 * when we leave the loop, new_last_eb_blk will point to the
1154 	 * newest leaf, and next_blkno will point to the topmost extent
1155 	 * block. */
1156 	next_blkno = new_last_eb_blk = 0;
1157 	for(i = 0; i < new_blocks; i++) {
1158 		bh = new_eb_bhs[i];
1159 		eb = (struct ocfs2_extent_block *) bh->b_data;
1160 		/* ocfs2_create_new_meta_bhs() should create it right! */
1161 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1162 		eb_el = &eb->h_list;
1163 
1164 		status = ocfs2_journal_access_eb(handle, inode, bh,
1165 						 OCFS2_JOURNAL_ACCESS_CREATE);
1166 		if (status < 0) {
1167 			mlog_errno(status);
1168 			goto bail;
1169 		}
1170 
1171 		eb->h_next_leaf_blk = 0;
1172 		eb_el->l_tree_depth = cpu_to_le16(i);
1173 		eb_el->l_next_free_rec = cpu_to_le16(1);
1174 		/*
1175 		 * This actually counts as an empty extent as
1176 		 * c_clusters == 0
1177 		 */
1178 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1179 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1180 		/*
1181 		 * eb_el isn't always an interior node, but even leaf
1182 		 * nodes want a zero'd flags and reserved field so
1183 		 * this gets the whole 32 bits regardless of use.
1184 		 */
1185 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1186 		if (!eb_el->l_tree_depth)
1187 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1188 
1189 		status = ocfs2_journal_dirty(handle, bh);
1190 		if (status < 0) {
1191 			mlog_errno(status);
1192 			goto bail;
1193 		}
1194 
1195 		next_blkno = le64_to_cpu(eb->h_blkno);
1196 	}
1197 
1198 	/* This is a bit hairy. We want to update up to three blocks
1199 	 * here without leaving any of them in an inconsistent state
1200 	 * in case of error. We don't have to worry about
1201 	 * journal_dirty erroring as it won't unless we've aborted the
1202 	 * handle (in which case we would never be here) so reserving
1203 	 * the write with journal_access is all we need to do. */
1204 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1205 					 OCFS2_JOURNAL_ACCESS_WRITE);
1206 	if (status < 0) {
1207 		mlog_errno(status);
1208 		goto bail;
1209 	}
1210 	status = ocfs2_et_root_journal_access(handle, inode, et,
1211 					      OCFS2_JOURNAL_ACCESS_WRITE);
1212 	if (status < 0) {
1213 		mlog_errno(status);
1214 		goto bail;
1215 	}
1216 	if (eb_bh) {
1217 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1218 						 OCFS2_JOURNAL_ACCESS_WRITE);
1219 		if (status < 0) {
1220 			mlog_errno(status);
1221 			goto bail;
1222 		}
1223 	}
1224 
1225 	/* Link the new branch into the rest of the tree (el will
1226 	 * either be on the root_bh, or the extent block passed in. */
1227 	i = le16_to_cpu(el->l_next_free_rec);
1228 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1229 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1230 	el->l_recs[i].e_int_clusters = 0;
1231 	le16_add_cpu(&el->l_next_free_rec, 1);
1232 
1233 	/* fe needs a new last extent block pointer, as does the
1234 	 * next_leaf on the previously last-extent-block. */
1235 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1236 
1237 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1238 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1239 
1240 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1241 	if (status < 0)
1242 		mlog_errno(status);
1243 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1244 	if (status < 0)
1245 		mlog_errno(status);
1246 	if (eb_bh) {
1247 		status = ocfs2_journal_dirty(handle, eb_bh);
1248 		if (status < 0)
1249 			mlog_errno(status);
1250 	}
1251 
1252 	/*
1253 	 * Some callers want to track the rightmost leaf so pass it
1254 	 * back here.
1255 	 */
1256 	brelse(*last_eb_bh);
1257 	get_bh(new_eb_bhs[0]);
1258 	*last_eb_bh = new_eb_bhs[0];
1259 
1260 	status = 0;
1261 bail:
1262 	if (new_eb_bhs) {
1263 		for (i = 0; i < new_blocks; i++)
1264 			brelse(new_eb_bhs[i]);
1265 		kfree(new_eb_bhs);
1266 	}
1267 
1268 	mlog_exit(status);
1269 	return status;
1270 }
1271 
1272 /*
1273  * adds another level to the allocation tree.
1274  * returns back the new extent block so you can add a branch to it
1275  * after this call.
1276  */
1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1278 				  handle_t *handle,
1279 				  struct inode *inode,
1280 				  struct ocfs2_extent_tree *et,
1281 				  struct ocfs2_alloc_context *meta_ac,
1282 				  struct buffer_head **ret_new_eb_bh)
1283 {
1284 	int status, i;
1285 	u32 new_clusters;
1286 	struct buffer_head *new_eb_bh = NULL;
1287 	struct ocfs2_extent_block *eb;
1288 	struct ocfs2_extent_list  *root_el;
1289 	struct ocfs2_extent_list  *eb_el;
1290 
1291 	mlog_entry_void();
1292 
1293 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1294 					   &new_eb_bh);
1295 	if (status < 0) {
1296 		mlog_errno(status);
1297 		goto bail;
1298 	}
1299 
1300 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1301 	/* ocfs2_create_new_meta_bhs() should create it right! */
1302 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1303 
1304 	eb_el = &eb->h_list;
1305 	root_el = et->et_root_el;
1306 
1307 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1308 					 OCFS2_JOURNAL_ACCESS_CREATE);
1309 	if (status < 0) {
1310 		mlog_errno(status);
1311 		goto bail;
1312 	}
1313 
1314 	/* copy the root extent list data into the new extent block */
1315 	eb_el->l_tree_depth = root_el->l_tree_depth;
1316 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1317 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1318 		eb_el->l_recs[i] = root_el->l_recs[i];
1319 
1320 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1321 	if (status < 0) {
1322 		mlog_errno(status);
1323 		goto bail;
1324 	}
1325 
1326 	status = ocfs2_et_root_journal_access(handle, inode, et,
1327 					      OCFS2_JOURNAL_ACCESS_WRITE);
1328 	if (status < 0) {
1329 		mlog_errno(status);
1330 		goto bail;
1331 	}
1332 
1333 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1334 
1335 	/* update root_bh now */
1336 	le16_add_cpu(&root_el->l_tree_depth, 1);
1337 	root_el->l_recs[0].e_cpos = 0;
1338 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1339 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1340 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1341 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1342 	root_el->l_next_free_rec = cpu_to_le16(1);
1343 
1344 	/* If this is our 1st tree depth shift, then last_eb_blk
1345 	 * becomes the allocated extent block */
1346 	if (root_el->l_tree_depth == cpu_to_le16(1))
1347 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1348 
1349 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1350 	if (status < 0) {
1351 		mlog_errno(status);
1352 		goto bail;
1353 	}
1354 
1355 	*ret_new_eb_bh = new_eb_bh;
1356 	new_eb_bh = NULL;
1357 	status = 0;
1358 bail:
1359 	brelse(new_eb_bh);
1360 
1361 	mlog_exit(status);
1362 	return status;
1363 }
1364 
1365 /*
1366  * Should only be called when there is no space left in any of the
1367  * leaf nodes. What we want to do is find the lowest tree depth
1368  * non-leaf extent block with room for new records. There are three
1369  * valid results of this search:
1370  *
1371  * 1) a lowest extent block is found, then we pass it back in
1372  *    *lowest_eb_bh and return '0'
1373  *
1374  * 2) the search fails to find anything, but the root_el has room. We
1375  *    pass NULL back in *lowest_eb_bh, but still return '0'
1376  *
1377  * 3) the search fails to find anything AND the root_el is full, in
1378  *    which case we return > 0
1379  *
1380  * return status < 0 indicates an error.
1381  */
1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1383 				    struct inode *inode,
1384 				    struct ocfs2_extent_tree *et,
1385 				    struct buffer_head **target_bh)
1386 {
1387 	int status = 0, i;
1388 	u64 blkno;
1389 	struct ocfs2_extent_block *eb;
1390 	struct ocfs2_extent_list  *el;
1391 	struct buffer_head *bh = NULL;
1392 	struct buffer_head *lowest_bh = NULL;
1393 
1394 	mlog_entry_void();
1395 
1396 	*target_bh = NULL;
1397 
1398 	el = et->et_root_el;
1399 
1400 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1401 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1402 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1403 				    "extent list (next_free_rec == 0)",
1404 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1405 			status = -EIO;
1406 			goto bail;
1407 		}
1408 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1409 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1410 		if (!blkno) {
1411 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1412 				    "list where extent # %d has no physical "
1413 				    "block start",
1414 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1415 			status = -EIO;
1416 			goto bail;
1417 		}
1418 
1419 		brelse(bh);
1420 		bh = NULL;
1421 
1422 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1423 		if (status < 0) {
1424 			mlog_errno(status);
1425 			goto bail;
1426 		}
1427 
1428 		eb = (struct ocfs2_extent_block *) bh->b_data;
1429 		el = &eb->h_list;
1430 
1431 		if (le16_to_cpu(el->l_next_free_rec) <
1432 		    le16_to_cpu(el->l_count)) {
1433 			brelse(lowest_bh);
1434 			lowest_bh = bh;
1435 			get_bh(lowest_bh);
1436 		}
1437 	}
1438 
1439 	/* If we didn't find one and the fe doesn't have any room,
1440 	 * then return '1' */
1441 	el = et->et_root_el;
1442 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1443 		status = 1;
1444 
1445 	*target_bh = lowest_bh;
1446 bail:
1447 	brelse(bh);
1448 
1449 	mlog_exit(status);
1450 	return status;
1451 }
1452 
1453 /*
1454  * Grow a b-tree so that it has more records.
1455  *
1456  * We might shift the tree depth in which case existing paths should
1457  * be considered invalid.
1458  *
1459  * Tree depth after the grow is returned via *final_depth.
1460  *
1461  * *last_eb_bh will be updated by ocfs2_add_branch().
1462  */
1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1464 			   struct ocfs2_extent_tree *et, int *final_depth,
1465 			   struct buffer_head **last_eb_bh,
1466 			   struct ocfs2_alloc_context *meta_ac)
1467 {
1468 	int ret, shift;
1469 	struct ocfs2_extent_list *el = et->et_root_el;
1470 	int depth = le16_to_cpu(el->l_tree_depth);
1471 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1472 	struct buffer_head *bh = NULL;
1473 
1474 	BUG_ON(meta_ac == NULL);
1475 
1476 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1477 	if (shift < 0) {
1478 		ret = shift;
1479 		mlog_errno(ret);
1480 		goto out;
1481 	}
1482 
1483 	/* We traveled all the way to the bottom of the allocation tree
1484 	 * and didn't find room for any more extents - we need to add
1485 	 * another tree level */
1486 	if (shift) {
1487 		BUG_ON(bh);
1488 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1489 
1490 		/* ocfs2_shift_tree_depth will return us a buffer with
1491 		 * the new extent block (so we can pass that to
1492 		 * ocfs2_add_branch). */
1493 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1494 					     meta_ac, &bh);
1495 		if (ret < 0) {
1496 			mlog_errno(ret);
1497 			goto out;
1498 		}
1499 		depth++;
1500 		if (depth == 1) {
1501 			/*
1502 			 * Special case: we have room now if we shifted from
1503 			 * tree_depth 0, so no more work needs to be done.
1504 			 *
1505 			 * We won't be calling add_branch, so pass
1506 			 * back *last_eb_bh as the new leaf. At depth
1507 			 * zero, it should always be null so there's
1508 			 * no reason to brelse.
1509 			 */
1510 			BUG_ON(*last_eb_bh);
1511 			get_bh(bh);
1512 			*last_eb_bh = bh;
1513 			goto out;
1514 		}
1515 	}
1516 
1517 	/* call ocfs2_add_branch to add the final part of the tree with
1518 	 * the new data. */
1519 	mlog(0, "add branch. bh = %p\n", bh);
1520 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1521 			       meta_ac);
1522 	if (ret < 0) {
1523 		mlog_errno(ret);
1524 		goto out;
1525 	}
1526 
1527 out:
1528 	if (final_depth)
1529 		*final_depth = depth;
1530 	brelse(bh);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * This function will discard the rightmost extent record.
1536  */
1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1538 {
1539 	int next_free = le16_to_cpu(el->l_next_free_rec);
1540 	int count = le16_to_cpu(el->l_count);
1541 	unsigned int num_bytes;
1542 
1543 	BUG_ON(!next_free);
1544 	/* This will cause us to go off the end of our extent list. */
1545 	BUG_ON(next_free >= count);
1546 
1547 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1548 
1549 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1550 }
1551 
1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1553 			      struct ocfs2_extent_rec *insert_rec)
1554 {
1555 	int i, insert_index, next_free, has_empty, num_bytes;
1556 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1557 	struct ocfs2_extent_rec *rec;
1558 
1559 	next_free = le16_to_cpu(el->l_next_free_rec);
1560 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1561 
1562 	BUG_ON(!next_free);
1563 
1564 	/* The tree code before us didn't allow enough room in the leaf. */
1565 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1566 
1567 	/*
1568 	 * The easiest way to approach this is to just remove the
1569 	 * empty extent and temporarily decrement next_free.
1570 	 */
1571 	if (has_empty) {
1572 		/*
1573 		 * If next_free was 1 (only an empty extent), this
1574 		 * loop won't execute, which is fine. We still want
1575 		 * the decrement above to happen.
1576 		 */
1577 		for(i = 0; i < (next_free - 1); i++)
1578 			el->l_recs[i] = el->l_recs[i+1];
1579 
1580 		next_free--;
1581 	}
1582 
1583 	/*
1584 	 * Figure out what the new record index should be.
1585 	 */
1586 	for(i = 0; i < next_free; i++) {
1587 		rec = &el->l_recs[i];
1588 
1589 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1590 			break;
1591 	}
1592 	insert_index = i;
1593 
1594 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1595 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1596 
1597 	BUG_ON(insert_index < 0);
1598 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1599 	BUG_ON(insert_index > next_free);
1600 
1601 	/*
1602 	 * No need to memmove if we're just adding to the tail.
1603 	 */
1604 	if (insert_index != next_free) {
1605 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1606 
1607 		num_bytes = next_free - insert_index;
1608 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1609 		memmove(&el->l_recs[insert_index + 1],
1610 			&el->l_recs[insert_index],
1611 			num_bytes);
1612 	}
1613 
1614 	/*
1615 	 * Either we had an empty extent, and need to re-increment or
1616 	 * there was no empty extent on a non full rightmost leaf node,
1617 	 * in which case we still need to increment.
1618 	 */
1619 	next_free++;
1620 	el->l_next_free_rec = cpu_to_le16(next_free);
1621 	/*
1622 	 * Make sure none of the math above just messed up our tree.
1623 	 */
1624 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1625 
1626 	el->l_recs[insert_index] = *insert_rec;
1627 
1628 }
1629 
1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1631 {
1632 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1633 
1634 	BUG_ON(num_recs == 0);
1635 
1636 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1637 		num_recs--;
1638 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1639 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1640 		memset(&el->l_recs[num_recs], 0,
1641 		       sizeof(struct ocfs2_extent_rec));
1642 		el->l_next_free_rec = cpu_to_le16(num_recs);
1643 	}
1644 }
1645 
1646 /*
1647  * Create an empty extent record .
1648  *
1649  * l_next_free_rec may be updated.
1650  *
1651  * If an empty extent already exists do nothing.
1652  */
1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1654 {
1655 	int next_free = le16_to_cpu(el->l_next_free_rec);
1656 
1657 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1658 
1659 	if (next_free == 0)
1660 		goto set_and_inc;
1661 
1662 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1663 		return;
1664 
1665 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1666 			"Asked to create an empty extent in a full list:\n"
1667 			"count = %u, tree depth = %u",
1668 			le16_to_cpu(el->l_count),
1669 			le16_to_cpu(el->l_tree_depth));
1670 
1671 	ocfs2_shift_records_right(el);
1672 
1673 set_and_inc:
1674 	le16_add_cpu(&el->l_next_free_rec, 1);
1675 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1676 }
1677 
1678 /*
1679  * For a rotation which involves two leaf nodes, the "root node" is
1680  * the lowest level tree node which contains a path to both leafs. This
1681  * resulting set of information can be used to form a complete "subtree"
1682  *
1683  * This function is passed two full paths from the dinode down to a
1684  * pair of adjacent leaves. It's task is to figure out which path
1685  * index contains the subtree root - this can be the root index itself
1686  * in a worst-case rotation.
1687  *
1688  * The array index of the subtree root is passed back.
1689  */
1690 static int ocfs2_find_subtree_root(struct inode *inode,
1691 				   struct ocfs2_path *left,
1692 				   struct ocfs2_path *right)
1693 {
1694 	int i = 0;
1695 
1696 	/*
1697 	 * Check that the caller passed in two paths from the same tree.
1698 	 */
1699 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1700 
1701 	do {
1702 		i++;
1703 
1704 		/*
1705 		 * The caller didn't pass two adjacent paths.
1706 		 */
1707 		mlog_bug_on_msg(i > left->p_tree_depth,
1708 				"Inode %lu, left depth %u, right depth %u\n"
1709 				"left leaf blk %llu, right leaf blk %llu\n",
1710 				inode->i_ino, left->p_tree_depth,
1711 				right->p_tree_depth,
1712 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1713 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1714 	} while (left->p_node[i].bh->b_blocknr ==
1715 		 right->p_node[i].bh->b_blocknr);
1716 
1717 	return i - 1;
1718 }
1719 
1720 typedef void (path_insert_t)(void *, struct buffer_head *);
1721 
1722 /*
1723  * Traverse a btree path in search of cpos, starting at root_el.
1724  *
1725  * This code can be called with a cpos larger than the tree, in which
1726  * case it will return the rightmost path.
1727  */
1728 static int __ocfs2_find_path(struct inode *inode,
1729 			     struct ocfs2_extent_list *root_el, u32 cpos,
1730 			     path_insert_t *func, void *data)
1731 {
1732 	int i, ret = 0;
1733 	u32 range;
1734 	u64 blkno;
1735 	struct buffer_head *bh = NULL;
1736 	struct ocfs2_extent_block *eb;
1737 	struct ocfs2_extent_list *el;
1738 	struct ocfs2_extent_rec *rec;
1739 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1740 
1741 	el = root_el;
1742 	while (el->l_tree_depth) {
1743 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1744 			ocfs2_error(inode->i_sb,
1745 				    "Inode %llu has empty extent list at "
1746 				    "depth %u\n",
1747 				    (unsigned long long)oi->ip_blkno,
1748 				    le16_to_cpu(el->l_tree_depth));
1749 			ret = -EROFS;
1750 			goto out;
1751 
1752 		}
1753 
1754 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1755 			rec = &el->l_recs[i];
1756 
1757 			/*
1758 			 * In the case that cpos is off the allocation
1759 			 * tree, this should just wind up returning the
1760 			 * rightmost record.
1761 			 */
1762 			range = le32_to_cpu(rec->e_cpos) +
1763 				ocfs2_rec_clusters(el, rec);
1764 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1765 			    break;
1766 		}
1767 
1768 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1769 		if (blkno == 0) {
1770 			ocfs2_error(inode->i_sb,
1771 				    "Inode %llu has bad blkno in extent list "
1772 				    "at depth %u (index %d)\n",
1773 				    (unsigned long long)oi->ip_blkno,
1774 				    le16_to_cpu(el->l_tree_depth), i);
1775 			ret = -EROFS;
1776 			goto out;
1777 		}
1778 
1779 		brelse(bh);
1780 		bh = NULL;
1781 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1782 		if (ret) {
1783 			mlog_errno(ret);
1784 			goto out;
1785 		}
1786 
1787 		eb = (struct ocfs2_extent_block *) bh->b_data;
1788 		el = &eb->h_list;
1789 
1790 		if (le16_to_cpu(el->l_next_free_rec) >
1791 		    le16_to_cpu(el->l_count)) {
1792 			ocfs2_error(inode->i_sb,
1793 				    "Inode %llu has bad count in extent list "
1794 				    "at block %llu (next free=%u, count=%u)\n",
1795 				    (unsigned long long)oi->ip_blkno,
1796 				    (unsigned long long)bh->b_blocknr,
1797 				    le16_to_cpu(el->l_next_free_rec),
1798 				    le16_to_cpu(el->l_count));
1799 			ret = -EROFS;
1800 			goto out;
1801 		}
1802 
1803 		if (func)
1804 			func(data, bh);
1805 	}
1806 
1807 out:
1808 	/*
1809 	 * Catch any trailing bh that the loop didn't handle.
1810 	 */
1811 	brelse(bh);
1812 
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Given an initialized path (that is, it has a valid root extent
1818  * list), this function will traverse the btree in search of the path
1819  * which would contain cpos.
1820  *
1821  * The path traveled is recorded in the path structure.
1822  *
1823  * Note that this will not do any comparisons on leaf node extent
1824  * records, so it will work fine in the case that we just added a tree
1825  * branch.
1826  */
1827 struct find_path_data {
1828 	int index;
1829 	struct ocfs2_path *path;
1830 };
1831 static void find_path_ins(void *data, struct buffer_head *bh)
1832 {
1833 	struct find_path_data *fp = data;
1834 
1835 	get_bh(bh);
1836 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1837 	fp->index++;
1838 }
1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1840 			   u32 cpos)
1841 {
1842 	struct find_path_data data;
1843 
1844 	data.index = 1;
1845 	data.path = path;
1846 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1847 				 find_path_ins, &data);
1848 }
1849 
1850 static void find_leaf_ins(void *data, struct buffer_head *bh)
1851 {
1852 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1853 	struct ocfs2_extent_list *el = &eb->h_list;
1854 	struct buffer_head **ret = data;
1855 
1856 	/* We want to retain only the leaf block. */
1857 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1858 		get_bh(bh);
1859 		*ret = bh;
1860 	}
1861 }
1862 /*
1863  * Find the leaf block in the tree which would contain cpos. No
1864  * checking of the actual leaf is done.
1865  *
1866  * Some paths want to call this instead of allocating a path structure
1867  * and calling ocfs2_find_path().
1868  *
1869  * This function doesn't handle non btree extent lists.
1870  */
1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1872 		    u32 cpos, struct buffer_head **leaf_bh)
1873 {
1874 	int ret;
1875 	struct buffer_head *bh = NULL;
1876 
1877 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1878 	if (ret) {
1879 		mlog_errno(ret);
1880 		goto out;
1881 	}
1882 
1883 	*leaf_bh = bh;
1884 out:
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1890  *
1891  * Basically, we've moved stuff around at the bottom of the tree and
1892  * we need to fix up the extent records above the changes to reflect
1893  * the new changes.
1894  *
1895  * left_rec: the record on the left.
1896  * left_child_el: is the child list pointed to by left_rec
1897  * right_rec: the record to the right of left_rec
1898  * right_child_el: is the child list pointed to by right_rec
1899  *
1900  * By definition, this only works on interior nodes.
1901  */
1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1903 				  struct ocfs2_extent_list *left_child_el,
1904 				  struct ocfs2_extent_rec *right_rec,
1905 				  struct ocfs2_extent_list *right_child_el)
1906 {
1907 	u32 left_clusters, right_end;
1908 
1909 	/*
1910 	 * Interior nodes never have holes. Their cpos is the cpos of
1911 	 * the leftmost record in their child list. Their cluster
1912 	 * count covers the full theoretical range of their child list
1913 	 * - the range between their cpos and the cpos of the record
1914 	 * immediately to their right.
1915 	 */
1916 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1917 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1918 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1919 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1920 	}
1921 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1922 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1923 
1924 	/*
1925 	 * Calculate the rightmost cluster count boundary before
1926 	 * moving cpos - we will need to adjust clusters after
1927 	 * updating e_cpos to keep the same highest cluster count.
1928 	 */
1929 	right_end = le32_to_cpu(right_rec->e_cpos);
1930 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1931 
1932 	right_rec->e_cpos = left_rec->e_cpos;
1933 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1934 
1935 	right_end -= le32_to_cpu(right_rec->e_cpos);
1936 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1937 }
1938 
1939 /*
1940  * Adjust the adjacent root node records involved in a
1941  * rotation. left_el_blkno is passed in as a key so that we can easily
1942  * find it's index in the root list.
1943  */
1944 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1945 				      struct ocfs2_extent_list *left_el,
1946 				      struct ocfs2_extent_list *right_el,
1947 				      u64 left_el_blkno)
1948 {
1949 	int i;
1950 
1951 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1952 	       le16_to_cpu(left_el->l_tree_depth));
1953 
1954 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1955 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1956 			break;
1957 	}
1958 
1959 	/*
1960 	 * The path walking code should have never returned a root and
1961 	 * two paths which are not adjacent.
1962 	 */
1963 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1964 
1965 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1966 				      &root_el->l_recs[i + 1], right_el);
1967 }
1968 
1969 /*
1970  * We've changed a leaf block (in right_path) and need to reflect that
1971  * change back up the subtree.
1972  *
1973  * This happens in multiple places:
1974  *   - When we've moved an extent record from the left path leaf to the right
1975  *     path leaf to make room for an empty extent in the left path leaf.
1976  *   - When our insert into the right path leaf is at the leftmost edge
1977  *     and requires an update of the path immediately to it's left. This
1978  *     can occur at the end of some types of rotation and appending inserts.
1979  *   - When we've adjusted the last extent record in the left path leaf and the
1980  *     1st extent record in the right path leaf during cross extent block merge.
1981  */
1982 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1983 				       struct ocfs2_path *left_path,
1984 				       struct ocfs2_path *right_path,
1985 				       int subtree_index)
1986 {
1987 	int ret, i, idx;
1988 	struct ocfs2_extent_list *el, *left_el, *right_el;
1989 	struct ocfs2_extent_rec *left_rec, *right_rec;
1990 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1991 
1992 	/*
1993 	 * Update the counts and position values within all the
1994 	 * interior nodes to reflect the leaf rotation we just did.
1995 	 *
1996 	 * The root node is handled below the loop.
1997 	 *
1998 	 * We begin the loop with right_el and left_el pointing to the
1999 	 * leaf lists and work our way up.
2000 	 *
2001 	 * NOTE: within this loop, left_el and right_el always refer
2002 	 * to the *child* lists.
2003 	 */
2004 	left_el = path_leaf_el(left_path);
2005 	right_el = path_leaf_el(right_path);
2006 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2007 		mlog(0, "Adjust records at index %u\n", i);
2008 
2009 		/*
2010 		 * One nice property of knowing that all of these
2011 		 * nodes are below the root is that we only deal with
2012 		 * the leftmost right node record and the rightmost
2013 		 * left node record.
2014 		 */
2015 		el = left_path->p_node[i].el;
2016 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2017 		left_rec = &el->l_recs[idx];
2018 
2019 		el = right_path->p_node[i].el;
2020 		right_rec = &el->l_recs[0];
2021 
2022 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2023 					      right_el);
2024 
2025 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2026 		if (ret)
2027 			mlog_errno(ret);
2028 
2029 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2030 		if (ret)
2031 			mlog_errno(ret);
2032 
2033 		/*
2034 		 * Setup our list pointers now so that the current
2035 		 * parents become children in the next iteration.
2036 		 */
2037 		left_el = left_path->p_node[i].el;
2038 		right_el = right_path->p_node[i].el;
2039 	}
2040 
2041 	/*
2042 	 * At the root node, adjust the two adjacent records which
2043 	 * begin our path to the leaves.
2044 	 */
2045 
2046 	el = left_path->p_node[subtree_index].el;
2047 	left_el = left_path->p_node[subtree_index + 1].el;
2048 	right_el = right_path->p_node[subtree_index + 1].el;
2049 
2050 	ocfs2_adjust_root_records(el, left_el, right_el,
2051 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2052 
2053 	root_bh = left_path->p_node[subtree_index].bh;
2054 
2055 	ret = ocfs2_journal_dirty(handle, root_bh);
2056 	if (ret)
2057 		mlog_errno(ret);
2058 }
2059 
2060 static int ocfs2_rotate_subtree_right(struct inode *inode,
2061 				      handle_t *handle,
2062 				      struct ocfs2_path *left_path,
2063 				      struct ocfs2_path *right_path,
2064 				      int subtree_index)
2065 {
2066 	int ret, i;
2067 	struct buffer_head *right_leaf_bh;
2068 	struct buffer_head *left_leaf_bh = NULL;
2069 	struct buffer_head *root_bh;
2070 	struct ocfs2_extent_list *right_el, *left_el;
2071 	struct ocfs2_extent_rec move_rec;
2072 
2073 	left_leaf_bh = path_leaf_bh(left_path);
2074 	left_el = path_leaf_el(left_path);
2075 
2076 	if (left_el->l_next_free_rec != left_el->l_count) {
2077 		ocfs2_error(inode->i_sb,
2078 			    "Inode %llu has non-full interior leaf node %llu"
2079 			    "(next free = %u)",
2080 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
2081 			    (unsigned long long)left_leaf_bh->b_blocknr,
2082 			    le16_to_cpu(left_el->l_next_free_rec));
2083 		return -EROFS;
2084 	}
2085 
2086 	/*
2087 	 * This extent block may already have an empty record, so we
2088 	 * return early if so.
2089 	 */
2090 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2091 		return 0;
2092 
2093 	root_bh = left_path->p_node[subtree_index].bh;
2094 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2095 
2096 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2097 					   subtree_index);
2098 	if (ret) {
2099 		mlog_errno(ret);
2100 		goto out;
2101 	}
2102 
2103 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2104 		ret = ocfs2_path_bh_journal_access(handle, inode,
2105 						   right_path, i);
2106 		if (ret) {
2107 			mlog_errno(ret);
2108 			goto out;
2109 		}
2110 
2111 		ret = ocfs2_path_bh_journal_access(handle, inode,
2112 						   left_path, i);
2113 		if (ret) {
2114 			mlog_errno(ret);
2115 			goto out;
2116 		}
2117 	}
2118 
2119 	right_leaf_bh = path_leaf_bh(right_path);
2120 	right_el = path_leaf_el(right_path);
2121 
2122 	/* This is a code error, not a disk corruption. */
2123 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2124 			"because rightmost leaf block %llu is empty\n",
2125 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2126 			(unsigned long long)right_leaf_bh->b_blocknr);
2127 
2128 	ocfs2_create_empty_extent(right_el);
2129 
2130 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2131 	if (ret) {
2132 		mlog_errno(ret);
2133 		goto out;
2134 	}
2135 
2136 	/* Do the copy now. */
2137 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2138 	move_rec = left_el->l_recs[i];
2139 	right_el->l_recs[0] = move_rec;
2140 
2141 	/*
2142 	 * Clear out the record we just copied and shift everything
2143 	 * over, leaving an empty extent in the left leaf.
2144 	 *
2145 	 * We temporarily subtract from next_free_rec so that the
2146 	 * shift will lose the tail record (which is now defunct).
2147 	 */
2148 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2149 	ocfs2_shift_records_right(left_el);
2150 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2151 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2152 
2153 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2154 	if (ret) {
2155 		mlog_errno(ret);
2156 		goto out;
2157 	}
2158 
2159 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2160 				subtree_index);
2161 
2162 out:
2163 	return ret;
2164 }
2165 
2166 /*
2167  * Given a full path, determine what cpos value would return us a path
2168  * containing the leaf immediately to the left of the current one.
2169  *
2170  * Will return zero if the path passed in is already the leftmost path.
2171  */
2172 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2173 					 struct ocfs2_path *path, u32 *cpos)
2174 {
2175 	int i, j, ret = 0;
2176 	u64 blkno;
2177 	struct ocfs2_extent_list *el;
2178 
2179 	BUG_ON(path->p_tree_depth == 0);
2180 
2181 	*cpos = 0;
2182 
2183 	blkno = path_leaf_bh(path)->b_blocknr;
2184 
2185 	/* Start at the tree node just above the leaf and work our way up. */
2186 	i = path->p_tree_depth - 1;
2187 	while (i >= 0) {
2188 		el = path->p_node[i].el;
2189 
2190 		/*
2191 		 * Find the extent record just before the one in our
2192 		 * path.
2193 		 */
2194 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2195 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2196 				if (j == 0) {
2197 					if (i == 0) {
2198 						/*
2199 						 * We've determined that the
2200 						 * path specified is already
2201 						 * the leftmost one - return a
2202 						 * cpos of zero.
2203 						 */
2204 						goto out;
2205 					}
2206 					/*
2207 					 * The leftmost record points to our
2208 					 * leaf - we need to travel up the
2209 					 * tree one level.
2210 					 */
2211 					goto next_node;
2212 				}
2213 
2214 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2215 				*cpos = *cpos + ocfs2_rec_clusters(el,
2216 							   &el->l_recs[j - 1]);
2217 				*cpos = *cpos - 1;
2218 				goto out;
2219 			}
2220 		}
2221 
2222 		/*
2223 		 * If we got here, we never found a valid node where
2224 		 * the tree indicated one should be.
2225 		 */
2226 		ocfs2_error(sb,
2227 			    "Invalid extent tree at extent block %llu\n",
2228 			    (unsigned long long)blkno);
2229 		ret = -EROFS;
2230 		goto out;
2231 
2232 next_node:
2233 		blkno = path->p_node[i].bh->b_blocknr;
2234 		i--;
2235 	}
2236 
2237 out:
2238 	return ret;
2239 }
2240 
2241 /*
2242  * Extend the transaction by enough credits to complete the rotation,
2243  * and still leave at least the original number of credits allocated
2244  * to this transaction.
2245  */
2246 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2247 					   int op_credits,
2248 					   struct ocfs2_path *path)
2249 {
2250 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2251 
2252 	if (handle->h_buffer_credits < credits)
2253 		return ocfs2_extend_trans(handle, credits);
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * Trap the case where we're inserting into the theoretical range past
2260  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2261  * whose cpos is less than ours into the right leaf.
2262  *
2263  * It's only necessary to look at the rightmost record of the left
2264  * leaf because the logic that calls us should ensure that the
2265  * theoretical ranges in the path components above the leaves are
2266  * correct.
2267  */
2268 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2269 						 u32 insert_cpos)
2270 {
2271 	struct ocfs2_extent_list *left_el;
2272 	struct ocfs2_extent_rec *rec;
2273 	int next_free;
2274 
2275 	left_el = path_leaf_el(left_path);
2276 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2277 	rec = &left_el->l_recs[next_free - 1];
2278 
2279 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2280 		return 1;
2281 	return 0;
2282 }
2283 
2284 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2285 {
2286 	int next_free = le16_to_cpu(el->l_next_free_rec);
2287 	unsigned int range;
2288 	struct ocfs2_extent_rec *rec;
2289 
2290 	if (next_free == 0)
2291 		return 0;
2292 
2293 	rec = &el->l_recs[0];
2294 	if (ocfs2_is_empty_extent(rec)) {
2295 		/* Empty list. */
2296 		if (next_free == 1)
2297 			return 0;
2298 		rec = &el->l_recs[1];
2299 	}
2300 
2301 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2302 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2303 		return 1;
2304 	return 0;
2305 }
2306 
2307 /*
2308  * Rotate all the records in a btree right one record, starting at insert_cpos.
2309  *
2310  * The path to the rightmost leaf should be passed in.
2311  *
2312  * The array is assumed to be large enough to hold an entire path (tree depth).
2313  *
2314  * Upon succesful return from this function:
2315  *
2316  * - The 'right_path' array will contain a path to the leaf block
2317  *   whose range contains e_cpos.
2318  * - That leaf block will have a single empty extent in list index 0.
2319  * - In the case that the rotation requires a post-insert update,
2320  *   *ret_left_path will contain a valid path which can be passed to
2321  *   ocfs2_insert_path().
2322  */
2323 static int ocfs2_rotate_tree_right(struct inode *inode,
2324 				   handle_t *handle,
2325 				   enum ocfs2_split_type split,
2326 				   u32 insert_cpos,
2327 				   struct ocfs2_path *right_path,
2328 				   struct ocfs2_path **ret_left_path)
2329 {
2330 	int ret, start, orig_credits = handle->h_buffer_credits;
2331 	u32 cpos;
2332 	struct ocfs2_path *left_path = NULL;
2333 
2334 	*ret_left_path = NULL;
2335 
2336 	left_path = ocfs2_new_path_from_path(right_path);
2337 	if (!left_path) {
2338 		ret = -ENOMEM;
2339 		mlog_errno(ret);
2340 		goto out;
2341 	}
2342 
2343 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2344 	if (ret) {
2345 		mlog_errno(ret);
2346 		goto out;
2347 	}
2348 
2349 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2350 
2351 	/*
2352 	 * What we want to do here is:
2353 	 *
2354 	 * 1) Start with the rightmost path.
2355 	 *
2356 	 * 2) Determine a path to the leaf block directly to the left
2357 	 *    of that leaf.
2358 	 *
2359 	 * 3) Determine the 'subtree root' - the lowest level tree node
2360 	 *    which contains a path to both leaves.
2361 	 *
2362 	 * 4) Rotate the subtree.
2363 	 *
2364 	 * 5) Find the next subtree by considering the left path to be
2365 	 *    the new right path.
2366 	 *
2367 	 * The check at the top of this while loop also accepts
2368 	 * insert_cpos == cpos because cpos is only a _theoretical_
2369 	 * value to get us the left path - insert_cpos might very well
2370 	 * be filling that hole.
2371 	 *
2372 	 * Stop at a cpos of '0' because we either started at the
2373 	 * leftmost branch (i.e., a tree with one branch and a
2374 	 * rotation inside of it), or we've gone as far as we can in
2375 	 * rotating subtrees.
2376 	 */
2377 	while (cpos && insert_cpos <= cpos) {
2378 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2379 		     insert_cpos, cpos);
2380 
2381 		ret = ocfs2_find_path(inode, left_path, cpos);
2382 		if (ret) {
2383 			mlog_errno(ret);
2384 			goto out;
2385 		}
2386 
2387 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2388 				path_leaf_bh(right_path),
2389 				"Inode %lu: error during insert of %u "
2390 				"(left path cpos %u) results in two identical "
2391 				"paths ending at %llu\n",
2392 				inode->i_ino, insert_cpos, cpos,
2393 				(unsigned long long)
2394 				path_leaf_bh(left_path)->b_blocknr);
2395 
2396 		if (split == SPLIT_NONE &&
2397 		    ocfs2_rotate_requires_path_adjustment(left_path,
2398 							  insert_cpos)) {
2399 
2400 			/*
2401 			 * We've rotated the tree as much as we
2402 			 * should. The rest is up to
2403 			 * ocfs2_insert_path() to complete, after the
2404 			 * record insertion. We indicate this
2405 			 * situation by returning the left path.
2406 			 *
2407 			 * The reason we don't adjust the records here
2408 			 * before the record insert is that an error
2409 			 * later might break the rule where a parent
2410 			 * record e_cpos will reflect the actual
2411 			 * e_cpos of the 1st nonempty record of the
2412 			 * child list.
2413 			 */
2414 			*ret_left_path = left_path;
2415 			goto out_ret_path;
2416 		}
2417 
2418 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2419 
2420 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2421 		     start,
2422 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2423 		     right_path->p_tree_depth);
2424 
2425 		ret = ocfs2_extend_rotate_transaction(handle, start,
2426 						      orig_credits, right_path);
2427 		if (ret) {
2428 			mlog_errno(ret);
2429 			goto out;
2430 		}
2431 
2432 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2433 						 right_path, start);
2434 		if (ret) {
2435 			mlog_errno(ret);
2436 			goto out;
2437 		}
2438 
2439 		if (split != SPLIT_NONE &&
2440 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2441 						insert_cpos)) {
2442 			/*
2443 			 * A rotate moves the rightmost left leaf
2444 			 * record over to the leftmost right leaf
2445 			 * slot. If we're doing an extent split
2446 			 * instead of a real insert, then we have to
2447 			 * check that the extent to be split wasn't
2448 			 * just moved over. If it was, then we can
2449 			 * exit here, passing left_path back -
2450 			 * ocfs2_split_extent() is smart enough to
2451 			 * search both leaves.
2452 			 */
2453 			*ret_left_path = left_path;
2454 			goto out_ret_path;
2455 		}
2456 
2457 		/*
2458 		 * There is no need to re-read the next right path
2459 		 * as we know that it'll be our current left
2460 		 * path. Optimize by copying values instead.
2461 		 */
2462 		ocfs2_mv_path(right_path, left_path);
2463 
2464 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2465 						    &cpos);
2466 		if (ret) {
2467 			mlog_errno(ret);
2468 			goto out;
2469 		}
2470 	}
2471 
2472 out:
2473 	ocfs2_free_path(left_path);
2474 
2475 out_ret_path:
2476 	return ret;
2477 }
2478 
2479 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2480 				      struct ocfs2_path *path)
2481 {
2482 	int i, idx;
2483 	struct ocfs2_extent_rec *rec;
2484 	struct ocfs2_extent_list *el;
2485 	struct ocfs2_extent_block *eb;
2486 	u32 range;
2487 
2488 	/* Path should always be rightmost. */
2489 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2490 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2491 
2492 	el = &eb->h_list;
2493 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2494 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2495 	rec = &el->l_recs[idx];
2496 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2497 
2498 	for (i = 0; i < path->p_tree_depth; i++) {
2499 		el = path->p_node[i].el;
2500 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2501 		rec = &el->l_recs[idx];
2502 
2503 		rec->e_int_clusters = cpu_to_le32(range);
2504 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2505 
2506 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2507 	}
2508 }
2509 
2510 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2511 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2512 			      struct ocfs2_path *path, int unlink_start)
2513 {
2514 	int ret, i;
2515 	struct ocfs2_extent_block *eb;
2516 	struct ocfs2_extent_list *el;
2517 	struct buffer_head *bh;
2518 
2519 	for(i = unlink_start; i < path_num_items(path); i++) {
2520 		bh = path->p_node[i].bh;
2521 
2522 		eb = (struct ocfs2_extent_block *)bh->b_data;
2523 		/*
2524 		 * Not all nodes might have had their final count
2525 		 * decremented by the caller - handle this here.
2526 		 */
2527 		el = &eb->h_list;
2528 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2529 			mlog(ML_ERROR,
2530 			     "Inode %llu, attempted to remove extent block "
2531 			     "%llu with %u records\n",
2532 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2533 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2534 			     le16_to_cpu(el->l_next_free_rec));
2535 
2536 			ocfs2_journal_dirty(handle, bh);
2537 			ocfs2_remove_from_cache(inode, bh);
2538 			continue;
2539 		}
2540 
2541 		el->l_next_free_rec = 0;
2542 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2543 
2544 		ocfs2_journal_dirty(handle, bh);
2545 
2546 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2547 		if (ret)
2548 			mlog_errno(ret);
2549 
2550 		ocfs2_remove_from_cache(inode, bh);
2551 	}
2552 }
2553 
2554 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2555 				 struct ocfs2_path *left_path,
2556 				 struct ocfs2_path *right_path,
2557 				 int subtree_index,
2558 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2559 {
2560 	int i;
2561 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2562 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2563 	struct ocfs2_extent_list *el;
2564 	struct ocfs2_extent_block *eb;
2565 
2566 	el = path_leaf_el(left_path);
2567 
2568 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2569 
2570 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2571 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2572 			break;
2573 
2574 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2575 
2576 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2577 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2578 
2579 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2580 	eb->h_next_leaf_blk = 0;
2581 
2582 	ocfs2_journal_dirty(handle, root_bh);
2583 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2584 
2585 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2586 			  subtree_index + 1);
2587 }
2588 
2589 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2590 				     struct ocfs2_path *left_path,
2591 				     struct ocfs2_path *right_path,
2592 				     int subtree_index,
2593 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2594 				     int *deleted,
2595 				     struct ocfs2_extent_tree *et)
2596 {
2597 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2598 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2599 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2600 	struct ocfs2_extent_block *eb;
2601 
2602 	*deleted = 0;
2603 
2604 	right_leaf_el = path_leaf_el(right_path);
2605 	left_leaf_el = path_leaf_el(left_path);
2606 	root_bh = left_path->p_node[subtree_index].bh;
2607 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2608 
2609 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2610 		return 0;
2611 
2612 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2613 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2614 		/*
2615 		 * It's legal for us to proceed if the right leaf is
2616 		 * the rightmost one and it has an empty extent. There
2617 		 * are two cases to handle - whether the leaf will be
2618 		 * empty after removal or not. If the leaf isn't empty
2619 		 * then just remove the empty extent up front. The
2620 		 * next block will handle empty leaves by flagging
2621 		 * them for unlink.
2622 		 *
2623 		 * Non rightmost leaves will throw -EAGAIN and the
2624 		 * caller can manually move the subtree and retry.
2625 		 */
2626 
2627 		if (eb->h_next_leaf_blk != 0ULL)
2628 			return -EAGAIN;
2629 
2630 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2631 			ret = ocfs2_journal_access_eb(handle, inode,
2632 						      path_leaf_bh(right_path),
2633 						      OCFS2_JOURNAL_ACCESS_WRITE);
2634 			if (ret) {
2635 				mlog_errno(ret);
2636 				goto out;
2637 			}
2638 
2639 			ocfs2_remove_empty_extent(right_leaf_el);
2640 		} else
2641 			right_has_empty = 1;
2642 	}
2643 
2644 	if (eb->h_next_leaf_blk == 0ULL &&
2645 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2646 		/*
2647 		 * We have to update i_last_eb_blk during the meta
2648 		 * data delete.
2649 		 */
2650 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2651 						   OCFS2_JOURNAL_ACCESS_WRITE);
2652 		if (ret) {
2653 			mlog_errno(ret);
2654 			goto out;
2655 		}
2656 
2657 		del_right_subtree = 1;
2658 	}
2659 
2660 	/*
2661 	 * Getting here with an empty extent in the right path implies
2662 	 * that it's the rightmost path and will be deleted.
2663 	 */
2664 	BUG_ON(right_has_empty && !del_right_subtree);
2665 
2666 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2667 					   subtree_index);
2668 	if (ret) {
2669 		mlog_errno(ret);
2670 		goto out;
2671 	}
2672 
2673 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2674 		ret = ocfs2_path_bh_journal_access(handle, inode,
2675 						   right_path, i);
2676 		if (ret) {
2677 			mlog_errno(ret);
2678 			goto out;
2679 		}
2680 
2681 		ret = ocfs2_path_bh_journal_access(handle, inode,
2682 						   left_path, i);
2683 		if (ret) {
2684 			mlog_errno(ret);
2685 			goto out;
2686 		}
2687 	}
2688 
2689 	if (!right_has_empty) {
2690 		/*
2691 		 * Only do this if we're moving a real
2692 		 * record. Otherwise, the action is delayed until
2693 		 * after removal of the right path in which case we
2694 		 * can do a simple shift to remove the empty extent.
2695 		 */
2696 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2697 		memset(&right_leaf_el->l_recs[0], 0,
2698 		       sizeof(struct ocfs2_extent_rec));
2699 	}
2700 	if (eb->h_next_leaf_blk == 0ULL) {
2701 		/*
2702 		 * Move recs over to get rid of empty extent, decrease
2703 		 * next_free. This is allowed to remove the last
2704 		 * extent in our leaf (setting l_next_free_rec to
2705 		 * zero) - the delete code below won't care.
2706 		 */
2707 		ocfs2_remove_empty_extent(right_leaf_el);
2708 	}
2709 
2710 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2711 	if (ret)
2712 		mlog_errno(ret);
2713 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2714 	if (ret)
2715 		mlog_errno(ret);
2716 
2717 	if (del_right_subtree) {
2718 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2719 				     subtree_index, dealloc);
2720 		ocfs2_update_edge_lengths(inode, handle, left_path);
2721 
2722 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2723 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2724 
2725 		/*
2726 		 * Removal of the extent in the left leaf was skipped
2727 		 * above so we could delete the right path
2728 		 * 1st.
2729 		 */
2730 		if (right_has_empty)
2731 			ocfs2_remove_empty_extent(left_leaf_el);
2732 
2733 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2734 		if (ret)
2735 			mlog_errno(ret);
2736 
2737 		*deleted = 1;
2738 	} else
2739 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2740 					   subtree_index);
2741 
2742 out:
2743 	return ret;
2744 }
2745 
2746 /*
2747  * Given a full path, determine what cpos value would return us a path
2748  * containing the leaf immediately to the right of the current one.
2749  *
2750  * Will return zero if the path passed in is already the rightmost path.
2751  *
2752  * This looks similar, but is subtly different to
2753  * ocfs2_find_cpos_for_left_leaf().
2754  */
2755 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2756 					  struct ocfs2_path *path, u32 *cpos)
2757 {
2758 	int i, j, ret = 0;
2759 	u64 blkno;
2760 	struct ocfs2_extent_list *el;
2761 
2762 	*cpos = 0;
2763 
2764 	if (path->p_tree_depth == 0)
2765 		return 0;
2766 
2767 	blkno = path_leaf_bh(path)->b_blocknr;
2768 
2769 	/* Start at the tree node just above the leaf and work our way up. */
2770 	i = path->p_tree_depth - 1;
2771 	while (i >= 0) {
2772 		int next_free;
2773 
2774 		el = path->p_node[i].el;
2775 
2776 		/*
2777 		 * Find the extent record just after the one in our
2778 		 * path.
2779 		 */
2780 		next_free = le16_to_cpu(el->l_next_free_rec);
2781 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2782 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2783 				if (j == (next_free - 1)) {
2784 					if (i == 0) {
2785 						/*
2786 						 * We've determined that the
2787 						 * path specified is already
2788 						 * the rightmost one - return a
2789 						 * cpos of zero.
2790 						 */
2791 						goto out;
2792 					}
2793 					/*
2794 					 * The rightmost record points to our
2795 					 * leaf - we need to travel up the
2796 					 * tree one level.
2797 					 */
2798 					goto next_node;
2799 				}
2800 
2801 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2802 				goto out;
2803 			}
2804 		}
2805 
2806 		/*
2807 		 * If we got here, we never found a valid node where
2808 		 * the tree indicated one should be.
2809 		 */
2810 		ocfs2_error(sb,
2811 			    "Invalid extent tree at extent block %llu\n",
2812 			    (unsigned long long)blkno);
2813 		ret = -EROFS;
2814 		goto out;
2815 
2816 next_node:
2817 		blkno = path->p_node[i].bh->b_blocknr;
2818 		i--;
2819 	}
2820 
2821 out:
2822 	return ret;
2823 }
2824 
2825 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2826 					    handle_t *handle,
2827 					    struct ocfs2_path *path)
2828 {
2829 	int ret;
2830 	struct buffer_head *bh = path_leaf_bh(path);
2831 	struct ocfs2_extent_list *el = path_leaf_el(path);
2832 
2833 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2834 		return 0;
2835 
2836 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2837 					   path_num_items(path) - 1);
2838 	if (ret) {
2839 		mlog_errno(ret);
2840 		goto out;
2841 	}
2842 
2843 	ocfs2_remove_empty_extent(el);
2844 
2845 	ret = ocfs2_journal_dirty(handle, bh);
2846 	if (ret)
2847 		mlog_errno(ret);
2848 
2849 out:
2850 	return ret;
2851 }
2852 
2853 static int __ocfs2_rotate_tree_left(struct inode *inode,
2854 				    handle_t *handle, int orig_credits,
2855 				    struct ocfs2_path *path,
2856 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2857 				    struct ocfs2_path **empty_extent_path,
2858 				    struct ocfs2_extent_tree *et)
2859 {
2860 	int ret, subtree_root, deleted;
2861 	u32 right_cpos;
2862 	struct ocfs2_path *left_path = NULL;
2863 	struct ocfs2_path *right_path = NULL;
2864 
2865 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2866 
2867 	*empty_extent_path = NULL;
2868 
2869 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2870 					     &right_cpos);
2871 	if (ret) {
2872 		mlog_errno(ret);
2873 		goto out;
2874 	}
2875 
2876 	left_path = ocfs2_new_path_from_path(path);
2877 	if (!left_path) {
2878 		ret = -ENOMEM;
2879 		mlog_errno(ret);
2880 		goto out;
2881 	}
2882 
2883 	ocfs2_cp_path(left_path, path);
2884 
2885 	right_path = ocfs2_new_path_from_path(path);
2886 	if (!right_path) {
2887 		ret = -ENOMEM;
2888 		mlog_errno(ret);
2889 		goto out;
2890 	}
2891 
2892 	while (right_cpos) {
2893 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2894 		if (ret) {
2895 			mlog_errno(ret);
2896 			goto out;
2897 		}
2898 
2899 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2900 						       right_path);
2901 
2902 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2903 		     subtree_root,
2904 		     (unsigned long long)
2905 		     right_path->p_node[subtree_root].bh->b_blocknr,
2906 		     right_path->p_tree_depth);
2907 
2908 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2909 						      orig_credits, left_path);
2910 		if (ret) {
2911 			mlog_errno(ret);
2912 			goto out;
2913 		}
2914 
2915 		/*
2916 		 * Caller might still want to make changes to the
2917 		 * tree root, so re-add it to the journal here.
2918 		 */
2919 		ret = ocfs2_path_bh_journal_access(handle, inode,
2920 						   left_path, 0);
2921 		if (ret) {
2922 			mlog_errno(ret);
2923 			goto out;
2924 		}
2925 
2926 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2927 						right_path, subtree_root,
2928 						dealloc, &deleted, et);
2929 		if (ret == -EAGAIN) {
2930 			/*
2931 			 * The rotation has to temporarily stop due to
2932 			 * the right subtree having an empty
2933 			 * extent. Pass it back to the caller for a
2934 			 * fixup.
2935 			 */
2936 			*empty_extent_path = right_path;
2937 			right_path = NULL;
2938 			goto out;
2939 		}
2940 		if (ret) {
2941 			mlog_errno(ret);
2942 			goto out;
2943 		}
2944 
2945 		/*
2946 		 * The subtree rotate might have removed records on
2947 		 * the rightmost edge. If so, then rotation is
2948 		 * complete.
2949 		 */
2950 		if (deleted)
2951 			break;
2952 
2953 		ocfs2_mv_path(left_path, right_path);
2954 
2955 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2956 						     &right_cpos);
2957 		if (ret) {
2958 			mlog_errno(ret);
2959 			goto out;
2960 		}
2961 	}
2962 
2963 out:
2964 	ocfs2_free_path(right_path);
2965 	ocfs2_free_path(left_path);
2966 
2967 	return ret;
2968 }
2969 
2970 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2971 				struct ocfs2_path *path,
2972 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2973 				struct ocfs2_extent_tree *et)
2974 {
2975 	int ret, subtree_index;
2976 	u32 cpos;
2977 	struct ocfs2_path *left_path = NULL;
2978 	struct ocfs2_extent_block *eb;
2979 	struct ocfs2_extent_list *el;
2980 
2981 
2982 	ret = ocfs2_et_sanity_check(inode, et);
2983 	if (ret)
2984 		goto out;
2985 	/*
2986 	 * There's two ways we handle this depending on
2987 	 * whether path is the only existing one.
2988 	 */
2989 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2990 					      handle->h_buffer_credits,
2991 					      path);
2992 	if (ret) {
2993 		mlog_errno(ret);
2994 		goto out;
2995 	}
2996 
2997 	ret = ocfs2_journal_access_path(inode, handle, path);
2998 	if (ret) {
2999 		mlog_errno(ret);
3000 		goto out;
3001 	}
3002 
3003 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3004 	if (ret) {
3005 		mlog_errno(ret);
3006 		goto out;
3007 	}
3008 
3009 	if (cpos) {
3010 		/*
3011 		 * We have a path to the left of this one - it needs
3012 		 * an update too.
3013 		 */
3014 		left_path = ocfs2_new_path_from_path(path);
3015 		if (!left_path) {
3016 			ret = -ENOMEM;
3017 			mlog_errno(ret);
3018 			goto out;
3019 		}
3020 
3021 		ret = ocfs2_find_path(inode, left_path, cpos);
3022 		if (ret) {
3023 			mlog_errno(ret);
3024 			goto out;
3025 		}
3026 
3027 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3028 		if (ret) {
3029 			mlog_errno(ret);
3030 			goto out;
3031 		}
3032 
3033 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3034 
3035 		ocfs2_unlink_subtree(inode, handle, left_path, path,
3036 				     subtree_index, dealloc);
3037 		ocfs2_update_edge_lengths(inode, handle, left_path);
3038 
3039 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3040 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3041 	} else {
3042 		/*
3043 		 * 'path' is also the leftmost path which
3044 		 * means it must be the only one. This gets
3045 		 * handled differently because we want to
3046 		 * revert the inode back to having extents
3047 		 * in-line.
3048 		 */
3049 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3050 
3051 		el = et->et_root_el;
3052 		el->l_tree_depth = 0;
3053 		el->l_next_free_rec = 0;
3054 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3055 
3056 		ocfs2_et_set_last_eb_blk(et, 0);
3057 	}
3058 
3059 	ocfs2_journal_dirty(handle, path_root_bh(path));
3060 
3061 out:
3062 	ocfs2_free_path(left_path);
3063 	return ret;
3064 }
3065 
3066 /*
3067  * Left rotation of btree records.
3068  *
3069  * In many ways, this is (unsurprisingly) the opposite of right
3070  * rotation. We start at some non-rightmost path containing an empty
3071  * extent in the leaf block. The code works its way to the rightmost
3072  * path by rotating records to the left in every subtree.
3073  *
3074  * This is used by any code which reduces the number of extent records
3075  * in a leaf. After removal, an empty record should be placed in the
3076  * leftmost list position.
3077  *
3078  * This won't handle a length update of the rightmost path records if
3079  * the rightmost tree leaf record is removed so the caller is
3080  * responsible for detecting and correcting that.
3081  */
3082 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3083 				  struct ocfs2_path *path,
3084 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
3085 				  struct ocfs2_extent_tree *et)
3086 {
3087 	int ret, orig_credits = handle->h_buffer_credits;
3088 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3089 	struct ocfs2_extent_block *eb;
3090 	struct ocfs2_extent_list *el;
3091 
3092 	el = path_leaf_el(path);
3093 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3094 		return 0;
3095 
3096 	if (path->p_tree_depth == 0) {
3097 rightmost_no_delete:
3098 		/*
3099 		 * Inline extents. This is trivially handled, so do
3100 		 * it up front.
3101 		 */
3102 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3103 						       path);
3104 		if (ret)
3105 			mlog_errno(ret);
3106 		goto out;
3107 	}
3108 
3109 	/*
3110 	 * Handle rightmost branch now. There's several cases:
3111 	 *  1) simple rotation leaving records in there. That's trivial.
3112 	 *  2) rotation requiring a branch delete - there's no more
3113 	 *     records left. Two cases of this:
3114 	 *     a) There are branches to the left.
3115 	 *     b) This is also the leftmost (the only) branch.
3116 	 *
3117 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3118 	 *  2a) we need the left branch so that we can update it with the unlink
3119 	 *  2b) we need to bring the inode back to inline extents.
3120 	 */
3121 
3122 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3123 	el = &eb->h_list;
3124 	if (eb->h_next_leaf_blk == 0) {
3125 		/*
3126 		 * This gets a bit tricky if we're going to delete the
3127 		 * rightmost path. Get the other cases out of the way
3128 		 * 1st.
3129 		 */
3130 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3131 			goto rightmost_no_delete;
3132 
3133 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3134 			ret = -EIO;
3135 			ocfs2_error(inode->i_sb,
3136 				    "Inode %llu has empty extent block at %llu",
3137 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3138 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3139 			goto out;
3140 		}
3141 
3142 		/*
3143 		 * XXX: The caller can not trust "path" any more after
3144 		 * this as it will have been deleted. What do we do?
3145 		 *
3146 		 * In theory the rotate-for-merge code will never get
3147 		 * here because it'll always ask for a rotate in a
3148 		 * nonempty list.
3149 		 */
3150 
3151 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3152 						  dealloc, et);
3153 		if (ret)
3154 			mlog_errno(ret);
3155 		goto out;
3156 	}
3157 
3158 	/*
3159 	 * Now we can loop, remembering the path we get from -EAGAIN
3160 	 * and restarting from there.
3161 	 */
3162 try_rotate:
3163 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3164 				       dealloc, &restart_path, et);
3165 	if (ret && ret != -EAGAIN) {
3166 		mlog_errno(ret);
3167 		goto out;
3168 	}
3169 
3170 	while (ret == -EAGAIN) {
3171 		tmp_path = restart_path;
3172 		restart_path = NULL;
3173 
3174 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3175 					       tmp_path, dealloc,
3176 					       &restart_path, et);
3177 		if (ret && ret != -EAGAIN) {
3178 			mlog_errno(ret);
3179 			goto out;
3180 		}
3181 
3182 		ocfs2_free_path(tmp_path);
3183 		tmp_path = NULL;
3184 
3185 		if (ret == 0)
3186 			goto try_rotate;
3187 	}
3188 
3189 out:
3190 	ocfs2_free_path(tmp_path);
3191 	ocfs2_free_path(restart_path);
3192 	return ret;
3193 }
3194 
3195 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3196 				int index)
3197 {
3198 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3199 	unsigned int size;
3200 
3201 	if (rec->e_leaf_clusters == 0) {
3202 		/*
3203 		 * We consumed all of the merged-from record. An empty
3204 		 * extent cannot exist anywhere but the 1st array
3205 		 * position, so move things over if the merged-from
3206 		 * record doesn't occupy that position.
3207 		 *
3208 		 * This creates a new empty extent so the caller
3209 		 * should be smart enough to have removed any existing
3210 		 * ones.
3211 		 */
3212 		if (index > 0) {
3213 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3214 			size = index * sizeof(struct ocfs2_extent_rec);
3215 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3216 		}
3217 
3218 		/*
3219 		 * Always memset - the caller doesn't check whether it
3220 		 * created an empty extent, so there could be junk in
3221 		 * the other fields.
3222 		 */
3223 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3224 	}
3225 }
3226 
3227 static int ocfs2_get_right_path(struct inode *inode,
3228 				struct ocfs2_path *left_path,
3229 				struct ocfs2_path **ret_right_path)
3230 {
3231 	int ret;
3232 	u32 right_cpos;
3233 	struct ocfs2_path *right_path = NULL;
3234 	struct ocfs2_extent_list *left_el;
3235 
3236 	*ret_right_path = NULL;
3237 
3238 	/* This function shouldn't be called for non-trees. */
3239 	BUG_ON(left_path->p_tree_depth == 0);
3240 
3241 	left_el = path_leaf_el(left_path);
3242 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3243 
3244 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3245 					     &right_cpos);
3246 	if (ret) {
3247 		mlog_errno(ret);
3248 		goto out;
3249 	}
3250 
3251 	/* This function shouldn't be called for the rightmost leaf. */
3252 	BUG_ON(right_cpos == 0);
3253 
3254 	right_path = ocfs2_new_path_from_path(left_path);
3255 	if (!right_path) {
3256 		ret = -ENOMEM;
3257 		mlog_errno(ret);
3258 		goto out;
3259 	}
3260 
3261 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3262 	if (ret) {
3263 		mlog_errno(ret);
3264 		goto out;
3265 	}
3266 
3267 	*ret_right_path = right_path;
3268 out:
3269 	if (ret)
3270 		ocfs2_free_path(right_path);
3271 	return ret;
3272 }
3273 
3274 /*
3275  * Remove split_rec clusters from the record at index and merge them
3276  * onto the beginning of the record "next" to it.
3277  * For index < l_count - 1, the next means the extent rec at index + 1.
3278  * For index == l_count - 1, the "next" means the 1st extent rec of the
3279  * next extent block.
3280  */
3281 static int ocfs2_merge_rec_right(struct inode *inode,
3282 				 struct ocfs2_path *left_path,
3283 				 handle_t *handle,
3284 				 struct ocfs2_extent_rec *split_rec,
3285 				 int index)
3286 {
3287 	int ret, next_free, i;
3288 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3289 	struct ocfs2_extent_rec *left_rec;
3290 	struct ocfs2_extent_rec *right_rec;
3291 	struct ocfs2_extent_list *right_el;
3292 	struct ocfs2_path *right_path = NULL;
3293 	int subtree_index = 0;
3294 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3295 	struct buffer_head *bh = path_leaf_bh(left_path);
3296 	struct buffer_head *root_bh = NULL;
3297 
3298 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3299 	left_rec = &el->l_recs[index];
3300 
3301 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3302 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3303 		/* we meet with a cross extent block merge. */
3304 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3305 		if (ret) {
3306 			mlog_errno(ret);
3307 			goto out;
3308 		}
3309 
3310 		right_el = path_leaf_el(right_path);
3311 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3312 		BUG_ON(next_free <= 0);
3313 		right_rec = &right_el->l_recs[0];
3314 		if (ocfs2_is_empty_extent(right_rec)) {
3315 			BUG_ON(next_free <= 1);
3316 			right_rec = &right_el->l_recs[1];
3317 		}
3318 
3319 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3320 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3321 		       le32_to_cpu(right_rec->e_cpos));
3322 
3323 		subtree_index = ocfs2_find_subtree_root(inode,
3324 							left_path, right_path);
3325 
3326 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3327 						      handle->h_buffer_credits,
3328 						      right_path);
3329 		if (ret) {
3330 			mlog_errno(ret);
3331 			goto out;
3332 		}
3333 
3334 		root_bh = left_path->p_node[subtree_index].bh;
3335 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3336 
3337 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3338 						   subtree_index);
3339 		if (ret) {
3340 			mlog_errno(ret);
3341 			goto out;
3342 		}
3343 
3344 		for (i = subtree_index + 1;
3345 		     i < path_num_items(right_path); i++) {
3346 			ret = ocfs2_path_bh_journal_access(handle, inode,
3347 							   right_path, i);
3348 			if (ret) {
3349 				mlog_errno(ret);
3350 				goto out;
3351 			}
3352 
3353 			ret = ocfs2_path_bh_journal_access(handle, inode,
3354 							   left_path, i);
3355 			if (ret) {
3356 				mlog_errno(ret);
3357 				goto out;
3358 			}
3359 		}
3360 
3361 	} else {
3362 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3363 		right_rec = &el->l_recs[index + 1];
3364 	}
3365 
3366 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3367 					   path_num_items(left_path) - 1);
3368 	if (ret) {
3369 		mlog_errno(ret);
3370 		goto out;
3371 	}
3372 
3373 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3374 
3375 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3376 	le64_add_cpu(&right_rec->e_blkno,
3377 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3378 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3379 
3380 	ocfs2_cleanup_merge(el, index);
3381 
3382 	ret = ocfs2_journal_dirty(handle, bh);
3383 	if (ret)
3384 		mlog_errno(ret);
3385 
3386 	if (right_path) {
3387 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3388 		if (ret)
3389 			mlog_errno(ret);
3390 
3391 		ocfs2_complete_edge_insert(inode, handle, left_path,
3392 					   right_path, subtree_index);
3393 	}
3394 out:
3395 	if (right_path)
3396 		ocfs2_free_path(right_path);
3397 	return ret;
3398 }
3399 
3400 static int ocfs2_get_left_path(struct inode *inode,
3401 			       struct ocfs2_path *right_path,
3402 			       struct ocfs2_path **ret_left_path)
3403 {
3404 	int ret;
3405 	u32 left_cpos;
3406 	struct ocfs2_path *left_path = NULL;
3407 
3408 	*ret_left_path = NULL;
3409 
3410 	/* This function shouldn't be called for non-trees. */
3411 	BUG_ON(right_path->p_tree_depth == 0);
3412 
3413 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3414 					    right_path, &left_cpos);
3415 	if (ret) {
3416 		mlog_errno(ret);
3417 		goto out;
3418 	}
3419 
3420 	/* This function shouldn't be called for the leftmost leaf. */
3421 	BUG_ON(left_cpos == 0);
3422 
3423 	left_path = ocfs2_new_path_from_path(right_path);
3424 	if (!left_path) {
3425 		ret = -ENOMEM;
3426 		mlog_errno(ret);
3427 		goto out;
3428 	}
3429 
3430 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3431 	if (ret) {
3432 		mlog_errno(ret);
3433 		goto out;
3434 	}
3435 
3436 	*ret_left_path = left_path;
3437 out:
3438 	if (ret)
3439 		ocfs2_free_path(left_path);
3440 	return ret;
3441 }
3442 
3443 /*
3444  * Remove split_rec clusters from the record at index and merge them
3445  * onto the tail of the record "before" it.
3446  * For index > 0, the "before" means the extent rec at index - 1.
3447  *
3448  * For index == 0, the "before" means the last record of the previous
3449  * extent block. And there is also a situation that we may need to
3450  * remove the rightmost leaf extent block in the right_path and change
3451  * the right path to indicate the new rightmost path.
3452  */
3453 static int ocfs2_merge_rec_left(struct inode *inode,
3454 				struct ocfs2_path *right_path,
3455 				handle_t *handle,
3456 				struct ocfs2_extent_rec *split_rec,
3457 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3458 				struct ocfs2_extent_tree *et,
3459 				int index)
3460 {
3461 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3462 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3463 	struct ocfs2_extent_rec *left_rec;
3464 	struct ocfs2_extent_rec *right_rec;
3465 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3466 	struct buffer_head *bh = path_leaf_bh(right_path);
3467 	struct buffer_head *root_bh = NULL;
3468 	struct ocfs2_path *left_path = NULL;
3469 	struct ocfs2_extent_list *left_el;
3470 
3471 	BUG_ON(index < 0);
3472 
3473 	right_rec = &el->l_recs[index];
3474 	if (index == 0) {
3475 		/* we meet with a cross extent block merge. */
3476 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3477 		if (ret) {
3478 			mlog_errno(ret);
3479 			goto out;
3480 		}
3481 
3482 		left_el = path_leaf_el(left_path);
3483 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3484 		       le16_to_cpu(left_el->l_count));
3485 
3486 		left_rec = &left_el->l_recs[
3487 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3488 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3489 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3490 		       le32_to_cpu(split_rec->e_cpos));
3491 
3492 		subtree_index = ocfs2_find_subtree_root(inode,
3493 							left_path, right_path);
3494 
3495 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3496 						      handle->h_buffer_credits,
3497 						      left_path);
3498 		if (ret) {
3499 			mlog_errno(ret);
3500 			goto out;
3501 		}
3502 
3503 		root_bh = left_path->p_node[subtree_index].bh;
3504 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3505 
3506 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3507 						   subtree_index);
3508 		if (ret) {
3509 			mlog_errno(ret);
3510 			goto out;
3511 		}
3512 
3513 		for (i = subtree_index + 1;
3514 		     i < path_num_items(right_path); i++) {
3515 			ret = ocfs2_path_bh_journal_access(handle, inode,
3516 							   right_path, i);
3517 			if (ret) {
3518 				mlog_errno(ret);
3519 				goto out;
3520 			}
3521 
3522 			ret = ocfs2_path_bh_journal_access(handle, inode,
3523 							   left_path, i);
3524 			if (ret) {
3525 				mlog_errno(ret);
3526 				goto out;
3527 			}
3528 		}
3529 	} else {
3530 		left_rec = &el->l_recs[index - 1];
3531 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3532 			has_empty_extent = 1;
3533 	}
3534 
3535 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3536 					   path_num_items(right_path) - 1);
3537 	if (ret) {
3538 		mlog_errno(ret);
3539 		goto out;
3540 	}
3541 
3542 	if (has_empty_extent && index == 1) {
3543 		/*
3544 		 * The easy case - we can just plop the record right in.
3545 		 */
3546 		*left_rec = *split_rec;
3547 
3548 		has_empty_extent = 0;
3549 	} else
3550 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3551 
3552 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3553 	le64_add_cpu(&right_rec->e_blkno,
3554 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3555 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3556 
3557 	ocfs2_cleanup_merge(el, index);
3558 
3559 	ret = ocfs2_journal_dirty(handle, bh);
3560 	if (ret)
3561 		mlog_errno(ret);
3562 
3563 	if (left_path) {
3564 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3565 		if (ret)
3566 			mlog_errno(ret);
3567 
3568 		/*
3569 		 * In the situation that the right_rec is empty and the extent
3570 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3571 		 * it and we need to delete the right extent block.
3572 		 */
3573 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3574 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3575 
3576 			ret = ocfs2_remove_rightmost_path(inode, handle,
3577 							  right_path,
3578 							  dealloc, et);
3579 			if (ret) {
3580 				mlog_errno(ret);
3581 				goto out;
3582 			}
3583 
3584 			/* Now the rightmost extent block has been deleted.
3585 			 * So we use the new rightmost path.
3586 			 */
3587 			ocfs2_mv_path(right_path, left_path);
3588 			left_path = NULL;
3589 		} else
3590 			ocfs2_complete_edge_insert(inode, handle, left_path,
3591 						   right_path, subtree_index);
3592 	}
3593 out:
3594 	if (left_path)
3595 		ocfs2_free_path(left_path);
3596 	return ret;
3597 }
3598 
3599 static int ocfs2_try_to_merge_extent(struct inode *inode,
3600 				     handle_t *handle,
3601 				     struct ocfs2_path *path,
3602 				     int split_index,
3603 				     struct ocfs2_extent_rec *split_rec,
3604 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3605 				     struct ocfs2_merge_ctxt *ctxt,
3606 				     struct ocfs2_extent_tree *et)
3607 
3608 {
3609 	int ret = 0;
3610 	struct ocfs2_extent_list *el = path_leaf_el(path);
3611 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3612 
3613 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3614 
3615 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3616 		/*
3617 		 * The merge code will need to create an empty
3618 		 * extent to take the place of the newly
3619 		 * emptied slot. Remove any pre-existing empty
3620 		 * extents - having more than one in a leaf is
3621 		 * illegal.
3622 		 */
3623 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3624 					     dealloc, et);
3625 		if (ret) {
3626 			mlog_errno(ret);
3627 			goto out;
3628 		}
3629 		split_index--;
3630 		rec = &el->l_recs[split_index];
3631 	}
3632 
3633 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3634 		/*
3635 		 * Left-right contig implies this.
3636 		 */
3637 		BUG_ON(!ctxt->c_split_covers_rec);
3638 
3639 		/*
3640 		 * Since the leftright insert always covers the entire
3641 		 * extent, this call will delete the insert record
3642 		 * entirely, resulting in an empty extent record added to
3643 		 * the extent block.
3644 		 *
3645 		 * Since the adding of an empty extent shifts
3646 		 * everything back to the right, there's no need to
3647 		 * update split_index here.
3648 		 *
3649 		 * When the split_index is zero, we need to merge it to the
3650 		 * prevoius extent block. It is more efficient and easier
3651 		 * if we do merge_right first and merge_left later.
3652 		 */
3653 		ret = ocfs2_merge_rec_right(inode, path,
3654 					    handle, split_rec,
3655 					    split_index);
3656 		if (ret) {
3657 			mlog_errno(ret);
3658 			goto out;
3659 		}
3660 
3661 		/*
3662 		 * We can only get this from logic error above.
3663 		 */
3664 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3665 
3666 		/* The merge left us with an empty extent, remove it. */
3667 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3668 					     dealloc, et);
3669 		if (ret) {
3670 			mlog_errno(ret);
3671 			goto out;
3672 		}
3673 
3674 		rec = &el->l_recs[split_index];
3675 
3676 		/*
3677 		 * Note that we don't pass split_rec here on purpose -
3678 		 * we've merged it into the rec already.
3679 		 */
3680 		ret = ocfs2_merge_rec_left(inode, path,
3681 					   handle, rec,
3682 					   dealloc, et,
3683 					   split_index);
3684 
3685 		if (ret) {
3686 			mlog_errno(ret);
3687 			goto out;
3688 		}
3689 
3690 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3691 					     dealloc, et);
3692 		/*
3693 		 * Error from this last rotate is not critical, so
3694 		 * print but don't bubble it up.
3695 		 */
3696 		if (ret)
3697 			mlog_errno(ret);
3698 		ret = 0;
3699 	} else {
3700 		/*
3701 		 * Merge a record to the left or right.
3702 		 *
3703 		 * 'contig_type' is relative to the existing record,
3704 		 * so for example, if we're "right contig", it's to
3705 		 * the record on the left (hence the left merge).
3706 		 */
3707 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3708 			ret = ocfs2_merge_rec_left(inode,
3709 						   path,
3710 						   handle, split_rec,
3711 						   dealloc, et,
3712 						   split_index);
3713 			if (ret) {
3714 				mlog_errno(ret);
3715 				goto out;
3716 			}
3717 		} else {
3718 			ret = ocfs2_merge_rec_right(inode,
3719 						    path,
3720 						    handle, split_rec,
3721 						    split_index);
3722 			if (ret) {
3723 				mlog_errno(ret);
3724 				goto out;
3725 			}
3726 		}
3727 
3728 		if (ctxt->c_split_covers_rec) {
3729 			/*
3730 			 * The merge may have left an empty extent in
3731 			 * our leaf. Try to rotate it away.
3732 			 */
3733 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3734 						     dealloc, et);
3735 			if (ret)
3736 				mlog_errno(ret);
3737 			ret = 0;
3738 		}
3739 	}
3740 
3741 out:
3742 	return ret;
3743 }
3744 
3745 static void ocfs2_subtract_from_rec(struct super_block *sb,
3746 				    enum ocfs2_split_type split,
3747 				    struct ocfs2_extent_rec *rec,
3748 				    struct ocfs2_extent_rec *split_rec)
3749 {
3750 	u64 len_blocks;
3751 
3752 	len_blocks = ocfs2_clusters_to_blocks(sb,
3753 				le16_to_cpu(split_rec->e_leaf_clusters));
3754 
3755 	if (split == SPLIT_LEFT) {
3756 		/*
3757 		 * Region is on the left edge of the existing
3758 		 * record.
3759 		 */
3760 		le32_add_cpu(&rec->e_cpos,
3761 			     le16_to_cpu(split_rec->e_leaf_clusters));
3762 		le64_add_cpu(&rec->e_blkno, len_blocks);
3763 		le16_add_cpu(&rec->e_leaf_clusters,
3764 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3765 	} else {
3766 		/*
3767 		 * Region is on the right edge of the existing
3768 		 * record.
3769 		 */
3770 		le16_add_cpu(&rec->e_leaf_clusters,
3771 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3772 	}
3773 }
3774 
3775 /*
3776  * Do the final bits of extent record insertion at the target leaf
3777  * list. If this leaf is part of an allocation tree, it is assumed
3778  * that the tree above has been prepared.
3779  */
3780 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3781 				 struct ocfs2_extent_list *el,
3782 				 struct ocfs2_insert_type *insert,
3783 				 struct inode *inode)
3784 {
3785 	int i = insert->ins_contig_index;
3786 	unsigned int range;
3787 	struct ocfs2_extent_rec *rec;
3788 
3789 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3790 
3791 	if (insert->ins_split != SPLIT_NONE) {
3792 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3793 		BUG_ON(i == -1);
3794 		rec = &el->l_recs[i];
3795 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3796 					insert_rec);
3797 		goto rotate;
3798 	}
3799 
3800 	/*
3801 	 * Contiguous insert - either left or right.
3802 	 */
3803 	if (insert->ins_contig != CONTIG_NONE) {
3804 		rec = &el->l_recs[i];
3805 		if (insert->ins_contig == CONTIG_LEFT) {
3806 			rec->e_blkno = insert_rec->e_blkno;
3807 			rec->e_cpos = insert_rec->e_cpos;
3808 		}
3809 		le16_add_cpu(&rec->e_leaf_clusters,
3810 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3811 		return;
3812 	}
3813 
3814 	/*
3815 	 * Handle insert into an empty leaf.
3816 	 */
3817 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3818 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3819 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3820 		el->l_recs[0] = *insert_rec;
3821 		el->l_next_free_rec = cpu_to_le16(1);
3822 		return;
3823 	}
3824 
3825 	/*
3826 	 * Appending insert.
3827 	 */
3828 	if (insert->ins_appending == APPEND_TAIL) {
3829 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3830 		rec = &el->l_recs[i];
3831 		range = le32_to_cpu(rec->e_cpos)
3832 			+ le16_to_cpu(rec->e_leaf_clusters);
3833 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3834 
3835 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3836 				le16_to_cpu(el->l_count),
3837 				"inode %lu, depth %u, count %u, next free %u, "
3838 				"rec.cpos %u, rec.clusters %u, "
3839 				"insert.cpos %u, insert.clusters %u\n",
3840 				inode->i_ino,
3841 				le16_to_cpu(el->l_tree_depth),
3842 				le16_to_cpu(el->l_count),
3843 				le16_to_cpu(el->l_next_free_rec),
3844 				le32_to_cpu(el->l_recs[i].e_cpos),
3845 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3846 				le32_to_cpu(insert_rec->e_cpos),
3847 				le16_to_cpu(insert_rec->e_leaf_clusters));
3848 		i++;
3849 		el->l_recs[i] = *insert_rec;
3850 		le16_add_cpu(&el->l_next_free_rec, 1);
3851 		return;
3852 	}
3853 
3854 rotate:
3855 	/*
3856 	 * Ok, we have to rotate.
3857 	 *
3858 	 * At this point, it is safe to assume that inserting into an
3859 	 * empty leaf and appending to a leaf have both been handled
3860 	 * above.
3861 	 *
3862 	 * This leaf needs to have space, either by the empty 1st
3863 	 * extent record, or by virtue of an l_next_rec < l_count.
3864 	 */
3865 	ocfs2_rotate_leaf(el, insert_rec);
3866 }
3867 
3868 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3869 					   handle_t *handle,
3870 					   struct ocfs2_path *path,
3871 					   struct ocfs2_extent_rec *insert_rec)
3872 {
3873 	int ret, i, next_free;
3874 	struct buffer_head *bh;
3875 	struct ocfs2_extent_list *el;
3876 	struct ocfs2_extent_rec *rec;
3877 
3878 	/*
3879 	 * Update everything except the leaf block.
3880 	 */
3881 	for (i = 0; i < path->p_tree_depth; i++) {
3882 		bh = path->p_node[i].bh;
3883 		el = path->p_node[i].el;
3884 
3885 		next_free = le16_to_cpu(el->l_next_free_rec);
3886 		if (next_free == 0) {
3887 			ocfs2_error(inode->i_sb,
3888 				    "Dinode %llu has a bad extent list",
3889 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3890 			ret = -EIO;
3891 			return;
3892 		}
3893 
3894 		rec = &el->l_recs[next_free - 1];
3895 
3896 		rec->e_int_clusters = insert_rec->e_cpos;
3897 		le32_add_cpu(&rec->e_int_clusters,
3898 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3899 		le32_add_cpu(&rec->e_int_clusters,
3900 			     -le32_to_cpu(rec->e_cpos));
3901 
3902 		ret = ocfs2_journal_dirty(handle, bh);
3903 		if (ret)
3904 			mlog_errno(ret);
3905 
3906 	}
3907 }
3908 
3909 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3910 				    struct ocfs2_extent_rec *insert_rec,
3911 				    struct ocfs2_path *right_path,
3912 				    struct ocfs2_path **ret_left_path)
3913 {
3914 	int ret, next_free;
3915 	struct ocfs2_extent_list *el;
3916 	struct ocfs2_path *left_path = NULL;
3917 
3918 	*ret_left_path = NULL;
3919 
3920 	/*
3921 	 * This shouldn't happen for non-trees. The extent rec cluster
3922 	 * count manipulation below only works for interior nodes.
3923 	 */
3924 	BUG_ON(right_path->p_tree_depth == 0);
3925 
3926 	/*
3927 	 * If our appending insert is at the leftmost edge of a leaf,
3928 	 * then we might need to update the rightmost records of the
3929 	 * neighboring path.
3930 	 */
3931 	el = path_leaf_el(right_path);
3932 	next_free = le16_to_cpu(el->l_next_free_rec);
3933 	if (next_free == 0 ||
3934 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3935 		u32 left_cpos;
3936 
3937 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3938 						    &left_cpos);
3939 		if (ret) {
3940 			mlog_errno(ret);
3941 			goto out;
3942 		}
3943 
3944 		mlog(0, "Append may need a left path update. cpos: %u, "
3945 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3946 		     left_cpos);
3947 
3948 		/*
3949 		 * No need to worry if the append is already in the
3950 		 * leftmost leaf.
3951 		 */
3952 		if (left_cpos) {
3953 			left_path = ocfs2_new_path_from_path(right_path);
3954 			if (!left_path) {
3955 				ret = -ENOMEM;
3956 				mlog_errno(ret);
3957 				goto out;
3958 			}
3959 
3960 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3961 			if (ret) {
3962 				mlog_errno(ret);
3963 				goto out;
3964 			}
3965 
3966 			/*
3967 			 * ocfs2_insert_path() will pass the left_path to the
3968 			 * journal for us.
3969 			 */
3970 		}
3971 	}
3972 
3973 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3974 	if (ret) {
3975 		mlog_errno(ret);
3976 		goto out;
3977 	}
3978 
3979 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3980 
3981 	*ret_left_path = left_path;
3982 	ret = 0;
3983 out:
3984 	if (ret != 0)
3985 		ocfs2_free_path(left_path);
3986 
3987 	return ret;
3988 }
3989 
3990 static void ocfs2_split_record(struct inode *inode,
3991 			       struct ocfs2_path *left_path,
3992 			       struct ocfs2_path *right_path,
3993 			       struct ocfs2_extent_rec *split_rec,
3994 			       enum ocfs2_split_type split)
3995 {
3996 	int index;
3997 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3998 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3999 	struct ocfs2_extent_rec *rec, *tmprec;
4000 
4001 	right_el = path_leaf_el(right_path);
4002 	if (left_path)
4003 		left_el = path_leaf_el(left_path);
4004 
4005 	el = right_el;
4006 	insert_el = right_el;
4007 	index = ocfs2_search_extent_list(el, cpos);
4008 	if (index != -1) {
4009 		if (index == 0 && left_path) {
4010 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4011 
4012 			/*
4013 			 * This typically means that the record
4014 			 * started in the left path but moved to the
4015 			 * right as a result of rotation. We either
4016 			 * move the existing record to the left, or we
4017 			 * do the later insert there.
4018 			 *
4019 			 * In this case, the left path should always
4020 			 * exist as the rotate code will have passed
4021 			 * it back for a post-insert update.
4022 			 */
4023 
4024 			if (split == SPLIT_LEFT) {
4025 				/*
4026 				 * It's a left split. Since we know
4027 				 * that the rotate code gave us an
4028 				 * empty extent in the left path, we
4029 				 * can just do the insert there.
4030 				 */
4031 				insert_el = left_el;
4032 			} else {
4033 				/*
4034 				 * Right split - we have to move the
4035 				 * existing record over to the left
4036 				 * leaf. The insert will be into the
4037 				 * newly created empty extent in the
4038 				 * right leaf.
4039 				 */
4040 				tmprec = &right_el->l_recs[index];
4041 				ocfs2_rotate_leaf(left_el, tmprec);
4042 				el = left_el;
4043 
4044 				memset(tmprec, 0, sizeof(*tmprec));
4045 				index = ocfs2_search_extent_list(left_el, cpos);
4046 				BUG_ON(index == -1);
4047 			}
4048 		}
4049 	} else {
4050 		BUG_ON(!left_path);
4051 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4052 		/*
4053 		 * Left path is easy - we can just allow the insert to
4054 		 * happen.
4055 		 */
4056 		el = left_el;
4057 		insert_el = left_el;
4058 		index = ocfs2_search_extent_list(el, cpos);
4059 		BUG_ON(index == -1);
4060 	}
4061 
4062 	rec = &el->l_recs[index];
4063 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4064 	ocfs2_rotate_leaf(insert_el, split_rec);
4065 }
4066 
4067 /*
4068  * This function only does inserts on an allocation b-tree. For tree
4069  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4070  *
4071  * right_path is the path we want to do the actual insert
4072  * in. left_path should only be passed in if we need to update that
4073  * portion of the tree after an edge insert.
4074  */
4075 static int ocfs2_insert_path(struct inode *inode,
4076 			     handle_t *handle,
4077 			     struct ocfs2_path *left_path,
4078 			     struct ocfs2_path *right_path,
4079 			     struct ocfs2_extent_rec *insert_rec,
4080 			     struct ocfs2_insert_type *insert)
4081 {
4082 	int ret, subtree_index;
4083 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4084 
4085 	if (left_path) {
4086 		int credits = handle->h_buffer_credits;
4087 
4088 		/*
4089 		 * There's a chance that left_path got passed back to
4090 		 * us without being accounted for in the
4091 		 * journal. Extend our transaction here to be sure we
4092 		 * can change those blocks.
4093 		 */
4094 		credits += left_path->p_tree_depth;
4095 
4096 		ret = ocfs2_extend_trans(handle, credits);
4097 		if (ret < 0) {
4098 			mlog_errno(ret);
4099 			goto out;
4100 		}
4101 
4102 		ret = ocfs2_journal_access_path(inode, handle, left_path);
4103 		if (ret < 0) {
4104 			mlog_errno(ret);
4105 			goto out;
4106 		}
4107 	}
4108 
4109 	/*
4110 	 * Pass both paths to the journal. The majority of inserts
4111 	 * will be touching all components anyway.
4112 	 */
4113 	ret = ocfs2_journal_access_path(inode, handle, right_path);
4114 	if (ret < 0) {
4115 		mlog_errno(ret);
4116 		goto out;
4117 	}
4118 
4119 	if (insert->ins_split != SPLIT_NONE) {
4120 		/*
4121 		 * We could call ocfs2_insert_at_leaf() for some types
4122 		 * of splits, but it's easier to just let one separate
4123 		 * function sort it all out.
4124 		 */
4125 		ocfs2_split_record(inode, left_path, right_path,
4126 				   insert_rec, insert->ins_split);
4127 
4128 		/*
4129 		 * Split might have modified either leaf and we don't
4130 		 * have a guarantee that the later edge insert will
4131 		 * dirty this for us.
4132 		 */
4133 		if (left_path)
4134 			ret = ocfs2_journal_dirty(handle,
4135 						  path_leaf_bh(left_path));
4136 			if (ret)
4137 				mlog_errno(ret);
4138 	} else
4139 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4140 				     insert, inode);
4141 
4142 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4143 	if (ret)
4144 		mlog_errno(ret);
4145 
4146 	if (left_path) {
4147 		/*
4148 		 * The rotate code has indicated that we need to fix
4149 		 * up portions of the tree after the insert.
4150 		 *
4151 		 * XXX: Should we extend the transaction here?
4152 		 */
4153 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4154 							right_path);
4155 		ocfs2_complete_edge_insert(inode, handle, left_path,
4156 					   right_path, subtree_index);
4157 	}
4158 
4159 	ret = 0;
4160 out:
4161 	return ret;
4162 }
4163 
4164 static int ocfs2_do_insert_extent(struct inode *inode,
4165 				  handle_t *handle,
4166 				  struct ocfs2_extent_tree *et,
4167 				  struct ocfs2_extent_rec *insert_rec,
4168 				  struct ocfs2_insert_type *type)
4169 {
4170 	int ret, rotate = 0;
4171 	u32 cpos;
4172 	struct ocfs2_path *right_path = NULL;
4173 	struct ocfs2_path *left_path = NULL;
4174 	struct ocfs2_extent_list *el;
4175 
4176 	el = et->et_root_el;
4177 
4178 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4179 					   OCFS2_JOURNAL_ACCESS_WRITE);
4180 	if (ret) {
4181 		mlog_errno(ret);
4182 		goto out;
4183 	}
4184 
4185 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4186 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4187 		goto out_update_clusters;
4188 	}
4189 
4190 	right_path = ocfs2_new_path_from_et(et);
4191 	if (!right_path) {
4192 		ret = -ENOMEM;
4193 		mlog_errno(ret);
4194 		goto out;
4195 	}
4196 
4197 	/*
4198 	 * Determine the path to start with. Rotations need the
4199 	 * rightmost path, everything else can go directly to the
4200 	 * target leaf.
4201 	 */
4202 	cpos = le32_to_cpu(insert_rec->e_cpos);
4203 	if (type->ins_appending == APPEND_NONE &&
4204 	    type->ins_contig == CONTIG_NONE) {
4205 		rotate = 1;
4206 		cpos = UINT_MAX;
4207 	}
4208 
4209 	ret = ocfs2_find_path(inode, right_path, cpos);
4210 	if (ret) {
4211 		mlog_errno(ret);
4212 		goto out;
4213 	}
4214 
4215 	/*
4216 	 * Rotations and appends need special treatment - they modify
4217 	 * parts of the tree's above them.
4218 	 *
4219 	 * Both might pass back a path immediate to the left of the
4220 	 * one being inserted to. This will be cause
4221 	 * ocfs2_insert_path() to modify the rightmost records of
4222 	 * left_path to account for an edge insert.
4223 	 *
4224 	 * XXX: When modifying this code, keep in mind that an insert
4225 	 * can wind up skipping both of these two special cases...
4226 	 */
4227 	if (rotate) {
4228 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4229 					      le32_to_cpu(insert_rec->e_cpos),
4230 					      right_path, &left_path);
4231 		if (ret) {
4232 			mlog_errno(ret);
4233 			goto out;
4234 		}
4235 
4236 		/*
4237 		 * ocfs2_rotate_tree_right() might have extended the
4238 		 * transaction without re-journaling our tree root.
4239 		 */
4240 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4241 						   OCFS2_JOURNAL_ACCESS_WRITE);
4242 		if (ret) {
4243 			mlog_errno(ret);
4244 			goto out;
4245 		}
4246 	} else if (type->ins_appending == APPEND_TAIL
4247 		   && type->ins_contig != CONTIG_LEFT) {
4248 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4249 					       right_path, &left_path);
4250 		if (ret) {
4251 			mlog_errno(ret);
4252 			goto out;
4253 		}
4254 	}
4255 
4256 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4257 				insert_rec, type);
4258 	if (ret) {
4259 		mlog_errno(ret);
4260 		goto out;
4261 	}
4262 
4263 out_update_clusters:
4264 	if (type->ins_split == SPLIT_NONE)
4265 		ocfs2_et_update_clusters(inode, et,
4266 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4267 
4268 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4269 	if (ret)
4270 		mlog_errno(ret);
4271 
4272 out:
4273 	ocfs2_free_path(left_path);
4274 	ocfs2_free_path(right_path);
4275 
4276 	return ret;
4277 }
4278 
4279 static enum ocfs2_contig_type
4280 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4281 			       struct ocfs2_extent_list *el, int index,
4282 			       struct ocfs2_extent_rec *split_rec)
4283 {
4284 	int status;
4285 	enum ocfs2_contig_type ret = CONTIG_NONE;
4286 	u32 left_cpos, right_cpos;
4287 	struct ocfs2_extent_rec *rec = NULL;
4288 	struct ocfs2_extent_list *new_el;
4289 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4290 	struct buffer_head *bh;
4291 	struct ocfs2_extent_block *eb;
4292 
4293 	if (index > 0) {
4294 		rec = &el->l_recs[index - 1];
4295 	} else if (path->p_tree_depth > 0) {
4296 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4297 						       path, &left_cpos);
4298 		if (status)
4299 			goto out;
4300 
4301 		if (left_cpos != 0) {
4302 			left_path = ocfs2_new_path_from_path(path);
4303 			if (!left_path)
4304 				goto out;
4305 
4306 			status = ocfs2_find_path(inode, left_path, left_cpos);
4307 			if (status)
4308 				goto out;
4309 
4310 			new_el = path_leaf_el(left_path);
4311 
4312 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4313 			    le16_to_cpu(new_el->l_count)) {
4314 				bh = path_leaf_bh(left_path);
4315 				eb = (struct ocfs2_extent_block *)bh->b_data;
4316 				ocfs2_error(inode->i_sb,
4317 					    "Extent block #%llu has an "
4318 					    "invalid l_next_free_rec of "
4319 					    "%d.  It should have "
4320 					    "matched the l_count of %d",
4321 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4322 					    le16_to_cpu(new_el->l_next_free_rec),
4323 					    le16_to_cpu(new_el->l_count));
4324 				status = -EINVAL;
4325 				goto out;
4326 			}
4327 			rec = &new_el->l_recs[
4328 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4329 		}
4330 	}
4331 
4332 	/*
4333 	 * We're careful to check for an empty extent record here -
4334 	 * the merge code will know what to do if it sees one.
4335 	 */
4336 	if (rec) {
4337 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4338 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4339 				ret = CONTIG_RIGHT;
4340 		} else {
4341 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4342 		}
4343 	}
4344 
4345 	rec = NULL;
4346 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4347 		rec = &el->l_recs[index + 1];
4348 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4349 		 path->p_tree_depth > 0) {
4350 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4351 							path, &right_cpos);
4352 		if (status)
4353 			goto out;
4354 
4355 		if (right_cpos == 0)
4356 			goto out;
4357 
4358 		right_path = ocfs2_new_path_from_path(path);
4359 		if (!right_path)
4360 			goto out;
4361 
4362 		status = ocfs2_find_path(inode, right_path, right_cpos);
4363 		if (status)
4364 			goto out;
4365 
4366 		new_el = path_leaf_el(right_path);
4367 		rec = &new_el->l_recs[0];
4368 		if (ocfs2_is_empty_extent(rec)) {
4369 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4370 				bh = path_leaf_bh(right_path);
4371 				eb = (struct ocfs2_extent_block *)bh->b_data;
4372 				ocfs2_error(inode->i_sb,
4373 					    "Extent block #%llu has an "
4374 					    "invalid l_next_free_rec of %d",
4375 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4376 					    le16_to_cpu(new_el->l_next_free_rec));
4377 				status = -EINVAL;
4378 				goto out;
4379 			}
4380 			rec = &new_el->l_recs[1];
4381 		}
4382 	}
4383 
4384 	if (rec) {
4385 		enum ocfs2_contig_type contig_type;
4386 
4387 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4388 
4389 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4390 			ret = CONTIG_LEFTRIGHT;
4391 		else if (ret == CONTIG_NONE)
4392 			ret = contig_type;
4393 	}
4394 
4395 out:
4396 	if (left_path)
4397 		ocfs2_free_path(left_path);
4398 	if (right_path)
4399 		ocfs2_free_path(right_path);
4400 
4401 	return ret;
4402 }
4403 
4404 static void ocfs2_figure_contig_type(struct inode *inode,
4405 				     struct ocfs2_insert_type *insert,
4406 				     struct ocfs2_extent_list *el,
4407 				     struct ocfs2_extent_rec *insert_rec,
4408 				     struct ocfs2_extent_tree *et)
4409 {
4410 	int i;
4411 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4412 
4413 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4414 
4415 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4416 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4417 						  insert_rec);
4418 		if (contig_type != CONTIG_NONE) {
4419 			insert->ins_contig_index = i;
4420 			break;
4421 		}
4422 	}
4423 	insert->ins_contig = contig_type;
4424 
4425 	if (insert->ins_contig != CONTIG_NONE) {
4426 		struct ocfs2_extent_rec *rec =
4427 				&el->l_recs[insert->ins_contig_index];
4428 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4429 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4430 
4431 		/*
4432 		 * Caller might want us to limit the size of extents, don't
4433 		 * calculate contiguousness if we might exceed that limit.
4434 		 */
4435 		if (et->et_max_leaf_clusters &&
4436 		    (len > et->et_max_leaf_clusters))
4437 			insert->ins_contig = CONTIG_NONE;
4438 	}
4439 }
4440 
4441 /*
4442  * This should only be called against the righmost leaf extent list.
4443  *
4444  * ocfs2_figure_appending_type() will figure out whether we'll have to
4445  * insert at the tail of the rightmost leaf.
4446  *
4447  * This should also work against the root extent list for tree's with 0
4448  * depth. If we consider the root extent list to be the rightmost leaf node
4449  * then the logic here makes sense.
4450  */
4451 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4452 					struct ocfs2_extent_list *el,
4453 					struct ocfs2_extent_rec *insert_rec)
4454 {
4455 	int i;
4456 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4457 	struct ocfs2_extent_rec *rec;
4458 
4459 	insert->ins_appending = APPEND_NONE;
4460 
4461 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4462 
4463 	if (!el->l_next_free_rec)
4464 		goto set_tail_append;
4465 
4466 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4467 		/* Were all records empty? */
4468 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4469 			goto set_tail_append;
4470 	}
4471 
4472 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4473 	rec = &el->l_recs[i];
4474 
4475 	if (cpos >=
4476 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4477 		goto set_tail_append;
4478 
4479 	return;
4480 
4481 set_tail_append:
4482 	insert->ins_appending = APPEND_TAIL;
4483 }
4484 
4485 /*
4486  * Helper function called at the begining of an insert.
4487  *
4488  * This computes a few things that are commonly used in the process of
4489  * inserting into the btree:
4490  *   - Whether the new extent is contiguous with an existing one.
4491  *   - The current tree depth.
4492  *   - Whether the insert is an appending one.
4493  *   - The total # of free records in the tree.
4494  *
4495  * All of the information is stored on the ocfs2_insert_type
4496  * structure.
4497  */
4498 static int ocfs2_figure_insert_type(struct inode *inode,
4499 				    struct ocfs2_extent_tree *et,
4500 				    struct buffer_head **last_eb_bh,
4501 				    struct ocfs2_extent_rec *insert_rec,
4502 				    int *free_records,
4503 				    struct ocfs2_insert_type *insert)
4504 {
4505 	int ret;
4506 	struct ocfs2_extent_block *eb;
4507 	struct ocfs2_extent_list *el;
4508 	struct ocfs2_path *path = NULL;
4509 	struct buffer_head *bh = NULL;
4510 
4511 	insert->ins_split = SPLIT_NONE;
4512 
4513 	el = et->et_root_el;
4514 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4515 
4516 	if (el->l_tree_depth) {
4517 		/*
4518 		 * If we have tree depth, we read in the
4519 		 * rightmost extent block ahead of time as
4520 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4521 		 * may want it later.
4522 		 */
4523 		ret = ocfs2_read_extent_block(inode,
4524 					      ocfs2_et_get_last_eb_blk(et),
4525 					      &bh);
4526 		if (ret) {
4527 			mlog_exit(ret);
4528 			goto out;
4529 		}
4530 		eb = (struct ocfs2_extent_block *) bh->b_data;
4531 		el = &eb->h_list;
4532 	}
4533 
4534 	/*
4535 	 * Unless we have a contiguous insert, we'll need to know if
4536 	 * there is room left in our allocation tree for another
4537 	 * extent record.
4538 	 *
4539 	 * XXX: This test is simplistic, we can search for empty
4540 	 * extent records too.
4541 	 */
4542 	*free_records = le16_to_cpu(el->l_count) -
4543 		le16_to_cpu(el->l_next_free_rec);
4544 
4545 	if (!insert->ins_tree_depth) {
4546 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4547 		ocfs2_figure_appending_type(insert, el, insert_rec);
4548 		return 0;
4549 	}
4550 
4551 	path = ocfs2_new_path_from_et(et);
4552 	if (!path) {
4553 		ret = -ENOMEM;
4554 		mlog_errno(ret);
4555 		goto out;
4556 	}
4557 
4558 	/*
4559 	 * In the case that we're inserting past what the tree
4560 	 * currently accounts for, ocfs2_find_path() will return for
4561 	 * us the rightmost tree path. This is accounted for below in
4562 	 * the appending code.
4563 	 */
4564 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4565 	if (ret) {
4566 		mlog_errno(ret);
4567 		goto out;
4568 	}
4569 
4570 	el = path_leaf_el(path);
4571 
4572 	/*
4573 	 * Now that we have the path, there's two things we want to determine:
4574 	 * 1) Contiguousness (also set contig_index if this is so)
4575 	 *
4576 	 * 2) Are we doing an append? We can trivially break this up
4577          *     into two types of appends: simple record append, or a
4578          *     rotate inside the tail leaf.
4579 	 */
4580 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4581 
4582 	/*
4583 	 * The insert code isn't quite ready to deal with all cases of
4584 	 * left contiguousness. Specifically, if it's an insert into
4585 	 * the 1st record in a leaf, it will require the adjustment of
4586 	 * cluster count on the last record of the path directly to it's
4587 	 * left. For now, just catch that case and fool the layers
4588 	 * above us. This works just fine for tree_depth == 0, which
4589 	 * is why we allow that above.
4590 	 */
4591 	if (insert->ins_contig == CONTIG_LEFT &&
4592 	    insert->ins_contig_index == 0)
4593 		insert->ins_contig = CONTIG_NONE;
4594 
4595 	/*
4596 	 * Ok, so we can simply compare against last_eb to figure out
4597 	 * whether the path doesn't exist. This will only happen in
4598 	 * the case that we're doing a tail append, so maybe we can
4599 	 * take advantage of that information somehow.
4600 	 */
4601 	if (ocfs2_et_get_last_eb_blk(et) ==
4602 	    path_leaf_bh(path)->b_blocknr) {
4603 		/*
4604 		 * Ok, ocfs2_find_path() returned us the rightmost
4605 		 * tree path. This might be an appending insert. There are
4606 		 * two cases:
4607 		 *    1) We're doing a true append at the tail:
4608 		 *	-This might even be off the end of the leaf
4609 		 *    2) We're "appending" by rotating in the tail
4610 		 */
4611 		ocfs2_figure_appending_type(insert, el, insert_rec);
4612 	}
4613 
4614 out:
4615 	ocfs2_free_path(path);
4616 
4617 	if (ret == 0)
4618 		*last_eb_bh = bh;
4619 	else
4620 		brelse(bh);
4621 	return ret;
4622 }
4623 
4624 /*
4625  * Insert an extent into an inode btree.
4626  *
4627  * The caller needs to update fe->i_clusters
4628  */
4629 int ocfs2_insert_extent(struct ocfs2_super *osb,
4630 			handle_t *handle,
4631 			struct inode *inode,
4632 			struct ocfs2_extent_tree *et,
4633 			u32 cpos,
4634 			u64 start_blk,
4635 			u32 new_clusters,
4636 			u8 flags,
4637 			struct ocfs2_alloc_context *meta_ac)
4638 {
4639 	int status;
4640 	int uninitialized_var(free_records);
4641 	struct buffer_head *last_eb_bh = NULL;
4642 	struct ocfs2_insert_type insert = {0, };
4643 	struct ocfs2_extent_rec rec;
4644 
4645 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4646 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4647 
4648 	memset(&rec, 0, sizeof(rec));
4649 	rec.e_cpos = cpu_to_le32(cpos);
4650 	rec.e_blkno = cpu_to_le64(start_blk);
4651 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4652 	rec.e_flags = flags;
4653 	status = ocfs2_et_insert_check(inode, et, &rec);
4654 	if (status) {
4655 		mlog_errno(status);
4656 		goto bail;
4657 	}
4658 
4659 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4660 					  &free_records, &insert);
4661 	if (status < 0) {
4662 		mlog_errno(status);
4663 		goto bail;
4664 	}
4665 
4666 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4667 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4668 	     "Insert.tree_depth: %d\n",
4669 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4670 	     free_records, insert.ins_tree_depth);
4671 
4672 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4673 		status = ocfs2_grow_tree(inode, handle, et,
4674 					 &insert.ins_tree_depth, &last_eb_bh,
4675 					 meta_ac);
4676 		if (status) {
4677 			mlog_errno(status);
4678 			goto bail;
4679 		}
4680 	}
4681 
4682 	/* Finally, we can add clusters. This might rotate the tree for us. */
4683 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4684 	if (status < 0)
4685 		mlog_errno(status);
4686 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4687 		ocfs2_extent_map_insert_rec(inode, &rec);
4688 
4689 bail:
4690 	brelse(last_eb_bh);
4691 
4692 	mlog_exit(status);
4693 	return status;
4694 }
4695 
4696 /*
4697  * Allcate and add clusters into the extent b-tree.
4698  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4699  * The extent b-tree's root is specified by et, and
4700  * it is not limited to the file storage. Any extent tree can use this
4701  * function if it implements the proper ocfs2_extent_tree.
4702  */
4703 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4704 				struct inode *inode,
4705 				u32 *logical_offset,
4706 				u32 clusters_to_add,
4707 				int mark_unwritten,
4708 				struct ocfs2_extent_tree *et,
4709 				handle_t *handle,
4710 				struct ocfs2_alloc_context *data_ac,
4711 				struct ocfs2_alloc_context *meta_ac,
4712 				enum ocfs2_alloc_restarted *reason_ret)
4713 {
4714 	int status = 0;
4715 	int free_extents;
4716 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4717 	u32 bit_off, num_bits;
4718 	u64 block;
4719 	u8 flags = 0;
4720 
4721 	BUG_ON(!clusters_to_add);
4722 
4723 	if (mark_unwritten)
4724 		flags = OCFS2_EXT_UNWRITTEN;
4725 
4726 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4727 	if (free_extents < 0) {
4728 		status = free_extents;
4729 		mlog_errno(status);
4730 		goto leave;
4731 	}
4732 
4733 	/* there are two cases which could cause us to EAGAIN in the
4734 	 * we-need-more-metadata case:
4735 	 * 1) we haven't reserved *any*
4736 	 * 2) we are so fragmented, we've needed to add metadata too
4737 	 *    many times. */
4738 	if (!free_extents && !meta_ac) {
4739 		mlog(0, "we haven't reserved any metadata!\n");
4740 		status = -EAGAIN;
4741 		reason = RESTART_META;
4742 		goto leave;
4743 	} else if ((!free_extents)
4744 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4745 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4746 		mlog(0, "filesystem is really fragmented...\n");
4747 		status = -EAGAIN;
4748 		reason = RESTART_META;
4749 		goto leave;
4750 	}
4751 
4752 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4753 					clusters_to_add, &bit_off, &num_bits);
4754 	if (status < 0) {
4755 		if (status != -ENOSPC)
4756 			mlog_errno(status);
4757 		goto leave;
4758 	}
4759 
4760 	BUG_ON(num_bits > clusters_to_add);
4761 
4762 	/* reserve our write early -- insert_extent may update the tree root */
4763 	status = ocfs2_et_root_journal_access(handle, inode, et,
4764 					      OCFS2_JOURNAL_ACCESS_WRITE);
4765 	if (status < 0) {
4766 		mlog_errno(status);
4767 		goto leave;
4768 	}
4769 
4770 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4771 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4772 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4773 	status = ocfs2_insert_extent(osb, handle, inode, et,
4774 				     *logical_offset, block,
4775 				     num_bits, flags, meta_ac);
4776 	if (status < 0) {
4777 		mlog_errno(status);
4778 		goto leave;
4779 	}
4780 
4781 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4782 	if (status < 0) {
4783 		mlog_errno(status);
4784 		goto leave;
4785 	}
4786 
4787 	clusters_to_add -= num_bits;
4788 	*logical_offset += num_bits;
4789 
4790 	if (clusters_to_add) {
4791 		mlog(0, "need to alloc once more, wanted = %u\n",
4792 		     clusters_to_add);
4793 		status = -EAGAIN;
4794 		reason = RESTART_TRANS;
4795 	}
4796 
4797 leave:
4798 	mlog_exit(status);
4799 	if (reason_ret)
4800 		*reason_ret = reason;
4801 	return status;
4802 }
4803 
4804 static void ocfs2_make_right_split_rec(struct super_block *sb,
4805 				       struct ocfs2_extent_rec *split_rec,
4806 				       u32 cpos,
4807 				       struct ocfs2_extent_rec *rec)
4808 {
4809 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4810 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4811 
4812 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4813 
4814 	split_rec->e_cpos = cpu_to_le32(cpos);
4815 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4816 
4817 	split_rec->e_blkno = rec->e_blkno;
4818 	le64_add_cpu(&split_rec->e_blkno,
4819 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4820 
4821 	split_rec->e_flags = rec->e_flags;
4822 }
4823 
4824 static int ocfs2_split_and_insert(struct inode *inode,
4825 				  handle_t *handle,
4826 				  struct ocfs2_path *path,
4827 				  struct ocfs2_extent_tree *et,
4828 				  struct buffer_head **last_eb_bh,
4829 				  int split_index,
4830 				  struct ocfs2_extent_rec *orig_split_rec,
4831 				  struct ocfs2_alloc_context *meta_ac)
4832 {
4833 	int ret = 0, depth;
4834 	unsigned int insert_range, rec_range, do_leftright = 0;
4835 	struct ocfs2_extent_rec tmprec;
4836 	struct ocfs2_extent_list *rightmost_el;
4837 	struct ocfs2_extent_rec rec;
4838 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4839 	struct ocfs2_insert_type insert;
4840 	struct ocfs2_extent_block *eb;
4841 
4842 leftright:
4843 	/*
4844 	 * Store a copy of the record on the stack - it might move
4845 	 * around as the tree is manipulated below.
4846 	 */
4847 	rec = path_leaf_el(path)->l_recs[split_index];
4848 
4849 	rightmost_el = et->et_root_el;
4850 
4851 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4852 	if (depth) {
4853 		BUG_ON(!(*last_eb_bh));
4854 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4855 		rightmost_el = &eb->h_list;
4856 	}
4857 
4858 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4859 	    le16_to_cpu(rightmost_el->l_count)) {
4860 		ret = ocfs2_grow_tree(inode, handle, et,
4861 				      &depth, last_eb_bh, meta_ac);
4862 		if (ret) {
4863 			mlog_errno(ret);
4864 			goto out;
4865 		}
4866 	}
4867 
4868 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4869 	insert.ins_appending = APPEND_NONE;
4870 	insert.ins_contig = CONTIG_NONE;
4871 	insert.ins_tree_depth = depth;
4872 
4873 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4874 		le16_to_cpu(split_rec.e_leaf_clusters);
4875 	rec_range = le32_to_cpu(rec.e_cpos) +
4876 		le16_to_cpu(rec.e_leaf_clusters);
4877 
4878 	if (split_rec.e_cpos == rec.e_cpos) {
4879 		insert.ins_split = SPLIT_LEFT;
4880 	} else if (insert_range == rec_range) {
4881 		insert.ins_split = SPLIT_RIGHT;
4882 	} else {
4883 		/*
4884 		 * Left/right split. We fake this as a right split
4885 		 * first and then make a second pass as a left split.
4886 		 */
4887 		insert.ins_split = SPLIT_RIGHT;
4888 
4889 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4890 					   &rec);
4891 
4892 		split_rec = tmprec;
4893 
4894 		BUG_ON(do_leftright);
4895 		do_leftright = 1;
4896 	}
4897 
4898 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4899 	if (ret) {
4900 		mlog_errno(ret);
4901 		goto out;
4902 	}
4903 
4904 	if (do_leftright == 1) {
4905 		u32 cpos;
4906 		struct ocfs2_extent_list *el;
4907 
4908 		do_leftright++;
4909 		split_rec = *orig_split_rec;
4910 
4911 		ocfs2_reinit_path(path, 1);
4912 
4913 		cpos = le32_to_cpu(split_rec.e_cpos);
4914 		ret = ocfs2_find_path(inode, path, cpos);
4915 		if (ret) {
4916 			mlog_errno(ret);
4917 			goto out;
4918 		}
4919 
4920 		el = path_leaf_el(path);
4921 		split_index = ocfs2_search_extent_list(el, cpos);
4922 		goto leftright;
4923 	}
4924 out:
4925 
4926 	return ret;
4927 }
4928 
4929 static int ocfs2_replace_extent_rec(struct inode *inode,
4930 				    handle_t *handle,
4931 				    struct ocfs2_path *path,
4932 				    struct ocfs2_extent_list *el,
4933 				    int split_index,
4934 				    struct ocfs2_extent_rec *split_rec)
4935 {
4936 	int ret;
4937 
4938 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
4939 					   path_num_items(path) - 1);
4940 	if (ret) {
4941 		mlog_errno(ret);
4942 		goto out;
4943 	}
4944 
4945 	el->l_recs[split_index] = *split_rec;
4946 
4947 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4948 out:
4949 	return ret;
4950 }
4951 
4952 /*
4953  * Mark part or all of the extent record at split_index in the leaf
4954  * pointed to by path as written. This removes the unwritten
4955  * extent flag.
4956  *
4957  * Care is taken to handle contiguousness so as to not grow the tree.
4958  *
4959  * meta_ac is not strictly necessary - we only truly need it if growth
4960  * of the tree is required. All other cases will degrade into a less
4961  * optimal tree layout.
4962  *
4963  * last_eb_bh should be the rightmost leaf block for any extent
4964  * btree. Since a split may grow the tree or a merge might shrink it,
4965  * the caller cannot trust the contents of that buffer after this call.
4966  *
4967  * This code is optimized for readability - several passes might be
4968  * made over certain portions of the tree. All of those blocks will
4969  * have been brought into cache (and pinned via the journal), so the
4970  * extra overhead is not expressed in terms of disk reads.
4971  */
4972 static int __ocfs2_mark_extent_written(struct inode *inode,
4973 				       struct ocfs2_extent_tree *et,
4974 				       handle_t *handle,
4975 				       struct ocfs2_path *path,
4976 				       int split_index,
4977 				       struct ocfs2_extent_rec *split_rec,
4978 				       struct ocfs2_alloc_context *meta_ac,
4979 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4980 {
4981 	int ret = 0;
4982 	struct ocfs2_extent_list *el = path_leaf_el(path);
4983 	struct buffer_head *last_eb_bh = NULL;
4984 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4985 	struct ocfs2_merge_ctxt ctxt;
4986 	struct ocfs2_extent_list *rightmost_el;
4987 
4988 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4989 		ret = -EIO;
4990 		mlog_errno(ret);
4991 		goto out;
4992 	}
4993 
4994 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4995 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4996 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4997 		ret = -EIO;
4998 		mlog_errno(ret);
4999 		goto out;
5000 	}
5001 
5002 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5003 							    split_index,
5004 							    split_rec);
5005 
5006 	/*
5007 	 * The core merge / split code wants to know how much room is
5008 	 * left in this inodes allocation tree, so we pass the
5009 	 * rightmost extent list.
5010 	 */
5011 	if (path->p_tree_depth) {
5012 		struct ocfs2_extent_block *eb;
5013 
5014 		ret = ocfs2_read_extent_block(inode,
5015 					      ocfs2_et_get_last_eb_blk(et),
5016 					      &last_eb_bh);
5017 		if (ret) {
5018 			mlog_exit(ret);
5019 			goto out;
5020 		}
5021 
5022 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5023 		rightmost_el = &eb->h_list;
5024 	} else
5025 		rightmost_el = path_root_el(path);
5026 
5027 	if (rec->e_cpos == split_rec->e_cpos &&
5028 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5029 		ctxt.c_split_covers_rec = 1;
5030 	else
5031 		ctxt.c_split_covers_rec = 0;
5032 
5033 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5034 
5035 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5036 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5037 	     ctxt.c_split_covers_rec);
5038 
5039 	if (ctxt.c_contig_type == CONTIG_NONE) {
5040 		if (ctxt.c_split_covers_rec)
5041 			ret = ocfs2_replace_extent_rec(inode, handle,
5042 						       path, el,
5043 						       split_index, split_rec);
5044 		else
5045 			ret = ocfs2_split_and_insert(inode, handle, path, et,
5046 						     &last_eb_bh, split_index,
5047 						     split_rec, meta_ac);
5048 		if (ret)
5049 			mlog_errno(ret);
5050 	} else {
5051 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
5052 						split_index, split_rec,
5053 						dealloc, &ctxt, et);
5054 		if (ret)
5055 			mlog_errno(ret);
5056 	}
5057 
5058 out:
5059 	brelse(last_eb_bh);
5060 	return ret;
5061 }
5062 
5063 /*
5064  * Mark the already-existing extent at cpos as written for len clusters.
5065  *
5066  * If the existing extent is larger than the request, initiate a
5067  * split. An attempt will be made at merging with adjacent extents.
5068  *
5069  * The caller is responsible for passing down meta_ac if we'll need it.
5070  */
5071 int ocfs2_mark_extent_written(struct inode *inode,
5072 			      struct ocfs2_extent_tree *et,
5073 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5074 			      struct ocfs2_alloc_context *meta_ac,
5075 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5076 {
5077 	int ret, index;
5078 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5079 	struct ocfs2_extent_rec split_rec;
5080 	struct ocfs2_path *left_path = NULL;
5081 	struct ocfs2_extent_list *el;
5082 
5083 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5084 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5085 
5086 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5087 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5088 			    "that are being written to, but the feature bit "
5089 			    "is not set in the super block.",
5090 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5091 		ret = -EROFS;
5092 		goto out;
5093 	}
5094 
5095 	/*
5096 	 * XXX: This should be fixed up so that we just re-insert the
5097 	 * next extent records.
5098 	 *
5099 	 * XXX: This is a hack on the extent tree, maybe it should be
5100 	 * an op?
5101 	 */
5102 	if (et->et_ops == &ocfs2_dinode_et_ops)
5103 		ocfs2_extent_map_trunc(inode, 0);
5104 
5105 	left_path = ocfs2_new_path_from_et(et);
5106 	if (!left_path) {
5107 		ret = -ENOMEM;
5108 		mlog_errno(ret);
5109 		goto out;
5110 	}
5111 
5112 	ret = ocfs2_find_path(inode, left_path, cpos);
5113 	if (ret) {
5114 		mlog_errno(ret);
5115 		goto out;
5116 	}
5117 	el = path_leaf_el(left_path);
5118 
5119 	index = ocfs2_search_extent_list(el, cpos);
5120 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5121 		ocfs2_error(inode->i_sb,
5122 			    "Inode %llu has an extent at cpos %u which can no "
5123 			    "longer be found.\n",
5124 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5125 		ret = -EROFS;
5126 		goto out;
5127 	}
5128 
5129 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5130 	split_rec.e_cpos = cpu_to_le32(cpos);
5131 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5132 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5133 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5134 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5135 
5136 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5137 					  index, &split_rec, meta_ac,
5138 					  dealloc);
5139 	if (ret)
5140 		mlog_errno(ret);
5141 
5142 out:
5143 	ocfs2_free_path(left_path);
5144 	return ret;
5145 }
5146 
5147 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5148 			    handle_t *handle, struct ocfs2_path *path,
5149 			    int index, u32 new_range,
5150 			    struct ocfs2_alloc_context *meta_ac)
5151 {
5152 	int ret, depth, credits = handle->h_buffer_credits;
5153 	struct buffer_head *last_eb_bh = NULL;
5154 	struct ocfs2_extent_block *eb;
5155 	struct ocfs2_extent_list *rightmost_el, *el;
5156 	struct ocfs2_extent_rec split_rec;
5157 	struct ocfs2_extent_rec *rec;
5158 	struct ocfs2_insert_type insert;
5159 
5160 	/*
5161 	 * Setup the record to split before we grow the tree.
5162 	 */
5163 	el = path_leaf_el(path);
5164 	rec = &el->l_recs[index];
5165 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5166 
5167 	depth = path->p_tree_depth;
5168 	if (depth > 0) {
5169 		ret = ocfs2_read_extent_block(inode,
5170 					      ocfs2_et_get_last_eb_blk(et),
5171 					      &last_eb_bh);
5172 		if (ret < 0) {
5173 			mlog_errno(ret);
5174 			goto out;
5175 		}
5176 
5177 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5178 		rightmost_el = &eb->h_list;
5179 	} else
5180 		rightmost_el = path_leaf_el(path);
5181 
5182 	credits += path->p_tree_depth +
5183 		   ocfs2_extend_meta_needed(et->et_root_el);
5184 	ret = ocfs2_extend_trans(handle, credits);
5185 	if (ret) {
5186 		mlog_errno(ret);
5187 		goto out;
5188 	}
5189 
5190 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5191 	    le16_to_cpu(rightmost_el->l_count)) {
5192 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5193 				      meta_ac);
5194 		if (ret) {
5195 			mlog_errno(ret);
5196 			goto out;
5197 		}
5198 	}
5199 
5200 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5201 	insert.ins_appending = APPEND_NONE;
5202 	insert.ins_contig = CONTIG_NONE;
5203 	insert.ins_split = SPLIT_RIGHT;
5204 	insert.ins_tree_depth = depth;
5205 
5206 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5207 	if (ret)
5208 		mlog_errno(ret);
5209 
5210 out:
5211 	brelse(last_eb_bh);
5212 	return ret;
5213 }
5214 
5215 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5216 			      struct ocfs2_path *path, int index,
5217 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5218 			      u32 cpos, u32 len,
5219 			      struct ocfs2_extent_tree *et)
5220 {
5221 	int ret;
5222 	u32 left_cpos, rec_range, trunc_range;
5223 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5224 	struct super_block *sb = inode->i_sb;
5225 	struct ocfs2_path *left_path = NULL;
5226 	struct ocfs2_extent_list *el = path_leaf_el(path);
5227 	struct ocfs2_extent_rec *rec;
5228 	struct ocfs2_extent_block *eb;
5229 
5230 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5231 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5232 		if (ret) {
5233 			mlog_errno(ret);
5234 			goto out;
5235 		}
5236 
5237 		index--;
5238 	}
5239 
5240 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5241 	    path->p_tree_depth) {
5242 		/*
5243 		 * Check whether this is the rightmost tree record. If
5244 		 * we remove all of this record or part of its right
5245 		 * edge then an update of the record lengths above it
5246 		 * will be required.
5247 		 */
5248 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5249 		if (eb->h_next_leaf_blk == 0)
5250 			is_rightmost_tree_rec = 1;
5251 	}
5252 
5253 	rec = &el->l_recs[index];
5254 	if (index == 0 && path->p_tree_depth &&
5255 	    le32_to_cpu(rec->e_cpos) == cpos) {
5256 		/*
5257 		 * Changing the leftmost offset (via partial or whole
5258 		 * record truncate) of an interior (or rightmost) path
5259 		 * means we have to update the subtree that is formed
5260 		 * by this leaf and the one to it's left.
5261 		 *
5262 		 * There are two cases we can skip:
5263 		 *   1) Path is the leftmost one in our inode tree.
5264 		 *   2) The leaf is rightmost and will be empty after
5265 		 *      we remove the extent record - the rotate code
5266 		 *      knows how to update the newly formed edge.
5267 		 */
5268 
5269 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5270 						    &left_cpos);
5271 		if (ret) {
5272 			mlog_errno(ret);
5273 			goto out;
5274 		}
5275 
5276 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5277 			left_path = ocfs2_new_path_from_path(path);
5278 			if (!left_path) {
5279 				ret = -ENOMEM;
5280 				mlog_errno(ret);
5281 				goto out;
5282 			}
5283 
5284 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5285 			if (ret) {
5286 				mlog_errno(ret);
5287 				goto out;
5288 			}
5289 		}
5290 	}
5291 
5292 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5293 					      handle->h_buffer_credits,
5294 					      path);
5295 	if (ret) {
5296 		mlog_errno(ret);
5297 		goto out;
5298 	}
5299 
5300 	ret = ocfs2_journal_access_path(inode, handle, path);
5301 	if (ret) {
5302 		mlog_errno(ret);
5303 		goto out;
5304 	}
5305 
5306 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5307 	if (ret) {
5308 		mlog_errno(ret);
5309 		goto out;
5310 	}
5311 
5312 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5313 	trunc_range = cpos + len;
5314 
5315 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5316 		int next_free;
5317 
5318 		memset(rec, 0, sizeof(*rec));
5319 		ocfs2_cleanup_merge(el, index);
5320 		wants_rotate = 1;
5321 
5322 		next_free = le16_to_cpu(el->l_next_free_rec);
5323 		if (is_rightmost_tree_rec && next_free > 1) {
5324 			/*
5325 			 * We skip the edge update if this path will
5326 			 * be deleted by the rotate code.
5327 			 */
5328 			rec = &el->l_recs[next_free - 1];
5329 			ocfs2_adjust_rightmost_records(inode, handle, path,
5330 						       rec);
5331 		}
5332 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5333 		/* Remove leftmost portion of the record. */
5334 		le32_add_cpu(&rec->e_cpos, len);
5335 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5336 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5337 	} else if (rec_range == trunc_range) {
5338 		/* Remove rightmost portion of the record */
5339 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5340 		if (is_rightmost_tree_rec)
5341 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5342 	} else {
5343 		/* Caller should have trapped this. */
5344 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5345 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5346 		     le32_to_cpu(rec->e_cpos),
5347 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5348 		BUG();
5349 	}
5350 
5351 	if (left_path) {
5352 		int subtree_index;
5353 
5354 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5355 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5356 					   subtree_index);
5357 	}
5358 
5359 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5360 
5361 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5362 	if (ret) {
5363 		mlog_errno(ret);
5364 		goto out;
5365 	}
5366 
5367 out:
5368 	ocfs2_free_path(left_path);
5369 	return ret;
5370 }
5371 
5372 int ocfs2_remove_extent(struct inode *inode,
5373 			struct ocfs2_extent_tree *et,
5374 			u32 cpos, u32 len, handle_t *handle,
5375 			struct ocfs2_alloc_context *meta_ac,
5376 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5377 {
5378 	int ret, index;
5379 	u32 rec_range, trunc_range;
5380 	struct ocfs2_extent_rec *rec;
5381 	struct ocfs2_extent_list *el;
5382 	struct ocfs2_path *path = NULL;
5383 
5384 	ocfs2_extent_map_trunc(inode, 0);
5385 
5386 	path = ocfs2_new_path_from_et(et);
5387 	if (!path) {
5388 		ret = -ENOMEM;
5389 		mlog_errno(ret);
5390 		goto out;
5391 	}
5392 
5393 	ret = ocfs2_find_path(inode, path, cpos);
5394 	if (ret) {
5395 		mlog_errno(ret);
5396 		goto out;
5397 	}
5398 
5399 	el = path_leaf_el(path);
5400 	index = ocfs2_search_extent_list(el, cpos);
5401 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5402 		ocfs2_error(inode->i_sb,
5403 			    "Inode %llu has an extent at cpos %u which can no "
5404 			    "longer be found.\n",
5405 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5406 		ret = -EROFS;
5407 		goto out;
5408 	}
5409 
5410 	/*
5411 	 * We have 3 cases of extent removal:
5412 	 *   1) Range covers the entire extent rec
5413 	 *   2) Range begins or ends on one edge of the extent rec
5414 	 *   3) Range is in the middle of the extent rec (no shared edges)
5415 	 *
5416 	 * For case 1 we remove the extent rec and left rotate to
5417 	 * fill the hole.
5418 	 *
5419 	 * For case 2 we just shrink the existing extent rec, with a
5420 	 * tree update if the shrinking edge is also the edge of an
5421 	 * extent block.
5422 	 *
5423 	 * For case 3 we do a right split to turn the extent rec into
5424 	 * something case 2 can handle.
5425 	 */
5426 	rec = &el->l_recs[index];
5427 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5428 	trunc_range = cpos + len;
5429 
5430 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5431 
5432 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5433 	     "(cpos %u, len %u)\n",
5434 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5435 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5436 
5437 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5438 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5439 					 cpos, len, et);
5440 		if (ret) {
5441 			mlog_errno(ret);
5442 			goto out;
5443 		}
5444 	} else {
5445 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5446 				       trunc_range, meta_ac);
5447 		if (ret) {
5448 			mlog_errno(ret);
5449 			goto out;
5450 		}
5451 
5452 		/*
5453 		 * The split could have manipulated the tree enough to
5454 		 * move the record location, so we have to look for it again.
5455 		 */
5456 		ocfs2_reinit_path(path, 1);
5457 
5458 		ret = ocfs2_find_path(inode, path, cpos);
5459 		if (ret) {
5460 			mlog_errno(ret);
5461 			goto out;
5462 		}
5463 
5464 		el = path_leaf_el(path);
5465 		index = ocfs2_search_extent_list(el, cpos);
5466 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5467 			ocfs2_error(inode->i_sb,
5468 				    "Inode %llu: split at cpos %u lost record.",
5469 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5470 				    cpos);
5471 			ret = -EROFS;
5472 			goto out;
5473 		}
5474 
5475 		/*
5476 		 * Double check our values here. If anything is fishy,
5477 		 * it's easier to catch it at the top level.
5478 		 */
5479 		rec = &el->l_recs[index];
5480 		rec_range = le32_to_cpu(rec->e_cpos) +
5481 			ocfs2_rec_clusters(el, rec);
5482 		if (rec_range != trunc_range) {
5483 			ocfs2_error(inode->i_sb,
5484 				    "Inode %llu: error after split at cpos %u"
5485 				    "trunc len %u, existing record is (%u,%u)",
5486 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5487 				    cpos, len, le32_to_cpu(rec->e_cpos),
5488 				    ocfs2_rec_clusters(el, rec));
5489 			ret = -EROFS;
5490 			goto out;
5491 		}
5492 
5493 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5494 					 cpos, len, et);
5495 		if (ret) {
5496 			mlog_errno(ret);
5497 			goto out;
5498 		}
5499 	}
5500 
5501 out:
5502 	ocfs2_free_path(path);
5503 	return ret;
5504 }
5505 
5506 int ocfs2_remove_btree_range(struct inode *inode,
5507 			     struct ocfs2_extent_tree *et,
5508 			     u32 cpos, u32 phys_cpos, u32 len,
5509 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5510 {
5511 	int ret;
5512 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5513 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5514 	struct inode *tl_inode = osb->osb_tl_inode;
5515 	handle_t *handle;
5516 	struct ocfs2_alloc_context *meta_ac = NULL;
5517 
5518 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5519 	if (ret) {
5520 		mlog_errno(ret);
5521 		return ret;
5522 	}
5523 
5524 	mutex_lock(&tl_inode->i_mutex);
5525 
5526 	if (ocfs2_truncate_log_needs_flush(osb)) {
5527 		ret = __ocfs2_flush_truncate_log(osb);
5528 		if (ret < 0) {
5529 			mlog_errno(ret);
5530 			goto out;
5531 		}
5532 	}
5533 
5534 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5535 	if (IS_ERR(handle)) {
5536 		ret = PTR_ERR(handle);
5537 		mlog_errno(ret);
5538 		goto out;
5539 	}
5540 
5541 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5542 					   OCFS2_JOURNAL_ACCESS_WRITE);
5543 	if (ret) {
5544 		mlog_errno(ret);
5545 		goto out;
5546 	}
5547 
5548 	vfs_dq_free_space_nodirty(inode,
5549 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5550 
5551 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5552 				  dealloc);
5553 	if (ret) {
5554 		mlog_errno(ret);
5555 		goto out_commit;
5556 	}
5557 
5558 	ocfs2_et_update_clusters(inode, et, -len);
5559 
5560 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5561 	if (ret) {
5562 		mlog_errno(ret);
5563 		goto out_commit;
5564 	}
5565 
5566 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5567 	if (ret)
5568 		mlog_errno(ret);
5569 
5570 out_commit:
5571 	ocfs2_commit_trans(osb, handle);
5572 out:
5573 	mutex_unlock(&tl_inode->i_mutex);
5574 
5575 	if (meta_ac)
5576 		ocfs2_free_alloc_context(meta_ac);
5577 
5578 	return ret;
5579 }
5580 
5581 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5582 {
5583 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5584 	struct ocfs2_dinode *di;
5585 	struct ocfs2_truncate_log *tl;
5586 
5587 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5588 	tl = &di->id2.i_dealloc;
5589 
5590 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5591 			"slot %d, invalid truncate log parameters: used = "
5592 			"%u, count = %u\n", osb->slot_num,
5593 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5594 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5595 }
5596 
5597 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5598 					   unsigned int new_start)
5599 {
5600 	unsigned int tail_index;
5601 	unsigned int current_tail;
5602 
5603 	/* No records, nothing to coalesce */
5604 	if (!le16_to_cpu(tl->tl_used))
5605 		return 0;
5606 
5607 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5608 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5609 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5610 
5611 	return current_tail == new_start;
5612 }
5613 
5614 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5615 			      handle_t *handle,
5616 			      u64 start_blk,
5617 			      unsigned int num_clusters)
5618 {
5619 	int status, index;
5620 	unsigned int start_cluster, tl_count;
5621 	struct inode *tl_inode = osb->osb_tl_inode;
5622 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5623 	struct ocfs2_dinode *di;
5624 	struct ocfs2_truncate_log *tl;
5625 
5626 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5627 		   (unsigned long long)start_blk, num_clusters);
5628 
5629 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5630 
5631 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5632 
5633 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5634 
5635 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5636 	 * by the underlying call to ocfs2_read_inode_block(), so any
5637 	 * corruption is a code bug */
5638 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5639 
5640 	tl = &di->id2.i_dealloc;
5641 	tl_count = le16_to_cpu(tl->tl_count);
5642 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5643 			tl_count == 0,
5644 			"Truncate record count on #%llu invalid "
5645 			"wanted %u, actual %u\n",
5646 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5647 			ocfs2_truncate_recs_per_inode(osb->sb),
5648 			le16_to_cpu(tl->tl_count));
5649 
5650 	/* Caller should have known to flush before calling us. */
5651 	index = le16_to_cpu(tl->tl_used);
5652 	if (index >= tl_count) {
5653 		status = -ENOSPC;
5654 		mlog_errno(status);
5655 		goto bail;
5656 	}
5657 
5658 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5659 					 OCFS2_JOURNAL_ACCESS_WRITE);
5660 	if (status < 0) {
5661 		mlog_errno(status);
5662 		goto bail;
5663 	}
5664 
5665 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5666 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5667 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5668 
5669 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5670 		/*
5671 		 * Move index back to the record we are coalescing with.
5672 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5673 		 */
5674 		index--;
5675 
5676 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5677 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5678 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5679 		     num_clusters);
5680 	} else {
5681 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5682 		tl->tl_used = cpu_to_le16(index + 1);
5683 	}
5684 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5685 
5686 	status = ocfs2_journal_dirty(handle, tl_bh);
5687 	if (status < 0) {
5688 		mlog_errno(status);
5689 		goto bail;
5690 	}
5691 
5692 bail:
5693 	mlog_exit(status);
5694 	return status;
5695 }
5696 
5697 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5698 					 handle_t *handle,
5699 					 struct inode *data_alloc_inode,
5700 					 struct buffer_head *data_alloc_bh)
5701 {
5702 	int status = 0;
5703 	int i;
5704 	unsigned int num_clusters;
5705 	u64 start_blk;
5706 	struct ocfs2_truncate_rec rec;
5707 	struct ocfs2_dinode *di;
5708 	struct ocfs2_truncate_log *tl;
5709 	struct inode *tl_inode = osb->osb_tl_inode;
5710 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5711 
5712 	mlog_entry_void();
5713 
5714 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5715 	tl = &di->id2.i_dealloc;
5716 	i = le16_to_cpu(tl->tl_used) - 1;
5717 	while (i >= 0) {
5718 		/* Caller has given us at least enough credits to
5719 		 * update the truncate log dinode */
5720 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5721 						 OCFS2_JOURNAL_ACCESS_WRITE);
5722 		if (status < 0) {
5723 			mlog_errno(status);
5724 			goto bail;
5725 		}
5726 
5727 		tl->tl_used = cpu_to_le16(i);
5728 
5729 		status = ocfs2_journal_dirty(handle, tl_bh);
5730 		if (status < 0) {
5731 			mlog_errno(status);
5732 			goto bail;
5733 		}
5734 
5735 		/* TODO: Perhaps we can calculate the bulk of the
5736 		 * credits up front rather than extending like
5737 		 * this. */
5738 		status = ocfs2_extend_trans(handle,
5739 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5740 		if (status < 0) {
5741 			mlog_errno(status);
5742 			goto bail;
5743 		}
5744 
5745 		rec = tl->tl_recs[i];
5746 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5747 						    le32_to_cpu(rec.t_start));
5748 		num_clusters = le32_to_cpu(rec.t_clusters);
5749 
5750 		/* if start_blk is not set, we ignore the record as
5751 		 * invalid. */
5752 		if (start_blk) {
5753 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5754 			     i, le32_to_cpu(rec.t_start), num_clusters);
5755 
5756 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5757 						     data_alloc_bh, start_blk,
5758 						     num_clusters);
5759 			if (status < 0) {
5760 				mlog_errno(status);
5761 				goto bail;
5762 			}
5763 		}
5764 		i--;
5765 	}
5766 
5767 bail:
5768 	mlog_exit(status);
5769 	return status;
5770 }
5771 
5772 /* Expects you to already be holding tl_inode->i_mutex */
5773 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5774 {
5775 	int status;
5776 	unsigned int num_to_flush;
5777 	handle_t *handle;
5778 	struct inode *tl_inode = osb->osb_tl_inode;
5779 	struct inode *data_alloc_inode = NULL;
5780 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5781 	struct buffer_head *data_alloc_bh = NULL;
5782 	struct ocfs2_dinode *di;
5783 	struct ocfs2_truncate_log *tl;
5784 
5785 	mlog_entry_void();
5786 
5787 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5788 
5789 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5790 
5791 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5792 	 * by the underlying call to ocfs2_read_inode_block(), so any
5793 	 * corruption is a code bug */
5794 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5795 
5796 	tl = &di->id2.i_dealloc;
5797 	num_to_flush = le16_to_cpu(tl->tl_used);
5798 	mlog(0, "Flush %u records from truncate log #%llu\n",
5799 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5800 	if (!num_to_flush) {
5801 		status = 0;
5802 		goto out;
5803 	}
5804 
5805 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5806 						       GLOBAL_BITMAP_SYSTEM_INODE,
5807 						       OCFS2_INVALID_SLOT);
5808 	if (!data_alloc_inode) {
5809 		status = -EINVAL;
5810 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5811 		goto out;
5812 	}
5813 
5814 	mutex_lock(&data_alloc_inode->i_mutex);
5815 
5816 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5817 	if (status < 0) {
5818 		mlog_errno(status);
5819 		goto out_mutex;
5820 	}
5821 
5822 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5823 	if (IS_ERR(handle)) {
5824 		status = PTR_ERR(handle);
5825 		mlog_errno(status);
5826 		goto out_unlock;
5827 	}
5828 
5829 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5830 					       data_alloc_bh);
5831 	if (status < 0)
5832 		mlog_errno(status);
5833 
5834 	ocfs2_commit_trans(osb, handle);
5835 
5836 out_unlock:
5837 	brelse(data_alloc_bh);
5838 	ocfs2_inode_unlock(data_alloc_inode, 1);
5839 
5840 out_mutex:
5841 	mutex_unlock(&data_alloc_inode->i_mutex);
5842 	iput(data_alloc_inode);
5843 
5844 out:
5845 	mlog_exit(status);
5846 	return status;
5847 }
5848 
5849 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5850 {
5851 	int status;
5852 	struct inode *tl_inode = osb->osb_tl_inode;
5853 
5854 	mutex_lock(&tl_inode->i_mutex);
5855 	status = __ocfs2_flush_truncate_log(osb);
5856 	mutex_unlock(&tl_inode->i_mutex);
5857 
5858 	return status;
5859 }
5860 
5861 static void ocfs2_truncate_log_worker(struct work_struct *work)
5862 {
5863 	int status;
5864 	struct ocfs2_super *osb =
5865 		container_of(work, struct ocfs2_super,
5866 			     osb_truncate_log_wq.work);
5867 
5868 	mlog_entry_void();
5869 
5870 	status = ocfs2_flush_truncate_log(osb);
5871 	if (status < 0)
5872 		mlog_errno(status);
5873 	else
5874 		ocfs2_init_inode_steal_slot(osb);
5875 
5876 	mlog_exit(status);
5877 }
5878 
5879 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5880 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5881 				       int cancel)
5882 {
5883 	if (osb->osb_tl_inode) {
5884 		/* We want to push off log flushes while truncates are
5885 		 * still running. */
5886 		if (cancel)
5887 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5888 
5889 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5890 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5891 	}
5892 }
5893 
5894 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5895 				       int slot_num,
5896 				       struct inode **tl_inode,
5897 				       struct buffer_head **tl_bh)
5898 {
5899 	int status;
5900 	struct inode *inode = NULL;
5901 	struct buffer_head *bh = NULL;
5902 
5903 	inode = ocfs2_get_system_file_inode(osb,
5904 					   TRUNCATE_LOG_SYSTEM_INODE,
5905 					   slot_num);
5906 	if (!inode) {
5907 		status = -EINVAL;
5908 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5909 		goto bail;
5910 	}
5911 
5912 	status = ocfs2_read_inode_block(inode, &bh);
5913 	if (status < 0) {
5914 		iput(inode);
5915 		mlog_errno(status);
5916 		goto bail;
5917 	}
5918 
5919 	*tl_inode = inode;
5920 	*tl_bh    = bh;
5921 bail:
5922 	mlog_exit(status);
5923 	return status;
5924 }
5925 
5926 /* called during the 1st stage of node recovery. we stamp a clean
5927  * truncate log and pass back a copy for processing later. if the
5928  * truncate log does not require processing, a *tl_copy is set to
5929  * NULL. */
5930 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5931 				      int slot_num,
5932 				      struct ocfs2_dinode **tl_copy)
5933 {
5934 	int status;
5935 	struct inode *tl_inode = NULL;
5936 	struct buffer_head *tl_bh = NULL;
5937 	struct ocfs2_dinode *di;
5938 	struct ocfs2_truncate_log *tl;
5939 
5940 	*tl_copy = NULL;
5941 
5942 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5943 
5944 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5945 	if (status < 0) {
5946 		mlog_errno(status);
5947 		goto bail;
5948 	}
5949 
5950 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5951 
5952 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5953 	 * validated by the underlying call to ocfs2_read_inode_block(),
5954 	 * so any corruption is a code bug */
5955 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5956 
5957 	tl = &di->id2.i_dealloc;
5958 	if (le16_to_cpu(tl->tl_used)) {
5959 		mlog(0, "We'll have %u logs to recover\n",
5960 		     le16_to_cpu(tl->tl_used));
5961 
5962 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5963 		if (!(*tl_copy)) {
5964 			status = -ENOMEM;
5965 			mlog_errno(status);
5966 			goto bail;
5967 		}
5968 
5969 		/* Assuming the write-out below goes well, this copy
5970 		 * will be passed back to recovery for processing. */
5971 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5972 
5973 		/* All we need to do to clear the truncate log is set
5974 		 * tl_used. */
5975 		tl->tl_used = 0;
5976 
5977 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5978 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5979 		if (status < 0) {
5980 			mlog_errno(status);
5981 			goto bail;
5982 		}
5983 	}
5984 
5985 bail:
5986 	if (tl_inode)
5987 		iput(tl_inode);
5988 	brelse(tl_bh);
5989 
5990 	if (status < 0 && (*tl_copy)) {
5991 		kfree(*tl_copy);
5992 		*tl_copy = NULL;
5993 	}
5994 
5995 	mlog_exit(status);
5996 	return status;
5997 }
5998 
5999 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6000 					 struct ocfs2_dinode *tl_copy)
6001 {
6002 	int status = 0;
6003 	int i;
6004 	unsigned int clusters, num_recs, start_cluster;
6005 	u64 start_blk;
6006 	handle_t *handle;
6007 	struct inode *tl_inode = osb->osb_tl_inode;
6008 	struct ocfs2_truncate_log *tl;
6009 
6010 	mlog_entry_void();
6011 
6012 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6013 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6014 		return -EINVAL;
6015 	}
6016 
6017 	tl = &tl_copy->id2.i_dealloc;
6018 	num_recs = le16_to_cpu(tl->tl_used);
6019 	mlog(0, "cleanup %u records from %llu\n", num_recs,
6020 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6021 
6022 	mutex_lock(&tl_inode->i_mutex);
6023 	for(i = 0; i < num_recs; i++) {
6024 		if (ocfs2_truncate_log_needs_flush(osb)) {
6025 			status = __ocfs2_flush_truncate_log(osb);
6026 			if (status < 0) {
6027 				mlog_errno(status);
6028 				goto bail_up;
6029 			}
6030 		}
6031 
6032 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6033 		if (IS_ERR(handle)) {
6034 			status = PTR_ERR(handle);
6035 			mlog_errno(status);
6036 			goto bail_up;
6037 		}
6038 
6039 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6040 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6041 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6042 
6043 		status = ocfs2_truncate_log_append(osb, handle,
6044 						   start_blk, clusters);
6045 		ocfs2_commit_trans(osb, handle);
6046 		if (status < 0) {
6047 			mlog_errno(status);
6048 			goto bail_up;
6049 		}
6050 	}
6051 
6052 bail_up:
6053 	mutex_unlock(&tl_inode->i_mutex);
6054 
6055 	mlog_exit(status);
6056 	return status;
6057 }
6058 
6059 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6060 {
6061 	int status;
6062 	struct inode *tl_inode = osb->osb_tl_inode;
6063 
6064 	mlog_entry_void();
6065 
6066 	if (tl_inode) {
6067 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6068 		flush_workqueue(ocfs2_wq);
6069 
6070 		status = ocfs2_flush_truncate_log(osb);
6071 		if (status < 0)
6072 			mlog_errno(status);
6073 
6074 		brelse(osb->osb_tl_bh);
6075 		iput(osb->osb_tl_inode);
6076 	}
6077 
6078 	mlog_exit_void();
6079 }
6080 
6081 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6082 {
6083 	int status;
6084 	struct inode *tl_inode = NULL;
6085 	struct buffer_head *tl_bh = NULL;
6086 
6087 	mlog_entry_void();
6088 
6089 	status = ocfs2_get_truncate_log_info(osb,
6090 					     osb->slot_num,
6091 					     &tl_inode,
6092 					     &tl_bh);
6093 	if (status < 0)
6094 		mlog_errno(status);
6095 
6096 	/* ocfs2_truncate_log_shutdown keys on the existence of
6097 	 * osb->osb_tl_inode so we don't set any of the osb variables
6098 	 * until we're sure all is well. */
6099 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6100 			  ocfs2_truncate_log_worker);
6101 	osb->osb_tl_bh    = tl_bh;
6102 	osb->osb_tl_inode = tl_inode;
6103 
6104 	mlog_exit(status);
6105 	return status;
6106 }
6107 
6108 /*
6109  * Delayed de-allocation of suballocator blocks.
6110  *
6111  * Some sets of block de-allocations might involve multiple suballocator inodes.
6112  *
6113  * The locking for this can get extremely complicated, especially when
6114  * the suballocator inodes to delete from aren't known until deep
6115  * within an unrelated codepath.
6116  *
6117  * ocfs2_extent_block structures are a good example of this - an inode
6118  * btree could have been grown by any number of nodes each allocating
6119  * out of their own suballoc inode.
6120  *
6121  * These structures allow the delay of block de-allocation until a
6122  * later time, when locking of multiple cluster inodes won't cause
6123  * deadlock.
6124  */
6125 
6126 /*
6127  * Describe a single bit freed from a suballocator.  For the block
6128  * suballocators, it represents one block.  For the global cluster
6129  * allocator, it represents some clusters and free_bit indicates
6130  * clusters number.
6131  */
6132 struct ocfs2_cached_block_free {
6133 	struct ocfs2_cached_block_free		*free_next;
6134 	u64					free_blk;
6135 	unsigned int				free_bit;
6136 };
6137 
6138 struct ocfs2_per_slot_free_list {
6139 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6140 	int					f_inode_type;
6141 	int					f_slot;
6142 	struct ocfs2_cached_block_free		*f_first;
6143 };
6144 
6145 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6146 				    int sysfile_type,
6147 				    int slot,
6148 				    struct ocfs2_cached_block_free *head)
6149 {
6150 	int ret;
6151 	u64 bg_blkno;
6152 	handle_t *handle;
6153 	struct inode *inode;
6154 	struct buffer_head *di_bh = NULL;
6155 	struct ocfs2_cached_block_free *tmp;
6156 
6157 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6158 	if (!inode) {
6159 		ret = -EINVAL;
6160 		mlog_errno(ret);
6161 		goto out;
6162 	}
6163 
6164 	mutex_lock(&inode->i_mutex);
6165 
6166 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6167 	if (ret) {
6168 		mlog_errno(ret);
6169 		goto out_mutex;
6170 	}
6171 
6172 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6173 	if (IS_ERR(handle)) {
6174 		ret = PTR_ERR(handle);
6175 		mlog_errno(ret);
6176 		goto out_unlock;
6177 	}
6178 
6179 	while (head) {
6180 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6181 						      head->free_bit);
6182 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6183 		     head->free_bit, (unsigned long long)head->free_blk);
6184 
6185 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6186 					       head->free_bit, bg_blkno, 1);
6187 		if (ret) {
6188 			mlog_errno(ret);
6189 			goto out_journal;
6190 		}
6191 
6192 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6193 		if (ret) {
6194 			mlog_errno(ret);
6195 			goto out_journal;
6196 		}
6197 
6198 		tmp = head;
6199 		head = head->free_next;
6200 		kfree(tmp);
6201 	}
6202 
6203 out_journal:
6204 	ocfs2_commit_trans(osb, handle);
6205 
6206 out_unlock:
6207 	ocfs2_inode_unlock(inode, 1);
6208 	brelse(di_bh);
6209 out_mutex:
6210 	mutex_unlock(&inode->i_mutex);
6211 	iput(inode);
6212 out:
6213 	while(head) {
6214 		/* Premature exit may have left some dangling items. */
6215 		tmp = head;
6216 		head = head->free_next;
6217 		kfree(tmp);
6218 	}
6219 
6220 	return ret;
6221 }
6222 
6223 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6224 				u64 blkno, unsigned int bit)
6225 {
6226 	int ret = 0;
6227 	struct ocfs2_cached_block_free *item;
6228 
6229 	item = kmalloc(sizeof(*item), GFP_NOFS);
6230 	if (item == NULL) {
6231 		ret = -ENOMEM;
6232 		mlog_errno(ret);
6233 		return ret;
6234 	}
6235 
6236 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6237 	     bit, (unsigned long long)blkno);
6238 
6239 	item->free_blk = blkno;
6240 	item->free_bit = bit;
6241 	item->free_next = ctxt->c_global_allocator;
6242 
6243 	ctxt->c_global_allocator = item;
6244 	return ret;
6245 }
6246 
6247 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6248 				      struct ocfs2_cached_block_free *head)
6249 {
6250 	struct ocfs2_cached_block_free *tmp;
6251 	struct inode *tl_inode = osb->osb_tl_inode;
6252 	handle_t *handle;
6253 	int ret = 0;
6254 
6255 	mutex_lock(&tl_inode->i_mutex);
6256 
6257 	while (head) {
6258 		if (ocfs2_truncate_log_needs_flush(osb)) {
6259 			ret = __ocfs2_flush_truncate_log(osb);
6260 			if (ret < 0) {
6261 				mlog_errno(ret);
6262 				break;
6263 			}
6264 		}
6265 
6266 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6267 		if (IS_ERR(handle)) {
6268 			ret = PTR_ERR(handle);
6269 			mlog_errno(ret);
6270 			break;
6271 		}
6272 
6273 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6274 						head->free_bit);
6275 
6276 		ocfs2_commit_trans(osb, handle);
6277 		tmp = head;
6278 		head = head->free_next;
6279 		kfree(tmp);
6280 
6281 		if (ret < 0) {
6282 			mlog_errno(ret);
6283 			break;
6284 		}
6285 	}
6286 
6287 	mutex_unlock(&tl_inode->i_mutex);
6288 
6289 	while (head) {
6290 		/* Premature exit may have left some dangling items. */
6291 		tmp = head;
6292 		head = head->free_next;
6293 		kfree(tmp);
6294 	}
6295 
6296 	return ret;
6297 }
6298 
6299 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6300 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6301 {
6302 	int ret = 0, ret2;
6303 	struct ocfs2_per_slot_free_list *fl;
6304 
6305 	if (!ctxt)
6306 		return 0;
6307 
6308 	while (ctxt->c_first_suballocator) {
6309 		fl = ctxt->c_first_suballocator;
6310 
6311 		if (fl->f_first) {
6312 			mlog(0, "Free items: (type %u, slot %d)\n",
6313 			     fl->f_inode_type, fl->f_slot);
6314 			ret2 = ocfs2_free_cached_blocks(osb,
6315 							fl->f_inode_type,
6316 							fl->f_slot,
6317 							fl->f_first);
6318 			if (ret2)
6319 				mlog_errno(ret2);
6320 			if (!ret)
6321 				ret = ret2;
6322 		}
6323 
6324 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6325 		kfree(fl);
6326 	}
6327 
6328 	if (ctxt->c_global_allocator) {
6329 		ret2 = ocfs2_free_cached_clusters(osb,
6330 						  ctxt->c_global_allocator);
6331 		if (ret2)
6332 			mlog_errno(ret2);
6333 		if (!ret)
6334 			ret = ret2;
6335 
6336 		ctxt->c_global_allocator = NULL;
6337 	}
6338 
6339 	return ret;
6340 }
6341 
6342 static struct ocfs2_per_slot_free_list *
6343 ocfs2_find_per_slot_free_list(int type,
6344 			      int slot,
6345 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6346 {
6347 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6348 
6349 	while (fl) {
6350 		if (fl->f_inode_type == type && fl->f_slot == slot)
6351 			return fl;
6352 
6353 		fl = fl->f_next_suballocator;
6354 	}
6355 
6356 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6357 	if (fl) {
6358 		fl->f_inode_type = type;
6359 		fl->f_slot = slot;
6360 		fl->f_first = NULL;
6361 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6362 
6363 		ctxt->c_first_suballocator = fl;
6364 	}
6365 	return fl;
6366 }
6367 
6368 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6369 				     int type, int slot, u64 blkno,
6370 				     unsigned int bit)
6371 {
6372 	int ret;
6373 	struct ocfs2_per_slot_free_list *fl;
6374 	struct ocfs2_cached_block_free *item;
6375 
6376 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6377 	if (fl == NULL) {
6378 		ret = -ENOMEM;
6379 		mlog_errno(ret);
6380 		goto out;
6381 	}
6382 
6383 	item = kmalloc(sizeof(*item), GFP_NOFS);
6384 	if (item == NULL) {
6385 		ret = -ENOMEM;
6386 		mlog_errno(ret);
6387 		goto out;
6388 	}
6389 
6390 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6391 	     type, slot, bit, (unsigned long long)blkno);
6392 
6393 	item->free_blk = blkno;
6394 	item->free_bit = bit;
6395 	item->free_next = fl->f_first;
6396 
6397 	fl->f_first = item;
6398 
6399 	ret = 0;
6400 out:
6401 	return ret;
6402 }
6403 
6404 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6405 					 struct ocfs2_extent_block *eb)
6406 {
6407 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6408 					 le16_to_cpu(eb->h_suballoc_slot),
6409 					 le64_to_cpu(eb->h_blkno),
6410 					 le16_to_cpu(eb->h_suballoc_bit));
6411 }
6412 
6413 /* This function will figure out whether the currently last extent
6414  * block will be deleted, and if it will, what the new last extent
6415  * block will be so we can update his h_next_leaf_blk field, as well
6416  * as the dinodes i_last_eb_blk */
6417 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6418 				       unsigned int clusters_to_del,
6419 				       struct ocfs2_path *path,
6420 				       struct buffer_head **new_last_eb)
6421 {
6422 	int next_free, ret = 0;
6423 	u32 cpos;
6424 	struct ocfs2_extent_rec *rec;
6425 	struct ocfs2_extent_block *eb;
6426 	struct ocfs2_extent_list *el;
6427 	struct buffer_head *bh = NULL;
6428 
6429 	*new_last_eb = NULL;
6430 
6431 	/* we have no tree, so of course, no last_eb. */
6432 	if (!path->p_tree_depth)
6433 		goto out;
6434 
6435 	/* trunc to zero special case - this makes tree_depth = 0
6436 	 * regardless of what it is.  */
6437 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6438 		goto out;
6439 
6440 	el = path_leaf_el(path);
6441 	BUG_ON(!el->l_next_free_rec);
6442 
6443 	/*
6444 	 * Make sure that this extent list will actually be empty
6445 	 * after we clear away the data. We can shortcut out if
6446 	 * there's more than one non-empty extent in the
6447 	 * list. Otherwise, a check of the remaining extent is
6448 	 * necessary.
6449 	 */
6450 	next_free = le16_to_cpu(el->l_next_free_rec);
6451 	rec = NULL;
6452 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6453 		if (next_free > 2)
6454 			goto out;
6455 
6456 		/* We may have a valid extent in index 1, check it. */
6457 		if (next_free == 2)
6458 			rec = &el->l_recs[1];
6459 
6460 		/*
6461 		 * Fall through - no more nonempty extents, so we want
6462 		 * to delete this leaf.
6463 		 */
6464 	} else {
6465 		if (next_free > 1)
6466 			goto out;
6467 
6468 		rec = &el->l_recs[0];
6469 	}
6470 
6471 	if (rec) {
6472 		/*
6473 		 * Check it we'll only be trimming off the end of this
6474 		 * cluster.
6475 		 */
6476 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6477 			goto out;
6478 	}
6479 
6480 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6481 	if (ret) {
6482 		mlog_errno(ret);
6483 		goto out;
6484 	}
6485 
6486 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6487 	if (ret) {
6488 		mlog_errno(ret);
6489 		goto out;
6490 	}
6491 
6492 	eb = (struct ocfs2_extent_block *) bh->b_data;
6493 	el = &eb->h_list;
6494 
6495 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6496 	 * Any corruption is a code bug. */
6497 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6498 
6499 	*new_last_eb = bh;
6500 	get_bh(*new_last_eb);
6501 	mlog(0, "returning block %llu, (cpos: %u)\n",
6502 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6503 out:
6504 	brelse(bh);
6505 
6506 	return ret;
6507 }
6508 
6509 /*
6510  * Trim some clusters off the rightmost edge of a tree. Only called
6511  * during truncate.
6512  *
6513  * The caller needs to:
6514  *   - start journaling of each path component.
6515  *   - compute and fully set up any new last ext block
6516  */
6517 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6518 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6519 			   u32 clusters_to_del, u64 *delete_start)
6520 {
6521 	int ret, i, index = path->p_tree_depth;
6522 	u32 new_edge = 0;
6523 	u64 deleted_eb = 0;
6524 	struct buffer_head *bh;
6525 	struct ocfs2_extent_list *el;
6526 	struct ocfs2_extent_rec *rec;
6527 
6528 	*delete_start = 0;
6529 
6530 	while (index >= 0) {
6531 		bh = path->p_node[index].bh;
6532 		el = path->p_node[index].el;
6533 
6534 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6535 		     index,  (unsigned long long)bh->b_blocknr);
6536 
6537 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6538 
6539 		if (index !=
6540 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6541 			ocfs2_error(inode->i_sb,
6542 				    "Inode %lu has invalid ext. block %llu",
6543 				    inode->i_ino,
6544 				    (unsigned long long)bh->b_blocknr);
6545 			ret = -EROFS;
6546 			goto out;
6547 		}
6548 
6549 find_tail_record:
6550 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6551 		rec = &el->l_recs[i];
6552 
6553 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6554 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6555 		     ocfs2_rec_clusters(el, rec),
6556 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6557 		     le16_to_cpu(el->l_next_free_rec));
6558 
6559 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6560 
6561 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6562 			/*
6563 			 * If the leaf block contains a single empty
6564 			 * extent and no records, we can just remove
6565 			 * the block.
6566 			 */
6567 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6568 				memset(rec, 0,
6569 				       sizeof(struct ocfs2_extent_rec));
6570 				el->l_next_free_rec = cpu_to_le16(0);
6571 
6572 				goto delete;
6573 			}
6574 
6575 			/*
6576 			 * Remove any empty extents by shifting things
6577 			 * left. That should make life much easier on
6578 			 * the code below. This condition is rare
6579 			 * enough that we shouldn't see a performance
6580 			 * hit.
6581 			 */
6582 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6583 				le16_add_cpu(&el->l_next_free_rec, -1);
6584 
6585 				for(i = 0;
6586 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6587 					el->l_recs[i] = el->l_recs[i + 1];
6588 
6589 				memset(&el->l_recs[i], 0,
6590 				       sizeof(struct ocfs2_extent_rec));
6591 
6592 				/*
6593 				 * We've modified our extent list. The
6594 				 * simplest way to handle this change
6595 				 * is to being the search from the
6596 				 * start again.
6597 				 */
6598 				goto find_tail_record;
6599 			}
6600 
6601 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6602 
6603 			/*
6604 			 * We'll use "new_edge" on our way back up the
6605 			 * tree to know what our rightmost cpos is.
6606 			 */
6607 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6608 			new_edge += le32_to_cpu(rec->e_cpos);
6609 
6610 			/*
6611 			 * The caller will use this to delete data blocks.
6612 			 */
6613 			*delete_start = le64_to_cpu(rec->e_blkno)
6614 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6615 					le16_to_cpu(rec->e_leaf_clusters));
6616 
6617 			/*
6618 			 * If it's now empty, remove this record.
6619 			 */
6620 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6621 				memset(rec, 0,
6622 				       sizeof(struct ocfs2_extent_rec));
6623 				le16_add_cpu(&el->l_next_free_rec, -1);
6624 			}
6625 		} else {
6626 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6627 				memset(rec, 0,
6628 				       sizeof(struct ocfs2_extent_rec));
6629 				le16_add_cpu(&el->l_next_free_rec, -1);
6630 
6631 				goto delete;
6632 			}
6633 
6634 			/* Can this actually happen? */
6635 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6636 				goto delete;
6637 
6638 			/*
6639 			 * We never actually deleted any clusters
6640 			 * because our leaf was empty. There's no
6641 			 * reason to adjust the rightmost edge then.
6642 			 */
6643 			if (new_edge == 0)
6644 				goto delete;
6645 
6646 			rec->e_int_clusters = cpu_to_le32(new_edge);
6647 			le32_add_cpu(&rec->e_int_clusters,
6648 				     -le32_to_cpu(rec->e_cpos));
6649 
6650 			 /*
6651 			  * A deleted child record should have been
6652 			  * caught above.
6653 			  */
6654 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6655 		}
6656 
6657 delete:
6658 		ret = ocfs2_journal_dirty(handle, bh);
6659 		if (ret) {
6660 			mlog_errno(ret);
6661 			goto out;
6662 		}
6663 
6664 		mlog(0, "extent list container %llu, after: record %d: "
6665 		     "(%u, %u, %llu), next = %u.\n",
6666 		     (unsigned long long)bh->b_blocknr, i,
6667 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6668 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6669 		     le16_to_cpu(el->l_next_free_rec));
6670 
6671 		/*
6672 		 * We must be careful to only attempt delete of an
6673 		 * extent block (and not the root inode block).
6674 		 */
6675 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6676 			struct ocfs2_extent_block *eb =
6677 				(struct ocfs2_extent_block *)bh->b_data;
6678 
6679 			/*
6680 			 * Save this for use when processing the
6681 			 * parent block.
6682 			 */
6683 			deleted_eb = le64_to_cpu(eb->h_blkno);
6684 
6685 			mlog(0, "deleting this extent block.\n");
6686 
6687 			ocfs2_remove_from_cache(inode, bh);
6688 
6689 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6690 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6691 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6692 
6693 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6694 			/* An error here is not fatal. */
6695 			if (ret < 0)
6696 				mlog_errno(ret);
6697 		} else {
6698 			deleted_eb = 0;
6699 		}
6700 
6701 		index--;
6702 	}
6703 
6704 	ret = 0;
6705 out:
6706 	return ret;
6707 }
6708 
6709 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6710 			     unsigned int clusters_to_del,
6711 			     struct inode *inode,
6712 			     struct buffer_head *fe_bh,
6713 			     handle_t *handle,
6714 			     struct ocfs2_truncate_context *tc,
6715 			     struct ocfs2_path *path)
6716 {
6717 	int status;
6718 	struct ocfs2_dinode *fe;
6719 	struct ocfs2_extent_block *last_eb = NULL;
6720 	struct ocfs2_extent_list *el;
6721 	struct buffer_head *last_eb_bh = NULL;
6722 	u64 delete_blk = 0;
6723 
6724 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6725 
6726 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6727 					     path, &last_eb_bh);
6728 	if (status < 0) {
6729 		mlog_errno(status);
6730 		goto bail;
6731 	}
6732 
6733 	/*
6734 	 * Each component will be touched, so we might as well journal
6735 	 * here to avoid having to handle errors later.
6736 	 */
6737 	status = ocfs2_journal_access_path(inode, handle, path);
6738 	if (status < 0) {
6739 		mlog_errno(status);
6740 		goto bail;
6741 	}
6742 
6743 	if (last_eb_bh) {
6744 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6745 						 OCFS2_JOURNAL_ACCESS_WRITE);
6746 		if (status < 0) {
6747 			mlog_errno(status);
6748 			goto bail;
6749 		}
6750 
6751 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6752 	}
6753 
6754 	el = &(fe->id2.i_list);
6755 
6756 	/*
6757 	 * Lower levels depend on this never happening, but it's best
6758 	 * to check it up here before changing the tree.
6759 	 */
6760 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6761 		ocfs2_error(inode->i_sb,
6762 			    "Inode %lu has an empty extent record, depth %u\n",
6763 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6764 		status = -EROFS;
6765 		goto bail;
6766 	}
6767 
6768 	vfs_dq_free_space_nodirty(inode,
6769 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6770 	spin_lock(&OCFS2_I(inode)->ip_lock);
6771 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6772 				      clusters_to_del;
6773 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6774 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6775 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6776 
6777 	status = ocfs2_trim_tree(inode, path, handle, tc,
6778 				 clusters_to_del, &delete_blk);
6779 	if (status) {
6780 		mlog_errno(status);
6781 		goto bail;
6782 	}
6783 
6784 	if (le32_to_cpu(fe->i_clusters) == 0) {
6785 		/* trunc to zero is a special case. */
6786 		el->l_tree_depth = 0;
6787 		fe->i_last_eb_blk = 0;
6788 	} else if (last_eb)
6789 		fe->i_last_eb_blk = last_eb->h_blkno;
6790 
6791 	status = ocfs2_journal_dirty(handle, fe_bh);
6792 	if (status < 0) {
6793 		mlog_errno(status);
6794 		goto bail;
6795 	}
6796 
6797 	if (last_eb) {
6798 		/* If there will be a new last extent block, then by
6799 		 * definition, there cannot be any leaves to the right of
6800 		 * him. */
6801 		last_eb->h_next_leaf_blk = 0;
6802 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6803 		if (status < 0) {
6804 			mlog_errno(status);
6805 			goto bail;
6806 		}
6807 	}
6808 
6809 	if (delete_blk) {
6810 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6811 						   clusters_to_del);
6812 		if (status < 0) {
6813 			mlog_errno(status);
6814 			goto bail;
6815 		}
6816 	}
6817 	status = 0;
6818 bail:
6819 
6820 	mlog_exit(status);
6821 	return status;
6822 }
6823 
6824 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6825 {
6826 	set_buffer_uptodate(bh);
6827 	mark_buffer_dirty(bh);
6828 	return 0;
6829 }
6830 
6831 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6832 				     unsigned int from, unsigned int to,
6833 				     struct page *page, int zero, u64 *phys)
6834 {
6835 	int ret, partial = 0;
6836 
6837 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6838 	if (ret)
6839 		mlog_errno(ret);
6840 
6841 	if (zero)
6842 		zero_user_segment(page, from, to);
6843 
6844 	/*
6845 	 * Need to set the buffers we zero'd into uptodate
6846 	 * here if they aren't - ocfs2_map_page_blocks()
6847 	 * might've skipped some
6848 	 */
6849 	ret = walk_page_buffers(handle, page_buffers(page),
6850 				from, to, &partial,
6851 				ocfs2_zero_func);
6852 	if (ret < 0)
6853 		mlog_errno(ret);
6854 	else if (ocfs2_should_order_data(inode)) {
6855 		ret = ocfs2_jbd2_file_inode(handle, inode);
6856 		if (ret < 0)
6857 			mlog_errno(ret);
6858 	}
6859 
6860 	if (!partial)
6861 		SetPageUptodate(page);
6862 
6863 	flush_dcache_page(page);
6864 }
6865 
6866 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6867 				     loff_t end, struct page **pages,
6868 				     int numpages, u64 phys, handle_t *handle)
6869 {
6870 	int i;
6871 	struct page *page;
6872 	unsigned int from, to = PAGE_CACHE_SIZE;
6873 	struct super_block *sb = inode->i_sb;
6874 
6875 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6876 
6877 	if (numpages == 0)
6878 		goto out;
6879 
6880 	to = PAGE_CACHE_SIZE;
6881 	for(i = 0; i < numpages; i++) {
6882 		page = pages[i];
6883 
6884 		from = start & (PAGE_CACHE_SIZE - 1);
6885 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6886 			to = end & (PAGE_CACHE_SIZE - 1);
6887 
6888 		BUG_ON(from > PAGE_CACHE_SIZE);
6889 		BUG_ON(to > PAGE_CACHE_SIZE);
6890 
6891 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6892 					 &phys);
6893 
6894 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6895 	}
6896 out:
6897 	if (pages)
6898 		ocfs2_unlock_and_free_pages(pages, numpages);
6899 }
6900 
6901 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6902 				struct page **pages, int *num)
6903 {
6904 	int numpages, ret = 0;
6905 	struct super_block *sb = inode->i_sb;
6906 	struct address_space *mapping = inode->i_mapping;
6907 	unsigned long index;
6908 	loff_t last_page_bytes;
6909 
6910 	BUG_ON(start > end);
6911 
6912 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6913 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6914 
6915 	numpages = 0;
6916 	last_page_bytes = PAGE_ALIGN(end);
6917 	index = start >> PAGE_CACHE_SHIFT;
6918 	do {
6919 		pages[numpages] = grab_cache_page(mapping, index);
6920 		if (!pages[numpages]) {
6921 			ret = -ENOMEM;
6922 			mlog_errno(ret);
6923 			goto out;
6924 		}
6925 
6926 		numpages++;
6927 		index++;
6928 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6929 
6930 out:
6931 	if (ret != 0) {
6932 		if (pages)
6933 			ocfs2_unlock_and_free_pages(pages, numpages);
6934 		numpages = 0;
6935 	}
6936 
6937 	*num = numpages;
6938 
6939 	return ret;
6940 }
6941 
6942 /*
6943  * Zero the area past i_size but still within an allocated
6944  * cluster. This avoids exposing nonzero data on subsequent file
6945  * extends.
6946  *
6947  * We need to call this before i_size is updated on the inode because
6948  * otherwise block_write_full_page() will skip writeout of pages past
6949  * i_size. The new_i_size parameter is passed for this reason.
6950  */
6951 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6952 				  u64 range_start, u64 range_end)
6953 {
6954 	int ret = 0, numpages;
6955 	struct page **pages = NULL;
6956 	u64 phys;
6957 	unsigned int ext_flags;
6958 	struct super_block *sb = inode->i_sb;
6959 
6960 	/*
6961 	 * File systems which don't support sparse files zero on every
6962 	 * extend.
6963 	 */
6964 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6965 		return 0;
6966 
6967 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6968 			sizeof(struct page *), GFP_NOFS);
6969 	if (pages == NULL) {
6970 		ret = -ENOMEM;
6971 		mlog_errno(ret);
6972 		goto out;
6973 	}
6974 
6975 	if (range_start == range_end)
6976 		goto out;
6977 
6978 	ret = ocfs2_extent_map_get_blocks(inode,
6979 					  range_start >> sb->s_blocksize_bits,
6980 					  &phys, NULL, &ext_flags);
6981 	if (ret) {
6982 		mlog_errno(ret);
6983 		goto out;
6984 	}
6985 
6986 	/*
6987 	 * Tail is a hole, or is marked unwritten. In either case, we
6988 	 * can count on read and write to return/push zero's.
6989 	 */
6990 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6991 		goto out;
6992 
6993 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6994 				   &numpages);
6995 	if (ret) {
6996 		mlog_errno(ret);
6997 		goto out;
6998 	}
6999 
7000 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7001 				 numpages, phys, handle);
7002 
7003 	/*
7004 	 * Initiate writeout of the pages we zero'd here. We don't
7005 	 * wait on them - the truncate_inode_pages() call later will
7006 	 * do that for us.
7007 	 */
7008 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
7009 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
7010 	if (ret)
7011 		mlog_errno(ret);
7012 
7013 out:
7014 	if (pages)
7015 		kfree(pages);
7016 
7017 	return ret;
7018 }
7019 
7020 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7021 					     struct ocfs2_dinode *di)
7022 {
7023 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7024 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7025 
7026 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7027 		memset(&di->id2, 0, blocksize -
7028 				    offsetof(struct ocfs2_dinode, id2) -
7029 				    xattrsize);
7030 	else
7031 		memset(&di->id2, 0, blocksize -
7032 				    offsetof(struct ocfs2_dinode, id2));
7033 }
7034 
7035 void ocfs2_dinode_new_extent_list(struct inode *inode,
7036 				  struct ocfs2_dinode *di)
7037 {
7038 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7039 	di->id2.i_list.l_tree_depth = 0;
7040 	di->id2.i_list.l_next_free_rec = 0;
7041 	di->id2.i_list.l_count = cpu_to_le16(
7042 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7043 }
7044 
7045 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7046 {
7047 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7048 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7049 
7050 	spin_lock(&oi->ip_lock);
7051 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7052 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7053 	spin_unlock(&oi->ip_lock);
7054 
7055 	/*
7056 	 * We clear the entire i_data structure here so that all
7057 	 * fields can be properly initialized.
7058 	 */
7059 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7060 
7061 	idata->id_count = cpu_to_le16(
7062 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7063 }
7064 
7065 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7066 					 struct buffer_head *di_bh)
7067 {
7068 	int ret, i, has_data, num_pages = 0;
7069 	handle_t *handle;
7070 	u64 uninitialized_var(block);
7071 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7072 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7073 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7074 	struct ocfs2_alloc_context *data_ac = NULL;
7075 	struct page **pages = NULL;
7076 	loff_t end = osb->s_clustersize;
7077 	struct ocfs2_extent_tree et;
7078 	int did_quota = 0;
7079 
7080 	has_data = i_size_read(inode) ? 1 : 0;
7081 
7082 	if (has_data) {
7083 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7084 				sizeof(struct page *), GFP_NOFS);
7085 		if (pages == NULL) {
7086 			ret = -ENOMEM;
7087 			mlog_errno(ret);
7088 			goto out;
7089 		}
7090 
7091 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7092 		if (ret) {
7093 			mlog_errno(ret);
7094 			goto out;
7095 		}
7096 	}
7097 
7098 	handle = ocfs2_start_trans(osb,
7099 				   ocfs2_inline_to_extents_credits(osb->sb));
7100 	if (IS_ERR(handle)) {
7101 		ret = PTR_ERR(handle);
7102 		mlog_errno(ret);
7103 		goto out_unlock;
7104 	}
7105 
7106 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7107 				      OCFS2_JOURNAL_ACCESS_WRITE);
7108 	if (ret) {
7109 		mlog_errno(ret);
7110 		goto out_commit;
7111 	}
7112 
7113 	if (has_data) {
7114 		u32 bit_off, num;
7115 		unsigned int page_end;
7116 		u64 phys;
7117 
7118 		if (vfs_dq_alloc_space_nodirty(inode,
7119 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
7120 			ret = -EDQUOT;
7121 			goto out_commit;
7122 		}
7123 		did_quota = 1;
7124 
7125 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7126 					   &num);
7127 		if (ret) {
7128 			mlog_errno(ret);
7129 			goto out_commit;
7130 		}
7131 
7132 		/*
7133 		 * Save two copies, one for insert, and one that can
7134 		 * be changed by ocfs2_map_and_dirty_page() below.
7135 		 */
7136 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7137 
7138 		/*
7139 		 * Non sparse file systems zero on extend, so no need
7140 		 * to do that now.
7141 		 */
7142 		if (!ocfs2_sparse_alloc(osb) &&
7143 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7144 			end = PAGE_CACHE_SIZE;
7145 
7146 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7147 		if (ret) {
7148 			mlog_errno(ret);
7149 			goto out_commit;
7150 		}
7151 
7152 		/*
7153 		 * This should populate the 1st page for us and mark
7154 		 * it up to date.
7155 		 */
7156 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7157 		if (ret) {
7158 			mlog_errno(ret);
7159 			goto out_commit;
7160 		}
7161 
7162 		page_end = PAGE_CACHE_SIZE;
7163 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7164 			page_end = osb->s_clustersize;
7165 
7166 		for (i = 0; i < num_pages; i++)
7167 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7168 						 pages[i], i > 0, &phys);
7169 	}
7170 
7171 	spin_lock(&oi->ip_lock);
7172 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7173 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7174 	spin_unlock(&oi->ip_lock);
7175 
7176 	ocfs2_dinode_new_extent_list(inode, di);
7177 
7178 	ocfs2_journal_dirty(handle, di_bh);
7179 
7180 	if (has_data) {
7181 		/*
7182 		 * An error at this point should be extremely rare. If
7183 		 * this proves to be false, we could always re-build
7184 		 * the in-inode data from our pages.
7185 		 */
7186 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7187 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7188 					  0, block, 1, 0, NULL);
7189 		if (ret) {
7190 			mlog_errno(ret);
7191 			goto out_commit;
7192 		}
7193 
7194 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7195 	}
7196 
7197 out_commit:
7198 	if (ret < 0 && did_quota)
7199 		vfs_dq_free_space_nodirty(inode,
7200 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7201 
7202 	ocfs2_commit_trans(osb, handle);
7203 
7204 out_unlock:
7205 	if (data_ac)
7206 		ocfs2_free_alloc_context(data_ac);
7207 
7208 out:
7209 	if (pages) {
7210 		ocfs2_unlock_and_free_pages(pages, num_pages);
7211 		kfree(pages);
7212 	}
7213 
7214 	return ret;
7215 }
7216 
7217 /*
7218  * It is expected, that by the time you call this function,
7219  * inode->i_size and fe->i_size have been adjusted.
7220  *
7221  * WARNING: This will kfree the truncate context
7222  */
7223 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7224 			  struct inode *inode,
7225 			  struct buffer_head *fe_bh,
7226 			  struct ocfs2_truncate_context *tc)
7227 {
7228 	int status, i, credits, tl_sem = 0;
7229 	u32 clusters_to_del, new_highest_cpos, range;
7230 	struct ocfs2_extent_list *el;
7231 	handle_t *handle = NULL;
7232 	struct inode *tl_inode = osb->osb_tl_inode;
7233 	struct ocfs2_path *path = NULL;
7234 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7235 
7236 	mlog_entry_void();
7237 
7238 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7239 						     i_size_read(inode));
7240 
7241 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7242 			      ocfs2_journal_access_di);
7243 	if (!path) {
7244 		status = -ENOMEM;
7245 		mlog_errno(status);
7246 		goto bail;
7247 	}
7248 
7249 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7250 
7251 start:
7252 	/*
7253 	 * Check that we still have allocation to delete.
7254 	 */
7255 	if (OCFS2_I(inode)->ip_clusters == 0) {
7256 		status = 0;
7257 		goto bail;
7258 	}
7259 
7260 	/*
7261 	 * Truncate always works against the rightmost tree branch.
7262 	 */
7263 	status = ocfs2_find_path(inode, path, UINT_MAX);
7264 	if (status) {
7265 		mlog_errno(status);
7266 		goto bail;
7267 	}
7268 
7269 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7270 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7271 
7272 	/*
7273 	 * By now, el will point to the extent list on the bottom most
7274 	 * portion of this tree. Only the tail record is considered in
7275 	 * each pass.
7276 	 *
7277 	 * We handle the following cases, in order:
7278 	 * - empty extent: delete the remaining branch
7279 	 * - remove the entire record
7280 	 * - remove a partial record
7281 	 * - no record needs to be removed (truncate has completed)
7282 	 */
7283 	el = path_leaf_el(path);
7284 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7285 		ocfs2_error(inode->i_sb,
7286 			    "Inode %llu has empty extent block at %llu\n",
7287 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7288 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7289 		status = -EROFS;
7290 		goto bail;
7291 	}
7292 
7293 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7294 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7295 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7296 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7297 		clusters_to_del = 0;
7298 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7299 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7300 	} else if (range > new_highest_cpos) {
7301 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7302 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7303 				  new_highest_cpos;
7304 	} else {
7305 		status = 0;
7306 		goto bail;
7307 	}
7308 
7309 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7310 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7311 
7312 	mutex_lock(&tl_inode->i_mutex);
7313 	tl_sem = 1;
7314 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7315 	 * record is free for use. If there isn't any, we flush to get
7316 	 * an empty truncate log.  */
7317 	if (ocfs2_truncate_log_needs_flush(osb)) {
7318 		status = __ocfs2_flush_truncate_log(osb);
7319 		if (status < 0) {
7320 			mlog_errno(status);
7321 			goto bail;
7322 		}
7323 	}
7324 
7325 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7326 						(struct ocfs2_dinode *)fe_bh->b_data,
7327 						el);
7328 	handle = ocfs2_start_trans(osb, credits);
7329 	if (IS_ERR(handle)) {
7330 		status = PTR_ERR(handle);
7331 		handle = NULL;
7332 		mlog_errno(status);
7333 		goto bail;
7334 	}
7335 
7336 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7337 				   tc, path);
7338 	if (status < 0) {
7339 		mlog_errno(status);
7340 		goto bail;
7341 	}
7342 
7343 	mutex_unlock(&tl_inode->i_mutex);
7344 	tl_sem = 0;
7345 
7346 	ocfs2_commit_trans(osb, handle);
7347 	handle = NULL;
7348 
7349 	ocfs2_reinit_path(path, 1);
7350 
7351 	/*
7352 	 * The check above will catch the case where we've truncated
7353 	 * away all allocation.
7354 	 */
7355 	goto start;
7356 
7357 bail:
7358 
7359 	ocfs2_schedule_truncate_log_flush(osb, 1);
7360 
7361 	if (tl_sem)
7362 		mutex_unlock(&tl_inode->i_mutex);
7363 
7364 	if (handle)
7365 		ocfs2_commit_trans(osb, handle);
7366 
7367 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7368 
7369 	ocfs2_free_path(path);
7370 
7371 	/* This will drop the ext_alloc cluster lock for us */
7372 	ocfs2_free_truncate_context(tc);
7373 
7374 	mlog_exit(status);
7375 	return status;
7376 }
7377 
7378 /*
7379  * Expects the inode to already be locked.
7380  */
7381 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7382 			   struct inode *inode,
7383 			   struct buffer_head *fe_bh,
7384 			   struct ocfs2_truncate_context **tc)
7385 {
7386 	int status;
7387 	unsigned int new_i_clusters;
7388 	struct ocfs2_dinode *fe;
7389 	struct ocfs2_extent_block *eb;
7390 	struct buffer_head *last_eb_bh = NULL;
7391 
7392 	mlog_entry_void();
7393 
7394 	*tc = NULL;
7395 
7396 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7397 						  i_size_read(inode));
7398 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7399 
7400 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7401 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7402 	     (unsigned long long)le64_to_cpu(fe->i_size));
7403 
7404 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7405 	if (!(*tc)) {
7406 		status = -ENOMEM;
7407 		mlog_errno(status);
7408 		goto bail;
7409 	}
7410 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7411 
7412 	if (fe->id2.i_list.l_tree_depth) {
7413 		status = ocfs2_read_extent_block(inode,
7414 						 le64_to_cpu(fe->i_last_eb_blk),
7415 						 &last_eb_bh);
7416 		if (status < 0) {
7417 			mlog_errno(status);
7418 			goto bail;
7419 		}
7420 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7421 	}
7422 
7423 	(*tc)->tc_last_eb_bh = last_eb_bh;
7424 
7425 	status = 0;
7426 bail:
7427 	if (status < 0) {
7428 		if (*tc)
7429 			ocfs2_free_truncate_context(*tc);
7430 		*tc = NULL;
7431 	}
7432 	mlog_exit_void();
7433 	return status;
7434 }
7435 
7436 /*
7437  * 'start' is inclusive, 'end' is not.
7438  */
7439 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7440 			  unsigned int start, unsigned int end, int trunc)
7441 {
7442 	int ret;
7443 	unsigned int numbytes;
7444 	handle_t *handle;
7445 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7446 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7447 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7448 
7449 	if (end > i_size_read(inode))
7450 		end = i_size_read(inode);
7451 
7452 	BUG_ON(start >= end);
7453 
7454 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7455 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7456 	    !ocfs2_supports_inline_data(osb)) {
7457 		ocfs2_error(inode->i_sb,
7458 			    "Inline data flags for inode %llu don't agree! "
7459 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7460 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7461 			    le16_to_cpu(di->i_dyn_features),
7462 			    OCFS2_I(inode)->ip_dyn_features,
7463 			    osb->s_feature_incompat);
7464 		ret = -EROFS;
7465 		goto out;
7466 	}
7467 
7468 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7469 	if (IS_ERR(handle)) {
7470 		ret = PTR_ERR(handle);
7471 		mlog_errno(ret);
7472 		goto out;
7473 	}
7474 
7475 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7476 				      OCFS2_JOURNAL_ACCESS_WRITE);
7477 	if (ret) {
7478 		mlog_errno(ret);
7479 		goto out_commit;
7480 	}
7481 
7482 	numbytes = end - start;
7483 	memset(idata->id_data + start, 0, numbytes);
7484 
7485 	/*
7486 	 * No need to worry about the data page here - it's been
7487 	 * truncated already and inline data doesn't need it for
7488 	 * pushing zero's to disk, so we'll let readpage pick it up
7489 	 * later.
7490 	 */
7491 	if (trunc) {
7492 		i_size_write(inode, start);
7493 		di->i_size = cpu_to_le64(start);
7494 	}
7495 
7496 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7497 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7498 
7499 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7500 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7501 
7502 	ocfs2_journal_dirty(handle, di_bh);
7503 
7504 out_commit:
7505 	ocfs2_commit_trans(osb, handle);
7506 
7507 out:
7508 	return ret;
7509 }
7510 
7511 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7512 {
7513 	/*
7514 	 * The caller is responsible for completing deallocation
7515 	 * before freeing the context.
7516 	 */
7517 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7518 		mlog(ML_NOTICE,
7519 		     "Truncate completion has non-empty dealloc context\n");
7520 
7521 	brelse(tc->tc_last_eb_bh);
7522 
7523 	kfree(tc);
7524 }
7525