1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * alloc.c 5 * 6 * Extent allocs and frees 7 * 8 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public 12 * License as published by the Free Software Foundation; either 13 * version 2 of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public 21 * License along with this program; if not, write to the 22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 23 * Boston, MA 021110-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/swap.h> 31 #include <linux/quotaops.h> 32 33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "blockcheck.h" 41 #include "dlmglue.h" 42 #include "extent_map.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "localalloc.h" 46 #include "suballoc.h" 47 #include "sysfile.h" 48 #include "file.h" 49 #include "super.h" 50 #include "uptodate.h" 51 #include "xattr.h" 52 53 #include "buffer_head_io.h" 54 55 56 /* 57 * Operations for a specific extent tree type. 58 * 59 * To implement an on-disk btree (extent tree) type in ocfs2, add 60 * an ocfs2_extent_tree_operations structure and the matching 61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it 62 * for the allocation portion of the extent tree. 63 */ 64 struct ocfs2_extent_tree_operations { 65 /* 66 * last_eb_blk is the block number of the right most leaf extent 67 * block. Most on-disk structures containing an extent tree store 68 * this value for fast access. The ->eo_set_last_eb_blk() and 69 * ->eo_get_last_eb_blk() operations access this value. They are 70 * both required. 71 */ 72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et, 73 u64 blkno); 74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et); 75 76 /* 77 * The on-disk structure usually keeps track of how many total 78 * clusters are stored in this extent tree. This function updates 79 * that value. new_clusters is the delta, and must be 80 * added to the total. Required. 81 */ 82 void (*eo_update_clusters)(struct inode *inode, 83 struct ocfs2_extent_tree *et, 84 u32 new_clusters); 85 86 /* 87 * If ->eo_insert_check() exists, it is called before rec is 88 * inserted into the extent tree. It is optional. 89 */ 90 int (*eo_insert_check)(struct inode *inode, 91 struct ocfs2_extent_tree *et, 92 struct ocfs2_extent_rec *rec); 93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et); 94 95 /* 96 * -------------------------------------------------------------- 97 * The remaining are internal to ocfs2_extent_tree and don't have 98 * accessor functions 99 */ 100 101 /* 102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el. 103 * It is required. 104 */ 105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et); 106 107 /* 108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if 109 * it exists. If it does not, et->et_max_leaf_clusters is set 110 * to 0 (unlimited). Optional. 111 */ 112 void (*eo_fill_max_leaf_clusters)(struct inode *inode, 113 struct ocfs2_extent_tree *et); 114 }; 115 116 117 /* 118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check 119 * in the methods. 120 */ 121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et); 122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 123 u64 blkno); 124 static void ocfs2_dinode_update_clusters(struct inode *inode, 125 struct ocfs2_extent_tree *et, 126 u32 clusters); 127 static int ocfs2_dinode_insert_check(struct inode *inode, 128 struct ocfs2_extent_tree *et, 129 struct ocfs2_extent_rec *rec); 130 static int ocfs2_dinode_sanity_check(struct inode *inode, 131 struct ocfs2_extent_tree *et); 132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et); 133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = { 134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk, 135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk, 136 .eo_update_clusters = ocfs2_dinode_update_clusters, 137 .eo_insert_check = ocfs2_dinode_insert_check, 138 .eo_sanity_check = ocfs2_dinode_sanity_check, 139 .eo_fill_root_el = ocfs2_dinode_fill_root_el, 140 }; 141 142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et, 143 u64 blkno) 144 { 145 struct ocfs2_dinode *di = et->et_object; 146 147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 148 di->i_last_eb_blk = cpu_to_le64(blkno); 149 } 150 151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et) 152 { 153 struct ocfs2_dinode *di = et->et_object; 154 155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 156 return le64_to_cpu(di->i_last_eb_blk); 157 } 158 159 static void ocfs2_dinode_update_clusters(struct inode *inode, 160 struct ocfs2_extent_tree *et, 161 u32 clusters) 162 { 163 struct ocfs2_dinode *di = et->et_object; 164 165 le32_add_cpu(&di->i_clusters, clusters); 166 spin_lock(&OCFS2_I(inode)->ip_lock); 167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters); 168 spin_unlock(&OCFS2_I(inode)->ip_lock); 169 } 170 171 static int ocfs2_dinode_insert_check(struct inode *inode, 172 struct ocfs2_extent_tree *et, 173 struct ocfs2_extent_rec *rec) 174 { 175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 176 177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); 178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) && 179 (OCFS2_I(inode)->ip_clusters != 180 le32_to_cpu(rec->e_cpos)), 181 "Device %s, asking for sparse allocation: inode %llu, " 182 "cpos %u, clusters %u\n", 183 osb->dev_str, 184 (unsigned long long)OCFS2_I(inode)->ip_blkno, 185 rec->e_cpos, 186 OCFS2_I(inode)->ip_clusters); 187 188 return 0; 189 } 190 191 static int ocfs2_dinode_sanity_check(struct inode *inode, 192 struct ocfs2_extent_tree *et) 193 { 194 struct ocfs2_dinode *di = et->et_object; 195 196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops); 197 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 198 199 return 0; 200 } 201 202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et) 203 { 204 struct ocfs2_dinode *di = et->et_object; 205 206 et->et_root_el = &di->id2.i_list; 207 } 208 209 210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et) 211 { 212 struct ocfs2_xattr_value_buf *vb = et->et_object; 213 214 et->et_root_el = &vb->vb_xv->xr_list; 215 } 216 217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et, 218 u64 blkno) 219 { 220 struct ocfs2_xattr_value_buf *vb = et->et_object; 221 222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno); 223 } 224 225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et) 226 { 227 struct ocfs2_xattr_value_buf *vb = et->et_object; 228 229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk); 230 } 231 232 static void ocfs2_xattr_value_update_clusters(struct inode *inode, 233 struct ocfs2_extent_tree *et, 234 u32 clusters) 235 { 236 struct ocfs2_xattr_value_buf *vb = et->et_object; 237 238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters); 239 } 240 241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = { 242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk, 243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk, 244 .eo_update_clusters = ocfs2_xattr_value_update_clusters, 245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el, 246 }; 247 248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et) 249 { 250 struct ocfs2_xattr_block *xb = et->et_object; 251 252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list; 253 } 254 255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode, 256 struct ocfs2_extent_tree *et) 257 { 258 et->et_max_leaf_clusters = 259 ocfs2_clusters_for_bytes(inode->i_sb, 260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE); 261 } 262 263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et, 264 u64 blkno) 265 { 266 struct ocfs2_xattr_block *xb = et->et_object; 267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 268 269 xt->xt_last_eb_blk = cpu_to_le64(blkno); 270 } 271 272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et) 273 { 274 struct ocfs2_xattr_block *xb = et->et_object; 275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root; 276 277 return le64_to_cpu(xt->xt_last_eb_blk); 278 } 279 280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode, 281 struct ocfs2_extent_tree *et, 282 u32 clusters) 283 { 284 struct ocfs2_xattr_block *xb = et->et_object; 285 286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters); 287 } 288 289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = { 290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk, 291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk, 292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters, 293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el, 294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters, 295 }; 296 297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et, 298 u64 blkno) 299 { 300 struct ocfs2_dx_root_block *dx_root = et->et_object; 301 302 dx_root->dr_last_eb_blk = cpu_to_le64(blkno); 303 } 304 305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et) 306 { 307 struct ocfs2_dx_root_block *dx_root = et->et_object; 308 309 return le64_to_cpu(dx_root->dr_last_eb_blk); 310 } 311 312 static void ocfs2_dx_root_update_clusters(struct inode *inode, 313 struct ocfs2_extent_tree *et, 314 u32 clusters) 315 { 316 struct ocfs2_dx_root_block *dx_root = et->et_object; 317 318 le32_add_cpu(&dx_root->dr_clusters, clusters); 319 } 320 321 static int ocfs2_dx_root_sanity_check(struct inode *inode, 322 struct ocfs2_extent_tree *et) 323 { 324 struct ocfs2_dx_root_block *dx_root = et->et_object; 325 326 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root)); 327 328 return 0; 329 } 330 331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et) 332 { 333 struct ocfs2_dx_root_block *dx_root = et->et_object; 334 335 et->et_root_el = &dx_root->dr_list; 336 } 337 338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = { 339 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk, 340 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk, 341 .eo_update_clusters = ocfs2_dx_root_update_clusters, 342 .eo_sanity_check = ocfs2_dx_root_sanity_check, 343 .eo_fill_root_el = ocfs2_dx_root_fill_root_el, 344 }; 345 346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et, 347 struct inode *inode, 348 struct buffer_head *bh, 349 ocfs2_journal_access_func access, 350 void *obj, 351 struct ocfs2_extent_tree_operations *ops) 352 { 353 et->et_ops = ops; 354 et->et_root_bh = bh; 355 et->et_root_journal_access = access; 356 if (!obj) 357 obj = (void *)bh->b_data; 358 et->et_object = obj; 359 360 et->et_ops->eo_fill_root_el(et); 361 if (!et->et_ops->eo_fill_max_leaf_clusters) 362 et->et_max_leaf_clusters = 0; 363 else 364 et->et_ops->eo_fill_max_leaf_clusters(inode, et); 365 } 366 367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 368 struct inode *inode, 369 struct buffer_head *bh) 370 { 371 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di, 372 NULL, &ocfs2_dinode_et_ops); 373 } 374 375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 376 struct inode *inode, 377 struct buffer_head *bh) 378 { 379 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb, 380 NULL, &ocfs2_xattr_tree_et_ops); 381 } 382 383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 384 struct inode *inode, 385 struct ocfs2_xattr_value_buf *vb) 386 { 387 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb, 388 &ocfs2_xattr_value_et_ops); 389 } 390 391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 392 struct inode *inode, 393 struct buffer_head *bh) 394 { 395 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr, 396 NULL, &ocfs2_dx_root_et_ops); 397 } 398 399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et, 400 u64 new_last_eb_blk) 401 { 402 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk); 403 } 404 405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et) 406 { 407 return et->et_ops->eo_get_last_eb_blk(et); 408 } 409 410 static inline void ocfs2_et_update_clusters(struct inode *inode, 411 struct ocfs2_extent_tree *et, 412 u32 clusters) 413 { 414 et->et_ops->eo_update_clusters(inode, et, clusters); 415 } 416 417 static inline int ocfs2_et_root_journal_access(handle_t *handle, 418 struct inode *inode, 419 struct ocfs2_extent_tree *et, 420 int type) 421 { 422 return et->et_root_journal_access(handle, inode, et->et_root_bh, 423 type); 424 } 425 426 static inline int ocfs2_et_insert_check(struct inode *inode, 427 struct ocfs2_extent_tree *et, 428 struct ocfs2_extent_rec *rec) 429 { 430 int ret = 0; 431 432 if (et->et_ops->eo_insert_check) 433 ret = et->et_ops->eo_insert_check(inode, et, rec); 434 return ret; 435 } 436 437 static inline int ocfs2_et_sanity_check(struct inode *inode, 438 struct ocfs2_extent_tree *et) 439 { 440 int ret = 0; 441 442 if (et->et_ops->eo_sanity_check) 443 ret = et->et_ops->eo_sanity_check(inode, et); 444 return ret; 445 } 446 447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc); 448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 449 struct ocfs2_extent_block *eb); 450 451 /* 452 * Structures which describe a path through a btree, and functions to 453 * manipulate them. 454 * 455 * The idea here is to be as generic as possible with the tree 456 * manipulation code. 457 */ 458 struct ocfs2_path_item { 459 struct buffer_head *bh; 460 struct ocfs2_extent_list *el; 461 }; 462 463 #define OCFS2_MAX_PATH_DEPTH 5 464 465 struct ocfs2_path { 466 int p_tree_depth; 467 ocfs2_journal_access_func p_root_access; 468 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 469 }; 470 471 #define path_root_bh(_path) ((_path)->p_node[0].bh) 472 #define path_root_el(_path) ((_path)->p_node[0].el) 473 #define path_root_access(_path)((_path)->p_root_access) 474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 476 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 477 478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 479 u32 cpos); 480 static void ocfs2_adjust_rightmost_records(struct inode *inode, 481 handle_t *handle, 482 struct ocfs2_path *path, 483 struct ocfs2_extent_rec *insert_rec); 484 /* 485 * Reset the actual path elements so that we can re-use the structure 486 * to build another path. Generally, this involves freeing the buffer 487 * heads. 488 */ 489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root) 490 { 491 int i, start = 0, depth = 0; 492 struct ocfs2_path_item *node; 493 494 if (keep_root) 495 start = 1; 496 497 for(i = start; i < path_num_items(path); i++) { 498 node = &path->p_node[i]; 499 500 brelse(node->bh); 501 node->bh = NULL; 502 node->el = NULL; 503 } 504 505 /* 506 * Tree depth may change during truncate, or insert. If we're 507 * keeping the root extent list, then make sure that our path 508 * structure reflects the proper depth. 509 */ 510 if (keep_root) 511 depth = le16_to_cpu(path_root_el(path)->l_tree_depth); 512 else 513 path_root_access(path) = NULL; 514 515 path->p_tree_depth = depth; 516 } 517 518 static void ocfs2_free_path(struct ocfs2_path *path) 519 { 520 if (path) { 521 ocfs2_reinit_path(path, 0); 522 kfree(path); 523 } 524 } 525 526 /* 527 * All the elements of src into dest. After this call, src could be freed 528 * without affecting dest. 529 * 530 * Both paths should have the same root. Any non-root elements of dest 531 * will be freed. 532 */ 533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src) 534 { 535 int i; 536 537 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 538 BUG_ON(path_root_el(dest) != path_root_el(src)); 539 BUG_ON(path_root_access(dest) != path_root_access(src)); 540 541 ocfs2_reinit_path(dest, 1); 542 543 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 544 dest->p_node[i].bh = src->p_node[i].bh; 545 dest->p_node[i].el = src->p_node[i].el; 546 547 if (dest->p_node[i].bh) 548 get_bh(dest->p_node[i].bh); 549 } 550 } 551 552 /* 553 * Make the *dest path the same as src and re-initialize src path to 554 * have a root only. 555 */ 556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src) 557 { 558 int i; 559 560 BUG_ON(path_root_bh(dest) != path_root_bh(src)); 561 BUG_ON(path_root_access(dest) != path_root_access(src)); 562 563 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) { 564 brelse(dest->p_node[i].bh); 565 566 dest->p_node[i].bh = src->p_node[i].bh; 567 dest->p_node[i].el = src->p_node[i].el; 568 569 src->p_node[i].bh = NULL; 570 src->p_node[i].el = NULL; 571 } 572 } 573 574 /* 575 * Insert an extent block at given index. 576 * 577 * This will not take an additional reference on eb_bh. 578 */ 579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index, 580 struct buffer_head *eb_bh) 581 { 582 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data; 583 584 /* 585 * Right now, no root bh is an extent block, so this helps 586 * catch code errors with dinode trees. The assertion can be 587 * safely removed if we ever need to insert extent block 588 * structures at the root. 589 */ 590 BUG_ON(index == 0); 591 592 path->p_node[index].bh = eb_bh; 593 path->p_node[index].el = &eb->h_list; 594 } 595 596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh, 597 struct ocfs2_extent_list *root_el, 598 ocfs2_journal_access_func access) 599 { 600 struct ocfs2_path *path; 601 602 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH); 603 604 path = kzalloc(sizeof(*path), GFP_NOFS); 605 if (path) { 606 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth); 607 get_bh(root_bh); 608 path_root_bh(path) = root_bh; 609 path_root_el(path) = root_el; 610 path_root_access(path) = access; 611 } 612 613 return path; 614 } 615 616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path) 617 { 618 return ocfs2_new_path(path_root_bh(path), path_root_el(path), 619 path_root_access(path)); 620 } 621 622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et) 623 { 624 return ocfs2_new_path(et->et_root_bh, et->et_root_el, 625 et->et_root_journal_access); 626 } 627 628 /* 629 * Journal the buffer at depth idx. All idx>0 are extent_blocks, 630 * otherwise it's the root_access function. 631 * 632 * I don't like the way this function's name looks next to 633 * ocfs2_journal_access_path(), but I don't have a better one. 634 */ 635 static int ocfs2_path_bh_journal_access(handle_t *handle, 636 struct inode *inode, 637 struct ocfs2_path *path, 638 int idx) 639 { 640 ocfs2_journal_access_func access = path_root_access(path); 641 642 if (!access) 643 access = ocfs2_journal_access; 644 645 if (idx) 646 access = ocfs2_journal_access_eb; 647 648 return access(handle, inode, path->p_node[idx].bh, 649 OCFS2_JOURNAL_ACCESS_WRITE); 650 } 651 652 /* 653 * Convenience function to journal all components in a path. 654 */ 655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle, 656 struct ocfs2_path *path) 657 { 658 int i, ret = 0; 659 660 if (!path) 661 goto out; 662 663 for(i = 0; i < path_num_items(path); i++) { 664 ret = ocfs2_path_bh_journal_access(handle, inode, path, i); 665 if (ret < 0) { 666 mlog_errno(ret); 667 goto out; 668 } 669 } 670 671 out: 672 return ret; 673 } 674 675 /* 676 * Return the index of the extent record which contains cluster #v_cluster. 677 * -1 is returned if it was not found. 678 * 679 * Should work fine on interior and exterior nodes. 680 */ 681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster) 682 { 683 int ret = -1; 684 int i; 685 struct ocfs2_extent_rec *rec; 686 u32 rec_end, rec_start, clusters; 687 688 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 689 rec = &el->l_recs[i]; 690 691 rec_start = le32_to_cpu(rec->e_cpos); 692 clusters = ocfs2_rec_clusters(el, rec); 693 694 rec_end = rec_start + clusters; 695 696 if (v_cluster >= rec_start && v_cluster < rec_end) { 697 ret = i; 698 break; 699 } 700 } 701 702 return ret; 703 } 704 705 enum ocfs2_contig_type { 706 CONTIG_NONE = 0, 707 CONTIG_LEFT, 708 CONTIG_RIGHT, 709 CONTIG_LEFTRIGHT, 710 }; 711 712 713 /* 714 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and 715 * ocfs2_extent_contig only work properly against leaf nodes! 716 */ 717 static int ocfs2_block_extent_contig(struct super_block *sb, 718 struct ocfs2_extent_rec *ext, 719 u64 blkno) 720 { 721 u64 blk_end = le64_to_cpu(ext->e_blkno); 722 723 blk_end += ocfs2_clusters_to_blocks(sb, 724 le16_to_cpu(ext->e_leaf_clusters)); 725 726 return blkno == blk_end; 727 } 728 729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left, 730 struct ocfs2_extent_rec *right) 731 { 732 u32 left_range; 733 734 left_range = le32_to_cpu(left->e_cpos) + 735 le16_to_cpu(left->e_leaf_clusters); 736 737 return (left_range == le32_to_cpu(right->e_cpos)); 738 } 739 740 static enum ocfs2_contig_type 741 ocfs2_extent_contig(struct inode *inode, 742 struct ocfs2_extent_rec *ext, 743 struct ocfs2_extent_rec *insert_rec) 744 { 745 u64 blkno = le64_to_cpu(insert_rec->e_blkno); 746 747 /* 748 * Refuse to coalesce extent records with different flag 749 * fields - we don't want to mix unwritten extents with user 750 * data. 751 */ 752 if (ext->e_flags != insert_rec->e_flags) 753 return CONTIG_NONE; 754 755 if (ocfs2_extents_adjacent(ext, insert_rec) && 756 ocfs2_block_extent_contig(inode->i_sb, ext, blkno)) 757 return CONTIG_RIGHT; 758 759 blkno = le64_to_cpu(ext->e_blkno); 760 if (ocfs2_extents_adjacent(insert_rec, ext) && 761 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno)) 762 return CONTIG_LEFT; 763 764 return CONTIG_NONE; 765 } 766 767 /* 768 * NOTE: We can have pretty much any combination of contiguousness and 769 * appending. 770 * 771 * The usefulness of APPEND_TAIL is more in that it lets us know that 772 * we'll have to update the path to that leaf. 773 */ 774 enum ocfs2_append_type { 775 APPEND_NONE = 0, 776 APPEND_TAIL, 777 }; 778 779 enum ocfs2_split_type { 780 SPLIT_NONE = 0, 781 SPLIT_LEFT, 782 SPLIT_RIGHT, 783 }; 784 785 struct ocfs2_insert_type { 786 enum ocfs2_split_type ins_split; 787 enum ocfs2_append_type ins_appending; 788 enum ocfs2_contig_type ins_contig; 789 int ins_contig_index; 790 int ins_tree_depth; 791 }; 792 793 struct ocfs2_merge_ctxt { 794 enum ocfs2_contig_type c_contig_type; 795 int c_has_empty_extent; 796 int c_split_covers_rec; 797 }; 798 799 static int ocfs2_validate_extent_block(struct super_block *sb, 800 struct buffer_head *bh) 801 { 802 int rc; 803 struct ocfs2_extent_block *eb = 804 (struct ocfs2_extent_block *)bh->b_data; 805 806 mlog(0, "Validating extent block %llu\n", 807 (unsigned long long)bh->b_blocknr); 808 809 BUG_ON(!buffer_uptodate(bh)); 810 811 /* 812 * If the ecc fails, we return the error but otherwise 813 * leave the filesystem running. We know any error is 814 * local to this block. 815 */ 816 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check); 817 if (rc) { 818 mlog(ML_ERROR, "Checksum failed for extent block %llu\n", 819 (unsigned long long)bh->b_blocknr); 820 return rc; 821 } 822 823 /* 824 * Errors after here are fatal. 825 */ 826 827 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) { 828 ocfs2_error(sb, 829 "Extent block #%llu has bad signature %.*s", 830 (unsigned long long)bh->b_blocknr, 7, 831 eb->h_signature); 832 return -EINVAL; 833 } 834 835 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) { 836 ocfs2_error(sb, 837 "Extent block #%llu has an invalid h_blkno " 838 "of %llu", 839 (unsigned long long)bh->b_blocknr, 840 (unsigned long long)le64_to_cpu(eb->h_blkno)); 841 return -EINVAL; 842 } 843 844 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) { 845 ocfs2_error(sb, 846 "Extent block #%llu has an invalid " 847 "h_fs_generation of #%u", 848 (unsigned long long)bh->b_blocknr, 849 le32_to_cpu(eb->h_fs_generation)); 850 return -EINVAL; 851 } 852 853 return 0; 854 } 855 856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno, 857 struct buffer_head **bh) 858 { 859 int rc; 860 struct buffer_head *tmp = *bh; 861 862 rc = ocfs2_read_block(inode, eb_blkno, &tmp, 863 ocfs2_validate_extent_block); 864 865 /* If ocfs2_read_block() got us a new bh, pass it up. */ 866 if (!rc && !*bh) 867 *bh = tmp; 868 869 return rc; 870 } 871 872 873 /* 874 * How many free extents have we got before we need more meta data? 875 */ 876 int ocfs2_num_free_extents(struct ocfs2_super *osb, 877 struct inode *inode, 878 struct ocfs2_extent_tree *et) 879 { 880 int retval; 881 struct ocfs2_extent_list *el = NULL; 882 struct ocfs2_extent_block *eb; 883 struct buffer_head *eb_bh = NULL; 884 u64 last_eb_blk = 0; 885 886 mlog_entry_void(); 887 888 el = et->et_root_el; 889 last_eb_blk = ocfs2_et_get_last_eb_blk(et); 890 891 if (last_eb_blk) { 892 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh); 893 if (retval < 0) { 894 mlog_errno(retval); 895 goto bail; 896 } 897 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 898 el = &eb->h_list; 899 } 900 901 BUG_ON(el->l_tree_depth != 0); 902 903 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec); 904 bail: 905 brelse(eb_bh); 906 907 mlog_exit(retval); 908 return retval; 909 } 910 911 /* expects array to already be allocated 912 * 913 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and 914 * l_count for you 915 */ 916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb, 917 handle_t *handle, 918 struct inode *inode, 919 int wanted, 920 struct ocfs2_alloc_context *meta_ac, 921 struct buffer_head *bhs[]) 922 { 923 int count, status, i; 924 u16 suballoc_bit_start; 925 u32 num_got; 926 u64 first_blkno; 927 struct ocfs2_extent_block *eb; 928 929 mlog_entry_void(); 930 931 count = 0; 932 while (count < wanted) { 933 status = ocfs2_claim_metadata(osb, 934 handle, 935 meta_ac, 936 wanted - count, 937 &suballoc_bit_start, 938 &num_got, 939 &first_blkno); 940 if (status < 0) { 941 mlog_errno(status); 942 goto bail; 943 } 944 945 for(i = count; i < (num_got + count); i++) { 946 bhs[i] = sb_getblk(osb->sb, first_blkno); 947 if (bhs[i] == NULL) { 948 status = -EIO; 949 mlog_errno(status); 950 goto bail; 951 } 952 ocfs2_set_new_buffer_uptodate(inode, bhs[i]); 953 954 status = ocfs2_journal_access_eb(handle, inode, bhs[i], 955 OCFS2_JOURNAL_ACCESS_CREATE); 956 if (status < 0) { 957 mlog_errno(status); 958 goto bail; 959 } 960 961 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize); 962 eb = (struct ocfs2_extent_block *) bhs[i]->b_data; 963 /* Ok, setup the minimal stuff here. */ 964 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE); 965 eb->h_blkno = cpu_to_le64(first_blkno); 966 eb->h_fs_generation = cpu_to_le32(osb->fs_generation); 967 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num); 968 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start); 969 eb->h_list.l_count = 970 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb)); 971 972 suballoc_bit_start++; 973 first_blkno++; 974 975 /* We'll also be dirtied by the caller, so 976 * this isn't absolutely necessary. */ 977 status = ocfs2_journal_dirty(handle, bhs[i]); 978 if (status < 0) { 979 mlog_errno(status); 980 goto bail; 981 } 982 } 983 984 count += num_got; 985 } 986 987 status = 0; 988 bail: 989 if (status < 0) { 990 for(i = 0; i < wanted; i++) { 991 brelse(bhs[i]); 992 bhs[i] = NULL; 993 } 994 } 995 mlog_exit(status); 996 return status; 997 } 998 999 /* 1000 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth(). 1001 * 1002 * Returns the sum of the rightmost extent rec logical offset and 1003 * cluster count. 1004 * 1005 * ocfs2_add_branch() uses this to determine what logical cluster 1006 * value should be populated into the leftmost new branch records. 1007 * 1008 * ocfs2_shift_tree_depth() uses this to determine the # clusters 1009 * value for the new topmost tree record. 1010 */ 1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el) 1012 { 1013 int i; 1014 1015 i = le16_to_cpu(el->l_next_free_rec) - 1; 1016 1017 return le32_to_cpu(el->l_recs[i].e_cpos) + 1018 ocfs2_rec_clusters(el, &el->l_recs[i]); 1019 } 1020 1021 /* 1022 * Change range of the branches in the right most path according to the leaf 1023 * extent block's rightmost record. 1024 */ 1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle, 1026 struct inode *inode, 1027 struct ocfs2_extent_tree *et) 1028 { 1029 int status; 1030 struct ocfs2_path *path = NULL; 1031 struct ocfs2_extent_list *el; 1032 struct ocfs2_extent_rec *rec; 1033 1034 path = ocfs2_new_path_from_et(et); 1035 if (!path) { 1036 status = -ENOMEM; 1037 return status; 1038 } 1039 1040 status = ocfs2_find_path(inode, path, UINT_MAX); 1041 if (status < 0) { 1042 mlog_errno(status); 1043 goto out; 1044 } 1045 1046 status = ocfs2_extend_trans(handle, path_num_items(path) + 1047 handle->h_buffer_credits); 1048 if (status < 0) { 1049 mlog_errno(status); 1050 goto out; 1051 } 1052 1053 status = ocfs2_journal_access_path(inode, handle, path); 1054 if (status < 0) { 1055 mlog_errno(status); 1056 goto out; 1057 } 1058 1059 el = path_leaf_el(path); 1060 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1]; 1061 1062 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 1063 1064 out: 1065 ocfs2_free_path(path); 1066 return status; 1067 } 1068 1069 /* 1070 * Add an entire tree branch to our inode. eb_bh is the extent block 1071 * to start at, if we don't want to start the branch at the dinode 1072 * structure. 1073 * 1074 * last_eb_bh is required as we have to update it's next_leaf pointer 1075 * for the new last extent block. 1076 * 1077 * the new branch will be 'empty' in the sense that every block will 1078 * contain a single record with cluster count == 0. 1079 */ 1080 static int ocfs2_add_branch(struct ocfs2_super *osb, 1081 handle_t *handle, 1082 struct inode *inode, 1083 struct ocfs2_extent_tree *et, 1084 struct buffer_head *eb_bh, 1085 struct buffer_head **last_eb_bh, 1086 struct ocfs2_alloc_context *meta_ac) 1087 { 1088 int status, new_blocks, i; 1089 u64 next_blkno, new_last_eb_blk; 1090 struct buffer_head *bh; 1091 struct buffer_head **new_eb_bhs = NULL; 1092 struct ocfs2_extent_block *eb; 1093 struct ocfs2_extent_list *eb_el; 1094 struct ocfs2_extent_list *el; 1095 u32 new_cpos, root_end; 1096 1097 mlog_entry_void(); 1098 1099 BUG_ON(!last_eb_bh || !*last_eb_bh); 1100 1101 if (eb_bh) { 1102 eb = (struct ocfs2_extent_block *) eb_bh->b_data; 1103 el = &eb->h_list; 1104 } else 1105 el = et->et_root_el; 1106 1107 /* we never add a branch to a leaf. */ 1108 BUG_ON(!el->l_tree_depth); 1109 1110 new_blocks = le16_to_cpu(el->l_tree_depth); 1111 1112 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data; 1113 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list); 1114 root_end = ocfs2_sum_rightmost_rec(et->et_root_el); 1115 1116 /* 1117 * If there is a gap before the root end and the real end 1118 * of the righmost leaf block, we need to remove the gap 1119 * between new_cpos and root_end first so that the tree 1120 * is consistent after we add a new branch(it will start 1121 * from new_cpos). 1122 */ 1123 if (root_end > new_cpos) { 1124 mlog(0, "adjust the cluster end from %u to %u\n", 1125 root_end, new_cpos); 1126 status = ocfs2_adjust_rightmost_branch(handle, inode, et); 1127 if (status) { 1128 mlog_errno(status); 1129 goto bail; 1130 } 1131 } 1132 1133 /* allocate the number of new eb blocks we need */ 1134 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *), 1135 GFP_KERNEL); 1136 if (!new_eb_bhs) { 1137 status = -ENOMEM; 1138 mlog_errno(status); 1139 goto bail; 1140 } 1141 1142 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks, 1143 meta_ac, new_eb_bhs); 1144 if (status < 0) { 1145 mlog_errno(status); 1146 goto bail; 1147 } 1148 1149 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be 1150 * linked with the rest of the tree. 1151 * conversly, new_eb_bhs[0] is the new bottommost leaf. 1152 * 1153 * when we leave the loop, new_last_eb_blk will point to the 1154 * newest leaf, and next_blkno will point to the topmost extent 1155 * block. */ 1156 next_blkno = new_last_eb_blk = 0; 1157 for(i = 0; i < new_blocks; i++) { 1158 bh = new_eb_bhs[i]; 1159 eb = (struct ocfs2_extent_block *) bh->b_data; 1160 /* ocfs2_create_new_meta_bhs() should create it right! */ 1161 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1162 eb_el = &eb->h_list; 1163 1164 status = ocfs2_journal_access_eb(handle, inode, bh, 1165 OCFS2_JOURNAL_ACCESS_CREATE); 1166 if (status < 0) { 1167 mlog_errno(status); 1168 goto bail; 1169 } 1170 1171 eb->h_next_leaf_blk = 0; 1172 eb_el->l_tree_depth = cpu_to_le16(i); 1173 eb_el->l_next_free_rec = cpu_to_le16(1); 1174 /* 1175 * This actually counts as an empty extent as 1176 * c_clusters == 0 1177 */ 1178 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos); 1179 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno); 1180 /* 1181 * eb_el isn't always an interior node, but even leaf 1182 * nodes want a zero'd flags and reserved field so 1183 * this gets the whole 32 bits regardless of use. 1184 */ 1185 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0); 1186 if (!eb_el->l_tree_depth) 1187 new_last_eb_blk = le64_to_cpu(eb->h_blkno); 1188 1189 status = ocfs2_journal_dirty(handle, bh); 1190 if (status < 0) { 1191 mlog_errno(status); 1192 goto bail; 1193 } 1194 1195 next_blkno = le64_to_cpu(eb->h_blkno); 1196 } 1197 1198 /* This is a bit hairy. We want to update up to three blocks 1199 * here without leaving any of them in an inconsistent state 1200 * in case of error. We don't have to worry about 1201 * journal_dirty erroring as it won't unless we've aborted the 1202 * handle (in which case we would never be here) so reserving 1203 * the write with journal_access is all we need to do. */ 1204 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh, 1205 OCFS2_JOURNAL_ACCESS_WRITE); 1206 if (status < 0) { 1207 mlog_errno(status); 1208 goto bail; 1209 } 1210 status = ocfs2_et_root_journal_access(handle, inode, et, 1211 OCFS2_JOURNAL_ACCESS_WRITE); 1212 if (status < 0) { 1213 mlog_errno(status); 1214 goto bail; 1215 } 1216 if (eb_bh) { 1217 status = ocfs2_journal_access_eb(handle, inode, eb_bh, 1218 OCFS2_JOURNAL_ACCESS_WRITE); 1219 if (status < 0) { 1220 mlog_errno(status); 1221 goto bail; 1222 } 1223 } 1224 1225 /* Link the new branch into the rest of the tree (el will 1226 * either be on the root_bh, or the extent block passed in. */ 1227 i = le16_to_cpu(el->l_next_free_rec); 1228 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno); 1229 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos); 1230 el->l_recs[i].e_int_clusters = 0; 1231 le16_add_cpu(&el->l_next_free_rec, 1); 1232 1233 /* fe needs a new last extent block pointer, as does the 1234 * next_leaf on the previously last-extent-block. */ 1235 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk); 1236 1237 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 1238 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk); 1239 1240 status = ocfs2_journal_dirty(handle, *last_eb_bh); 1241 if (status < 0) 1242 mlog_errno(status); 1243 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1244 if (status < 0) 1245 mlog_errno(status); 1246 if (eb_bh) { 1247 status = ocfs2_journal_dirty(handle, eb_bh); 1248 if (status < 0) 1249 mlog_errno(status); 1250 } 1251 1252 /* 1253 * Some callers want to track the rightmost leaf so pass it 1254 * back here. 1255 */ 1256 brelse(*last_eb_bh); 1257 get_bh(new_eb_bhs[0]); 1258 *last_eb_bh = new_eb_bhs[0]; 1259 1260 status = 0; 1261 bail: 1262 if (new_eb_bhs) { 1263 for (i = 0; i < new_blocks; i++) 1264 brelse(new_eb_bhs[i]); 1265 kfree(new_eb_bhs); 1266 } 1267 1268 mlog_exit(status); 1269 return status; 1270 } 1271 1272 /* 1273 * adds another level to the allocation tree. 1274 * returns back the new extent block so you can add a branch to it 1275 * after this call. 1276 */ 1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb, 1278 handle_t *handle, 1279 struct inode *inode, 1280 struct ocfs2_extent_tree *et, 1281 struct ocfs2_alloc_context *meta_ac, 1282 struct buffer_head **ret_new_eb_bh) 1283 { 1284 int status, i; 1285 u32 new_clusters; 1286 struct buffer_head *new_eb_bh = NULL; 1287 struct ocfs2_extent_block *eb; 1288 struct ocfs2_extent_list *root_el; 1289 struct ocfs2_extent_list *eb_el; 1290 1291 mlog_entry_void(); 1292 1293 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac, 1294 &new_eb_bh); 1295 if (status < 0) { 1296 mlog_errno(status); 1297 goto bail; 1298 } 1299 1300 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data; 1301 /* ocfs2_create_new_meta_bhs() should create it right! */ 1302 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 1303 1304 eb_el = &eb->h_list; 1305 root_el = et->et_root_el; 1306 1307 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh, 1308 OCFS2_JOURNAL_ACCESS_CREATE); 1309 if (status < 0) { 1310 mlog_errno(status); 1311 goto bail; 1312 } 1313 1314 /* copy the root extent list data into the new extent block */ 1315 eb_el->l_tree_depth = root_el->l_tree_depth; 1316 eb_el->l_next_free_rec = root_el->l_next_free_rec; 1317 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1318 eb_el->l_recs[i] = root_el->l_recs[i]; 1319 1320 status = ocfs2_journal_dirty(handle, new_eb_bh); 1321 if (status < 0) { 1322 mlog_errno(status); 1323 goto bail; 1324 } 1325 1326 status = ocfs2_et_root_journal_access(handle, inode, et, 1327 OCFS2_JOURNAL_ACCESS_WRITE); 1328 if (status < 0) { 1329 mlog_errno(status); 1330 goto bail; 1331 } 1332 1333 new_clusters = ocfs2_sum_rightmost_rec(eb_el); 1334 1335 /* update root_bh now */ 1336 le16_add_cpu(&root_el->l_tree_depth, 1); 1337 root_el->l_recs[0].e_cpos = 0; 1338 root_el->l_recs[0].e_blkno = eb->h_blkno; 1339 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters); 1340 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 1341 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 1342 root_el->l_next_free_rec = cpu_to_le16(1); 1343 1344 /* If this is our 1st tree depth shift, then last_eb_blk 1345 * becomes the allocated extent block */ 1346 if (root_el->l_tree_depth == cpu_to_le16(1)) 1347 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 1348 1349 status = ocfs2_journal_dirty(handle, et->et_root_bh); 1350 if (status < 0) { 1351 mlog_errno(status); 1352 goto bail; 1353 } 1354 1355 *ret_new_eb_bh = new_eb_bh; 1356 new_eb_bh = NULL; 1357 status = 0; 1358 bail: 1359 brelse(new_eb_bh); 1360 1361 mlog_exit(status); 1362 return status; 1363 } 1364 1365 /* 1366 * Should only be called when there is no space left in any of the 1367 * leaf nodes. What we want to do is find the lowest tree depth 1368 * non-leaf extent block with room for new records. There are three 1369 * valid results of this search: 1370 * 1371 * 1) a lowest extent block is found, then we pass it back in 1372 * *lowest_eb_bh and return '0' 1373 * 1374 * 2) the search fails to find anything, but the root_el has room. We 1375 * pass NULL back in *lowest_eb_bh, but still return '0' 1376 * 1377 * 3) the search fails to find anything AND the root_el is full, in 1378 * which case we return > 0 1379 * 1380 * return status < 0 indicates an error. 1381 */ 1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb, 1383 struct inode *inode, 1384 struct ocfs2_extent_tree *et, 1385 struct buffer_head **target_bh) 1386 { 1387 int status = 0, i; 1388 u64 blkno; 1389 struct ocfs2_extent_block *eb; 1390 struct ocfs2_extent_list *el; 1391 struct buffer_head *bh = NULL; 1392 struct buffer_head *lowest_bh = NULL; 1393 1394 mlog_entry_void(); 1395 1396 *target_bh = NULL; 1397 1398 el = et->et_root_el; 1399 1400 while(le16_to_cpu(el->l_tree_depth) > 1) { 1401 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1402 ocfs2_error(inode->i_sb, "Dinode %llu has empty " 1403 "extent list (next_free_rec == 0)", 1404 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1405 status = -EIO; 1406 goto bail; 1407 } 1408 i = le16_to_cpu(el->l_next_free_rec) - 1; 1409 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1410 if (!blkno) { 1411 ocfs2_error(inode->i_sb, "Dinode %llu has extent " 1412 "list where extent # %d has no physical " 1413 "block start", 1414 (unsigned long long)OCFS2_I(inode)->ip_blkno, i); 1415 status = -EIO; 1416 goto bail; 1417 } 1418 1419 brelse(bh); 1420 bh = NULL; 1421 1422 status = ocfs2_read_extent_block(inode, blkno, &bh); 1423 if (status < 0) { 1424 mlog_errno(status); 1425 goto bail; 1426 } 1427 1428 eb = (struct ocfs2_extent_block *) bh->b_data; 1429 el = &eb->h_list; 1430 1431 if (le16_to_cpu(el->l_next_free_rec) < 1432 le16_to_cpu(el->l_count)) { 1433 brelse(lowest_bh); 1434 lowest_bh = bh; 1435 get_bh(lowest_bh); 1436 } 1437 } 1438 1439 /* If we didn't find one and the fe doesn't have any room, 1440 * then return '1' */ 1441 el = et->et_root_el; 1442 if (!lowest_bh && (el->l_next_free_rec == el->l_count)) 1443 status = 1; 1444 1445 *target_bh = lowest_bh; 1446 bail: 1447 brelse(bh); 1448 1449 mlog_exit(status); 1450 return status; 1451 } 1452 1453 /* 1454 * Grow a b-tree so that it has more records. 1455 * 1456 * We might shift the tree depth in which case existing paths should 1457 * be considered invalid. 1458 * 1459 * Tree depth after the grow is returned via *final_depth. 1460 * 1461 * *last_eb_bh will be updated by ocfs2_add_branch(). 1462 */ 1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle, 1464 struct ocfs2_extent_tree *et, int *final_depth, 1465 struct buffer_head **last_eb_bh, 1466 struct ocfs2_alloc_context *meta_ac) 1467 { 1468 int ret, shift; 1469 struct ocfs2_extent_list *el = et->et_root_el; 1470 int depth = le16_to_cpu(el->l_tree_depth); 1471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1472 struct buffer_head *bh = NULL; 1473 1474 BUG_ON(meta_ac == NULL); 1475 1476 shift = ocfs2_find_branch_target(osb, inode, et, &bh); 1477 if (shift < 0) { 1478 ret = shift; 1479 mlog_errno(ret); 1480 goto out; 1481 } 1482 1483 /* We traveled all the way to the bottom of the allocation tree 1484 * and didn't find room for any more extents - we need to add 1485 * another tree level */ 1486 if (shift) { 1487 BUG_ON(bh); 1488 mlog(0, "need to shift tree depth (current = %d)\n", depth); 1489 1490 /* ocfs2_shift_tree_depth will return us a buffer with 1491 * the new extent block (so we can pass that to 1492 * ocfs2_add_branch). */ 1493 ret = ocfs2_shift_tree_depth(osb, handle, inode, et, 1494 meta_ac, &bh); 1495 if (ret < 0) { 1496 mlog_errno(ret); 1497 goto out; 1498 } 1499 depth++; 1500 if (depth == 1) { 1501 /* 1502 * Special case: we have room now if we shifted from 1503 * tree_depth 0, so no more work needs to be done. 1504 * 1505 * We won't be calling add_branch, so pass 1506 * back *last_eb_bh as the new leaf. At depth 1507 * zero, it should always be null so there's 1508 * no reason to brelse. 1509 */ 1510 BUG_ON(*last_eb_bh); 1511 get_bh(bh); 1512 *last_eb_bh = bh; 1513 goto out; 1514 } 1515 } 1516 1517 /* call ocfs2_add_branch to add the final part of the tree with 1518 * the new data. */ 1519 mlog(0, "add branch. bh = %p\n", bh); 1520 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh, 1521 meta_ac); 1522 if (ret < 0) { 1523 mlog_errno(ret); 1524 goto out; 1525 } 1526 1527 out: 1528 if (final_depth) 1529 *final_depth = depth; 1530 brelse(bh); 1531 return ret; 1532 } 1533 1534 /* 1535 * This function will discard the rightmost extent record. 1536 */ 1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el) 1538 { 1539 int next_free = le16_to_cpu(el->l_next_free_rec); 1540 int count = le16_to_cpu(el->l_count); 1541 unsigned int num_bytes; 1542 1543 BUG_ON(!next_free); 1544 /* This will cause us to go off the end of our extent list. */ 1545 BUG_ON(next_free >= count); 1546 1547 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free; 1548 1549 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes); 1550 } 1551 1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el, 1553 struct ocfs2_extent_rec *insert_rec) 1554 { 1555 int i, insert_index, next_free, has_empty, num_bytes; 1556 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos); 1557 struct ocfs2_extent_rec *rec; 1558 1559 next_free = le16_to_cpu(el->l_next_free_rec); 1560 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]); 1561 1562 BUG_ON(!next_free); 1563 1564 /* The tree code before us didn't allow enough room in the leaf. */ 1565 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty); 1566 1567 /* 1568 * The easiest way to approach this is to just remove the 1569 * empty extent and temporarily decrement next_free. 1570 */ 1571 if (has_empty) { 1572 /* 1573 * If next_free was 1 (only an empty extent), this 1574 * loop won't execute, which is fine. We still want 1575 * the decrement above to happen. 1576 */ 1577 for(i = 0; i < (next_free - 1); i++) 1578 el->l_recs[i] = el->l_recs[i+1]; 1579 1580 next_free--; 1581 } 1582 1583 /* 1584 * Figure out what the new record index should be. 1585 */ 1586 for(i = 0; i < next_free; i++) { 1587 rec = &el->l_recs[i]; 1588 1589 if (insert_cpos < le32_to_cpu(rec->e_cpos)) 1590 break; 1591 } 1592 insert_index = i; 1593 1594 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n", 1595 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count)); 1596 1597 BUG_ON(insert_index < 0); 1598 BUG_ON(insert_index >= le16_to_cpu(el->l_count)); 1599 BUG_ON(insert_index > next_free); 1600 1601 /* 1602 * No need to memmove if we're just adding to the tail. 1603 */ 1604 if (insert_index != next_free) { 1605 BUG_ON(next_free >= le16_to_cpu(el->l_count)); 1606 1607 num_bytes = next_free - insert_index; 1608 num_bytes *= sizeof(struct ocfs2_extent_rec); 1609 memmove(&el->l_recs[insert_index + 1], 1610 &el->l_recs[insert_index], 1611 num_bytes); 1612 } 1613 1614 /* 1615 * Either we had an empty extent, and need to re-increment or 1616 * there was no empty extent on a non full rightmost leaf node, 1617 * in which case we still need to increment. 1618 */ 1619 next_free++; 1620 el->l_next_free_rec = cpu_to_le16(next_free); 1621 /* 1622 * Make sure none of the math above just messed up our tree. 1623 */ 1624 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count)); 1625 1626 el->l_recs[insert_index] = *insert_rec; 1627 1628 } 1629 1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el) 1631 { 1632 int size, num_recs = le16_to_cpu(el->l_next_free_rec); 1633 1634 BUG_ON(num_recs == 0); 1635 1636 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 1637 num_recs--; 1638 size = num_recs * sizeof(struct ocfs2_extent_rec); 1639 memmove(&el->l_recs[0], &el->l_recs[1], size); 1640 memset(&el->l_recs[num_recs], 0, 1641 sizeof(struct ocfs2_extent_rec)); 1642 el->l_next_free_rec = cpu_to_le16(num_recs); 1643 } 1644 } 1645 1646 /* 1647 * Create an empty extent record . 1648 * 1649 * l_next_free_rec may be updated. 1650 * 1651 * If an empty extent already exists do nothing. 1652 */ 1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el) 1654 { 1655 int next_free = le16_to_cpu(el->l_next_free_rec); 1656 1657 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 1658 1659 if (next_free == 0) 1660 goto set_and_inc; 1661 1662 if (ocfs2_is_empty_extent(&el->l_recs[0])) 1663 return; 1664 1665 mlog_bug_on_msg(el->l_count == el->l_next_free_rec, 1666 "Asked to create an empty extent in a full list:\n" 1667 "count = %u, tree depth = %u", 1668 le16_to_cpu(el->l_count), 1669 le16_to_cpu(el->l_tree_depth)); 1670 1671 ocfs2_shift_records_right(el); 1672 1673 set_and_inc: 1674 le16_add_cpu(&el->l_next_free_rec, 1); 1675 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 1676 } 1677 1678 /* 1679 * For a rotation which involves two leaf nodes, the "root node" is 1680 * the lowest level tree node which contains a path to both leafs. This 1681 * resulting set of information can be used to form a complete "subtree" 1682 * 1683 * This function is passed two full paths from the dinode down to a 1684 * pair of adjacent leaves. It's task is to figure out which path 1685 * index contains the subtree root - this can be the root index itself 1686 * in a worst-case rotation. 1687 * 1688 * The array index of the subtree root is passed back. 1689 */ 1690 static int ocfs2_find_subtree_root(struct inode *inode, 1691 struct ocfs2_path *left, 1692 struct ocfs2_path *right) 1693 { 1694 int i = 0; 1695 1696 /* 1697 * Check that the caller passed in two paths from the same tree. 1698 */ 1699 BUG_ON(path_root_bh(left) != path_root_bh(right)); 1700 1701 do { 1702 i++; 1703 1704 /* 1705 * The caller didn't pass two adjacent paths. 1706 */ 1707 mlog_bug_on_msg(i > left->p_tree_depth, 1708 "Inode %lu, left depth %u, right depth %u\n" 1709 "left leaf blk %llu, right leaf blk %llu\n", 1710 inode->i_ino, left->p_tree_depth, 1711 right->p_tree_depth, 1712 (unsigned long long)path_leaf_bh(left)->b_blocknr, 1713 (unsigned long long)path_leaf_bh(right)->b_blocknr); 1714 } while (left->p_node[i].bh->b_blocknr == 1715 right->p_node[i].bh->b_blocknr); 1716 1717 return i - 1; 1718 } 1719 1720 typedef void (path_insert_t)(void *, struct buffer_head *); 1721 1722 /* 1723 * Traverse a btree path in search of cpos, starting at root_el. 1724 * 1725 * This code can be called with a cpos larger than the tree, in which 1726 * case it will return the rightmost path. 1727 */ 1728 static int __ocfs2_find_path(struct inode *inode, 1729 struct ocfs2_extent_list *root_el, u32 cpos, 1730 path_insert_t *func, void *data) 1731 { 1732 int i, ret = 0; 1733 u32 range; 1734 u64 blkno; 1735 struct buffer_head *bh = NULL; 1736 struct ocfs2_extent_block *eb; 1737 struct ocfs2_extent_list *el; 1738 struct ocfs2_extent_rec *rec; 1739 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1740 1741 el = root_el; 1742 while (el->l_tree_depth) { 1743 if (le16_to_cpu(el->l_next_free_rec) == 0) { 1744 ocfs2_error(inode->i_sb, 1745 "Inode %llu has empty extent list at " 1746 "depth %u\n", 1747 (unsigned long long)oi->ip_blkno, 1748 le16_to_cpu(el->l_tree_depth)); 1749 ret = -EROFS; 1750 goto out; 1751 1752 } 1753 1754 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) { 1755 rec = &el->l_recs[i]; 1756 1757 /* 1758 * In the case that cpos is off the allocation 1759 * tree, this should just wind up returning the 1760 * rightmost record. 1761 */ 1762 range = le32_to_cpu(rec->e_cpos) + 1763 ocfs2_rec_clusters(el, rec); 1764 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 1765 break; 1766 } 1767 1768 blkno = le64_to_cpu(el->l_recs[i].e_blkno); 1769 if (blkno == 0) { 1770 ocfs2_error(inode->i_sb, 1771 "Inode %llu has bad blkno in extent list " 1772 "at depth %u (index %d)\n", 1773 (unsigned long long)oi->ip_blkno, 1774 le16_to_cpu(el->l_tree_depth), i); 1775 ret = -EROFS; 1776 goto out; 1777 } 1778 1779 brelse(bh); 1780 bh = NULL; 1781 ret = ocfs2_read_extent_block(inode, blkno, &bh); 1782 if (ret) { 1783 mlog_errno(ret); 1784 goto out; 1785 } 1786 1787 eb = (struct ocfs2_extent_block *) bh->b_data; 1788 el = &eb->h_list; 1789 1790 if (le16_to_cpu(el->l_next_free_rec) > 1791 le16_to_cpu(el->l_count)) { 1792 ocfs2_error(inode->i_sb, 1793 "Inode %llu has bad count in extent list " 1794 "at block %llu (next free=%u, count=%u)\n", 1795 (unsigned long long)oi->ip_blkno, 1796 (unsigned long long)bh->b_blocknr, 1797 le16_to_cpu(el->l_next_free_rec), 1798 le16_to_cpu(el->l_count)); 1799 ret = -EROFS; 1800 goto out; 1801 } 1802 1803 if (func) 1804 func(data, bh); 1805 } 1806 1807 out: 1808 /* 1809 * Catch any trailing bh that the loop didn't handle. 1810 */ 1811 brelse(bh); 1812 1813 return ret; 1814 } 1815 1816 /* 1817 * Given an initialized path (that is, it has a valid root extent 1818 * list), this function will traverse the btree in search of the path 1819 * which would contain cpos. 1820 * 1821 * The path traveled is recorded in the path structure. 1822 * 1823 * Note that this will not do any comparisons on leaf node extent 1824 * records, so it will work fine in the case that we just added a tree 1825 * branch. 1826 */ 1827 struct find_path_data { 1828 int index; 1829 struct ocfs2_path *path; 1830 }; 1831 static void find_path_ins(void *data, struct buffer_head *bh) 1832 { 1833 struct find_path_data *fp = data; 1834 1835 get_bh(bh); 1836 ocfs2_path_insert_eb(fp->path, fp->index, bh); 1837 fp->index++; 1838 } 1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path, 1840 u32 cpos) 1841 { 1842 struct find_path_data data; 1843 1844 data.index = 1; 1845 data.path = path; 1846 return __ocfs2_find_path(inode, path_root_el(path), cpos, 1847 find_path_ins, &data); 1848 } 1849 1850 static void find_leaf_ins(void *data, struct buffer_head *bh) 1851 { 1852 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data; 1853 struct ocfs2_extent_list *el = &eb->h_list; 1854 struct buffer_head **ret = data; 1855 1856 /* We want to retain only the leaf block. */ 1857 if (le16_to_cpu(el->l_tree_depth) == 0) { 1858 get_bh(bh); 1859 *ret = bh; 1860 } 1861 } 1862 /* 1863 * Find the leaf block in the tree which would contain cpos. No 1864 * checking of the actual leaf is done. 1865 * 1866 * Some paths want to call this instead of allocating a path structure 1867 * and calling ocfs2_find_path(). 1868 * 1869 * This function doesn't handle non btree extent lists. 1870 */ 1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el, 1872 u32 cpos, struct buffer_head **leaf_bh) 1873 { 1874 int ret; 1875 struct buffer_head *bh = NULL; 1876 1877 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh); 1878 if (ret) { 1879 mlog_errno(ret); 1880 goto out; 1881 } 1882 1883 *leaf_bh = bh; 1884 out: 1885 return ret; 1886 } 1887 1888 /* 1889 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation. 1890 * 1891 * Basically, we've moved stuff around at the bottom of the tree and 1892 * we need to fix up the extent records above the changes to reflect 1893 * the new changes. 1894 * 1895 * left_rec: the record on the left. 1896 * left_child_el: is the child list pointed to by left_rec 1897 * right_rec: the record to the right of left_rec 1898 * right_child_el: is the child list pointed to by right_rec 1899 * 1900 * By definition, this only works on interior nodes. 1901 */ 1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec, 1903 struct ocfs2_extent_list *left_child_el, 1904 struct ocfs2_extent_rec *right_rec, 1905 struct ocfs2_extent_list *right_child_el) 1906 { 1907 u32 left_clusters, right_end; 1908 1909 /* 1910 * Interior nodes never have holes. Their cpos is the cpos of 1911 * the leftmost record in their child list. Their cluster 1912 * count covers the full theoretical range of their child list 1913 * - the range between their cpos and the cpos of the record 1914 * immediately to their right. 1915 */ 1916 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos); 1917 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) { 1918 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1); 1919 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos); 1920 } 1921 left_clusters -= le32_to_cpu(left_rec->e_cpos); 1922 left_rec->e_int_clusters = cpu_to_le32(left_clusters); 1923 1924 /* 1925 * Calculate the rightmost cluster count boundary before 1926 * moving cpos - we will need to adjust clusters after 1927 * updating e_cpos to keep the same highest cluster count. 1928 */ 1929 right_end = le32_to_cpu(right_rec->e_cpos); 1930 right_end += le32_to_cpu(right_rec->e_int_clusters); 1931 1932 right_rec->e_cpos = left_rec->e_cpos; 1933 le32_add_cpu(&right_rec->e_cpos, left_clusters); 1934 1935 right_end -= le32_to_cpu(right_rec->e_cpos); 1936 right_rec->e_int_clusters = cpu_to_le32(right_end); 1937 } 1938 1939 /* 1940 * Adjust the adjacent root node records involved in a 1941 * rotation. left_el_blkno is passed in as a key so that we can easily 1942 * find it's index in the root list. 1943 */ 1944 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el, 1945 struct ocfs2_extent_list *left_el, 1946 struct ocfs2_extent_list *right_el, 1947 u64 left_el_blkno) 1948 { 1949 int i; 1950 1951 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <= 1952 le16_to_cpu(left_el->l_tree_depth)); 1953 1954 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) { 1955 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno) 1956 break; 1957 } 1958 1959 /* 1960 * The path walking code should have never returned a root and 1961 * two paths which are not adjacent. 1962 */ 1963 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1)); 1964 1965 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el, 1966 &root_el->l_recs[i + 1], right_el); 1967 } 1968 1969 /* 1970 * We've changed a leaf block (in right_path) and need to reflect that 1971 * change back up the subtree. 1972 * 1973 * This happens in multiple places: 1974 * - When we've moved an extent record from the left path leaf to the right 1975 * path leaf to make room for an empty extent in the left path leaf. 1976 * - When our insert into the right path leaf is at the leftmost edge 1977 * and requires an update of the path immediately to it's left. This 1978 * can occur at the end of some types of rotation and appending inserts. 1979 * - When we've adjusted the last extent record in the left path leaf and the 1980 * 1st extent record in the right path leaf during cross extent block merge. 1981 */ 1982 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle, 1983 struct ocfs2_path *left_path, 1984 struct ocfs2_path *right_path, 1985 int subtree_index) 1986 { 1987 int ret, i, idx; 1988 struct ocfs2_extent_list *el, *left_el, *right_el; 1989 struct ocfs2_extent_rec *left_rec, *right_rec; 1990 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 1991 1992 /* 1993 * Update the counts and position values within all the 1994 * interior nodes to reflect the leaf rotation we just did. 1995 * 1996 * The root node is handled below the loop. 1997 * 1998 * We begin the loop with right_el and left_el pointing to the 1999 * leaf lists and work our way up. 2000 * 2001 * NOTE: within this loop, left_el and right_el always refer 2002 * to the *child* lists. 2003 */ 2004 left_el = path_leaf_el(left_path); 2005 right_el = path_leaf_el(right_path); 2006 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) { 2007 mlog(0, "Adjust records at index %u\n", i); 2008 2009 /* 2010 * One nice property of knowing that all of these 2011 * nodes are below the root is that we only deal with 2012 * the leftmost right node record and the rightmost 2013 * left node record. 2014 */ 2015 el = left_path->p_node[i].el; 2016 idx = le16_to_cpu(left_el->l_next_free_rec) - 1; 2017 left_rec = &el->l_recs[idx]; 2018 2019 el = right_path->p_node[i].el; 2020 right_rec = &el->l_recs[0]; 2021 2022 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec, 2023 right_el); 2024 2025 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh); 2026 if (ret) 2027 mlog_errno(ret); 2028 2029 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh); 2030 if (ret) 2031 mlog_errno(ret); 2032 2033 /* 2034 * Setup our list pointers now so that the current 2035 * parents become children in the next iteration. 2036 */ 2037 left_el = left_path->p_node[i].el; 2038 right_el = right_path->p_node[i].el; 2039 } 2040 2041 /* 2042 * At the root node, adjust the two adjacent records which 2043 * begin our path to the leaves. 2044 */ 2045 2046 el = left_path->p_node[subtree_index].el; 2047 left_el = left_path->p_node[subtree_index + 1].el; 2048 right_el = right_path->p_node[subtree_index + 1].el; 2049 2050 ocfs2_adjust_root_records(el, left_el, right_el, 2051 left_path->p_node[subtree_index + 1].bh->b_blocknr); 2052 2053 root_bh = left_path->p_node[subtree_index].bh; 2054 2055 ret = ocfs2_journal_dirty(handle, root_bh); 2056 if (ret) 2057 mlog_errno(ret); 2058 } 2059 2060 static int ocfs2_rotate_subtree_right(struct inode *inode, 2061 handle_t *handle, 2062 struct ocfs2_path *left_path, 2063 struct ocfs2_path *right_path, 2064 int subtree_index) 2065 { 2066 int ret, i; 2067 struct buffer_head *right_leaf_bh; 2068 struct buffer_head *left_leaf_bh = NULL; 2069 struct buffer_head *root_bh; 2070 struct ocfs2_extent_list *right_el, *left_el; 2071 struct ocfs2_extent_rec move_rec; 2072 2073 left_leaf_bh = path_leaf_bh(left_path); 2074 left_el = path_leaf_el(left_path); 2075 2076 if (left_el->l_next_free_rec != left_el->l_count) { 2077 ocfs2_error(inode->i_sb, 2078 "Inode %llu has non-full interior leaf node %llu" 2079 "(next free = %u)", 2080 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2081 (unsigned long long)left_leaf_bh->b_blocknr, 2082 le16_to_cpu(left_el->l_next_free_rec)); 2083 return -EROFS; 2084 } 2085 2086 /* 2087 * This extent block may already have an empty record, so we 2088 * return early if so. 2089 */ 2090 if (ocfs2_is_empty_extent(&left_el->l_recs[0])) 2091 return 0; 2092 2093 root_bh = left_path->p_node[subtree_index].bh; 2094 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2095 2096 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2097 subtree_index); 2098 if (ret) { 2099 mlog_errno(ret); 2100 goto out; 2101 } 2102 2103 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2104 ret = ocfs2_path_bh_journal_access(handle, inode, 2105 right_path, i); 2106 if (ret) { 2107 mlog_errno(ret); 2108 goto out; 2109 } 2110 2111 ret = ocfs2_path_bh_journal_access(handle, inode, 2112 left_path, i); 2113 if (ret) { 2114 mlog_errno(ret); 2115 goto out; 2116 } 2117 } 2118 2119 right_leaf_bh = path_leaf_bh(right_path); 2120 right_el = path_leaf_el(right_path); 2121 2122 /* This is a code error, not a disk corruption. */ 2123 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails " 2124 "because rightmost leaf block %llu is empty\n", 2125 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2126 (unsigned long long)right_leaf_bh->b_blocknr); 2127 2128 ocfs2_create_empty_extent(right_el); 2129 2130 ret = ocfs2_journal_dirty(handle, right_leaf_bh); 2131 if (ret) { 2132 mlog_errno(ret); 2133 goto out; 2134 } 2135 2136 /* Do the copy now. */ 2137 i = le16_to_cpu(left_el->l_next_free_rec) - 1; 2138 move_rec = left_el->l_recs[i]; 2139 right_el->l_recs[0] = move_rec; 2140 2141 /* 2142 * Clear out the record we just copied and shift everything 2143 * over, leaving an empty extent in the left leaf. 2144 * 2145 * We temporarily subtract from next_free_rec so that the 2146 * shift will lose the tail record (which is now defunct). 2147 */ 2148 le16_add_cpu(&left_el->l_next_free_rec, -1); 2149 ocfs2_shift_records_right(left_el); 2150 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2151 le16_add_cpu(&left_el->l_next_free_rec, 1); 2152 2153 ret = ocfs2_journal_dirty(handle, left_leaf_bh); 2154 if (ret) { 2155 mlog_errno(ret); 2156 goto out; 2157 } 2158 2159 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2160 subtree_index); 2161 2162 out: 2163 return ret; 2164 } 2165 2166 /* 2167 * Given a full path, determine what cpos value would return us a path 2168 * containing the leaf immediately to the left of the current one. 2169 * 2170 * Will return zero if the path passed in is already the leftmost path. 2171 */ 2172 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 2173 struct ocfs2_path *path, u32 *cpos) 2174 { 2175 int i, j, ret = 0; 2176 u64 blkno; 2177 struct ocfs2_extent_list *el; 2178 2179 BUG_ON(path->p_tree_depth == 0); 2180 2181 *cpos = 0; 2182 2183 blkno = path_leaf_bh(path)->b_blocknr; 2184 2185 /* Start at the tree node just above the leaf and work our way up. */ 2186 i = path->p_tree_depth - 1; 2187 while (i >= 0) { 2188 el = path->p_node[i].el; 2189 2190 /* 2191 * Find the extent record just before the one in our 2192 * path. 2193 */ 2194 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2195 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2196 if (j == 0) { 2197 if (i == 0) { 2198 /* 2199 * We've determined that the 2200 * path specified is already 2201 * the leftmost one - return a 2202 * cpos of zero. 2203 */ 2204 goto out; 2205 } 2206 /* 2207 * The leftmost record points to our 2208 * leaf - we need to travel up the 2209 * tree one level. 2210 */ 2211 goto next_node; 2212 } 2213 2214 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos); 2215 *cpos = *cpos + ocfs2_rec_clusters(el, 2216 &el->l_recs[j - 1]); 2217 *cpos = *cpos - 1; 2218 goto out; 2219 } 2220 } 2221 2222 /* 2223 * If we got here, we never found a valid node where 2224 * the tree indicated one should be. 2225 */ 2226 ocfs2_error(sb, 2227 "Invalid extent tree at extent block %llu\n", 2228 (unsigned long long)blkno); 2229 ret = -EROFS; 2230 goto out; 2231 2232 next_node: 2233 blkno = path->p_node[i].bh->b_blocknr; 2234 i--; 2235 } 2236 2237 out: 2238 return ret; 2239 } 2240 2241 /* 2242 * Extend the transaction by enough credits to complete the rotation, 2243 * and still leave at least the original number of credits allocated 2244 * to this transaction. 2245 */ 2246 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth, 2247 int op_credits, 2248 struct ocfs2_path *path) 2249 { 2250 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits; 2251 2252 if (handle->h_buffer_credits < credits) 2253 return ocfs2_extend_trans(handle, credits); 2254 2255 return 0; 2256 } 2257 2258 /* 2259 * Trap the case where we're inserting into the theoretical range past 2260 * the _actual_ left leaf range. Otherwise, we'll rotate a record 2261 * whose cpos is less than ours into the right leaf. 2262 * 2263 * It's only necessary to look at the rightmost record of the left 2264 * leaf because the logic that calls us should ensure that the 2265 * theoretical ranges in the path components above the leaves are 2266 * correct. 2267 */ 2268 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path, 2269 u32 insert_cpos) 2270 { 2271 struct ocfs2_extent_list *left_el; 2272 struct ocfs2_extent_rec *rec; 2273 int next_free; 2274 2275 left_el = path_leaf_el(left_path); 2276 next_free = le16_to_cpu(left_el->l_next_free_rec); 2277 rec = &left_el->l_recs[next_free - 1]; 2278 2279 if (insert_cpos > le32_to_cpu(rec->e_cpos)) 2280 return 1; 2281 return 0; 2282 } 2283 2284 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos) 2285 { 2286 int next_free = le16_to_cpu(el->l_next_free_rec); 2287 unsigned int range; 2288 struct ocfs2_extent_rec *rec; 2289 2290 if (next_free == 0) 2291 return 0; 2292 2293 rec = &el->l_recs[0]; 2294 if (ocfs2_is_empty_extent(rec)) { 2295 /* Empty list. */ 2296 if (next_free == 1) 2297 return 0; 2298 rec = &el->l_recs[1]; 2299 } 2300 2301 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2302 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range) 2303 return 1; 2304 return 0; 2305 } 2306 2307 /* 2308 * Rotate all the records in a btree right one record, starting at insert_cpos. 2309 * 2310 * The path to the rightmost leaf should be passed in. 2311 * 2312 * The array is assumed to be large enough to hold an entire path (tree depth). 2313 * 2314 * Upon succesful return from this function: 2315 * 2316 * - The 'right_path' array will contain a path to the leaf block 2317 * whose range contains e_cpos. 2318 * - That leaf block will have a single empty extent in list index 0. 2319 * - In the case that the rotation requires a post-insert update, 2320 * *ret_left_path will contain a valid path which can be passed to 2321 * ocfs2_insert_path(). 2322 */ 2323 static int ocfs2_rotate_tree_right(struct inode *inode, 2324 handle_t *handle, 2325 enum ocfs2_split_type split, 2326 u32 insert_cpos, 2327 struct ocfs2_path *right_path, 2328 struct ocfs2_path **ret_left_path) 2329 { 2330 int ret, start, orig_credits = handle->h_buffer_credits; 2331 u32 cpos; 2332 struct ocfs2_path *left_path = NULL; 2333 2334 *ret_left_path = NULL; 2335 2336 left_path = ocfs2_new_path_from_path(right_path); 2337 if (!left_path) { 2338 ret = -ENOMEM; 2339 mlog_errno(ret); 2340 goto out; 2341 } 2342 2343 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos); 2344 if (ret) { 2345 mlog_errno(ret); 2346 goto out; 2347 } 2348 2349 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos); 2350 2351 /* 2352 * What we want to do here is: 2353 * 2354 * 1) Start with the rightmost path. 2355 * 2356 * 2) Determine a path to the leaf block directly to the left 2357 * of that leaf. 2358 * 2359 * 3) Determine the 'subtree root' - the lowest level tree node 2360 * which contains a path to both leaves. 2361 * 2362 * 4) Rotate the subtree. 2363 * 2364 * 5) Find the next subtree by considering the left path to be 2365 * the new right path. 2366 * 2367 * The check at the top of this while loop also accepts 2368 * insert_cpos == cpos because cpos is only a _theoretical_ 2369 * value to get us the left path - insert_cpos might very well 2370 * be filling that hole. 2371 * 2372 * Stop at a cpos of '0' because we either started at the 2373 * leftmost branch (i.e., a tree with one branch and a 2374 * rotation inside of it), or we've gone as far as we can in 2375 * rotating subtrees. 2376 */ 2377 while (cpos && insert_cpos <= cpos) { 2378 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n", 2379 insert_cpos, cpos); 2380 2381 ret = ocfs2_find_path(inode, left_path, cpos); 2382 if (ret) { 2383 mlog_errno(ret); 2384 goto out; 2385 } 2386 2387 mlog_bug_on_msg(path_leaf_bh(left_path) == 2388 path_leaf_bh(right_path), 2389 "Inode %lu: error during insert of %u " 2390 "(left path cpos %u) results in two identical " 2391 "paths ending at %llu\n", 2392 inode->i_ino, insert_cpos, cpos, 2393 (unsigned long long) 2394 path_leaf_bh(left_path)->b_blocknr); 2395 2396 if (split == SPLIT_NONE && 2397 ocfs2_rotate_requires_path_adjustment(left_path, 2398 insert_cpos)) { 2399 2400 /* 2401 * We've rotated the tree as much as we 2402 * should. The rest is up to 2403 * ocfs2_insert_path() to complete, after the 2404 * record insertion. We indicate this 2405 * situation by returning the left path. 2406 * 2407 * The reason we don't adjust the records here 2408 * before the record insert is that an error 2409 * later might break the rule where a parent 2410 * record e_cpos will reflect the actual 2411 * e_cpos of the 1st nonempty record of the 2412 * child list. 2413 */ 2414 *ret_left_path = left_path; 2415 goto out_ret_path; 2416 } 2417 2418 start = ocfs2_find_subtree_root(inode, left_path, right_path); 2419 2420 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2421 start, 2422 (unsigned long long) right_path->p_node[start].bh->b_blocknr, 2423 right_path->p_tree_depth); 2424 2425 ret = ocfs2_extend_rotate_transaction(handle, start, 2426 orig_credits, right_path); 2427 if (ret) { 2428 mlog_errno(ret); 2429 goto out; 2430 } 2431 2432 ret = ocfs2_rotate_subtree_right(inode, handle, left_path, 2433 right_path, start); 2434 if (ret) { 2435 mlog_errno(ret); 2436 goto out; 2437 } 2438 2439 if (split != SPLIT_NONE && 2440 ocfs2_leftmost_rec_contains(path_leaf_el(right_path), 2441 insert_cpos)) { 2442 /* 2443 * A rotate moves the rightmost left leaf 2444 * record over to the leftmost right leaf 2445 * slot. If we're doing an extent split 2446 * instead of a real insert, then we have to 2447 * check that the extent to be split wasn't 2448 * just moved over. If it was, then we can 2449 * exit here, passing left_path back - 2450 * ocfs2_split_extent() is smart enough to 2451 * search both leaves. 2452 */ 2453 *ret_left_path = left_path; 2454 goto out_ret_path; 2455 } 2456 2457 /* 2458 * There is no need to re-read the next right path 2459 * as we know that it'll be our current left 2460 * path. Optimize by copying values instead. 2461 */ 2462 ocfs2_mv_path(right_path, left_path); 2463 2464 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 2465 &cpos); 2466 if (ret) { 2467 mlog_errno(ret); 2468 goto out; 2469 } 2470 } 2471 2472 out: 2473 ocfs2_free_path(left_path); 2474 2475 out_ret_path: 2476 return ret; 2477 } 2478 2479 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle, 2480 struct ocfs2_path *path) 2481 { 2482 int i, idx; 2483 struct ocfs2_extent_rec *rec; 2484 struct ocfs2_extent_list *el; 2485 struct ocfs2_extent_block *eb; 2486 u32 range; 2487 2488 /* Path should always be rightmost. */ 2489 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 2490 BUG_ON(eb->h_next_leaf_blk != 0ULL); 2491 2492 el = &eb->h_list; 2493 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 2494 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2495 rec = &el->l_recs[idx]; 2496 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 2497 2498 for (i = 0; i < path->p_tree_depth; i++) { 2499 el = path->p_node[i].el; 2500 idx = le16_to_cpu(el->l_next_free_rec) - 1; 2501 rec = &el->l_recs[idx]; 2502 2503 rec->e_int_clusters = cpu_to_le32(range); 2504 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos)); 2505 2506 ocfs2_journal_dirty(handle, path->p_node[i].bh); 2507 } 2508 } 2509 2510 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle, 2511 struct ocfs2_cached_dealloc_ctxt *dealloc, 2512 struct ocfs2_path *path, int unlink_start) 2513 { 2514 int ret, i; 2515 struct ocfs2_extent_block *eb; 2516 struct ocfs2_extent_list *el; 2517 struct buffer_head *bh; 2518 2519 for(i = unlink_start; i < path_num_items(path); i++) { 2520 bh = path->p_node[i].bh; 2521 2522 eb = (struct ocfs2_extent_block *)bh->b_data; 2523 /* 2524 * Not all nodes might have had their final count 2525 * decremented by the caller - handle this here. 2526 */ 2527 el = &eb->h_list; 2528 if (le16_to_cpu(el->l_next_free_rec) > 1) { 2529 mlog(ML_ERROR, 2530 "Inode %llu, attempted to remove extent block " 2531 "%llu with %u records\n", 2532 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2533 (unsigned long long)le64_to_cpu(eb->h_blkno), 2534 le16_to_cpu(el->l_next_free_rec)); 2535 2536 ocfs2_journal_dirty(handle, bh); 2537 ocfs2_remove_from_cache(inode, bh); 2538 continue; 2539 } 2540 2541 el->l_next_free_rec = 0; 2542 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 2543 2544 ocfs2_journal_dirty(handle, bh); 2545 2546 ret = ocfs2_cache_extent_block_free(dealloc, eb); 2547 if (ret) 2548 mlog_errno(ret); 2549 2550 ocfs2_remove_from_cache(inode, bh); 2551 } 2552 } 2553 2554 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle, 2555 struct ocfs2_path *left_path, 2556 struct ocfs2_path *right_path, 2557 int subtree_index, 2558 struct ocfs2_cached_dealloc_ctxt *dealloc) 2559 { 2560 int i; 2561 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh; 2562 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el; 2563 struct ocfs2_extent_list *el; 2564 struct ocfs2_extent_block *eb; 2565 2566 el = path_leaf_el(left_path); 2567 2568 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data; 2569 2570 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++) 2571 if (root_el->l_recs[i].e_blkno == eb->h_blkno) 2572 break; 2573 2574 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec)); 2575 2576 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec)); 2577 le16_add_cpu(&root_el->l_next_free_rec, -1); 2578 2579 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2580 eb->h_next_leaf_blk = 0; 2581 2582 ocfs2_journal_dirty(handle, root_bh); 2583 ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2584 2585 ocfs2_unlink_path(inode, handle, dealloc, right_path, 2586 subtree_index + 1); 2587 } 2588 2589 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle, 2590 struct ocfs2_path *left_path, 2591 struct ocfs2_path *right_path, 2592 int subtree_index, 2593 struct ocfs2_cached_dealloc_ctxt *dealloc, 2594 int *deleted, 2595 struct ocfs2_extent_tree *et) 2596 { 2597 int ret, i, del_right_subtree = 0, right_has_empty = 0; 2598 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path); 2599 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el; 2600 struct ocfs2_extent_block *eb; 2601 2602 *deleted = 0; 2603 2604 right_leaf_el = path_leaf_el(right_path); 2605 left_leaf_el = path_leaf_el(left_path); 2606 root_bh = left_path->p_node[subtree_index].bh; 2607 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 2608 2609 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0])) 2610 return 0; 2611 2612 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data; 2613 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) { 2614 /* 2615 * It's legal for us to proceed if the right leaf is 2616 * the rightmost one and it has an empty extent. There 2617 * are two cases to handle - whether the leaf will be 2618 * empty after removal or not. If the leaf isn't empty 2619 * then just remove the empty extent up front. The 2620 * next block will handle empty leaves by flagging 2621 * them for unlink. 2622 * 2623 * Non rightmost leaves will throw -EAGAIN and the 2624 * caller can manually move the subtree and retry. 2625 */ 2626 2627 if (eb->h_next_leaf_blk != 0ULL) 2628 return -EAGAIN; 2629 2630 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) { 2631 ret = ocfs2_journal_access_eb(handle, inode, 2632 path_leaf_bh(right_path), 2633 OCFS2_JOURNAL_ACCESS_WRITE); 2634 if (ret) { 2635 mlog_errno(ret); 2636 goto out; 2637 } 2638 2639 ocfs2_remove_empty_extent(right_leaf_el); 2640 } else 2641 right_has_empty = 1; 2642 } 2643 2644 if (eb->h_next_leaf_blk == 0ULL && 2645 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) { 2646 /* 2647 * We have to update i_last_eb_blk during the meta 2648 * data delete. 2649 */ 2650 ret = ocfs2_et_root_journal_access(handle, inode, et, 2651 OCFS2_JOURNAL_ACCESS_WRITE); 2652 if (ret) { 2653 mlog_errno(ret); 2654 goto out; 2655 } 2656 2657 del_right_subtree = 1; 2658 } 2659 2660 /* 2661 * Getting here with an empty extent in the right path implies 2662 * that it's the rightmost path and will be deleted. 2663 */ 2664 BUG_ON(right_has_empty && !del_right_subtree); 2665 2666 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 2667 subtree_index); 2668 if (ret) { 2669 mlog_errno(ret); 2670 goto out; 2671 } 2672 2673 for(i = subtree_index + 1; i < path_num_items(right_path); i++) { 2674 ret = ocfs2_path_bh_journal_access(handle, inode, 2675 right_path, i); 2676 if (ret) { 2677 mlog_errno(ret); 2678 goto out; 2679 } 2680 2681 ret = ocfs2_path_bh_journal_access(handle, inode, 2682 left_path, i); 2683 if (ret) { 2684 mlog_errno(ret); 2685 goto out; 2686 } 2687 } 2688 2689 if (!right_has_empty) { 2690 /* 2691 * Only do this if we're moving a real 2692 * record. Otherwise, the action is delayed until 2693 * after removal of the right path in which case we 2694 * can do a simple shift to remove the empty extent. 2695 */ 2696 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]); 2697 memset(&right_leaf_el->l_recs[0], 0, 2698 sizeof(struct ocfs2_extent_rec)); 2699 } 2700 if (eb->h_next_leaf_blk == 0ULL) { 2701 /* 2702 * Move recs over to get rid of empty extent, decrease 2703 * next_free. This is allowed to remove the last 2704 * extent in our leaf (setting l_next_free_rec to 2705 * zero) - the delete code below won't care. 2706 */ 2707 ocfs2_remove_empty_extent(right_leaf_el); 2708 } 2709 2710 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 2711 if (ret) 2712 mlog_errno(ret); 2713 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 2714 if (ret) 2715 mlog_errno(ret); 2716 2717 if (del_right_subtree) { 2718 ocfs2_unlink_subtree(inode, handle, left_path, right_path, 2719 subtree_index, dealloc); 2720 ocfs2_update_edge_lengths(inode, handle, left_path); 2721 2722 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 2723 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 2724 2725 /* 2726 * Removal of the extent in the left leaf was skipped 2727 * above so we could delete the right path 2728 * 1st. 2729 */ 2730 if (right_has_empty) 2731 ocfs2_remove_empty_extent(left_leaf_el); 2732 2733 ret = ocfs2_journal_dirty(handle, et_root_bh); 2734 if (ret) 2735 mlog_errno(ret); 2736 2737 *deleted = 1; 2738 } else 2739 ocfs2_complete_edge_insert(inode, handle, left_path, right_path, 2740 subtree_index); 2741 2742 out: 2743 return ret; 2744 } 2745 2746 /* 2747 * Given a full path, determine what cpos value would return us a path 2748 * containing the leaf immediately to the right of the current one. 2749 * 2750 * Will return zero if the path passed in is already the rightmost path. 2751 * 2752 * This looks similar, but is subtly different to 2753 * ocfs2_find_cpos_for_left_leaf(). 2754 */ 2755 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 2756 struct ocfs2_path *path, u32 *cpos) 2757 { 2758 int i, j, ret = 0; 2759 u64 blkno; 2760 struct ocfs2_extent_list *el; 2761 2762 *cpos = 0; 2763 2764 if (path->p_tree_depth == 0) 2765 return 0; 2766 2767 blkno = path_leaf_bh(path)->b_blocknr; 2768 2769 /* Start at the tree node just above the leaf and work our way up. */ 2770 i = path->p_tree_depth - 1; 2771 while (i >= 0) { 2772 int next_free; 2773 2774 el = path->p_node[i].el; 2775 2776 /* 2777 * Find the extent record just after the one in our 2778 * path. 2779 */ 2780 next_free = le16_to_cpu(el->l_next_free_rec); 2781 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) { 2782 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) { 2783 if (j == (next_free - 1)) { 2784 if (i == 0) { 2785 /* 2786 * We've determined that the 2787 * path specified is already 2788 * the rightmost one - return a 2789 * cpos of zero. 2790 */ 2791 goto out; 2792 } 2793 /* 2794 * The rightmost record points to our 2795 * leaf - we need to travel up the 2796 * tree one level. 2797 */ 2798 goto next_node; 2799 } 2800 2801 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos); 2802 goto out; 2803 } 2804 } 2805 2806 /* 2807 * If we got here, we never found a valid node where 2808 * the tree indicated one should be. 2809 */ 2810 ocfs2_error(sb, 2811 "Invalid extent tree at extent block %llu\n", 2812 (unsigned long long)blkno); 2813 ret = -EROFS; 2814 goto out; 2815 2816 next_node: 2817 blkno = path->p_node[i].bh->b_blocknr; 2818 i--; 2819 } 2820 2821 out: 2822 return ret; 2823 } 2824 2825 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode, 2826 handle_t *handle, 2827 struct ocfs2_path *path) 2828 { 2829 int ret; 2830 struct buffer_head *bh = path_leaf_bh(path); 2831 struct ocfs2_extent_list *el = path_leaf_el(path); 2832 2833 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 2834 return 0; 2835 2836 ret = ocfs2_path_bh_journal_access(handle, inode, path, 2837 path_num_items(path) - 1); 2838 if (ret) { 2839 mlog_errno(ret); 2840 goto out; 2841 } 2842 2843 ocfs2_remove_empty_extent(el); 2844 2845 ret = ocfs2_journal_dirty(handle, bh); 2846 if (ret) 2847 mlog_errno(ret); 2848 2849 out: 2850 return ret; 2851 } 2852 2853 static int __ocfs2_rotate_tree_left(struct inode *inode, 2854 handle_t *handle, int orig_credits, 2855 struct ocfs2_path *path, 2856 struct ocfs2_cached_dealloc_ctxt *dealloc, 2857 struct ocfs2_path **empty_extent_path, 2858 struct ocfs2_extent_tree *et) 2859 { 2860 int ret, subtree_root, deleted; 2861 u32 right_cpos; 2862 struct ocfs2_path *left_path = NULL; 2863 struct ocfs2_path *right_path = NULL; 2864 2865 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0]))); 2866 2867 *empty_extent_path = NULL; 2868 2869 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path, 2870 &right_cpos); 2871 if (ret) { 2872 mlog_errno(ret); 2873 goto out; 2874 } 2875 2876 left_path = ocfs2_new_path_from_path(path); 2877 if (!left_path) { 2878 ret = -ENOMEM; 2879 mlog_errno(ret); 2880 goto out; 2881 } 2882 2883 ocfs2_cp_path(left_path, path); 2884 2885 right_path = ocfs2_new_path_from_path(path); 2886 if (!right_path) { 2887 ret = -ENOMEM; 2888 mlog_errno(ret); 2889 goto out; 2890 } 2891 2892 while (right_cpos) { 2893 ret = ocfs2_find_path(inode, right_path, right_cpos); 2894 if (ret) { 2895 mlog_errno(ret); 2896 goto out; 2897 } 2898 2899 subtree_root = ocfs2_find_subtree_root(inode, left_path, 2900 right_path); 2901 2902 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n", 2903 subtree_root, 2904 (unsigned long long) 2905 right_path->p_node[subtree_root].bh->b_blocknr, 2906 right_path->p_tree_depth); 2907 2908 ret = ocfs2_extend_rotate_transaction(handle, subtree_root, 2909 orig_credits, left_path); 2910 if (ret) { 2911 mlog_errno(ret); 2912 goto out; 2913 } 2914 2915 /* 2916 * Caller might still want to make changes to the 2917 * tree root, so re-add it to the journal here. 2918 */ 2919 ret = ocfs2_path_bh_journal_access(handle, inode, 2920 left_path, 0); 2921 if (ret) { 2922 mlog_errno(ret); 2923 goto out; 2924 } 2925 2926 ret = ocfs2_rotate_subtree_left(inode, handle, left_path, 2927 right_path, subtree_root, 2928 dealloc, &deleted, et); 2929 if (ret == -EAGAIN) { 2930 /* 2931 * The rotation has to temporarily stop due to 2932 * the right subtree having an empty 2933 * extent. Pass it back to the caller for a 2934 * fixup. 2935 */ 2936 *empty_extent_path = right_path; 2937 right_path = NULL; 2938 goto out; 2939 } 2940 if (ret) { 2941 mlog_errno(ret); 2942 goto out; 2943 } 2944 2945 /* 2946 * The subtree rotate might have removed records on 2947 * the rightmost edge. If so, then rotation is 2948 * complete. 2949 */ 2950 if (deleted) 2951 break; 2952 2953 ocfs2_mv_path(left_path, right_path); 2954 2955 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 2956 &right_cpos); 2957 if (ret) { 2958 mlog_errno(ret); 2959 goto out; 2960 } 2961 } 2962 2963 out: 2964 ocfs2_free_path(right_path); 2965 ocfs2_free_path(left_path); 2966 2967 return ret; 2968 } 2969 2970 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle, 2971 struct ocfs2_path *path, 2972 struct ocfs2_cached_dealloc_ctxt *dealloc, 2973 struct ocfs2_extent_tree *et) 2974 { 2975 int ret, subtree_index; 2976 u32 cpos; 2977 struct ocfs2_path *left_path = NULL; 2978 struct ocfs2_extent_block *eb; 2979 struct ocfs2_extent_list *el; 2980 2981 2982 ret = ocfs2_et_sanity_check(inode, et); 2983 if (ret) 2984 goto out; 2985 /* 2986 * There's two ways we handle this depending on 2987 * whether path is the only existing one. 2988 */ 2989 ret = ocfs2_extend_rotate_transaction(handle, 0, 2990 handle->h_buffer_credits, 2991 path); 2992 if (ret) { 2993 mlog_errno(ret); 2994 goto out; 2995 } 2996 2997 ret = ocfs2_journal_access_path(inode, handle, path); 2998 if (ret) { 2999 mlog_errno(ret); 3000 goto out; 3001 } 3002 3003 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 3004 if (ret) { 3005 mlog_errno(ret); 3006 goto out; 3007 } 3008 3009 if (cpos) { 3010 /* 3011 * We have a path to the left of this one - it needs 3012 * an update too. 3013 */ 3014 left_path = ocfs2_new_path_from_path(path); 3015 if (!left_path) { 3016 ret = -ENOMEM; 3017 mlog_errno(ret); 3018 goto out; 3019 } 3020 3021 ret = ocfs2_find_path(inode, left_path, cpos); 3022 if (ret) { 3023 mlog_errno(ret); 3024 goto out; 3025 } 3026 3027 ret = ocfs2_journal_access_path(inode, handle, left_path); 3028 if (ret) { 3029 mlog_errno(ret); 3030 goto out; 3031 } 3032 3033 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 3034 3035 ocfs2_unlink_subtree(inode, handle, left_path, path, 3036 subtree_index, dealloc); 3037 ocfs2_update_edge_lengths(inode, handle, left_path); 3038 3039 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data; 3040 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno)); 3041 } else { 3042 /* 3043 * 'path' is also the leftmost path which 3044 * means it must be the only one. This gets 3045 * handled differently because we want to 3046 * revert the inode back to having extents 3047 * in-line. 3048 */ 3049 ocfs2_unlink_path(inode, handle, dealloc, path, 1); 3050 3051 el = et->et_root_el; 3052 el->l_tree_depth = 0; 3053 el->l_next_free_rec = 0; 3054 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3055 3056 ocfs2_et_set_last_eb_blk(et, 0); 3057 } 3058 3059 ocfs2_journal_dirty(handle, path_root_bh(path)); 3060 3061 out: 3062 ocfs2_free_path(left_path); 3063 return ret; 3064 } 3065 3066 /* 3067 * Left rotation of btree records. 3068 * 3069 * In many ways, this is (unsurprisingly) the opposite of right 3070 * rotation. We start at some non-rightmost path containing an empty 3071 * extent in the leaf block. The code works its way to the rightmost 3072 * path by rotating records to the left in every subtree. 3073 * 3074 * This is used by any code which reduces the number of extent records 3075 * in a leaf. After removal, an empty record should be placed in the 3076 * leftmost list position. 3077 * 3078 * This won't handle a length update of the rightmost path records if 3079 * the rightmost tree leaf record is removed so the caller is 3080 * responsible for detecting and correcting that. 3081 */ 3082 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle, 3083 struct ocfs2_path *path, 3084 struct ocfs2_cached_dealloc_ctxt *dealloc, 3085 struct ocfs2_extent_tree *et) 3086 { 3087 int ret, orig_credits = handle->h_buffer_credits; 3088 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL; 3089 struct ocfs2_extent_block *eb; 3090 struct ocfs2_extent_list *el; 3091 3092 el = path_leaf_el(path); 3093 if (!ocfs2_is_empty_extent(&el->l_recs[0])) 3094 return 0; 3095 3096 if (path->p_tree_depth == 0) { 3097 rightmost_no_delete: 3098 /* 3099 * Inline extents. This is trivially handled, so do 3100 * it up front. 3101 */ 3102 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle, 3103 path); 3104 if (ret) 3105 mlog_errno(ret); 3106 goto out; 3107 } 3108 3109 /* 3110 * Handle rightmost branch now. There's several cases: 3111 * 1) simple rotation leaving records in there. That's trivial. 3112 * 2) rotation requiring a branch delete - there's no more 3113 * records left. Two cases of this: 3114 * a) There are branches to the left. 3115 * b) This is also the leftmost (the only) branch. 3116 * 3117 * 1) is handled via ocfs2_rotate_rightmost_leaf_left() 3118 * 2a) we need the left branch so that we can update it with the unlink 3119 * 2b) we need to bring the inode back to inline extents. 3120 */ 3121 3122 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 3123 el = &eb->h_list; 3124 if (eb->h_next_leaf_blk == 0) { 3125 /* 3126 * This gets a bit tricky if we're going to delete the 3127 * rightmost path. Get the other cases out of the way 3128 * 1st. 3129 */ 3130 if (le16_to_cpu(el->l_next_free_rec) > 1) 3131 goto rightmost_no_delete; 3132 3133 if (le16_to_cpu(el->l_next_free_rec) == 0) { 3134 ret = -EIO; 3135 ocfs2_error(inode->i_sb, 3136 "Inode %llu has empty extent block at %llu", 3137 (unsigned long long)OCFS2_I(inode)->ip_blkno, 3138 (unsigned long long)le64_to_cpu(eb->h_blkno)); 3139 goto out; 3140 } 3141 3142 /* 3143 * XXX: The caller can not trust "path" any more after 3144 * this as it will have been deleted. What do we do? 3145 * 3146 * In theory the rotate-for-merge code will never get 3147 * here because it'll always ask for a rotate in a 3148 * nonempty list. 3149 */ 3150 3151 ret = ocfs2_remove_rightmost_path(inode, handle, path, 3152 dealloc, et); 3153 if (ret) 3154 mlog_errno(ret); 3155 goto out; 3156 } 3157 3158 /* 3159 * Now we can loop, remembering the path we get from -EAGAIN 3160 * and restarting from there. 3161 */ 3162 try_rotate: 3163 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path, 3164 dealloc, &restart_path, et); 3165 if (ret && ret != -EAGAIN) { 3166 mlog_errno(ret); 3167 goto out; 3168 } 3169 3170 while (ret == -EAGAIN) { 3171 tmp_path = restart_path; 3172 restart_path = NULL; 3173 3174 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, 3175 tmp_path, dealloc, 3176 &restart_path, et); 3177 if (ret && ret != -EAGAIN) { 3178 mlog_errno(ret); 3179 goto out; 3180 } 3181 3182 ocfs2_free_path(tmp_path); 3183 tmp_path = NULL; 3184 3185 if (ret == 0) 3186 goto try_rotate; 3187 } 3188 3189 out: 3190 ocfs2_free_path(tmp_path); 3191 ocfs2_free_path(restart_path); 3192 return ret; 3193 } 3194 3195 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el, 3196 int index) 3197 { 3198 struct ocfs2_extent_rec *rec = &el->l_recs[index]; 3199 unsigned int size; 3200 3201 if (rec->e_leaf_clusters == 0) { 3202 /* 3203 * We consumed all of the merged-from record. An empty 3204 * extent cannot exist anywhere but the 1st array 3205 * position, so move things over if the merged-from 3206 * record doesn't occupy that position. 3207 * 3208 * This creates a new empty extent so the caller 3209 * should be smart enough to have removed any existing 3210 * ones. 3211 */ 3212 if (index > 0) { 3213 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 3214 size = index * sizeof(struct ocfs2_extent_rec); 3215 memmove(&el->l_recs[1], &el->l_recs[0], size); 3216 } 3217 3218 /* 3219 * Always memset - the caller doesn't check whether it 3220 * created an empty extent, so there could be junk in 3221 * the other fields. 3222 */ 3223 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec)); 3224 } 3225 } 3226 3227 static int ocfs2_get_right_path(struct inode *inode, 3228 struct ocfs2_path *left_path, 3229 struct ocfs2_path **ret_right_path) 3230 { 3231 int ret; 3232 u32 right_cpos; 3233 struct ocfs2_path *right_path = NULL; 3234 struct ocfs2_extent_list *left_el; 3235 3236 *ret_right_path = NULL; 3237 3238 /* This function shouldn't be called for non-trees. */ 3239 BUG_ON(left_path->p_tree_depth == 0); 3240 3241 left_el = path_leaf_el(left_path); 3242 BUG_ON(left_el->l_next_free_rec != left_el->l_count); 3243 3244 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path, 3245 &right_cpos); 3246 if (ret) { 3247 mlog_errno(ret); 3248 goto out; 3249 } 3250 3251 /* This function shouldn't be called for the rightmost leaf. */ 3252 BUG_ON(right_cpos == 0); 3253 3254 right_path = ocfs2_new_path_from_path(left_path); 3255 if (!right_path) { 3256 ret = -ENOMEM; 3257 mlog_errno(ret); 3258 goto out; 3259 } 3260 3261 ret = ocfs2_find_path(inode, right_path, right_cpos); 3262 if (ret) { 3263 mlog_errno(ret); 3264 goto out; 3265 } 3266 3267 *ret_right_path = right_path; 3268 out: 3269 if (ret) 3270 ocfs2_free_path(right_path); 3271 return ret; 3272 } 3273 3274 /* 3275 * Remove split_rec clusters from the record at index and merge them 3276 * onto the beginning of the record "next" to it. 3277 * For index < l_count - 1, the next means the extent rec at index + 1. 3278 * For index == l_count - 1, the "next" means the 1st extent rec of the 3279 * next extent block. 3280 */ 3281 static int ocfs2_merge_rec_right(struct inode *inode, 3282 struct ocfs2_path *left_path, 3283 handle_t *handle, 3284 struct ocfs2_extent_rec *split_rec, 3285 int index) 3286 { 3287 int ret, next_free, i; 3288 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3289 struct ocfs2_extent_rec *left_rec; 3290 struct ocfs2_extent_rec *right_rec; 3291 struct ocfs2_extent_list *right_el; 3292 struct ocfs2_path *right_path = NULL; 3293 int subtree_index = 0; 3294 struct ocfs2_extent_list *el = path_leaf_el(left_path); 3295 struct buffer_head *bh = path_leaf_bh(left_path); 3296 struct buffer_head *root_bh = NULL; 3297 3298 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec)); 3299 left_rec = &el->l_recs[index]; 3300 3301 if (index == le16_to_cpu(el->l_next_free_rec) - 1 && 3302 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) { 3303 /* we meet with a cross extent block merge. */ 3304 ret = ocfs2_get_right_path(inode, left_path, &right_path); 3305 if (ret) { 3306 mlog_errno(ret); 3307 goto out; 3308 } 3309 3310 right_el = path_leaf_el(right_path); 3311 next_free = le16_to_cpu(right_el->l_next_free_rec); 3312 BUG_ON(next_free <= 0); 3313 right_rec = &right_el->l_recs[0]; 3314 if (ocfs2_is_empty_extent(right_rec)) { 3315 BUG_ON(next_free <= 1); 3316 right_rec = &right_el->l_recs[1]; 3317 } 3318 3319 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3320 le16_to_cpu(left_rec->e_leaf_clusters) != 3321 le32_to_cpu(right_rec->e_cpos)); 3322 3323 subtree_index = ocfs2_find_subtree_root(inode, 3324 left_path, right_path); 3325 3326 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3327 handle->h_buffer_credits, 3328 right_path); 3329 if (ret) { 3330 mlog_errno(ret); 3331 goto out; 3332 } 3333 3334 root_bh = left_path->p_node[subtree_index].bh; 3335 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3336 3337 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3338 subtree_index); 3339 if (ret) { 3340 mlog_errno(ret); 3341 goto out; 3342 } 3343 3344 for (i = subtree_index + 1; 3345 i < path_num_items(right_path); i++) { 3346 ret = ocfs2_path_bh_journal_access(handle, inode, 3347 right_path, i); 3348 if (ret) { 3349 mlog_errno(ret); 3350 goto out; 3351 } 3352 3353 ret = ocfs2_path_bh_journal_access(handle, inode, 3354 left_path, i); 3355 if (ret) { 3356 mlog_errno(ret); 3357 goto out; 3358 } 3359 } 3360 3361 } else { 3362 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1); 3363 right_rec = &el->l_recs[index + 1]; 3364 } 3365 3366 ret = ocfs2_path_bh_journal_access(handle, inode, left_path, 3367 path_num_items(left_path) - 1); 3368 if (ret) { 3369 mlog_errno(ret); 3370 goto out; 3371 } 3372 3373 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters); 3374 3375 le32_add_cpu(&right_rec->e_cpos, -split_clusters); 3376 le64_add_cpu(&right_rec->e_blkno, 3377 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3378 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters); 3379 3380 ocfs2_cleanup_merge(el, index); 3381 3382 ret = ocfs2_journal_dirty(handle, bh); 3383 if (ret) 3384 mlog_errno(ret); 3385 3386 if (right_path) { 3387 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path)); 3388 if (ret) 3389 mlog_errno(ret); 3390 3391 ocfs2_complete_edge_insert(inode, handle, left_path, 3392 right_path, subtree_index); 3393 } 3394 out: 3395 if (right_path) 3396 ocfs2_free_path(right_path); 3397 return ret; 3398 } 3399 3400 static int ocfs2_get_left_path(struct inode *inode, 3401 struct ocfs2_path *right_path, 3402 struct ocfs2_path **ret_left_path) 3403 { 3404 int ret; 3405 u32 left_cpos; 3406 struct ocfs2_path *left_path = NULL; 3407 3408 *ret_left_path = NULL; 3409 3410 /* This function shouldn't be called for non-trees. */ 3411 BUG_ON(right_path->p_tree_depth == 0); 3412 3413 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 3414 right_path, &left_cpos); 3415 if (ret) { 3416 mlog_errno(ret); 3417 goto out; 3418 } 3419 3420 /* This function shouldn't be called for the leftmost leaf. */ 3421 BUG_ON(left_cpos == 0); 3422 3423 left_path = ocfs2_new_path_from_path(right_path); 3424 if (!left_path) { 3425 ret = -ENOMEM; 3426 mlog_errno(ret); 3427 goto out; 3428 } 3429 3430 ret = ocfs2_find_path(inode, left_path, left_cpos); 3431 if (ret) { 3432 mlog_errno(ret); 3433 goto out; 3434 } 3435 3436 *ret_left_path = left_path; 3437 out: 3438 if (ret) 3439 ocfs2_free_path(left_path); 3440 return ret; 3441 } 3442 3443 /* 3444 * Remove split_rec clusters from the record at index and merge them 3445 * onto the tail of the record "before" it. 3446 * For index > 0, the "before" means the extent rec at index - 1. 3447 * 3448 * For index == 0, the "before" means the last record of the previous 3449 * extent block. And there is also a situation that we may need to 3450 * remove the rightmost leaf extent block in the right_path and change 3451 * the right path to indicate the new rightmost path. 3452 */ 3453 static int ocfs2_merge_rec_left(struct inode *inode, 3454 struct ocfs2_path *right_path, 3455 handle_t *handle, 3456 struct ocfs2_extent_rec *split_rec, 3457 struct ocfs2_cached_dealloc_ctxt *dealloc, 3458 struct ocfs2_extent_tree *et, 3459 int index) 3460 { 3461 int ret, i, subtree_index = 0, has_empty_extent = 0; 3462 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters); 3463 struct ocfs2_extent_rec *left_rec; 3464 struct ocfs2_extent_rec *right_rec; 3465 struct ocfs2_extent_list *el = path_leaf_el(right_path); 3466 struct buffer_head *bh = path_leaf_bh(right_path); 3467 struct buffer_head *root_bh = NULL; 3468 struct ocfs2_path *left_path = NULL; 3469 struct ocfs2_extent_list *left_el; 3470 3471 BUG_ON(index < 0); 3472 3473 right_rec = &el->l_recs[index]; 3474 if (index == 0) { 3475 /* we meet with a cross extent block merge. */ 3476 ret = ocfs2_get_left_path(inode, right_path, &left_path); 3477 if (ret) { 3478 mlog_errno(ret); 3479 goto out; 3480 } 3481 3482 left_el = path_leaf_el(left_path); 3483 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) != 3484 le16_to_cpu(left_el->l_count)); 3485 3486 left_rec = &left_el->l_recs[ 3487 le16_to_cpu(left_el->l_next_free_rec) - 1]; 3488 BUG_ON(le32_to_cpu(left_rec->e_cpos) + 3489 le16_to_cpu(left_rec->e_leaf_clusters) != 3490 le32_to_cpu(split_rec->e_cpos)); 3491 3492 subtree_index = ocfs2_find_subtree_root(inode, 3493 left_path, right_path); 3494 3495 ret = ocfs2_extend_rotate_transaction(handle, subtree_index, 3496 handle->h_buffer_credits, 3497 left_path); 3498 if (ret) { 3499 mlog_errno(ret); 3500 goto out; 3501 } 3502 3503 root_bh = left_path->p_node[subtree_index].bh; 3504 BUG_ON(root_bh != right_path->p_node[subtree_index].bh); 3505 3506 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3507 subtree_index); 3508 if (ret) { 3509 mlog_errno(ret); 3510 goto out; 3511 } 3512 3513 for (i = subtree_index + 1; 3514 i < path_num_items(right_path); i++) { 3515 ret = ocfs2_path_bh_journal_access(handle, inode, 3516 right_path, i); 3517 if (ret) { 3518 mlog_errno(ret); 3519 goto out; 3520 } 3521 3522 ret = ocfs2_path_bh_journal_access(handle, inode, 3523 left_path, i); 3524 if (ret) { 3525 mlog_errno(ret); 3526 goto out; 3527 } 3528 } 3529 } else { 3530 left_rec = &el->l_recs[index - 1]; 3531 if (ocfs2_is_empty_extent(&el->l_recs[0])) 3532 has_empty_extent = 1; 3533 } 3534 3535 ret = ocfs2_path_bh_journal_access(handle, inode, right_path, 3536 path_num_items(right_path) - 1); 3537 if (ret) { 3538 mlog_errno(ret); 3539 goto out; 3540 } 3541 3542 if (has_empty_extent && index == 1) { 3543 /* 3544 * The easy case - we can just plop the record right in. 3545 */ 3546 *left_rec = *split_rec; 3547 3548 has_empty_extent = 0; 3549 } else 3550 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters); 3551 3552 le32_add_cpu(&right_rec->e_cpos, split_clusters); 3553 le64_add_cpu(&right_rec->e_blkno, 3554 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters)); 3555 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters); 3556 3557 ocfs2_cleanup_merge(el, index); 3558 3559 ret = ocfs2_journal_dirty(handle, bh); 3560 if (ret) 3561 mlog_errno(ret); 3562 3563 if (left_path) { 3564 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path)); 3565 if (ret) 3566 mlog_errno(ret); 3567 3568 /* 3569 * In the situation that the right_rec is empty and the extent 3570 * block is empty also, ocfs2_complete_edge_insert can't handle 3571 * it and we need to delete the right extent block. 3572 */ 3573 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 && 3574 le16_to_cpu(el->l_next_free_rec) == 1) { 3575 3576 ret = ocfs2_remove_rightmost_path(inode, handle, 3577 right_path, 3578 dealloc, et); 3579 if (ret) { 3580 mlog_errno(ret); 3581 goto out; 3582 } 3583 3584 /* Now the rightmost extent block has been deleted. 3585 * So we use the new rightmost path. 3586 */ 3587 ocfs2_mv_path(right_path, left_path); 3588 left_path = NULL; 3589 } else 3590 ocfs2_complete_edge_insert(inode, handle, left_path, 3591 right_path, subtree_index); 3592 } 3593 out: 3594 if (left_path) 3595 ocfs2_free_path(left_path); 3596 return ret; 3597 } 3598 3599 static int ocfs2_try_to_merge_extent(struct inode *inode, 3600 handle_t *handle, 3601 struct ocfs2_path *path, 3602 int split_index, 3603 struct ocfs2_extent_rec *split_rec, 3604 struct ocfs2_cached_dealloc_ctxt *dealloc, 3605 struct ocfs2_merge_ctxt *ctxt, 3606 struct ocfs2_extent_tree *et) 3607 3608 { 3609 int ret = 0; 3610 struct ocfs2_extent_list *el = path_leaf_el(path); 3611 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 3612 3613 BUG_ON(ctxt->c_contig_type == CONTIG_NONE); 3614 3615 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) { 3616 /* 3617 * The merge code will need to create an empty 3618 * extent to take the place of the newly 3619 * emptied slot. Remove any pre-existing empty 3620 * extents - having more than one in a leaf is 3621 * illegal. 3622 */ 3623 ret = ocfs2_rotate_tree_left(inode, handle, path, 3624 dealloc, et); 3625 if (ret) { 3626 mlog_errno(ret); 3627 goto out; 3628 } 3629 split_index--; 3630 rec = &el->l_recs[split_index]; 3631 } 3632 3633 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) { 3634 /* 3635 * Left-right contig implies this. 3636 */ 3637 BUG_ON(!ctxt->c_split_covers_rec); 3638 3639 /* 3640 * Since the leftright insert always covers the entire 3641 * extent, this call will delete the insert record 3642 * entirely, resulting in an empty extent record added to 3643 * the extent block. 3644 * 3645 * Since the adding of an empty extent shifts 3646 * everything back to the right, there's no need to 3647 * update split_index here. 3648 * 3649 * When the split_index is zero, we need to merge it to the 3650 * prevoius extent block. It is more efficient and easier 3651 * if we do merge_right first and merge_left later. 3652 */ 3653 ret = ocfs2_merge_rec_right(inode, path, 3654 handle, split_rec, 3655 split_index); 3656 if (ret) { 3657 mlog_errno(ret); 3658 goto out; 3659 } 3660 3661 /* 3662 * We can only get this from logic error above. 3663 */ 3664 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0])); 3665 3666 /* The merge left us with an empty extent, remove it. */ 3667 ret = ocfs2_rotate_tree_left(inode, handle, path, 3668 dealloc, et); 3669 if (ret) { 3670 mlog_errno(ret); 3671 goto out; 3672 } 3673 3674 rec = &el->l_recs[split_index]; 3675 3676 /* 3677 * Note that we don't pass split_rec here on purpose - 3678 * we've merged it into the rec already. 3679 */ 3680 ret = ocfs2_merge_rec_left(inode, path, 3681 handle, rec, 3682 dealloc, et, 3683 split_index); 3684 3685 if (ret) { 3686 mlog_errno(ret); 3687 goto out; 3688 } 3689 3690 ret = ocfs2_rotate_tree_left(inode, handle, path, 3691 dealloc, et); 3692 /* 3693 * Error from this last rotate is not critical, so 3694 * print but don't bubble it up. 3695 */ 3696 if (ret) 3697 mlog_errno(ret); 3698 ret = 0; 3699 } else { 3700 /* 3701 * Merge a record to the left or right. 3702 * 3703 * 'contig_type' is relative to the existing record, 3704 * so for example, if we're "right contig", it's to 3705 * the record on the left (hence the left merge). 3706 */ 3707 if (ctxt->c_contig_type == CONTIG_RIGHT) { 3708 ret = ocfs2_merge_rec_left(inode, 3709 path, 3710 handle, split_rec, 3711 dealloc, et, 3712 split_index); 3713 if (ret) { 3714 mlog_errno(ret); 3715 goto out; 3716 } 3717 } else { 3718 ret = ocfs2_merge_rec_right(inode, 3719 path, 3720 handle, split_rec, 3721 split_index); 3722 if (ret) { 3723 mlog_errno(ret); 3724 goto out; 3725 } 3726 } 3727 3728 if (ctxt->c_split_covers_rec) { 3729 /* 3730 * The merge may have left an empty extent in 3731 * our leaf. Try to rotate it away. 3732 */ 3733 ret = ocfs2_rotate_tree_left(inode, handle, path, 3734 dealloc, et); 3735 if (ret) 3736 mlog_errno(ret); 3737 ret = 0; 3738 } 3739 } 3740 3741 out: 3742 return ret; 3743 } 3744 3745 static void ocfs2_subtract_from_rec(struct super_block *sb, 3746 enum ocfs2_split_type split, 3747 struct ocfs2_extent_rec *rec, 3748 struct ocfs2_extent_rec *split_rec) 3749 { 3750 u64 len_blocks; 3751 3752 len_blocks = ocfs2_clusters_to_blocks(sb, 3753 le16_to_cpu(split_rec->e_leaf_clusters)); 3754 3755 if (split == SPLIT_LEFT) { 3756 /* 3757 * Region is on the left edge of the existing 3758 * record. 3759 */ 3760 le32_add_cpu(&rec->e_cpos, 3761 le16_to_cpu(split_rec->e_leaf_clusters)); 3762 le64_add_cpu(&rec->e_blkno, len_blocks); 3763 le16_add_cpu(&rec->e_leaf_clusters, 3764 -le16_to_cpu(split_rec->e_leaf_clusters)); 3765 } else { 3766 /* 3767 * Region is on the right edge of the existing 3768 * record. 3769 */ 3770 le16_add_cpu(&rec->e_leaf_clusters, 3771 -le16_to_cpu(split_rec->e_leaf_clusters)); 3772 } 3773 } 3774 3775 /* 3776 * Do the final bits of extent record insertion at the target leaf 3777 * list. If this leaf is part of an allocation tree, it is assumed 3778 * that the tree above has been prepared. 3779 */ 3780 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec, 3781 struct ocfs2_extent_list *el, 3782 struct ocfs2_insert_type *insert, 3783 struct inode *inode) 3784 { 3785 int i = insert->ins_contig_index; 3786 unsigned int range; 3787 struct ocfs2_extent_rec *rec; 3788 3789 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 3790 3791 if (insert->ins_split != SPLIT_NONE) { 3792 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos)); 3793 BUG_ON(i == -1); 3794 rec = &el->l_recs[i]; 3795 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec, 3796 insert_rec); 3797 goto rotate; 3798 } 3799 3800 /* 3801 * Contiguous insert - either left or right. 3802 */ 3803 if (insert->ins_contig != CONTIG_NONE) { 3804 rec = &el->l_recs[i]; 3805 if (insert->ins_contig == CONTIG_LEFT) { 3806 rec->e_blkno = insert_rec->e_blkno; 3807 rec->e_cpos = insert_rec->e_cpos; 3808 } 3809 le16_add_cpu(&rec->e_leaf_clusters, 3810 le16_to_cpu(insert_rec->e_leaf_clusters)); 3811 return; 3812 } 3813 3814 /* 3815 * Handle insert into an empty leaf. 3816 */ 3817 if (le16_to_cpu(el->l_next_free_rec) == 0 || 3818 ((le16_to_cpu(el->l_next_free_rec) == 1) && 3819 ocfs2_is_empty_extent(&el->l_recs[0]))) { 3820 el->l_recs[0] = *insert_rec; 3821 el->l_next_free_rec = cpu_to_le16(1); 3822 return; 3823 } 3824 3825 /* 3826 * Appending insert. 3827 */ 3828 if (insert->ins_appending == APPEND_TAIL) { 3829 i = le16_to_cpu(el->l_next_free_rec) - 1; 3830 rec = &el->l_recs[i]; 3831 range = le32_to_cpu(rec->e_cpos) 3832 + le16_to_cpu(rec->e_leaf_clusters); 3833 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range); 3834 3835 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >= 3836 le16_to_cpu(el->l_count), 3837 "inode %lu, depth %u, count %u, next free %u, " 3838 "rec.cpos %u, rec.clusters %u, " 3839 "insert.cpos %u, insert.clusters %u\n", 3840 inode->i_ino, 3841 le16_to_cpu(el->l_tree_depth), 3842 le16_to_cpu(el->l_count), 3843 le16_to_cpu(el->l_next_free_rec), 3844 le32_to_cpu(el->l_recs[i].e_cpos), 3845 le16_to_cpu(el->l_recs[i].e_leaf_clusters), 3846 le32_to_cpu(insert_rec->e_cpos), 3847 le16_to_cpu(insert_rec->e_leaf_clusters)); 3848 i++; 3849 el->l_recs[i] = *insert_rec; 3850 le16_add_cpu(&el->l_next_free_rec, 1); 3851 return; 3852 } 3853 3854 rotate: 3855 /* 3856 * Ok, we have to rotate. 3857 * 3858 * At this point, it is safe to assume that inserting into an 3859 * empty leaf and appending to a leaf have both been handled 3860 * above. 3861 * 3862 * This leaf needs to have space, either by the empty 1st 3863 * extent record, or by virtue of an l_next_rec < l_count. 3864 */ 3865 ocfs2_rotate_leaf(el, insert_rec); 3866 } 3867 3868 static void ocfs2_adjust_rightmost_records(struct inode *inode, 3869 handle_t *handle, 3870 struct ocfs2_path *path, 3871 struct ocfs2_extent_rec *insert_rec) 3872 { 3873 int ret, i, next_free; 3874 struct buffer_head *bh; 3875 struct ocfs2_extent_list *el; 3876 struct ocfs2_extent_rec *rec; 3877 3878 /* 3879 * Update everything except the leaf block. 3880 */ 3881 for (i = 0; i < path->p_tree_depth; i++) { 3882 bh = path->p_node[i].bh; 3883 el = path->p_node[i].el; 3884 3885 next_free = le16_to_cpu(el->l_next_free_rec); 3886 if (next_free == 0) { 3887 ocfs2_error(inode->i_sb, 3888 "Dinode %llu has a bad extent list", 3889 (unsigned long long)OCFS2_I(inode)->ip_blkno); 3890 ret = -EIO; 3891 return; 3892 } 3893 3894 rec = &el->l_recs[next_free - 1]; 3895 3896 rec->e_int_clusters = insert_rec->e_cpos; 3897 le32_add_cpu(&rec->e_int_clusters, 3898 le16_to_cpu(insert_rec->e_leaf_clusters)); 3899 le32_add_cpu(&rec->e_int_clusters, 3900 -le32_to_cpu(rec->e_cpos)); 3901 3902 ret = ocfs2_journal_dirty(handle, bh); 3903 if (ret) 3904 mlog_errno(ret); 3905 3906 } 3907 } 3908 3909 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle, 3910 struct ocfs2_extent_rec *insert_rec, 3911 struct ocfs2_path *right_path, 3912 struct ocfs2_path **ret_left_path) 3913 { 3914 int ret, next_free; 3915 struct ocfs2_extent_list *el; 3916 struct ocfs2_path *left_path = NULL; 3917 3918 *ret_left_path = NULL; 3919 3920 /* 3921 * This shouldn't happen for non-trees. The extent rec cluster 3922 * count manipulation below only works for interior nodes. 3923 */ 3924 BUG_ON(right_path->p_tree_depth == 0); 3925 3926 /* 3927 * If our appending insert is at the leftmost edge of a leaf, 3928 * then we might need to update the rightmost records of the 3929 * neighboring path. 3930 */ 3931 el = path_leaf_el(right_path); 3932 next_free = le16_to_cpu(el->l_next_free_rec); 3933 if (next_free == 0 || 3934 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) { 3935 u32 left_cpos; 3936 3937 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, 3938 &left_cpos); 3939 if (ret) { 3940 mlog_errno(ret); 3941 goto out; 3942 } 3943 3944 mlog(0, "Append may need a left path update. cpos: %u, " 3945 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos), 3946 left_cpos); 3947 3948 /* 3949 * No need to worry if the append is already in the 3950 * leftmost leaf. 3951 */ 3952 if (left_cpos) { 3953 left_path = ocfs2_new_path_from_path(right_path); 3954 if (!left_path) { 3955 ret = -ENOMEM; 3956 mlog_errno(ret); 3957 goto out; 3958 } 3959 3960 ret = ocfs2_find_path(inode, left_path, left_cpos); 3961 if (ret) { 3962 mlog_errno(ret); 3963 goto out; 3964 } 3965 3966 /* 3967 * ocfs2_insert_path() will pass the left_path to the 3968 * journal for us. 3969 */ 3970 } 3971 } 3972 3973 ret = ocfs2_journal_access_path(inode, handle, right_path); 3974 if (ret) { 3975 mlog_errno(ret); 3976 goto out; 3977 } 3978 3979 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec); 3980 3981 *ret_left_path = left_path; 3982 ret = 0; 3983 out: 3984 if (ret != 0) 3985 ocfs2_free_path(left_path); 3986 3987 return ret; 3988 } 3989 3990 static void ocfs2_split_record(struct inode *inode, 3991 struct ocfs2_path *left_path, 3992 struct ocfs2_path *right_path, 3993 struct ocfs2_extent_rec *split_rec, 3994 enum ocfs2_split_type split) 3995 { 3996 int index; 3997 u32 cpos = le32_to_cpu(split_rec->e_cpos); 3998 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el; 3999 struct ocfs2_extent_rec *rec, *tmprec; 4000 4001 right_el = path_leaf_el(right_path); 4002 if (left_path) 4003 left_el = path_leaf_el(left_path); 4004 4005 el = right_el; 4006 insert_el = right_el; 4007 index = ocfs2_search_extent_list(el, cpos); 4008 if (index != -1) { 4009 if (index == 0 && left_path) { 4010 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0])); 4011 4012 /* 4013 * This typically means that the record 4014 * started in the left path but moved to the 4015 * right as a result of rotation. We either 4016 * move the existing record to the left, or we 4017 * do the later insert there. 4018 * 4019 * In this case, the left path should always 4020 * exist as the rotate code will have passed 4021 * it back for a post-insert update. 4022 */ 4023 4024 if (split == SPLIT_LEFT) { 4025 /* 4026 * It's a left split. Since we know 4027 * that the rotate code gave us an 4028 * empty extent in the left path, we 4029 * can just do the insert there. 4030 */ 4031 insert_el = left_el; 4032 } else { 4033 /* 4034 * Right split - we have to move the 4035 * existing record over to the left 4036 * leaf. The insert will be into the 4037 * newly created empty extent in the 4038 * right leaf. 4039 */ 4040 tmprec = &right_el->l_recs[index]; 4041 ocfs2_rotate_leaf(left_el, tmprec); 4042 el = left_el; 4043 4044 memset(tmprec, 0, sizeof(*tmprec)); 4045 index = ocfs2_search_extent_list(left_el, cpos); 4046 BUG_ON(index == -1); 4047 } 4048 } 4049 } else { 4050 BUG_ON(!left_path); 4051 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0])); 4052 /* 4053 * Left path is easy - we can just allow the insert to 4054 * happen. 4055 */ 4056 el = left_el; 4057 insert_el = left_el; 4058 index = ocfs2_search_extent_list(el, cpos); 4059 BUG_ON(index == -1); 4060 } 4061 4062 rec = &el->l_recs[index]; 4063 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec); 4064 ocfs2_rotate_leaf(insert_el, split_rec); 4065 } 4066 4067 /* 4068 * This function only does inserts on an allocation b-tree. For tree 4069 * depth = 0, ocfs2_insert_at_leaf() is called directly. 4070 * 4071 * right_path is the path we want to do the actual insert 4072 * in. left_path should only be passed in if we need to update that 4073 * portion of the tree after an edge insert. 4074 */ 4075 static int ocfs2_insert_path(struct inode *inode, 4076 handle_t *handle, 4077 struct ocfs2_path *left_path, 4078 struct ocfs2_path *right_path, 4079 struct ocfs2_extent_rec *insert_rec, 4080 struct ocfs2_insert_type *insert) 4081 { 4082 int ret, subtree_index; 4083 struct buffer_head *leaf_bh = path_leaf_bh(right_path); 4084 4085 if (left_path) { 4086 int credits = handle->h_buffer_credits; 4087 4088 /* 4089 * There's a chance that left_path got passed back to 4090 * us without being accounted for in the 4091 * journal. Extend our transaction here to be sure we 4092 * can change those blocks. 4093 */ 4094 credits += left_path->p_tree_depth; 4095 4096 ret = ocfs2_extend_trans(handle, credits); 4097 if (ret < 0) { 4098 mlog_errno(ret); 4099 goto out; 4100 } 4101 4102 ret = ocfs2_journal_access_path(inode, handle, left_path); 4103 if (ret < 0) { 4104 mlog_errno(ret); 4105 goto out; 4106 } 4107 } 4108 4109 /* 4110 * Pass both paths to the journal. The majority of inserts 4111 * will be touching all components anyway. 4112 */ 4113 ret = ocfs2_journal_access_path(inode, handle, right_path); 4114 if (ret < 0) { 4115 mlog_errno(ret); 4116 goto out; 4117 } 4118 4119 if (insert->ins_split != SPLIT_NONE) { 4120 /* 4121 * We could call ocfs2_insert_at_leaf() for some types 4122 * of splits, but it's easier to just let one separate 4123 * function sort it all out. 4124 */ 4125 ocfs2_split_record(inode, left_path, right_path, 4126 insert_rec, insert->ins_split); 4127 4128 /* 4129 * Split might have modified either leaf and we don't 4130 * have a guarantee that the later edge insert will 4131 * dirty this for us. 4132 */ 4133 if (left_path) 4134 ret = ocfs2_journal_dirty(handle, 4135 path_leaf_bh(left_path)); 4136 if (ret) 4137 mlog_errno(ret); 4138 } else 4139 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path), 4140 insert, inode); 4141 4142 ret = ocfs2_journal_dirty(handle, leaf_bh); 4143 if (ret) 4144 mlog_errno(ret); 4145 4146 if (left_path) { 4147 /* 4148 * The rotate code has indicated that we need to fix 4149 * up portions of the tree after the insert. 4150 * 4151 * XXX: Should we extend the transaction here? 4152 */ 4153 subtree_index = ocfs2_find_subtree_root(inode, left_path, 4154 right_path); 4155 ocfs2_complete_edge_insert(inode, handle, left_path, 4156 right_path, subtree_index); 4157 } 4158 4159 ret = 0; 4160 out: 4161 return ret; 4162 } 4163 4164 static int ocfs2_do_insert_extent(struct inode *inode, 4165 handle_t *handle, 4166 struct ocfs2_extent_tree *et, 4167 struct ocfs2_extent_rec *insert_rec, 4168 struct ocfs2_insert_type *type) 4169 { 4170 int ret, rotate = 0; 4171 u32 cpos; 4172 struct ocfs2_path *right_path = NULL; 4173 struct ocfs2_path *left_path = NULL; 4174 struct ocfs2_extent_list *el; 4175 4176 el = et->et_root_el; 4177 4178 ret = ocfs2_et_root_journal_access(handle, inode, et, 4179 OCFS2_JOURNAL_ACCESS_WRITE); 4180 if (ret) { 4181 mlog_errno(ret); 4182 goto out; 4183 } 4184 4185 if (le16_to_cpu(el->l_tree_depth) == 0) { 4186 ocfs2_insert_at_leaf(insert_rec, el, type, inode); 4187 goto out_update_clusters; 4188 } 4189 4190 right_path = ocfs2_new_path_from_et(et); 4191 if (!right_path) { 4192 ret = -ENOMEM; 4193 mlog_errno(ret); 4194 goto out; 4195 } 4196 4197 /* 4198 * Determine the path to start with. Rotations need the 4199 * rightmost path, everything else can go directly to the 4200 * target leaf. 4201 */ 4202 cpos = le32_to_cpu(insert_rec->e_cpos); 4203 if (type->ins_appending == APPEND_NONE && 4204 type->ins_contig == CONTIG_NONE) { 4205 rotate = 1; 4206 cpos = UINT_MAX; 4207 } 4208 4209 ret = ocfs2_find_path(inode, right_path, cpos); 4210 if (ret) { 4211 mlog_errno(ret); 4212 goto out; 4213 } 4214 4215 /* 4216 * Rotations and appends need special treatment - they modify 4217 * parts of the tree's above them. 4218 * 4219 * Both might pass back a path immediate to the left of the 4220 * one being inserted to. This will be cause 4221 * ocfs2_insert_path() to modify the rightmost records of 4222 * left_path to account for an edge insert. 4223 * 4224 * XXX: When modifying this code, keep in mind that an insert 4225 * can wind up skipping both of these two special cases... 4226 */ 4227 if (rotate) { 4228 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split, 4229 le32_to_cpu(insert_rec->e_cpos), 4230 right_path, &left_path); 4231 if (ret) { 4232 mlog_errno(ret); 4233 goto out; 4234 } 4235 4236 /* 4237 * ocfs2_rotate_tree_right() might have extended the 4238 * transaction without re-journaling our tree root. 4239 */ 4240 ret = ocfs2_et_root_journal_access(handle, inode, et, 4241 OCFS2_JOURNAL_ACCESS_WRITE); 4242 if (ret) { 4243 mlog_errno(ret); 4244 goto out; 4245 } 4246 } else if (type->ins_appending == APPEND_TAIL 4247 && type->ins_contig != CONTIG_LEFT) { 4248 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec, 4249 right_path, &left_path); 4250 if (ret) { 4251 mlog_errno(ret); 4252 goto out; 4253 } 4254 } 4255 4256 ret = ocfs2_insert_path(inode, handle, left_path, right_path, 4257 insert_rec, type); 4258 if (ret) { 4259 mlog_errno(ret); 4260 goto out; 4261 } 4262 4263 out_update_clusters: 4264 if (type->ins_split == SPLIT_NONE) 4265 ocfs2_et_update_clusters(inode, et, 4266 le16_to_cpu(insert_rec->e_leaf_clusters)); 4267 4268 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 4269 if (ret) 4270 mlog_errno(ret); 4271 4272 out: 4273 ocfs2_free_path(left_path); 4274 ocfs2_free_path(right_path); 4275 4276 return ret; 4277 } 4278 4279 static enum ocfs2_contig_type 4280 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path, 4281 struct ocfs2_extent_list *el, int index, 4282 struct ocfs2_extent_rec *split_rec) 4283 { 4284 int status; 4285 enum ocfs2_contig_type ret = CONTIG_NONE; 4286 u32 left_cpos, right_cpos; 4287 struct ocfs2_extent_rec *rec = NULL; 4288 struct ocfs2_extent_list *new_el; 4289 struct ocfs2_path *left_path = NULL, *right_path = NULL; 4290 struct buffer_head *bh; 4291 struct ocfs2_extent_block *eb; 4292 4293 if (index > 0) { 4294 rec = &el->l_recs[index - 1]; 4295 } else if (path->p_tree_depth > 0) { 4296 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 4297 path, &left_cpos); 4298 if (status) 4299 goto out; 4300 4301 if (left_cpos != 0) { 4302 left_path = ocfs2_new_path_from_path(path); 4303 if (!left_path) 4304 goto out; 4305 4306 status = ocfs2_find_path(inode, left_path, left_cpos); 4307 if (status) 4308 goto out; 4309 4310 new_el = path_leaf_el(left_path); 4311 4312 if (le16_to_cpu(new_el->l_next_free_rec) != 4313 le16_to_cpu(new_el->l_count)) { 4314 bh = path_leaf_bh(left_path); 4315 eb = (struct ocfs2_extent_block *)bh->b_data; 4316 ocfs2_error(inode->i_sb, 4317 "Extent block #%llu has an " 4318 "invalid l_next_free_rec of " 4319 "%d. It should have " 4320 "matched the l_count of %d", 4321 (unsigned long long)le64_to_cpu(eb->h_blkno), 4322 le16_to_cpu(new_el->l_next_free_rec), 4323 le16_to_cpu(new_el->l_count)); 4324 status = -EINVAL; 4325 goto out; 4326 } 4327 rec = &new_el->l_recs[ 4328 le16_to_cpu(new_el->l_next_free_rec) - 1]; 4329 } 4330 } 4331 4332 /* 4333 * We're careful to check for an empty extent record here - 4334 * the merge code will know what to do if it sees one. 4335 */ 4336 if (rec) { 4337 if (index == 1 && ocfs2_is_empty_extent(rec)) { 4338 if (split_rec->e_cpos == el->l_recs[index].e_cpos) 4339 ret = CONTIG_RIGHT; 4340 } else { 4341 ret = ocfs2_extent_contig(inode, rec, split_rec); 4342 } 4343 } 4344 4345 rec = NULL; 4346 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) 4347 rec = &el->l_recs[index + 1]; 4348 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) && 4349 path->p_tree_depth > 0) { 4350 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb, 4351 path, &right_cpos); 4352 if (status) 4353 goto out; 4354 4355 if (right_cpos == 0) 4356 goto out; 4357 4358 right_path = ocfs2_new_path_from_path(path); 4359 if (!right_path) 4360 goto out; 4361 4362 status = ocfs2_find_path(inode, right_path, right_cpos); 4363 if (status) 4364 goto out; 4365 4366 new_el = path_leaf_el(right_path); 4367 rec = &new_el->l_recs[0]; 4368 if (ocfs2_is_empty_extent(rec)) { 4369 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) { 4370 bh = path_leaf_bh(right_path); 4371 eb = (struct ocfs2_extent_block *)bh->b_data; 4372 ocfs2_error(inode->i_sb, 4373 "Extent block #%llu has an " 4374 "invalid l_next_free_rec of %d", 4375 (unsigned long long)le64_to_cpu(eb->h_blkno), 4376 le16_to_cpu(new_el->l_next_free_rec)); 4377 status = -EINVAL; 4378 goto out; 4379 } 4380 rec = &new_el->l_recs[1]; 4381 } 4382 } 4383 4384 if (rec) { 4385 enum ocfs2_contig_type contig_type; 4386 4387 contig_type = ocfs2_extent_contig(inode, rec, split_rec); 4388 4389 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT) 4390 ret = CONTIG_LEFTRIGHT; 4391 else if (ret == CONTIG_NONE) 4392 ret = contig_type; 4393 } 4394 4395 out: 4396 if (left_path) 4397 ocfs2_free_path(left_path); 4398 if (right_path) 4399 ocfs2_free_path(right_path); 4400 4401 return ret; 4402 } 4403 4404 static void ocfs2_figure_contig_type(struct inode *inode, 4405 struct ocfs2_insert_type *insert, 4406 struct ocfs2_extent_list *el, 4407 struct ocfs2_extent_rec *insert_rec, 4408 struct ocfs2_extent_tree *et) 4409 { 4410 int i; 4411 enum ocfs2_contig_type contig_type = CONTIG_NONE; 4412 4413 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4414 4415 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) { 4416 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i], 4417 insert_rec); 4418 if (contig_type != CONTIG_NONE) { 4419 insert->ins_contig_index = i; 4420 break; 4421 } 4422 } 4423 insert->ins_contig = contig_type; 4424 4425 if (insert->ins_contig != CONTIG_NONE) { 4426 struct ocfs2_extent_rec *rec = 4427 &el->l_recs[insert->ins_contig_index]; 4428 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) + 4429 le16_to_cpu(insert_rec->e_leaf_clusters); 4430 4431 /* 4432 * Caller might want us to limit the size of extents, don't 4433 * calculate contiguousness if we might exceed that limit. 4434 */ 4435 if (et->et_max_leaf_clusters && 4436 (len > et->et_max_leaf_clusters)) 4437 insert->ins_contig = CONTIG_NONE; 4438 } 4439 } 4440 4441 /* 4442 * This should only be called against the righmost leaf extent list. 4443 * 4444 * ocfs2_figure_appending_type() will figure out whether we'll have to 4445 * insert at the tail of the rightmost leaf. 4446 * 4447 * This should also work against the root extent list for tree's with 0 4448 * depth. If we consider the root extent list to be the rightmost leaf node 4449 * then the logic here makes sense. 4450 */ 4451 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert, 4452 struct ocfs2_extent_list *el, 4453 struct ocfs2_extent_rec *insert_rec) 4454 { 4455 int i; 4456 u32 cpos = le32_to_cpu(insert_rec->e_cpos); 4457 struct ocfs2_extent_rec *rec; 4458 4459 insert->ins_appending = APPEND_NONE; 4460 4461 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0); 4462 4463 if (!el->l_next_free_rec) 4464 goto set_tail_append; 4465 4466 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 4467 /* Were all records empty? */ 4468 if (le16_to_cpu(el->l_next_free_rec) == 1) 4469 goto set_tail_append; 4470 } 4471 4472 i = le16_to_cpu(el->l_next_free_rec) - 1; 4473 rec = &el->l_recs[i]; 4474 4475 if (cpos >= 4476 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters))) 4477 goto set_tail_append; 4478 4479 return; 4480 4481 set_tail_append: 4482 insert->ins_appending = APPEND_TAIL; 4483 } 4484 4485 /* 4486 * Helper function called at the begining of an insert. 4487 * 4488 * This computes a few things that are commonly used in the process of 4489 * inserting into the btree: 4490 * - Whether the new extent is contiguous with an existing one. 4491 * - The current tree depth. 4492 * - Whether the insert is an appending one. 4493 * - The total # of free records in the tree. 4494 * 4495 * All of the information is stored on the ocfs2_insert_type 4496 * structure. 4497 */ 4498 static int ocfs2_figure_insert_type(struct inode *inode, 4499 struct ocfs2_extent_tree *et, 4500 struct buffer_head **last_eb_bh, 4501 struct ocfs2_extent_rec *insert_rec, 4502 int *free_records, 4503 struct ocfs2_insert_type *insert) 4504 { 4505 int ret; 4506 struct ocfs2_extent_block *eb; 4507 struct ocfs2_extent_list *el; 4508 struct ocfs2_path *path = NULL; 4509 struct buffer_head *bh = NULL; 4510 4511 insert->ins_split = SPLIT_NONE; 4512 4513 el = et->et_root_el; 4514 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth); 4515 4516 if (el->l_tree_depth) { 4517 /* 4518 * If we have tree depth, we read in the 4519 * rightmost extent block ahead of time as 4520 * ocfs2_figure_insert_type() and ocfs2_add_branch() 4521 * may want it later. 4522 */ 4523 ret = ocfs2_read_extent_block(inode, 4524 ocfs2_et_get_last_eb_blk(et), 4525 &bh); 4526 if (ret) { 4527 mlog_exit(ret); 4528 goto out; 4529 } 4530 eb = (struct ocfs2_extent_block *) bh->b_data; 4531 el = &eb->h_list; 4532 } 4533 4534 /* 4535 * Unless we have a contiguous insert, we'll need to know if 4536 * there is room left in our allocation tree for another 4537 * extent record. 4538 * 4539 * XXX: This test is simplistic, we can search for empty 4540 * extent records too. 4541 */ 4542 *free_records = le16_to_cpu(el->l_count) - 4543 le16_to_cpu(el->l_next_free_rec); 4544 4545 if (!insert->ins_tree_depth) { 4546 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4547 ocfs2_figure_appending_type(insert, el, insert_rec); 4548 return 0; 4549 } 4550 4551 path = ocfs2_new_path_from_et(et); 4552 if (!path) { 4553 ret = -ENOMEM; 4554 mlog_errno(ret); 4555 goto out; 4556 } 4557 4558 /* 4559 * In the case that we're inserting past what the tree 4560 * currently accounts for, ocfs2_find_path() will return for 4561 * us the rightmost tree path. This is accounted for below in 4562 * the appending code. 4563 */ 4564 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos)); 4565 if (ret) { 4566 mlog_errno(ret); 4567 goto out; 4568 } 4569 4570 el = path_leaf_el(path); 4571 4572 /* 4573 * Now that we have the path, there's two things we want to determine: 4574 * 1) Contiguousness (also set contig_index if this is so) 4575 * 4576 * 2) Are we doing an append? We can trivially break this up 4577 * into two types of appends: simple record append, or a 4578 * rotate inside the tail leaf. 4579 */ 4580 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et); 4581 4582 /* 4583 * The insert code isn't quite ready to deal with all cases of 4584 * left contiguousness. Specifically, if it's an insert into 4585 * the 1st record in a leaf, it will require the adjustment of 4586 * cluster count on the last record of the path directly to it's 4587 * left. For now, just catch that case and fool the layers 4588 * above us. This works just fine for tree_depth == 0, which 4589 * is why we allow that above. 4590 */ 4591 if (insert->ins_contig == CONTIG_LEFT && 4592 insert->ins_contig_index == 0) 4593 insert->ins_contig = CONTIG_NONE; 4594 4595 /* 4596 * Ok, so we can simply compare against last_eb to figure out 4597 * whether the path doesn't exist. This will only happen in 4598 * the case that we're doing a tail append, so maybe we can 4599 * take advantage of that information somehow. 4600 */ 4601 if (ocfs2_et_get_last_eb_blk(et) == 4602 path_leaf_bh(path)->b_blocknr) { 4603 /* 4604 * Ok, ocfs2_find_path() returned us the rightmost 4605 * tree path. This might be an appending insert. There are 4606 * two cases: 4607 * 1) We're doing a true append at the tail: 4608 * -This might even be off the end of the leaf 4609 * 2) We're "appending" by rotating in the tail 4610 */ 4611 ocfs2_figure_appending_type(insert, el, insert_rec); 4612 } 4613 4614 out: 4615 ocfs2_free_path(path); 4616 4617 if (ret == 0) 4618 *last_eb_bh = bh; 4619 else 4620 brelse(bh); 4621 return ret; 4622 } 4623 4624 /* 4625 * Insert an extent into an inode btree. 4626 * 4627 * The caller needs to update fe->i_clusters 4628 */ 4629 int ocfs2_insert_extent(struct ocfs2_super *osb, 4630 handle_t *handle, 4631 struct inode *inode, 4632 struct ocfs2_extent_tree *et, 4633 u32 cpos, 4634 u64 start_blk, 4635 u32 new_clusters, 4636 u8 flags, 4637 struct ocfs2_alloc_context *meta_ac) 4638 { 4639 int status; 4640 int uninitialized_var(free_records); 4641 struct buffer_head *last_eb_bh = NULL; 4642 struct ocfs2_insert_type insert = {0, }; 4643 struct ocfs2_extent_rec rec; 4644 4645 mlog(0, "add %u clusters at position %u to inode %llu\n", 4646 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4647 4648 memset(&rec, 0, sizeof(rec)); 4649 rec.e_cpos = cpu_to_le32(cpos); 4650 rec.e_blkno = cpu_to_le64(start_blk); 4651 rec.e_leaf_clusters = cpu_to_le16(new_clusters); 4652 rec.e_flags = flags; 4653 status = ocfs2_et_insert_check(inode, et, &rec); 4654 if (status) { 4655 mlog_errno(status); 4656 goto bail; 4657 } 4658 4659 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec, 4660 &free_records, &insert); 4661 if (status < 0) { 4662 mlog_errno(status); 4663 goto bail; 4664 } 4665 4666 mlog(0, "Insert.appending: %u, Insert.Contig: %u, " 4667 "Insert.contig_index: %d, Insert.free_records: %d, " 4668 "Insert.tree_depth: %d\n", 4669 insert.ins_appending, insert.ins_contig, insert.ins_contig_index, 4670 free_records, insert.ins_tree_depth); 4671 4672 if (insert.ins_contig == CONTIG_NONE && free_records == 0) { 4673 status = ocfs2_grow_tree(inode, handle, et, 4674 &insert.ins_tree_depth, &last_eb_bh, 4675 meta_ac); 4676 if (status) { 4677 mlog_errno(status); 4678 goto bail; 4679 } 4680 } 4681 4682 /* Finally, we can add clusters. This might rotate the tree for us. */ 4683 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert); 4684 if (status < 0) 4685 mlog_errno(status); 4686 else if (et->et_ops == &ocfs2_dinode_et_ops) 4687 ocfs2_extent_map_insert_rec(inode, &rec); 4688 4689 bail: 4690 brelse(last_eb_bh); 4691 4692 mlog_exit(status); 4693 return status; 4694 } 4695 4696 /* 4697 * Allcate and add clusters into the extent b-tree. 4698 * The new clusters(clusters_to_add) will be inserted at logical_offset. 4699 * The extent b-tree's root is specified by et, and 4700 * it is not limited to the file storage. Any extent tree can use this 4701 * function if it implements the proper ocfs2_extent_tree. 4702 */ 4703 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb, 4704 struct inode *inode, 4705 u32 *logical_offset, 4706 u32 clusters_to_add, 4707 int mark_unwritten, 4708 struct ocfs2_extent_tree *et, 4709 handle_t *handle, 4710 struct ocfs2_alloc_context *data_ac, 4711 struct ocfs2_alloc_context *meta_ac, 4712 enum ocfs2_alloc_restarted *reason_ret) 4713 { 4714 int status = 0; 4715 int free_extents; 4716 enum ocfs2_alloc_restarted reason = RESTART_NONE; 4717 u32 bit_off, num_bits; 4718 u64 block; 4719 u8 flags = 0; 4720 4721 BUG_ON(!clusters_to_add); 4722 4723 if (mark_unwritten) 4724 flags = OCFS2_EXT_UNWRITTEN; 4725 4726 free_extents = ocfs2_num_free_extents(osb, inode, et); 4727 if (free_extents < 0) { 4728 status = free_extents; 4729 mlog_errno(status); 4730 goto leave; 4731 } 4732 4733 /* there are two cases which could cause us to EAGAIN in the 4734 * we-need-more-metadata case: 4735 * 1) we haven't reserved *any* 4736 * 2) we are so fragmented, we've needed to add metadata too 4737 * many times. */ 4738 if (!free_extents && !meta_ac) { 4739 mlog(0, "we haven't reserved any metadata!\n"); 4740 status = -EAGAIN; 4741 reason = RESTART_META; 4742 goto leave; 4743 } else if ((!free_extents) 4744 && (ocfs2_alloc_context_bits_left(meta_ac) 4745 < ocfs2_extend_meta_needed(et->et_root_el))) { 4746 mlog(0, "filesystem is really fragmented...\n"); 4747 status = -EAGAIN; 4748 reason = RESTART_META; 4749 goto leave; 4750 } 4751 4752 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1, 4753 clusters_to_add, &bit_off, &num_bits); 4754 if (status < 0) { 4755 if (status != -ENOSPC) 4756 mlog_errno(status); 4757 goto leave; 4758 } 4759 4760 BUG_ON(num_bits > clusters_to_add); 4761 4762 /* reserve our write early -- insert_extent may update the tree root */ 4763 status = ocfs2_et_root_journal_access(handle, inode, et, 4764 OCFS2_JOURNAL_ACCESS_WRITE); 4765 if (status < 0) { 4766 mlog_errno(status); 4767 goto leave; 4768 } 4769 4770 block = ocfs2_clusters_to_blocks(osb->sb, bit_off); 4771 mlog(0, "Allocating %u clusters at block %u for inode %llu\n", 4772 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno); 4773 status = ocfs2_insert_extent(osb, handle, inode, et, 4774 *logical_offset, block, 4775 num_bits, flags, meta_ac); 4776 if (status < 0) { 4777 mlog_errno(status); 4778 goto leave; 4779 } 4780 4781 status = ocfs2_journal_dirty(handle, et->et_root_bh); 4782 if (status < 0) { 4783 mlog_errno(status); 4784 goto leave; 4785 } 4786 4787 clusters_to_add -= num_bits; 4788 *logical_offset += num_bits; 4789 4790 if (clusters_to_add) { 4791 mlog(0, "need to alloc once more, wanted = %u\n", 4792 clusters_to_add); 4793 status = -EAGAIN; 4794 reason = RESTART_TRANS; 4795 } 4796 4797 leave: 4798 mlog_exit(status); 4799 if (reason_ret) 4800 *reason_ret = reason; 4801 return status; 4802 } 4803 4804 static void ocfs2_make_right_split_rec(struct super_block *sb, 4805 struct ocfs2_extent_rec *split_rec, 4806 u32 cpos, 4807 struct ocfs2_extent_rec *rec) 4808 { 4809 u32 rec_cpos = le32_to_cpu(rec->e_cpos); 4810 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters); 4811 4812 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec)); 4813 4814 split_rec->e_cpos = cpu_to_le32(cpos); 4815 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos); 4816 4817 split_rec->e_blkno = rec->e_blkno; 4818 le64_add_cpu(&split_rec->e_blkno, 4819 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos)); 4820 4821 split_rec->e_flags = rec->e_flags; 4822 } 4823 4824 static int ocfs2_split_and_insert(struct inode *inode, 4825 handle_t *handle, 4826 struct ocfs2_path *path, 4827 struct ocfs2_extent_tree *et, 4828 struct buffer_head **last_eb_bh, 4829 int split_index, 4830 struct ocfs2_extent_rec *orig_split_rec, 4831 struct ocfs2_alloc_context *meta_ac) 4832 { 4833 int ret = 0, depth; 4834 unsigned int insert_range, rec_range, do_leftright = 0; 4835 struct ocfs2_extent_rec tmprec; 4836 struct ocfs2_extent_list *rightmost_el; 4837 struct ocfs2_extent_rec rec; 4838 struct ocfs2_extent_rec split_rec = *orig_split_rec; 4839 struct ocfs2_insert_type insert; 4840 struct ocfs2_extent_block *eb; 4841 4842 leftright: 4843 /* 4844 * Store a copy of the record on the stack - it might move 4845 * around as the tree is manipulated below. 4846 */ 4847 rec = path_leaf_el(path)->l_recs[split_index]; 4848 4849 rightmost_el = et->et_root_el; 4850 4851 depth = le16_to_cpu(rightmost_el->l_tree_depth); 4852 if (depth) { 4853 BUG_ON(!(*last_eb_bh)); 4854 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data; 4855 rightmost_el = &eb->h_list; 4856 } 4857 4858 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 4859 le16_to_cpu(rightmost_el->l_count)) { 4860 ret = ocfs2_grow_tree(inode, handle, et, 4861 &depth, last_eb_bh, meta_ac); 4862 if (ret) { 4863 mlog_errno(ret); 4864 goto out; 4865 } 4866 } 4867 4868 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 4869 insert.ins_appending = APPEND_NONE; 4870 insert.ins_contig = CONTIG_NONE; 4871 insert.ins_tree_depth = depth; 4872 4873 insert_range = le32_to_cpu(split_rec.e_cpos) + 4874 le16_to_cpu(split_rec.e_leaf_clusters); 4875 rec_range = le32_to_cpu(rec.e_cpos) + 4876 le16_to_cpu(rec.e_leaf_clusters); 4877 4878 if (split_rec.e_cpos == rec.e_cpos) { 4879 insert.ins_split = SPLIT_LEFT; 4880 } else if (insert_range == rec_range) { 4881 insert.ins_split = SPLIT_RIGHT; 4882 } else { 4883 /* 4884 * Left/right split. We fake this as a right split 4885 * first and then make a second pass as a left split. 4886 */ 4887 insert.ins_split = SPLIT_RIGHT; 4888 4889 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range, 4890 &rec); 4891 4892 split_rec = tmprec; 4893 4894 BUG_ON(do_leftright); 4895 do_leftright = 1; 4896 } 4897 4898 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 4899 if (ret) { 4900 mlog_errno(ret); 4901 goto out; 4902 } 4903 4904 if (do_leftright == 1) { 4905 u32 cpos; 4906 struct ocfs2_extent_list *el; 4907 4908 do_leftright++; 4909 split_rec = *orig_split_rec; 4910 4911 ocfs2_reinit_path(path, 1); 4912 4913 cpos = le32_to_cpu(split_rec.e_cpos); 4914 ret = ocfs2_find_path(inode, path, cpos); 4915 if (ret) { 4916 mlog_errno(ret); 4917 goto out; 4918 } 4919 4920 el = path_leaf_el(path); 4921 split_index = ocfs2_search_extent_list(el, cpos); 4922 goto leftright; 4923 } 4924 out: 4925 4926 return ret; 4927 } 4928 4929 static int ocfs2_replace_extent_rec(struct inode *inode, 4930 handle_t *handle, 4931 struct ocfs2_path *path, 4932 struct ocfs2_extent_list *el, 4933 int split_index, 4934 struct ocfs2_extent_rec *split_rec) 4935 { 4936 int ret; 4937 4938 ret = ocfs2_path_bh_journal_access(handle, inode, path, 4939 path_num_items(path) - 1); 4940 if (ret) { 4941 mlog_errno(ret); 4942 goto out; 4943 } 4944 4945 el->l_recs[split_index] = *split_rec; 4946 4947 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 4948 out: 4949 return ret; 4950 } 4951 4952 /* 4953 * Mark part or all of the extent record at split_index in the leaf 4954 * pointed to by path as written. This removes the unwritten 4955 * extent flag. 4956 * 4957 * Care is taken to handle contiguousness so as to not grow the tree. 4958 * 4959 * meta_ac is not strictly necessary - we only truly need it if growth 4960 * of the tree is required. All other cases will degrade into a less 4961 * optimal tree layout. 4962 * 4963 * last_eb_bh should be the rightmost leaf block for any extent 4964 * btree. Since a split may grow the tree or a merge might shrink it, 4965 * the caller cannot trust the contents of that buffer after this call. 4966 * 4967 * This code is optimized for readability - several passes might be 4968 * made over certain portions of the tree. All of those blocks will 4969 * have been brought into cache (and pinned via the journal), so the 4970 * extra overhead is not expressed in terms of disk reads. 4971 */ 4972 static int __ocfs2_mark_extent_written(struct inode *inode, 4973 struct ocfs2_extent_tree *et, 4974 handle_t *handle, 4975 struct ocfs2_path *path, 4976 int split_index, 4977 struct ocfs2_extent_rec *split_rec, 4978 struct ocfs2_alloc_context *meta_ac, 4979 struct ocfs2_cached_dealloc_ctxt *dealloc) 4980 { 4981 int ret = 0; 4982 struct ocfs2_extent_list *el = path_leaf_el(path); 4983 struct buffer_head *last_eb_bh = NULL; 4984 struct ocfs2_extent_rec *rec = &el->l_recs[split_index]; 4985 struct ocfs2_merge_ctxt ctxt; 4986 struct ocfs2_extent_list *rightmost_el; 4987 4988 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) { 4989 ret = -EIO; 4990 mlog_errno(ret); 4991 goto out; 4992 } 4993 4994 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) || 4995 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) < 4996 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) { 4997 ret = -EIO; 4998 mlog_errno(ret); 4999 goto out; 5000 } 5001 5002 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el, 5003 split_index, 5004 split_rec); 5005 5006 /* 5007 * The core merge / split code wants to know how much room is 5008 * left in this inodes allocation tree, so we pass the 5009 * rightmost extent list. 5010 */ 5011 if (path->p_tree_depth) { 5012 struct ocfs2_extent_block *eb; 5013 5014 ret = ocfs2_read_extent_block(inode, 5015 ocfs2_et_get_last_eb_blk(et), 5016 &last_eb_bh); 5017 if (ret) { 5018 mlog_exit(ret); 5019 goto out; 5020 } 5021 5022 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5023 rightmost_el = &eb->h_list; 5024 } else 5025 rightmost_el = path_root_el(path); 5026 5027 if (rec->e_cpos == split_rec->e_cpos && 5028 rec->e_leaf_clusters == split_rec->e_leaf_clusters) 5029 ctxt.c_split_covers_rec = 1; 5030 else 5031 ctxt.c_split_covers_rec = 0; 5032 5033 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]); 5034 5035 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n", 5036 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent, 5037 ctxt.c_split_covers_rec); 5038 5039 if (ctxt.c_contig_type == CONTIG_NONE) { 5040 if (ctxt.c_split_covers_rec) 5041 ret = ocfs2_replace_extent_rec(inode, handle, 5042 path, el, 5043 split_index, split_rec); 5044 else 5045 ret = ocfs2_split_and_insert(inode, handle, path, et, 5046 &last_eb_bh, split_index, 5047 split_rec, meta_ac); 5048 if (ret) 5049 mlog_errno(ret); 5050 } else { 5051 ret = ocfs2_try_to_merge_extent(inode, handle, path, 5052 split_index, split_rec, 5053 dealloc, &ctxt, et); 5054 if (ret) 5055 mlog_errno(ret); 5056 } 5057 5058 out: 5059 brelse(last_eb_bh); 5060 return ret; 5061 } 5062 5063 /* 5064 * Mark the already-existing extent at cpos as written for len clusters. 5065 * 5066 * If the existing extent is larger than the request, initiate a 5067 * split. An attempt will be made at merging with adjacent extents. 5068 * 5069 * The caller is responsible for passing down meta_ac if we'll need it. 5070 */ 5071 int ocfs2_mark_extent_written(struct inode *inode, 5072 struct ocfs2_extent_tree *et, 5073 handle_t *handle, u32 cpos, u32 len, u32 phys, 5074 struct ocfs2_alloc_context *meta_ac, 5075 struct ocfs2_cached_dealloc_ctxt *dealloc) 5076 { 5077 int ret, index; 5078 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys); 5079 struct ocfs2_extent_rec split_rec; 5080 struct ocfs2_path *left_path = NULL; 5081 struct ocfs2_extent_list *el; 5082 5083 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n", 5084 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno); 5085 5086 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) { 5087 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents " 5088 "that are being written to, but the feature bit " 5089 "is not set in the super block.", 5090 (unsigned long long)OCFS2_I(inode)->ip_blkno); 5091 ret = -EROFS; 5092 goto out; 5093 } 5094 5095 /* 5096 * XXX: This should be fixed up so that we just re-insert the 5097 * next extent records. 5098 * 5099 * XXX: This is a hack on the extent tree, maybe it should be 5100 * an op? 5101 */ 5102 if (et->et_ops == &ocfs2_dinode_et_ops) 5103 ocfs2_extent_map_trunc(inode, 0); 5104 5105 left_path = ocfs2_new_path_from_et(et); 5106 if (!left_path) { 5107 ret = -ENOMEM; 5108 mlog_errno(ret); 5109 goto out; 5110 } 5111 5112 ret = ocfs2_find_path(inode, left_path, cpos); 5113 if (ret) { 5114 mlog_errno(ret); 5115 goto out; 5116 } 5117 el = path_leaf_el(left_path); 5118 5119 index = ocfs2_search_extent_list(el, cpos); 5120 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5121 ocfs2_error(inode->i_sb, 5122 "Inode %llu has an extent at cpos %u which can no " 5123 "longer be found.\n", 5124 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5125 ret = -EROFS; 5126 goto out; 5127 } 5128 5129 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec)); 5130 split_rec.e_cpos = cpu_to_le32(cpos); 5131 split_rec.e_leaf_clusters = cpu_to_le16(len); 5132 split_rec.e_blkno = cpu_to_le64(start_blkno); 5133 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags; 5134 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN; 5135 5136 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path, 5137 index, &split_rec, meta_ac, 5138 dealloc); 5139 if (ret) 5140 mlog_errno(ret); 5141 5142 out: 5143 ocfs2_free_path(left_path); 5144 return ret; 5145 } 5146 5147 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et, 5148 handle_t *handle, struct ocfs2_path *path, 5149 int index, u32 new_range, 5150 struct ocfs2_alloc_context *meta_ac) 5151 { 5152 int ret, depth, credits = handle->h_buffer_credits; 5153 struct buffer_head *last_eb_bh = NULL; 5154 struct ocfs2_extent_block *eb; 5155 struct ocfs2_extent_list *rightmost_el, *el; 5156 struct ocfs2_extent_rec split_rec; 5157 struct ocfs2_extent_rec *rec; 5158 struct ocfs2_insert_type insert; 5159 5160 /* 5161 * Setup the record to split before we grow the tree. 5162 */ 5163 el = path_leaf_el(path); 5164 rec = &el->l_recs[index]; 5165 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec); 5166 5167 depth = path->p_tree_depth; 5168 if (depth > 0) { 5169 ret = ocfs2_read_extent_block(inode, 5170 ocfs2_et_get_last_eb_blk(et), 5171 &last_eb_bh); 5172 if (ret < 0) { 5173 mlog_errno(ret); 5174 goto out; 5175 } 5176 5177 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 5178 rightmost_el = &eb->h_list; 5179 } else 5180 rightmost_el = path_leaf_el(path); 5181 5182 credits += path->p_tree_depth + 5183 ocfs2_extend_meta_needed(et->et_root_el); 5184 ret = ocfs2_extend_trans(handle, credits); 5185 if (ret) { 5186 mlog_errno(ret); 5187 goto out; 5188 } 5189 5190 if (le16_to_cpu(rightmost_el->l_next_free_rec) == 5191 le16_to_cpu(rightmost_el->l_count)) { 5192 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh, 5193 meta_ac); 5194 if (ret) { 5195 mlog_errno(ret); 5196 goto out; 5197 } 5198 } 5199 5200 memset(&insert, 0, sizeof(struct ocfs2_insert_type)); 5201 insert.ins_appending = APPEND_NONE; 5202 insert.ins_contig = CONTIG_NONE; 5203 insert.ins_split = SPLIT_RIGHT; 5204 insert.ins_tree_depth = depth; 5205 5206 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert); 5207 if (ret) 5208 mlog_errno(ret); 5209 5210 out: 5211 brelse(last_eb_bh); 5212 return ret; 5213 } 5214 5215 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle, 5216 struct ocfs2_path *path, int index, 5217 struct ocfs2_cached_dealloc_ctxt *dealloc, 5218 u32 cpos, u32 len, 5219 struct ocfs2_extent_tree *et) 5220 { 5221 int ret; 5222 u32 left_cpos, rec_range, trunc_range; 5223 int wants_rotate = 0, is_rightmost_tree_rec = 0; 5224 struct super_block *sb = inode->i_sb; 5225 struct ocfs2_path *left_path = NULL; 5226 struct ocfs2_extent_list *el = path_leaf_el(path); 5227 struct ocfs2_extent_rec *rec; 5228 struct ocfs2_extent_block *eb; 5229 5230 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) { 5231 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5232 if (ret) { 5233 mlog_errno(ret); 5234 goto out; 5235 } 5236 5237 index--; 5238 } 5239 5240 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) && 5241 path->p_tree_depth) { 5242 /* 5243 * Check whether this is the rightmost tree record. If 5244 * we remove all of this record or part of its right 5245 * edge then an update of the record lengths above it 5246 * will be required. 5247 */ 5248 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data; 5249 if (eb->h_next_leaf_blk == 0) 5250 is_rightmost_tree_rec = 1; 5251 } 5252 5253 rec = &el->l_recs[index]; 5254 if (index == 0 && path->p_tree_depth && 5255 le32_to_cpu(rec->e_cpos) == cpos) { 5256 /* 5257 * Changing the leftmost offset (via partial or whole 5258 * record truncate) of an interior (or rightmost) path 5259 * means we have to update the subtree that is formed 5260 * by this leaf and the one to it's left. 5261 * 5262 * There are two cases we can skip: 5263 * 1) Path is the leftmost one in our inode tree. 5264 * 2) The leaf is rightmost and will be empty after 5265 * we remove the extent record - the rotate code 5266 * knows how to update the newly formed edge. 5267 */ 5268 5269 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, 5270 &left_cpos); 5271 if (ret) { 5272 mlog_errno(ret); 5273 goto out; 5274 } 5275 5276 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) { 5277 left_path = ocfs2_new_path_from_path(path); 5278 if (!left_path) { 5279 ret = -ENOMEM; 5280 mlog_errno(ret); 5281 goto out; 5282 } 5283 5284 ret = ocfs2_find_path(inode, left_path, left_cpos); 5285 if (ret) { 5286 mlog_errno(ret); 5287 goto out; 5288 } 5289 } 5290 } 5291 5292 ret = ocfs2_extend_rotate_transaction(handle, 0, 5293 handle->h_buffer_credits, 5294 path); 5295 if (ret) { 5296 mlog_errno(ret); 5297 goto out; 5298 } 5299 5300 ret = ocfs2_journal_access_path(inode, handle, path); 5301 if (ret) { 5302 mlog_errno(ret); 5303 goto out; 5304 } 5305 5306 ret = ocfs2_journal_access_path(inode, handle, left_path); 5307 if (ret) { 5308 mlog_errno(ret); 5309 goto out; 5310 } 5311 5312 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5313 trunc_range = cpos + len; 5314 5315 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) { 5316 int next_free; 5317 5318 memset(rec, 0, sizeof(*rec)); 5319 ocfs2_cleanup_merge(el, index); 5320 wants_rotate = 1; 5321 5322 next_free = le16_to_cpu(el->l_next_free_rec); 5323 if (is_rightmost_tree_rec && next_free > 1) { 5324 /* 5325 * We skip the edge update if this path will 5326 * be deleted by the rotate code. 5327 */ 5328 rec = &el->l_recs[next_free - 1]; 5329 ocfs2_adjust_rightmost_records(inode, handle, path, 5330 rec); 5331 } 5332 } else if (le32_to_cpu(rec->e_cpos) == cpos) { 5333 /* Remove leftmost portion of the record. */ 5334 le32_add_cpu(&rec->e_cpos, len); 5335 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len)); 5336 le16_add_cpu(&rec->e_leaf_clusters, -len); 5337 } else if (rec_range == trunc_range) { 5338 /* Remove rightmost portion of the record */ 5339 le16_add_cpu(&rec->e_leaf_clusters, -len); 5340 if (is_rightmost_tree_rec) 5341 ocfs2_adjust_rightmost_records(inode, handle, path, rec); 5342 } else { 5343 /* Caller should have trapped this. */ 5344 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) " 5345 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, 5346 le32_to_cpu(rec->e_cpos), 5347 le16_to_cpu(rec->e_leaf_clusters), cpos, len); 5348 BUG(); 5349 } 5350 5351 if (left_path) { 5352 int subtree_index; 5353 5354 subtree_index = ocfs2_find_subtree_root(inode, left_path, path); 5355 ocfs2_complete_edge_insert(inode, handle, left_path, path, 5356 subtree_index); 5357 } 5358 5359 ocfs2_journal_dirty(handle, path_leaf_bh(path)); 5360 5361 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et); 5362 if (ret) { 5363 mlog_errno(ret); 5364 goto out; 5365 } 5366 5367 out: 5368 ocfs2_free_path(left_path); 5369 return ret; 5370 } 5371 5372 int ocfs2_remove_extent(struct inode *inode, 5373 struct ocfs2_extent_tree *et, 5374 u32 cpos, u32 len, handle_t *handle, 5375 struct ocfs2_alloc_context *meta_ac, 5376 struct ocfs2_cached_dealloc_ctxt *dealloc) 5377 { 5378 int ret, index; 5379 u32 rec_range, trunc_range; 5380 struct ocfs2_extent_rec *rec; 5381 struct ocfs2_extent_list *el; 5382 struct ocfs2_path *path = NULL; 5383 5384 ocfs2_extent_map_trunc(inode, 0); 5385 5386 path = ocfs2_new_path_from_et(et); 5387 if (!path) { 5388 ret = -ENOMEM; 5389 mlog_errno(ret); 5390 goto out; 5391 } 5392 5393 ret = ocfs2_find_path(inode, path, cpos); 5394 if (ret) { 5395 mlog_errno(ret); 5396 goto out; 5397 } 5398 5399 el = path_leaf_el(path); 5400 index = ocfs2_search_extent_list(el, cpos); 5401 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5402 ocfs2_error(inode->i_sb, 5403 "Inode %llu has an extent at cpos %u which can no " 5404 "longer be found.\n", 5405 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 5406 ret = -EROFS; 5407 goto out; 5408 } 5409 5410 /* 5411 * We have 3 cases of extent removal: 5412 * 1) Range covers the entire extent rec 5413 * 2) Range begins or ends on one edge of the extent rec 5414 * 3) Range is in the middle of the extent rec (no shared edges) 5415 * 5416 * For case 1 we remove the extent rec and left rotate to 5417 * fill the hole. 5418 * 5419 * For case 2 we just shrink the existing extent rec, with a 5420 * tree update if the shrinking edge is also the edge of an 5421 * extent block. 5422 * 5423 * For case 3 we do a right split to turn the extent rec into 5424 * something case 2 can handle. 5425 */ 5426 rec = &el->l_recs[index]; 5427 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 5428 trunc_range = cpos + len; 5429 5430 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range); 5431 5432 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d " 5433 "(cpos %u, len %u)\n", 5434 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index, 5435 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); 5436 5437 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) { 5438 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5439 cpos, len, et); 5440 if (ret) { 5441 mlog_errno(ret); 5442 goto out; 5443 } 5444 } else { 5445 ret = ocfs2_split_tree(inode, et, handle, path, index, 5446 trunc_range, meta_ac); 5447 if (ret) { 5448 mlog_errno(ret); 5449 goto out; 5450 } 5451 5452 /* 5453 * The split could have manipulated the tree enough to 5454 * move the record location, so we have to look for it again. 5455 */ 5456 ocfs2_reinit_path(path, 1); 5457 5458 ret = ocfs2_find_path(inode, path, cpos); 5459 if (ret) { 5460 mlog_errno(ret); 5461 goto out; 5462 } 5463 5464 el = path_leaf_el(path); 5465 index = ocfs2_search_extent_list(el, cpos); 5466 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) { 5467 ocfs2_error(inode->i_sb, 5468 "Inode %llu: split at cpos %u lost record.", 5469 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5470 cpos); 5471 ret = -EROFS; 5472 goto out; 5473 } 5474 5475 /* 5476 * Double check our values here. If anything is fishy, 5477 * it's easier to catch it at the top level. 5478 */ 5479 rec = &el->l_recs[index]; 5480 rec_range = le32_to_cpu(rec->e_cpos) + 5481 ocfs2_rec_clusters(el, rec); 5482 if (rec_range != trunc_range) { 5483 ocfs2_error(inode->i_sb, 5484 "Inode %llu: error after split at cpos %u" 5485 "trunc len %u, existing record is (%u,%u)", 5486 (unsigned long long)OCFS2_I(inode)->ip_blkno, 5487 cpos, len, le32_to_cpu(rec->e_cpos), 5488 ocfs2_rec_clusters(el, rec)); 5489 ret = -EROFS; 5490 goto out; 5491 } 5492 5493 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc, 5494 cpos, len, et); 5495 if (ret) { 5496 mlog_errno(ret); 5497 goto out; 5498 } 5499 } 5500 5501 out: 5502 ocfs2_free_path(path); 5503 return ret; 5504 } 5505 5506 int ocfs2_remove_btree_range(struct inode *inode, 5507 struct ocfs2_extent_tree *et, 5508 u32 cpos, u32 phys_cpos, u32 len, 5509 struct ocfs2_cached_dealloc_ctxt *dealloc) 5510 { 5511 int ret; 5512 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); 5513 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 5514 struct inode *tl_inode = osb->osb_tl_inode; 5515 handle_t *handle; 5516 struct ocfs2_alloc_context *meta_ac = NULL; 5517 5518 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac); 5519 if (ret) { 5520 mlog_errno(ret); 5521 return ret; 5522 } 5523 5524 mutex_lock(&tl_inode->i_mutex); 5525 5526 if (ocfs2_truncate_log_needs_flush(osb)) { 5527 ret = __ocfs2_flush_truncate_log(osb); 5528 if (ret < 0) { 5529 mlog_errno(ret); 5530 goto out; 5531 } 5532 } 5533 5534 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); 5535 if (IS_ERR(handle)) { 5536 ret = PTR_ERR(handle); 5537 mlog_errno(ret); 5538 goto out; 5539 } 5540 5541 ret = ocfs2_et_root_journal_access(handle, inode, et, 5542 OCFS2_JOURNAL_ACCESS_WRITE); 5543 if (ret) { 5544 mlog_errno(ret); 5545 goto out; 5546 } 5547 5548 vfs_dq_free_space_nodirty(inode, 5549 ocfs2_clusters_to_bytes(inode->i_sb, len)); 5550 5551 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac, 5552 dealloc); 5553 if (ret) { 5554 mlog_errno(ret); 5555 goto out_commit; 5556 } 5557 5558 ocfs2_et_update_clusters(inode, et, -len); 5559 5560 ret = ocfs2_journal_dirty(handle, et->et_root_bh); 5561 if (ret) { 5562 mlog_errno(ret); 5563 goto out_commit; 5564 } 5565 5566 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len); 5567 if (ret) 5568 mlog_errno(ret); 5569 5570 out_commit: 5571 ocfs2_commit_trans(osb, handle); 5572 out: 5573 mutex_unlock(&tl_inode->i_mutex); 5574 5575 if (meta_ac) 5576 ocfs2_free_alloc_context(meta_ac); 5577 5578 return ret; 5579 } 5580 5581 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb) 5582 { 5583 struct buffer_head *tl_bh = osb->osb_tl_bh; 5584 struct ocfs2_dinode *di; 5585 struct ocfs2_truncate_log *tl; 5586 5587 di = (struct ocfs2_dinode *) tl_bh->b_data; 5588 tl = &di->id2.i_dealloc; 5589 5590 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count), 5591 "slot %d, invalid truncate log parameters: used = " 5592 "%u, count = %u\n", osb->slot_num, 5593 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count)); 5594 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count); 5595 } 5596 5597 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl, 5598 unsigned int new_start) 5599 { 5600 unsigned int tail_index; 5601 unsigned int current_tail; 5602 5603 /* No records, nothing to coalesce */ 5604 if (!le16_to_cpu(tl->tl_used)) 5605 return 0; 5606 5607 tail_index = le16_to_cpu(tl->tl_used) - 1; 5608 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start); 5609 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters); 5610 5611 return current_tail == new_start; 5612 } 5613 5614 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 5615 handle_t *handle, 5616 u64 start_blk, 5617 unsigned int num_clusters) 5618 { 5619 int status, index; 5620 unsigned int start_cluster, tl_count; 5621 struct inode *tl_inode = osb->osb_tl_inode; 5622 struct buffer_head *tl_bh = osb->osb_tl_bh; 5623 struct ocfs2_dinode *di; 5624 struct ocfs2_truncate_log *tl; 5625 5626 mlog_entry("start_blk = %llu, num_clusters = %u\n", 5627 (unsigned long long)start_blk, num_clusters); 5628 5629 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5630 5631 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk); 5632 5633 di = (struct ocfs2_dinode *) tl_bh->b_data; 5634 5635 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5636 * by the underlying call to ocfs2_read_inode_block(), so any 5637 * corruption is a code bug */ 5638 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5639 5640 tl = &di->id2.i_dealloc; 5641 tl_count = le16_to_cpu(tl->tl_count); 5642 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) || 5643 tl_count == 0, 5644 "Truncate record count on #%llu invalid " 5645 "wanted %u, actual %u\n", 5646 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, 5647 ocfs2_truncate_recs_per_inode(osb->sb), 5648 le16_to_cpu(tl->tl_count)); 5649 5650 /* Caller should have known to flush before calling us. */ 5651 index = le16_to_cpu(tl->tl_used); 5652 if (index >= tl_count) { 5653 status = -ENOSPC; 5654 mlog_errno(status); 5655 goto bail; 5656 } 5657 5658 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5659 OCFS2_JOURNAL_ACCESS_WRITE); 5660 if (status < 0) { 5661 mlog_errno(status); 5662 goto bail; 5663 } 5664 5665 mlog(0, "Log truncate of %u clusters starting at cluster %u to " 5666 "%llu (index = %d)\n", num_clusters, start_cluster, 5667 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index); 5668 5669 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) { 5670 /* 5671 * Move index back to the record we are coalescing with. 5672 * ocfs2_truncate_log_can_coalesce() guarantees nonzero 5673 */ 5674 index--; 5675 5676 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters); 5677 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n", 5678 index, le32_to_cpu(tl->tl_recs[index].t_start), 5679 num_clusters); 5680 } else { 5681 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster); 5682 tl->tl_used = cpu_to_le16(index + 1); 5683 } 5684 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters); 5685 5686 status = ocfs2_journal_dirty(handle, tl_bh); 5687 if (status < 0) { 5688 mlog_errno(status); 5689 goto bail; 5690 } 5691 5692 bail: 5693 mlog_exit(status); 5694 return status; 5695 } 5696 5697 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb, 5698 handle_t *handle, 5699 struct inode *data_alloc_inode, 5700 struct buffer_head *data_alloc_bh) 5701 { 5702 int status = 0; 5703 int i; 5704 unsigned int num_clusters; 5705 u64 start_blk; 5706 struct ocfs2_truncate_rec rec; 5707 struct ocfs2_dinode *di; 5708 struct ocfs2_truncate_log *tl; 5709 struct inode *tl_inode = osb->osb_tl_inode; 5710 struct buffer_head *tl_bh = osb->osb_tl_bh; 5711 5712 mlog_entry_void(); 5713 5714 di = (struct ocfs2_dinode *) tl_bh->b_data; 5715 tl = &di->id2.i_dealloc; 5716 i = le16_to_cpu(tl->tl_used) - 1; 5717 while (i >= 0) { 5718 /* Caller has given us at least enough credits to 5719 * update the truncate log dinode */ 5720 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh, 5721 OCFS2_JOURNAL_ACCESS_WRITE); 5722 if (status < 0) { 5723 mlog_errno(status); 5724 goto bail; 5725 } 5726 5727 tl->tl_used = cpu_to_le16(i); 5728 5729 status = ocfs2_journal_dirty(handle, tl_bh); 5730 if (status < 0) { 5731 mlog_errno(status); 5732 goto bail; 5733 } 5734 5735 /* TODO: Perhaps we can calculate the bulk of the 5736 * credits up front rather than extending like 5737 * this. */ 5738 status = ocfs2_extend_trans(handle, 5739 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC); 5740 if (status < 0) { 5741 mlog_errno(status); 5742 goto bail; 5743 } 5744 5745 rec = tl->tl_recs[i]; 5746 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb, 5747 le32_to_cpu(rec.t_start)); 5748 num_clusters = le32_to_cpu(rec.t_clusters); 5749 5750 /* if start_blk is not set, we ignore the record as 5751 * invalid. */ 5752 if (start_blk) { 5753 mlog(0, "free record %d, start = %u, clusters = %u\n", 5754 i, le32_to_cpu(rec.t_start), num_clusters); 5755 5756 status = ocfs2_free_clusters(handle, data_alloc_inode, 5757 data_alloc_bh, start_blk, 5758 num_clusters); 5759 if (status < 0) { 5760 mlog_errno(status); 5761 goto bail; 5762 } 5763 } 5764 i--; 5765 } 5766 5767 bail: 5768 mlog_exit(status); 5769 return status; 5770 } 5771 5772 /* Expects you to already be holding tl_inode->i_mutex */ 5773 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5774 { 5775 int status; 5776 unsigned int num_to_flush; 5777 handle_t *handle; 5778 struct inode *tl_inode = osb->osb_tl_inode; 5779 struct inode *data_alloc_inode = NULL; 5780 struct buffer_head *tl_bh = osb->osb_tl_bh; 5781 struct buffer_head *data_alloc_bh = NULL; 5782 struct ocfs2_dinode *di; 5783 struct ocfs2_truncate_log *tl; 5784 5785 mlog_entry_void(); 5786 5787 BUG_ON(mutex_trylock(&tl_inode->i_mutex)); 5788 5789 di = (struct ocfs2_dinode *) tl_bh->b_data; 5790 5791 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated 5792 * by the underlying call to ocfs2_read_inode_block(), so any 5793 * corruption is a code bug */ 5794 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5795 5796 tl = &di->id2.i_dealloc; 5797 num_to_flush = le16_to_cpu(tl->tl_used); 5798 mlog(0, "Flush %u records from truncate log #%llu\n", 5799 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno); 5800 if (!num_to_flush) { 5801 status = 0; 5802 goto out; 5803 } 5804 5805 data_alloc_inode = ocfs2_get_system_file_inode(osb, 5806 GLOBAL_BITMAP_SYSTEM_INODE, 5807 OCFS2_INVALID_SLOT); 5808 if (!data_alloc_inode) { 5809 status = -EINVAL; 5810 mlog(ML_ERROR, "Could not get bitmap inode!\n"); 5811 goto out; 5812 } 5813 5814 mutex_lock(&data_alloc_inode->i_mutex); 5815 5816 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1); 5817 if (status < 0) { 5818 mlog_errno(status); 5819 goto out_mutex; 5820 } 5821 5822 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 5823 if (IS_ERR(handle)) { 5824 status = PTR_ERR(handle); 5825 mlog_errno(status); 5826 goto out_unlock; 5827 } 5828 5829 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode, 5830 data_alloc_bh); 5831 if (status < 0) 5832 mlog_errno(status); 5833 5834 ocfs2_commit_trans(osb, handle); 5835 5836 out_unlock: 5837 brelse(data_alloc_bh); 5838 ocfs2_inode_unlock(data_alloc_inode, 1); 5839 5840 out_mutex: 5841 mutex_unlock(&data_alloc_inode->i_mutex); 5842 iput(data_alloc_inode); 5843 5844 out: 5845 mlog_exit(status); 5846 return status; 5847 } 5848 5849 int ocfs2_flush_truncate_log(struct ocfs2_super *osb) 5850 { 5851 int status; 5852 struct inode *tl_inode = osb->osb_tl_inode; 5853 5854 mutex_lock(&tl_inode->i_mutex); 5855 status = __ocfs2_flush_truncate_log(osb); 5856 mutex_unlock(&tl_inode->i_mutex); 5857 5858 return status; 5859 } 5860 5861 static void ocfs2_truncate_log_worker(struct work_struct *work) 5862 { 5863 int status; 5864 struct ocfs2_super *osb = 5865 container_of(work, struct ocfs2_super, 5866 osb_truncate_log_wq.work); 5867 5868 mlog_entry_void(); 5869 5870 status = ocfs2_flush_truncate_log(osb); 5871 if (status < 0) 5872 mlog_errno(status); 5873 else 5874 ocfs2_init_inode_steal_slot(osb); 5875 5876 mlog_exit(status); 5877 } 5878 5879 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ) 5880 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 5881 int cancel) 5882 { 5883 if (osb->osb_tl_inode) { 5884 /* We want to push off log flushes while truncates are 5885 * still running. */ 5886 if (cancel) 5887 cancel_delayed_work(&osb->osb_truncate_log_wq); 5888 5889 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq, 5890 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL); 5891 } 5892 } 5893 5894 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb, 5895 int slot_num, 5896 struct inode **tl_inode, 5897 struct buffer_head **tl_bh) 5898 { 5899 int status; 5900 struct inode *inode = NULL; 5901 struct buffer_head *bh = NULL; 5902 5903 inode = ocfs2_get_system_file_inode(osb, 5904 TRUNCATE_LOG_SYSTEM_INODE, 5905 slot_num); 5906 if (!inode) { 5907 status = -EINVAL; 5908 mlog(ML_ERROR, "Could not get load truncate log inode!\n"); 5909 goto bail; 5910 } 5911 5912 status = ocfs2_read_inode_block(inode, &bh); 5913 if (status < 0) { 5914 iput(inode); 5915 mlog_errno(status); 5916 goto bail; 5917 } 5918 5919 *tl_inode = inode; 5920 *tl_bh = bh; 5921 bail: 5922 mlog_exit(status); 5923 return status; 5924 } 5925 5926 /* called during the 1st stage of node recovery. we stamp a clean 5927 * truncate log and pass back a copy for processing later. if the 5928 * truncate log does not require processing, a *tl_copy is set to 5929 * NULL. */ 5930 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 5931 int slot_num, 5932 struct ocfs2_dinode **tl_copy) 5933 { 5934 int status; 5935 struct inode *tl_inode = NULL; 5936 struct buffer_head *tl_bh = NULL; 5937 struct ocfs2_dinode *di; 5938 struct ocfs2_truncate_log *tl; 5939 5940 *tl_copy = NULL; 5941 5942 mlog(0, "recover truncate log from slot %d\n", slot_num); 5943 5944 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh); 5945 if (status < 0) { 5946 mlog_errno(status); 5947 goto bail; 5948 } 5949 5950 di = (struct ocfs2_dinode *) tl_bh->b_data; 5951 5952 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's 5953 * validated by the underlying call to ocfs2_read_inode_block(), 5954 * so any corruption is a code bug */ 5955 BUG_ON(!OCFS2_IS_VALID_DINODE(di)); 5956 5957 tl = &di->id2.i_dealloc; 5958 if (le16_to_cpu(tl->tl_used)) { 5959 mlog(0, "We'll have %u logs to recover\n", 5960 le16_to_cpu(tl->tl_used)); 5961 5962 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL); 5963 if (!(*tl_copy)) { 5964 status = -ENOMEM; 5965 mlog_errno(status); 5966 goto bail; 5967 } 5968 5969 /* Assuming the write-out below goes well, this copy 5970 * will be passed back to recovery for processing. */ 5971 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size); 5972 5973 /* All we need to do to clear the truncate log is set 5974 * tl_used. */ 5975 tl->tl_used = 0; 5976 5977 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check); 5978 status = ocfs2_write_block(osb, tl_bh, tl_inode); 5979 if (status < 0) { 5980 mlog_errno(status); 5981 goto bail; 5982 } 5983 } 5984 5985 bail: 5986 if (tl_inode) 5987 iput(tl_inode); 5988 brelse(tl_bh); 5989 5990 if (status < 0 && (*tl_copy)) { 5991 kfree(*tl_copy); 5992 *tl_copy = NULL; 5993 } 5994 5995 mlog_exit(status); 5996 return status; 5997 } 5998 5999 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 6000 struct ocfs2_dinode *tl_copy) 6001 { 6002 int status = 0; 6003 int i; 6004 unsigned int clusters, num_recs, start_cluster; 6005 u64 start_blk; 6006 handle_t *handle; 6007 struct inode *tl_inode = osb->osb_tl_inode; 6008 struct ocfs2_truncate_log *tl; 6009 6010 mlog_entry_void(); 6011 6012 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) { 6013 mlog(ML_ERROR, "Asked to recover my own truncate log!\n"); 6014 return -EINVAL; 6015 } 6016 6017 tl = &tl_copy->id2.i_dealloc; 6018 num_recs = le16_to_cpu(tl->tl_used); 6019 mlog(0, "cleanup %u records from %llu\n", num_recs, 6020 (unsigned long long)le64_to_cpu(tl_copy->i_blkno)); 6021 6022 mutex_lock(&tl_inode->i_mutex); 6023 for(i = 0; i < num_recs; i++) { 6024 if (ocfs2_truncate_log_needs_flush(osb)) { 6025 status = __ocfs2_flush_truncate_log(osb); 6026 if (status < 0) { 6027 mlog_errno(status); 6028 goto bail_up; 6029 } 6030 } 6031 6032 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6033 if (IS_ERR(handle)) { 6034 status = PTR_ERR(handle); 6035 mlog_errno(status); 6036 goto bail_up; 6037 } 6038 6039 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters); 6040 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start); 6041 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster); 6042 6043 status = ocfs2_truncate_log_append(osb, handle, 6044 start_blk, clusters); 6045 ocfs2_commit_trans(osb, handle); 6046 if (status < 0) { 6047 mlog_errno(status); 6048 goto bail_up; 6049 } 6050 } 6051 6052 bail_up: 6053 mutex_unlock(&tl_inode->i_mutex); 6054 6055 mlog_exit(status); 6056 return status; 6057 } 6058 6059 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb) 6060 { 6061 int status; 6062 struct inode *tl_inode = osb->osb_tl_inode; 6063 6064 mlog_entry_void(); 6065 6066 if (tl_inode) { 6067 cancel_delayed_work(&osb->osb_truncate_log_wq); 6068 flush_workqueue(ocfs2_wq); 6069 6070 status = ocfs2_flush_truncate_log(osb); 6071 if (status < 0) 6072 mlog_errno(status); 6073 6074 brelse(osb->osb_tl_bh); 6075 iput(osb->osb_tl_inode); 6076 } 6077 6078 mlog_exit_void(); 6079 } 6080 6081 int ocfs2_truncate_log_init(struct ocfs2_super *osb) 6082 { 6083 int status; 6084 struct inode *tl_inode = NULL; 6085 struct buffer_head *tl_bh = NULL; 6086 6087 mlog_entry_void(); 6088 6089 status = ocfs2_get_truncate_log_info(osb, 6090 osb->slot_num, 6091 &tl_inode, 6092 &tl_bh); 6093 if (status < 0) 6094 mlog_errno(status); 6095 6096 /* ocfs2_truncate_log_shutdown keys on the existence of 6097 * osb->osb_tl_inode so we don't set any of the osb variables 6098 * until we're sure all is well. */ 6099 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq, 6100 ocfs2_truncate_log_worker); 6101 osb->osb_tl_bh = tl_bh; 6102 osb->osb_tl_inode = tl_inode; 6103 6104 mlog_exit(status); 6105 return status; 6106 } 6107 6108 /* 6109 * Delayed de-allocation of suballocator blocks. 6110 * 6111 * Some sets of block de-allocations might involve multiple suballocator inodes. 6112 * 6113 * The locking for this can get extremely complicated, especially when 6114 * the suballocator inodes to delete from aren't known until deep 6115 * within an unrelated codepath. 6116 * 6117 * ocfs2_extent_block structures are a good example of this - an inode 6118 * btree could have been grown by any number of nodes each allocating 6119 * out of their own suballoc inode. 6120 * 6121 * These structures allow the delay of block de-allocation until a 6122 * later time, when locking of multiple cluster inodes won't cause 6123 * deadlock. 6124 */ 6125 6126 /* 6127 * Describe a single bit freed from a suballocator. For the block 6128 * suballocators, it represents one block. For the global cluster 6129 * allocator, it represents some clusters and free_bit indicates 6130 * clusters number. 6131 */ 6132 struct ocfs2_cached_block_free { 6133 struct ocfs2_cached_block_free *free_next; 6134 u64 free_blk; 6135 unsigned int free_bit; 6136 }; 6137 6138 struct ocfs2_per_slot_free_list { 6139 struct ocfs2_per_slot_free_list *f_next_suballocator; 6140 int f_inode_type; 6141 int f_slot; 6142 struct ocfs2_cached_block_free *f_first; 6143 }; 6144 6145 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb, 6146 int sysfile_type, 6147 int slot, 6148 struct ocfs2_cached_block_free *head) 6149 { 6150 int ret; 6151 u64 bg_blkno; 6152 handle_t *handle; 6153 struct inode *inode; 6154 struct buffer_head *di_bh = NULL; 6155 struct ocfs2_cached_block_free *tmp; 6156 6157 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot); 6158 if (!inode) { 6159 ret = -EINVAL; 6160 mlog_errno(ret); 6161 goto out; 6162 } 6163 6164 mutex_lock(&inode->i_mutex); 6165 6166 ret = ocfs2_inode_lock(inode, &di_bh, 1); 6167 if (ret) { 6168 mlog_errno(ret); 6169 goto out_mutex; 6170 } 6171 6172 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); 6173 if (IS_ERR(handle)) { 6174 ret = PTR_ERR(handle); 6175 mlog_errno(ret); 6176 goto out_unlock; 6177 } 6178 6179 while (head) { 6180 bg_blkno = ocfs2_which_suballoc_group(head->free_blk, 6181 head->free_bit); 6182 mlog(0, "Free bit: (bit %u, blkno %llu)\n", 6183 head->free_bit, (unsigned long long)head->free_blk); 6184 6185 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh, 6186 head->free_bit, bg_blkno, 1); 6187 if (ret) { 6188 mlog_errno(ret); 6189 goto out_journal; 6190 } 6191 6192 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE); 6193 if (ret) { 6194 mlog_errno(ret); 6195 goto out_journal; 6196 } 6197 6198 tmp = head; 6199 head = head->free_next; 6200 kfree(tmp); 6201 } 6202 6203 out_journal: 6204 ocfs2_commit_trans(osb, handle); 6205 6206 out_unlock: 6207 ocfs2_inode_unlock(inode, 1); 6208 brelse(di_bh); 6209 out_mutex: 6210 mutex_unlock(&inode->i_mutex); 6211 iput(inode); 6212 out: 6213 while(head) { 6214 /* Premature exit may have left some dangling items. */ 6215 tmp = head; 6216 head = head->free_next; 6217 kfree(tmp); 6218 } 6219 6220 return ret; 6221 } 6222 6223 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6224 u64 blkno, unsigned int bit) 6225 { 6226 int ret = 0; 6227 struct ocfs2_cached_block_free *item; 6228 6229 item = kmalloc(sizeof(*item), GFP_NOFS); 6230 if (item == NULL) { 6231 ret = -ENOMEM; 6232 mlog_errno(ret); 6233 return ret; 6234 } 6235 6236 mlog(0, "Insert clusters: (bit %u, blk %llu)\n", 6237 bit, (unsigned long long)blkno); 6238 6239 item->free_blk = blkno; 6240 item->free_bit = bit; 6241 item->free_next = ctxt->c_global_allocator; 6242 6243 ctxt->c_global_allocator = item; 6244 return ret; 6245 } 6246 6247 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb, 6248 struct ocfs2_cached_block_free *head) 6249 { 6250 struct ocfs2_cached_block_free *tmp; 6251 struct inode *tl_inode = osb->osb_tl_inode; 6252 handle_t *handle; 6253 int ret = 0; 6254 6255 mutex_lock(&tl_inode->i_mutex); 6256 6257 while (head) { 6258 if (ocfs2_truncate_log_needs_flush(osb)) { 6259 ret = __ocfs2_flush_truncate_log(osb); 6260 if (ret < 0) { 6261 mlog_errno(ret); 6262 break; 6263 } 6264 } 6265 6266 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE); 6267 if (IS_ERR(handle)) { 6268 ret = PTR_ERR(handle); 6269 mlog_errno(ret); 6270 break; 6271 } 6272 6273 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk, 6274 head->free_bit); 6275 6276 ocfs2_commit_trans(osb, handle); 6277 tmp = head; 6278 head = head->free_next; 6279 kfree(tmp); 6280 6281 if (ret < 0) { 6282 mlog_errno(ret); 6283 break; 6284 } 6285 } 6286 6287 mutex_unlock(&tl_inode->i_mutex); 6288 6289 while (head) { 6290 /* Premature exit may have left some dangling items. */ 6291 tmp = head; 6292 head = head->free_next; 6293 kfree(tmp); 6294 } 6295 6296 return ret; 6297 } 6298 6299 int ocfs2_run_deallocs(struct ocfs2_super *osb, 6300 struct ocfs2_cached_dealloc_ctxt *ctxt) 6301 { 6302 int ret = 0, ret2; 6303 struct ocfs2_per_slot_free_list *fl; 6304 6305 if (!ctxt) 6306 return 0; 6307 6308 while (ctxt->c_first_suballocator) { 6309 fl = ctxt->c_first_suballocator; 6310 6311 if (fl->f_first) { 6312 mlog(0, "Free items: (type %u, slot %d)\n", 6313 fl->f_inode_type, fl->f_slot); 6314 ret2 = ocfs2_free_cached_blocks(osb, 6315 fl->f_inode_type, 6316 fl->f_slot, 6317 fl->f_first); 6318 if (ret2) 6319 mlog_errno(ret2); 6320 if (!ret) 6321 ret = ret2; 6322 } 6323 6324 ctxt->c_first_suballocator = fl->f_next_suballocator; 6325 kfree(fl); 6326 } 6327 6328 if (ctxt->c_global_allocator) { 6329 ret2 = ocfs2_free_cached_clusters(osb, 6330 ctxt->c_global_allocator); 6331 if (ret2) 6332 mlog_errno(ret2); 6333 if (!ret) 6334 ret = ret2; 6335 6336 ctxt->c_global_allocator = NULL; 6337 } 6338 6339 return ret; 6340 } 6341 6342 static struct ocfs2_per_slot_free_list * 6343 ocfs2_find_per_slot_free_list(int type, 6344 int slot, 6345 struct ocfs2_cached_dealloc_ctxt *ctxt) 6346 { 6347 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator; 6348 6349 while (fl) { 6350 if (fl->f_inode_type == type && fl->f_slot == slot) 6351 return fl; 6352 6353 fl = fl->f_next_suballocator; 6354 } 6355 6356 fl = kmalloc(sizeof(*fl), GFP_NOFS); 6357 if (fl) { 6358 fl->f_inode_type = type; 6359 fl->f_slot = slot; 6360 fl->f_first = NULL; 6361 fl->f_next_suballocator = ctxt->c_first_suballocator; 6362 6363 ctxt->c_first_suballocator = fl; 6364 } 6365 return fl; 6366 } 6367 6368 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 6369 int type, int slot, u64 blkno, 6370 unsigned int bit) 6371 { 6372 int ret; 6373 struct ocfs2_per_slot_free_list *fl; 6374 struct ocfs2_cached_block_free *item; 6375 6376 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt); 6377 if (fl == NULL) { 6378 ret = -ENOMEM; 6379 mlog_errno(ret); 6380 goto out; 6381 } 6382 6383 item = kmalloc(sizeof(*item), GFP_NOFS); 6384 if (item == NULL) { 6385 ret = -ENOMEM; 6386 mlog_errno(ret); 6387 goto out; 6388 } 6389 6390 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n", 6391 type, slot, bit, (unsigned long long)blkno); 6392 6393 item->free_blk = blkno; 6394 item->free_bit = bit; 6395 item->free_next = fl->f_first; 6396 6397 fl->f_first = item; 6398 6399 ret = 0; 6400 out: 6401 return ret; 6402 } 6403 6404 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt, 6405 struct ocfs2_extent_block *eb) 6406 { 6407 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE, 6408 le16_to_cpu(eb->h_suballoc_slot), 6409 le64_to_cpu(eb->h_blkno), 6410 le16_to_cpu(eb->h_suballoc_bit)); 6411 } 6412 6413 /* This function will figure out whether the currently last extent 6414 * block will be deleted, and if it will, what the new last extent 6415 * block will be so we can update his h_next_leaf_blk field, as well 6416 * as the dinodes i_last_eb_blk */ 6417 static int ocfs2_find_new_last_ext_blk(struct inode *inode, 6418 unsigned int clusters_to_del, 6419 struct ocfs2_path *path, 6420 struct buffer_head **new_last_eb) 6421 { 6422 int next_free, ret = 0; 6423 u32 cpos; 6424 struct ocfs2_extent_rec *rec; 6425 struct ocfs2_extent_block *eb; 6426 struct ocfs2_extent_list *el; 6427 struct buffer_head *bh = NULL; 6428 6429 *new_last_eb = NULL; 6430 6431 /* we have no tree, so of course, no last_eb. */ 6432 if (!path->p_tree_depth) 6433 goto out; 6434 6435 /* trunc to zero special case - this makes tree_depth = 0 6436 * regardless of what it is. */ 6437 if (OCFS2_I(inode)->ip_clusters == clusters_to_del) 6438 goto out; 6439 6440 el = path_leaf_el(path); 6441 BUG_ON(!el->l_next_free_rec); 6442 6443 /* 6444 * Make sure that this extent list will actually be empty 6445 * after we clear away the data. We can shortcut out if 6446 * there's more than one non-empty extent in the 6447 * list. Otherwise, a check of the remaining extent is 6448 * necessary. 6449 */ 6450 next_free = le16_to_cpu(el->l_next_free_rec); 6451 rec = NULL; 6452 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6453 if (next_free > 2) 6454 goto out; 6455 6456 /* We may have a valid extent in index 1, check it. */ 6457 if (next_free == 2) 6458 rec = &el->l_recs[1]; 6459 6460 /* 6461 * Fall through - no more nonempty extents, so we want 6462 * to delete this leaf. 6463 */ 6464 } else { 6465 if (next_free > 1) 6466 goto out; 6467 6468 rec = &el->l_recs[0]; 6469 } 6470 6471 if (rec) { 6472 /* 6473 * Check it we'll only be trimming off the end of this 6474 * cluster. 6475 */ 6476 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del) 6477 goto out; 6478 } 6479 6480 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos); 6481 if (ret) { 6482 mlog_errno(ret); 6483 goto out; 6484 } 6485 6486 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh); 6487 if (ret) { 6488 mlog_errno(ret); 6489 goto out; 6490 } 6491 6492 eb = (struct ocfs2_extent_block *) bh->b_data; 6493 el = &eb->h_list; 6494 6495 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block(). 6496 * Any corruption is a code bug. */ 6497 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb)); 6498 6499 *new_last_eb = bh; 6500 get_bh(*new_last_eb); 6501 mlog(0, "returning block %llu, (cpos: %u)\n", 6502 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos); 6503 out: 6504 brelse(bh); 6505 6506 return ret; 6507 } 6508 6509 /* 6510 * Trim some clusters off the rightmost edge of a tree. Only called 6511 * during truncate. 6512 * 6513 * The caller needs to: 6514 * - start journaling of each path component. 6515 * - compute and fully set up any new last ext block 6516 */ 6517 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path, 6518 handle_t *handle, struct ocfs2_truncate_context *tc, 6519 u32 clusters_to_del, u64 *delete_start) 6520 { 6521 int ret, i, index = path->p_tree_depth; 6522 u32 new_edge = 0; 6523 u64 deleted_eb = 0; 6524 struct buffer_head *bh; 6525 struct ocfs2_extent_list *el; 6526 struct ocfs2_extent_rec *rec; 6527 6528 *delete_start = 0; 6529 6530 while (index >= 0) { 6531 bh = path->p_node[index].bh; 6532 el = path->p_node[index].el; 6533 6534 mlog(0, "traveling tree (index = %d, block = %llu)\n", 6535 index, (unsigned long long)bh->b_blocknr); 6536 6537 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0); 6538 6539 if (index != 6540 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) { 6541 ocfs2_error(inode->i_sb, 6542 "Inode %lu has invalid ext. block %llu", 6543 inode->i_ino, 6544 (unsigned long long)bh->b_blocknr); 6545 ret = -EROFS; 6546 goto out; 6547 } 6548 6549 find_tail_record: 6550 i = le16_to_cpu(el->l_next_free_rec) - 1; 6551 rec = &el->l_recs[i]; 6552 6553 mlog(0, "Extent list before: record %d: (%u, %u, %llu), " 6554 "next = %u\n", i, le32_to_cpu(rec->e_cpos), 6555 ocfs2_rec_clusters(el, rec), 6556 (unsigned long long)le64_to_cpu(rec->e_blkno), 6557 le16_to_cpu(el->l_next_free_rec)); 6558 6559 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del); 6560 6561 if (le16_to_cpu(el->l_tree_depth) == 0) { 6562 /* 6563 * If the leaf block contains a single empty 6564 * extent and no records, we can just remove 6565 * the block. 6566 */ 6567 if (i == 0 && ocfs2_is_empty_extent(rec)) { 6568 memset(rec, 0, 6569 sizeof(struct ocfs2_extent_rec)); 6570 el->l_next_free_rec = cpu_to_le16(0); 6571 6572 goto delete; 6573 } 6574 6575 /* 6576 * Remove any empty extents by shifting things 6577 * left. That should make life much easier on 6578 * the code below. This condition is rare 6579 * enough that we shouldn't see a performance 6580 * hit. 6581 */ 6582 if (ocfs2_is_empty_extent(&el->l_recs[0])) { 6583 le16_add_cpu(&el->l_next_free_rec, -1); 6584 6585 for(i = 0; 6586 i < le16_to_cpu(el->l_next_free_rec); i++) 6587 el->l_recs[i] = el->l_recs[i + 1]; 6588 6589 memset(&el->l_recs[i], 0, 6590 sizeof(struct ocfs2_extent_rec)); 6591 6592 /* 6593 * We've modified our extent list. The 6594 * simplest way to handle this change 6595 * is to being the search from the 6596 * start again. 6597 */ 6598 goto find_tail_record; 6599 } 6600 6601 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del); 6602 6603 /* 6604 * We'll use "new_edge" on our way back up the 6605 * tree to know what our rightmost cpos is. 6606 */ 6607 new_edge = le16_to_cpu(rec->e_leaf_clusters); 6608 new_edge += le32_to_cpu(rec->e_cpos); 6609 6610 /* 6611 * The caller will use this to delete data blocks. 6612 */ 6613 *delete_start = le64_to_cpu(rec->e_blkno) 6614 + ocfs2_clusters_to_blocks(inode->i_sb, 6615 le16_to_cpu(rec->e_leaf_clusters)); 6616 6617 /* 6618 * If it's now empty, remove this record. 6619 */ 6620 if (le16_to_cpu(rec->e_leaf_clusters) == 0) { 6621 memset(rec, 0, 6622 sizeof(struct ocfs2_extent_rec)); 6623 le16_add_cpu(&el->l_next_free_rec, -1); 6624 } 6625 } else { 6626 if (le64_to_cpu(rec->e_blkno) == deleted_eb) { 6627 memset(rec, 0, 6628 sizeof(struct ocfs2_extent_rec)); 6629 le16_add_cpu(&el->l_next_free_rec, -1); 6630 6631 goto delete; 6632 } 6633 6634 /* Can this actually happen? */ 6635 if (le16_to_cpu(el->l_next_free_rec) == 0) 6636 goto delete; 6637 6638 /* 6639 * We never actually deleted any clusters 6640 * because our leaf was empty. There's no 6641 * reason to adjust the rightmost edge then. 6642 */ 6643 if (new_edge == 0) 6644 goto delete; 6645 6646 rec->e_int_clusters = cpu_to_le32(new_edge); 6647 le32_add_cpu(&rec->e_int_clusters, 6648 -le32_to_cpu(rec->e_cpos)); 6649 6650 /* 6651 * A deleted child record should have been 6652 * caught above. 6653 */ 6654 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0); 6655 } 6656 6657 delete: 6658 ret = ocfs2_journal_dirty(handle, bh); 6659 if (ret) { 6660 mlog_errno(ret); 6661 goto out; 6662 } 6663 6664 mlog(0, "extent list container %llu, after: record %d: " 6665 "(%u, %u, %llu), next = %u.\n", 6666 (unsigned long long)bh->b_blocknr, i, 6667 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec), 6668 (unsigned long long)le64_to_cpu(rec->e_blkno), 6669 le16_to_cpu(el->l_next_free_rec)); 6670 6671 /* 6672 * We must be careful to only attempt delete of an 6673 * extent block (and not the root inode block). 6674 */ 6675 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) { 6676 struct ocfs2_extent_block *eb = 6677 (struct ocfs2_extent_block *)bh->b_data; 6678 6679 /* 6680 * Save this for use when processing the 6681 * parent block. 6682 */ 6683 deleted_eb = le64_to_cpu(eb->h_blkno); 6684 6685 mlog(0, "deleting this extent block.\n"); 6686 6687 ocfs2_remove_from_cache(inode, bh); 6688 6689 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0])); 6690 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos)); 6691 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno)); 6692 6693 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb); 6694 /* An error here is not fatal. */ 6695 if (ret < 0) 6696 mlog_errno(ret); 6697 } else { 6698 deleted_eb = 0; 6699 } 6700 6701 index--; 6702 } 6703 6704 ret = 0; 6705 out: 6706 return ret; 6707 } 6708 6709 static int ocfs2_do_truncate(struct ocfs2_super *osb, 6710 unsigned int clusters_to_del, 6711 struct inode *inode, 6712 struct buffer_head *fe_bh, 6713 handle_t *handle, 6714 struct ocfs2_truncate_context *tc, 6715 struct ocfs2_path *path) 6716 { 6717 int status; 6718 struct ocfs2_dinode *fe; 6719 struct ocfs2_extent_block *last_eb = NULL; 6720 struct ocfs2_extent_list *el; 6721 struct buffer_head *last_eb_bh = NULL; 6722 u64 delete_blk = 0; 6723 6724 fe = (struct ocfs2_dinode *) fe_bh->b_data; 6725 6726 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del, 6727 path, &last_eb_bh); 6728 if (status < 0) { 6729 mlog_errno(status); 6730 goto bail; 6731 } 6732 6733 /* 6734 * Each component will be touched, so we might as well journal 6735 * here to avoid having to handle errors later. 6736 */ 6737 status = ocfs2_journal_access_path(inode, handle, path); 6738 if (status < 0) { 6739 mlog_errno(status); 6740 goto bail; 6741 } 6742 6743 if (last_eb_bh) { 6744 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh, 6745 OCFS2_JOURNAL_ACCESS_WRITE); 6746 if (status < 0) { 6747 mlog_errno(status); 6748 goto bail; 6749 } 6750 6751 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 6752 } 6753 6754 el = &(fe->id2.i_list); 6755 6756 /* 6757 * Lower levels depend on this never happening, but it's best 6758 * to check it up here before changing the tree. 6759 */ 6760 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) { 6761 ocfs2_error(inode->i_sb, 6762 "Inode %lu has an empty extent record, depth %u\n", 6763 inode->i_ino, le16_to_cpu(el->l_tree_depth)); 6764 status = -EROFS; 6765 goto bail; 6766 } 6767 6768 vfs_dq_free_space_nodirty(inode, 6769 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del)); 6770 spin_lock(&OCFS2_I(inode)->ip_lock); 6771 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) - 6772 clusters_to_del; 6773 spin_unlock(&OCFS2_I(inode)->ip_lock); 6774 le32_add_cpu(&fe->i_clusters, -clusters_to_del); 6775 inode->i_blocks = ocfs2_inode_sector_count(inode); 6776 6777 status = ocfs2_trim_tree(inode, path, handle, tc, 6778 clusters_to_del, &delete_blk); 6779 if (status) { 6780 mlog_errno(status); 6781 goto bail; 6782 } 6783 6784 if (le32_to_cpu(fe->i_clusters) == 0) { 6785 /* trunc to zero is a special case. */ 6786 el->l_tree_depth = 0; 6787 fe->i_last_eb_blk = 0; 6788 } else if (last_eb) 6789 fe->i_last_eb_blk = last_eb->h_blkno; 6790 6791 status = ocfs2_journal_dirty(handle, fe_bh); 6792 if (status < 0) { 6793 mlog_errno(status); 6794 goto bail; 6795 } 6796 6797 if (last_eb) { 6798 /* If there will be a new last extent block, then by 6799 * definition, there cannot be any leaves to the right of 6800 * him. */ 6801 last_eb->h_next_leaf_blk = 0; 6802 status = ocfs2_journal_dirty(handle, last_eb_bh); 6803 if (status < 0) { 6804 mlog_errno(status); 6805 goto bail; 6806 } 6807 } 6808 6809 if (delete_blk) { 6810 status = ocfs2_truncate_log_append(osb, handle, delete_blk, 6811 clusters_to_del); 6812 if (status < 0) { 6813 mlog_errno(status); 6814 goto bail; 6815 } 6816 } 6817 status = 0; 6818 bail: 6819 6820 mlog_exit(status); 6821 return status; 6822 } 6823 6824 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh) 6825 { 6826 set_buffer_uptodate(bh); 6827 mark_buffer_dirty(bh); 6828 return 0; 6829 } 6830 6831 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 6832 unsigned int from, unsigned int to, 6833 struct page *page, int zero, u64 *phys) 6834 { 6835 int ret, partial = 0; 6836 6837 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0); 6838 if (ret) 6839 mlog_errno(ret); 6840 6841 if (zero) 6842 zero_user_segment(page, from, to); 6843 6844 /* 6845 * Need to set the buffers we zero'd into uptodate 6846 * here if they aren't - ocfs2_map_page_blocks() 6847 * might've skipped some 6848 */ 6849 ret = walk_page_buffers(handle, page_buffers(page), 6850 from, to, &partial, 6851 ocfs2_zero_func); 6852 if (ret < 0) 6853 mlog_errno(ret); 6854 else if (ocfs2_should_order_data(inode)) { 6855 ret = ocfs2_jbd2_file_inode(handle, inode); 6856 if (ret < 0) 6857 mlog_errno(ret); 6858 } 6859 6860 if (!partial) 6861 SetPageUptodate(page); 6862 6863 flush_dcache_page(page); 6864 } 6865 6866 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start, 6867 loff_t end, struct page **pages, 6868 int numpages, u64 phys, handle_t *handle) 6869 { 6870 int i; 6871 struct page *page; 6872 unsigned int from, to = PAGE_CACHE_SIZE; 6873 struct super_block *sb = inode->i_sb; 6874 6875 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb))); 6876 6877 if (numpages == 0) 6878 goto out; 6879 6880 to = PAGE_CACHE_SIZE; 6881 for(i = 0; i < numpages; i++) { 6882 page = pages[i]; 6883 6884 from = start & (PAGE_CACHE_SIZE - 1); 6885 if ((end >> PAGE_CACHE_SHIFT) == page->index) 6886 to = end & (PAGE_CACHE_SIZE - 1); 6887 6888 BUG_ON(from > PAGE_CACHE_SIZE); 6889 BUG_ON(to > PAGE_CACHE_SIZE); 6890 6891 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1, 6892 &phys); 6893 6894 start = (page->index + 1) << PAGE_CACHE_SHIFT; 6895 } 6896 out: 6897 if (pages) 6898 ocfs2_unlock_and_free_pages(pages, numpages); 6899 } 6900 6901 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end, 6902 struct page **pages, int *num) 6903 { 6904 int numpages, ret = 0; 6905 struct super_block *sb = inode->i_sb; 6906 struct address_space *mapping = inode->i_mapping; 6907 unsigned long index; 6908 loff_t last_page_bytes; 6909 6910 BUG_ON(start > end); 6911 6912 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits != 6913 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits); 6914 6915 numpages = 0; 6916 last_page_bytes = PAGE_ALIGN(end); 6917 index = start >> PAGE_CACHE_SHIFT; 6918 do { 6919 pages[numpages] = grab_cache_page(mapping, index); 6920 if (!pages[numpages]) { 6921 ret = -ENOMEM; 6922 mlog_errno(ret); 6923 goto out; 6924 } 6925 6926 numpages++; 6927 index++; 6928 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT)); 6929 6930 out: 6931 if (ret != 0) { 6932 if (pages) 6933 ocfs2_unlock_and_free_pages(pages, numpages); 6934 numpages = 0; 6935 } 6936 6937 *num = numpages; 6938 6939 return ret; 6940 } 6941 6942 /* 6943 * Zero the area past i_size but still within an allocated 6944 * cluster. This avoids exposing nonzero data on subsequent file 6945 * extends. 6946 * 6947 * We need to call this before i_size is updated on the inode because 6948 * otherwise block_write_full_page() will skip writeout of pages past 6949 * i_size. The new_i_size parameter is passed for this reason. 6950 */ 6951 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 6952 u64 range_start, u64 range_end) 6953 { 6954 int ret = 0, numpages; 6955 struct page **pages = NULL; 6956 u64 phys; 6957 unsigned int ext_flags; 6958 struct super_block *sb = inode->i_sb; 6959 6960 /* 6961 * File systems which don't support sparse files zero on every 6962 * extend. 6963 */ 6964 if (!ocfs2_sparse_alloc(OCFS2_SB(sb))) 6965 return 0; 6966 6967 pages = kcalloc(ocfs2_pages_per_cluster(sb), 6968 sizeof(struct page *), GFP_NOFS); 6969 if (pages == NULL) { 6970 ret = -ENOMEM; 6971 mlog_errno(ret); 6972 goto out; 6973 } 6974 6975 if (range_start == range_end) 6976 goto out; 6977 6978 ret = ocfs2_extent_map_get_blocks(inode, 6979 range_start >> sb->s_blocksize_bits, 6980 &phys, NULL, &ext_flags); 6981 if (ret) { 6982 mlog_errno(ret); 6983 goto out; 6984 } 6985 6986 /* 6987 * Tail is a hole, or is marked unwritten. In either case, we 6988 * can count on read and write to return/push zero's. 6989 */ 6990 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN) 6991 goto out; 6992 6993 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages, 6994 &numpages); 6995 if (ret) { 6996 mlog_errno(ret); 6997 goto out; 6998 } 6999 7000 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages, 7001 numpages, phys, handle); 7002 7003 /* 7004 * Initiate writeout of the pages we zero'd here. We don't 7005 * wait on them - the truncate_inode_pages() call later will 7006 * do that for us. 7007 */ 7008 ret = do_sync_mapping_range(inode->i_mapping, range_start, 7009 range_end - 1, SYNC_FILE_RANGE_WRITE); 7010 if (ret) 7011 mlog_errno(ret); 7012 7013 out: 7014 if (pages) 7015 kfree(pages); 7016 7017 return ret; 7018 } 7019 7020 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode, 7021 struct ocfs2_dinode *di) 7022 { 7023 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits; 7024 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size); 7025 7026 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL) 7027 memset(&di->id2, 0, blocksize - 7028 offsetof(struct ocfs2_dinode, id2) - 7029 xattrsize); 7030 else 7031 memset(&di->id2, 0, blocksize - 7032 offsetof(struct ocfs2_dinode, id2)); 7033 } 7034 7035 void ocfs2_dinode_new_extent_list(struct inode *inode, 7036 struct ocfs2_dinode *di) 7037 { 7038 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7039 di->id2.i_list.l_tree_depth = 0; 7040 di->id2.i_list.l_next_free_rec = 0; 7041 di->id2.i_list.l_count = cpu_to_le16( 7042 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di)); 7043 } 7044 7045 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di) 7046 { 7047 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7048 struct ocfs2_inline_data *idata = &di->id2.i_data; 7049 7050 spin_lock(&oi->ip_lock); 7051 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL; 7052 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7053 spin_unlock(&oi->ip_lock); 7054 7055 /* 7056 * We clear the entire i_data structure here so that all 7057 * fields can be properly initialized. 7058 */ 7059 ocfs2_zero_dinode_id2_with_xattr(inode, di); 7060 7061 idata->id_count = cpu_to_le16( 7062 ocfs2_max_inline_data_with_xattr(inode->i_sb, di)); 7063 } 7064 7065 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 7066 struct buffer_head *di_bh) 7067 { 7068 int ret, i, has_data, num_pages = 0; 7069 handle_t *handle; 7070 u64 uninitialized_var(block); 7071 struct ocfs2_inode_info *oi = OCFS2_I(inode); 7072 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7073 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7074 struct ocfs2_alloc_context *data_ac = NULL; 7075 struct page **pages = NULL; 7076 loff_t end = osb->s_clustersize; 7077 struct ocfs2_extent_tree et; 7078 int did_quota = 0; 7079 7080 has_data = i_size_read(inode) ? 1 : 0; 7081 7082 if (has_data) { 7083 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb), 7084 sizeof(struct page *), GFP_NOFS); 7085 if (pages == NULL) { 7086 ret = -ENOMEM; 7087 mlog_errno(ret); 7088 goto out; 7089 } 7090 7091 ret = ocfs2_reserve_clusters(osb, 1, &data_ac); 7092 if (ret) { 7093 mlog_errno(ret); 7094 goto out; 7095 } 7096 } 7097 7098 handle = ocfs2_start_trans(osb, 7099 ocfs2_inline_to_extents_credits(osb->sb)); 7100 if (IS_ERR(handle)) { 7101 ret = PTR_ERR(handle); 7102 mlog_errno(ret); 7103 goto out_unlock; 7104 } 7105 7106 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7107 OCFS2_JOURNAL_ACCESS_WRITE); 7108 if (ret) { 7109 mlog_errno(ret); 7110 goto out_commit; 7111 } 7112 7113 if (has_data) { 7114 u32 bit_off, num; 7115 unsigned int page_end; 7116 u64 phys; 7117 7118 if (vfs_dq_alloc_space_nodirty(inode, 7119 ocfs2_clusters_to_bytes(osb->sb, 1))) { 7120 ret = -EDQUOT; 7121 goto out_commit; 7122 } 7123 did_quota = 1; 7124 7125 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off, 7126 &num); 7127 if (ret) { 7128 mlog_errno(ret); 7129 goto out_commit; 7130 } 7131 7132 /* 7133 * Save two copies, one for insert, and one that can 7134 * be changed by ocfs2_map_and_dirty_page() below. 7135 */ 7136 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); 7137 7138 /* 7139 * Non sparse file systems zero on extend, so no need 7140 * to do that now. 7141 */ 7142 if (!ocfs2_sparse_alloc(osb) && 7143 PAGE_CACHE_SIZE < osb->s_clustersize) 7144 end = PAGE_CACHE_SIZE; 7145 7146 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages); 7147 if (ret) { 7148 mlog_errno(ret); 7149 goto out_commit; 7150 } 7151 7152 /* 7153 * This should populate the 1st page for us and mark 7154 * it up to date. 7155 */ 7156 ret = ocfs2_read_inline_data(inode, pages[0], di_bh); 7157 if (ret) { 7158 mlog_errno(ret); 7159 goto out_commit; 7160 } 7161 7162 page_end = PAGE_CACHE_SIZE; 7163 if (PAGE_CACHE_SIZE > osb->s_clustersize) 7164 page_end = osb->s_clustersize; 7165 7166 for (i = 0; i < num_pages; i++) 7167 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, 7168 pages[i], i > 0, &phys); 7169 } 7170 7171 spin_lock(&oi->ip_lock); 7172 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL; 7173 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); 7174 spin_unlock(&oi->ip_lock); 7175 7176 ocfs2_dinode_new_extent_list(inode, di); 7177 7178 ocfs2_journal_dirty(handle, di_bh); 7179 7180 if (has_data) { 7181 /* 7182 * An error at this point should be extremely rare. If 7183 * this proves to be false, we could always re-build 7184 * the in-inode data from our pages. 7185 */ 7186 ocfs2_init_dinode_extent_tree(&et, inode, di_bh); 7187 ret = ocfs2_insert_extent(osb, handle, inode, &et, 7188 0, block, 1, 0, NULL); 7189 if (ret) { 7190 mlog_errno(ret); 7191 goto out_commit; 7192 } 7193 7194 inode->i_blocks = ocfs2_inode_sector_count(inode); 7195 } 7196 7197 out_commit: 7198 if (ret < 0 && did_quota) 7199 vfs_dq_free_space_nodirty(inode, 7200 ocfs2_clusters_to_bytes(osb->sb, 1)); 7201 7202 ocfs2_commit_trans(osb, handle); 7203 7204 out_unlock: 7205 if (data_ac) 7206 ocfs2_free_alloc_context(data_ac); 7207 7208 out: 7209 if (pages) { 7210 ocfs2_unlock_and_free_pages(pages, num_pages); 7211 kfree(pages); 7212 } 7213 7214 return ret; 7215 } 7216 7217 /* 7218 * It is expected, that by the time you call this function, 7219 * inode->i_size and fe->i_size have been adjusted. 7220 * 7221 * WARNING: This will kfree the truncate context 7222 */ 7223 int ocfs2_commit_truncate(struct ocfs2_super *osb, 7224 struct inode *inode, 7225 struct buffer_head *fe_bh, 7226 struct ocfs2_truncate_context *tc) 7227 { 7228 int status, i, credits, tl_sem = 0; 7229 u32 clusters_to_del, new_highest_cpos, range; 7230 struct ocfs2_extent_list *el; 7231 handle_t *handle = NULL; 7232 struct inode *tl_inode = osb->osb_tl_inode; 7233 struct ocfs2_path *path = NULL; 7234 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; 7235 7236 mlog_entry_void(); 7237 7238 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb, 7239 i_size_read(inode)); 7240 7241 path = ocfs2_new_path(fe_bh, &di->id2.i_list, 7242 ocfs2_journal_access_di); 7243 if (!path) { 7244 status = -ENOMEM; 7245 mlog_errno(status); 7246 goto bail; 7247 } 7248 7249 ocfs2_extent_map_trunc(inode, new_highest_cpos); 7250 7251 start: 7252 /* 7253 * Check that we still have allocation to delete. 7254 */ 7255 if (OCFS2_I(inode)->ip_clusters == 0) { 7256 status = 0; 7257 goto bail; 7258 } 7259 7260 /* 7261 * Truncate always works against the rightmost tree branch. 7262 */ 7263 status = ocfs2_find_path(inode, path, UINT_MAX); 7264 if (status) { 7265 mlog_errno(status); 7266 goto bail; 7267 } 7268 7269 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n", 7270 OCFS2_I(inode)->ip_clusters, path->p_tree_depth); 7271 7272 /* 7273 * By now, el will point to the extent list on the bottom most 7274 * portion of this tree. Only the tail record is considered in 7275 * each pass. 7276 * 7277 * We handle the following cases, in order: 7278 * - empty extent: delete the remaining branch 7279 * - remove the entire record 7280 * - remove a partial record 7281 * - no record needs to be removed (truncate has completed) 7282 */ 7283 el = path_leaf_el(path); 7284 if (le16_to_cpu(el->l_next_free_rec) == 0) { 7285 ocfs2_error(inode->i_sb, 7286 "Inode %llu has empty extent block at %llu\n", 7287 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7288 (unsigned long long)path_leaf_bh(path)->b_blocknr); 7289 status = -EROFS; 7290 goto bail; 7291 } 7292 7293 i = le16_to_cpu(el->l_next_free_rec) - 1; 7294 range = le32_to_cpu(el->l_recs[i].e_cpos) + 7295 ocfs2_rec_clusters(el, &el->l_recs[i]); 7296 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) { 7297 clusters_to_del = 0; 7298 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) { 7299 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]); 7300 } else if (range > new_highest_cpos) { 7301 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) + 7302 le32_to_cpu(el->l_recs[i].e_cpos)) - 7303 new_highest_cpos; 7304 } else { 7305 status = 0; 7306 goto bail; 7307 } 7308 7309 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n", 7310 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr); 7311 7312 mutex_lock(&tl_inode->i_mutex); 7313 tl_sem = 1; 7314 /* ocfs2_truncate_log_needs_flush guarantees us at least one 7315 * record is free for use. If there isn't any, we flush to get 7316 * an empty truncate log. */ 7317 if (ocfs2_truncate_log_needs_flush(osb)) { 7318 status = __ocfs2_flush_truncate_log(osb); 7319 if (status < 0) { 7320 mlog_errno(status); 7321 goto bail; 7322 } 7323 } 7324 7325 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del, 7326 (struct ocfs2_dinode *)fe_bh->b_data, 7327 el); 7328 handle = ocfs2_start_trans(osb, credits); 7329 if (IS_ERR(handle)) { 7330 status = PTR_ERR(handle); 7331 handle = NULL; 7332 mlog_errno(status); 7333 goto bail; 7334 } 7335 7336 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle, 7337 tc, path); 7338 if (status < 0) { 7339 mlog_errno(status); 7340 goto bail; 7341 } 7342 7343 mutex_unlock(&tl_inode->i_mutex); 7344 tl_sem = 0; 7345 7346 ocfs2_commit_trans(osb, handle); 7347 handle = NULL; 7348 7349 ocfs2_reinit_path(path, 1); 7350 7351 /* 7352 * The check above will catch the case where we've truncated 7353 * away all allocation. 7354 */ 7355 goto start; 7356 7357 bail: 7358 7359 ocfs2_schedule_truncate_log_flush(osb, 1); 7360 7361 if (tl_sem) 7362 mutex_unlock(&tl_inode->i_mutex); 7363 7364 if (handle) 7365 ocfs2_commit_trans(osb, handle); 7366 7367 ocfs2_run_deallocs(osb, &tc->tc_dealloc); 7368 7369 ocfs2_free_path(path); 7370 7371 /* This will drop the ext_alloc cluster lock for us */ 7372 ocfs2_free_truncate_context(tc); 7373 7374 mlog_exit(status); 7375 return status; 7376 } 7377 7378 /* 7379 * Expects the inode to already be locked. 7380 */ 7381 int ocfs2_prepare_truncate(struct ocfs2_super *osb, 7382 struct inode *inode, 7383 struct buffer_head *fe_bh, 7384 struct ocfs2_truncate_context **tc) 7385 { 7386 int status; 7387 unsigned int new_i_clusters; 7388 struct ocfs2_dinode *fe; 7389 struct ocfs2_extent_block *eb; 7390 struct buffer_head *last_eb_bh = NULL; 7391 7392 mlog_entry_void(); 7393 7394 *tc = NULL; 7395 7396 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb, 7397 i_size_read(inode)); 7398 fe = (struct ocfs2_dinode *) fe_bh->b_data; 7399 7400 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size =" 7401 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters, 7402 (unsigned long long)le64_to_cpu(fe->i_size)); 7403 7404 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL); 7405 if (!(*tc)) { 7406 status = -ENOMEM; 7407 mlog_errno(status); 7408 goto bail; 7409 } 7410 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc); 7411 7412 if (fe->id2.i_list.l_tree_depth) { 7413 status = ocfs2_read_extent_block(inode, 7414 le64_to_cpu(fe->i_last_eb_blk), 7415 &last_eb_bh); 7416 if (status < 0) { 7417 mlog_errno(status); 7418 goto bail; 7419 } 7420 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data; 7421 } 7422 7423 (*tc)->tc_last_eb_bh = last_eb_bh; 7424 7425 status = 0; 7426 bail: 7427 if (status < 0) { 7428 if (*tc) 7429 ocfs2_free_truncate_context(*tc); 7430 *tc = NULL; 7431 } 7432 mlog_exit_void(); 7433 return status; 7434 } 7435 7436 /* 7437 * 'start' is inclusive, 'end' is not. 7438 */ 7439 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 7440 unsigned int start, unsigned int end, int trunc) 7441 { 7442 int ret; 7443 unsigned int numbytes; 7444 handle_t *handle; 7445 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 7446 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 7447 struct ocfs2_inline_data *idata = &di->id2.i_data; 7448 7449 if (end > i_size_read(inode)) 7450 end = i_size_read(inode); 7451 7452 BUG_ON(start >= end); 7453 7454 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) || 7455 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) || 7456 !ocfs2_supports_inline_data(osb)) { 7457 ocfs2_error(inode->i_sb, 7458 "Inline data flags for inode %llu don't agree! " 7459 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n", 7460 (unsigned long long)OCFS2_I(inode)->ip_blkno, 7461 le16_to_cpu(di->i_dyn_features), 7462 OCFS2_I(inode)->ip_dyn_features, 7463 osb->s_feature_incompat); 7464 ret = -EROFS; 7465 goto out; 7466 } 7467 7468 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 7469 if (IS_ERR(handle)) { 7470 ret = PTR_ERR(handle); 7471 mlog_errno(ret); 7472 goto out; 7473 } 7474 7475 ret = ocfs2_journal_access_di(handle, inode, di_bh, 7476 OCFS2_JOURNAL_ACCESS_WRITE); 7477 if (ret) { 7478 mlog_errno(ret); 7479 goto out_commit; 7480 } 7481 7482 numbytes = end - start; 7483 memset(idata->id_data + start, 0, numbytes); 7484 7485 /* 7486 * No need to worry about the data page here - it's been 7487 * truncated already and inline data doesn't need it for 7488 * pushing zero's to disk, so we'll let readpage pick it up 7489 * later. 7490 */ 7491 if (trunc) { 7492 i_size_write(inode, start); 7493 di->i_size = cpu_to_le64(start); 7494 } 7495 7496 inode->i_blocks = ocfs2_inode_sector_count(inode); 7497 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 7498 7499 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 7500 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 7501 7502 ocfs2_journal_dirty(handle, di_bh); 7503 7504 out_commit: 7505 ocfs2_commit_trans(osb, handle); 7506 7507 out: 7508 return ret; 7509 } 7510 7511 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc) 7512 { 7513 /* 7514 * The caller is responsible for completing deallocation 7515 * before freeing the context. 7516 */ 7517 if (tc->tc_dealloc.c_first_suballocator != NULL) 7518 mlog(ML_NOTICE, 7519 "Truncate completion has non-empty dealloc context\n"); 7520 7521 brelse(tc->tc_last_eb_bh); 7522 7523 kfree(tc); 7524 } 7525