xref: /linux/fs/ocfs2/alloc.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * alloc.c
4  *
5  * Extent allocs and frees
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/swap.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/sched/signal.h>
18 
19 #include <cluster/masklog.h>
20 
21 #include "ocfs2.h"
22 
23 #include "alloc.h"
24 #include "aops.h"
25 #include "blockcheck.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "inode.h"
29 #include "journal.h"
30 #include "localalloc.h"
31 #include "suballoc.h"
32 #include "sysfile.h"
33 #include "file.h"
34 #include "super.h"
35 #include "uptodate.h"
36 #include "xattr.h"
37 #include "refcounttree.h"
38 #include "ocfs2_trace.h"
39 
40 #include "buffer_head_io.h"
41 
42 enum ocfs2_contig_type {
43 	CONTIG_NONE = 0,
44 	CONTIG_LEFT,
45 	CONTIG_RIGHT,
46 	CONTIG_LEFTRIGHT,
47 };
48 
49 static enum ocfs2_contig_type
50 	ocfs2_extent_rec_contig(struct super_block *sb,
51 				struct ocfs2_extent_rec *ext,
52 				struct ocfs2_extent_rec *insert_rec);
53 /*
54  * Operations for a specific extent tree type.
55  *
56  * To implement an on-disk btree (extent tree) type in ocfs2, add
57  * an ocfs2_extent_tree_operations structure and the matching
58  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
59  * for the allocation portion of the extent tree.
60  */
61 struct ocfs2_extent_tree_operations {
62 	/*
63 	 * last_eb_blk is the block number of the right most leaf extent
64 	 * block.  Most on-disk structures containing an extent tree store
65 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
66 	 * ->eo_get_last_eb_blk() operations access this value.  They are
67 	 *  both required.
68 	 */
69 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 				   u64 blkno);
71 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72 
73 	/*
74 	 * The on-disk structure usually keeps track of how many total
75 	 * clusters are stored in this extent tree.  This function updates
76 	 * that value.  new_clusters is the delta, and must be
77 	 * added to the total.  Required.
78 	 */
79 	void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
80 				   u32 new_clusters);
81 
82 	/*
83 	 * If this extent tree is supported by an extent map, insert
84 	 * a record into the map.
85 	 */
86 	void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
87 				     struct ocfs2_extent_rec *rec);
88 
89 	/*
90 	 * If this extent tree is supported by an extent map, truncate the
91 	 * map to clusters,
92 	 */
93 	void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
94 				       u32 clusters);
95 
96 	/*
97 	 * If ->eo_insert_check() exists, it is called before rec is
98 	 * inserted into the extent tree.  It is optional.
99 	 */
100 	int (*eo_insert_check)(struct ocfs2_extent_tree *et,
101 			       struct ocfs2_extent_rec *rec);
102 	int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
103 
104 	/*
105 	 * --------------------------------------------------------------
106 	 * The remaining are internal to ocfs2_extent_tree and don't have
107 	 * accessor functions
108 	 */
109 
110 	/*
111 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
112 	 * It is required.
113 	 */
114 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
115 
116 	/*
117 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
118 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
119 	 * to 0 (unlimited).  Optional.
120 	 */
121 	void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
122 
123 	/*
124 	 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
125 	 * are contiguous or not. Optional. Don't need to set it if use
126 	 * ocfs2_extent_rec as the tree leaf.
127 	 */
128 	enum ocfs2_contig_type
129 		(*eo_extent_contig)(struct ocfs2_extent_tree *et,
130 				    struct ocfs2_extent_rec *ext,
131 				    struct ocfs2_extent_rec *insert_rec);
132 };
133 
134 
135 /*
136  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
137  * in the methods.
138  */
139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
141 					 u64 blkno);
142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
143 					 u32 clusters);
144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
145 					   struct ocfs2_extent_rec *rec);
146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
147 					     u32 clusters);
148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
149 				     struct ocfs2_extent_rec *rec);
150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
152 
153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
154 					struct ocfs2_extent_tree *et,
155 					struct buffer_head **new_eb_bh,
156 					int blk_wanted, int *blk_given);
157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
158 
159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
160 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
161 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
162 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
163 	.eo_extent_map_insert	= ocfs2_dinode_extent_map_insert,
164 	.eo_extent_map_truncate	= ocfs2_dinode_extent_map_truncate,
165 	.eo_insert_check	= ocfs2_dinode_insert_check,
166 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
167 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
168 };
169 
170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
171 					 u64 blkno)
172 {
173 	struct ocfs2_dinode *di = et->et_object;
174 
175 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
176 	di->i_last_eb_blk = cpu_to_le64(blkno);
177 }
178 
179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
180 {
181 	struct ocfs2_dinode *di = et->et_object;
182 
183 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 	return le64_to_cpu(di->i_last_eb_blk);
185 }
186 
187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
188 					 u32 clusters)
189 {
190 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
191 	struct ocfs2_dinode *di = et->et_object;
192 
193 	le32_add_cpu(&di->i_clusters, clusters);
194 	spin_lock(&oi->ip_lock);
195 	oi->ip_clusters = le32_to_cpu(di->i_clusters);
196 	spin_unlock(&oi->ip_lock);
197 }
198 
199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
200 					   struct ocfs2_extent_rec *rec)
201 {
202 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
203 
204 	ocfs2_extent_map_insert_rec(inode, rec);
205 }
206 
207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
208 					     u32 clusters)
209 {
210 	struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 
212 	ocfs2_extent_map_trunc(inode, clusters);
213 }
214 
215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
216 				     struct ocfs2_extent_rec *rec)
217 {
218 	struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
219 	struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
220 
221 	BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
222 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
223 			(oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
224 			"Device %s, asking for sparse allocation: inode %llu, "
225 			"cpos %u, clusters %u\n",
226 			osb->dev_str,
227 			(unsigned long long)oi->ip_blkno,
228 			rec->e_cpos, oi->ip_clusters);
229 
230 	return 0;
231 }
232 
233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
234 {
235 	struct ocfs2_dinode *di = et->et_object;
236 
237 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
238 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
239 
240 	return 0;
241 }
242 
243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
244 {
245 	struct ocfs2_dinode *di = et->et_object;
246 
247 	et->et_root_el = &di->id2.i_list;
248 }
249 
250 
251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 	struct ocfs2_xattr_value_buf *vb = et->et_object;
254 
255 	et->et_root_el = &vb->vb_xv->xr_list;
256 }
257 
258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
259 					      u64 blkno)
260 {
261 	struct ocfs2_xattr_value_buf *vb = et->et_object;
262 
263 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
264 }
265 
266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
267 {
268 	struct ocfs2_xattr_value_buf *vb = et->et_object;
269 
270 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
271 }
272 
273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
274 					      u32 clusters)
275 {
276 	struct ocfs2_xattr_value_buf *vb = et->et_object;
277 
278 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
279 }
280 
281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
282 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
283 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
284 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
285 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
286 };
287 
288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
289 {
290 	struct ocfs2_xattr_block *xb = et->et_object;
291 
292 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
293 }
294 
295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
296 {
297 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
298 	et->et_max_leaf_clusters =
299 		ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
300 }
301 
302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
303 					     u64 blkno)
304 {
305 	struct ocfs2_xattr_block *xb = et->et_object;
306 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
307 
308 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
309 }
310 
311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
312 {
313 	struct ocfs2_xattr_block *xb = et->et_object;
314 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 
316 	return le64_to_cpu(xt->xt_last_eb_blk);
317 }
318 
319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
320 					     u32 clusters)
321 {
322 	struct ocfs2_xattr_block *xb = et->et_object;
323 
324 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
325 }
326 
327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
328 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
329 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
330 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
331 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
332 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
333 };
334 
335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
336 					  u64 blkno)
337 {
338 	struct ocfs2_dx_root_block *dx_root = et->et_object;
339 
340 	dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
341 }
342 
343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
344 {
345 	struct ocfs2_dx_root_block *dx_root = et->et_object;
346 
347 	return le64_to_cpu(dx_root->dr_last_eb_blk);
348 }
349 
350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
351 					  u32 clusters)
352 {
353 	struct ocfs2_dx_root_block *dx_root = et->et_object;
354 
355 	le32_add_cpu(&dx_root->dr_clusters, clusters);
356 }
357 
358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
359 {
360 	struct ocfs2_dx_root_block *dx_root = et->et_object;
361 
362 	BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
363 
364 	return 0;
365 }
366 
367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
368 {
369 	struct ocfs2_dx_root_block *dx_root = et->et_object;
370 
371 	et->et_root_el = &dx_root->dr_list;
372 }
373 
374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
375 	.eo_set_last_eb_blk	= ocfs2_dx_root_set_last_eb_blk,
376 	.eo_get_last_eb_blk	= ocfs2_dx_root_get_last_eb_blk,
377 	.eo_update_clusters	= ocfs2_dx_root_update_clusters,
378 	.eo_sanity_check	= ocfs2_dx_root_sanity_check,
379 	.eo_fill_root_el	= ocfs2_dx_root_fill_root_el,
380 };
381 
382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
383 {
384 	struct ocfs2_refcount_block *rb = et->et_object;
385 
386 	et->et_root_el = &rb->rf_list;
387 }
388 
389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
390 						u64 blkno)
391 {
392 	struct ocfs2_refcount_block *rb = et->et_object;
393 
394 	rb->rf_last_eb_blk = cpu_to_le64(blkno);
395 }
396 
397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
398 {
399 	struct ocfs2_refcount_block *rb = et->et_object;
400 
401 	return le64_to_cpu(rb->rf_last_eb_blk);
402 }
403 
404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
405 						u32 clusters)
406 {
407 	struct ocfs2_refcount_block *rb = et->et_object;
408 
409 	le32_add_cpu(&rb->rf_clusters, clusters);
410 }
411 
412 static enum ocfs2_contig_type
413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
414 				  struct ocfs2_extent_rec *ext,
415 				  struct ocfs2_extent_rec *insert_rec)
416 {
417 	return CONTIG_NONE;
418 }
419 
420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
421 	.eo_set_last_eb_blk	= ocfs2_refcount_tree_set_last_eb_blk,
422 	.eo_get_last_eb_blk	= ocfs2_refcount_tree_get_last_eb_blk,
423 	.eo_update_clusters	= ocfs2_refcount_tree_update_clusters,
424 	.eo_fill_root_el	= ocfs2_refcount_tree_fill_root_el,
425 	.eo_extent_contig	= ocfs2_refcount_tree_extent_contig,
426 };
427 
428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
429 				     struct ocfs2_caching_info *ci,
430 				     struct buffer_head *bh,
431 				     ocfs2_journal_access_func access,
432 				     void *obj,
433 				     const struct ocfs2_extent_tree_operations *ops)
434 {
435 	et->et_ops = ops;
436 	et->et_root_bh = bh;
437 	et->et_ci = ci;
438 	et->et_root_journal_access = access;
439 	if (!obj)
440 		obj = (void *)bh->b_data;
441 	et->et_object = obj;
442 	et->et_dealloc = NULL;
443 
444 	et->et_ops->eo_fill_root_el(et);
445 	if (!et->et_ops->eo_fill_max_leaf_clusters)
446 		et->et_max_leaf_clusters = 0;
447 	else
448 		et->et_ops->eo_fill_max_leaf_clusters(et);
449 }
450 
451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
452 				   struct ocfs2_caching_info *ci,
453 				   struct buffer_head *bh)
454 {
455 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
456 				 NULL, &ocfs2_dinode_et_ops);
457 }
458 
459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
460 				       struct ocfs2_caching_info *ci,
461 				       struct buffer_head *bh)
462 {
463 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
464 				 NULL, &ocfs2_xattr_tree_et_ops);
465 }
466 
467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
468 					struct ocfs2_caching_info *ci,
469 					struct ocfs2_xattr_value_buf *vb)
470 {
471 	__ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
472 				 &ocfs2_xattr_value_et_ops);
473 }
474 
475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
476 				    struct ocfs2_caching_info *ci,
477 				    struct buffer_head *bh)
478 {
479 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
480 				 NULL, &ocfs2_dx_root_et_ops);
481 }
482 
483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
484 				     struct ocfs2_caching_info *ci,
485 				     struct buffer_head *bh)
486 {
487 	__ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
488 				 NULL, &ocfs2_refcount_tree_et_ops);
489 }
490 
491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
492 					    u64 new_last_eb_blk)
493 {
494 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
495 }
496 
497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
498 {
499 	return et->et_ops->eo_get_last_eb_blk(et);
500 }
501 
502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
503 					    u32 clusters)
504 {
505 	et->et_ops->eo_update_clusters(et, clusters);
506 }
507 
508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
509 					      struct ocfs2_extent_rec *rec)
510 {
511 	if (et->et_ops->eo_extent_map_insert)
512 		et->et_ops->eo_extent_map_insert(et, rec);
513 }
514 
515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
516 						u32 clusters)
517 {
518 	if (et->et_ops->eo_extent_map_truncate)
519 		et->et_ops->eo_extent_map_truncate(et, clusters);
520 }
521 
522 static inline int ocfs2_et_root_journal_access(handle_t *handle,
523 					       struct ocfs2_extent_tree *et,
524 					       int type)
525 {
526 	return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
527 					  type);
528 }
529 
530 static inline enum ocfs2_contig_type
531 	ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
532 			       struct ocfs2_extent_rec *rec,
533 			       struct ocfs2_extent_rec *insert_rec)
534 {
535 	if (et->et_ops->eo_extent_contig)
536 		return et->et_ops->eo_extent_contig(et, rec, insert_rec);
537 
538 	return ocfs2_extent_rec_contig(
539 				ocfs2_metadata_cache_get_super(et->et_ci),
540 				rec, insert_rec);
541 }
542 
543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
544 					struct ocfs2_extent_rec *rec)
545 {
546 	int ret = 0;
547 
548 	if (et->et_ops->eo_insert_check)
549 		ret = et->et_ops->eo_insert_check(et, rec);
550 	return ret;
551 }
552 
553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
554 {
555 	int ret = 0;
556 
557 	if (et->et_ops->eo_sanity_check)
558 		ret = et->et_ops->eo_sanity_check(et);
559 	return ret;
560 }
561 
562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
563 					 struct ocfs2_extent_block *eb);
564 static void ocfs2_adjust_rightmost_records(handle_t *handle,
565 					   struct ocfs2_extent_tree *et,
566 					   struct ocfs2_path *path,
567 					   struct ocfs2_extent_rec *insert_rec);
568 /*
569  * Reset the actual path elements so that we can re-use the structure
570  * to build another path. Generally, this involves freeing the buffer
571  * heads.
572  */
573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
574 {
575 	int i, start = 0, depth = 0;
576 	struct ocfs2_path_item *node;
577 
578 	if (keep_root)
579 		start = 1;
580 
581 	for(i = start; i < path_num_items(path); i++) {
582 		node = &path->p_node[i];
583 
584 		brelse(node->bh);
585 		node->bh = NULL;
586 		node->el = NULL;
587 	}
588 
589 	/*
590 	 * Tree depth may change during truncate, or insert. If we're
591 	 * keeping the root extent list, then make sure that our path
592 	 * structure reflects the proper depth.
593 	 */
594 	if (keep_root)
595 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
596 	else
597 		path_root_access(path) = NULL;
598 
599 	path->p_tree_depth = depth;
600 }
601 
602 void ocfs2_free_path(struct ocfs2_path *path)
603 {
604 	if (path) {
605 		ocfs2_reinit_path(path, 0);
606 		kfree(path);
607 	}
608 }
609 
610 /*
611  * All the elements of src into dest. After this call, src could be freed
612  * without affecting dest.
613  *
614  * Both paths should have the same root. Any non-root elements of dest
615  * will be freed.
616  */
617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
618 {
619 	int i;
620 
621 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
622 	BUG_ON(path_root_el(dest) != path_root_el(src));
623 	BUG_ON(path_root_access(dest) != path_root_access(src));
624 
625 	ocfs2_reinit_path(dest, 1);
626 
627 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
628 		dest->p_node[i].bh = src->p_node[i].bh;
629 		dest->p_node[i].el = src->p_node[i].el;
630 
631 		if (dest->p_node[i].bh)
632 			get_bh(dest->p_node[i].bh);
633 	}
634 }
635 
636 /*
637  * Make the *dest path the same as src and re-initialize src path to
638  * have a root only.
639  */
640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
641 {
642 	int i;
643 
644 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
645 	BUG_ON(path_root_access(dest) != path_root_access(src));
646 
647 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
648 		brelse(dest->p_node[i].bh);
649 
650 		dest->p_node[i].bh = src->p_node[i].bh;
651 		dest->p_node[i].el = src->p_node[i].el;
652 
653 		src->p_node[i].bh = NULL;
654 		src->p_node[i].el = NULL;
655 	}
656 }
657 
658 /*
659  * Insert an extent block at given index.
660  *
661  * This will not take an additional reference on eb_bh.
662  */
663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
664 					struct buffer_head *eb_bh)
665 {
666 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
667 
668 	/*
669 	 * Right now, no root bh is an extent block, so this helps
670 	 * catch code errors with dinode trees. The assertion can be
671 	 * safely removed if we ever need to insert extent block
672 	 * structures at the root.
673 	 */
674 	BUG_ON(index == 0);
675 
676 	path->p_node[index].bh = eb_bh;
677 	path->p_node[index].el = &eb->h_list;
678 }
679 
680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
681 					 struct ocfs2_extent_list *root_el,
682 					 ocfs2_journal_access_func access)
683 {
684 	struct ocfs2_path *path;
685 
686 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
687 
688 	path = kzalloc(sizeof(*path), GFP_NOFS);
689 	if (path) {
690 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
691 		get_bh(root_bh);
692 		path_root_bh(path) = root_bh;
693 		path_root_el(path) = root_el;
694 		path_root_access(path) = access;
695 	}
696 
697 	return path;
698 }
699 
700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
701 {
702 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
703 			      path_root_access(path));
704 }
705 
706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
707 {
708 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
709 			      et->et_root_journal_access);
710 }
711 
712 /*
713  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
714  * otherwise it's the root_access function.
715  *
716  * I don't like the way this function's name looks next to
717  * ocfs2_journal_access_path(), but I don't have a better one.
718  */
719 int ocfs2_path_bh_journal_access(handle_t *handle,
720 				 struct ocfs2_caching_info *ci,
721 				 struct ocfs2_path *path,
722 				 int idx)
723 {
724 	ocfs2_journal_access_func access = path_root_access(path);
725 
726 	if (!access)
727 		access = ocfs2_journal_access;
728 
729 	if (idx)
730 		access = ocfs2_journal_access_eb;
731 
732 	return access(handle, ci, path->p_node[idx].bh,
733 		      OCFS2_JOURNAL_ACCESS_WRITE);
734 }
735 
736 /*
737  * Convenience function to journal all components in a path.
738  */
739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
740 			      handle_t *handle,
741 			      struct ocfs2_path *path)
742 {
743 	int i, ret = 0;
744 
745 	if (!path)
746 		goto out;
747 
748 	for(i = 0; i < path_num_items(path); i++) {
749 		ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
750 		if (ret < 0) {
751 			mlog_errno(ret);
752 			goto out;
753 		}
754 	}
755 
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Return the index of the extent record which contains cluster #v_cluster.
762  * -1 is returned if it was not found.
763  *
764  * Should work fine on interior and exterior nodes.
765  */
766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
767 {
768 	int ret = -1;
769 	int i;
770 	struct ocfs2_extent_rec *rec;
771 	u32 rec_end, rec_start, clusters;
772 
773 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
774 		rec = &el->l_recs[i];
775 
776 		rec_start = le32_to_cpu(rec->e_cpos);
777 		clusters = ocfs2_rec_clusters(el, rec);
778 
779 		rec_end = rec_start + clusters;
780 
781 		if (v_cluster >= rec_start && v_cluster < rec_end) {
782 			ret = i;
783 			break;
784 		}
785 	}
786 
787 	return ret;
788 }
789 
790 /*
791  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
792  * ocfs2_extent_rec_contig only work properly against leaf nodes!
793  */
794 static int ocfs2_block_extent_contig(struct super_block *sb,
795 				     struct ocfs2_extent_rec *ext,
796 				     u64 blkno)
797 {
798 	u64 blk_end = le64_to_cpu(ext->e_blkno);
799 
800 	blk_end += ocfs2_clusters_to_blocks(sb,
801 				    le16_to_cpu(ext->e_leaf_clusters));
802 
803 	return blkno == blk_end;
804 }
805 
806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
807 				  struct ocfs2_extent_rec *right)
808 {
809 	u32 left_range;
810 
811 	left_range = le32_to_cpu(left->e_cpos) +
812 		le16_to_cpu(left->e_leaf_clusters);
813 
814 	return (left_range == le32_to_cpu(right->e_cpos));
815 }
816 
817 static enum ocfs2_contig_type
818 	ocfs2_extent_rec_contig(struct super_block *sb,
819 				struct ocfs2_extent_rec *ext,
820 				struct ocfs2_extent_rec *insert_rec)
821 {
822 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
823 
824 	/*
825 	 * Refuse to coalesce extent records with different flag
826 	 * fields - we don't want to mix unwritten extents with user
827 	 * data.
828 	 */
829 	if (ext->e_flags != insert_rec->e_flags)
830 		return CONTIG_NONE;
831 
832 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
833 	    ocfs2_block_extent_contig(sb, ext, blkno))
834 			return CONTIG_RIGHT;
835 
836 	blkno = le64_to_cpu(ext->e_blkno);
837 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
838 	    ocfs2_block_extent_contig(sb, insert_rec, blkno))
839 		return CONTIG_LEFT;
840 
841 	return CONTIG_NONE;
842 }
843 
844 /*
845  * NOTE: We can have pretty much any combination of contiguousness and
846  * appending.
847  *
848  * The usefulness of APPEND_TAIL is more in that it lets us know that
849  * we'll have to update the path to that leaf.
850  */
851 enum ocfs2_append_type {
852 	APPEND_NONE = 0,
853 	APPEND_TAIL,
854 };
855 
856 enum ocfs2_split_type {
857 	SPLIT_NONE = 0,
858 	SPLIT_LEFT,
859 	SPLIT_RIGHT,
860 };
861 
862 struct ocfs2_insert_type {
863 	enum ocfs2_split_type	ins_split;
864 	enum ocfs2_append_type	ins_appending;
865 	enum ocfs2_contig_type	ins_contig;
866 	int			ins_contig_index;
867 	int			ins_tree_depth;
868 };
869 
870 struct ocfs2_merge_ctxt {
871 	enum ocfs2_contig_type	c_contig_type;
872 	int			c_has_empty_extent;
873 	int			c_split_covers_rec;
874 };
875 
876 static int ocfs2_validate_extent_block(struct super_block *sb,
877 				       struct buffer_head *bh)
878 {
879 	int rc;
880 	struct ocfs2_extent_block *eb =
881 		(struct ocfs2_extent_block *)bh->b_data;
882 
883 	trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
884 
885 	BUG_ON(!buffer_uptodate(bh));
886 
887 	/*
888 	 * If the ecc fails, we return the error but otherwise
889 	 * leave the filesystem running.  We know any error is
890 	 * local to this block.
891 	 */
892 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
893 	if (rc) {
894 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
895 		     (unsigned long long)bh->b_blocknr);
896 		return rc;
897 	}
898 
899 	/*
900 	 * Errors after here are fatal.
901 	 */
902 
903 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
904 		rc = ocfs2_error(sb,
905 				 "Extent block #%llu has bad signature %.*s\n",
906 				 (unsigned long long)bh->b_blocknr, 7,
907 				 eb->h_signature);
908 		goto bail;
909 	}
910 
911 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
912 		rc = ocfs2_error(sb,
913 				 "Extent block #%llu has an invalid h_blkno of %llu\n",
914 				 (unsigned long long)bh->b_blocknr,
915 				 (unsigned long long)le64_to_cpu(eb->h_blkno));
916 		goto bail;
917 	}
918 
919 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
920 		rc = ocfs2_error(sb,
921 				 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
922 				 (unsigned long long)bh->b_blocknr,
923 				 le32_to_cpu(eb->h_fs_generation));
924 bail:
925 	return rc;
926 }
927 
928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
929 			    struct buffer_head **bh)
930 {
931 	int rc;
932 	struct buffer_head *tmp = *bh;
933 
934 	rc = ocfs2_read_block(ci, eb_blkno, &tmp,
935 			      ocfs2_validate_extent_block);
936 
937 	/* If ocfs2_read_block() got us a new bh, pass it up. */
938 	if (!rc && !*bh)
939 		*bh = tmp;
940 
941 	return rc;
942 }
943 
944 
945 /*
946  * How many free extents have we got before we need more meta data?
947  */
948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
949 {
950 	int retval;
951 	struct ocfs2_extent_list *el = NULL;
952 	struct ocfs2_extent_block *eb;
953 	struct buffer_head *eb_bh = NULL;
954 	u64 last_eb_blk = 0;
955 
956 	el = et->et_root_el;
957 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
958 
959 	if (last_eb_blk) {
960 		retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
961 						 &eb_bh);
962 		if (retval < 0) {
963 			mlog_errno(retval);
964 			goto bail;
965 		}
966 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
967 		el = &eb->h_list;
968 	}
969 
970 	if (el->l_tree_depth != 0) {
971 		retval = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
972 				"Owner %llu has leaf extent block %llu with an invalid l_tree_depth of %u\n",
973 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
974 				(unsigned long long)last_eb_blk,
975 				le16_to_cpu(el->l_tree_depth));
976 		goto bail;
977 	}
978 
979 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
980 bail:
981 	brelse(eb_bh);
982 
983 	trace_ocfs2_num_free_extents(retval);
984 	return retval;
985 }
986 
987 /* expects array to already be allocated
988  *
989  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
990  * l_count for you
991  */
992 static int ocfs2_create_new_meta_bhs(handle_t *handle,
993 				     struct ocfs2_extent_tree *et,
994 				     int wanted,
995 				     struct ocfs2_alloc_context *meta_ac,
996 				     struct buffer_head *bhs[])
997 {
998 	int count, status, i;
999 	u16 suballoc_bit_start;
1000 	u32 num_got;
1001 	u64 suballoc_loc, first_blkno;
1002 	struct ocfs2_super *osb =
1003 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1004 	struct ocfs2_extent_block *eb;
1005 
1006 	count = 0;
1007 	while (count < wanted) {
1008 		status = ocfs2_claim_metadata(handle,
1009 					      meta_ac,
1010 					      wanted - count,
1011 					      &suballoc_loc,
1012 					      &suballoc_bit_start,
1013 					      &num_got,
1014 					      &first_blkno);
1015 		if (status < 0) {
1016 			mlog_errno(status);
1017 			goto bail;
1018 		}
1019 
1020 		for(i = count;  i < (num_got + count); i++) {
1021 			bhs[i] = sb_getblk(osb->sb, first_blkno);
1022 			if (bhs[i] == NULL) {
1023 				status = -ENOMEM;
1024 				mlog_errno(status);
1025 				goto bail;
1026 			}
1027 			ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1028 
1029 			status = ocfs2_journal_access_eb(handle, et->et_ci,
1030 							 bhs[i],
1031 							 OCFS2_JOURNAL_ACCESS_CREATE);
1032 			if (status < 0) {
1033 				mlog_errno(status);
1034 				goto bail;
1035 			}
1036 
1037 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1038 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1039 			/* Ok, setup the minimal stuff here. */
1040 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1041 			eb->h_blkno = cpu_to_le64(first_blkno);
1042 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1043 			eb->h_suballoc_slot =
1044 				cpu_to_le16(meta_ac->ac_alloc_slot);
1045 			eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1046 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1047 			eb->h_list.l_count =
1048 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1049 
1050 			suballoc_bit_start++;
1051 			first_blkno++;
1052 
1053 			/* We'll also be dirtied by the caller, so
1054 			 * this isn't absolutely necessary. */
1055 			ocfs2_journal_dirty(handle, bhs[i]);
1056 		}
1057 
1058 		count += num_got;
1059 	}
1060 
1061 	status = 0;
1062 bail:
1063 	if (status < 0) {
1064 		for(i = 0; i < wanted; i++) {
1065 			brelse(bhs[i]);
1066 			bhs[i] = NULL;
1067 		}
1068 	}
1069 	return status;
1070 }
1071 
1072 /*
1073  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1074  *
1075  * Returns the sum of the rightmost extent rec logical offset and
1076  * cluster count.
1077  *
1078  * ocfs2_add_branch() uses this to determine what logical cluster
1079  * value should be populated into the leftmost new branch records.
1080  *
1081  * ocfs2_shift_tree_depth() uses this to determine the # clusters
1082  * value for the new topmost tree record.
1083  */
1084 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
1085 {
1086 	int i;
1087 
1088 	i = le16_to_cpu(el->l_next_free_rec) - 1;
1089 
1090 	return le32_to_cpu(el->l_recs[i].e_cpos) +
1091 		ocfs2_rec_clusters(el, &el->l_recs[i]);
1092 }
1093 
1094 /*
1095  * Change range of the branches in the right most path according to the leaf
1096  * extent block's rightmost record.
1097  */
1098 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1099 					 struct ocfs2_extent_tree *et)
1100 {
1101 	int status;
1102 	struct ocfs2_path *path = NULL;
1103 	struct ocfs2_extent_list *el;
1104 	struct ocfs2_extent_rec *rec;
1105 
1106 	path = ocfs2_new_path_from_et(et);
1107 	if (!path) {
1108 		status = -ENOMEM;
1109 		return status;
1110 	}
1111 
1112 	status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1113 	if (status < 0) {
1114 		mlog_errno(status);
1115 		goto out;
1116 	}
1117 
1118 	status = ocfs2_extend_trans(handle, path_num_items(path));
1119 	if (status < 0) {
1120 		mlog_errno(status);
1121 		goto out;
1122 	}
1123 
1124 	status = ocfs2_journal_access_path(et->et_ci, handle, path);
1125 	if (status < 0) {
1126 		mlog_errno(status);
1127 		goto out;
1128 	}
1129 
1130 	el = path_leaf_el(path);
1131 	rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1132 
1133 	ocfs2_adjust_rightmost_records(handle, et, path, rec);
1134 
1135 out:
1136 	ocfs2_free_path(path);
1137 	return status;
1138 }
1139 
1140 /*
1141  * Add an entire tree branch to our inode. eb_bh is the extent block
1142  * to start at, if we don't want to start the branch at the root
1143  * structure.
1144  *
1145  * last_eb_bh is required as we have to update it's next_leaf pointer
1146  * for the new last extent block.
1147  *
1148  * the new branch will be 'empty' in the sense that every block will
1149  * contain a single record with cluster count == 0.
1150  */
1151 static int ocfs2_add_branch(handle_t *handle,
1152 			    struct ocfs2_extent_tree *et,
1153 			    struct buffer_head *eb_bh,
1154 			    struct buffer_head **last_eb_bh,
1155 			    struct ocfs2_alloc_context *meta_ac)
1156 {
1157 	int status, new_blocks, i, block_given = 0;
1158 	u64 next_blkno, new_last_eb_blk;
1159 	struct buffer_head *bh;
1160 	struct buffer_head **new_eb_bhs = NULL;
1161 	struct ocfs2_extent_block *eb;
1162 	struct ocfs2_extent_list  *eb_el;
1163 	struct ocfs2_extent_list  *el;
1164 	u32 new_cpos, root_end;
1165 
1166 	BUG_ON(!last_eb_bh || !*last_eb_bh);
1167 
1168 	if (eb_bh) {
1169 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1170 		el = &eb->h_list;
1171 	} else
1172 		el = et->et_root_el;
1173 
1174 	/* we never add a branch to a leaf. */
1175 	BUG_ON(!el->l_tree_depth);
1176 
1177 	new_blocks = le16_to_cpu(el->l_tree_depth);
1178 
1179 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1180 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1181 	root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1182 
1183 	/*
1184 	 * If there is a gap before the root end and the real end
1185 	 * of the righmost leaf block, we need to remove the gap
1186 	 * between new_cpos and root_end first so that the tree
1187 	 * is consistent after we add a new branch(it will start
1188 	 * from new_cpos).
1189 	 */
1190 	if (root_end > new_cpos) {
1191 		trace_ocfs2_adjust_rightmost_branch(
1192 			(unsigned long long)
1193 			ocfs2_metadata_cache_owner(et->et_ci),
1194 			root_end, new_cpos);
1195 
1196 		status = ocfs2_adjust_rightmost_branch(handle, et);
1197 		if (status) {
1198 			mlog_errno(status);
1199 			goto bail;
1200 		}
1201 	}
1202 
1203 	/* allocate the number of new eb blocks we need */
1204 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1205 			     GFP_KERNEL);
1206 	if (!new_eb_bhs) {
1207 		status = -ENOMEM;
1208 		mlog_errno(status);
1209 		goto bail;
1210 	}
1211 
1212 	/* Firstyly, try to reuse dealloc since we have already estimated how
1213 	 * many extent blocks we may use.
1214 	 */
1215 	if (!ocfs2_is_dealloc_empty(et)) {
1216 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1217 						      new_eb_bhs, new_blocks,
1218 						      &block_given);
1219 		if (status < 0) {
1220 			mlog_errno(status);
1221 			goto bail;
1222 		}
1223 	}
1224 
1225 	BUG_ON(block_given > new_blocks);
1226 
1227 	if (block_given < new_blocks) {
1228 		BUG_ON(!meta_ac);
1229 		status = ocfs2_create_new_meta_bhs(handle, et,
1230 						   new_blocks - block_given,
1231 						   meta_ac,
1232 						   &new_eb_bhs[block_given]);
1233 		if (status < 0) {
1234 			mlog_errno(status);
1235 			goto bail;
1236 		}
1237 	}
1238 
1239 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1240 	 * linked with the rest of the tree.
1241 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1242 	 *
1243 	 * when we leave the loop, new_last_eb_blk will point to the
1244 	 * newest leaf, and next_blkno will point to the topmost extent
1245 	 * block. */
1246 	next_blkno = new_last_eb_blk = 0;
1247 	for(i = 0; i < new_blocks; i++) {
1248 		bh = new_eb_bhs[i];
1249 		eb = (struct ocfs2_extent_block *) bh->b_data;
1250 		/* ocfs2_create_new_meta_bhs() should create it right! */
1251 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1252 		eb_el = &eb->h_list;
1253 
1254 		status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1255 						 OCFS2_JOURNAL_ACCESS_CREATE);
1256 		if (status < 0) {
1257 			mlog_errno(status);
1258 			goto bail;
1259 		}
1260 
1261 		eb->h_next_leaf_blk = 0;
1262 		eb_el->l_tree_depth = cpu_to_le16(i);
1263 		eb_el->l_next_free_rec = cpu_to_le16(1);
1264 		/*
1265 		 * This actually counts as an empty extent as
1266 		 * c_clusters == 0
1267 		 */
1268 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1269 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1270 		/*
1271 		 * eb_el isn't always an interior node, but even leaf
1272 		 * nodes want a zero'd flags and reserved field so
1273 		 * this gets the whole 32 bits regardless of use.
1274 		 */
1275 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1276 		if (!eb_el->l_tree_depth)
1277 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1278 
1279 		ocfs2_journal_dirty(handle, bh);
1280 		next_blkno = le64_to_cpu(eb->h_blkno);
1281 	}
1282 
1283 	/* This is a bit hairy. We want to update up to three blocks
1284 	 * here without leaving any of them in an inconsistent state
1285 	 * in case of error. We don't have to worry about
1286 	 * journal_dirty erroring as it won't unless we've aborted the
1287 	 * handle (in which case we would never be here) so reserving
1288 	 * the write with journal_access is all we need to do. */
1289 	status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1290 					 OCFS2_JOURNAL_ACCESS_WRITE);
1291 	if (status < 0) {
1292 		mlog_errno(status);
1293 		goto bail;
1294 	}
1295 	status = ocfs2_et_root_journal_access(handle, et,
1296 					      OCFS2_JOURNAL_ACCESS_WRITE);
1297 	if (status < 0) {
1298 		mlog_errno(status);
1299 		goto bail;
1300 	}
1301 	if (eb_bh) {
1302 		status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1303 						 OCFS2_JOURNAL_ACCESS_WRITE);
1304 		if (status < 0) {
1305 			mlog_errno(status);
1306 			goto bail;
1307 		}
1308 	}
1309 
1310 	/* Link the new branch into the rest of the tree (el will
1311 	 * either be on the root_bh, or the extent block passed in. */
1312 	i = le16_to_cpu(el->l_next_free_rec);
1313 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1314 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1315 	el->l_recs[i].e_int_clusters = 0;
1316 	le16_add_cpu(&el->l_next_free_rec, 1);
1317 
1318 	/* fe needs a new last extent block pointer, as does the
1319 	 * next_leaf on the previously last-extent-block. */
1320 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1321 
1322 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1323 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1324 
1325 	ocfs2_journal_dirty(handle, *last_eb_bh);
1326 	ocfs2_journal_dirty(handle, et->et_root_bh);
1327 	if (eb_bh)
1328 		ocfs2_journal_dirty(handle, eb_bh);
1329 
1330 	/*
1331 	 * Some callers want to track the rightmost leaf so pass it
1332 	 * back here.
1333 	 */
1334 	brelse(*last_eb_bh);
1335 	get_bh(new_eb_bhs[0]);
1336 	*last_eb_bh = new_eb_bhs[0];
1337 
1338 	status = 0;
1339 bail:
1340 	if (new_eb_bhs) {
1341 		for (i = 0; i < new_blocks; i++)
1342 			brelse(new_eb_bhs[i]);
1343 		kfree(new_eb_bhs);
1344 	}
1345 
1346 	return status;
1347 }
1348 
1349 /*
1350  * adds another level to the allocation tree.
1351  * returns back the new extent block so you can add a branch to it
1352  * after this call.
1353  */
1354 static int ocfs2_shift_tree_depth(handle_t *handle,
1355 				  struct ocfs2_extent_tree *et,
1356 				  struct ocfs2_alloc_context *meta_ac,
1357 				  struct buffer_head **ret_new_eb_bh)
1358 {
1359 	int status, i, block_given = 0;
1360 	u32 new_clusters;
1361 	struct buffer_head *new_eb_bh = NULL;
1362 	struct ocfs2_extent_block *eb;
1363 	struct ocfs2_extent_list  *root_el;
1364 	struct ocfs2_extent_list  *eb_el;
1365 
1366 	if (!ocfs2_is_dealloc_empty(et)) {
1367 		status = ocfs2_reuse_blk_from_dealloc(handle, et,
1368 						      &new_eb_bh, 1,
1369 						      &block_given);
1370 	} else if (meta_ac) {
1371 		status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1372 						   &new_eb_bh);
1373 
1374 	} else {
1375 		BUG();
1376 	}
1377 
1378 	if (status < 0) {
1379 		mlog_errno(status);
1380 		goto bail;
1381 	}
1382 
1383 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1384 	/* ocfs2_create_new_meta_bhs() should create it right! */
1385 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1386 
1387 	eb_el = &eb->h_list;
1388 	root_el = et->et_root_el;
1389 
1390 	status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1391 					 OCFS2_JOURNAL_ACCESS_CREATE);
1392 	if (status < 0) {
1393 		mlog_errno(status);
1394 		goto bail;
1395 	}
1396 
1397 	/* copy the root extent list data into the new extent block */
1398 	eb_el->l_tree_depth = root_el->l_tree_depth;
1399 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1400 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1401 		eb_el->l_recs[i] = root_el->l_recs[i];
1402 
1403 	ocfs2_journal_dirty(handle, new_eb_bh);
1404 
1405 	status = ocfs2_et_root_journal_access(handle, et,
1406 					      OCFS2_JOURNAL_ACCESS_WRITE);
1407 	if (status < 0) {
1408 		mlog_errno(status);
1409 		goto bail;
1410 	}
1411 
1412 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1413 
1414 	/* update root_bh now */
1415 	le16_add_cpu(&root_el->l_tree_depth, 1);
1416 	root_el->l_recs[0].e_cpos = 0;
1417 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1418 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1419 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1420 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1421 	root_el->l_next_free_rec = cpu_to_le16(1);
1422 
1423 	/* If this is our 1st tree depth shift, then last_eb_blk
1424 	 * becomes the allocated extent block */
1425 	if (root_el->l_tree_depth == cpu_to_le16(1))
1426 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1427 
1428 	ocfs2_journal_dirty(handle, et->et_root_bh);
1429 
1430 	*ret_new_eb_bh = new_eb_bh;
1431 	new_eb_bh = NULL;
1432 	status = 0;
1433 bail:
1434 	brelse(new_eb_bh);
1435 
1436 	return status;
1437 }
1438 
1439 /*
1440  * Should only be called when there is no space left in any of the
1441  * leaf nodes. What we want to do is find the lowest tree depth
1442  * non-leaf extent block with room for new records. There are three
1443  * valid results of this search:
1444  *
1445  * 1) a lowest extent block is found, then we pass it back in
1446  *    *lowest_eb_bh and return '0'
1447  *
1448  * 2) the search fails to find anything, but the root_el has room. We
1449  *    pass NULL back in *lowest_eb_bh, but still return '0'
1450  *
1451  * 3) the search fails to find anything AND the root_el is full, in
1452  *    which case we return > 0
1453  *
1454  * return status < 0 indicates an error.
1455  */
1456 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1457 				    struct buffer_head **target_bh)
1458 {
1459 	int status = 0, i;
1460 	u64 blkno;
1461 	struct ocfs2_extent_block *eb;
1462 	struct ocfs2_extent_list  *el;
1463 	struct buffer_head *bh = NULL;
1464 	struct buffer_head *lowest_bh = NULL;
1465 
1466 	*target_bh = NULL;
1467 
1468 	el = et->et_root_el;
1469 
1470 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1471 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1472 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1473 					"Owner %llu has empty extent list (next_free_rec == 0)\n",
1474 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1475 			goto bail;
1476 		}
1477 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1478 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1479 		if (!blkno) {
1480 			status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1481 					"Owner %llu has extent list where extent # %d has no physical block start\n",
1482 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1483 			goto bail;
1484 		}
1485 
1486 		brelse(bh);
1487 		bh = NULL;
1488 
1489 		status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1490 		if (status < 0) {
1491 			mlog_errno(status);
1492 			goto bail;
1493 		}
1494 
1495 		eb = (struct ocfs2_extent_block *) bh->b_data;
1496 		el = &eb->h_list;
1497 
1498 		if (le16_to_cpu(el->l_next_free_rec) <
1499 		    le16_to_cpu(el->l_count)) {
1500 			brelse(lowest_bh);
1501 			lowest_bh = bh;
1502 			get_bh(lowest_bh);
1503 		}
1504 	}
1505 
1506 	/* If we didn't find one and the fe doesn't have any room,
1507 	 * then return '1' */
1508 	el = et->et_root_el;
1509 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1510 		status = 1;
1511 
1512 	*target_bh = lowest_bh;
1513 bail:
1514 	brelse(bh);
1515 
1516 	return status;
1517 }
1518 
1519 /*
1520  * Grow a b-tree so that it has more records.
1521  *
1522  * We might shift the tree depth in which case existing paths should
1523  * be considered invalid.
1524  *
1525  * Tree depth after the grow is returned via *final_depth.
1526  *
1527  * *last_eb_bh will be updated by ocfs2_add_branch().
1528  */
1529 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1530 			   int *final_depth, struct buffer_head **last_eb_bh,
1531 			   struct ocfs2_alloc_context *meta_ac)
1532 {
1533 	int ret, shift;
1534 	struct ocfs2_extent_list *el = et->et_root_el;
1535 	int depth = le16_to_cpu(el->l_tree_depth);
1536 	struct buffer_head *bh = NULL;
1537 
1538 	BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1539 
1540 	shift = ocfs2_find_branch_target(et, &bh);
1541 	if (shift < 0) {
1542 		ret = shift;
1543 		mlog_errno(ret);
1544 		goto out;
1545 	}
1546 
1547 	/* We traveled all the way to the bottom of the allocation tree
1548 	 * and didn't find room for any more extents - we need to add
1549 	 * another tree level */
1550 	if (shift) {
1551 		BUG_ON(bh);
1552 		trace_ocfs2_grow_tree(
1553 			(unsigned long long)
1554 			ocfs2_metadata_cache_owner(et->et_ci),
1555 			depth);
1556 
1557 		/* ocfs2_shift_tree_depth will return us a buffer with
1558 		 * the new extent block (so we can pass that to
1559 		 * ocfs2_add_branch). */
1560 		ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1561 		if (ret < 0) {
1562 			mlog_errno(ret);
1563 			goto out;
1564 		}
1565 		depth++;
1566 		if (depth == 1) {
1567 			/*
1568 			 * Special case: we have room now if we shifted from
1569 			 * tree_depth 0, so no more work needs to be done.
1570 			 *
1571 			 * We won't be calling add_branch, so pass
1572 			 * back *last_eb_bh as the new leaf. At depth
1573 			 * zero, it should always be null so there's
1574 			 * no reason to brelse.
1575 			 */
1576 			BUG_ON(*last_eb_bh);
1577 			get_bh(bh);
1578 			*last_eb_bh = bh;
1579 			goto out;
1580 		}
1581 	}
1582 
1583 	/* call ocfs2_add_branch to add the final part of the tree with
1584 	 * the new data. */
1585 	ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1586 			       meta_ac);
1587 	if (ret < 0)
1588 		mlog_errno(ret);
1589 
1590 out:
1591 	if (final_depth)
1592 		*final_depth = depth;
1593 	brelse(bh);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * This function will discard the rightmost extent record.
1599  */
1600 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1601 {
1602 	int next_free = le16_to_cpu(el->l_next_free_rec);
1603 	int count = le16_to_cpu(el->l_count);
1604 	unsigned int num_bytes;
1605 
1606 	BUG_ON(!next_free);
1607 	/* This will cause us to go off the end of our extent list. */
1608 	BUG_ON(next_free >= count);
1609 
1610 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1611 
1612 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1613 }
1614 
1615 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1616 			      struct ocfs2_extent_rec *insert_rec)
1617 {
1618 	int i, insert_index, next_free, has_empty, num_bytes;
1619 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1620 	struct ocfs2_extent_rec *rec;
1621 
1622 	next_free = le16_to_cpu(el->l_next_free_rec);
1623 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1624 
1625 	BUG_ON(!next_free);
1626 
1627 	/* The tree code before us didn't allow enough room in the leaf. */
1628 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1629 
1630 	/*
1631 	 * The easiest way to approach this is to just remove the
1632 	 * empty extent and temporarily decrement next_free.
1633 	 */
1634 	if (has_empty) {
1635 		/*
1636 		 * If next_free was 1 (only an empty extent), this
1637 		 * loop won't execute, which is fine. We still want
1638 		 * the decrement above to happen.
1639 		 */
1640 		for(i = 0; i < (next_free - 1); i++)
1641 			el->l_recs[i] = el->l_recs[i+1];
1642 
1643 		next_free--;
1644 	}
1645 
1646 	/*
1647 	 * Figure out what the new record index should be.
1648 	 */
1649 	for(i = 0; i < next_free; i++) {
1650 		rec = &el->l_recs[i];
1651 
1652 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1653 			break;
1654 	}
1655 	insert_index = i;
1656 
1657 	trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1658 				has_empty, next_free,
1659 				le16_to_cpu(el->l_count));
1660 
1661 	BUG_ON(insert_index < 0);
1662 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1663 	BUG_ON(insert_index > next_free);
1664 
1665 	/*
1666 	 * No need to memmove if we're just adding to the tail.
1667 	 */
1668 	if (insert_index != next_free) {
1669 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1670 
1671 		num_bytes = next_free - insert_index;
1672 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1673 		memmove(&el->l_recs[insert_index + 1],
1674 			&el->l_recs[insert_index],
1675 			num_bytes);
1676 	}
1677 
1678 	/*
1679 	 * Either we had an empty extent, and need to re-increment or
1680 	 * there was no empty extent on a non full rightmost leaf node,
1681 	 * in which case we still need to increment.
1682 	 */
1683 	next_free++;
1684 	el->l_next_free_rec = cpu_to_le16(next_free);
1685 	/*
1686 	 * Make sure none of the math above just messed up our tree.
1687 	 */
1688 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1689 
1690 	el->l_recs[insert_index] = *insert_rec;
1691 
1692 }
1693 
1694 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1695 {
1696 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1697 
1698 	BUG_ON(num_recs == 0);
1699 
1700 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1701 		num_recs--;
1702 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1703 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1704 		memset(&el->l_recs[num_recs], 0,
1705 		       sizeof(struct ocfs2_extent_rec));
1706 		el->l_next_free_rec = cpu_to_le16(num_recs);
1707 	}
1708 }
1709 
1710 /*
1711  * Create an empty extent record .
1712  *
1713  * l_next_free_rec may be updated.
1714  *
1715  * If an empty extent already exists do nothing.
1716  */
1717 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1718 {
1719 	int next_free = le16_to_cpu(el->l_next_free_rec);
1720 
1721 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1722 
1723 	if (next_free == 0)
1724 		goto set_and_inc;
1725 
1726 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1727 		return;
1728 
1729 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1730 			"Asked to create an empty extent in a full list:\n"
1731 			"count = %u, tree depth = %u",
1732 			le16_to_cpu(el->l_count),
1733 			le16_to_cpu(el->l_tree_depth));
1734 
1735 	ocfs2_shift_records_right(el);
1736 
1737 set_and_inc:
1738 	le16_add_cpu(&el->l_next_free_rec, 1);
1739 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1740 }
1741 
1742 /*
1743  * For a rotation which involves two leaf nodes, the "root node" is
1744  * the lowest level tree node which contains a path to both leafs. This
1745  * resulting set of information can be used to form a complete "subtree"
1746  *
1747  * This function is passed two full paths from the dinode down to a
1748  * pair of adjacent leaves. It's task is to figure out which path
1749  * index contains the subtree root - this can be the root index itself
1750  * in a worst-case rotation.
1751  *
1752  * The array index of the subtree root is passed back.
1753  */
1754 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1755 			    struct ocfs2_path *left,
1756 			    struct ocfs2_path *right)
1757 {
1758 	int i = 0;
1759 
1760 	/*
1761 	 * Check that the caller passed in two paths from the same tree.
1762 	 */
1763 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1764 
1765 	do {
1766 		i++;
1767 
1768 		/*
1769 		 * The caller didn't pass two adjacent paths.
1770 		 */
1771 		mlog_bug_on_msg(i > left->p_tree_depth,
1772 				"Owner %llu, left depth %u, right depth %u\n"
1773 				"left leaf blk %llu, right leaf blk %llu\n",
1774 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1775 				left->p_tree_depth, right->p_tree_depth,
1776 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1777 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1778 	} while (left->p_node[i].bh->b_blocknr ==
1779 		 right->p_node[i].bh->b_blocknr);
1780 
1781 	return i - 1;
1782 }
1783 
1784 typedef void (path_insert_t)(void *, struct buffer_head *);
1785 
1786 /*
1787  * Traverse a btree path in search of cpos, starting at root_el.
1788  *
1789  * This code can be called with a cpos larger than the tree, in which
1790  * case it will return the rightmost path.
1791  */
1792 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1793 			     struct ocfs2_extent_list *root_el, u32 cpos,
1794 			     path_insert_t *func, void *data)
1795 {
1796 	int i, ret = 0;
1797 	u32 range;
1798 	u64 blkno;
1799 	struct buffer_head *bh = NULL;
1800 	struct ocfs2_extent_block *eb;
1801 	struct ocfs2_extent_list *el;
1802 	struct ocfs2_extent_rec *rec;
1803 
1804 	el = root_el;
1805 	while (el->l_tree_depth) {
1806 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1807 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1808 				    "Owner %llu has empty extent list at depth %u\n",
1809 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1810 				    le16_to_cpu(el->l_tree_depth));
1811 			ret = -EROFS;
1812 			goto out;
1813 
1814 		}
1815 
1816 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1817 			rec = &el->l_recs[i];
1818 
1819 			/*
1820 			 * In the case that cpos is off the allocation
1821 			 * tree, this should just wind up returning the
1822 			 * rightmost record.
1823 			 */
1824 			range = le32_to_cpu(rec->e_cpos) +
1825 				ocfs2_rec_clusters(el, rec);
1826 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1827 			    break;
1828 		}
1829 
1830 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1831 		if (blkno == 0) {
1832 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1833 				    "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1834 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1835 				    le16_to_cpu(el->l_tree_depth), i);
1836 			ret = -EROFS;
1837 			goto out;
1838 		}
1839 
1840 		brelse(bh);
1841 		bh = NULL;
1842 		ret = ocfs2_read_extent_block(ci, blkno, &bh);
1843 		if (ret) {
1844 			mlog_errno(ret);
1845 			goto out;
1846 		}
1847 
1848 		eb = (struct ocfs2_extent_block *) bh->b_data;
1849 		el = &eb->h_list;
1850 
1851 		if (le16_to_cpu(el->l_next_free_rec) >
1852 		    le16_to_cpu(el->l_count)) {
1853 			ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1854 				    "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1855 				    (unsigned long long)ocfs2_metadata_cache_owner(ci),
1856 				    (unsigned long long)bh->b_blocknr,
1857 				    le16_to_cpu(el->l_next_free_rec),
1858 				    le16_to_cpu(el->l_count));
1859 			ret = -EROFS;
1860 			goto out;
1861 		}
1862 
1863 		if (func)
1864 			func(data, bh);
1865 	}
1866 
1867 out:
1868 	/*
1869 	 * Catch any trailing bh that the loop didn't handle.
1870 	 */
1871 	brelse(bh);
1872 
1873 	return ret;
1874 }
1875 
1876 /*
1877  * Given an initialized path (that is, it has a valid root extent
1878  * list), this function will traverse the btree in search of the path
1879  * which would contain cpos.
1880  *
1881  * The path traveled is recorded in the path structure.
1882  *
1883  * Note that this will not do any comparisons on leaf node extent
1884  * records, so it will work fine in the case that we just added a tree
1885  * branch.
1886  */
1887 struct find_path_data {
1888 	int index;
1889 	struct ocfs2_path *path;
1890 };
1891 static void find_path_ins(void *data, struct buffer_head *bh)
1892 {
1893 	struct find_path_data *fp = data;
1894 
1895 	get_bh(bh);
1896 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1897 	fp->index++;
1898 }
1899 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1900 		    struct ocfs2_path *path, u32 cpos)
1901 {
1902 	struct find_path_data data;
1903 
1904 	data.index = 1;
1905 	data.path = path;
1906 	return __ocfs2_find_path(ci, path_root_el(path), cpos,
1907 				 find_path_ins, &data);
1908 }
1909 
1910 static void find_leaf_ins(void *data, struct buffer_head *bh)
1911 {
1912 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1913 	struct ocfs2_extent_list *el = &eb->h_list;
1914 	struct buffer_head **ret = data;
1915 
1916 	/* We want to retain only the leaf block. */
1917 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1918 		get_bh(bh);
1919 		*ret = bh;
1920 	}
1921 }
1922 /*
1923  * Find the leaf block in the tree which would contain cpos. No
1924  * checking of the actual leaf is done.
1925  *
1926  * Some paths want to call this instead of allocating a path structure
1927  * and calling ocfs2_find_path().
1928  *
1929  * This function doesn't handle non btree extent lists.
1930  */
1931 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1932 		    struct ocfs2_extent_list *root_el, u32 cpos,
1933 		    struct buffer_head **leaf_bh)
1934 {
1935 	int ret;
1936 	struct buffer_head *bh = NULL;
1937 
1938 	ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1939 	if (ret) {
1940 		mlog_errno(ret);
1941 		goto out;
1942 	}
1943 
1944 	*leaf_bh = bh;
1945 out:
1946 	return ret;
1947 }
1948 
1949 /*
1950  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1951  *
1952  * Basically, we've moved stuff around at the bottom of the tree and
1953  * we need to fix up the extent records above the changes to reflect
1954  * the new changes.
1955  *
1956  * left_rec: the record on the left.
1957  * right_rec: the record to the right of left_rec
1958  * right_child_el: is the child list pointed to by right_rec
1959  *
1960  * By definition, this only works on interior nodes.
1961  */
1962 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1963 				  struct ocfs2_extent_rec *right_rec,
1964 				  struct ocfs2_extent_list *right_child_el)
1965 {
1966 	u32 left_clusters, right_end;
1967 
1968 	/*
1969 	 * Interior nodes never have holes. Their cpos is the cpos of
1970 	 * the leftmost record in their child list. Their cluster
1971 	 * count covers the full theoretical range of their child list
1972 	 * - the range between their cpos and the cpos of the record
1973 	 * immediately to their right.
1974 	 */
1975 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1976 	if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1977 		BUG_ON(right_child_el->l_tree_depth);
1978 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1979 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1980 	}
1981 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1982 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1983 
1984 	/*
1985 	 * Calculate the rightmost cluster count boundary before
1986 	 * moving cpos - we will need to adjust clusters after
1987 	 * updating e_cpos to keep the same highest cluster count.
1988 	 */
1989 	right_end = le32_to_cpu(right_rec->e_cpos);
1990 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1991 
1992 	right_rec->e_cpos = left_rec->e_cpos;
1993 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1994 
1995 	right_end -= le32_to_cpu(right_rec->e_cpos);
1996 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1997 }
1998 
1999 /*
2000  * Adjust the adjacent root node records involved in a
2001  * rotation. left_el_blkno is passed in as a key so that we can easily
2002  * find it's index in the root list.
2003  */
2004 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2005 				      struct ocfs2_extent_list *left_el,
2006 				      struct ocfs2_extent_list *right_el,
2007 				      u64 left_el_blkno)
2008 {
2009 	int i;
2010 
2011 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2012 	       le16_to_cpu(left_el->l_tree_depth));
2013 
2014 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2015 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2016 			break;
2017 	}
2018 
2019 	/*
2020 	 * The path walking code should have never returned a root and
2021 	 * two paths which are not adjacent.
2022 	 */
2023 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2024 
2025 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2026 				      &root_el->l_recs[i + 1], right_el);
2027 }
2028 
2029 /*
2030  * We've changed a leaf block (in right_path) and need to reflect that
2031  * change back up the subtree.
2032  *
2033  * This happens in multiple places:
2034  *   - When we've moved an extent record from the left path leaf to the right
2035  *     path leaf to make room for an empty extent in the left path leaf.
2036  *   - When our insert into the right path leaf is at the leftmost edge
2037  *     and requires an update of the path immediately to it's left. This
2038  *     can occur at the end of some types of rotation and appending inserts.
2039  *   - When we've adjusted the last extent record in the left path leaf and the
2040  *     1st extent record in the right path leaf during cross extent block merge.
2041  */
2042 static void ocfs2_complete_edge_insert(handle_t *handle,
2043 				       struct ocfs2_path *left_path,
2044 				       struct ocfs2_path *right_path,
2045 				       int subtree_index)
2046 {
2047 	int i, idx;
2048 	struct ocfs2_extent_list *el, *left_el, *right_el;
2049 	struct ocfs2_extent_rec *left_rec, *right_rec;
2050 	struct buffer_head *root_bh;
2051 
2052 	/*
2053 	 * Update the counts and position values within all the
2054 	 * interior nodes to reflect the leaf rotation we just did.
2055 	 *
2056 	 * The root node is handled below the loop.
2057 	 *
2058 	 * We begin the loop with right_el and left_el pointing to the
2059 	 * leaf lists and work our way up.
2060 	 *
2061 	 * NOTE: within this loop, left_el and right_el always refer
2062 	 * to the *child* lists.
2063 	 */
2064 	left_el = path_leaf_el(left_path);
2065 	right_el = path_leaf_el(right_path);
2066 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2067 		trace_ocfs2_complete_edge_insert(i);
2068 
2069 		/*
2070 		 * One nice property of knowing that all of these
2071 		 * nodes are below the root is that we only deal with
2072 		 * the leftmost right node record and the rightmost
2073 		 * left node record.
2074 		 */
2075 		el = left_path->p_node[i].el;
2076 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2077 		left_rec = &el->l_recs[idx];
2078 
2079 		el = right_path->p_node[i].el;
2080 		right_rec = &el->l_recs[0];
2081 
2082 		ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2083 
2084 		ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2085 		ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2086 
2087 		/*
2088 		 * Setup our list pointers now so that the current
2089 		 * parents become children in the next iteration.
2090 		 */
2091 		left_el = left_path->p_node[i].el;
2092 		right_el = right_path->p_node[i].el;
2093 	}
2094 
2095 	/*
2096 	 * At the root node, adjust the two adjacent records which
2097 	 * begin our path to the leaves.
2098 	 */
2099 
2100 	el = left_path->p_node[subtree_index].el;
2101 	left_el = left_path->p_node[subtree_index + 1].el;
2102 	right_el = right_path->p_node[subtree_index + 1].el;
2103 
2104 	ocfs2_adjust_root_records(el, left_el, right_el,
2105 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
2106 
2107 	root_bh = left_path->p_node[subtree_index].bh;
2108 
2109 	ocfs2_journal_dirty(handle, root_bh);
2110 }
2111 
2112 static int ocfs2_rotate_subtree_right(handle_t *handle,
2113 				      struct ocfs2_extent_tree *et,
2114 				      struct ocfs2_path *left_path,
2115 				      struct ocfs2_path *right_path,
2116 				      int subtree_index)
2117 {
2118 	int ret, i;
2119 	struct buffer_head *right_leaf_bh;
2120 	struct buffer_head *left_leaf_bh = NULL;
2121 	struct buffer_head *root_bh;
2122 	struct ocfs2_extent_list *right_el, *left_el;
2123 	struct ocfs2_extent_rec move_rec;
2124 
2125 	left_leaf_bh = path_leaf_bh(left_path);
2126 	left_el = path_leaf_el(left_path);
2127 
2128 	if (left_el->l_next_free_rec != left_el->l_count) {
2129 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2130 			    "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2131 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2132 			    (unsigned long long)left_leaf_bh->b_blocknr,
2133 			    le16_to_cpu(left_el->l_next_free_rec));
2134 		return -EROFS;
2135 	}
2136 
2137 	/*
2138 	 * This extent block may already have an empty record, so we
2139 	 * return early if so.
2140 	 */
2141 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2142 		return 0;
2143 
2144 	root_bh = left_path->p_node[subtree_index].bh;
2145 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2146 
2147 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2148 					   subtree_index);
2149 	if (ret) {
2150 		mlog_errno(ret);
2151 		goto out;
2152 	}
2153 
2154 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2155 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2156 						   right_path, i);
2157 		if (ret) {
2158 			mlog_errno(ret);
2159 			goto out;
2160 		}
2161 
2162 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2163 						   left_path, i);
2164 		if (ret) {
2165 			mlog_errno(ret);
2166 			goto out;
2167 		}
2168 	}
2169 
2170 	right_leaf_bh = path_leaf_bh(right_path);
2171 	right_el = path_leaf_el(right_path);
2172 
2173 	/* This is a code error, not a disk corruption. */
2174 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2175 			"because rightmost leaf block %llu is empty\n",
2176 			(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2177 			(unsigned long long)right_leaf_bh->b_blocknr);
2178 
2179 	ocfs2_create_empty_extent(right_el);
2180 
2181 	ocfs2_journal_dirty(handle, right_leaf_bh);
2182 
2183 	/* Do the copy now. */
2184 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2185 	move_rec = left_el->l_recs[i];
2186 	right_el->l_recs[0] = move_rec;
2187 
2188 	/*
2189 	 * Clear out the record we just copied and shift everything
2190 	 * over, leaving an empty extent in the left leaf.
2191 	 *
2192 	 * We temporarily subtract from next_free_rec so that the
2193 	 * shift will lose the tail record (which is now defunct).
2194 	 */
2195 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2196 	ocfs2_shift_records_right(left_el);
2197 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2198 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2199 
2200 	ocfs2_journal_dirty(handle, left_leaf_bh);
2201 
2202 	ocfs2_complete_edge_insert(handle, left_path, right_path,
2203 				   subtree_index);
2204 
2205 out:
2206 	return ret;
2207 }
2208 
2209 /*
2210  * Given a full path, determine what cpos value would return us a path
2211  * containing the leaf immediately to the left of the current one.
2212  *
2213  * Will return zero if the path passed in is already the leftmost path.
2214  */
2215 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2216 				  struct ocfs2_path *path, u32 *cpos)
2217 {
2218 	int i, j, ret = 0;
2219 	u64 blkno;
2220 	struct ocfs2_extent_list *el;
2221 
2222 	BUG_ON(path->p_tree_depth == 0);
2223 
2224 	*cpos = 0;
2225 
2226 	blkno = path_leaf_bh(path)->b_blocknr;
2227 
2228 	/* Start at the tree node just above the leaf and work our way up. */
2229 	i = path->p_tree_depth - 1;
2230 	while (i >= 0) {
2231 		el = path->p_node[i].el;
2232 
2233 		/*
2234 		 * Find the extent record just before the one in our
2235 		 * path.
2236 		 */
2237 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2238 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2239 				if (j == 0) {
2240 					if (i == 0) {
2241 						/*
2242 						 * We've determined that the
2243 						 * path specified is already
2244 						 * the leftmost one - return a
2245 						 * cpos of zero.
2246 						 */
2247 						goto out;
2248 					}
2249 					/*
2250 					 * The leftmost record points to our
2251 					 * leaf - we need to travel up the
2252 					 * tree one level.
2253 					 */
2254 					goto next_node;
2255 				}
2256 
2257 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2258 				*cpos = *cpos + ocfs2_rec_clusters(el,
2259 							   &el->l_recs[j - 1]);
2260 				*cpos = *cpos - 1;
2261 				goto out;
2262 			}
2263 		}
2264 
2265 		/*
2266 		 * If we got here, we never found a valid node where
2267 		 * the tree indicated one should be.
2268 		 */
2269 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2270 			    (unsigned long long)blkno);
2271 		ret = -EROFS;
2272 		goto out;
2273 
2274 next_node:
2275 		blkno = path->p_node[i].bh->b_blocknr;
2276 		i--;
2277 	}
2278 
2279 out:
2280 	return ret;
2281 }
2282 
2283 /*
2284  * Extend the transaction by enough credits to complete the rotation,
2285  * and still leave at least the original number of credits allocated
2286  * to this transaction.
2287  */
2288 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2289 					   int op_credits,
2290 					   struct ocfs2_path *path)
2291 {
2292 	int ret = 0;
2293 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2294 
2295 	if (jbd2_handle_buffer_credits(handle) < credits)
2296 		ret = ocfs2_extend_trans(handle,
2297 				credits - jbd2_handle_buffer_credits(handle));
2298 
2299 	return ret;
2300 }
2301 
2302 /*
2303  * Trap the case where we're inserting into the theoretical range past
2304  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2305  * whose cpos is less than ours into the right leaf.
2306  *
2307  * It's only necessary to look at the rightmost record of the left
2308  * leaf because the logic that calls us should ensure that the
2309  * theoretical ranges in the path components above the leaves are
2310  * correct.
2311  */
2312 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2313 						 u32 insert_cpos)
2314 {
2315 	struct ocfs2_extent_list *left_el;
2316 	struct ocfs2_extent_rec *rec;
2317 	int next_free;
2318 
2319 	left_el = path_leaf_el(left_path);
2320 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2321 	rec = &left_el->l_recs[next_free - 1];
2322 
2323 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2324 		return 1;
2325 	return 0;
2326 }
2327 
2328 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2329 {
2330 	int next_free = le16_to_cpu(el->l_next_free_rec);
2331 	unsigned int range;
2332 	struct ocfs2_extent_rec *rec;
2333 
2334 	if (next_free == 0)
2335 		return 0;
2336 
2337 	rec = &el->l_recs[0];
2338 	if (ocfs2_is_empty_extent(rec)) {
2339 		/* Empty list. */
2340 		if (next_free == 1)
2341 			return 0;
2342 		rec = &el->l_recs[1];
2343 	}
2344 
2345 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2346 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2347 		return 1;
2348 	return 0;
2349 }
2350 
2351 /*
2352  * Rotate all the records in a btree right one record, starting at insert_cpos.
2353  *
2354  * The path to the rightmost leaf should be passed in.
2355  *
2356  * The array is assumed to be large enough to hold an entire path (tree depth).
2357  *
2358  * Upon successful return from this function:
2359  *
2360  * - The 'right_path' array will contain a path to the leaf block
2361  *   whose range contains e_cpos.
2362  * - That leaf block will have a single empty extent in list index 0.
2363  * - In the case that the rotation requires a post-insert update,
2364  *   *ret_left_path will contain a valid path which can be passed to
2365  *   ocfs2_insert_path().
2366  */
2367 static int ocfs2_rotate_tree_right(handle_t *handle,
2368 				   struct ocfs2_extent_tree *et,
2369 				   enum ocfs2_split_type split,
2370 				   u32 insert_cpos,
2371 				   struct ocfs2_path *right_path,
2372 				   struct ocfs2_path **ret_left_path)
2373 {
2374 	int ret, start, orig_credits = jbd2_handle_buffer_credits(handle);
2375 	u32 cpos;
2376 	struct ocfs2_path *left_path = NULL;
2377 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2378 
2379 	*ret_left_path = NULL;
2380 
2381 	left_path = ocfs2_new_path_from_path(right_path);
2382 	if (!left_path) {
2383 		ret = -ENOMEM;
2384 		mlog_errno(ret);
2385 		goto out;
2386 	}
2387 
2388 	ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2389 	if (ret) {
2390 		mlog_errno(ret);
2391 		goto out;
2392 	}
2393 
2394 	trace_ocfs2_rotate_tree_right(
2395 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2396 		insert_cpos, cpos);
2397 
2398 	/*
2399 	 * What we want to do here is:
2400 	 *
2401 	 * 1) Start with the rightmost path.
2402 	 *
2403 	 * 2) Determine a path to the leaf block directly to the left
2404 	 *    of that leaf.
2405 	 *
2406 	 * 3) Determine the 'subtree root' - the lowest level tree node
2407 	 *    which contains a path to both leaves.
2408 	 *
2409 	 * 4) Rotate the subtree.
2410 	 *
2411 	 * 5) Find the next subtree by considering the left path to be
2412 	 *    the new right path.
2413 	 *
2414 	 * The check at the top of this while loop also accepts
2415 	 * insert_cpos == cpos because cpos is only a _theoretical_
2416 	 * value to get us the left path - insert_cpos might very well
2417 	 * be filling that hole.
2418 	 *
2419 	 * Stop at a cpos of '0' because we either started at the
2420 	 * leftmost branch (i.e., a tree with one branch and a
2421 	 * rotation inside of it), or we've gone as far as we can in
2422 	 * rotating subtrees.
2423 	 */
2424 	while (cpos && insert_cpos <= cpos) {
2425 		trace_ocfs2_rotate_tree_right(
2426 			(unsigned long long)
2427 			ocfs2_metadata_cache_owner(et->et_ci),
2428 			insert_cpos, cpos);
2429 
2430 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2431 		if (ret) {
2432 			mlog_errno(ret);
2433 			goto out;
2434 		}
2435 
2436 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2437 				path_leaf_bh(right_path),
2438 				"Owner %llu: error during insert of %u "
2439 				"(left path cpos %u) results in two identical "
2440 				"paths ending at %llu\n",
2441 				(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2442 				insert_cpos, cpos,
2443 				(unsigned long long)
2444 				path_leaf_bh(left_path)->b_blocknr);
2445 
2446 		if (split == SPLIT_NONE &&
2447 		    ocfs2_rotate_requires_path_adjustment(left_path,
2448 							  insert_cpos)) {
2449 
2450 			/*
2451 			 * We've rotated the tree as much as we
2452 			 * should. The rest is up to
2453 			 * ocfs2_insert_path() to complete, after the
2454 			 * record insertion. We indicate this
2455 			 * situation by returning the left path.
2456 			 *
2457 			 * The reason we don't adjust the records here
2458 			 * before the record insert is that an error
2459 			 * later might break the rule where a parent
2460 			 * record e_cpos will reflect the actual
2461 			 * e_cpos of the 1st nonempty record of the
2462 			 * child list.
2463 			 */
2464 			*ret_left_path = left_path;
2465 			goto out_ret_path;
2466 		}
2467 
2468 		start = ocfs2_find_subtree_root(et, left_path, right_path);
2469 
2470 		trace_ocfs2_rotate_subtree(start,
2471 			(unsigned long long)
2472 			right_path->p_node[start].bh->b_blocknr,
2473 			right_path->p_tree_depth);
2474 
2475 		ret = ocfs2_extend_rotate_transaction(handle, start,
2476 						      orig_credits, right_path);
2477 		if (ret) {
2478 			mlog_errno(ret);
2479 			goto out;
2480 		}
2481 
2482 		ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2483 						 right_path, start);
2484 		if (ret) {
2485 			mlog_errno(ret);
2486 			goto out;
2487 		}
2488 
2489 		if (split != SPLIT_NONE &&
2490 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2491 						insert_cpos)) {
2492 			/*
2493 			 * A rotate moves the rightmost left leaf
2494 			 * record over to the leftmost right leaf
2495 			 * slot. If we're doing an extent split
2496 			 * instead of a real insert, then we have to
2497 			 * check that the extent to be split wasn't
2498 			 * just moved over. If it was, then we can
2499 			 * exit here, passing left_path back -
2500 			 * ocfs2_split_extent() is smart enough to
2501 			 * search both leaves.
2502 			 */
2503 			*ret_left_path = left_path;
2504 			goto out_ret_path;
2505 		}
2506 
2507 		/*
2508 		 * There is no need to re-read the next right path
2509 		 * as we know that it'll be our current left
2510 		 * path. Optimize by copying values instead.
2511 		 */
2512 		ocfs2_mv_path(right_path, left_path);
2513 
2514 		ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2515 		if (ret) {
2516 			mlog_errno(ret);
2517 			goto out;
2518 		}
2519 	}
2520 
2521 out:
2522 	ocfs2_free_path(left_path);
2523 
2524 out_ret_path:
2525 	return ret;
2526 }
2527 
2528 static int ocfs2_update_edge_lengths(handle_t *handle,
2529 				     struct ocfs2_extent_tree *et,
2530 				     struct ocfs2_path *path)
2531 {
2532 	int i, idx, ret;
2533 	struct ocfs2_extent_rec *rec;
2534 	struct ocfs2_extent_list *el;
2535 	struct ocfs2_extent_block *eb;
2536 	u32 range;
2537 
2538 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2539 	if (ret) {
2540 		mlog_errno(ret);
2541 		goto out;
2542 	}
2543 
2544 	/* Path should always be rightmost. */
2545 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2546 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2547 
2548 	el = &eb->h_list;
2549 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2550 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2551 	rec = &el->l_recs[idx];
2552 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2553 
2554 	for (i = 0; i < path->p_tree_depth; i++) {
2555 		el = path->p_node[i].el;
2556 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557 		rec = &el->l_recs[idx];
2558 
2559 		rec->e_int_clusters = cpu_to_le32(range);
2560 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2561 
2562 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2563 	}
2564 out:
2565 	return ret;
2566 }
2567 
2568 static void ocfs2_unlink_path(handle_t *handle,
2569 			      struct ocfs2_extent_tree *et,
2570 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2571 			      struct ocfs2_path *path, int unlink_start)
2572 {
2573 	int ret, i;
2574 	struct ocfs2_extent_block *eb;
2575 	struct ocfs2_extent_list *el;
2576 	struct buffer_head *bh;
2577 
2578 	for(i = unlink_start; i < path_num_items(path); i++) {
2579 		bh = path->p_node[i].bh;
2580 
2581 		eb = (struct ocfs2_extent_block *)bh->b_data;
2582 		/*
2583 		 * Not all nodes might have had their final count
2584 		 * decremented by the caller - handle this here.
2585 		 */
2586 		el = &eb->h_list;
2587 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2588 			mlog(ML_ERROR,
2589 			     "Inode %llu, attempted to remove extent block "
2590 			     "%llu with %u records\n",
2591 			     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2592 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2593 			     le16_to_cpu(el->l_next_free_rec));
2594 
2595 			ocfs2_journal_dirty(handle, bh);
2596 			ocfs2_remove_from_cache(et->et_ci, bh);
2597 			continue;
2598 		}
2599 
2600 		el->l_next_free_rec = 0;
2601 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2602 
2603 		ocfs2_journal_dirty(handle, bh);
2604 
2605 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2606 		if (ret)
2607 			mlog_errno(ret);
2608 
2609 		ocfs2_remove_from_cache(et->et_ci, bh);
2610 	}
2611 }
2612 
2613 static void ocfs2_unlink_subtree(handle_t *handle,
2614 				 struct ocfs2_extent_tree *et,
2615 				 struct ocfs2_path *left_path,
2616 				 struct ocfs2_path *right_path,
2617 				 int subtree_index,
2618 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2619 {
2620 	int i;
2621 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2622 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2623 	struct ocfs2_extent_block *eb;
2624 
2625 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2626 
2627 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2628 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2629 			break;
2630 
2631 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2632 
2633 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2634 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2635 
2636 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2637 	eb->h_next_leaf_blk = 0;
2638 
2639 	ocfs2_journal_dirty(handle, root_bh);
2640 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2641 
2642 	ocfs2_unlink_path(handle, et, dealloc, right_path,
2643 			  subtree_index + 1);
2644 }
2645 
2646 static int ocfs2_rotate_subtree_left(handle_t *handle,
2647 				     struct ocfs2_extent_tree *et,
2648 				     struct ocfs2_path *left_path,
2649 				     struct ocfs2_path *right_path,
2650 				     int subtree_index,
2651 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2652 				     int *deleted)
2653 {
2654 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2655 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2656 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2657 	struct ocfs2_extent_block *eb;
2658 
2659 	*deleted = 0;
2660 
2661 	right_leaf_el = path_leaf_el(right_path);
2662 	left_leaf_el = path_leaf_el(left_path);
2663 	root_bh = left_path->p_node[subtree_index].bh;
2664 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2665 
2666 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2667 		return 0;
2668 
2669 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2670 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2671 		/*
2672 		 * It's legal for us to proceed if the right leaf is
2673 		 * the rightmost one and it has an empty extent. There
2674 		 * are two cases to handle - whether the leaf will be
2675 		 * empty after removal or not. If the leaf isn't empty
2676 		 * then just remove the empty extent up front. The
2677 		 * next block will handle empty leaves by flagging
2678 		 * them for unlink.
2679 		 *
2680 		 * Non rightmost leaves will throw -EAGAIN and the
2681 		 * caller can manually move the subtree and retry.
2682 		 */
2683 
2684 		if (eb->h_next_leaf_blk != 0ULL)
2685 			return -EAGAIN;
2686 
2687 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2688 			ret = ocfs2_journal_access_eb(handle, et->et_ci,
2689 						      path_leaf_bh(right_path),
2690 						      OCFS2_JOURNAL_ACCESS_WRITE);
2691 			if (ret) {
2692 				mlog_errno(ret);
2693 				goto out;
2694 			}
2695 
2696 			ocfs2_remove_empty_extent(right_leaf_el);
2697 		} else
2698 			right_has_empty = 1;
2699 	}
2700 
2701 	if (eb->h_next_leaf_blk == 0ULL &&
2702 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2703 		/*
2704 		 * We have to update i_last_eb_blk during the meta
2705 		 * data delete.
2706 		 */
2707 		ret = ocfs2_et_root_journal_access(handle, et,
2708 						   OCFS2_JOURNAL_ACCESS_WRITE);
2709 		if (ret) {
2710 			mlog_errno(ret);
2711 			goto out;
2712 		}
2713 
2714 		del_right_subtree = 1;
2715 	}
2716 
2717 	/*
2718 	 * Getting here with an empty extent in the right path implies
2719 	 * that it's the rightmost path and will be deleted.
2720 	 */
2721 	BUG_ON(right_has_empty && !del_right_subtree);
2722 
2723 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2724 					   subtree_index);
2725 	if (ret) {
2726 		mlog_errno(ret);
2727 		goto out;
2728 	}
2729 
2730 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2731 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2732 						   right_path, i);
2733 		if (ret) {
2734 			mlog_errno(ret);
2735 			goto out;
2736 		}
2737 
2738 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2739 						   left_path, i);
2740 		if (ret) {
2741 			mlog_errno(ret);
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	if (!right_has_empty) {
2747 		/*
2748 		 * Only do this if we're moving a real
2749 		 * record. Otherwise, the action is delayed until
2750 		 * after removal of the right path in which case we
2751 		 * can do a simple shift to remove the empty extent.
2752 		 */
2753 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2754 		memset(&right_leaf_el->l_recs[0], 0,
2755 		       sizeof(struct ocfs2_extent_rec));
2756 	}
2757 	if (eb->h_next_leaf_blk == 0ULL) {
2758 		/*
2759 		 * Move recs over to get rid of empty extent, decrease
2760 		 * next_free. This is allowed to remove the last
2761 		 * extent in our leaf (setting l_next_free_rec to
2762 		 * zero) - the delete code below won't care.
2763 		 */
2764 		ocfs2_remove_empty_extent(right_leaf_el);
2765 	}
2766 
2767 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2768 	ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2769 
2770 	if (del_right_subtree) {
2771 		ocfs2_unlink_subtree(handle, et, left_path, right_path,
2772 				     subtree_index, dealloc);
2773 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
2774 		if (ret) {
2775 			mlog_errno(ret);
2776 			goto out;
2777 		}
2778 
2779 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2780 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2781 
2782 		/*
2783 		 * Removal of the extent in the left leaf was skipped
2784 		 * above so we could delete the right path
2785 		 * 1st.
2786 		 */
2787 		if (right_has_empty)
2788 			ocfs2_remove_empty_extent(left_leaf_el);
2789 
2790 		ocfs2_journal_dirty(handle, et_root_bh);
2791 
2792 		*deleted = 1;
2793 	} else
2794 		ocfs2_complete_edge_insert(handle, left_path, right_path,
2795 					   subtree_index);
2796 
2797 out:
2798 	return ret;
2799 }
2800 
2801 /*
2802  * Given a full path, determine what cpos value would return us a path
2803  * containing the leaf immediately to the right of the current one.
2804  *
2805  * Will return zero if the path passed in is already the rightmost path.
2806  *
2807  * This looks similar, but is subtly different to
2808  * ocfs2_find_cpos_for_left_leaf().
2809  */
2810 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2811 				   struct ocfs2_path *path, u32 *cpos)
2812 {
2813 	int i, j, ret = 0;
2814 	u64 blkno;
2815 	struct ocfs2_extent_list *el;
2816 
2817 	*cpos = 0;
2818 
2819 	if (path->p_tree_depth == 0)
2820 		return 0;
2821 
2822 	blkno = path_leaf_bh(path)->b_blocknr;
2823 
2824 	/* Start at the tree node just above the leaf and work our way up. */
2825 	i = path->p_tree_depth - 1;
2826 	while (i >= 0) {
2827 		int next_free;
2828 
2829 		el = path->p_node[i].el;
2830 
2831 		/*
2832 		 * Find the extent record just after the one in our
2833 		 * path.
2834 		 */
2835 		next_free = le16_to_cpu(el->l_next_free_rec);
2836 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2837 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2838 				if (j == (next_free - 1)) {
2839 					if (i == 0) {
2840 						/*
2841 						 * We've determined that the
2842 						 * path specified is already
2843 						 * the rightmost one - return a
2844 						 * cpos of zero.
2845 						 */
2846 						goto out;
2847 					}
2848 					/*
2849 					 * The rightmost record points to our
2850 					 * leaf - we need to travel up the
2851 					 * tree one level.
2852 					 */
2853 					goto next_node;
2854 				}
2855 
2856 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2857 				goto out;
2858 			}
2859 		}
2860 
2861 		/*
2862 		 * If we got here, we never found a valid node where
2863 		 * the tree indicated one should be.
2864 		 */
2865 		ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2866 			    (unsigned long long)blkno);
2867 		ret = -EROFS;
2868 		goto out;
2869 
2870 next_node:
2871 		blkno = path->p_node[i].bh->b_blocknr;
2872 		i--;
2873 	}
2874 
2875 out:
2876 	return ret;
2877 }
2878 
2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2880 					    struct ocfs2_extent_tree *et,
2881 					    struct ocfs2_path *path)
2882 {
2883 	int ret;
2884 	struct buffer_head *bh = path_leaf_bh(path);
2885 	struct ocfs2_extent_list *el = path_leaf_el(path);
2886 
2887 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2888 		return 0;
2889 
2890 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2891 					   path_num_items(path) - 1);
2892 	if (ret) {
2893 		mlog_errno(ret);
2894 		goto out;
2895 	}
2896 
2897 	ocfs2_remove_empty_extent(el);
2898 	ocfs2_journal_dirty(handle, bh);
2899 
2900 out:
2901 	return ret;
2902 }
2903 
2904 static int __ocfs2_rotate_tree_left(handle_t *handle,
2905 				    struct ocfs2_extent_tree *et,
2906 				    int orig_credits,
2907 				    struct ocfs2_path *path,
2908 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2909 				    struct ocfs2_path **empty_extent_path)
2910 {
2911 	int ret, subtree_root, deleted;
2912 	u32 right_cpos;
2913 	struct ocfs2_path *left_path = NULL;
2914 	struct ocfs2_path *right_path = NULL;
2915 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2916 
2917 	if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2918 		return 0;
2919 
2920 	*empty_extent_path = NULL;
2921 
2922 	ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2923 	if (ret) {
2924 		mlog_errno(ret);
2925 		goto out;
2926 	}
2927 
2928 	left_path = ocfs2_new_path_from_path(path);
2929 	if (!left_path) {
2930 		ret = -ENOMEM;
2931 		mlog_errno(ret);
2932 		goto out;
2933 	}
2934 
2935 	ocfs2_cp_path(left_path, path);
2936 
2937 	right_path = ocfs2_new_path_from_path(path);
2938 	if (!right_path) {
2939 		ret = -ENOMEM;
2940 		mlog_errno(ret);
2941 		goto out;
2942 	}
2943 
2944 	while (right_cpos) {
2945 		ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2946 		if (ret) {
2947 			mlog_errno(ret);
2948 			goto out;
2949 		}
2950 
2951 		subtree_root = ocfs2_find_subtree_root(et, left_path,
2952 						       right_path);
2953 
2954 		trace_ocfs2_rotate_subtree(subtree_root,
2955 		     (unsigned long long)
2956 		     right_path->p_node[subtree_root].bh->b_blocknr,
2957 		     right_path->p_tree_depth);
2958 
2959 		ret = ocfs2_extend_rotate_transaction(handle, 0,
2960 						      orig_credits, left_path);
2961 		if (ret) {
2962 			mlog_errno(ret);
2963 			goto out;
2964 		}
2965 
2966 		/*
2967 		 * Caller might still want to make changes to the
2968 		 * tree root, so re-add it to the journal here.
2969 		 */
2970 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2971 						   left_path, 0);
2972 		if (ret) {
2973 			mlog_errno(ret);
2974 			goto out;
2975 		}
2976 
2977 		ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2978 						right_path, subtree_root,
2979 						dealloc, &deleted);
2980 		if (ret == -EAGAIN) {
2981 			/*
2982 			 * The rotation has to temporarily stop due to
2983 			 * the right subtree having an empty
2984 			 * extent. Pass it back to the caller for a
2985 			 * fixup.
2986 			 */
2987 			*empty_extent_path = right_path;
2988 			right_path = NULL;
2989 			goto out;
2990 		}
2991 		if (ret) {
2992 			mlog_errno(ret);
2993 			goto out;
2994 		}
2995 
2996 		/*
2997 		 * The subtree rotate might have removed records on
2998 		 * the rightmost edge. If so, then rotation is
2999 		 * complete.
3000 		 */
3001 		if (deleted)
3002 			break;
3003 
3004 		ocfs2_mv_path(left_path, right_path);
3005 
3006 		ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3007 						     &right_cpos);
3008 		if (ret) {
3009 			mlog_errno(ret);
3010 			goto out;
3011 		}
3012 	}
3013 
3014 out:
3015 	ocfs2_free_path(right_path);
3016 	ocfs2_free_path(left_path);
3017 
3018 	return ret;
3019 }
3020 
3021 static int ocfs2_remove_rightmost_path(handle_t *handle,
3022 				struct ocfs2_extent_tree *et,
3023 				struct ocfs2_path *path,
3024 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3025 {
3026 	int ret, subtree_index;
3027 	u32 cpos;
3028 	struct ocfs2_path *left_path = NULL;
3029 	struct ocfs2_extent_block *eb;
3030 	struct ocfs2_extent_list *el;
3031 
3032 	ret = ocfs2_et_sanity_check(et);
3033 	if (ret)
3034 		goto out;
3035 
3036 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3037 	if (ret) {
3038 		mlog_errno(ret);
3039 		goto out;
3040 	}
3041 
3042 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3043 					    path, &cpos);
3044 	if (ret) {
3045 		mlog_errno(ret);
3046 		goto out;
3047 	}
3048 
3049 	if (cpos) {
3050 		/*
3051 		 * We have a path to the left of this one - it needs
3052 		 * an update too.
3053 		 */
3054 		left_path = ocfs2_new_path_from_path(path);
3055 		if (!left_path) {
3056 			ret = -ENOMEM;
3057 			mlog_errno(ret);
3058 			goto out;
3059 		}
3060 
3061 		ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3062 		if (ret) {
3063 			mlog_errno(ret);
3064 			goto out;
3065 		}
3066 
3067 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3068 		if (ret) {
3069 			mlog_errno(ret);
3070 			goto out;
3071 		}
3072 
3073 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3074 
3075 		ocfs2_unlink_subtree(handle, et, left_path, path,
3076 				     subtree_index, dealloc);
3077 		ret = ocfs2_update_edge_lengths(handle, et, left_path);
3078 		if (ret) {
3079 			mlog_errno(ret);
3080 			goto out;
3081 		}
3082 
3083 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3084 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3085 	} else {
3086 		/*
3087 		 * 'path' is also the leftmost path which
3088 		 * means it must be the only one. This gets
3089 		 * handled differently because we want to
3090 		 * revert the root back to having extents
3091 		 * in-line.
3092 		 */
3093 		ocfs2_unlink_path(handle, et, dealloc, path, 1);
3094 
3095 		el = et->et_root_el;
3096 		el->l_tree_depth = 0;
3097 		el->l_next_free_rec = 0;
3098 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3099 
3100 		ocfs2_et_set_last_eb_blk(et, 0);
3101 	}
3102 
3103 	ocfs2_journal_dirty(handle, path_root_bh(path));
3104 
3105 out:
3106 	ocfs2_free_path(left_path);
3107 	return ret;
3108 }
3109 
3110 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3111 				struct ocfs2_extent_tree *et,
3112 				struct ocfs2_path *path,
3113 				struct ocfs2_cached_dealloc_ctxt *dealloc)
3114 {
3115 	handle_t *handle;
3116 	int ret;
3117 	int credits = path->p_tree_depth * 2 + 1;
3118 
3119 	handle = ocfs2_start_trans(osb, credits);
3120 	if (IS_ERR(handle)) {
3121 		ret = PTR_ERR(handle);
3122 		mlog_errno(ret);
3123 		return ret;
3124 	}
3125 
3126 	ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3127 	if (ret)
3128 		mlog_errno(ret);
3129 
3130 	ocfs2_commit_trans(osb, handle);
3131 	return ret;
3132 }
3133 
3134 /*
3135  * Left rotation of btree records.
3136  *
3137  * In many ways, this is (unsurprisingly) the opposite of right
3138  * rotation. We start at some non-rightmost path containing an empty
3139  * extent in the leaf block. The code works its way to the rightmost
3140  * path by rotating records to the left in every subtree.
3141  *
3142  * This is used by any code which reduces the number of extent records
3143  * in a leaf. After removal, an empty record should be placed in the
3144  * leftmost list position.
3145  *
3146  * This won't handle a length update of the rightmost path records if
3147  * the rightmost tree leaf record is removed so the caller is
3148  * responsible for detecting and correcting that.
3149  */
3150 static int ocfs2_rotate_tree_left(handle_t *handle,
3151 				  struct ocfs2_extent_tree *et,
3152 				  struct ocfs2_path *path,
3153 				  struct ocfs2_cached_dealloc_ctxt *dealloc)
3154 {
3155 	int ret, orig_credits = jbd2_handle_buffer_credits(handle);
3156 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3157 	struct ocfs2_extent_block *eb;
3158 	struct ocfs2_extent_list *el;
3159 
3160 	el = path_leaf_el(path);
3161 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3162 		return 0;
3163 
3164 	if (path->p_tree_depth == 0) {
3165 rightmost_no_delete:
3166 		/*
3167 		 * Inline extents. This is trivially handled, so do
3168 		 * it up front.
3169 		 */
3170 		ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3171 		if (ret)
3172 			mlog_errno(ret);
3173 		goto out;
3174 	}
3175 
3176 	/*
3177 	 * Handle rightmost branch now. There's several cases:
3178 	 *  1) simple rotation leaving records in there. That's trivial.
3179 	 *  2) rotation requiring a branch delete - there's no more
3180 	 *     records left. Two cases of this:
3181 	 *     a) There are branches to the left.
3182 	 *     b) This is also the leftmost (the only) branch.
3183 	 *
3184 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
3185 	 *  2a) we need the left branch so that we can update it with the unlink
3186 	 *  2b) we need to bring the root back to inline extents.
3187 	 */
3188 
3189 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3190 	el = &eb->h_list;
3191 	if (eb->h_next_leaf_blk == 0) {
3192 		/*
3193 		 * This gets a bit tricky if we're going to delete the
3194 		 * rightmost path. Get the other cases out of the way
3195 		 * 1st.
3196 		 */
3197 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3198 			goto rightmost_no_delete;
3199 
3200 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3201 			ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3202 					"Owner %llu has empty extent block at %llu\n",
3203 					(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3204 					(unsigned long long)le64_to_cpu(eb->h_blkno));
3205 			goto out;
3206 		}
3207 
3208 		/*
3209 		 * XXX: The caller can not trust "path" any more after
3210 		 * this as it will have been deleted. What do we do?
3211 		 *
3212 		 * In theory the rotate-for-merge code will never get
3213 		 * here because it'll always ask for a rotate in a
3214 		 * nonempty list.
3215 		 */
3216 
3217 		ret = ocfs2_remove_rightmost_path(handle, et, path,
3218 						  dealloc);
3219 		if (ret)
3220 			mlog_errno(ret);
3221 		goto out;
3222 	}
3223 
3224 	/*
3225 	 * Now we can loop, remembering the path we get from -EAGAIN
3226 	 * and restarting from there.
3227 	 */
3228 try_rotate:
3229 	ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3230 				       dealloc, &restart_path);
3231 	if (ret && ret != -EAGAIN) {
3232 		mlog_errno(ret);
3233 		goto out;
3234 	}
3235 
3236 	while (ret == -EAGAIN) {
3237 		tmp_path = restart_path;
3238 		restart_path = NULL;
3239 
3240 		ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3241 					       tmp_path, dealloc,
3242 					       &restart_path);
3243 		if (ret && ret != -EAGAIN) {
3244 			mlog_errno(ret);
3245 			goto out;
3246 		}
3247 
3248 		ocfs2_free_path(tmp_path);
3249 		tmp_path = NULL;
3250 
3251 		if (ret == 0)
3252 			goto try_rotate;
3253 	}
3254 
3255 out:
3256 	ocfs2_free_path(tmp_path);
3257 	ocfs2_free_path(restart_path);
3258 	return ret;
3259 }
3260 
3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3262 				int index)
3263 {
3264 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3265 	unsigned int size;
3266 
3267 	if (rec->e_leaf_clusters == 0) {
3268 		/*
3269 		 * We consumed all of the merged-from record. An empty
3270 		 * extent cannot exist anywhere but the 1st array
3271 		 * position, so move things over if the merged-from
3272 		 * record doesn't occupy that position.
3273 		 *
3274 		 * This creates a new empty extent so the caller
3275 		 * should be smart enough to have removed any existing
3276 		 * ones.
3277 		 */
3278 		if (index > 0) {
3279 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3280 			size = index * sizeof(struct ocfs2_extent_rec);
3281 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3282 		}
3283 
3284 		/*
3285 		 * Always memset - the caller doesn't check whether it
3286 		 * created an empty extent, so there could be junk in
3287 		 * the other fields.
3288 		 */
3289 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3290 	}
3291 }
3292 
3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3294 				struct ocfs2_path *left_path,
3295 				struct ocfs2_path **ret_right_path)
3296 {
3297 	int ret;
3298 	u32 right_cpos;
3299 	struct ocfs2_path *right_path = NULL;
3300 	struct ocfs2_extent_list *left_el;
3301 
3302 	*ret_right_path = NULL;
3303 
3304 	/* This function shouldn't be called for non-trees. */
3305 	BUG_ON(left_path->p_tree_depth == 0);
3306 
3307 	left_el = path_leaf_el(left_path);
3308 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3309 
3310 	ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3311 					     left_path, &right_cpos);
3312 	if (ret) {
3313 		mlog_errno(ret);
3314 		goto out;
3315 	}
3316 
3317 	/* This function shouldn't be called for the rightmost leaf. */
3318 	BUG_ON(right_cpos == 0);
3319 
3320 	right_path = ocfs2_new_path_from_path(left_path);
3321 	if (!right_path) {
3322 		ret = -ENOMEM;
3323 		mlog_errno(ret);
3324 		goto out;
3325 	}
3326 
3327 	ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3328 	if (ret) {
3329 		mlog_errno(ret);
3330 		goto out;
3331 	}
3332 
3333 	*ret_right_path = right_path;
3334 out:
3335 	if (ret)
3336 		ocfs2_free_path(right_path);
3337 	return ret;
3338 }
3339 
3340 /*
3341  * Remove split_rec clusters from the record at index and merge them
3342  * onto the beginning of the record "next" to it.
3343  * For index < l_count - 1, the next means the extent rec at index + 1.
3344  * For index == l_count - 1, the "next" means the 1st extent rec of the
3345  * next extent block.
3346  */
3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3348 				 handle_t *handle,
3349 				 struct ocfs2_extent_tree *et,
3350 				 struct ocfs2_extent_rec *split_rec,
3351 				 int index)
3352 {
3353 	int ret, next_free, i;
3354 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3355 	struct ocfs2_extent_rec *left_rec;
3356 	struct ocfs2_extent_rec *right_rec;
3357 	struct ocfs2_extent_list *right_el;
3358 	struct ocfs2_path *right_path = NULL;
3359 	int subtree_index = 0;
3360 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3361 	struct buffer_head *bh = path_leaf_bh(left_path);
3362 	struct buffer_head *root_bh = NULL;
3363 
3364 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3365 	left_rec = &el->l_recs[index];
3366 
3367 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3368 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3369 		/* we meet with a cross extent block merge. */
3370 		ret = ocfs2_get_right_path(et, left_path, &right_path);
3371 		if (ret) {
3372 			mlog_errno(ret);
3373 			return ret;
3374 		}
3375 
3376 		right_el = path_leaf_el(right_path);
3377 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3378 		BUG_ON(next_free <= 0);
3379 		right_rec = &right_el->l_recs[0];
3380 		if (ocfs2_is_empty_extent(right_rec)) {
3381 			BUG_ON(next_free <= 1);
3382 			right_rec = &right_el->l_recs[1];
3383 		}
3384 
3385 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3386 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3387 		       le32_to_cpu(right_rec->e_cpos));
3388 
3389 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3390 							right_path);
3391 
3392 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3393 					jbd2_handle_buffer_credits(handle),
3394 					right_path);
3395 		if (ret) {
3396 			mlog_errno(ret);
3397 			goto out;
3398 		}
3399 
3400 		root_bh = left_path->p_node[subtree_index].bh;
3401 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3402 
3403 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3404 						   subtree_index);
3405 		if (ret) {
3406 			mlog_errno(ret);
3407 			goto out;
3408 		}
3409 
3410 		for (i = subtree_index + 1;
3411 		     i < path_num_items(right_path); i++) {
3412 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413 							   right_path, i);
3414 			if (ret) {
3415 				mlog_errno(ret);
3416 				goto out;
3417 			}
3418 
3419 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3420 							   left_path, i);
3421 			if (ret) {
3422 				mlog_errno(ret);
3423 				goto out;
3424 			}
3425 		}
3426 
3427 	} else {
3428 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3429 		right_rec = &el->l_recs[index + 1];
3430 	}
3431 
3432 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3433 					   path_num_items(left_path) - 1);
3434 	if (ret) {
3435 		mlog_errno(ret);
3436 		goto out;
3437 	}
3438 
3439 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3440 
3441 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3442 	le64_add_cpu(&right_rec->e_blkno,
3443 		     -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3444 					       split_clusters));
3445 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3446 
3447 	ocfs2_cleanup_merge(el, index);
3448 
3449 	ocfs2_journal_dirty(handle, bh);
3450 	if (right_path) {
3451 		ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3452 		ocfs2_complete_edge_insert(handle, left_path, right_path,
3453 					   subtree_index);
3454 	}
3455 out:
3456 	ocfs2_free_path(right_path);
3457 	return ret;
3458 }
3459 
3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3461 			       struct ocfs2_path *right_path,
3462 			       struct ocfs2_path **ret_left_path)
3463 {
3464 	int ret;
3465 	u32 left_cpos;
3466 	struct ocfs2_path *left_path = NULL;
3467 
3468 	*ret_left_path = NULL;
3469 
3470 	/* This function shouldn't be called for non-trees. */
3471 	BUG_ON(right_path->p_tree_depth == 0);
3472 
3473 	ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3474 					    right_path, &left_cpos);
3475 	if (ret) {
3476 		mlog_errno(ret);
3477 		goto out;
3478 	}
3479 
3480 	/* This function shouldn't be called for the leftmost leaf. */
3481 	BUG_ON(left_cpos == 0);
3482 
3483 	left_path = ocfs2_new_path_from_path(right_path);
3484 	if (!left_path) {
3485 		ret = -ENOMEM;
3486 		mlog_errno(ret);
3487 		goto out;
3488 	}
3489 
3490 	ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3491 	if (ret) {
3492 		mlog_errno(ret);
3493 		goto out;
3494 	}
3495 
3496 	*ret_left_path = left_path;
3497 out:
3498 	if (ret)
3499 		ocfs2_free_path(left_path);
3500 	return ret;
3501 }
3502 
3503 /*
3504  * Remove split_rec clusters from the record at index and merge them
3505  * onto the tail of the record "before" it.
3506  * For index > 0, the "before" means the extent rec at index - 1.
3507  *
3508  * For index == 0, the "before" means the last record of the previous
3509  * extent block. And there is also a situation that we may need to
3510  * remove the rightmost leaf extent block in the right_path and change
3511  * the right path to indicate the new rightmost path.
3512  */
3513 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3514 				handle_t *handle,
3515 				struct ocfs2_extent_tree *et,
3516 				struct ocfs2_extent_rec *split_rec,
3517 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3518 				int index)
3519 {
3520 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3521 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3522 	struct ocfs2_extent_rec *left_rec;
3523 	struct ocfs2_extent_rec *right_rec;
3524 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3525 	struct buffer_head *bh = path_leaf_bh(right_path);
3526 	struct buffer_head *root_bh = NULL;
3527 	struct ocfs2_path *left_path = NULL;
3528 	struct ocfs2_extent_list *left_el;
3529 
3530 	BUG_ON(index < 0);
3531 
3532 	right_rec = &el->l_recs[index];
3533 	if (index == 0) {
3534 		/* we meet with a cross extent block merge. */
3535 		ret = ocfs2_get_left_path(et, right_path, &left_path);
3536 		if (ret) {
3537 			mlog_errno(ret);
3538 			return ret;
3539 		}
3540 
3541 		left_el = path_leaf_el(left_path);
3542 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3543 		       le16_to_cpu(left_el->l_count));
3544 
3545 		left_rec = &left_el->l_recs[
3546 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3547 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3548 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3549 		       le32_to_cpu(split_rec->e_cpos));
3550 
3551 		subtree_index = ocfs2_find_subtree_root(et, left_path,
3552 							right_path);
3553 
3554 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3555 					jbd2_handle_buffer_credits(handle),
3556 					left_path);
3557 		if (ret) {
3558 			mlog_errno(ret);
3559 			goto out;
3560 		}
3561 
3562 		root_bh = left_path->p_node[subtree_index].bh;
3563 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3564 
3565 		ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3566 						   subtree_index);
3567 		if (ret) {
3568 			mlog_errno(ret);
3569 			goto out;
3570 		}
3571 
3572 		for (i = subtree_index + 1;
3573 		     i < path_num_items(right_path); i++) {
3574 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3575 							   right_path, i);
3576 			if (ret) {
3577 				mlog_errno(ret);
3578 				goto out;
3579 			}
3580 
3581 			ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3582 							   left_path, i);
3583 			if (ret) {
3584 				mlog_errno(ret);
3585 				goto out;
3586 			}
3587 		}
3588 	} else {
3589 		left_rec = &el->l_recs[index - 1];
3590 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3591 			has_empty_extent = 1;
3592 	}
3593 
3594 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3595 					   path_num_items(right_path) - 1);
3596 	if (ret) {
3597 		mlog_errno(ret);
3598 		goto out;
3599 	}
3600 
3601 	if (has_empty_extent && index == 1) {
3602 		/*
3603 		 * The easy case - we can just plop the record right in.
3604 		 */
3605 		*left_rec = *split_rec;
3606 	} else
3607 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3608 
3609 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3610 	le64_add_cpu(&right_rec->e_blkno,
3611 		     ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3612 					      split_clusters));
3613 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3614 
3615 	ocfs2_cleanup_merge(el, index);
3616 
3617 	ocfs2_journal_dirty(handle, bh);
3618 	if (left_path) {
3619 		ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3620 
3621 		/*
3622 		 * In the situation that the right_rec is empty and the extent
3623 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3624 		 * it and we need to delete the right extent block.
3625 		 */
3626 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3627 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3628 			/* extend credit for ocfs2_remove_rightmost_path */
3629 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3630 					jbd2_handle_buffer_credits(handle),
3631 					right_path);
3632 			if (ret) {
3633 				mlog_errno(ret);
3634 				goto out;
3635 			}
3636 
3637 			ret = ocfs2_remove_rightmost_path(handle, et,
3638 							  right_path,
3639 							  dealloc);
3640 			if (ret) {
3641 				mlog_errno(ret);
3642 				goto out;
3643 			}
3644 
3645 			/* Now the rightmost extent block has been deleted.
3646 			 * So we use the new rightmost path.
3647 			 */
3648 			ocfs2_mv_path(right_path, left_path);
3649 			left_path = NULL;
3650 		} else
3651 			ocfs2_complete_edge_insert(handle, left_path,
3652 						   right_path, subtree_index);
3653 	}
3654 out:
3655 	ocfs2_free_path(left_path);
3656 	return ret;
3657 }
3658 
3659 static int ocfs2_try_to_merge_extent(handle_t *handle,
3660 				     struct ocfs2_extent_tree *et,
3661 				     struct ocfs2_path *path,
3662 				     int split_index,
3663 				     struct ocfs2_extent_rec *split_rec,
3664 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3665 				     struct ocfs2_merge_ctxt *ctxt)
3666 {
3667 	int ret = 0;
3668 	struct ocfs2_extent_list *el = path_leaf_el(path);
3669 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3670 
3671 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3672 
3673 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3674 		/* extend credit for ocfs2_remove_rightmost_path */
3675 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3676 				jbd2_handle_buffer_credits(handle),
3677 				path);
3678 		if (ret) {
3679 			mlog_errno(ret);
3680 			goto out;
3681 		}
3682 		/*
3683 		 * The merge code will need to create an empty
3684 		 * extent to take the place of the newly
3685 		 * emptied slot. Remove any pre-existing empty
3686 		 * extents - having more than one in a leaf is
3687 		 * illegal.
3688 		 */
3689 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3690 		if (ret) {
3691 			mlog_errno(ret);
3692 			goto out;
3693 		}
3694 		split_index--;
3695 		rec = &el->l_recs[split_index];
3696 	}
3697 
3698 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3699 		/*
3700 		 * Left-right contig implies this.
3701 		 */
3702 		BUG_ON(!ctxt->c_split_covers_rec);
3703 
3704 		/*
3705 		 * Since the leftright insert always covers the entire
3706 		 * extent, this call will delete the insert record
3707 		 * entirely, resulting in an empty extent record added to
3708 		 * the extent block.
3709 		 *
3710 		 * Since the adding of an empty extent shifts
3711 		 * everything back to the right, there's no need to
3712 		 * update split_index here.
3713 		 *
3714 		 * When the split_index is zero, we need to merge it to the
3715 		 * prevoius extent block. It is more efficient and easier
3716 		 * if we do merge_right first and merge_left later.
3717 		 */
3718 		ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3719 					    split_index);
3720 		if (ret) {
3721 			mlog_errno(ret);
3722 			goto out;
3723 		}
3724 
3725 		/*
3726 		 * We can only get this from logic error above.
3727 		 */
3728 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3729 
3730 		/* extend credit for ocfs2_remove_rightmost_path */
3731 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3732 					jbd2_handle_buffer_credits(handle),
3733 					path);
3734 		if (ret) {
3735 			mlog_errno(ret);
3736 			goto out;
3737 		}
3738 
3739 		/* The merge left us with an empty extent, remove it. */
3740 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3741 		if (ret) {
3742 			mlog_errno(ret);
3743 			goto out;
3744 		}
3745 
3746 		rec = &el->l_recs[split_index];
3747 
3748 		/*
3749 		 * Note that we don't pass split_rec here on purpose -
3750 		 * we've merged it into the rec already.
3751 		 */
3752 		ret = ocfs2_merge_rec_left(path, handle, et, rec,
3753 					   dealloc, split_index);
3754 
3755 		if (ret) {
3756 			mlog_errno(ret);
3757 			goto out;
3758 		}
3759 
3760 		/* extend credit for ocfs2_remove_rightmost_path */
3761 		ret = ocfs2_extend_rotate_transaction(handle, 0,
3762 				jbd2_handle_buffer_credits(handle),
3763 				path);
3764 		if (ret) {
3765 			mlog_errno(ret);
3766 			goto out;
3767 		}
3768 
3769 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3770 		/*
3771 		 * Error from this last rotate is not critical, so
3772 		 * print but don't bubble it up.
3773 		 */
3774 		if (ret)
3775 			mlog_errno(ret);
3776 		ret = 0;
3777 	} else {
3778 		/*
3779 		 * Merge a record to the left or right.
3780 		 *
3781 		 * 'contig_type' is relative to the existing record,
3782 		 * so for example, if we're "right contig", it's to
3783 		 * the record on the left (hence the left merge).
3784 		 */
3785 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3786 			ret = ocfs2_merge_rec_left(path, handle, et,
3787 						   split_rec, dealloc,
3788 						   split_index);
3789 			if (ret) {
3790 				mlog_errno(ret);
3791 				goto out;
3792 			}
3793 		} else {
3794 			ret = ocfs2_merge_rec_right(path, handle,
3795 						    et, split_rec,
3796 						    split_index);
3797 			if (ret) {
3798 				mlog_errno(ret);
3799 				goto out;
3800 			}
3801 		}
3802 
3803 		if (ctxt->c_split_covers_rec) {
3804 			/* extend credit for ocfs2_remove_rightmost_path */
3805 			ret = ocfs2_extend_rotate_transaction(handle, 0,
3806 					jbd2_handle_buffer_credits(handle),
3807 					path);
3808 			if (ret) {
3809 				mlog_errno(ret);
3810 				ret = 0;
3811 				goto out;
3812 			}
3813 
3814 			/*
3815 			 * The merge may have left an empty extent in
3816 			 * our leaf. Try to rotate it away.
3817 			 */
3818 			ret = ocfs2_rotate_tree_left(handle, et, path,
3819 						     dealloc);
3820 			if (ret)
3821 				mlog_errno(ret);
3822 			ret = 0;
3823 		}
3824 	}
3825 
3826 out:
3827 	return ret;
3828 }
3829 
3830 static void ocfs2_subtract_from_rec(struct super_block *sb,
3831 				    enum ocfs2_split_type split,
3832 				    struct ocfs2_extent_rec *rec,
3833 				    struct ocfs2_extent_rec *split_rec)
3834 {
3835 	u64 len_blocks;
3836 
3837 	len_blocks = ocfs2_clusters_to_blocks(sb,
3838 				le16_to_cpu(split_rec->e_leaf_clusters));
3839 
3840 	if (split == SPLIT_LEFT) {
3841 		/*
3842 		 * Region is on the left edge of the existing
3843 		 * record.
3844 		 */
3845 		le32_add_cpu(&rec->e_cpos,
3846 			     le16_to_cpu(split_rec->e_leaf_clusters));
3847 		le64_add_cpu(&rec->e_blkno, len_blocks);
3848 		le16_add_cpu(&rec->e_leaf_clusters,
3849 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3850 	} else {
3851 		/*
3852 		 * Region is on the right edge of the existing
3853 		 * record.
3854 		 */
3855 		le16_add_cpu(&rec->e_leaf_clusters,
3856 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3857 	}
3858 }
3859 
3860 /*
3861  * Do the final bits of extent record insertion at the target leaf
3862  * list. If this leaf is part of an allocation tree, it is assumed
3863  * that the tree above has been prepared.
3864  */
3865 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3866 				 struct ocfs2_extent_rec *insert_rec,
3867 				 struct ocfs2_extent_list *el,
3868 				 struct ocfs2_insert_type *insert)
3869 {
3870 	int i = insert->ins_contig_index;
3871 	unsigned int range;
3872 	struct ocfs2_extent_rec *rec;
3873 
3874 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3875 
3876 	if (insert->ins_split != SPLIT_NONE) {
3877 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3878 		BUG_ON(i == -1);
3879 		rec = &el->l_recs[i];
3880 		ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3881 					insert->ins_split, rec,
3882 					insert_rec);
3883 		goto rotate;
3884 	}
3885 
3886 	/*
3887 	 * Contiguous insert - either left or right.
3888 	 */
3889 	if (insert->ins_contig != CONTIG_NONE) {
3890 		rec = &el->l_recs[i];
3891 		if (insert->ins_contig == CONTIG_LEFT) {
3892 			rec->e_blkno = insert_rec->e_blkno;
3893 			rec->e_cpos = insert_rec->e_cpos;
3894 		}
3895 		le16_add_cpu(&rec->e_leaf_clusters,
3896 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3897 		return;
3898 	}
3899 
3900 	/*
3901 	 * Handle insert into an empty leaf.
3902 	 */
3903 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3904 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3905 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3906 		el->l_recs[0] = *insert_rec;
3907 		el->l_next_free_rec = cpu_to_le16(1);
3908 		return;
3909 	}
3910 
3911 	/*
3912 	 * Appending insert.
3913 	 */
3914 	if (insert->ins_appending == APPEND_TAIL) {
3915 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3916 		rec = &el->l_recs[i];
3917 		range = le32_to_cpu(rec->e_cpos)
3918 			+ le16_to_cpu(rec->e_leaf_clusters);
3919 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3920 
3921 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3922 				le16_to_cpu(el->l_count),
3923 				"owner %llu, depth %u, count %u, next free %u, "
3924 				"rec.cpos %u, rec.clusters %u, "
3925 				"insert.cpos %u, insert.clusters %u\n",
3926 				ocfs2_metadata_cache_owner(et->et_ci),
3927 				le16_to_cpu(el->l_tree_depth),
3928 				le16_to_cpu(el->l_count),
3929 				le16_to_cpu(el->l_next_free_rec),
3930 				le32_to_cpu(el->l_recs[i].e_cpos),
3931 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3932 				le32_to_cpu(insert_rec->e_cpos),
3933 				le16_to_cpu(insert_rec->e_leaf_clusters));
3934 		i++;
3935 		el->l_recs[i] = *insert_rec;
3936 		le16_add_cpu(&el->l_next_free_rec, 1);
3937 		return;
3938 	}
3939 
3940 rotate:
3941 	/*
3942 	 * Ok, we have to rotate.
3943 	 *
3944 	 * At this point, it is safe to assume that inserting into an
3945 	 * empty leaf and appending to a leaf have both been handled
3946 	 * above.
3947 	 *
3948 	 * This leaf needs to have space, either by the empty 1st
3949 	 * extent record, or by virtue of an l_next_free_rec < l_count.
3950 	 */
3951 	ocfs2_rotate_leaf(el, insert_rec);
3952 }
3953 
3954 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3955 					   struct ocfs2_extent_tree *et,
3956 					   struct ocfs2_path *path,
3957 					   struct ocfs2_extent_rec *insert_rec)
3958 {
3959 	int i, next_free;
3960 	struct buffer_head *bh;
3961 	struct ocfs2_extent_list *el;
3962 	struct ocfs2_extent_rec *rec;
3963 
3964 	/*
3965 	 * Update everything except the leaf block.
3966 	 */
3967 	for (i = 0; i < path->p_tree_depth; i++) {
3968 		bh = path->p_node[i].bh;
3969 		el = path->p_node[i].el;
3970 
3971 		next_free = le16_to_cpu(el->l_next_free_rec);
3972 		if (next_free == 0) {
3973 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3974 				    "Owner %llu has a bad extent list\n",
3975 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3976 			return;
3977 		}
3978 
3979 		rec = &el->l_recs[next_free - 1];
3980 
3981 		rec->e_int_clusters = insert_rec->e_cpos;
3982 		le32_add_cpu(&rec->e_int_clusters,
3983 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3984 		le32_add_cpu(&rec->e_int_clusters,
3985 			     -le32_to_cpu(rec->e_cpos));
3986 
3987 		ocfs2_journal_dirty(handle, bh);
3988 	}
3989 }
3990 
3991 static int ocfs2_append_rec_to_path(handle_t *handle,
3992 				    struct ocfs2_extent_tree *et,
3993 				    struct ocfs2_extent_rec *insert_rec,
3994 				    struct ocfs2_path *right_path,
3995 				    struct ocfs2_path **ret_left_path)
3996 {
3997 	int ret, next_free;
3998 	struct ocfs2_extent_list *el;
3999 	struct ocfs2_path *left_path = NULL;
4000 
4001 	*ret_left_path = NULL;
4002 
4003 	/*
4004 	 * This shouldn't happen for non-trees. The extent rec cluster
4005 	 * count manipulation below only works for interior nodes.
4006 	 */
4007 	BUG_ON(right_path->p_tree_depth == 0);
4008 
4009 	/*
4010 	 * If our appending insert is at the leftmost edge of a leaf,
4011 	 * then we might need to update the rightmost records of the
4012 	 * neighboring path.
4013 	 */
4014 	el = path_leaf_el(right_path);
4015 	next_free = le16_to_cpu(el->l_next_free_rec);
4016 	if (next_free == 0 ||
4017 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4018 		u32 left_cpos;
4019 
4020 		ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4021 						    right_path, &left_cpos);
4022 		if (ret) {
4023 			mlog_errno(ret);
4024 			goto out;
4025 		}
4026 
4027 		trace_ocfs2_append_rec_to_path(
4028 			(unsigned long long)
4029 			ocfs2_metadata_cache_owner(et->et_ci),
4030 			le32_to_cpu(insert_rec->e_cpos),
4031 			left_cpos);
4032 
4033 		/*
4034 		 * No need to worry if the append is already in the
4035 		 * leftmost leaf.
4036 		 */
4037 		if (left_cpos) {
4038 			left_path = ocfs2_new_path_from_path(right_path);
4039 			if (!left_path) {
4040 				ret = -ENOMEM;
4041 				mlog_errno(ret);
4042 				goto out;
4043 			}
4044 
4045 			ret = ocfs2_find_path(et->et_ci, left_path,
4046 					      left_cpos);
4047 			if (ret) {
4048 				mlog_errno(ret);
4049 				goto out;
4050 			}
4051 
4052 			/*
4053 			 * ocfs2_insert_path() will pass the left_path to the
4054 			 * journal for us.
4055 			 */
4056 		}
4057 	}
4058 
4059 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4060 	if (ret) {
4061 		mlog_errno(ret);
4062 		goto out;
4063 	}
4064 
4065 	ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4066 
4067 	*ret_left_path = left_path;
4068 	ret = 0;
4069 out:
4070 	if (ret != 0)
4071 		ocfs2_free_path(left_path);
4072 
4073 	return ret;
4074 }
4075 
4076 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4077 			       struct ocfs2_path *left_path,
4078 			       struct ocfs2_path *right_path,
4079 			       struct ocfs2_extent_rec *split_rec,
4080 			       enum ocfs2_split_type split)
4081 {
4082 	int index;
4083 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
4084 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4085 	struct ocfs2_extent_rec *rec, *tmprec;
4086 
4087 	right_el = path_leaf_el(right_path);
4088 	if (left_path)
4089 		left_el = path_leaf_el(left_path);
4090 
4091 	el = right_el;
4092 	insert_el = right_el;
4093 	index = ocfs2_search_extent_list(el, cpos);
4094 	if (index != -1) {
4095 		if (index == 0 && left_path) {
4096 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4097 
4098 			/*
4099 			 * This typically means that the record
4100 			 * started in the left path but moved to the
4101 			 * right as a result of rotation. We either
4102 			 * move the existing record to the left, or we
4103 			 * do the later insert there.
4104 			 *
4105 			 * In this case, the left path should always
4106 			 * exist as the rotate code will have passed
4107 			 * it back for a post-insert update.
4108 			 */
4109 
4110 			if (split == SPLIT_LEFT) {
4111 				/*
4112 				 * It's a left split. Since we know
4113 				 * that the rotate code gave us an
4114 				 * empty extent in the left path, we
4115 				 * can just do the insert there.
4116 				 */
4117 				insert_el = left_el;
4118 			} else {
4119 				/*
4120 				 * Right split - we have to move the
4121 				 * existing record over to the left
4122 				 * leaf. The insert will be into the
4123 				 * newly created empty extent in the
4124 				 * right leaf.
4125 				 */
4126 				tmprec = &right_el->l_recs[index];
4127 				ocfs2_rotate_leaf(left_el, tmprec);
4128 				el = left_el;
4129 
4130 				memset(tmprec, 0, sizeof(*tmprec));
4131 				index = ocfs2_search_extent_list(left_el, cpos);
4132 				BUG_ON(index == -1);
4133 			}
4134 		}
4135 	} else {
4136 		BUG_ON(!left_path);
4137 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4138 		/*
4139 		 * Left path is easy - we can just allow the insert to
4140 		 * happen.
4141 		 */
4142 		el = left_el;
4143 		insert_el = left_el;
4144 		index = ocfs2_search_extent_list(el, cpos);
4145 		BUG_ON(index == -1);
4146 	}
4147 
4148 	rec = &el->l_recs[index];
4149 	ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4150 				split, rec, split_rec);
4151 	ocfs2_rotate_leaf(insert_el, split_rec);
4152 }
4153 
4154 /*
4155  * This function only does inserts on an allocation b-tree. For tree
4156  * depth = 0, ocfs2_insert_at_leaf() is called directly.
4157  *
4158  * right_path is the path we want to do the actual insert
4159  * in. left_path should only be passed in if we need to update that
4160  * portion of the tree after an edge insert.
4161  */
4162 static int ocfs2_insert_path(handle_t *handle,
4163 			     struct ocfs2_extent_tree *et,
4164 			     struct ocfs2_path *left_path,
4165 			     struct ocfs2_path *right_path,
4166 			     struct ocfs2_extent_rec *insert_rec,
4167 			     struct ocfs2_insert_type *insert)
4168 {
4169 	int ret, subtree_index;
4170 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4171 
4172 	if (left_path) {
4173 		/*
4174 		 * There's a chance that left_path got passed back to
4175 		 * us without being accounted for in the
4176 		 * journal. Extend our transaction here to be sure we
4177 		 * can change those blocks.
4178 		 */
4179 		ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4180 		if (ret < 0) {
4181 			mlog_errno(ret);
4182 			goto out;
4183 		}
4184 
4185 		ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4186 		if (ret < 0) {
4187 			mlog_errno(ret);
4188 			goto out;
4189 		}
4190 	}
4191 
4192 	/*
4193 	 * Pass both paths to the journal. The majority of inserts
4194 	 * will be touching all components anyway.
4195 	 */
4196 	ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4197 	if (ret < 0) {
4198 		mlog_errno(ret);
4199 		goto out;
4200 	}
4201 
4202 	if (insert->ins_split != SPLIT_NONE) {
4203 		/*
4204 		 * We could call ocfs2_insert_at_leaf() for some types
4205 		 * of splits, but it's easier to just let one separate
4206 		 * function sort it all out.
4207 		 */
4208 		ocfs2_split_record(et, left_path, right_path,
4209 				   insert_rec, insert->ins_split);
4210 
4211 		/*
4212 		 * Split might have modified either leaf and we don't
4213 		 * have a guarantee that the later edge insert will
4214 		 * dirty this for us.
4215 		 */
4216 		if (left_path)
4217 			ocfs2_journal_dirty(handle,
4218 					    path_leaf_bh(left_path));
4219 	} else
4220 		ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4221 				     insert);
4222 
4223 	ocfs2_journal_dirty(handle, leaf_bh);
4224 
4225 	if (left_path) {
4226 		/*
4227 		 * The rotate code has indicated that we need to fix
4228 		 * up portions of the tree after the insert.
4229 		 *
4230 		 * XXX: Should we extend the transaction here?
4231 		 */
4232 		subtree_index = ocfs2_find_subtree_root(et, left_path,
4233 							right_path);
4234 		ocfs2_complete_edge_insert(handle, left_path, right_path,
4235 					   subtree_index);
4236 	}
4237 
4238 	ret = 0;
4239 out:
4240 	return ret;
4241 }
4242 
4243 static int ocfs2_do_insert_extent(handle_t *handle,
4244 				  struct ocfs2_extent_tree *et,
4245 				  struct ocfs2_extent_rec *insert_rec,
4246 				  struct ocfs2_insert_type *type)
4247 {
4248 	int ret, rotate = 0;
4249 	u32 cpos;
4250 	struct ocfs2_path *right_path = NULL;
4251 	struct ocfs2_path *left_path = NULL;
4252 	struct ocfs2_extent_list *el;
4253 
4254 	el = et->et_root_el;
4255 
4256 	ret = ocfs2_et_root_journal_access(handle, et,
4257 					   OCFS2_JOURNAL_ACCESS_WRITE);
4258 	if (ret) {
4259 		mlog_errno(ret);
4260 		goto out;
4261 	}
4262 
4263 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4264 		ocfs2_insert_at_leaf(et, insert_rec, el, type);
4265 		goto out_update_clusters;
4266 	}
4267 
4268 	right_path = ocfs2_new_path_from_et(et);
4269 	if (!right_path) {
4270 		ret = -ENOMEM;
4271 		mlog_errno(ret);
4272 		goto out;
4273 	}
4274 
4275 	/*
4276 	 * Determine the path to start with. Rotations need the
4277 	 * rightmost path, everything else can go directly to the
4278 	 * target leaf.
4279 	 */
4280 	cpos = le32_to_cpu(insert_rec->e_cpos);
4281 	if (type->ins_appending == APPEND_NONE &&
4282 	    type->ins_contig == CONTIG_NONE) {
4283 		rotate = 1;
4284 		cpos = UINT_MAX;
4285 	}
4286 
4287 	ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4288 	if (ret) {
4289 		mlog_errno(ret);
4290 		goto out;
4291 	}
4292 
4293 	/*
4294 	 * Rotations and appends need special treatment - they modify
4295 	 * parts of the tree's above them.
4296 	 *
4297 	 * Both might pass back a path immediate to the left of the
4298 	 * one being inserted to. This will be cause
4299 	 * ocfs2_insert_path() to modify the rightmost records of
4300 	 * left_path to account for an edge insert.
4301 	 *
4302 	 * XXX: When modifying this code, keep in mind that an insert
4303 	 * can wind up skipping both of these two special cases...
4304 	 */
4305 	if (rotate) {
4306 		ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4307 					      le32_to_cpu(insert_rec->e_cpos),
4308 					      right_path, &left_path);
4309 		if (ret) {
4310 			mlog_errno(ret);
4311 			goto out;
4312 		}
4313 
4314 		/*
4315 		 * ocfs2_rotate_tree_right() might have extended the
4316 		 * transaction without re-journaling our tree root.
4317 		 */
4318 		ret = ocfs2_et_root_journal_access(handle, et,
4319 						   OCFS2_JOURNAL_ACCESS_WRITE);
4320 		if (ret) {
4321 			mlog_errno(ret);
4322 			goto out;
4323 		}
4324 	} else if (type->ins_appending == APPEND_TAIL
4325 		   && type->ins_contig != CONTIG_LEFT) {
4326 		ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4327 					       right_path, &left_path);
4328 		if (ret) {
4329 			mlog_errno(ret);
4330 			goto out;
4331 		}
4332 	}
4333 
4334 	ret = ocfs2_insert_path(handle, et, left_path, right_path,
4335 				insert_rec, type);
4336 	if (ret) {
4337 		mlog_errno(ret);
4338 		goto out;
4339 	}
4340 
4341 out_update_clusters:
4342 	if (type->ins_split == SPLIT_NONE)
4343 		ocfs2_et_update_clusters(et,
4344 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4345 
4346 	ocfs2_journal_dirty(handle, et->et_root_bh);
4347 
4348 out:
4349 	ocfs2_free_path(left_path);
4350 	ocfs2_free_path(right_path);
4351 
4352 	return ret;
4353 }
4354 
4355 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4356 			       struct ocfs2_path *path,
4357 			       struct ocfs2_extent_list *el, int index,
4358 			       struct ocfs2_extent_rec *split_rec,
4359 			       struct ocfs2_merge_ctxt *ctxt)
4360 {
4361 	int status = 0;
4362 	enum ocfs2_contig_type ret = CONTIG_NONE;
4363 	u32 left_cpos, right_cpos;
4364 	struct ocfs2_extent_rec *rec = NULL;
4365 	struct ocfs2_extent_list *new_el;
4366 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4367 	struct buffer_head *bh;
4368 	struct ocfs2_extent_block *eb;
4369 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4370 
4371 	if (index > 0) {
4372 		rec = &el->l_recs[index - 1];
4373 	} else if (path->p_tree_depth > 0) {
4374 		status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4375 		if (status)
4376 			goto exit;
4377 
4378 		if (left_cpos != 0) {
4379 			left_path = ocfs2_new_path_from_path(path);
4380 			if (!left_path) {
4381 				status = -ENOMEM;
4382 				mlog_errno(status);
4383 				goto exit;
4384 			}
4385 
4386 			status = ocfs2_find_path(et->et_ci, left_path,
4387 						 left_cpos);
4388 			if (status)
4389 				goto free_left_path;
4390 
4391 			new_el = path_leaf_el(left_path);
4392 
4393 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4394 			    le16_to_cpu(new_el->l_count)) {
4395 				bh = path_leaf_bh(left_path);
4396 				eb = (struct ocfs2_extent_block *)bh->b_data;
4397 				status = ocfs2_error(sb,
4398 						"Extent block #%llu has an invalid l_next_free_rec of %d.  It should have matched the l_count of %d\n",
4399 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4400 						le16_to_cpu(new_el->l_next_free_rec),
4401 						le16_to_cpu(new_el->l_count));
4402 				goto free_left_path;
4403 			}
4404 			rec = &new_el->l_recs[
4405 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4406 		}
4407 	}
4408 
4409 	/*
4410 	 * We're careful to check for an empty extent record here -
4411 	 * the merge code will know what to do if it sees one.
4412 	 */
4413 	if (rec) {
4414 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4415 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4416 				ret = CONTIG_RIGHT;
4417 		} else {
4418 			ret = ocfs2_et_extent_contig(et, rec, split_rec);
4419 		}
4420 	}
4421 
4422 	rec = NULL;
4423 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4424 		rec = &el->l_recs[index + 1];
4425 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4426 		 path->p_tree_depth > 0) {
4427 		status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4428 		if (status)
4429 			goto free_left_path;
4430 
4431 		if (right_cpos == 0)
4432 			goto free_left_path;
4433 
4434 		right_path = ocfs2_new_path_from_path(path);
4435 		if (!right_path) {
4436 			status = -ENOMEM;
4437 			mlog_errno(status);
4438 			goto free_left_path;
4439 		}
4440 
4441 		status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4442 		if (status)
4443 			goto free_right_path;
4444 
4445 		new_el = path_leaf_el(right_path);
4446 		rec = &new_el->l_recs[0];
4447 		if (ocfs2_is_empty_extent(rec)) {
4448 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4449 				bh = path_leaf_bh(right_path);
4450 				eb = (struct ocfs2_extent_block *)bh->b_data;
4451 				status = ocfs2_error(sb,
4452 						"Extent block #%llu has an invalid l_next_free_rec of %d\n",
4453 						(unsigned long long)le64_to_cpu(eb->h_blkno),
4454 						le16_to_cpu(new_el->l_next_free_rec));
4455 				goto free_right_path;
4456 			}
4457 			rec = &new_el->l_recs[1];
4458 		}
4459 	}
4460 
4461 	if (rec) {
4462 		enum ocfs2_contig_type contig_type;
4463 
4464 		contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4465 
4466 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4467 			ret = CONTIG_LEFTRIGHT;
4468 		else if (ret == CONTIG_NONE)
4469 			ret = contig_type;
4470 	}
4471 
4472 free_right_path:
4473 	ocfs2_free_path(right_path);
4474 free_left_path:
4475 	ocfs2_free_path(left_path);
4476 exit:
4477 	if (status == 0)
4478 		ctxt->c_contig_type = ret;
4479 
4480 	return status;
4481 }
4482 
4483 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4484 				     struct ocfs2_insert_type *insert,
4485 				     struct ocfs2_extent_list *el,
4486 				     struct ocfs2_extent_rec *insert_rec)
4487 {
4488 	int i;
4489 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4490 
4491 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4492 
4493 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4494 		contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4495 						     insert_rec);
4496 		if (contig_type != CONTIG_NONE) {
4497 			insert->ins_contig_index = i;
4498 			break;
4499 		}
4500 	}
4501 	insert->ins_contig = contig_type;
4502 
4503 	if (insert->ins_contig != CONTIG_NONE) {
4504 		struct ocfs2_extent_rec *rec =
4505 				&el->l_recs[insert->ins_contig_index];
4506 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4507 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4508 
4509 		/*
4510 		 * Caller might want us to limit the size of extents, don't
4511 		 * calculate contiguousness if we might exceed that limit.
4512 		 */
4513 		if (et->et_max_leaf_clusters &&
4514 		    (len > et->et_max_leaf_clusters))
4515 			insert->ins_contig = CONTIG_NONE;
4516 	}
4517 }
4518 
4519 /*
4520  * This should only be called against the righmost leaf extent list.
4521  *
4522  * ocfs2_figure_appending_type() will figure out whether we'll have to
4523  * insert at the tail of the rightmost leaf.
4524  *
4525  * This should also work against the root extent list for tree's with 0
4526  * depth. If we consider the root extent list to be the rightmost leaf node
4527  * then the logic here makes sense.
4528  */
4529 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4530 					struct ocfs2_extent_list *el,
4531 					struct ocfs2_extent_rec *insert_rec)
4532 {
4533 	int i;
4534 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4535 	struct ocfs2_extent_rec *rec;
4536 
4537 	insert->ins_appending = APPEND_NONE;
4538 
4539 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4540 
4541 	if (!el->l_next_free_rec)
4542 		goto set_tail_append;
4543 
4544 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4545 		/* Were all records empty? */
4546 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4547 			goto set_tail_append;
4548 	}
4549 
4550 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4551 	rec = &el->l_recs[i];
4552 
4553 	if (cpos >=
4554 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4555 		goto set_tail_append;
4556 
4557 	return;
4558 
4559 set_tail_append:
4560 	insert->ins_appending = APPEND_TAIL;
4561 }
4562 
4563 /*
4564  * Helper function called at the beginning of an insert.
4565  *
4566  * This computes a few things that are commonly used in the process of
4567  * inserting into the btree:
4568  *   - Whether the new extent is contiguous with an existing one.
4569  *   - The current tree depth.
4570  *   - Whether the insert is an appending one.
4571  *   - The total # of free records in the tree.
4572  *
4573  * All of the information is stored on the ocfs2_insert_type
4574  * structure.
4575  */
4576 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4577 				    struct buffer_head **last_eb_bh,
4578 				    struct ocfs2_extent_rec *insert_rec,
4579 				    int *free_records,
4580 				    struct ocfs2_insert_type *insert)
4581 {
4582 	int ret;
4583 	struct ocfs2_extent_block *eb;
4584 	struct ocfs2_extent_list *el;
4585 	struct ocfs2_path *path = NULL;
4586 	struct buffer_head *bh = NULL;
4587 
4588 	insert->ins_split = SPLIT_NONE;
4589 
4590 	el = et->et_root_el;
4591 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4592 
4593 	if (el->l_tree_depth) {
4594 		/*
4595 		 * If we have tree depth, we read in the
4596 		 * rightmost extent block ahead of time as
4597 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4598 		 * may want it later.
4599 		 */
4600 		ret = ocfs2_read_extent_block(et->et_ci,
4601 					      ocfs2_et_get_last_eb_blk(et),
4602 					      &bh);
4603 		if (ret) {
4604 			mlog_errno(ret);
4605 			goto out;
4606 		}
4607 		eb = (struct ocfs2_extent_block *) bh->b_data;
4608 		el = &eb->h_list;
4609 	}
4610 
4611 	/*
4612 	 * Unless we have a contiguous insert, we'll need to know if
4613 	 * there is room left in our allocation tree for another
4614 	 * extent record.
4615 	 *
4616 	 * XXX: This test is simplistic, we can search for empty
4617 	 * extent records too.
4618 	 */
4619 	*free_records = le16_to_cpu(el->l_count) -
4620 		le16_to_cpu(el->l_next_free_rec);
4621 
4622 	if (!insert->ins_tree_depth) {
4623 		ocfs2_figure_contig_type(et, insert, el, insert_rec);
4624 		ocfs2_figure_appending_type(insert, el, insert_rec);
4625 		return 0;
4626 	}
4627 
4628 	path = ocfs2_new_path_from_et(et);
4629 	if (!path) {
4630 		ret = -ENOMEM;
4631 		mlog_errno(ret);
4632 		goto out;
4633 	}
4634 
4635 	/*
4636 	 * In the case that we're inserting past what the tree
4637 	 * currently accounts for, ocfs2_find_path() will return for
4638 	 * us the rightmost tree path. This is accounted for below in
4639 	 * the appending code.
4640 	 */
4641 	ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4642 	if (ret) {
4643 		mlog_errno(ret);
4644 		goto out;
4645 	}
4646 
4647 	el = path_leaf_el(path);
4648 
4649 	/*
4650 	 * Now that we have the path, there's two things we want to determine:
4651 	 * 1) Contiguousness (also set contig_index if this is so)
4652 	 *
4653 	 * 2) Are we doing an append? We can trivially break this up
4654          *     into two types of appends: simple record append, or a
4655          *     rotate inside the tail leaf.
4656 	 */
4657 	ocfs2_figure_contig_type(et, insert, el, insert_rec);
4658 
4659 	/*
4660 	 * The insert code isn't quite ready to deal with all cases of
4661 	 * left contiguousness. Specifically, if it's an insert into
4662 	 * the 1st record in a leaf, it will require the adjustment of
4663 	 * cluster count on the last record of the path directly to it's
4664 	 * left. For now, just catch that case and fool the layers
4665 	 * above us. This works just fine for tree_depth == 0, which
4666 	 * is why we allow that above.
4667 	 */
4668 	if (insert->ins_contig == CONTIG_LEFT &&
4669 	    insert->ins_contig_index == 0)
4670 		insert->ins_contig = CONTIG_NONE;
4671 
4672 	/*
4673 	 * Ok, so we can simply compare against last_eb to figure out
4674 	 * whether the path doesn't exist. This will only happen in
4675 	 * the case that we're doing a tail append, so maybe we can
4676 	 * take advantage of that information somehow.
4677 	 */
4678 	if (ocfs2_et_get_last_eb_blk(et) ==
4679 	    path_leaf_bh(path)->b_blocknr) {
4680 		/*
4681 		 * Ok, ocfs2_find_path() returned us the rightmost
4682 		 * tree path. This might be an appending insert. There are
4683 		 * two cases:
4684 		 *    1) We're doing a true append at the tail:
4685 		 *	-This might even be off the end of the leaf
4686 		 *    2) We're "appending" by rotating in the tail
4687 		 */
4688 		ocfs2_figure_appending_type(insert, el, insert_rec);
4689 	}
4690 
4691 out:
4692 	ocfs2_free_path(path);
4693 
4694 	if (ret == 0)
4695 		*last_eb_bh = bh;
4696 	else
4697 		brelse(bh);
4698 	return ret;
4699 }
4700 
4701 /*
4702  * Insert an extent into a btree.
4703  *
4704  * The caller needs to update the owning btree's cluster count.
4705  */
4706 int ocfs2_insert_extent(handle_t *handle,
4707 			struct ocfs2_extent_tree *et,
4708 			u32 cpos,
4709 			u64 start_blk,
4710 			u32 new_clusters,
4711 			u8 flags,
4712 			struct ocfs2_alloc_context *meta_ac)
4713 {
4714 	int status;
4715 	int free_records;
4716 	struct buffer_head *last_eb_bh = NULL;
4717 	struct ocfs2_insert_type insert = {0, };
4718 	struct ocfs2_extent_rec rec;
4719 
4720 	trace_ocfs2_insert_extent_start(
4721 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4722 		cpos, new_clusters);
4723 
4724 	memset(&rec, 0, sizeof(rec));
4725 	rec.e_cpos = cpu_to_le32(cpos);
4726 	rec.e_blkno = cpu_to_le64(start_blk);
4727 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4728 	rec.e_flags = flags;
4729 	status = ocfs2_et_insert_check(et, &rec);
4730 	if (status) {
4731 		mlog_errno(status);
4732 		goto bail;
4733 	}
4734 
4735 	status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4736 					  &free_records, &insert);
4737 	if (status < 0) {
4738 		mlog_errno(status);
4739 		goto bail;
4740 	}
4741 
4742 	trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4743 				  insert.ins_contig_index, free_records,
4744 				  insert.ins_tree_depth);
4745 
4746 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4747 		status = ocfs2_grow_tree(handle, et,
4748 					 &insert.ins_tree_depth, &last_eb_bh,
4749 					 meta_ac);
4750 		if (status) {
4751 			mlog_errno(status);
4752 			goto bail;
4753 		}
4754 	}
4755 
4756 	/* Finally, we can add clusters. This might rotate the tree for us. */
4757 	status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4758 	if (status < 0)
4759 		mlog_errno(status);
4760 	else
4761 		ocfs2_et_extent_map_insert(et, &rec);
4762 
4763 bail:
4764 	brelse(last_eb_bh);
4765 
4766 	return status;
4767 }
4768 
4769 /*
4770  * Allcate and add clusters into the extent b-tree.
4771  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4772  * The extent b-tree's root is specified by et, and
4773  * it is not limited to the file storage. Any extent tree can use this
4774  * function if it implements the proper ocfs2_extent_tree.
4775  */
4776 int ocfs2_add_clusters_in_btree(handle_t *handle,
4777 				struct ocfs2_extent_tree *et,
4778 				u32 *logical_offset,
4779 				u32 clusters_to_add,
4780 				int mark_unwritten,
4781 				struct ocfs2_alloc_context *data_ac,
4782 				struct ocfs2_alloc_context *meta_ac,
4783 				enum ocfs2_alloc_restarted *reason_ret)
4784 {
4785 	int status = 0, err = 0;
4786 	int need_free = 0;
4787 	int free_extents;
4788 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4789 	u32 bit_off, num_bits;
4790 	u64 block;
4791 	u8 flags = 0;
4792 	struct ocfs2_super *osb =
4793 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4794 
4795 	BUG_ON(!clusters_to_add);
4796 
4797 	if (mark_unwritten)
4798 		flags = OCFS2_EXT_UNWRITTEN;
4799 
4800 	free_extents = ocfs2_num_free_extents(et);
4801 	if (free_extents < 0) {
4802 		status = free_extents;
4803 		mlog_errno(status);
4804 		goto leave;
4805 	}
4806 
4807 	/* there are two cases which could cause us to EAGAIN in the
4808 	 * we-need-more-metadata case:
4809 	 * 1) we haven't reserved *any*
4810 	 * 2) we are so fragmented, we've needed to add metadata too
4811 	 *    many times. */
4812 	if (!free_extents && !meta_ac) {
4813 		err = -1;
4814 		status = -EAGAIN;
4815 		reason = RESTART_META;
4816 		goto leave;
4817 	} else if ((!free_extents)
4818 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4819 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4820 		err = -2;
4821 		status = -EAGAIN;
4822 		reason = RESTART_META;
4823 		goto leave;
4824 	}
4825 
4826 	status = __ocfs2_claim_clusters(handle, data_ac, 1,
4827 					clusters_to_add, &bit_off, &num_bits);
4828 	if (status < 0) {
4829 		if (status != -ENOSPC)
4830 			mlog_errno(status);
4831 		goto leave;
4832 	}
4833 
4834 	BUG_ON(num_bits > clusters_to_add);
4835 
4836 	/* reserve our write early -- insert_extent may update the tree root */
4837 	status = ocfs2_et_root_journal_access(handle, et,
4838 					      OCFS2_JOURNAL_ACCESS_WRITE);
4839 	if (status < 0) {
4840 		mlog_errno(status);
4841 		need_free = 1;
4842 		goto bail;
4843 	}
4844 
4845 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4846 	trace_ocfs2_add_clusters_in_btree(
4847 	     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4848 	     bit_off, num_bits);
4849 	status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4850 				     num_bits, flags, meta_ac);
4851 	if (status < 0) {
4852 		mlog_errno(status);
4853 		need_free = 1;
4854 		goto bail;
4855 	}
4856 
4857 	ocfs2_journal_dirty(handle, et->et_root_bh);
4858 
4859 	clusters_to_add -= num_bits;
4860 	*logical_offset += num_bits;
4861 
4862 	if (clusters_to_add) {
4863 		err = clusters_to_add;
4864 		status = -EAGAIN;
4865 		reason = RESTART_TRANS;
4866 	}
4867 
4868 bail:
4869 	if (need_free) {
4870 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4871 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4872 					bit_off, num_bits);
4873 		else
4874 			ocfs2_free_clusters(handle,
4875 					data_ac->ac_inode,
4876 					data_ac->ac_bh,
4877 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
4878 					num_bits);
4879 	}
4880 
4881 leave:
4882 	if (reason_ret)
4883 		*reason_ret = reason;
4884 	trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4885 	return status;
4886 }
4887 
4888 static void ocfs2_make_right_split_rec(struct super_block *sb,
4889 				       struct ocfs2_extent_rec *split_rec,
4890 				       u32 cpos,
4891 				       struct ocfs2_extent_rec *rec)
4892 {
4893 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4894 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4895 
4896 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4897 
4898 	split_rec->e_cpos = cpu_to_le32(cpos);
4899 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4900 
4901 	split_rec->e_blkno = rec->e_blkno;
4902 	le64_add_cpu(&split_rec->e_blkno,
4903 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4904 
4905 	split_rec->e_flags = rec->e_flags;
4906 }
4907 
4908 static int ocfs2_split_and_insert(handle_t *handle,
4909 				  struct ocfs2_extent_tree *et,
4910 				  struct ocfs2_path *path,
4911 				  struct buffer_head **last_eb_bh,
4912 				  int split_index,
4913 				  struct ocfs2_extent_rec *orig_split_rec,
4914 				  struct ocfs2_alloc_context *meta_ac)
4915 {
4916 	int ret = 0, depth;
4917 	unsigned int insert_range, rec_range, do_leftright = 0;
4918 	struct ocfs2_extent_rec tmprec;
4919 	struct ocfs2_extent_list *rightmost_el;
4920 	struct ocfs2_extent_rec rec;
4921 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4922 	struct ocfs2_insert_type insert;
4923 	struct ocfs2_extent_block *eb;
4924 
4925 leftright:
4926 	/*
4927 	 * Store a copy of the record on the stack - it might move
4928 	 * around as the tree is manipulated below.
4929 	 */
4930 	rec = path_leaf_el(path)->l_recs[split_index];
4931 
4932 	rightmost_el = et->et_root_el;
4933 
4934 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4935 	if (depth) {
4936 		BUG_ON(!(*last_eb_bh));
4937 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4938 		rightmost_el = &eb->h_list;
4939 	}
4940 
4941 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4942 	    le16_to_cpu(rightmost_el->l_count)) {
4943 		ret = ocfs2_grow_tree(handle, et,
4944 				      &depth, last_eb_bh, meta_ac);
4945 		if (ret) {
4946 			mlog_errno(ret);
4947 			goto out;
4948 		}
4949 	}
4950 
4951 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4952 	insert.ins_appending = APPEND_NONE;
4953 	insert.ins_contig = CONTIG_NONE;
4954 	insert.ins_tree_depth = depth;
4955 
4956 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4957 		le16_to_cpu(split_rec.e_leaf_clusters);
4958 	rec_range = le32_to_cpu(rec.e_cpos) +
4959 		le16_to_cpu(rec.e_leaf_clusters);
4960 
4961 	if (split_rec.e_cpos == rec.e_cpos) {
4962 		insert.ins_split = SPLIT_LEFT;
4963 	} else if (insert_range == rec_range) {
4964 		insert.ins_split = SPLIT_RIGHT;
4965 	} else {
4966 		/*
4967 		 * Left/right split. We fake this as a right split
4968 		 * first and then make a second pass as a left split.
4969 		 */
4970 		insert.ins_split = SPLIT_RIGHT;
4971 
4972 		ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4973 					   &tmprec, insert_range, &rec);
4974 
4975 		split_rec = tmprec;
4976 
4977 		BUG_ON(do_leftright);
4978 		do_leftright = 1;
4979 	}
4980 
4981 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4982 	if (ret) {
4983 		mlog_errno(ret);
4984 		goto out;
4985 	}
4986 
4987 	if (do_leftright == 1) {
4988 		u32 cpos;
4989 		struct ocfs2_extent_list *el;
4990 
4991 		do_leftright++;
4992 		split_rec = *orig_split_rec;
4993 
4994 		ocfs2_reinit_path(path, 1);
4995 
4996 		cpos = le32_to_cpu(split_rec.e_cpos);
4997 		ret = ocfs2_find_path(et->et_ci, path, cpos);
4998 		if (ret) {
4999 			mlog_errno(ret);
5000 			goto out;
5001 		}
5002 
5003 		el = path_leaf_el(path);
5004 		split_index = ocfs2_search_extent_list(el, cpos);
5005 		if (split_index == -1) {
5006 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5007 				    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5008 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5009 				    cpos);
5010 			ret = -EROFS;
5011 			goto out;
5012 		}
5013 		goto leftright;
5014 	}
5015 out:
5016 
5017 	return ret;
5018 }
5019 
5020 static int ocfs2_replace_extent_rec(handle_t *handle,
5021 				    struct ocfs2_extent_tree *et,
5022 				    struct ocfs2_path *path,
5023 				    struct ocfs2_extent_list *el,
5024 				    int split_index,
5025 				    struct ocfs2_extent_rec *split_rec)
5026 {
5027 	int ret;
5028 
5029 	ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5030 					   path_num_items(path) - 1);
5031 	if (ret) {
5032 		mlog_errno(ret);
5033 		goto out;
5034 	}
5035 
5036 	el->l_recs[split_index] = *split_rec;
5037 
5038 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5039 out:
5040 	return ret;
5041 }
5042 
5043 /*
5044  * Split part or all of the extent record at split_index in the leaf
5045  * pointed to by path. Merge with the contiguous extent record if needed.
5046  *
5047  * Care is taken to handle contiguousness so as to not grow the tree.
5048  *
5049  * meta_ac is not strictly necessary - we only truly need it if growth
5050  * of the tree is required. All other cases will degrade into a less
5051  * optimal tree layout.
5052  *
5053  * last_eb_bh should be the rightmost leaf block for any extent
5054  * btree. Since a split may grow the tree or a merge might shrink it,
5055  * the caller cannot trust the contents of that buffer after this call.
5056  *
5057  * This code is optimized for readability - several passes might be
5058  * made over certain portions of the tree. All of those blocks will
5059  * have been brought into cache (and pinned via the journal), so the
5060  * extra overhead is not expressed in terms of disk reads.
5061  */
5062 int ocfs2_split_extent(handle_t *handle,
5063 		       struct ocfs2_extent_tree *et,
5064 		       struct ocfs2_path *path,
5065 		       int split_index,
5066 		       struct ocfs2_extent_rec *split_rec,
5067 		       struct ocfs2_alloc_context *meta_ac,
5068 		       struct ocfs2_cached_dealloc_ctxt *dealloc)
5069 {
5070 	int ret = 0;
5071 	struct ocfs2_extent_list *el = path_leaf_el(path);
5072 	struct buffer_head *last_eb_bh = NULL;
5073 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5074 	struct ocfs2_merge_ctxt ctxt;
5075 
5076 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5077 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5078 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5079 		ret = -EIO;
5080 		mlog_errno(ret);
5081 		goto out;
5082 	}
5083 
5084 	ret = ocfs2_figure_merge_contig_type(et, path, el,
5085 					     split_index,
5086 					     split_rec,
5087 					     &ctxt);
5088 	if (ret) {
5089 		mlog_errno(ret);
5090 		goto out;
5091 	}
5092 
5093 	/*
5094 	 * The core merge / split code wants to know how much room is
5095 	 * left in this allocation tree, so we pass the
5096 	 * rightmost extent list.
5097 	 */
5098 	if (path->p_tree_depth) {
5099 		ret = ocfs2_read_extent_block(et->et_ci,
5100 					      ocfs2_et_get_last_eb_blk(et),
5101 					      &last_eb_bh);
5102 		if (ret) {
5103 			mlog_errno(ret);
5104 			goto out;
5105 		}
5106 	}
5107 
5108 	if (rec->e_cpos == split_rec->e_cpos &&
5109 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5110 		ctxt.c_split_covers_rec = 1;
5111 	else
5112 		ctxt.c_split_covers_rec = 0;
5113 
5114 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5115 
5116 	trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5117 				 ctxt.c_has_empty_extent,
5118 				 ctxt.c_split_covers_rec);
5119 
5120 	if (ctxt.c_contig_type == CONTIG_NONE) {
5121 		if (ctxt.c_split_covers_rec)
5122 			ret = ocfs2_replace_extent_rec(handle, et, path, el,
5123 						       split_index, split_rec);
5124 		else
5125 			ret = ocfs2_split_and_insert(handle, et, path,
5126 						     &last_eb_bh, split_index,
5127 						     split_rec, meta_ac);
5128 		if (ret)
5129 			mlog_errno(ret);
5130 	} else {
5131 		ret = ocfs2_try_to_merge_extent(handle, et, path,
5132 						split_index, split_rec,
5133 						dealloc, &ctxt);
5134 		if (ret)
5135 			mlog_errno(ret);
5136 	}
5137 
5138 out:
5139 	brelse(last_eb_bh);
5140 	return ret;
5141 }
5142 
5143 /*
5144  * Change the flags of the already-existing extent at cpos for len clusters.
5145  *
5146  * new_flags: the flags we want to set.
5147  * clear_flags: the flags we want to clear.
5148  * phys: the new physical offset we want this new extent starts from.
5149  *
5150  * If the existing extent is larger than the request, initiate a
5151  * split. An attempt will be made at merging with adjacent extents.
5152  *
5153  * The caller is responsible for passing down meta_ac if we'll need it.
5154  */
5155 int ocfs2_change_extent_flag(handle_t *handle,
5156 			     struct ocfs2_extent_tree *et,
5157 			     u32 cpos, u32 len, u32 phys,
5158 			     struct ocfs2_alloc_context *meta_ac,
5159 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5160 			     int new_flags, int clear_flags)
5161 {
5162 	int ret, index;
5163 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5164 	u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5165 	struct ocfs2_extent_rec split_rec;
5166 	struct ocfs2_path *left_path = NULL;
5167 	struct ocfs2_extent_list *el;
5168 	struct ocfs2_extent_rec *rec;
5169 
5170 	left_path = ocfs2_new_path_from_et(et);
5171 	if (!left_path) {
5172 		ret = -ENOMEM;
5173 		mlog_errno(ret);
5174 		goto out;
5175 	}
5176 
5177 	ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5178 	if (ret) {
5179 		mlog_errno(ret);
5180 		goto out;
5181 	}
5182 	el = path_leaf_el(left_path);
5183 
5184 	index = ocfs2_search_extent_list(el, cpos);
5185 	if (index == -1) {
5186 		ocfs2_error(sb,
5187 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5188 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5189 			    cpos);
5190 		ret = -EROFS;
5191 		goto out;
5192 	}
5193 
5194 	ret = -EIO;
5195 	rec = &el->l_recs[index];
5196 	if (new_flags && (rec->e_flags & new_flags)) {
5197 		mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5198 		     "extent that already had them\n",
5199 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5200 		     new_flags);
5201 		goto out;
5202 	}
5203 
5204 	if (clear_flags && !(rec->e_flags & clear_flags)) {
5205 		mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5206 		     "extent that didn't have them\n",
5207 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5208 		     clear_flags);
5209 		goto out;
5210 	}
5211 
5212 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5213 	split_rec.e_cpos = cpu_to_le32(cpos);
5214 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5215 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5216 	split_rec.e_flags = rec->e_flags;
5217 	if (new_flags)
5218 		split_rec.e_flags |= new_flags;
5219 	if (clear_flags)
5220 		split_rec.e_flags &= ~clear_flags;
5221 
5222 	ret = ocfs2_split_extent(handle, et, left_path,
5223 				 index, &split_rec, meta_ac,
5224 				 dealloc);
5225 	if (ret)
5226 		mlog_errno(ret);
5227 
5228 out:
5229 	ocfs2_free_path(left_path);
5230 	return ret;
5231 
5232 }
5233 
5234 /*
5235  * Mark the already-existing extent at cpos as written for len clusters.
5236  * This removes the unwritten extent flag.
5237  *
5238  * If the existing extent is larger than the request, initiate a
5239  * split. An attempt will be made at merging with adjacent extents.
5240  *
5241  * The caller is responsible for passing down meta_ac if we'll need it.
5242  */
5243 int ocfs2_mark_extent_written(struct inode *inode,
5244 			      struct ocfs2_extent_tree *et,
5245 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
5246 			      struct ocfs2_alloc_context *meta_ac,
5247 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
5248 {
5249 	int ret;
5250 
5251 	trace_ocfs2_mark_extent_written(
5252 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
5253 		cpos, len, phys);
5254 
5255 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5256 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5257 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
5258 		ret = -EROFS;
5259 		goto out;
5260 	}
5261 
5262 	/*
5263 	 * XXX: This should be fixed up so that we just re-insert the
5264 	 * next extent records.
5265 	 */
5266 	ocfs2_et_extent_map_truncate(et, 0);
5267 
5268 	ret = ocfs2_change_extent_flag(handle, et, cpos,
5269 				       len, phys, meta_ac, dealloc,
5270 				       0, OCFS2_EXT_UNWRITTEN);
5271 	if (ret)
5272 		mlog_errno(ret);
5273 
5274 out:
5275 	return ret;
5276 }
5277 
5278 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5279 			    struct ocfs2_path *path,
5280 			    int index, u32 new_range,
5281 			    struct ocfs2_alloc_context *meta_ac)
5282 {
5283 	int ret, depth, credits;
5284 	struct buffer_head *last_eb_bh = NULL;
5285 	struct ocfs2_extent_block *eb;
5286 	struct ocfs2_extent_list *rightmost_el, *el;
5287 	struct ocfs2_extent_rec split_rec;
5288 	struct ocfs2_extent_rec *rec;
5289 	struct ocfs2_insert_type insert;
5290 
5291 	/*
5292 	 * Setup the record to split before we grow the tree.
5293 	 */
5294 	el = path_leaf_el(path);
5295 	rec = &el->l_recs[index];
5296 	ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5297 				   &split_rec, new_range, rec);
5298 
5299 	depth = path->p_tree_depth;
5300 	if (depth > 0) {
5301 		ret = ocfs2_read_extent_block(et->et_ci,
5302 					      ocfs2_et_get_last_eb_blk(et),
5303 					      &last_eb_bh);
5304 		if (ret < 0) {
5305 			mlog_errno(ret);
5306 			goto out;
5307 		}
5308 
5309 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5310 		rightmost_el = &eb->h_list;
5311 	} else
5312 		rightmost_el = path_leaf_el(path);
5313 
5314 	credits = path->p_tree_depth +
5315 		  ocfs2_extend_meta_needed(et->et_root_el);
5316 	ret = ocfs2_extend_trans(handle, credits);
5317 	if (ret) {
5318 		mlog_errno(ret);
5319 		goto out;
5320 	}
5321 
5322 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5323 	    le16_to_cpu(rightmost_el->l_count)) {
5324 		ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5325 				      meta_ac);
5326 		if (ret) {
5327 			mlog_errno(ret);
5328 			goto out;
5329 		}
5330 	}
5331 
5332 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5333 	insert.ins_appending = APPEND_NONE;
5334 	insert.ins_contig = CONTIG_NONE;
5335 	insert.ins_split = SPLIT_RIGHT;
5336 	insert.ins_tree_depth = depth;
5337 
5338 	ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5339 	if (ret)
5340 		mlog_errno(ret);
5341 
5342 out:
5343 	brelse(last_eb_bh);
5344 	return ret;
5345 }
5346 
5347 static int ocfs2_truncate_rec(handle_t *handle,
5348 			      struct ocfs2_extent_tree *et,
5349 			      struct ocfs2_path *path, int index,
5350 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5351 			      u32 cpos, u32 len)
5352 {
5353 	int ret;
5354 	u32 left_cpos, rec_range, trunc_range;
5355 	int is_rightmost_tree_rec = 0;
5356 	struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5357 	struct ocfs2_path *left_path = NULL;
5358 	struct ocfs2_extent_list *el = path_leaf_el(path);
5359 	struct ocfs2_extent_rec *rec;
5360 	struct ocfs2_extent_block *eb;
5361 
5362 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5363 		/* extend credit for ocfs2_remove_rightmost_path */
5364 		ret = ocfs2_extend_rotate_transaction(handle, 0,
5365 				jbd2_handle_buffer_credits(handle),
5366 				path);
5367 		if (ret) {
5368 			mlog_errno(ret);
5369 			goto out;
5370 		}
5371 
5372 		ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5373 		if (ret) {
5374 			mlog_errno(ret);
5375 			goto out;
5376 		}
5377 
5378 		index--;
5379 	}
5380 
5381 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5382 	    path->p_tree_depth) {
5383 		/*
5384 		 * Check whether this is the rightmost tree record. If
5385 		 * we remove all of this record or part of its right
5386 		 * edge then an update of the record lengths above it
5387 		 * will be required.
5388 		 */
5389 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5390 		if (eb->h_next_leaf_blk == 0)
5391 			is_rightmost_tree_rec = 1;
5392 	}
5393 
5394 	rec = &el->l_recs[index];
5395 	if (index == 0 && path->p_tree_depth &&
5396 	    le32_to_cpu(rec->e_cpos) == cpos) {
5397 		/*
5398 		 * Changing the leftmost offset (via partial or whole
5399 		 * record truncate) of an interior (or rightmost) path
5400 		 * means we have to update the subtree that is formed
5401 		 * by this leaf and the one to it's left.
5402 		 *
5403 		 * There are two cases we can skip:
5404 		 *   1) Path is the leftmost one in our btree.
5405 		 *   2) The leaf is rightmost and will be empty after
5406 		 *      we remove the extent record - the rotate code
5407 		 *      knows how to update the newly formed edge.
5408 		 */
5409 
5410 		ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5411 		if (ret) {
5412 			mlog_errno(ret);
5413 			goto out;
5414 		}
5415 
5416 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5417 			left_path = ocfs2_new_path_from_path(path);
5418 			if (!left_path) {
5419 				ret = -ENOMEM;
5420 				mlog_errno(ret);
5421 				goto out;
5422 			}
5423 
5424 			ret = ocfs2_find_path(et->et_ci, left_path,
5425 					      left_cpos);
5426 			if (ret) {
5427 				mlog_errno(ret);
5428 				goto out;
5429 			}
5430 		}
5431 	}
5432 
5433 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5434 					jbd2_handle_buffer_credits(handle),
5435 					path);
5436 	if (ret) {
5437 		mlog_errno(ret);
5438 		goto out;
5439 	}
5440 
5441 	ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5442 	if (ret) {
5443 		mlog_errno(ret);
5444 		goto out;
5445 	}
5446 
5447 	ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5448 	if (ret) {
5449 		mlog_errno(ret);
5450 		goto out;
5451 	}
5452 
5453 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5454 	trunc_range = cpos + len;
5455 
5456 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5457 		int next_free;
5458 
5459 		memset(rec, 0, sizeof(*rec));
5460 		ocfs2_cleanup_merge(el, index);
5461 
5462 		next_free = le16_to_cpu(el->l_next_free_rec);
5463 		if (is_rightmost_tree_rec && next_free > 1) {
5464 			/*
5465 			 * We skip the edge update if this path will
5466 			 * be deleted by the rotate code.
5467 			 */
5468 			rec = &el->l_recs[next_free - 1];
5469 			ocfs2_adjust_rightmost_records(handle, et, path,
5470 						       rec);
5471 		}
5472 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5473 		/* Remove leftmost portion of the record. */
5474 		le32_add_cpu(&rec->e_cpos, len);
5475 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5476 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5477 	} else if (rec_range == trunc_range) {
5478 		/* Remove rightmost portion of the record */
5479 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5480 		if (is_rightmost_tree_rec)
5481 			ocfs2_adjust_rightmost_records(handle, et, path, rec);
5482 	} else {
5483 		/* Caller should have trapped this. */
5484 		mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5485 		     "(%u, %u)\n",
5486 		     (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5487 		     le32_to_cpu(rec->e_cpos),
5488 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5489 		BUG();
5490 	}
5491 
5492 	if (left_path) {
5493 		int subtree_index;
5494 
5495 		subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5496 		ocfs2_complete_edge_insert(handle, left_path, path,
5497 					   subtree_index);
5498 	}
5499 
5500 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5501 
5502 	ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5503 	if (ret)
5504 		mlog_errno(ret);
5505 
5506 out:
5507 	ocfs2_free_path(left_path);
5508 	return ret;
5509 }
5510 
5511 int ocfs2_remove_extent(handle_t *handle,
5512 			struct ocfs2_extent_tree *et,
5513 			u32 cpos, u32 len,
5514 			struct ocfs2_alloc_context *meta_ac,
5515 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5516 {
5517 	int ret, index;
5518 	u32 rec_range, trunc_range;
5519 	struct ocfs2_extent_rec *rec;
5520 	struct ocfs2_extent_list *el;
5521 	struct ocfs2_path *path = NULL;
5522 
5523 	/*
5524 	 * XXX: Why are we truncating to 0 instead of wherever this
5525 	 * affects us?
5526 	 */
5527 	ocfs2_et_extent_map_truncate(et, 0);
5528 
5529 	path = ocfs2_new_path_from_et(et);
5530 	if (!path) {
5531 		ret = -ENOMEM;
5532 		mlog_errno(ret);
5533 		goto out;
5534 	}
5535 
5536 	ret = ocfs2_find_path(et->et_ci, path, cpos);
5537 	if (ret) {
5538 		mlog_errno(ret);
5539 		goto out;
5540 	}
5541 
5542 	el = path_leaf_el(path);
5543 	index = ocfs2_search_extent_list(el, cpos);
5544 	if (index == -1) {
5545 		ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5546 			    "Owner %llu has an extent at cpos %u which can no longer be found\n",
5547 			    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5548 			    cpos);
5549 		ret = -EROFS;
5550 		goto out;
5551 	}
5552 
5553 	/*
5554 	 * We have 3 cases of extent removal:
5555 	 *   1) Range covers the entire extent rec
5556 	 *   2) Range begins or ends on one edge of the extent rec
5557 	 *   3) Range is in the middle of the extent rec (no shared edges)
5558 	 *
5559 	 * For case 1 we remove the extent rec and left rotate to
5560 	 * fill the hole.
5561 	 *
5562 	 * For case 2 we just shrink the existing extent rec, with a
5563 	 * tree update if the shrinking edge is also the edge of an
5564 	 * extent block.
5565 	 *
5566 	 * For case 3 we do a right split to turn the extent rec into
5567 	 * something case 2 can handle.
5568 	 */
5569 	rec = &el->l_recs[index];
5570 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5571 	trunc_range = cpos + len;
5572 
5573 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5574 
5575 	trace_ocfs2_remove_extent(
5576 		(unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5577 		cpos, len, index, le32_to_cpu(rec->e_cpos),
5578 		ocfs2_rec_clusters(el, rec));
5579 
5580 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5581 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5582 					 cpos, len);
5583 		if (ret) {
5584 			mlog_errno(ret);
5585 			goto out;
5586 		}
5587 	} else {
5588 		ret = ocfs2_split_tree(handle, et, path, index,
5589 				       trunc_range, meta_ac);
5590 		if (ret) {
5591 			mlog_errno(ret);
5592 			goto out;
5593 		}
5594 
5595 		/*
5596 		 * The split could have manipulated the tree enough to
5597 		 * move the record location, so we have to look for it again.
5598 		 */
5599 		ocfs2_reinit_path(path, 1);
5600 
5601 		ret = ocfs2_find_path(et->et_ci, path, cpos);
5602 		if (ret) {
5603 			mlog_errno(ret);
5604 			goto out;
5605 		}
5606 
5607 		el = path_leaf_el(path);
5608 		index = ocfs2_search_extent_list(el, cpos);
5609 		if (index == -1) {
5610 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5611 				    "Owner %llu: split at cpos %u lost record\n",
5612 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5613 				    cpos);
5614 			ret = -EROFS;
5615 			goto out;
5616 		}
5617 
5618 		/*
5619 		 * Double check our values here. If anything is fishy,
5620 		 * it's easier to catch it at the top level.
5621 		 */
5622 		rec = &el->l_recs[index];
5623 		rec_range = le32_to_cpu(rec->e_cpos) +
5624 			ocfs2_rec_clusters(el, rec);
5625 		if (rec_range != trunc_range) {
5626 			ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5627 				    "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5628 				    (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5629 				    cpos, len, le32_to_cpu(rec->e_cpos),
5630 				    ocfs2_rec_clusters(el, rec));
5631 			ret = -EROFS;
5632 			goto out;
5633 		}
5634 
5635 		ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5636 					 cpos, len);
5637 		if (ret)
5638 			mlog_errno(ret);
5639 	}
5640 
5641 out:
5642 	ocfs2_free_path(path);
5643 	return ret;
5644 }
5645 
5646 /*
5647  * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5648  * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5649  * number to reserve some extra blocks, and it only handles meta
5650  * data allocations.
5651  *
5652  * Currently, only ocfs2_remove_btree_range() uses it for truncating
5653  * and punching holes.
5654  */
5655 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5656 					      struct ocfs2_extent_tree *et,
5657 					      u32 extents_to_split,
5658 					      struct ocfs2_alloc_context **ac,
5659 					      int extra_blocks)
5660 {
5661 	int ret = 0, num_free_extents;
5662 	unsigned int max_recs_needed = 2 * extents_to_split;
5663 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5664 
5665 	*ac = NULL;
5666 
5667 	num_free_extents = ocfs2_num_free_extents(et);
5668 	if (num_free_extents < 0) {
5669 		ret = num_free_extents;
5670 		mlog_errno(ret);
5671 		goto out;
5672 	}
5673 
5674 	if (!num_free_extents ||
5675 	    (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5676 		extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5677 
5678 	if (extra_blocks) {
5679 		ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5680 		if (ret < 0) {
5681 			if (ret != -ENOSPC)
5682 				mlog_errno(ret);
5683 		}
5684 	}
5685 
5686 out:
5687 	if (ret) {
5688 		if (*ac) {
5689 			ocfs2_free_alloc_context(*ac);
5690 			*ac = NULL;
5691 		}
5692 	}
5693 
5694 	return ret;
5695 }
5696 
5697 int ocfs2_remove_btree_range(struct inode *inode,
5698 			     struct ocfs2_extent_tree *et,
5699 			     u32 cpos, u32 phys_cpos, u32 len, int flags,
5700 			     struct ocfs2_cached_dealloc_ctxt *dealloc,
5701 			     u64 refcount_loc, bool refcount_tree_locked)
5702 {
5703 	int ret, credits = 0, extra_blocks = 0;
5704 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5705 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5706 	struct inode *tl_inode = osb->osb_tl_inode;
5707 	handle_t *handle;
5708 	struct ocfs2_alloc_context *meta_ac = NULL;
5709 	struct ocfs2_refcount_tree *ref_tree = NULL;
5710 
5711 	if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5712 		BUG_ON(!ocfs2_is_refcount_inode(inode));
5713 
5714 		if (!refcount_tree_locked) {
5715 			ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5716 						       &ref_tree, NULL);
5717 			if (ret) {
5718 				mlog_errno(ret);
5719 				goto bail;
5720 			}
5721 		}
5722 
5723 		ret = ocfs2_prepare_refcount_change_for_del(inode,
5724 							    refcount_loc,
5725 							    phys_blkno,
5726 							    len,
5727 							    &credits,
5728 							    &extra_blocks);
5729 		if (ret < 0) {
5730 			mlog_errno(ret);
5731 			goto bail;
5732 		}
5733 	}
5734 
5735 	ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5736 						 extra_blocks);
5737 	if (ret) {
5738 		mlog_errno(ret);
5739 		goto bail;
5740 	}
5741 
5742 	inode_lock(tl_inode);
5743 
5744 	if (ocfs2_truncate_log_needs_flush(osb)) {
5745 		ret = __ocfs2_flush_truncate_log(osb);
5746 		if (ret < 0) {
5747 			mlog_errno(ret);
5748 			goto out;
5749 		}
5750 	}
5751 
5752 	handle = ocfs2_start_trans(osb,
5753 			ocfs2_remove_extent_credits(osb->sb) + credits);
5754 	if (IS_ERR(handle)) {
5755 		ret = PTR_ERR(handle);
5756 		mlog_errno(ret);
5757 		goto out;
5758 	}
5759 
5760 	ret = ocfs2_et_root_journal_access(handle, et,
5761 					   OCFS2_JOURNAL_ACCESS_WRITE);
5762 	if (ret) {
5763 		mlog_errno(ret);
5764 		goto out_commit;
5765 	}
5766 
5767 	dquot_free_space_nodirty(inode,
5768 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5769 
5770 	ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5771 	if (ret) {
5772 		mlog_errno(ret);
5773 		goto out_commit;
5774 	}
5775 
5776 	ocfs2_et_update_clusters(et, -len);
5777 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
5778 
5779 	ocfs2_journal_dirty(handle, et->et_root_bh);
5780 
5781 	if (phys_blkno) {
5782 		if (flags & OCFS2_EXT_REFCOUNTED)
5783 			ret = ocfs2_decrease_refcount(inode, handle,
5784 					ocfs2_blocks_to_clusters(osb->sb,
5785 								 phys_blkno),
5786 					len, meta_ac,
5787 					dealloc, 1);
5788 		else
5789 			ret = ocfs2_truncate_log_append(osb, handle,
5790 							phys_blkno, len);
5791 		if (ret)
5792 			mlog_errno(ret);
5793 
5794 	}
5795 
5796 out_commit:
5797 	ocfs2_commit_trans(osb, handle);
5798 out:
5799 	inode_unlock(tl_inode);
5800 bail:
5801 	if (meta_ac)
5802 		ocfs2_free_alloc_context(meta_ac);
5803 
5804 	if (ref_tree)
5805 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5806 
5807 	return ret;
5808 }
5809 
5810 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5811 {
5812 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5813 	struct ocfs2_dinode *di;
5814 	struct ocfs2_truncate_log *tl;
5815 
5816 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5817 	tl = &di->id2.i_dealloc;
5818 
5819 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5820 			"slot %d, invalid truncate log parameters: used = "
5821 			"%u, count = %u\n", osb->slot_num,
5822 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5823 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5824 }
5825 
5826 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5827 					   unsigned int new_start)
5828 {
5829 	unsigned int tail_index;
5830 	unsigned int current_tail;
5831 
5832 	/* No records, nothing to coalesce */
5833 	if (!le16_to_cpu(tl->tl_used))
5834 		return 0;
5835 
5836 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5837 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5838 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5839 
5840 	return current_tail == new_start;
5841 }
5842 
5843 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5844 			      handle_t *handle,
5845 			      u64 start_blk,
5846 			      unsigned int num_clusters)
5847 {
5848 	int status, index;
5849 	unsigned int start_cluster, tl_count;
5850 	struct inode *tl_inode = osb->osb_tl_inode;
5851 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5852 	struct ocfs2_dinode *di;
5853 	struct ocfs2_truncate_log *tl;
5854 
5855 	BUG_ON(inode_trylock(tl_inode));
5856 
5857 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5858 
5859 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5860 
5861 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5862 	 * by the underlying call to ocfs2_read_inode_block(), so any
5863 	 * corruption is a code bug */
5864 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5865 
5866 	tl = &di->id2.i_dealloc;
5867 	tl_count = le16_to_cpu(tl->tl_count);
5868 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5869 			tl_count == 0,
5870 			"Truncate record count on #%llu invalid "
5871 			"wanted %u, actual %u\n",
5872 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5873 			ocfs2_truncate_recs_per_inode(osb->sb),
5874 			le16_to_cpu(tl->tl_count));
5875 
5876 	/* Caller should have known to flush before calling us. */
5877 	index = le16_to_cpu(tl->tl_used);
5878 	if (index >= tl_count) {
5879 		status = -ENOSPC;
5880 		mlog_errno(status);
5881 		goto bail;
5882 	}
5883 
5884 	status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5885 					 OCFS2_JOURNAL_ACCESS_WRITE);
5886 	if (status < 0) {
5887 		mlog_errno(status);
5888 		goto bail;
5889 	}
5890 
5891 	trace_ocfs2_truncate_log_append(
5892 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5893 		start_cluster, num_clusters);
5894 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5895 		/*
5896 		 * Move index back to the record we are coalescing with.
5897 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5898 		 */
5899 		index--;
5900 
5901 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5902 		trace_ocfs2_truncate_log_append(
5903 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5904 			index, le32_to_cpu(tl->tl_recs[index].t_start),
5905 			num_clusters);
5906 	} else {
5907 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5908 		tl->tl_used = cpu_to_le16(index + 1);
5909 	}
5910 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5911 
5912 	ocfs2_journal_dirty(handle, tl_bh);
5913 
5914 	osb->truncated_clusters += num_clusters;
5915 bail:
5916 	return status;
5917 }
5918 
5919 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5920 					 struct inode *data_alloc_inode,
5921 					 struct buffer_head *data_alloc_bh)
5922 {
5923 	int status = 0;
5924 	int i;
5925 	unsigned int num_clusters;
5926 	u64 start_blk;
5927 	struct ocfs2_truncate_rec rec;
5928 	struct ocfs2_dinode *di;
5929 	struct ocfs2_truncate_log *tl;
5930 	struct inode *tl_inode = osb->osb_tl_inode;
5931 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5932 	handle_t *handle;
5933 
5934 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5935 	tl = &di->id2.i_dealloc;
5936 	i = le16_to_cpu(tl->tl_used) - 1;
5937 	while (i >= 0) {
5938 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5939 		if (IS_ERR(handle)) {
5940 			status = PTR_ERR(handle);
5941 			mlog_errno(status);
5942 			goto bail;
5943 		}
5944 
5945 		/* Caller has given us at least enough credits to
5946 		 * update the truncate log dinode */
5947 		status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5948 						 OCFS2_JOURNAL_ACCESS_WRITE);
5949 		if (status < 0) {
5950 			ocfs2_commit_trans(osb, handle);
5951 			mlog_errno(status);
5952 			goto bail;
5953 		}
5954 
5955 		tl->tl_used = cpu_to_le16(i);
5956 
5957 		ocfs2_journal_dirty(handle, tl_bh);
5958 
5959 		rec = tl->tl_recs[i];
5960 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5961 						    le32_to_cpu(rec.t_start));
5962 		num_clusters = le32_to_cpu(rec.t_clusters);
5963 
5964 		/* if start_blk is not set, we ignore the record as
5965 		 * invalid. */
5966 		if (start_blk) {
5967 			trace_ocfs2_replay_truncate_records(
5968 				(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5969 				i, le32_to_cpu(rec.t_start), num_clusters);
5970 
5971 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5972 						     data_alloc_bh, start_blk,
5973 						     num_clusters);
5974 			if (status < 0) {
5975 				ocfs2_commit_trans(osb, handle);
5976 				mlog_errno(status);
5977 				goto bail;
5978 			}
5979 		}
5980 
5981 		ocfs2_commit_trans(osb, handle);
5982 		i--;
5983 	}
5984 
5985 	osb->truncated_clusters = 0;
5986 
5987 bail:
5988 	return status;
5989 }
5990 
5991 /* Expects you to already be holding tl_inode->i_rwsem */
5992 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5993 {
5994 	int status;
5995 	unsigned int num_to_flush;
5996 	struct inode *tl_inode = osb->osb_tl_inode;
5997 	struct inode *data_alloc_inode = NULL;
5998 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5999 	struct buffer_head *data_alloc_bh = NULL;
6000 	struct ocfs2_dinode *di;
6001 	struct ocfs2_truncate_log *tl;
6002 	struct ocfs2_journal *journal = osb->journal;
6003 
6004 	BUG_ON(inode_trylock(tl_inode));
6005 
6006 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6007 
6008 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
6009 	 * by the underlying call to ocfs2_read_inode_block(), so any
6010 	 * corruption is a code bug */
6011 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6012 
6013 	tl = &di->id2.i_dealloc;
6014 	num_to_flush = le16_to_cpu(tl->tl_used);
6015 	trace_ocfs2_flush_truncate_log(
6016 		(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6017 		num_to_flush);
6018 	if (!num_to_flush) {
6019 		status = 0;
6020 		goto out;
6021 	}
6022 
6023 	/* Appending truncate log(TA) and flushing truncate log(TF) are
6024 	 * two separated transactions. They can be both committed but not
6025 	 * checkpointed. If crash occurs then, both two transaction will be
6026 	 * replayed with several already released to global bitmap clusters.
6027 	 * Then truncate log will be replayed resulting in cluster double free.
6028 	 */
6029 	jbd2_journal_lock_updates(journal->j_journal);
6030 	status = jbd2_journal_flush(journal->j_journal, 0);
6031 	jbd2_journal_unlock_updates(journal->j_journal);
6032 	if (status < 0) {
6033 		mlog_errno(status);
6034 		goto out;
6035 	}
6036 
6037 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
6038 						       GLOBAL_BITMAP_SYSTEM_INODE,
6039 						       OCFS2_INVALID_SLOT);
6040 	if (!data_alloc_inode) {
6041 		status = -EINVAL;
6042 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
6043 		goto out;
6044 	}
6045 
6046 	inode_lock(data_alloc_inode);
6047 
6048 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6049 	if (status < 0) {
6050 		mlog_errno(status);
6051 		goto out_mutex;
6052 	}
6053 
6054 	status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6055 					       data_alloc_bh);
6056 	if (status < 0)
6057 		mlog_errno(status);
6058 
6059 	brelse(data_alloc_bh);
6060 	ocfs2_inode_unlock(data_alloc_inode, 1);
6061 
6062 out_mutex:
6063 	inode_unlock(data_alloc_inode);
6064 	iput(data_alloc_inode);
6065 
6066 out:
6067 	return status;
6068 }
6069 
6070 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6071 {
6072 	int status;
6073 	struct inode *tl_inode = osb->osb_tl_inode;
6074 
6075 	inode_lock(tl_inode);
6076 	status = __ocfs2_flush_truncate_log(osb);
6077 	inode_unlock(tl_inode);
6078 
6079 	return status;
6080 }
6081 
6082 static void ocfs2_truncate_log_worker(struct work_struct *work)
6083 {
6084 	int status;
6085 	struct ocfs2_super *osb =
6086 		container_of(work, struct ocfs2_super,
6087 			     osb_truncate_log_wq.work);
6088 
6089 	status = ocfs2_flush_truncate_log(osb);
6090 	if (status < 0)
6091 		mlog_errno(status);
6092 	else
6093 		ocfs2_init_steal_slots(osb);
6094 }
6095 
6096 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6097 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6098 				       int cancel)
6099 {
6100 	if (osb->osb_tl_inode &&
6101 			atomic_read(&osb->osb_tl_disable) == 0) {
6102 		/* We want to push off log flushes while truncates are
6103 		 * still running. */
6104 		if (cancel)
6105 			cancel_delayed_work(&osb->osb_truncate_log_wq);
6106 
6107 		queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6108 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6109 	}
6110 }
6111 
6112 /*
6113  * Try to flush truncate logs if we can free enough clusters from it.
6114  * As for return value, "< 0" means error, "0" no space and "1" means
6115  * we have freed enough spaces and let the caller try to allocate again.
6116  */
6117 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6118 					unsigned int needed)
6119 {
6120 	tid_t target;
6121 	int ret = 0;
6122 	unsigned int truncated_clusters;
6123 
6124 	inode_lock(osb->osb_tl_inode);
6125 	truncated_clusters = osb->truncated_clusters;
6126 	inode_unlock(osb->osb_tl_inode);
6127 
6128 	/*
6129 	 * Check whether we can succeed in allocating if we free
6130 	 * the truncate log.
6131 	 */
6132 	if (truncated_clusters < needed)
6133 		goto out;
6134 
6135 	ret = ocfs2_flush_truncate_log(osb);
6136 	if (ret) {
6137 		mlog_errno(ret);
6138 		goto out;
6139 	}
6140 
6141 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6142 		jbd2_log_wait_commit(osb->journal->j_journal, target);
6143 		ret = 1;
6144 	}
6145 out:
6146 	return ret;
6147 }
6148 
6149 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6150 				       int slot_num,
6151 				       struct inode **tl_inode,
6152 				       struct buffer_head **tl_bh)
6153 {
6154 	int status;
6155 	struct inode *inode = NULL;
6156 	struct buffer_head *bh = NULL;
6157 
6158 	inode = ocfs2_get_system_file_inode(osb,
6159 					   TRUNCATE_LOG_SYSTEM_INODE,
6160 					   slot_num);
6161 	if (!inode) {
6162 		status = -EINVAL;
6163 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6164 		goto bail;
6165 	}
6166 
6167 	status = ocfs2_read_inode_block(inode, &bh);
6168 	if (status < 0) {
6169 		iput(inode);
6170 		mlog_errno(status);
6171 		goto bail;
6172 	}
6173 
6174 	*tl_inode = inode;
6175 	*tl_bh    = bh;
6176 bail:
6177 	return status;
6178 }
6179 
6180 /* called during the 1st stage of node recovery. we stamp a clean
6181  * truncate log and pass back a copy for processing later. if the
6182  * truncate log does not require processing, a *tl_copy is set to
6183  * NULL. */
6184 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6185 				      int slot_num,
6186 				      struct ocfs2_dinode **tl_copy)
6187 {
6188 	int status;
6189 	struct inode *tl_inode = NULL;
6190 	struct buffer_head *tl_bh = NULL;
6191 	struct ocfs2_dinode *di;
6192 	struct ocfs2_truncate_log *tl;
6193 
6194 	*tl_copy = NULL;
6195 
6196 	trace_ocfs2_begin_truncate_log_recovery(slot_num);
6197 
6198 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6199 	if (status < 0) {
6200 		mlog_errno(status);
6201 		goto bail;
6202 	}
6203 
6204 	di = (struct ocfs2_dinode *) tl_bh->b_data;
6205 
6206 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
6207 	 * validated by the underlying call to ocfs2_read_inode_block(),
6208 	 * so any corruption is a code bug */
6209 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6210 
6211 	tl = &di->id2.i_dealloc;
6212 	if (le16_to_cpu(tl->tl_used)) {
6213 		trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6214 
6215 		/*
6216 		 * Assuming the write-out below goes well, this copy will be
6217 		 * passed back to recovery for processing.
6218 		 */
6219 		*tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6220 		if (!(*tl_copy)) {
6221 			status = -ENOMEM;
6222 			mlog_errno(status);
6223 			goto bail;
6224 		}
6225 
6226 		/* All we need to do to clear the truncate log is set
6227 		 * tl_used. */
6228 		tl->tl_used = 0;
6229 
6230 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6231 		status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6232 		if (status < 0) {
6233 			mlog_errno(status);
6234 			goto bail;
6235 		}
6236 	}
6237 
6238 bail:
6239 	iput(tl_inode);
6240 	brelse(tl_bh);
6241 
6242 	if (status < 0) {
6243 		kfree(*tl_copy);
6244 		*tl_copy = NULL;
6245 		mlog_errno(status);
6246 	}
6247 
6248 	return status;
6249 }
6250 
6251 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6252 					 struct ocfs2_dinode *tl_copy)
6253 {
6254 	int status = 0;
6255 	int i;
6256 	unsigned int clusters, num_recs, start_cluster;
6257 	u64 start_blk;
6258 	handle_t *handle;
6259 	struct inode *tl_inode = osb->osb_tl_inode;
6260 	struct ocfs2_truncate_log *tl;
6261 
6262 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6263 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6264 		return -EINVAL;
6265 	}
6266 
6267 	tl = &tl_copy->id2.i_dealloc;
6268 	num_recs = le16_to_cpu(tl->tl_used);
6269 	trace_ocfs2_complete_truncate_log_recovery(
6270 		(unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6271 		num_recs);
6272 
6273 	inode_lock(tl_inode);
6274 	for(i = 0; i < num_recs; i++) {
6275 		if (ocfs2_truncate_log_needs_flush(osb)) {
6276 			status = __ocfs2_flush_truncate_log(osb);
6277 			if (status < 0) {
6278 				mlog_errno(status);
6279 				goto bail_up;
6280 			}
6281 		}
6282 
6283 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6284 		if (IS_ERR(handle)) {
6285 			status = PTR_ERR(handle);
6286 			mlog_errno(status);
6287 			goto bail_up;
6288 		}
6289 
6290 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6291 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6292 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6293 
6294 		status = ocfs2_truncate_log_append(osb, handle,
6295 						   start_blk, clusters);
6296 		ocfs2_commit_trans(osb, handle);
6297 		if (status < 0) {
6298 			mlog_errno(status);
6299 			goto bail_up;
6300 		}
6301 	}
6302 
6303 bail_up:
6304 	inode_unlock(tl_inode);
6305 
6306 	return status;
6307 }
6308 
6309 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6310 {
6311 	int status;
6312 	struct inode *tl_inode = osb->osb_tl_inode;
6313 
6314 	atomic_set(&osb->osb_tl_disable, 1);
6315 
6316 	if (tl_inode) {
6317 		cancel_delayed_work(&osb->osb_truncate_log_wq);
6318 		flush_workqueue(osb->ocfs2_wq);
6319 
6320 		status = ocfs2_flush_truncate_log(osb);
6321 		if (status < 0)
6322 			mlog_errno(status);
6323 
6324 		brelse(osb->osb_tl_bh);
6325 		iput(osb->osb_tl_inode);
6326 	}
6327 }
6328 
6329 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6330 {
6331 	int status;
6332 	struct inode *tl_inode = NULL;
6333 	struct buffer_head *tl_bh = NULL;
6334 
6335 	status = ocfs2_get_truncate_log_info(osb,
6336 					     osb->slot_num,
6337 					     &tl_inode,
6338 					     &tl_bh);
6339 	if (status < 0)
6340 		mlog_errno(status);
6341 
6342 	/* ocfs2_truncate_log_shutdown keys on the existence of
6343 	 * osb->osb_tl_inode so we don't set any of the osb variables
6344 	 * until we're sure all is well. */
6345 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6346 			  ocfs2_truncate_log_worker);
6347 	atomic_set(&osb->osb_tl_disable, 0);
6348 	osb->osb_tl_bh    = tl_bh;
6349 	osb->osb_tl_inode = tl_inode;
6350 
6351 	return status;
6352 }
6353 
6354 /*
6355  * Delayed de-allocation of suballocator blocks.
6356  *
6357  * Some sets of block de-allocations might involve multiple suballocator inodes.
6358  *
6359  * The locking for this can get extremely complicated, especially when
6360  * the suballocator inodes to delete from aren't known until deep
6361  * within an unrelated codepath.
6362  *
6363  * ocfs2_extent_block structures are a good example of this - an inode
6364  * btree could have been grown by any number of nodes each allocating
6365  * out of their own suballoc inode.
6366  *
6367  * These structures allow the delay of block de-allocation until a
6368  * later time, when locking of multiple cluster inodes won't cause
6369  * deadlock.
6370  */
6371 
6372 /*
6373  * Describe a single bit freed from a suballocator.  For the block
6374  * suballocators, it represents one block.  For the global cluster
6375  * allocator, it represents some clusters and free_bit indicates
6376  * clusters number.
6377  */
6378 struct ocfs2_cached_block_free {
6379 	struct ocfs2_cached_block_free		*free_next;
6380 	u64					free_bg;
6381 	u64					free_blk;
6382 	unsigned int				free_bit;
6383 };
6384 
6385 struct ocfs2_per_slot_free_list {
6386 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6387 	int					f_inode_type;
6388 	int					f_slot;
6389 	struct ocfs2_cached_block_free		*f_first;
6390 };
6391 
6392 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6393 				    int sysfile_type,
6394 				    int slot,
6395 				    struct ocfs2_cached_block_free *head)
6396 {
6397 	int ret;
6398 	u64 bg_blkno;
6399 	handle_t *handle;
6400 	struct inode *inode;
6401 	struct buffer_head *di_bh = NULL;
6402 	struct ocfs2_cached_block_free *tmp;
6403 
6404 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6405 	if (!inode) {
6406 		ret = -EINVAL;
6407 		mlog_errno(ret);
6408 		goto out;
6409 	}
6410 
6411 	inode_lock(inode);
6412 
6413 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6414 	if (ret) {
6415 		mlog_errno(ret);
6416 		goto out_mutex;
6417 	}
6418 
6419 	while (head) {
6420 		if (head->free_bg)
6421 			bg_blkno = head->free_bg;
6422 		else
6423 			bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6424 							      head->free_bit);
6425 		handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6426 		if (IS_ERR(handle)) {
6427 			ret = PTR_ERR(handle);
6428 			mlog_errno(ret);
6429 			goto out_unlock;
6430 		}
6431 
6432 		trace_ocfs2_free_cached_blocks(
6433 		     (unsigned long long)head->free_blk, head->free_bit);
6434 
6435 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6436 					       head->free_bit, bg_blkno, 1);
6437 		if (ret)
6438 			mlog_errno(ret);
6439 
6440 		ocfs2_commit_trans(osb, handle);
6441 
6442 		tmp = head;
6443 		head = head->free_next;
6444 		kfree(tmp);
6445 	}
6446 
6447 out_unlock:
6448 	ocfs2_inode_unlock(inode, 1);
6449 	brelse(di_bh);
6450 out_mutex:
6451 	inode_unlock(inode);
6452 	iput(inode);
6453 out:
6454 	while(head) {
6455 		/* Premature exit may have left some dangling items. */
6456 		tmp = head;
6457 		head = head->free_next;
6458 		kfree(tmp);
6459 	}
6460 
6461 	return ret;
6462 }
6463 
6464 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6465 				u64 blkno, unsigned int bit)
6466 {
6467 	int ret = 0;
6468 	struct ocfs2_cached_block_free *item;
6469 
6470 	item = kzalloc(sizeof(*item), GFP_NOFS);
6471 	if (item == NULL) {
6472 		ret = -ENOMEM;
6473 		mlog_errno(ret);
6474 		return ret;
6475 	}
6476 
6477 	trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6478 
6479 	item->free_blk = blkno;
6480 	item->free_bit = bit;
6481 	item->free_next = ctxt->c_global_allocator;
6482 
6483 	ctxt->c_global_allocator = item;
6484 	return ret;
6485 }
6486 
6487 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6488 				      struct ocfs2_cached_block_free *head)
6489 {
6490 	struct ocfs2_cached_block_free *tmp;
6491 	struct inode *tl_inode = osb->osb_tl_inode;
6492 	handle_t *handle;
6493 	int ret = 0;
6494 
6495 	inode_lock(tl_inode);
6496 
6497 	while (head) {
6498 		if (ocfs2_truncate_log_needs_flush(osb)) {
6499 			ret = __ocfs2_flush_truncate_log(osb);
6500 			if (ret < 0) {
6501 				mlog_errno(ret);
6502 				break;
6503 			}
6504 		}
6505 
6506 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6507 		if (IS_ERR(handle)) {
6508 			ret = PTR_ERR(handle);
6509 			mlog_errno(ret);
6510 			break;
6511 		}
6512 
6513 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6514 						head->free_bit);
6515 
6516 		ocfs2_commit_trans(osb, handle);
6517 		tmp = head;
6518 		head = head->free_next;
6519 		kfree(tmp);
6520 
6521 		if (ret < 0) {
6522 			mlog_errno(ret);
6523 			break;
6524 		}
6525 	}
6526 
6527 	inode_unlock(tl_inode);
6528 
6529 	while (head) {
6530 		/* Premature exit may have left some dangling items. */
6531 		tmp = head;
6532 		head = head->free_next;
6533 		kfree(tmp);
6534 	}
6535 
6536 	return ret;
6537 }
6538 
6539 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6540 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6541 {
6542 	int ret = 0, ret2;
6543 	struct ocfs2_per_slot_free_list *fl;
6544 
6545 	if (!ctxt)
6546 		return 0;
6547 
6548 	while (ctxt->c_first_suballocator) {
6549 		fl = ctxt->c_first_suballocator;
6550 
6551 		if (fl->f_first) {
6552 			trace_ocfs2_run_deallocs(fl->f_inode_type,
6553 						 fl->f_slot);
6554 			ret2 = ocfs2_free_cached_blocks(osb,
6555 							fl->f_inode_type,
6556 							fl->f_slot,
6557 							fl->f_first);
6558 			if (ret2)
6559 				mlog_errno(ret2);
6560 			if (!ret)
6561 				ret = ret2;
6562 		}
6563 
6564 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6565 		kfree(fl);
6566 	}
6567 
6568 	if (ctxt->c_global_allocator) {
6569 		ret2 = ocfs2_free_cached_clusters(osb,
6570 						  ctxt->c_global_allocator);
6571 		if (ret2)
6572 			mlog_errno(ret2);
6573 		if (!ret)
6574 			ret = ret2;
6575 
6576 		ctxt->c_global_allocator = NULL;
6577 	}
6578 
6579 	return ret;
6580 }
6581 
6582 static struct ocfs2_per_slot_free_list *
6583 ocfs2_find_per_slot_free_list(int type,
6584 			      int slot,
6585 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6586 {
6587 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6588 
6589 	while (fl) {
6590 		if (fl->f_inode_type == type && fl->f_slot == slot)
6591 			return fl;
6592 
6593 		fl = fl->f_next_suballocator;
6594 	}
6595 
6596 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6597 	if (fl) {
6598 		fl->f_inode_type = type;
6599 		fl->f_slot = slot;
6600 		fl->f_first = NULL;
6601 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6602 
6603 		ctxt->c_first_suballocator = fl;
6604 	}
6605 	return fl;
6606 }
6607 
6608 static struct ocfs2_per_slot_free_list *
6609 ocfs2_find_preferred_free_list(int type,
6610 			       int preferred_slot,
6611 			       int *real_slot,
6612 			       struct ocfs2_cached_dealloc_ctxt *ctxt)
6613 {
6614 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6615 
6616 	while (fl) {
6617 		if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6618 			*real_slot = fl->f_slot;
6619 			return fl;
6620 		}
6621 
6622 		fl = fl->f_next_suballocator;
6623 	}
6624 
6625 	/* If we can't find any free list matching preferred slot, just use
6626 	 * the first one.
6627 	 */
6628 	fl = ctxt->c_first_suballocator;
6629 	*real_slot = fl->f_slot;
6630 
6631 	return fl;
6632 }
6633 
6634 /* Return Value 1 indicates empty */
6635 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6636 {
6637 	struct ocfs2_per_slot_free_list *fl = NULL;
6638 
6639 	if (!et->et_dealloc)
6640 		return 1;
6641 
6642 	fl = et->et_dealloc->c_first_suballocator;
6643 	if (!fl)
6644 		return 1;
6645 
6646 	if (!fl->f_first)
6647 		return 1;
6648 
6649 	return 0;
6650 }
6651 
6652 /* If extent was deleted from tree due to extent rotation and merging, and
6653  * no metadata is reserved ahead of time. Try to reuse some extents
6654  * just deleted. This is only used to reuse extent blocks.
6655  * It is supposed to find enough extent blocks in dealloc if our estimation
6656  * on metadata is accurate.
6657  */
6658 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6659 					struct ocfs2_extent_tree *et,
6660 					struct buffer_head **new_eb_bh,
6661 					int blk_wanted, int *blk_given)
6662 {
6663 	int i, status = 0, real_slot;
6664 	struct ocfs2_cached_dealloc_ctxt *dealloc;
6665 	struct ocfs2_per_slot_free_list *fl;
6666 	struct ocfs2_cached_block_free *bf;
6667 	struct ocfs2_extent_block *eb;
6668 	struct ocfs2_super *osb =
6669 		OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6670 
6671 	*blk_given = 0;
6672 
6673 	/* If extent tree doesn't have a dealloc, this is not faulty. Just
6674 	 * tell upper caller dealloc can't provide any block and it should
6675 	 * ask for alloc to claim more space.
6676 	 */
6677 	dealloc = et->et_dealloc;
6678 	if (!dealloc)
6679 		goto bail;
6680 
6681 	for (i = 0; i < blk_wanted; i++) {
6682 		/* Prefer to use local slot */
6683 		fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6684 						    osb->slot_num, &real_slot,
6685 						    dealloc);
6686 		/* If no more block can be reused, we should claim more
6687 		 * from alloc. Just return here normally.
6688 		 */
6689 		if (!fl) {
6690 			status = 0;
6691 			break;
6692 		}
6693 
6694 		bf = fl->f_first;
6695 		fl->f_first = bf->free_next;
6696 
6697 		new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6698 		if (new_eb_bh[i] == NULL) {
6699 			status = -ENOMEM;
6700 			mlog_errno(status);
6701 			goto bail;
6702 		}
6703 
6704 		mlog(0, "Reusing block(%llu) from "
6705 		     "dealloc(local slot:%d, real slot:%d)\n",
6706 		     bf->free_blk, osb->slot_num, real_slot);
6707 
6708 		ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6709 
6710 		status = ocfs2_journal_access_eb(handle, et->et_ci,
6711 						 new_eb_bh[i],
6712 						 OCFS2_JOURNAL_ACCESS_CREATE);
6713 		if (status < 0) {
6714 			mlog_errno(status);
6715 			goto bail;
6716 		}
6717 
6718 		memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6719 		eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6720 
6721 		/* We can't guarantee that buffer head is still cached, so
6722 		 * polutlate the extent block again.
6723 		 */
6724 		strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6725 		eb->h_blkno = cpu_to_le64(bf->free_blk);
6726 		eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6727 		eb->h_suballoc_slot = cpu_to_le16(real_slot);
6728 		eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6729 		eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6730 		eb->h_list.l_count =
6731 			cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6732 
6733 		/* We'll also be dirtied by the caller, so
6734 		 * this isn't absolutely necessary.
6735 		 */
6736 		ocfs2_journal_dirty(handle, new_eb_bh[i]);
6737 
6738 		if (!fl->f_first) {
6739 			dealloc->c_first_suballocator = fl->f_next_suballocator;
6740 			kfree(fl);
6741 		}
6742 		kfree(bf);
6743 	}
6744 
6745 	*blk_given = i;
6746 
6747 bail:
6748 	if (unlikely(status < 0)) {
6749 		for (i = 0; i < blk_wanted; i++)
6750 			brelse(new_eb_bh[i]);
6751 	}
6752 
6753 	return status;
6754 }
6755 
6756 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6757 			      int type, int slot, u64 suballoc,
6758 			      u64 blkno, unsigned int bit)
6759 {
6760 	int ret;
6761 	struct ocfs2_per_slot_free_list *fl;
6762 	struct ocfs2_cached_block_free *item;
6763 
6764 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6765 	if (fl == NULL) {
6766 		ret = -ENOMEM;
6767 		mlog_errno(ret);
6768 		goto out;
6769 	}
6770 
6771 	item = kzalloc(sizeof(*item), GFP_NOFS);
6772 	if (item == NULL) {
6773 		ret = -ENOMEM;
6774 		mlog_errno(ret);
6775 		goto out;
6776 	}
6777 
6778 	trace_ocfs2_cache_block_dealloc(type, slot,
6779 					(unsigned long long)suballoc,
6780 					(unsigned long long)blkno, bit);
6781 
6782 	item->free_bg = suballoc;
6783 	item->free_blk = blkno;
6784 	item->free_bit = bit;
6785 	item->free_next = fl->f_first;
6786 
6787 	fl->f_first = item;
6788 
6789 	ret = 0;
6790 out:
6791 	return ret;
6792 }
6793 
6794 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6795 					 struct ocfs2_extent_block *eb)
6796 {
6797 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6798 					 le16_to_cpu(eb->h_suballoc_slot),
6799 					 le64_to_cpu(eb->h_suballoc_loc),
6800 					 le64_to_cpu(eb->h_blkno),
6801 					 le16_to_cpu(eb->h_suballoc_bit));
6802 }
6803 
6804 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6805 {
6806 	set_buffer_uptodate(bh);
6807 	mark_buffer_dirty(bh);
6808 	return 0;
6809 }
6810 
6811 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6812 			      unsigned int from, unsigned int to,
6813 			      struct page *page, int zero, u64 *phys)
6814 {
6815 	int ret, partial = 0;
6816 	loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6817 	loff_t length = to - from;
6818 
6819 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6820 	if (ret)
6821 		mlog_errno(ret);
6822 
6823 	if (zero)
6824 		zero_user_segment(page, from, to);
6825 
6826 	/*
6827 	 * Need to set the buffers we zero'd into uptodate
6828 	 * here if they aren't - ocfs2_map_page_blocks()
6829 	 * might've skipped some
6830 	 */
6831 	ret = walk_page_buffers(handle, page_buffers(page),
6832 				from, to, &partial,
6833 				ocfs2_zero_func);
6834 	if (ret < 0)
6835 		mlog_errno(ret);
6836 	else if (ocfs2_should_order_data(inode)) {
6837 		ret = ocfs2_jbd2_inode_add_write(handle, inode,
6838 						 start_byte, length);
6839 		if (ret < 0)
6840 			mlog_errno(ret);
6841 	}
6842 
6843 	if (!partial)
6844 		SetPageUptodate(page);
6845 
6846 	flush_dcache_page(page);
6847 }
6848 
6849 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6850 				     loff_t end, struct page **pages,
6851 				     int numpages, u64 phys, handle_t *handle)
6852 {
6853 	int i;
6854 	struct page *page;
6855 	unsigned int from, to = PAGE_SIZE;
6856 	struct super_block *sb = inode->i_sb;
6857 
6858 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6859 
6860 	if (numpages == 0)
6861 		goto out;
6862 
6863 	to = PAGE_SIZE;
6864 	for(i = 0; i < numpages; i++) {
6865 		page = pages[i];
6866 
6867 		from = start & (PAGE_SIZE - 1);
6868 		if ((end >> PAGE_SHIFT) == page->index)
6869 			to = end & (PAGE_SIZE - 1);
6870 
6871 		BUG_ON(from > PAGE_SIZE);
6872 		BUG_ON(to > PAGE_SIZE);
6873 
6874 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6875 					 &phys);
6876 
6877 		start = (page->index + 1) << PAGE_SHIFT;
6878 	}
6879 out:
6880 	if (pages)
6881 		ocfs2_unlock_and_free_pages(pages, numpages);
6882 }
6883 
6884 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6885 		     struct page **pages, int *num)
6886 {
6887 	int numpages, ret = 0;
6888 	struct address_space *mapping = inode->i_mapping;
6889 	unsigned long index;
6890 	loff_t last_page_bytes;
6891 
6892 	BUG_ON(start > end);
6893 
6894 	numpages = 0;
6895 	last_page_bytes = PAGE_ALIGN(end);
6896 	index = start >> PAGE_SHIFT;
6897 	do {
6898 		pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6899 		if (!pages[numpages]) {
6900 			ret = -ENOMEM;
6901 			mlog_errno(ret);
6902 			goto out;
6903 		}
6904 
6905 		numpages++;
6906 		index++;
6907 	} while (index < (last_page_bytes >> PAGE_SHIFT));
6908 
6909 out:
6910 	if (ret != 0) {
6911 		if (pages)
6912 			ocfs2_unlock_and_free_pages(pages, numpages);
6913 		numpages = 0;
6914 	}
6915 
6916 	*num = numpages;
6917 
6918 	return ret;
6919 }
6920 
6921 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6922 				struct page **pages, int *num)
6923 {
6924 	struct super_block *sb = inode->i_sb;
6925 
6926 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6927 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6928 
6929 	return ocfs2_grab_pages(inode, start, end, pages, num);
6930 }
6931 
6932 /*
6933  * Zero partial cluster for a hole punch or truncate. This avoids exposing
6934  * nonzero data on subsequent file extends.
6935  *
6936  * We need to call this before i_size is updated on the inode because
6937  * otherwise block_write_full_folio() will skip writeout of pages past
6938  * i_size.
6939  */
6940 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6941 				  u64 range_start, u64 range_end)
6942 {
6943 	int ret = 0, numpages;
6944 	struct page **pages = NULL;
6945 	u64 phys;
6946 	unsigned int ext_flags;
6947 	struct super_block *sb = inode->i_sb;
6948 
6949 	/*
6950 	 * File systems which don't support sparse files zero on every
6951 	 * extend.
6952 	 */
6953 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6954 		return 0;
6955 
6956 	/*
6957 	 * Avoid zeroing pages fully beyond current i_size. It is pointless as
6958 	 * underlying blocks of those pages should be already zeroed out and
6959 	 * page writeback will skip them anyway.
6960 	 */
6961 	range_end = min_t(u64, range_end, i_size_read(inode));
6962 	if (range_start >= range_end)
6963 		return 0;
6964 
6965 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6966 			sizeof(struct page *), GFP_NOFS);
6967 	if (pages == NULL) {
6968 		ret = -ENOMEM;
6969 		mlog_errno(ret);
6970 		goto out;
6971 	}
6972 
6973 	ret = ocfs2_extent_map_get_blocks(inode,
6974 					  range_start >> sb->s_blocksize_bits,
6975 					  &phys, NULL, &ext_flags);
6976 	if (ret) {
6977 		mlog_errno(ret);
6978 		goto out;
6979 	}
6980 
6981 	/*
6982 	 * Tail is a hole, or is marked unwritten. In either case, we
6983 	 * can count on read and write to return/push zero's.
6984 	 */
6985 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6986 		goto out;
6987 
6988 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6989 				   &numpages);
6990 	if (ret) {
6991 		mlog_errno(ret);
6992 		goto out;
6993 	}
6994 
6995 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6996 				 numpages, phys, handle);
6997 
6998 	/*
6999 	 * Initiate writeout of the pages we zero'd here. We don't
7000 	 * wait on them - the truncate_inode_pages() call later will
7001 	 * do that for us.
7002 	 */
7003 	ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
7004 				       range_end - 1);
7005 	if (ret)
7006 		mlog_errno(ret);
7007 
7008 out:
7009 	kfree(pages);
7010 
7011 	return ret;
7012 }
7013 
7014 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7015 					     struct ocfs2_dinode *di)
7016 {
7017 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7018 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7019 
7020 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7021 		memset(&di->id2, 0, blocksize -
7022 				    offsetof(struct ocfs2_dinode, id2) -
7023 				    xattrsize);
7024 	else
7025 		memset(&di->id2, 0, blocksize -
7026 				    offsetof(struct ocfs2_dinode, id2));
7027 }
7028 
7029 void ocfs2_dinode_new_extent_list(struct inode *inode,
7030 				  struct ocfs2_dinode *di)
7031 {
7032 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7033 	di->id2.i_list.l_tree_depth = 0;
7034 	di->id2.i_list.l_next_free_rec = 0;
7035 	di->id2.i_list.l_count = cpu_to_le16(
7036 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7037 }
7038 
7039 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7040 {
7041 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7042 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7043 
7044 	spin_lock(&oi->ip_lock);
7045 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7046 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7047 	spin_unlock(&oi->ip_lock);
7048 
7049 	/*
7050 	 * We clear the entire i_data structure here so that all
7051 	 * fields can be properly initialized.
7052 	 */
7053 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
7054 
7055 	idata->id_count = cpu_to_le16(
7056 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7057 }
7058 
7059 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7060 					 struct buffer_head *di_bh)
7061 {
7062 	int ret, has_data, num_pages = 0;
7063 	int need_free = 0;
7064 	u32 bit_off, num;
7065 	handle_t *handle;
7066 	u64 block;
7067 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
7068 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7069 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7070 	struct ocfs2_alloc_context *data_ac = NULL;
7071 	struct page *page = NULL;
7072 	struct ocfs2_extent_tree et;
7073 	int did_quota = 0;
7074 
7075 	has_data = i_size_read(inode) ? 1 : 0;
7076 
7077 	if (has_data) {
7078 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7079 		if (ret) {
7080 			mlog_errno(ret);
7081 			goto out;
7082 		}
7083 	}
7084 
7085 	handle = ocfs2_start_trans(osb,
7086 				   ocfs2_inline_to_extents_credits(osb->sb));
7087 	if (IS_ERR(handle)) {
7088 		ret = PTR_ERR(handle);
7089 		mlog_errno(ret);
7090 		goto out;
7091 	}
7092 
7093 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7094 				      OCFS2_JOURNAL_ACCESS_WRITE);
7095 	if (ret) {
7096 		mlog_errno(ret);
7097 		goto out_commit;
7098 	}
7099 
7100 	if (has_data) {
7101 		unsigned int page_end = min_t(unsigned, PAGE_SIZE,
7102 							osb->s_clustersize);
7103 		u64 phys;
7104 
7105 		ret = dquot_alloc_space_nodirty(inode,
7106 				       ocfs2_clusters_to_bytes(osb->sb, 1));
7107 		if (ret)
7108 			goto out_commit;
7109 		did_quota = 1;
7110 
7111 		data_ac->ac_resv = &oi->ip_la_data_resv;
7112 
7113 		ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7114 					   &num);
7115 		if (ret) {
7116 			mlog_errno(ret);
7117 			goto out_commit;
7118 		}
7119 
7120 		/*
7121 		 * Save two copies, one for insert, and one that can
7122 		 * be changed by ocfs2_map_and_dirty_page() below.
7123 		 */
7124 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7125 
7126 		ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page,
7127 					   &num_pages);
7128 		if (ret) {
7129 			mlog_errno(ret);
7130 			need_free = 1;
7131 			goto out_commit;
7132 		}
7133 
7134 		/*
7135 		 * This should populate the 1st page for us and mark
7136 		 * it up to date.
7137 		 */
7138 		ret = ocfs2_read_inline_data(inode, page, di_bh);
7139 		if (ret) {
7140 			mlog_errno(ret);
7141 			need_free = 1;
7142 			goto out_unlock;
7143 		}
7144 
7145 		ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0,
7146 					 &phys);
7147 	}
7148 
7149 	spin_lock(&oi->ip_lock);
7150 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7151 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7152 	spin_unlock(&oi->ip_lock);
7153 
7154 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7155 	ocfs2_dinode_new_extent_list(inode, di);
7156 
7157 	ocfs2_journal_dirty(handle, di_bh);
7158 
7159 	if (has_data) {
7160 		/*
7161 		 * An error at this point should be extremely rare. If
7162 		 * this proves to be false, we could always re-build
7163 		 * the in-inode data from our pages.
7164 		 */
7165 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7166 		ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7167 		if (ret) {
7168 			mlog_errno(ret);
7169 			need_free = 1;
7170 			goto out_unlock;
7171 		}
7172 
7173 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7174 	}
7175 
7176 out_unlock:
7177 	if (page)
7178 		ocfs2_unlock_and_free_pages(&page, num_pages);
7179 
7180 out_commit:
7181 	if (ret < 0 && did_quota)
7182 		dquot_free_space_nodirty(inode,
7183 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7184 
7185 	if (need_free) {
7186 		if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7187 			ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7188 					bit_off, num);
7189 		else
7190 			ocfs2_free_clusters(handle,
7191 					data_ac->ac_inode,
7192 					data_ac->ac_bh,
7193 					ocfs2_clusters_to_blocks(osb->sb, bit_off),
7194 					num);
7195 	}
7196 
7197 	ocfs2_commit_trans(osb, handle);
7198 
7199 out:
7200 	if (data_ac)
7201 		ocfs2_free_alloc_context(data_ac);
7202 	return ret;
7203 }
7204 
7205 /*
7206  * It is expected, that by the time you call this function,
7207  * inode->i_size and fe->i_size have been adjusted.
7208  *
7209  * WARNING: This will kfree the truncate context
7210  */
7211 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7212 			  struct inode *inode,
7213 			  struct buffer_head *di_bh)
7214 {
7215 	int status = 0, i, flags = 0;
7216 	u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7217 	u64 blkno = 0;
7218 	struct ocfs2_extent_list *el;
7219 	struct ocfs2_extent_rec *rec;
7220 	struct ocfs2_path *path = NULL;
7221 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7222 	struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7223 	u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7224 	struct ocfs2_extent_tree et;
7225 	struct ocfs2_cached_dealloc_ctxt dealloc;
7226 	struct ocfs2_refcount_tree *ref_tree = NULL;
7227 
7228 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7229 	ocfs2_init_dealloc_ctxt(&dealloc);
7230 
7231 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7232 						     i_size_read(inode));
7233 
7234 	path = ocfs2_new_path(di_bh, &di->id2.i_list,
7235 			      ocfs2_journal_access_di);
7236 	if (!path) {
7237 		status = -ENOMEM;
7238 		mlog_errno(status);
7239 		goto bail;
7240 	}
7241 
7242 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7243 
7244 start:
7245 	/*
7246 	 * Check that we still have allocation to delete.
7247 	 */
7248 	if (OCFS2_I(inode)->ip_clusters == 0) {
7249 		status = 0;
7250 		goto bail;
7251 	}
7252 
7253 	/*
7254 	 * Truncate always works against the rightmost tree branch.
7255 	 */
7256 	status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7257 	if (status) {
7258 		mlog_errno(status);
7259 		goto bail;
7260 	}
7261 
7262 	trace_ocfs2_commit_truncate(
7263 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
7264 		new_highest_cpos,
7265 		OCFS2_I(inode)->ip_clusters,
7266 		path->p_tree_depth);
7267 
7268 	/*
7269 	 * By now, el will point to the extent list on the bottom most
7270 	 * portion of this tree. Only the tail record is considered in
7271 	 * each pass.
7272 	 *
7273 	 * We handle the following cases, in order:
7274 	 * - empty extent: delete the remaining branch
7275 	 * - remove the entire record
7276 	 * - remove a partial record
7277 	 * - no record needs to be removed (truncate has completed)
7278 	 */
7279 	el = path_leaf_el(path);
7280 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7281 		ocfs2_error(inode->i_sb,
7282 			    "Inode %llu has empty extent block at %llu\n",
7283 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7284 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7285 		status = -EROFS;
7286 		goto bail;
7287 	}
7288 
7289 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7290 	rec = &el->l_recs[i];
7291 	flags = rec->e_flags;
7292 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7293 
7294 	if (i == 0 && ocfs2_is_empty_extent(rec)) {
7295 		/*
7296 		 * Lower levels depend on this never happening, but it's best
7297 		 * to check it up here before changing the tree.
7298 		*/
7299 		if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7300 			mlog(ML_ERROR, "Inode %lu has an empty "
7301 				    "extent record, depth %u\n", inode->i_ino,
7302 				    le16_to_cpu(root_el->l_tree_depth));
7303 			status = ocfs2_remove_rightmost_empty_extent(osb,
7304 					&et, path, &dealloc);
7305 			if (status) {
7306 				mlog_errno(status);
7307 				goto bail;
7308 			}
7309 
7310 			ocfs2_reinit_path(path, 1);
7311 			goto start;
7312 		} else {
7313 			trunc_cpos = le32_to_cpu(rec->e_cpos);
7314 			trunc_len = 0;
7315 			blkno = 0;
7316 		}
7317 	} else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7318 		/*
7319 		 * Truncate entire record.
7320 		 */
7321 		trunc_cpos = le32_to_cpu(rec->e_cpos);
7322 		trunc_len = ocfs2_rec_clusters(el, rec);
7323 		blkno = le64_to_cpu(rec->e_blkno);
7324 	} else if (range > new_highest_cpos) {
7325 		/*
7326 		 * Partial truncate. it also should be
7327 		 * the last truncate we're doing.
7328 		 */
7329 		trunc_cpos = new_highest_cpos;
7330 		trunc_len = range - new_highest_cpos;
7331 		coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7332 		blkno = le64_to_cpu(rec->e_blkno) +
7333 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
7334 	} else {
7335 		/*
7336 		 * Truncate completed, leave happily.
7337 		 */
7338 		status = 0;
7339 		goto bail;
7340 	}
7341 
7342 	phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7343 
7344 	if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7345 		status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7346 				&ref_tree, NULL);
7347 		if (status) {
7348 			mlog_errno(status);
7349 			goto bail;
7350 		}
7351 	}
7352 
7353 	status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7354 					  phys_cpos, trunc_len, flags, &dealloc,
7355 					  refcount_loc, true);
7356 	if (status < 0) {
7357 		mlog_errno(status);
7358 		goto bail;
7359 	}
7360 
7361 	ocfs2_reinit_path(path, 1);
7362 
7363 	/*
7364 	 * The check above will catch the case where we've truncated
7365 	 * away all allocation.
7366 	 */
7367 	goto start;
7368 
7369 bail:
7370 	if (ref_tree)
7371 		ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7372 
7373 	ocfs2_schedule_truncate_log_flush(osb, 1);
7374 
7375 	ocfs2_run_deallocs(osb, &dealloc);
7376 
7377 	ocfs2_free_path(path);
7378 
7379 	return status;
7380 }
7381 
7382 /*
7383  * 'start' is inclusive, 'end' is not.
7384  */
7385 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7386 			  unsigned int start, unsigned int end, int trunc)
7387 {
7388 	int ret;
7389 	unsigned int numbytes;
7390 	handle_t *handle;
7391 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7392 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7393 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7394 
7395 	/* No need to punch hole beyond i_size. */
7396 	if (start >= i_size_read(inode))
7397 		return 0;
7398 
7399 	if (end > i_size_read(inode))
7400 		end = i_size_read(inode);
7401 
7402 	BUG_ON(start > end);
7403 
7404 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7405 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7406 	    !ocfs2_supports_inline_data(osb)) {
7407 		ocfs2_error(inode->i_sb,
7408 			    "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7409 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7410 			    le16_to_cpu(di->i_dyn_features),
7411 			    OCFS2_I(inode)->ip_dyn_features,
7412 			    osb->s_feature_incompat);
7413 		ret = -EROFS;
7414 		goto out;
7415 	}
7416 
7417 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7418 	if (IS_ERR(handle)) {
7419 		ret = PTR_ERR(handle);
7420 		mlog_errno(ret);
7421 		goto out;
7422 	}
7423 
7424 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7425 				      OCFS2_JOURNAL_ACCESS_WRITE);
7426 	if (ret) {
7427 		mlog_errno(ret);
7428 		goto out_commit;
7429 	}
7430 
7431 	numbytes = end - start;
7432 	memset(idata->id_data + start, 0, numbytes);
7433 
7434 	/*
7435 	 * No need to worry about the data page here - it's been
7436 	 * truncated already and inline data doesn't need it for
7437 	 * pushing zero's to disk, so we'll let read_folio pick it up
7438 	 * later.
7439 	 */
7440 	if (trunc) {
7441 		i_size_write(inode, start);
7442 		di->i_size = cpu_to_le64(start);
7443 	}
7444 
7445 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7446 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7447 
7448 	di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode));
7449 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
7450 
7451 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
7452 	ocfs2_journal_dirty(handle, di_bh);
7453 
7454 out_commit:
7455 	ocfs2_commit_trans(osb, handle);
7456 
7457 out:
7458 	return ret;
7459 }
7460 
7461 static int ocfs2_trim_extent(struct super_block *sb,
7462 			     struct ocfs2_group_desc *gd,
7463 			     u64 group, u32 start, u32 count)
7464 {
7465 	u64 discard, bcount;
7466 	struct ocfs2_super *osb = OCFS2_SB(sb);
7467 
7468 	bcount = ocfs2_clusters_to_blocks(sb, count);
7469 	discard = ocfs2_clusters_to_blocks(sb, start);
7470 
7471 	/*
7472 	 * For the first cluster group, the gd->bg_blkno is not at the start
7473 	 * of the group, but at an offset from the start. If we add it while
7474 	 * calculating discard for first group, we will wrongly start fstrim a
7475 	 * few blocks after the desried start block and the range can cross
7476 	 * over into the next cluster group. So, add it only if this is not
7477 	 * the first cluster group.
7478 	 */
7479 	if (group != osb->first_cluster_group_blkno)
7480 		discard += le64_to_cpu(gd->bg_blkno);
7481 
7482 	trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7483 
7484 	return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7485 }
7486 
7487 static int ocfs2_trim_group(struct super_block *sb,
7488 			    struct ocfs2_group_desc *gd, u64 group,
7489 			    u32 start, u32 max, u32 minbits)
7490 {
7491 	int ret = 0, count = 0, next;
7492 	void *bitmap = gd->bg_bitmap;
7493 
7494 	if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7495 		return 0;
7496 
7497 	trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7498 			       start, max, minbits);
7499 
7500 	while (start < max) {
7501 		start = ocfs2_find_next_zero_bit(bitmap, max, start);
7502 		if (start >= max)
7503 			break;
7504 		next = ocfs2_find_next_bit(bitmap, max, start);
7505 
7506 		if ((next - start) >= minbits) {
7507 			ret = ocfs2_trim_extent(sb, gd, group,
7508 						start, next - start);
7509 			if (ret < 0) {
7510 				mlog_errno(ret);
7511 				break;
7512 			}
7513 			count += next - start;
7514 		}
7515 		start = next + 1;
7516 
7517 		if (fatal_signal_pending(current)) {
7518 			count = -ERESTARTSYS;
7519 			break;
7520 		}
7521 
7522 		if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7523 			break;
7524 	}
7525 
7526 	if (ret < 0)
7527 		count = ret;
7528 
7529 	return count;
7530 }
7531 
7532 static
7533 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7534 {
7535 	struct ocfs2_super *osb = OCFS2_SB(sb);
7536 	u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7537 	int ret, cnt;
7538 	u32 first_bit, last_bit, minlen;
7539 	struct buffer_head *main_bm_bh = NULL;
7540 	struct inode *main_bm_inode = NULL;
7541 	struct buffer_head *gd_bh = NULL;
7542 	struct ocfs2_dinode *main_bm;
7543 	struct ocfs2_group_desc *gd = NULL;
7544 
7545 	start = range->start >> osb->s_clustersize_bits;
7546 	len = range->len >> osb->s_clustersize_bits;
7547 	minlen = range->minlen >> osb->s_clustersize_bits;
7548 
7549 	if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7550 		return -EINVAL;
7551 
7552 	trace_ocfs2_trim_mainbm(start, len, minlen);
7553 
7554 next_group:
7555 	main_bm_inode = ocfs2_get_system_file_inode(osb,
7556 						    GLOBAL_BITMAP_SYSTEM_INODE,
7557 						    OCFS2_INVALID_SLOT);
7558 	if (!main_bm_inode) {
7559 		ret = -EIO;
7560 		mlog_errno(ret);
7561 		goto out;
7562 	}
7563 
7564 	inode_lock(main_bm_inode);
7565 
7566 	ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7567 	if (ret < 0) {
7568 		mlog_errno(ret);
7569 		goto out_mutex;
7570 	}
7571 	main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7572 
7573 	/*
7574 	 * Do some check before trim the first group.
7575 	 */
7576 	if (!group) {
7577 		if (start >= le32_to_cpu(main_bm->i_clusters)) {
7578 			ret = -EINVAL;
7579 			goto out_unlock;
7580 		}
7581 
7582 		if (start + len > le32_to_cpu(main_bm->i_clusters))
7583 			len = le32_to_cpu(main_bm->i_clusters) - start;
7584 
7585 		/*
7586 		 * Determine first and last group to examine based on
7587 		 * start and len
7588 		 */
7589 		first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7590 		if (first_group == osb->first_cluster_group_blkno)
7591 			first_bit = start;
7592 		else
7593 			first_bit = start - ocfs2_blocks_to_clusters(sb,
7594 								first_group);
7595 		last_group = ocfs2_which_cluster_group(main_bm_inode,
7596 						       start + len - 1);
7597 		group = first_group;
7598 	}
7599 
7600 	do {
7601 		if (first_bit + len >= osb->bitmap_cpg)
7602 			last_bit = osb->bitmap_cpg;
7603 		else
7604 			last_bit = first_bit + len;
7605 
7606 		ret = ocfs2_read_group_descriptor(main_bm_inode,
7607 						  main_bm, group,
7608 						  &gd_bh);
7609 		if (ret < 0) {
7610 			mlog_errno(ret);
7611 			break;
7612 		}
7613 
7614 		gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7615 		cnt = ocfs2_trim_group(sb, gd, group,
7616 				       first_bit, last_bit, minlen);
7617 		brelse(gd_bh);
7618 		gd_bh = NULL;
7619 		if (cnt < 0) {
7620 			ret = cnt;
7621 			mlog_errno(ret);
7622 			break;
7623 		}
7624 
7625 		trimmed += cnt;
7626 		len -= osb->bitmap_cpg - first_bit;
7627 		first_bit = 0;
7628 		if (group == osb->first_cluster_group_blkno)
7629 			group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7630 		else
7631 			group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7632 	} while (0);
7633 
7634 out_unlock:
7635 	ocfs2_inode_unlock(main_bm_inode, 0);
7636 	brelse(main_bm_bh);
7637 	main_bm_bh = NULL;
7638 out_mutex:
7639 	inode_unlock(main_bm_inode);
7640 	iput(main_bm_inode);
7641 
7642 	/*
7643 	 * If all the groups trim are not done or failed, but we should release
7644 	 * main_bm related locks for avoiding the current IO starve, then go to
7645 	 * trim the next group
7646 	 */
7647 	if (ret >= 0 && group <= last_group) {
7648 		cond_resched();
7649 		goto next_group;
7650 	}
7651 out:
7652 	range->len = trimmed * osb->s_clustersize;
7653 	return ret;
7654 }
7655 
7656 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7657 {
7658 	int ret;
7659 	struct ocfs2_super *osb = OCFS2_SB(sb);
7660 	struct ocfs2_trim_fs_info info, *pinfo = NULL;
7661 
7662 	ocfs2_trim_fs_lock_res_init(osb);
7663 
7664 	trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7665 
7666 	ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7667 	if (ret < 0) {
7668 		if (ret != -EAGAIN) {
7669 			mlog_errno(ret);
7670 			ocfs2_trim_fs_lock_res_uninit(osb);
7671 			return ret;
7672 		}
7673 
7674 		mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7675 		     "finish, which is running from another node.\n",
7676 		     osb->dev_str);
7677 		ret = ocfs2_trim_fs_lock(osb, &info, 0);
7678 		if (ret < 0) {
7679 			mlog_errno(ret);
7680 			ocfs2_trim_fs_lock_res_uninit(osb);
7681 			return ret;
7682 		}
7683 
7684 		if (info.tf_valid && info.tf_success &&
7685 		    info.tf_start == range->start &&
7686 		    info.tf_len == range->len &&
7687 		    info.tf_minlen == range->minlen) {
7688 			/* Avoid sending duplicated trim to a shared device */
7689 			mlog(ML_NOTICE, "The same trim on device (%s) was "
7690 			     "just done from node (%u), return.\n",
7691 			     osb->dev_str, info.tf_nodenum);
7692 			range->len = info.tf_trimlen;
7693 			goto out;
7694 		}
7695 	}
7696 
7697 	info.tf_nodenum = osb->node_num;
7698 	info.tf_start = range->start;
7699 	info.tf_len = range->len;
7700 	info.tf_minlen = range->minlen;
7701 
7702 	ret = ocfs2_trim_mainbm(sb, range);
7703 
7704 	info.tf_trimlen = range->len;
7705 	info.tf_success = (ret < 0 ? 0 : 1);
7706 	pinfo = &info;
7707 out:
7708 	ocfs2_trim_fs_unlock(osb, pinfo);
7709 	ocfs2_trim_fs_lock_res_uninit(osb);
7710 	return ret;
7711 }
7712